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Abstract

We study unemployment insurance within an equilibrium business cycle model with labor

search frictions, endogenous participation, and involuntary unemployment. The model yields

an endogenous countercyclical labor wedge that may generate self-fulfilling fluctuations. We

show that unemployment insurance makes local indeterminacy less pervasive and, therefore, is

a powerful automatic stabilizer. In calibrated versions of the model, indeterminacy occurs for

replacement rates that are empirically plausible for North America, but not for the replacement

rates observed for European countries.
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1 Introduction

Unemployment insurance not only provides timely welfare protection and social insurance to the

short-term unemployed but is often also regarded as an important macroeconomic stabilizer. In fact,

these two roles of unemployment insurance are often intertwined (Chodorow-Reich and Coglianese,

2019). This is because the stabilizing effect of unemployment insurance is traditionally thought to

be most effective in environments featuring incomplete opportunities for private insurance (McKay

and Reis, 2016). For example, unemployment insurance may dampen fluctuations in disposable

income and thus stabilize the business cycle in environments with nominal rigidities and market

incompleteness (Brown, 1955). Similarly, unemployment insurance may redistribute income across

individuals that have different marginal propensity to spend and, thus, contribute to aggregate

demand stabilization when markets are incomplete (Blinder, 1975). But in this paper we present

an additional channel through which unemployment insurance may have both an effective and

desirable (welfare improving) stabilization role even in a setting with perfect private insurance

markets and, consequently, no motivation for redistribution. Unemployment insurance may help

eliminate inefficient self-fulfilling unemployment fluctuations.

To do this, we develop an equilibrium business cycle model with perfect insurance markets, but

frictional labor markets. The labor market features transitions across three-states, including

employment, unemployment, and non-participation. To obtain an active labor force participation

choice, we assume there is an opportunity cost of job search in the form of forgone utility. Conditional

on participation, unemployed workers search for jobs in frictional labor markets, and the transition

rate from unemployment to employment is assumed to be procyclical: it is easier for unemployed

workers to find jobs when output is above its long-run trend. We show that combining an active

labor force participation choice with a procyclical job finding rate yields an endogenous and

countercyclical labor wedge.1 The latter is defined as the gap between the marginal rate of

substitution of consumption for leisure in the frictionless economy and the marginal product of

labor.2 The countercyclicality of the labor wedge has been shown to be an important feature of

observed business cycle fluctuations (Gaĺı et al., 2007; Hall, 2009; Shimer, 2009; Karabarbounis,

2014).

1Recent empirical work attributes an important role to the participation margin for labor market transitions,
e.g., Elsby et al. (2015) showed that the participation margin accounts for one-third of the cyclical variation in the
unemployment rate.

2The frictionless economy is obtained by assuming away search frictions in the labor market, and corresponds to the
Hansen (1985) and Rogerson (1988) indivisible labor model in which perfectly insured individuals purchase lotteries
over employment and non-employment (yielding a two-states labor market without involuntary unemployment). In
the frictionless economy’s equilibrium, the marginal rate of substitution of consumption for leisure corresponds to the
opportunity cost of employment in units of consumption and equals the marginal product of labor.
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In our model, the labor wedge is an outcome of search frictions, because it is costly for the

stand-in agent to move members into employment. Moreover, because search frictions are more

pronounced during downturns, the labor wedge increases in downturns. We show that given

the active participation margin, an endogenous countercyclical labor wedge can generate local

equilibrium indeterminacy. Specifically, the endogenous participation margin and the procyclical

transition rate from unemployment to employment can generate a positive feedback loop leading to

self-fulfilling unemployment fluctuations: when output and employment are high the job finding

rate increases; this encourages higher labor force participation, in turn, raising employment and

output even further. Crucially, the labor wedge is also affected by unemployment insurance and,

in particular, the unemployment insurance replacement rate: larger replacement rates lower the

volatility of the labor wedge and make it less countercyclical. Because of this, a sufficiently large

replacement rate is shown to restore determinacy and, therefore, can be a powerful automatic

stabilizer. We consider this to be our main analytical result.

Based on this result, we characterize a necessary condition for local indeterminacy by extending

the methodologies of Benhabib and Farmer (1994), Aiyagari (1995) and Wen (2001) to economies

with frictional labor markets. This necessary condition places restrictions on the employment

elasticity of the labor wedge and, thus, on its countercyclicality. Since the labor wedge cyclicality is

affected by the unemployment insurance (UI) replacement rate, the upshot is that by inverting the

necessary conditions we are able to obtain a sufficient condition on the size of the UI replacement

rate required to restore equilibrium determinacy and, thus, eliminate inefficient fluctuations. Raising

the replacement rate sufficiently smoothes the labor wedge and, thus, eliminates belief-driven

fluctuations, by making the participation rate less sensitive to changes in the transition rate from

unemployment to employment.3

We calibrate the model and show numerically that indeterminacy arises for replacement rate policies

observed in the United States and Canada (North America), while the equilibrium is locally unique

for the policy parameters observed in European countries. Allowing the replacement rate and the

(steady state) job finding rate to vary independently, we trace the regions of (in)determinacy of

equilibrium across these two dimensions. European characteristics, namely, generous welfare states

(high UI replacement rates) and sclerotic labor markets (low job finding rates), fall within the

determinacy region, while those of North America, fluid labor markets and less generous policies

compared to Europe, fall within the region of indeterminacy. Starting with the replacement rates

observed in the United States, holding labor market frictions fixed and raising the replacement rate to

3This resonates with the result by Arseneau and Chugh (2012) regarding optimal taxation in models with frictional
labor markets and endogenous participation (features that are also important in our model). In their framework,
efficiency requires stabilizing the labor wedge over the business cycle.
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European levels would be enough to restore the determinacy of equilibrium. This result is consistent

with the common empirical finding that raising the replacement rate of unemployment insurance

lowers business cycle volatility (see, for example, Di Maggio and Kermani, 2016). Conversely, given

a fixed replacement rate, more sclerotic labor markets are more likely to be associated with a unique

equilibrium.4 Crucially, our calibration captures the salient facts distinguishing European and North

American labor markets, according to Ljungqvist and Sargent (2008), that displaced workers in

Europe suffer smaller earnings losses but also face lower reemployment rates than in North American

labor markets.

Our paper contributes to the important literature on automatic stabilizers, understood broadly as

features of the tax and transfer system that respond automatically to current conditions in the

economy, thereby lowering business cycle volatility. The stabilizing effect of automatic stabilizers, in

particular unemployment insurance, is traditionally thought to be potent in environments featuring

missing insurance opportunities (Flodén, 2001; Alonso-Ortiz and Rogerson, 2010; Challe and Ragot,

2015; McKay and Reis, 2016). More recently, Kekre (2021) and Gorn and Trigari (2021), in

environments with incomplete markets, nominal rigidities and labor market frictions, assess, both

theoretically and quantitatively, the stabilising effect of unemployment insurance. Instead, we use the

model developed in this paper to study the role of unemployment insurance in a setting with perfect

private insurance markets and, consequently, no motivation for redistribution. Still, unemployment

insurance is shown to have the potential to eliminate local indeterminacy and, therefore, is a powerful

automatic stabilizer that can also have beneficial welfare effects by eliminating inefficient fluctuations

driven by extrinsic uncertainty. Although there are other models in which automatic stabilizers

reduce business cycle volatility despite the existence of perfect private insurance markets (for

example, by lowering the aggregate labor supply elasticity, as in Janiak and Santos Monteiro, 2016),

this is in general not efficient. Indeed, it is generally argued that for automatic stabilizers to improve

welfare agents must be unable to enter private insurance contracts (McKay and Reis, 2021). In

contrast, in the model with search externalities that we propose, unemployment insurance may both

lower aggregate volatility and improve welfare in a set-up with perfect private insurance market, by

preventing inefficient beliefs-driven business cycle fluctuations.

Finally, our paper is also closely related to the literature on automatic stabilisation in environments

where fluctuations in economic activity are possible in the absence of shocks to fundamentals.

Schmitt-Grohe and Uribe (1997) show that indeterminacy can arise in the neoclassical growth model

4When we conduct these comparative static experiments we are ignoring the possibility that the replacement rate
affects the steady state job finding rate. In doing this, we are following the approach in Krusell et al. (2017) in treating
labor market frictions as exogenous. However, with an endogenous job creation channel, these two parameters may be
codetermined.
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if tax rates are determined by a balanced budget with a pre-set level of revenues. Guo and Lansing

(1998) argue that progressive income tax schedules can restore saddle path stability and, in related

work, Christiano and Harrison (1999) show that indeterminacy can be prevented if the tax rate is an

increasing function of aggregate employment. Nakajima (2006) shows that indeterminacy can arise

even in the absence of externalities in the neoclassical growth model with asymmetric information

and incomplete markets because moral hazard generates a downward-sloping labor supply curve.

However, unemployment insurance weakens this mechanism and, thus, can potentially eliminate

sunspot fluctuations. In our approach it is the participation choice and the labor market frictions

which may generate self-fulfilling unemployment fluctuations, justifying automatic stabilizers in the

form of unemployment insurance to eliminate belief-driven fluctuations, even in environments with

perfect insurance markets.

The rest of the paper is organized as follows. Section 2 introduces the general equilibrium model.

Section 3 looks at the model’s dynamics and, in particular, derives necessary conditions for multiple

rational expectations equilibrium to arise. Section 4 introduces unemployment insurance. Section 5

considers the calibration to map the model to the data. Finally, in Section 6 we study how labor

markets with, in turn, European and North American characteristics compare through the lenses of

our model. Section 7 concludes.

2 Model

In our model, labor market adjustments occur only along the extensive margin and there are three

possible labor market states: employment, unemployment, and non-participation. Adjustments along

the extensive margin are determined by individuals’ indivisible choice over labor force participation

in frictional labor markets. To overcome the resulting non-convexity, we consider the Hansen (1985)

and Rogerson (1988) lottery mechanism, but with individuals purchasing lotteries over labor market

participation and, conditional on participation, searching for jobs in frictional labor markets, as

in Alvarez and Veracierto (1999, 2012) and Kokonas and Monteiro (2021).

Individuals derive flow utility from consumption, c, and incur a disutility cost from participation in

the labor market. The flow utility at each date is given by

Ut =

{
lnCt, if non-participant

lnCt − ξ, if participant
, (1)

where ξ > 0 is the opportunity cost of labor market participation due to forgone home production,

which is incurred irrespectively of whether the individual is employed or unemployed. As in Hansen
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(1985) and Rogerson (1988), individuals purchase lotteries where with probability π ∈ (0, 1) they

participate in the labor force and, thus, sacrifice utility ξ. But in our model not all labor market

participants are employed.

There are frictional labor markets and, conditional on participation, an individual may either

be employed or unemployed. An individual who participates in the labor market but begins

period t without a job, finds employment with probability ft ∈ (0, 1). As in Blanchard and Gaĺı

(2010), and Michaillat (2012), newly hired workers become productive immediately. Conditional on

participation, unemployment is involuntary and any equilibrium with unemployment is not Pareto

optimal.

Individuals who fail to find a job are eligible for unemployment insurance, receiving a fraction

ζ ∈ [0, 1] of the total hourly wage rate. Unemployment insurance (UI) is financed with lump-sum

taxes T ≥ 0 levied on every individual. Each job is destroyed with constant probability λ ∈ (0, 1).

Upon destruction, an individual is allowed to choose between searching for another job or staying

out of the labor force. If the existing job is not destroyed, then the individual continues with the

existing employment relationship.

Frictions restrict workers access to employment. However, conditional on employment, the labor

market is competitive and wages reflect the marginal product of labor.5 Goods and capital markets

are competitive. There is no aggregate uncertainty (perfect foresight equilibria), but frictional labor

markets generate idiosyncratic risk. Competitive firms have (identical) Cobb-Douglas technology

which turns labor and capital into output, Y = F (K,N) = KαN1−α, α ∈ (0, 1), and (K,N) denote

the demand for capital and hours of work. Firms pay wages w to hire workers, r to rent capital,

and maximize their flow of profits, F (K,N)− rK − wN .

2.1 Stand-in agent’s problem

Time is discrete and the horizon is infinite, t = 0, 1, 2, . . .; the measures of individuals at the end of

date t− 1 in employment, unemployment, or out of the labor force, in turn, Nt−1, Ut−1, Ot−1, are

all pre-determined variables. Agents face three salient sources of idiosyncratic risk: the outcome of

the lottery over labor force participation, the risk of job loss conditional on employment, and the

risk of not finding work conditional on labor force participation. However, as in Andolfatto (1996),

despite the random matchings and separations that occur in the labor market inducing different

individual employment histories, this heterogeneity does not lead to wealth dispersion because of

5The assumption of competitive markets in coexistence with search frictions has a long tradition and follows, for
example, Lucas and Prescott (1974), Alvarez and Veracierto (1999, 2012), and Krusell et al. (2008, 2010, 2011).
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perfect insurance markets, and all individuals enjoy the same level of consumption no matter their

labor force status.6

This market structure yields a stand-in agent representation, with life-time utility given by

V =
∞∑
t=0

βt
(
lnCt − ξΠt

)
, (2)

with β ∈ (0, 1) the discount factor, and where Πt is the labor force participation at date t, given by

Πt = πe,t (1− λ)Nt−1 + πu,tUt−1 + πo,tOt−1 + πλ,tλNt−1, (3)

with πe,t, πλ,t, πu,t, πo,t ∈ [0, 1], the probabilities of labor force participation at date t chosen by

individuals that start date t, in turn, matched to a job that survives, a job that is destroyed,

in unemployment, and out of the labor force. The stand-in agent must choose state contingent

allocations to maximize (2) subject to the budget constraint

Ct + It = rtKt + wt

[
Nt−1(1− λ)πe,t + ftHt

]
+ bt(1− ft)Ht − Tt, (4)

where Ht is the measure of individuals searching for jobs at date t, given by

Ht = πu,tUt−1 + πo,tOt−1 + πλ,tλNt−1. (5)

Thus, the job searchers at date t include all the individuals who were not in employment at date

t− 1 and choose to participate in date t, and also the individuals who were employed at date t− 1,

but who see their job destroyed at date t and choose to remain in the labor force. A proportion

(1− ft) of the job searchers fail to find a job and, thus, earn unemployment benefits, given by

bt = wtζ, with ζ the unemployment replacement rate.

Finally, the capital accumulation equation is given by

Kt+1 = It + (1− δ)Kt, (6)

where It denotes investment, Kt+1 is the end of period capital stock holdings and δ ∈ (0, 1) is capital

depreciation.

6Appendix A describes how the aggregation result is obtained.
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2.2 Equilibrium

The optimality conditions solving the stand-in agent’s problem are

ξ ≤ ftwt + (1− ft)bt
Ct

, (7)

ξ ≤ wt

Ct
, (8)

1 = βRt+1

(
Ct

Ct+1

)
, (9)

where (7)–(8) are the intratemporal optimality labor supply conditions. Condition (9) is the standard

Euler equation with Rt+1 = 1− δ + rt+1.

Conditions (7) and (8) determine the participation choices made by individuals. They are written as

inequalities because we allow for corner solutions, where some individuals participate with certainty.

In the sequel, we restrict attention to equilibria in which some individuals choose not to participate

in the labor force. For this to be the case, we must have that (7) holds as equality, meaning

that there is an interior solution for the tuple (πλ,t, πu,t, πo,t). The upshot is that (8) holds as an

inequality and, hence, all individuals holding a job choose to participate, πe,t = 1.

Recalling that bt = ζtwt, the intratemporal optimality condition (7) can be written as follows

wt = τt

(
ξ

1/Ct

)
, with τt =

1

ft + (1− ft) ζ
, the labor wedge, (10)

where wt corresponds to the marginal product of an employed worker, and ξCt corresponds to the

worker’s opportunity cost of employment in the frictionless economy. Efficiency requires the marginal

product of employment to be equal to the opportunity cost of employment and, therefore, the wedge

between these two quantities, τt ≥ 1, corresponds to the labor wedge. The frictionless economy is

achieved when ft = 1 for all t, in which case we obtain the original Hansen (1985) economy, in which

there is no involuntary uynemployment and the equilibrium is efficient. Indeed, it is easy to verify

that in the frictionless economy τt = 1 and, therefore, there is no labor wedge. Thus, the labor

wedge in our economy results from labor market search frictions. This is because conditional on

participation, inactivity is socially wasteful: in other words, involuntary unemployment is suboptimal

in our economy.

The model equilibrium conditions correspond to those of the canonical neoclassical growth model
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with indivisible labor, augmented with an endogenous labor wedge, as follows

1 = βRt+1

(
Ct

Ct+1

)
, (11)

wtCt = τtξ, (12)

Ct +Kt+1 = Kα
t N

1−α
t + (1− δ)Kt, (13)

wt = (1− α)

(
Kt

Nt

)α

, (14)

Rt = 1− δ + α

(
Nt

Kt

)1−α

, (15)

where (11)–(12) are the intertemporal and intratemporal optimality conditions discussed above,

condition (13) is the goods’ market clearing condition, and (14)–(15) obtain from the firm’s optimal

decisions. The motion equations for the aggregate labor market variables, are

Nt = (1− λ)Nt−1 +Htft, (16)

Ut = (1− ft)Ht, (17)

Πt = Nt + Ut, (18)

where we impose πe,t = 1 to obtain (16).

Finally, the government budget is given by

Tt = btUt, (19)

where proceeds from lump-sum taxation finance UI benefits.

The system of equilibrium conditions (11)–(19) fully determines the equilibrium path for a given

sequence of job finding rates {ft}t≥0. In particular, it is possible to define a unique steady state

equilibrium up to a choice for the steady state job finding rate, as shown in Appendix B.

3 Search Frictions and Indeterminacy

As is clear from (10), the labor wedge, τt, is endogenous and determined by the job finding rate, ft.

Next, we show that if the job finding rate is procyclical (and, thus, the labor wedge is countercyclical),

then the equilibrium dynamics around the steady state may feature local indeterminacy, enabling

inefficient self-fulfilling fluctuations. We extend the method of Wen (2001) to analyze economies
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with labor market frictions and determine necessary conditions for local indeterminacy. Our focus is

to provide an intuitive explanation for the emergence of inefficient self-fulfilling fluctuations through

necessary conditions for local indeterminacy.

3.1 The job finding rate

The job finding rate, which measures the ease of matching job seekers with jobs, has been found

to be procyclical in empirical studies. Specifically, during economic expansions, the job finding

rate tends to increase, and during recessions, it tends to decrease (Shimer, 2005; Hall, 2005). To

align our model with this empirical evidence, we impose the following restriction on the equilibrium

sequence of job finding rates, {ft}t≥0.

Assumption 1 (procyclical job finding rate)

f̂t = σŶt, ∀t,

where σ > 0 denotes the output elasticity of the job finding rate and hat variables, f̂t and Ŷt, denote

log-deviations from the steady state.

Assumption 1 posits that the job finding rate is procyclical. Crucially, this assumption creates an

externality in the model with endogenous participation. The procyclical nature of the job finding

rate leads to a positive feedback loop: when output and employment are high, the job finding rate

increases, which in turn encourages more individuals to participate in the labor force, further raising

employment and output. This externality implies inefficiency in competitive equilibrium and the

possibility of sunspot equilibria. Next, we obtain necessary conditions for local indeterminacy and,

thus, the emergence of inefficient sunspot equilibria.

3.2 Necessary conditions for local indeterminacy

The stand-in agent consumes a constant fraction (1− β) of her permanent income, as follows

Ct = (1− β)

RtKt + wtNt + btUt − Tt +

∞∑
j=1

(
j∏

i=1

R−1
t+i

)
(wt+jNt+j + bt+jUt+j − Tt+j)

 . (20)

Thus, indeterminacy in consumption requires indeterminacy in permanent income. Following Wen

(2001), we express (20) as a function of the equilibrium path of employment {Nt}∞t=0. Once the

equilibrium path of employment is determined, then we can also determine the equilibrium path of

output, consumption and capital. The task of characterizing the local dynamics of the model around
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the steady state is, therefore, reduced to the examination of the indeterminacy of the equilibrium

path of employment.

Iterating the Euler equation (11) forward, yields(
j∏

i=1

R−1
t+j

)
Ct+j = βjCt. (21)

In turn, substituting the intratemporal condition (10), the government budget (19), and the iterated

Euler equation (21) into (20), yields

Ct = RtKt

 ∞∑
j=0

βj (1− ξτt+jNt+j)

−1

. (22)

Substituting (10) into (22), yields

∞∑
j=0

βj (1− ξτt+jNt+j) =
ξτtRtKt

wt
, (23)

where the right-hand side of (23) is the value of wealth in utility terms.7 Log-linearising (23) around

the steady state yields

Γ
∞∑
j=0

βj
(
N̂t+j + τ̂t+j

)
= τ̂t + R̂t − ŵt + K̂t, (24)

with Γ = −(1−β)ξτ̄ N̄
(
1− ξτ̄ N̄

)−1
, and where X̄ denote the steady state of variable X, and X̂, the

log-deviation from steady state. The following two lemmas allow us to express (24) as a function of

the sequence
{
N̂t+j

}∞

j=0
, and subsequently apply the method of Wen (2001) for deriving necessary

conditions for local indeterminacy.

Lemma 1 The log-deviation of the labor wedge from the steady state is given by

τ̂t = −τ̄ f̄ (1− ζ) f̂t, ∀t. (25)

7 Wen (2001) applies this methodology to the model of Schmitt-Grohe and Uribe (1997), where the labor wedge
follows from distortionary labor income taxes and, thus, is exogenous. However, in our set-up the labor wedge is an
outcome of labor market frictions and is endogenous. Thus, we generalize the method of Wen (2001) for deriving
necessary conditions for local indeterminacy in an economy with endogenous labor wedge fluctuations. More generally,
(23) characterises equilibrium of an RBC economy with indivisible labor and time-varying labor income taxes financed
with lump-sum subsidies.
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Proof. Follows immediately from the log-linearisation of the labor wedge (10)

Given (25) and Assumption 1, we can define the employment elasticity of the labor wedge, which is

given by

ετ ≡ ∂τ̂t

∂N̂t

= −τ̄ f̄ (1− ζ) (1− α)σ, (26)

where we made use of the log-linear production function, Ŷ = αK̂t + (1− α) N̂t. Thus, the

labor wedge reacts countercyclicaly to output. Subsequently, (25) implies that the left-hand side

of (24) depends on
∑∞

j=0 β
j f̂t+j , which, in turn, after taking into account Assumption 1 and

Ŷ = αK̂t + (1− α) N̂t, is determined by
∑∞

j=0 β
jK̂t+j and

∑∞
j=0 β

jN̂t+j , as follows.

Lemma 2 The infinite sum
∑∞

j=0 β
j τ̂t+j reduces to

∞∑
j=0

βj τ̂t+j = ωK̂t−1 + χN̂t−1 + φ
∞∑
j=0

βjN̂t+j , (27)

where ω, χ, φ are functions of structural parameters and ετ and φ < 0.

Proof. See Appendix D

Substituting (25) and (27) into (24) yields

∞∑
j=0

υjN̂t+j = ψ0K̂t + ψ1K̂t−1 + ψ2N̂t−1, (28)

where the right-hand side depends on predetermined variables at date t, and υj and ψ are elasticity

parameters.8 This lead us to the following equilibrium characterisation.

Proposition 1 If the equilibrium transition path for Nt around the steady state follows a stationary

AR(1) process, then the equilibrium is locally unique. If the equilibrium path is not unique, then it

must follow a stationary AR(2) process around the steady state.

Proof. The proof follows similar ideas from Wen (2001). We discuss the key points.

First, if N̂t is AR(1) then the equilibrium is unique. Let

N̂t+1 = ρ · N̂t, ρ ∈ (0, 1).

Substituting it into (28) and iterating forward, we obtain that N̂t is pinned down by the right hand

8See Appendix E for detail derivations of these parameters.
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side predetermined variables at date t. The equilibrium is unique.

Under indeterminacy, N̂t must follow an autoregressive process with an order higher than one.

Consider an AR(2):

N̂t+2 = ρ1N̂t+1 + ρ2N̂t, ρ1 + ρ2 < 1. (29)

Under repeated iteration, (28) implies

ρ̂1N̂t+1 + ρ̂2N̂t = ψ0K̂t + ψ1K̂t−1 + ψ2N̂t−1,

where ρ̂1, ρ̂2 are functions of the two stable roots. Given the predetermined variables, N̂t is

indeterminate unless N̂t+1 is known. Since N̂t+1 cannot be solved by backward iteration using (29),

it is unknown at time t. The equilibrium is not unique.

Finally, N̂t cannot follow an autoregressive process of a higher order than two, because the state

space of the model has the dimension of at most two, including one state variable and one co-state

variable

Next, through a series of steps, we characterise necessary conditions for local indeterminacy.

Proposition 2 The employment elasticity of the left-hand side of (23) is negative if and only if

−ετ < ε̄ ≡
αβ
(
Ȳ /K̄

)
− αβδ

αβ
(
Ȳ /K̄

) , (30)

where Ȳ /K̄ is the output-capital ratio in steady state.

Proof. Log-linearising the left hand side of (23) yields

Γ
∞∑
j=0

βj
(
N̂t+j + τ̂t+j

)
, (31)

substituting (25) into (31) and ignoring predetermined variables, yields

Γ (1 + φ)
∞∑
j=0

βjN̂t+j .

with Γ = −(1−β)ξτ̄ N̄
(
1− ξτ̄ N̄

)−1
< 0 because intratemporal optimality and labor market clearing
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imply

ξτ̄ N̄ =
w̄N̄

C̄
=

1− α

C̄/Ȳ
=

1/β − 1 + δ − αδ − α(1/β − 1)

1/β − 1 + δ − αδ
< 1,

where C̄/Ȳ is the steady state consumption-output ratio (see Appendix B). Thus, Γ (1 + φ) is

negative if and only if φ > −1. In Appendix F we show that φ > −1 is true if and only if (30) holds.

To complete the argument we need to show that

sign


∞∑
j=0

βjN̂t+j

 = sign
{
N̂t

}
. (32)

The proof is identical to the proof of Proposition 2 in Wen (2001). The key point is as follows.

The equilibrium employment path {N̂t}∞t=0 is converging with an autoregressive order of at most

two (see proposition 1). Solving the second order system and then substituting into
∑∞

j=0 β
jN̂t+j

satisfies (32)

The emergence of belief driven fluctuations is a result of a positive feedback loop between current

actions and expectations about the behaviour of current and future aggregate variables. The result

of Proposition 2 shows how current actions reinforce future expectations, providing the first building

block towards the construction of necessary conditions for local indeterminacy. Specifically, using

the intratemporal condition (10) and rearranging appropriately, the left hand side of (23) reduces to

1

1− β
−

∞∑
j=0

βj
(

1

Ct+j
wt+jNt+j

)
, (33)

which is a function of the present discounted value of labor income in utility terms. In that respect,

condition (30) is necessary and sufficient for the (current) employment elasticity of the present value

of labor income in utility terms to be positive. Hence, expectations regarding the future path of

aggregate variables and permanent income are reinforced by current actions. To close the positive

feedback loop and, hence, complete the construction of necessary conditions for local indeterminacy,

we need to show how given expectations influence current actions.

Before stating the necessary condition formally, we prove two useful results.

Proposition 3 If the labor wedge is constant, then the equilibrium is locally unique.

Proof. If σ = 0, then the labor wedge is constant. Then, it suffices to show that given the steady

state level of K̄ there is no Nt other than steady state N̄ that satisfies (23). We prove this by
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contradiction. Suppose there is Nt > N̄ such that (23) is satisfied, then

∞∑
j=0

βj (1− ξτ̄Nt+j) =
ξτ̄R

(
K̄,Nt

)
K̄

w
(
K̄,Nt

) . (34)

By Proposition 2, expression (30) is satisfied and the left hand side of (34) satisfies:

∞∑
j=0

βj (1− ξτ̄Nt+j) <
∞∑
j=0

βj
(
1− ξτ̄ N̄

)
.

Next, the gross interest rate R is increasing in Nt and the real wage is decreasing in Nt. The right

hand side of (23) satisfies:

ξτ̄R
(
K̄,Nt

)
K̄

w
(
K̄,Nt

) >
ξτ̄R

(
K̄, N̄

)
K̄

w
(
K̄, N̄

) ,

which implies that

∞∑
j=0

βj (1− ξτ̄Nt+j) <
∞∑
j=0

βj
(
1− ξτ̄ N̄

)
=
ξτ̄R

(
K̄, N̄

)
K̄

w
(
K̄, N̄

) <
ξτ̄R

(
K̄,Nt

)
K̄

w
(
K̄,Nt

) .

This is a contradiction

Proposition 4 A necessary and sufficient condition for indeterminacy is that the employment

elasticities on both sides of Equation (23) are the same.

Proof. Starting from an equilibrium path, a small deviation of N away from this path will not

violate Eq. (23) if and only if the changes on both sides of (23) brought about by the deviation in

N exactly offset each other. In such a case, N is indeterminate given the state K. This is the same

as saying that the labor elasticities on both sides of (23) are the same

Proposition 5 (Necessary condition) Suppose α < ᾱ ≡ 1/
[
1 + δ

(
αβ
(
Ȳ /K̄

)
(1− δ)

)−1
]
. A nec-

essary condition for local indeterminacy is

−ετ ∈ (ε, ε̄) , (35)

where ε = εR − εw, εw < 0 is the employment elasticity of real wages, εR > 0 is the employment

elasticity of gross interest and α < ᾱ ensures that ε̄ > ε.

Proof. A necessary condition for local indeterminacy requires that the employment elasticities
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Figure 1: Equilibrium employment-wage loci

of the left and right hand side of (23) have the same sign. Given Proposition 2, the sign of the

right hand side of (23) has a negative sign as long as −ετ > εR − εw ≡ ε, which, in turn, reduces to

−ετ > αβ
(
Ȳ /K̄

)
+αβ(1− δ). Setting ε = ε̄ we derive ᾱ, which is a function only of {β, δ}, and for

α < ᾱ (35) is a well-defined interval

The restriction on primitive parameters that ensures (35) is a well-defined interval is satisfied by

common calibrations in the literature and, in that sense, it is a weak restriction.9

The necessary condition (35) consists of two bounds. Satisfaction of the upper bound ε̄, as discussed

after Proposition 2, ensures that current actions reinforce future expectations, while satisfaction of

the lower bound ε ensures that current actions positively covary with initial held beliefs, which,

in turn, can be interpreted in terms of the restriction it places on the slopes of the equilibrium

employment-wage loci derived from the demand and supply side of the model, which, for simplicity,

we refer to as the labor demand and supply schedules. Specifically, aggregate labor demand is

downward sloping (εw < 0) and aggregate labor supply is downward sloping as well (ετ < 0). The

lower bound of the necessary condition for local indeterminacy requires that aggregate labor supply

is steeper than aggregate labor demand, that is, −ετ > −εw + εR > −εw.10

9In our calibration ᾱ ≈ 0.61 and common parameterisations of the capital income share fall below this threshold.
10The mechanism in Bennett and Farmer (2000) and Nakajima (2006) rely on downward sloping labor supplies to

generate self-fulfilling fluctuations. The former approach augments the one-sector neoclassical growth model with
non-separable preferences between consumption and leisure and increasing returns in production. Indeterminacy
requires that the labor supply curve is downward sloping and steeper than the (standard) downward-sloping labor
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Figure 1 summarises the previous discussion. For example, expecting a recession in the future

shifts the labor supply schedule to the left (following a drop in current consumption given an

expectation of lower permanent income), which, in turn, is consistent with lower current labor force

participation and employment, confirming the initial held beliefs (satisfaction of the lower bound).

Furthermore, satisfaction of the upper bound in (35) ensures that the drop in current employment

reduces permanent income further (satisfaction of the upper bound), which, in turn, reduces current

consumption and employment even further, closing the positive feedback loop between actions and

expectations.

4 Unemployment Insurance

The main result of the paper characterizes sufficient conditions regarding optimal replacement rates

that restore saddle path stability. The key insight is that by inverting the necessary condition for

local indeterminacy we obtain sufficient conditions for saddle path stability.11

More formally, we establish the following result.

Proposition 6 It is always possible to design a UI policy to guarantee a unique equilibrium path

around the steady state. In particular, there exists replacement rates ζ ∈
[
ζ̄, 1
]
, with

ζ̄ =
σ(1− α)− ε

σ(1− α) +
(
1/f̄ − 1

)
ε
, (36)

for which there is a unique saddle path stable equilibrium.

Proof. Follows immediately by setting −ετ = σ(1 − α)f̄ τ̄(1 − ζ) = ε, and using the expression

of the labor wedge τ̄ = 1/
[
f̄ + (1− f̄)ζ

]
at steady state, we construct the bound ζ̄. Then, for

all ζ ∈
[
ζ̄, 1
]
the (lower bound of the) necessary condition is violated and there is a unique path

converging to the steady state.

demand curve. While Nakajima (2006) considers a variation of the neoclassical growth model with unobservable effort,
efficiency wages and limited unemployment insurance for unemployed workers. The labor supply is replaced by the
relevant no-shirking condition (NSC). Under partial income insurance, the NSC is downward sloping and steeper than
the downward sloping labor demand, and indeterminacy obtains.

11It is important to note that for common calibrations of the parameters {α, β, δ} found in the literature, there
always exists a stable equilibrium around the steady state for any −ετ ≥ 0 (see Appendix C). The issue is then
whether the equilibrium path is unique (saddle path stability) or whether there exist multiple paths converging to the
steady state (local indeterminacy).
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To inspect the mechanisms further, consider the intratemporal optimality (10) rearranged as follows:

ξ =
wtft
Ct

+
(1− ft)ζwt

Ct
, (37)

which equates the exogenous cost of participation ξ to the expected return that the household

receives from participating and searching for a job, for those starting from non-employment or with

a job that is destroyed. Beliefs about the state of the economy affect current labor market conditions

via externalities through the job finding rate f . If ζ = 1, then the job finding rate cancels from the

right hand side of (38) and there is no feedback loop between current actions and expectations. The

result of Proposition 6 states that if replacement rates exceed bound ζ̃, then the positive feedback

loop between current actions and expectations is weakened substantially and inefficient belief-driven

fluctuations are eliminated.12

Note that replacement rates consistent with Proposition 6 violate the lower bound of the necessary

conditions for local indeterminacy. What about violations of the upper bound of the necessary

condition that might happen for sufficiently low values of the replacement rate? Setting ζ = 0

in (37) yields ξ = (wtft)/Ct, and beliefs about the state of the economy still affect current labor

market conditions via externalities through the job finding rate f . In that case, the determinacy

properties of the steady state can not be analysed without precise information regarding the strength

of the externalities through f , captured by the parameter σ. Following a similar argument with

Proposition 6, violation of the upper bound ε̄ requires replacements rates ζ < ζ, with

ζ =
σ(1− α)− ε̄

σ(1− α) +
(
1/f̄ − 1

)
ε̄
, (38)

and the sign of ζ depends non-trivially on the strength of externalities summarised by the parameter

σ. For example, if ζ < 0, then low replacement rate policies do not violate the necessary condition

for local indeterminacy and the bound (38) becomes irrelevant.

However, the result of Proposition 6 can be interpreted in terms of the “sufficient statistic” approach

which is discussed in the literature on optimal unemployment insurance provision. According to

that interpretation, generous welfare systems suffice to eliminate inefficient fluctuations without

needing to have information regarding the structural parameters of the economy. For example, ζ = 1

always exceeds ζ̃ and local uniqueness is restored.

12If ζ̄ < 0, then the lower bound of the necessary condition is violated for any ζ ∈ [0, 1] and Proposition 6 is trivial.
The interesting case arise when ζ̄ ∈ (0, 1) and Proposition 6 imposes non-trivial restrictions on replacement rate
policies (as will be the case in our numerical examples below).
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5 Calibration

We calibrate the parameters of the baseline economy to match selected secular features of the US

economy. All the calibrated parameters and the targets determining their calibration are reported

in Table 1. A period in our model corresponds to 3 months but the effective replacement ratio

earned on average by the typical unemployed worker will be contingent on the cross-sectional

distribution of unemployment duration. Thus, in what follows, we calibrate two different models

that assume a typical duration of unemployment of 6 and 12 months in the computation of the US

average replacement rate. This is done to demonstrate the robustness of our results to different

specifications.

The calibration of {α, β, δ} is common in the literature. Let us turn to the calibration of {f̄ , λ}
(the Ins & Outs). The labor supply side of the model yields a matrix of steady state transition

probabilities across the three states of employment, unemployment, and non-participation, as follows:

ϕ̄ee = (1− λ) + π̄λλ f̄ , ϕ̄ue = π̄u f̄ , ϕ̄oe = π̄o f̄ ,

ϕ̄eu = π̄λλ
(
1− f̄

)
, ϕ̄uu = π̄u

(
1− f̄

)
, ϕ̄ou = π̄o

(
1− f̄

)
,

ϕ̄eo = λ (1− π̄λ) , ϕ̄uo = 1− π̄u, ϕ̄oo = 1− π̄o,

(39)

where ϕ̄s,s′ denotes the steady state transition probability from labor market state s to s′. For

example, ϕ̄ee is the probability that an individual who starts the period employed in a given job

remains at the same job at the end of the period with probability (1− λ), or transits to another job

within the same period with probability π̄λλ f̄ . To set the average job finding rate, f̄ , we use monthly

CPS gross flows data aggregated to the quarterly frequency (based on calculations by Gomes, 2015),

and using system (39) obtain f̄ = ϕ̄ue/
(
1− ϕ̄uo

)
= 0.738. Similarly, we set the average job separation

rate, λ, to match the CPS gross flows, using the relationship λ = ϕ̄eu/
(
1− f̄

)
+ ϕ̄eo = 0.190.

Although we do not use it as a target, this calibration yields an unemployment rate in steady state

equal to

ū =
λ(1− f̄)

λ(1− f̄) + f̄
= 6.32%,

which is very close to the historical average unemployment rate in the US.

To calibrate the output-elasticity of the job finding rate, σ, we target the conditional volatility of

unemployment and, specifically, the Okun coefficient corresponding to the correlation coefficient

between unemployment and the output gap. The Okun’s relationship is derived by log-linearising
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Table 1: Calibrated Parameters (time unit of model: quarterly)

Parameter Value Target (and source)

α 0.2830 capital’s income share of 28.3% (Gomme and Rupert, 2007);

δ 0.0140 annual investment/capital ratio of 7.6% (Cooley and Prescott, 1995);

β 0.9920 annual rate of return on capital of 5.16% (Gomme et al., 2011);

f̄ 0.7380 quarterly gross worker flows (based on Gomes, 2015, calculations on CPS data);

λ 0.1900 quarterly gross worker flows (based on Gomes, 2015, calculations on CPS data);

σ 1.4180 Okun’s Law coefficient of -0.5 (Ball et al., 2013);

ζ6m 0.4371 6-month unemployment duration average net replacement (OECD statistics);

ζ12m 0.2500 12-month unemployment duration average net replacement (OECD statistics);

ξ6m 1.1288 civilian labor participation rate of 71.0% (BEA) (6-month duration economy);

ξ12m 1.0640 civilian labor participation rate of 71.0% (BEA) (12-month duration economy).

the system of equations describing the labor market aggregate dynamics.13 This yields the following

ût =
1− ū

ū

[(
1

1− α
− λσ

)
· 1

λ+ f̄(1− λ)
− 1

1− α

]
︸ ︷︷ ︸

Okun’s coefficient≃−0.5

·Ŷt + (· · · ), (40)

where the term (· · · ) includes predetermined variables. Given the inflow and outflow rates from

unemployment, the average unemployment rate and the capital’s income share, and targeting an

Okun’s coefficient of −0.5, yields σ = 1.4180. The target for the Okun’s coefficient is taken from Ball

et al. (2013) and is a robust feature of the data which holds for both annual and quarterly periodicities,

and for various methods of measuring short-run movements in output and unemployment.

Next, to calibrate ζ we make use of OECD statistics on the US unemployment insurance net

replacement rates, available between 2001-2021, for single households with no children previous

earnings at the 67% of the average wage, and unemployment duration of, in turn, 6 and 12 months.

Computing the 6-month unemployment duration average net replacement rate in unemployment

yields ζ6m = 43.71%, while computing the 12-month unemployment duration average net replacement

rates yields ζ12m = 25%.

We set ξ to match the historical average participation rate (16 to 64 year) of 71.0%. The steady state

labor market conditions (see Appendix B) yield an employment rate of N̄ =
(
Π̄ f̄
)
/(λ+(1−λ)f̄) =

13Detailed derivations are presented in Appendix G.
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Figure 2: 12-month unemployment duration average replacement rates

0.66. Subsequently, ξ is determined from intratemporal optimality at steady state, as follows

ξ6m =
(1− α)/N̄

τ̄6m
Ȳ /K̄

Ȳ /K̄ − δ
= 1.12884 and ξ12m =

(1− α)/N̄

τ̄12m
Ȳ /K̄

Ȳ /K̄ − δ
= 1.064,

where τ̄6m and τ̄12m reflect the differences in the computation of the UI average net replacement

rate.

6 Replacement rates and sclerotic markets

We discuss the implications of our baseline parametrisation for the local stability properties of the

steady state for the US economy. We fix all parameters consistent with the values in Table 1 and let

the replacement rate ζ and job finding rate f̄ to vary between zero and one, allowing us to trace the

regions of local multiplicity and local uniqueness. We plot in the same graph the positions of other

major industrialised countries: Germany (GE), the United Kingdom (UK), the Netherlands (NL),

Spain (ES), France (FR), Belgium (BE), Canada (CA) and Japan (JP). We compute the average

net replacement in unemployment using the same methodology as in Section 5, and to compute f̄ ,

we rely on the estimates of the average monthly job-finding rate across OECD countries provided

by Hobijn and Sahin (2009), which we convert to quarterly rates to be consistent with the previous

analysis.14

14For example, the monthly finding rate for Germany is 6.98%. The probability that a worker does not find a job in
a quarter is (1− 0.0698)3 = 0.805, and the probability of finding a job is 1− 0.805 = 0.195.

21



Figure 3: 6-month unemployment duration average replacement rates

The yellow shaded region in Figure 2 designates the set of points under which satisfaction of the

necessary condition imply violation of the Blanchard-Kahn conditions, and there exist multiple

paths converging to the steady state. While any point outside the yellow shaded region is consistent

with saddle path stability. The region of multiplicity is within the bounds specified by the necessary

condition for local indeterminacy. The upper bound is given by ζ̄ computed in Proposition 6, and

generous welfare states (ζ > ζ̄) eliminate inefficient fluctuations. The lower bound in the figure

reveals that low replacements rates (ζ < ζ) violate the upper bound of the necessary condition.

Figure 2 uncovers significant differences between North America and Europe, when looking at the

generosity of the welfare state and labor market conditions. Europe is characterised by generous

welfare states and sclerotic labor markets (job are hard to find), while North America (US and

CA) is characterised by less generous welfare states and fluid labor markets. The contribution of

the paper is to show what these differences imply about the local determinacy of the equilibrium.

European characteristics are consistent with local uniqueness while North America characteristics

are consistent with the emergence of inefficient, belief-driven fluctuations. This characterization of

two different labor market environments in North America and Europe is evocative of the analysis

by Ljungqvist and Sargent (2008), who show that since the 1980s European workers, compared to

their North American counterparts, face lower hazard rates of gaining employment and increased

unemployment duration, whilst at the same time suffering a lower drop in earnings conditional on

job loss due to more generous unemployment compensation.15

15The job-finding rate estimates for Europe are also consistent with the calibration in Blanchard and Gaĺı (2010),
who set the quarterly job-finding rate at 25% to approximate the sclerotic continental European labor markets.

22



To check the robustness of our results, we perform the same experiment computing the average

replacement rate assuming a duration of unemployment of six months. Figure 3 summarises the

results. The local stability properties of the model calibrated to European or US characteristics

remain consistent with Figure 2. However, the results flip when we calibrate the model to the

Canadian characteristics, with average replacement rate rising significantly from 26% to 64% and

the economy is located at the boundary above threshold ζ̄.

Both figures confirm the result of Proposition 6, namely, irrespective of labor market conditions,

generous replacement rate policies always suffice to eliminate inefficient fluctuations. However, both

figures reveal another result, namely, as labor markets become more sclerotic (f̄ → 0), keeping

replacement rare policy fixed, the economy will exit the multiplicity (yellow shaded area) region

and be located above threshold ζ̄ consistent with saddle path stability. To understand the intuition

behind this result, we revisit the intratemporal condition once more:

ξ =
wtft
Ct

+
(1− ft)ζwt

Ct
,

and as f̄ → 0, the replacement income gets a higher weight in the expected return of search in the

right hand side, weakening the impact of initial held expectations on current actions or, equivalently,

violating the lower bound ε of the necessary condition.

7 Conclusion

This papers embeds frictions in the labor market and an endogenous participation choice in an

otherwise standard neoclassical growth model and shows that the interaction of these features can

generate self-fulfilling fluctuations. Unemployment insurance is shown to make indeterminacy less

likely and is a powerful automatic stabiliser. Calibrated versions of the model suggest that this

source of instability, and hence, the need to use unemployment insurance as an automatic stabiliser,

is not just a theoretical possibility but occurs for empirically plausible values of the parameters.

The results give support to generous transfer policies, similar to Europe, that reduce business cycle

volatility and restore local uniqueness.
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Appendix

A Decentralized Equilibrium and the Lottery Mechanism

The purpose of this section is to derive the stand-in agent representation (2)–(4), obtained by

combining an exogenous randomisation mechanism with lotteries over labor force participation. This

exogenous randomisation is analogous to the “musical chairs” assumption in Andolfatto (1996), and

allows us to specify the problem of the stand-in agent in recursive form. In Kokonas and Monteiro

(2021) we show that this hybrid model with musical chairs and lotteries is equivalent in terms of

allocations to an economy with Arrow-Debreu markets, where individuals trade according to the

realisation of public signals (sunspots) prior and after the realisation of idiosyncratic shocks, along

the lines of Prescott and Townsend (1984) and Kehoe et al. (2002).

The economy is populated by a continuum of individuals of unit measure. There is a distinction

between job and worker flows in the model. Individuals are distributed across three states or

“islands”: the employment “island”; the unemployment “island”; and the leisure “island”. The

mass of individuals on each “island” at the start of date t is, respectively, Nt−1, Ut−1 and Ot−1,

where Nt−1 denotes the mass of employed individuals at the end of t− 1, Ut−1 denotes the mass

of unemployed individuals at the end of t− 1, and Ot−1 denotes the mass of non-participants at

the end of t − 1. At the beginning of date t, individuals are allocated randomly across islands,

ı ∈ L ∈ {e, u, o}. Specifically, individuals assigned to the employment island (ı = e) observe the

realisation of the idiosyncratic shock κ ∈ {ed, end}, where κ = ed denotes job destruction (d) with

probability λ, and κ = end denotes no job destruction (nd) with 1 − λ; subsequently they buy

lotteries over labor force participation, and engage (or not) in search activity. Individuals assigned

to the unemployment or leisure island (ı ∈ {u, o}) buy lotteries over labor force participation and

then engage (or not) in search activity.

Individuals choose state-contingent allocations before knowing in which island they will be allocated

initially, and there exist insurance opportunities for every possible randomization contingency.

Insurance contracts are provided by competitive firms that make zero profits in equilibrium. We

focus on separating equilibria where firms offer different prices to different types and insurance

is actuarially fair. The price of an insurance contract is denoted by q and the quantity bought is

denoted by y. At the end of each period, spot markets open, where individuals execute contacts,

buy consumption and capital, and receive capital and labor income. To simplify presentation,

we abstract from time subscripts and formulate individual decisions recursively—subscripts “−1”

denote previous period values and superscripts “prime” denote next period values.

24



The Bellman equation characterising the problem solved by each individual is

V (K, k) = max
c,π,y,k′

{
N−1 [λved + (1− λ)vend

] + U−1vu +O−1vo

}
, (A.1)

with

vend
= −πeξ + πe

[
ln (cend,e) + βV

(
K ′, k′end,e

)]
+ (1− πe)

[
ln (cend,o) + βV

(
K ′, k′end,o

)]
,

ved = −πλξ + fπλ
[
ln (ced,e) + βV

(
K ′, k′ed,e

)]
+ (1− f)πλ

[
ln (ced,u) + βV

(
K ′, k′ed,u

)]
+ (1− πλ)

[
ln (ced,o) + βV

(
K ′, k′ed,o

)]
,

vu = −πuξ + fπu
[
ln (cu,e) + βV

(
K ′, k′u,e

)]
+ (1− f)πu

[
ln (cu,u) + βV

(
K ′, k′u,u

)]
+ (1− πu)

[
ln (cu,o) + βV

(
K ′, k′u,o

)]
,

vo = −πoξ + fπo
[
ln (co,e) + βV

(
K ′, k′o,e

)]
+ (1− f)πo

[
ln (co,u) + βV

(
K ′, k′o,u

)]
+ (1− πo)

[
ln (co,o) + βV

(
K ′, k′o,o

)]
.

Subscripts denote (personal) labor market states (however, notation with respect to the participation

probabilities and the opportunity cost of employment is consistent with the main text). The first

subscript denotes the assignment of the randomisation induced by musical chairs, that is, (ed)

denotes pre-existing jobs that destroyed with probability λ, (end) denotes pre-existing jobs that

survived with probability 1 − λ, (u) denotes unemployment and (o) denotes out of labor force

(non-participation). The second subscript denotes the labor market state of an individual at the end

of the period, following the outcome of the lottery over participation and the search process. To

simplify exposition, we denote labor market transitions with the pair (̃ı, ȷ), with ı̃ ∈ {ed, end, u, o}
and ȷ ∈ {e, u, o}; ı̃ denotes the assignment induced by the musical chairs’ randomisation and the

realisation of idiosyncratic shocks and ȷ the assignment induced by the lottery over participation

and the outcome of the resulting search process.

The flow budget constraint for each pair (̃ı, ȷ) is

cı̃,ȷ + k′ı̃,ȷ +
∑
ı̃

∑
ȷ

qı̃,ȷyı̃,ȷ = Rk + wh1ȷ + ζwh1ȷ + yı̃,ȷ − T, (A.2)

where 1ȷ is an indicator function which equals one if ȷ = e and zero otherwise, 1ȷ is another indicator
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function which equals one if ȷ = u and zero otherwise, ζ ∈ [0, 1] is the replacement rate and T are

lump-sum taxes.

Actuarially fair insurance and strict concavity of the instantaneous utility function imply

cı̃,ȷ = c, (A.3)

for all pairs (̃ı, ȷ). Optimality with respect to k′ requires

c−1
ı̃,ȷ = βVk′(K

′, k′ı̃,ȷ); (A.4)

Vk′(·) denotes the derivative of the value function with respect to k′. Combining (A.3) and (A.4),

yields

k′ı̃,ȷ = k′, (A.5)

for all pairs (̃ı, ȷ); moreover, (A.5) implies that K = k.

The individual’s consolidated decision reduces to

V (k) = maxc,k′,π

{
ln(c)− ξ (N−1(1− λ)πe −N−1λπλ + U−1πu +O−1πo) + βV (k′)

}
,

s.t.

c+ k′ = Rk + w
[
N−1(1− λ)πe + (N−1λπλ + U−1πu +O−1πo) (f + ζ(1− f))

]
− T,

(A.6)

which corresponds to the stand-in agent representation (2)–(4) in the main text.

B Steady State

Let X denote the steady state of X. The steady state values of the first block are given by

(
K̄/Ȳ

)
=

[
α

1/β − (1− δ)

]
, (B.1)

(
C̄/K̄

)
=

1/β − (1− δ)

α
− δ, (B.2)

N̄ =
1− α

τ̄ξ

Ȳ /K̄

Ȳ /K̄ − δ
, (B.3)

K̄ = N̄
(
K̄/Ȳ

)1/(1−α)
; (B.4)
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and the steady state values of the second block are given by

(N̄/H̄) = f̄/λ, (B.5)

(Π̄/H̄) = (λ+ f̄(1− λ))/λ, (B.6)

(N̄/Π̄) = f̄/(λ+ (1− λ)f̄), (B.7)

ū =
λ(1− f̄)

λ(1− f̄) + f̄
. (B.8)

C Eigenvalue approach

The log-linearized equilibrium conditions (around the deterministic steady state) of the first block

are given by

ŵt = Ĉt + τ̂t, (C.1)

τ̂t = −τ̄ f̄ (1− ζ)σŶt, (C.2)

Ĉt+1 − Ĉt = αβ(1− α)(Ȳ /K̄)
(
N̂t+1 − K̂t+1

)
, (C.3)

R̂t = αβ(1− α)(Ȳ /K̄)
(
N̂t − K̂t

)
, (C.4)

ŵt = α
(
K̂t − N̂t

)
, (C.5)(

C̄/K̄
)
Ĉt + K̂t+1 =

(
Ȳ /K̄

)
ŷt + (1− δ)K̂t, (C.6)

Ŷt = αK̂t + (1− α)N̂t. (C.7)

The model in log-linear form can be written as[
k̂t+1

ĉt+1

]
=

[
Γ11 Γ12

Γ21 Γ22

][
k̂t

ĉt

]
= Γ

[
k̂t

ĉt

]
(C.8)

with

Γ11 =
α
(
Ȳ /K̄

)
α− (−ετ )

+ 1− δ, (C.9)

Γ12 = −
((
C̄/K̄

)
+

(1− α)(Ȳ /K̄)

α− (−ετ )

)
, (C.10)

Γ21 =
αβ
(
Ȳ /K̄

)
(−ετ ) Γ11

α− (−ετ ) + αβ
(
Ȳ /K̄

)
(1− α)

, (C.11)
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Table 2: Determinacy/Indeterminacy

necessary condition −ετ eigenvalue approach

violated ∈ [0, 0.298694] Blanchard-Kahn conditions satisfied
satisfied ∈ (0.298694, 0.302159] Blanchard-Kahn conditions satisfied
satisfied ∈ (0.302159, 0.717) indeterminacy (two stable eigenvalues)
satisfied ∈ (0.717, 0.820436) Blanchard-Kahn conditions satisfied
violated ∈ [0.820436,+∞) Blanchard-Kahn conditions satisfied

Note: At −ετ = 0.717 one eigenvalue is on the unit circle.

Γ22 =
α− (−ετ ) + αβ

(
Ȳ /K̄

)
(−ετ ) Γ12

α− (−ετ ) + αβ
(
Ȳ /K̄

)
(1− α)

. (C.12)

The eigenvalues of the matrix Γ are

[
λ1

λ2

]
=

1

2

Γ11 + Γ22 −
√

(Γ11 + Γ22)
2 − 4 (Γ11Γ22 − Γ12Γ21)

Γ11 + Γ22 +
√

(Γ11 + Γ22)
2 − 4 (Γ11Γ22 − Γ12Γ21)

 . (C.13)

Local uniqueness (saddle path stability) requires one stable and one unstable eigenvalue (Blanchard-

Kahn conditions); while local indeterminacy requires two stable eigenvalues and no solution requires

two unstable eigenvalues.16 (C.9)-(C.12) are indexed by εlw. In turn, setting α = 0.283, β = 0.992,

and δ = 0.014 (see Section 5), makes the necessary condition for local indeterminacy equal to

−ετ ∈
(
0.298694, 0.820436

)
. (C.14)

Table 2 summarises the result. Specifically, violation of the Blanchard-Kahn conditions occur

only when the necessary condition for local indeterminacy is satisfied, while allowing the elasticity

parameter to take a wide range of values shows that violations of the necessary condition for

local indeterminacy is associated with saddle path stability, and as −ετ → +∞, then (C.9)-(C.12)

converge to

Γ11 = 1− δ, (C.15)

Γ12 = −
(
C̄/K̄

)
, (C.16)

16An eigenvalue of a matrix is stable if it has modulus less than one. It is unstable if it has modulus greater than
one.
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Γ21 = −αβ
(
Ȳ /K̄

)
(1− δ), (C.17)

Γ22 = 1 + αβ
(
Ȳ /K̄

)
·
(
C̄/K̄

)
, (C.18)

and using the previous parametrisation yields

λ1 = 0.955755 < 1 and λ2 = 1.03164 > 1, (C.19)

which is consistent with saddle path stability.

D Lemma 2

Combining Assumption 1 in the main text and (C.7) yields

∞∑
j=0

βj f̂t+j = σα

∞∑
j=0

βjK̂t+j + σ(1− α)

∞∑
j=0

βjN̂t+j . (D.1)

To complete the proof we need to express
∑∞

j=0 β
jK̂t+j as a function of predetermined variables

and
∑∞

j=0 β
jN̂t+j .

Combining (C.1), (C.2), (C.3), (C.5), (C.7), yields

K̂t+1 = Λ1K̂t + Λ2N̂t + Λ3N̂t+1, (D.2)

with

Λ1 =
α
(
1− ϵτ

1−α

)
α
(
1− ϵτ

1−α

)
+ αβ(1− α)(Ȳ /K̄)

, (D.3)

Λ2 = − α+ ϵτ

α
(
1− ϵτ

1−α

)
+ αβ(1− α)(Ȳ /K̄)

, (D.4)

Λ3 =
α+ ϵτ + αβ(1− α)(Ȳ /K̄)

α
(
1− ϵτ

1−α

)
+ αβ(1− α)(Ȳ /K̄)

, (D.5)

and where

ετ = −στ̄ f̄ (1− ζ) (1− α) , (D.6)

is the employment elasticity of the labor wedge.
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Using (D.2) to solve for K̂t+j for all j backwards yields

K̂t = Λ1K̂t−1 + Λ2N̂t−1 + Λ3N̂t,

K̂t+1 = Λ2
1K̂t−1 + Λ1Λ2N̂t−1 + (Λ1Λ3 + Λ2) N̂t + Λ3N̂t+1,

K̂t+2 = Λ3
1K̂t−1 + Λ2

1Λ2N̂t−1 +
(
Λ2
1Λ3 + Λ1Λ2

)
N̂t +

(
Λ2
1Λ3 + Λ2

)
N̂t+1 + Λ3N̂t+2,

K̂t+3 = Λ4
1K̂t−1 + Λ3

1Λ2N̂t−1 +
(
Λ3
1Λ3 + Λ2

1Λ2

)
N̂t +

(
Λ2
1Λ3 + Λ1Λ2

)
N̂t+1 + (Λ1Λ3 + Λ2) N̂t+2 + Λ3N̂t+3,

K̂t+4 = Λ5
1K̂t−1 + Λ4

1Λ2N̂t−1 +
(
Λ4
1Λ3 + Λ3

1Λ2

)
N̂t +

(
Λ3
1Λ3 + Λ2

1Λ2

)
N̂t+1 +

(
Λ2
1Λ3 + Λ1Λ2

)
N̂t+2+

(Λ1Λ3 + Λ2) N̂t+3 + Λ3N̂t+4,

...

K̂t+j = Λj+1
1 K̂t−1 + Λj

1Λ2N̂t−1 + (Λ1Λ3 + Λ2)

j−1∑
i=0

Λj−i−1
1 N̂t+i + Λ3N̂t+j . (D.7)

Since Λ1 ∈ (0, 1), then substituting (D.7) into
∑∞

j=0 β
jK̂t+j yields

∞∑
j=0

βjK̂t+j =
Λ1K̂t−1

1− βΛ1
+

Λ2N̂t−1

1− βΛ1
+ (D.8)

N̂t

[
Λ3

(
1 + βΛ1 + β2Λ2

1 + ....
)
+ βΛ2

(
1 + βΛ1 + β2Λ2

1 + ....
)]

+ (D.9)

βN̂t+1

[
Λ3

(
1 + βΛ1 + β2Λ2

1 + ....
)
+ βΛ2

(
1 + βΛ1 + β2Λ2

1 + ....
)]

+ .... (D.10)

=
Λ1K̂t−1

1− βΛ1
+

Λ2N̂t−1

1− βΛ1
+

Λ3 + βΛ2

1− βΛ1

∞∑
j=0

βjN̂t+j , (D.11)

with
βΛ2 + Λ3

1− βΛ1
=

(1− β)(α+ ϵτ ) + αβ(1− α)
(
Ȳ /K̄

)
α
(
1− ϵτ

1−α

)
(1− β) + αβ(1− α)(Ȳ /K̄)

.

Substituting into (D.1) and rearranging, yields

∞∑
j=0

βj f̂t+j = σα

(
Λ1K̂t−1

1− βΛ1
+

Λ2N̂t−1

1− βΛ1

)
+ σ(1− α)

(
1 +

α

1− α

βΛ2 + Λ3

1− βΛ1

) ∞∑
j=0

βjN̂t+j , (D.12)

and finally, substituting into the expression for the labor wedge derived in Lemma 1 in the text,

yields

∞∑
j=0

βj τ̂t+j = ετ
α

1− α

(
Λ1K̂t−1

1− βΛ1
+

Λ2N̂t−1

1− βΛ1

)
+ ετ

(
1 +

α

1− α

βΛ2 + Λ3

1− βΛ1

) ∞∑
j=0

βjN̂t+j , (D.13)
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with

ω = ετ
α

1− α

Λ1

1− βΛ1
= ετ

α

1− α

α (1− ετ/(1− α))

α (1− ετ/(1− α)) (1− β) + αβ(1− α)
(
Ȳ /K̄

)
χ = ετ

α

1− α

Λ2

1− βΛ1
= − ετ

α

1− α

α+ ετ

α (1− ετ/(1− α)) (1− β) + αβ(1− α)
(
Ȳ /K̄

)
φ = ετ

(
1 +

α

1− α

βΛ2 + Λ3

1− βΛ1

)
= ετ ×

α(1− β)/(1− α) + αβ
(
Ȳ /K̄

)
α (1− ετ/(1− α)) (1− β) + αβ(1− α)

(
Ȳ /K̄

)
E Derivation of elasticity parameters in (28)

Log-linearising (23) around the steady state yields

Γ
∞∑
j=0

βj
(
N̂t+j + τ̂t+j

)
= τ̂t + N̂t (1− (1− α)β(1− δ)) + K̂t (1− α)β(1− δ) (E.1)

with

Γ = −(1− β)ξτ̄ N̄

1− ξτ̄ N̄
;

Substituting for τ̂t and
∑∞

j=0 β
j τ̂t+j from Lemmas 1 and 2, and using Ŷt = αK̂t + (1− α)N̂t, yields

∞∑
j=0

υjN̂t+j = ψ0K̂t + ψ1K̂t−1 + ψ2N̂t−1, (E.2)

with

υ0 =Γ(1 + φ)− (ετ + 1− β(1− α)(1− δ)) (E.3)

υj =Γ(1 + φ) (E.4)

ψ0 =β(1− α)(1− δ) +
α

1− α
ετ (E.5)

ψ1 = − Γω (E.6)

ψ2 = − Γχ. (E.7)
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F Proposition 2

We derive conditions under which φ > −1, with

φ = ετ ×
α(1− β)/(1− α) + αβ

(
Ȳ /K̄

)
α (1− ετ/(1− α)) (1− β) + αβ(1− α)

(
Ȳ /K̄

) .
Specifically,

φ >− 1 ⇒ (F.1)

−ετ >
α(1− β) + (1− α)αβ

(
Ȳ /K̄

)
αβ
(
Ȳ /K̄

) , (F.2)

and using the expression for Ȳ /K̄ (see Appendix B), the condition reduces to

−ετ >
αβ
(
Ȳ /K̄

)
− αβδ

αβ
(
Ȳ /K̄

) . (F.3)

G Okun’s Law

The labor market equations for log-linearisation are

Nt = (1− λ)Nt−1 +Htft, (G.1)

Πt = (1− λ)Nt−1 +Ht, (G.2)

1− ut =
Nt

Πt
. (G.3)

Log-linear version:

N̂t = (1− λ)N̂t−1 +
H̄f̄

N̄

(
f̂t + Ĥt

)
, (G.4)

Π̂t =
N̄

Π̄
(1− λ)N̂t−1 +

H̄

Π̄
Ĥt, (G.5)

ût =
1− ū

ū

(
Π̂t − N̂t

)
. (G.6)

Combining (F.4),(F.5) yields

Π̂t = N̂t−1

(
1− 1

f̄

)
N̄

Π̄
(1− λ) +

N̄

Π̄

1

f̄
N̂t −

H̄

Π̄
f̂t. (G.7)
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Combining Assumption 1 with expressions (B.6)-(B.7) and (C.7), yields

Π̂t = N̂t−1

(
1− 1

f̄

)
N̄

Π̄
(1− λ)− N̄

Π̄

1

f̄

α

1− α
K̂t + Ŷt

(
1

1− α
− λσ

)
· 1

λ+ f̄(1− λ)
. (G.8)

Substituting (F.8) into (F.6) and using (C.7) once more, yields

ût =
1− ū

ū

((
1

1− α
− λσ

)
· 1

λ+ f̄(1− λ)
− 1

1− α

)
︸ ︷︷ ︸

Okun’s coefficient

·Ŷt + (· · · ), (G.9)

with (· · · ) including the predetermined variables K̂t and N̂t−1.
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Krusell, P., T. Mukoyama, R. Rogerson, and A. Şahin (2008). Aggregate implications of indivisible

labor, incomplete markets, and labor market frictions. Journal of Monetary Economics 55 (5),

961–979.

Krusell, P., T. Mukoyama, R. Rogerson, and A. Şahin (2010). Aggregate labor market outcomes:
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