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1 Introduction

Cryptocurrencies are a new asset class that differs from classical asset classes, such as com-

modities, equities, bonds, and currencies, in several critical aspects. Due to these differences,

traditional asset pricing models are potentially inadequate for studying cryptocurrencies’ as-

set pricing characteristics, most notably the price and volatility. This paper proposes a

continuous-time asset pricing model that studies mining pools’ concentration — one central

aspect of cryptocurrencies that has yet to be analyzed.

The vast majority of cryptocurrencies rely on permissionless blockchain protocols. These

protocols allow transferring cryptocurrency ownership without relying on the traditional

banking system. In permissionless blockchains, transaction validators take the role of banks

and intermediaries and add new transactions to the blockchain over time. The blockchain

randomly chooses a single transaction validator to record the next block of transactions and

rewards it for its effort. Since it is a permissionless blockchain and anyone can become a

transaction validator, it is highly competitive. In proof-of-work blockchains, like Bitcoin, the

transaction validators are referred to as miners.1

Obtaining the reward is extremely rare since a single miner’s probability of writing the

next block of transactions is minuscule. The mining pool is a financial vehicle that smoothes

rewards over time by combining miners’ resources and sharing rewards among miners rela-

tive to the resources they contribute. In exchange for membership, the mining pool charges

fees from its miners. Due to their advantages, mining pools have controlled almost 100% of

the proof-of-work blockchains since 2015, as Cong, He, and Li (2021a) illustrates. Mining

pools have strong incentives to increase their size relative to other mining pools, poten-

tially instigating a technological arms race. Indeed, recent advances in mining technology

have resulted in significant variations in mining pools’ concentration over time, as Figure

1 illustrates. This paper shows that these variations in mining pools’ concentration have a

first-order pricing effect.2

Our model predicts that as mining pools’ concentration increases, the cryptocurrency

price falls, and its volatility spikes when the market participants are price takers (non-

strategic). We provide novel empirical evidence verifying these predictions on Bitcoin. In

line with our predictions and evidence: (i) Makarov and Schoar (2021) show that Bitcoin

price and miners’ concentration are negatively related; (ii) Gabaix (2011) and Herskovic,

Kelly, Lustig, and Nieuwerburgh (2020) show that volatility and concentration are positively

1See Huberman, Leshno, and Moallemi (2021) Appendix A for an economic description of the blockchain
mechanism.

2Please see https://bitcoinmagazine.com/business/btc-coms-bitcoin-mining-pool-dominance-threatened-
by-poolin for anecdotal evidence.
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related in publicly listed firms.

Further, our theory predicts, and our empirical analysis verifies, that mining pools’ con-

centration is an essential factor affecting cryptocurrency returns — a factor that the current

empirical literature has not yet explored. Liu and Tsyvinski (2021) find that cryptocurrency

returns are exposed to cryptocurrency network factors but not cryptocurrency production

factors. Their paper constructs production factors of cryptocurrency to proxy for the cost

of mining, such as electricity and computing power costs. Consistent with our theory, they

show that technological fundamentals affect cryptocurrency valuations.

Lastly, we show that the cryptocurrency pricing implications are similar on the extensive

and intensive margin: the entry and exit of mining pools do not affect prices insofar as

through their effect on concentration.

We assume that a cryptocurrency’s real value — or at least a fraction of it if there is a

bubble — is determined by the sum of all the discounted future services it will provide. These

services take several forms, including access to real economies worldwide, and transferring

funds across borders and between entities while remaining anonymous.3

Mining pools are endowed with these cryptocurrency services over time based on their size

relative to the other mining pools, which we refer to as mining. When one mining pool size is

bigger than the others, it is endowed with a more significant share of cryptocurrency services,

so it mines more cryptocurrency than the other mining pools. In addition, our economy

features a group of single miners. Since single miners rarely mine the cryptocurrency, we

impose that they cannot mine it directly but instead pay the mining pool fees (that will be

determined in equilibrium) and access the cryptocurrency services through trading with the

mining pool. Changes to mining pools’ sizes over time determine their concentration and is

a critical determinant of the equilibrium.

There are several important decisions that mining pools make that determine their sizes.

This paper does not take a stand on the importance of these elements and assumes that

concentration is time-varying and exogenous to today’s price. We believe this assumption is

reasonable and well justified, given the highly volatile cryptocurrency prices and slow-moving

technological advancements in mining technologies.

Our theory builds on the intuitive yet novel insight that introducing competition requires

that each mining pool clears its mined cryptocurrency services separately from its competi-

tors in equilibrium. Accordingly, mining pools post fees for trading cryptocurrency services

with other market participants. If market participants demand too many services from a

3Our view is similar to Di Tella (2020)’s view in that the real value of money is the present value of
expenditures on its liquidity services and is consistent with Cong, Li, and Wang (2021b)s’ fundamental-
based view in which the demand for transactional benefits determines the value of cryptocurrency tokens.
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particular mining pool, it increases its fees. Instead, if market participants demand too few

services, the mining pool decreases its fees. The process continues until, eventually, supply

meets demand in every mining pool individually, and equilibrium reveals the market-clearing

fees.

We achieve market clearing at the mining pool level by viewing services that mining pools

mine as different goods. Imagine a shop that sells services from two separate service providers

(like mining pools). To clear their supply entirely, the two service providers would have to set

up relative prices proportional to the inverse of their relative supply; otherwise, an arbitrage

opportunity exists. So, if the first supplier has half of the supply of the second supplier,

the price for its services would have to be double the price of the second supplier to reduce

the demand for its services. The cryptocurrency is then a claim to all the future combined

services the shop provides. Accordingly, the equilibrium shows that the mining pools’ fees

are inversely related to their size, which corroborates Cong et al. (2021a)s’ findings.

Since each mining pool posts fees to clear services separately from the other mining

pools, the cryptocurrency fundamental price (the sum of all the discounted future services)

can be represented by the mining pools’ revenues: mining pools’ fees times their services.

The relationship between mining pools’ revenues and cryptocurrency prices is instrumental

and key to our findings. In reality, mining pools’ revenues have two sources: newly minted

coins and transaction fees (see Huberman et al. (2021) Appendix A for a succinct and precise

economic description of the blockchain mechanism). Since the cryptocurrency is a claim on

services, the size of the mining pool (the mass of cryptocurrency services at their disposal)

increases when it attains newly minted coins and the transaction fees, and therefore the

setup captures these sources in a reduced form.

One novel and potentially testable implication of our model is that the cryptocurrency’s

fundamental value and return volatility are determined by the sum of all the future total

revenues of the mining pools. When concentration drops, the total revenues increases, and

the cryptocurrency price increases and its return volatility drops. In line with this prediction,

Bolt and Van Oordt (2020) document an inverse relationship between the daily volatility of

the USD/Bitcoin exchange rate and Bitcoin transaction volume, which is a reasonable proxy

for mining pools’ revenues.

The prediction arises because exogenous changes to mining pool sizes have opposing

effects on mining pools’ concentration and total revenues. A shock that increases the sum of

mining pools’ revenues reduces mining pools’ concentration. The endogenous, equilibrium

relationship between concentration and total revenues is critical because it establishes the

relationship between mining pools’ concentration — an empirically observable quantity —

and cryptocurrency price and volatility. In our primary analysis, we measure concentration
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Figure 1. Herfindahl-Hirschman Index over time. A time series plot of daily mining
pools’ concentration starting from January 2018 to February 2020. To obtain the daily
mining pool data, we scrapped https://bitcoinchain.com/pools. When we calculate the
Herfindahl-Hirschman index we assume that unknown mining pools are small and each one
can either mine one or zero blocks per day.

with the established Herfindahl-Hirschman index (HHI).

To account for the ongoing discussions about whether a fundamental value is attached

to a cryptocurrency. We allow the cryptocurrency price in our framework to differ from its

fundamental value. In particular, we assume that the cryptocurrency price only partially

depends on the discounted future services it will provide and partially is detached from

fundamentals and depends on the discounted future cryptocurrency prices. We refer to this

detachment from fundamentals as a bubble, and its magnitude is controlled by an exogenous

parameter that takes values between zero and one. The economy without such a bubble is a

special case where the parameter equals zero. The exogenous bubble is highly tractable and

facilitates the analysis of the equilibrium implications of the bubble size and its interaction

with the mining pools’ concentration. We define the bubble as the difference between the

equilibrium cryptocurrency price with the exogenous bubble and without it. This definition

is in line with a speculative bubble such as Scheinkman and Xiong (2003), where agents are

misinformed about the exogenous services and incorrectly believe that the cryptocurrency

price is partially detached from fundamentals and depends on future prices.

The exogenous bubble is highly tractable and facilitates the analysis of the equilibrium
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implications of the different bubble sizes and their interaction with the mining pools’ con-

centration. An analysis that is infeasible otherwise. Our model predicts that the bubble

amplifies the effect of mining pools’ concentration on the cryptocurrency price and its return

volatility.

The remainder of the paper is organized as follows. Section 2 summarizes the litera-

ture; Section 3 sets up the economy with mining pools and competition; Section 4 discusses

the equilibrium mechanism; Section 5 introduces the effects of concentration on the cryp-

tocurrency price and volatility and the effects of the bubble; Section 6 provides empirical

support to our main predictions using Bitcoin; Section 7 investigates entry and exit; Section

8 concludes.

2 Related Literature

Our theory builds upon Zapatero (1995) and Pavlova and Rigobon (2007) and is closely

related to the international finance literature. Countries in the model are mining pools that

maximize preferences over the consumption of cryptocurrency services. We build on the in-

ternational finance literature in two novel and unexplored dimensions. First, we allow mining

pools’ sizes to move stochastically and to determine the mining pools’ concentration. Sec-

ond, we utilize country-specific goods to force the mining pools to clear their cryptocurrency

services competitively and independently from the other mining pools. To achieve market

clearing, the mining pools must post fees to clear their endowed cryptocurrency services

separately from other mining pools (the ratio of two mining pools’ fees is referred to as the

exchange rate in the international finance literature). These fees determine the demand of

single miners (like households in the macro literature) that purchase cryptocurrency services

(the global consumption good) from the mining pools (the countries). The individual miners

have no direct access to the cryptocurrency services (their initial endowment is fixed), so

they must trade with the mining pools to consume the cryptocurrency services. Also related

to our work is Cochrane, Longstaff, and Santa-Clara (2008)s’ analysis that studies the asset

pricing implications of two Lucas trees.

Our paper fits into the literature studying the asset pricing implications of cryptocur-

rencies. Despite empirical work on cryptocurrency prices and volatilities, we still know very

little about their determinants and, specifically, about the effects of mining pools’ concen-

tration. Our paper is most closely related to Pagnotta (2021) and Biais, Bisière, Bouvard,

Casamatta, and Menkveld (forthcoming). Pagnotta (2021) studies the joint determination of

bitcoin prices and blockchain security using a game-theoretic setup, and Biais et al. (forth-

coming) study the bitcoin equilibrium price using an overlapping generation model with
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miners, hackers, and investors. These papers emphasize the security aspect of the blockchain

as a determinant of cryptocurrency prices, while this paper emphasizes the mining pools’

concentration.

Further, Cong et al. (2021b) study the demand side network effects of user adoption

on a cryptocurrency token value. They show that the token price determines both the

transactional benefit and the intertemporal carry cost of holding tokens, which incentivizes

the platform participants to either hold or sell the tokens and, eventually, to pin down the

token price through market-clearing with heterogeneous participants. Athey, Parashkevov,

Sarukkai, and Xia (2016) model Bitcoin as a medium of exchange of unknown quality that al-

lows users to avoid bank fees when sending remittances. They suggest that Bitcoin exchange

rates can be fully determined by two market fundamentals: the steady-state transaction vol-

ume of Bitcoin when used for payments and the evolution of beliefs about the likelihood

that the technology survives. Schilling and Uhlig (2019) show that a speculative equilibrium

where agents hold the cryptocurrency in anticipation of its appreciation exists under some

conditions. Sockin and Xiong (2021) model cryptocurrency as membership in a digital plat-

form developed to facilitate transactions between users of certain goods or services. They

show that platform users’ complementarity makes utility tokens appealing because they pre-

vent the platform from abusing its users. Fanti, Kogan, and Viswanath (2021) study the

tradeoffs between staking tokens for transaction validations and utilizing tokens for trades.

They show that the tradeoff pins the tokens’ value as a function of transaction volume, token

velocity, and token supply schedule. Saleh (2021) studies the economics of Proof-of-Stake

systems and studies the implications of the consensus mechanism on the token’s value. Our

model’s predictions apply to other permissionless blockchain protocols such as Proof-of-Stake

as long as the concentration of the transaction validators varies over time due to exogenous

shocks.45

Our paper also complements earlier work on the production side of cryptocurrencies.

Prat and Walter (2021) investigates the relationship between the mining equipment and the

Bitcoin price. Easley, O’Hara, and Basu (2019) focus on the role of transaction fees and

their impact on the behaviour of miners and users in a game-theoretic setup Huberman

et al. (2021) model how the decentralized design of Bitcoin, particularly the competition

among service providers and free entry, helps to protect users from monopoly pricing. Cong

and He (2019) analyze the impact of blockchain technology on competition and industrial

organization. Cong et al. (2021a) study the rise of mining pools as a risk-sharing mechanism

4The efficiency of Proof-of-Stake protocols relative to Proof-of-Work protocols is not yet clear, as Gans
and Gandal (2019), Abadi and Brunnermeier (2022), and Budish (2022) show.

5For an extensive survey of the literature on the economics of Bitcoin, please refer to John, O’Hara, and
Saleh (2022).
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among smaller miners. They find that this risk-sharing mechanism escalates the technological

arms race among mining pools. Alsabah and Capponi (2020) study the mining pools’ research

and development investment decisions. We complement the above papers by focussing on

how changes in concentration and entry of mining pools affect cryptocurrency price and

volatility.

Lastly, our theory relates to the literature on bubbles and builds on the early work

of Tirole (1985), who first introduced a model where dividends depend on prices to form

a bubble and to analyze the value of money in an overlapping generation model. More

recently, Biais et al. (forthcoming) adopted this technique to study Bitcoin pricing. An

essential feature our equilibrium inherits from the international asset pricing literature is

equilibrium uniqueness, unlike these studies, which lead to multiple equilibria. The bubble

is exogenous and tractable and facilitates the analysis of the equilibrium implications of the

bubble size, which is unique to our setup.

3 An Economy with Mining Pools’ Concentration

This section lays out a tractable asset pricing model in which mining pools are competitive

and required to clear their mined (endowed) services separately from the other mining pools.

In particular, we abstract away from the blockchain’s microstructure elements and focus only

on elements that are relevant for the pricing implications of mining pools’ concentration. The

model builds upon the standard multi-good finite horizon endowment economy, and time t is

continuous and goes from zero to T . Two independent Brownian motions drive uncertainty

(Zt, Z̄t). The first captures shock to services (Zt), and the second captures shock to the

mining pools’ relative size (Z̄t).

3.1 Cryptocurrency Services and the Pricing Bubble

One Lucas tree (Yt) produces a perishable good that we call services. We assume that a

cryptocurrency’s real value — or at least a fraction of it if there is an inflationary bubble

— is determined by the sum of all the discounted future services it will provide. These

services take several forms, including access to real economies worldwide, and transferring

funds across borders and between entities while remaining anonymous. Since these services

must be utilized at a particular point in time, we view them as perishable goods.

The cryptocurrency price St represents a claim on all future services (Yt) per unit of

cryptocurrency; it is endogenous and determined in equilibrium.6 To account for the ongoing

6The equilibrium outcome is invariant to coin creation. The dynamics of mining pools’ concentration
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discussions about whether a fundamental value is attached to a cryptocurrency. We allow the

cryptocurrency price in our framework to differ from its fundamental value. In particular,

we assume that the cryptocurrency price (St) partially depends on the discounted future

services it will provide and partially is detached from fundamentals and depends on the

discounted future cryptocurrency prices. Formally, the cryptocurrency services (Yt) depend

on two sources: exogenous services (Dt) and prices (St). We aggregate these two sources

using a Cobb-Douglas function, such that

Yt ≡ (St)
β (Dt)

1−β , (1)

for a given parameter β ∈ [0, 1). The parameter β determines by how much today’s price is

detached from its fundamentals. When β = 0, today’s cryptocurrency price is determined

by the discounted future services it will provide, like in a standard pure-exchange multi-good

economy. For β ∈ (0, 1), the cryptocurrency price partially depends on fundamental services.

When β = 1, today’s cryptocurrency price is unrelated to the discounted future services it

will provide. Consequently, the parameter β determines how significant fundamentals are

for today’s price and could reasonably be referred to as the bubble.

Since the bubble in the economy is exogenously determined by the parameter β, we

define the bubble as the difference between the cryptocurrency price with the bubble (β > 0)

and without it (β = 0). Accordingly, the equilibrium characterization without a bubble is

subsumed in our setup and is given by simply plugging β = 0 in the equilibrium quantities

in the following sections.7

Perhaps more importantly, the exogenous bubble is highly tractable and facilitates the

analysis of the equilibrium implications of the different bubble sizes and their interaction

with the mining pools’ concentration. An analysis that is infeasible otherwise. Furthermore,

while a transitory and deterministic bubble (β as a function of time) is more realistic than

a constant bubble (β as a parameter), it is inconsequential to our analysis.8

With this Cobb-Douglas aggregator, we assume that the feedback effect is less important

may arise because the blockchain endows newly minted coins to a particular mining pool in each competing
round.

7An alternative definition would be to measure the bubble as the difference between the cryptocurrency
price with the bubble (β > 0) and the valuation of the exogenous services, given the prevailing equilibrium
discount factor in equilibrium with a bubble (β > 0). This definition is in line with the rational bubble
literature, such as Hugonnier (2012) and Hugonnier and Prieto (2015). We opted for our definition because
the bubble is exogenous, and it is reasonable to set β = 0 to analyze the equilibrium without a bubble and
to treat the difference between the two economies as a bubble.

8We leave the extension of a stochastic time-varying bubble to future work. Though, we believe it
would not materially affect the implications of mining pools’ concentration on the cryptocurrency price and
volatility.
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when prices are high: the marginal feedback effect of the cryptocurrency price (St) on its

services (Yt) is smaller when the cryptocurrency price is high (∂2Yt/∂
2St < 0).

Further, we assume the exogenous source of services follows

dDt = Dt

(
µDdt+ σDdZt

)
, (2)

where µD and σD are strictly positive constants. Our specification implies that the exogenous

source of services (Dt) does not depend on shocks to mining pools relative size, captured by

Z̄t. This assumption is for expositional simplicity and can be relaxed in future work. We

posit that St follows

dSt = St

(
µS
t dt+ σS

t dZt + σ̄S
t dZ̄t

)
, (3)

where µS
t , σ

S
t , and σ̄S

t are endogenous processes determined in equilibrium. With (3), we

implicitly assume that the cryptocurrency price cannot be zero. In addition to the cryptocur-

rency, each mining pool has the opportunity to borrow or lend with instantaneous riskless

interest rates in their local numeraire goods denoted by r1t and r2t, respectively. These se-

curities are in zero net supply and allow the mining pools to reduce exposure to the Lucas

tree. We refer to these securities as bonds and denote their prices by B1t and B2t. Interest

rates and bond prices are endogenous and determined in equilibrium.

3.2 Mining Pools and Single Miners

We focus our analysis on two mining pools to keep the model and the equilibrium mechanism

transparent. Section 7 extends the model and investigates concentration in the extensive

margin, when the number of mining pools increase from two to three. Agents hold the

cryptocurrency because it provides access to valuable services. We abstract away from all

other potential reasons to hold the cryptocurrency.

Mining pools access the cryptocurrency’s services through either mining or trading. We

model mining of the cryptocurrency in reduced form as an exogenous time-varying endow-

ment distribution process that splits the proportion of cryptocurrency services between the

two mining pools at every moment in time. The proportion of services that Pool-1 mines is

determined by λ1t ∈ (0, 1) (the share of the Lucas (1978) tree endowed to Pool-1 in time t)

while Pool-2 mines the residual λ2t ≡ 1− λ1t share.

The λ1t process captures the variation in mining pools’ relative sizes due to exogenous

shocks, like technological shocks. Concentration is time-varying and exogenous to today’s

pricing because the capacity to increase mining pool size (relative to others) is hardwired

to the technological advancement in the mining technology, which is a slow-moving process
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that cannot be determined based on today’s prices. Furthermore, the tremendous volatility

of even the biggest cryptocurrencies, like Bitcoin, makes prices useless predictors, as Prat

and Walter (2021) indicate. They further show that miners have a sluggish response to

sudden surges in Bitcoin price because of time-to-build constraints. However, even with-

out time-to-build constraints, as long as the mining technology is not disrupted, if miners’

capacity increases due to pricing effects, it should spread evenly among miners and not mate-

rially affect concentration. Therefore, we believe that exogenous variations in mining pools’

concentration have a first-order effect.

When Pool-1’s mining technology improves relative to Pool-2, it owns a more significant

share of the services and its size increases at the expense of Pool-2: λ1t > λ2t. We refer to

λit as Pool-i’s size throughout the analysis and shocks to λit as shocks to mining pools’ size.

We assume that Pool-1’s size process follows

dλ1t = λ1tλ2t

{
µλ1tdt+ σ̄dZ̄t

}
, λ10 ∈ (0, 1). (4)

These dynamics ensure that Pool-1 size always moves between zero and one.9

We introduce competition between the mining pools by requiring that each mining pool

clears its mined cryptocurrency services separately from its competitors in equilibrium. We

achieve this goal by viewing services that mining pools mine as different goods.

Like leading equilibrium (macroeconomic) asset pricing models with intermediaries, such

as He and Krishnamurthy (2013) and Brunnermeier and Sannikov (2014), where agents

maximize consumption over a lifetime, the mining pools, Pool-1, and Pool-2, in this model,

derive utility from consuming their services,

E

[∫ T

0

e−ρt log
(
ciit
)
dt

]
, i = 1, 2, (7)

where ρ > 0 and ciit is Pool-i’s consumption of its own services j at time t.

9We obtain λit dynamics by assuming that each mining pool’s absolute size process follows a geometric
Brownian motion

dFi

Fi
= µidt+ σidZi, (5)

where i = 1, 2, and Zi are standard independent Brownian motions uncorrelated with Z. Then, we define
the mining process of the first mining pool, which is a relative quantity, as λ1 ≡ F1

F1+F2
. By applying Itô’s

Lemma to this definition, we obtain (4). For further simplification, we introduce the standard Brownian
motion Z̄ ≡ σ1Z1

σ̄ − σ2Z2

σ̄ , and

µλ1t ≡
(
µ1 − λ1t (σ1)

2
)
−
(
µ2 − λ2t (σ2)

2
)
, (6)

where µ1, µ2, σ1, and σ2 are strictly positive constants, and σ̄ ≡
√
σ2
1 + σ2

2 .

11



The single miners in the economy cannot mine, and their share of services remain fixed

and equal to the initial endowment when there are no financial markets. With financial

markets, single miners may trade with the mining pools and increase their share of cryp-

tocurrency services. Accordingly, we assume the single miners derive utility from consuming

services of both mining pools,

E

[∫ T

0

e−ρt
[
γ1 log

(
c1at
)
+ log

(
c2at
)]

dt

]
. (8)

The parameter γ1 captures the single miners’ demand-side preference for a particular mining

pool’s services. We assume it is constant because we focus our analysis on the supply-side

effects. Due to this Cobb-Douglas utility function, the expenditure share the single miners

devote to Pool-1 is given by γ1
1+γ1

, meaning that the single miners would like to allocate more

wealth to Pool-1 when γ1 > 1. We refer to γ1 as demand bias and assume that demand bias

is always towards Pool-1, γ1 ≥ 1, without loss of generality. While the equilibrium allows

for any γ1 ≥ 1, we focus the analysis and intuitions on the economy without demand bias,

γ1 = 1, since the services the two mining pools mine are indistinguishable.

Critically, the single miners’ Cobb-Douglas utility function implies that the mining pools’

goods are imperfect substitutes (single miners’ marginal rate of substitution between the two

mining pools’ goods is convex). The single miners are willing to substitute one unit of services

mined by Pool-1 (c1at) for more units of services mined by Pool-2 (c2at) when they consume

fewer services of Pool-1 and c1at is low. This assumption is reasonable because if mining pools

were perfect substitutes, their fees would have been identical, which is at odds with empirical

evidence showing that mining pool fees are heterogenous (Cong et al. (2021a)). Even more

so, perfect substitutability implies that mining pools’ sizes are independent of the fees they

charge, which is, again, counter to empirical evidence.

Notice that the mining pools utility function (7) is a special case of the single miners utility

function (8) in which the expenditure share of Pool-1 approaches 1, while the expenditure

share of Pool-2 approaches 0. Accordingly, from the mining pools’ point of view, services

are not substitutable, or substitution is exceedingly costly.

Our theory builds on the intuitive yet novel insight that introducing competition requires

that each mining pool clears its mined cryptocurrency services separately from its competi-

tors in equilibrium. Accordingly, mining pools post fees for trading cryptocurrency services

with other market participants. If market participants demand too many services from a

particular mining pool, it increases its fees. Instead, if market participants demand too few

services, the mining pool decreases its fees. The process continues until, eventually, supply

meets demand in every mining pool individually, and equilibrium reveals the market-clearing
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fees, pit for Pool-i, i = 1, 2. These fees represent the pay (in units of the numeraire) to obtain

one unit of services of Pool-i. In the spirit of commonly used price indices, our numeraire is

the simple average of the mining pools’ fees p1t and p2t, such that

p1t + p2t = p̄, (9)

where p̄ is an exogenous parameter, which equals to twice the average and we refer to as the

fees index. Our choice of numeraire is standard and borrowed from Pavlova and Rigobon

(2007). Intuitively, it takes current prices but fixes the quantities to precisely one unit per

mining pool.10

To see how the cryptocurrency price and the fees are related, imagine a shop that sells

services from two separate service providers (mining pools). To clear their supply entirely,

the two service providers set up fees competitively. The no arbitrage condition then implies

that the cryptocurrency price is a claim to all the future combined services the shop provides:

St = Et

[∫ T

t

ξt,s (p1sλ1sYs + p2sλ2sYs) ds

]
, (10)

where ξt,s ≡ ξt/ξs is the equilibrium state price density process.

The single miners and the mining pools are price takers, and without loss of generality,

we set the initial supply share to equal the initial wealth share so that

λ10 =
γ1

1 + γ1
, λ20 =

1

1 + γ1
. (11)

This assumption is innocuous; it simplifies the exposition without affecting the economic

mechanism since it allows the constants in the propositions to cancel out.11

Further, we let Wa0 and Wi0, i = 1, 2, be the single miners and the mining pools’ value

of the initial endowments, respectively. We assume that the single miners are endowed with

1 − λ̂ shares of services at time 0; of those 1 − λ̂ shares, a λ10 fraction is of Pool-1 good,

and a λ20 fraction is of Pool-2 good. The two mining pools are initially endowed with the

residual λ̂ shares of services; of those λ̂ shares, a λ10 fraction is of Pool-1 good, and a λ20

fraction is of Pool-2 good. Thus, Wa0 = (1− λ̂)S0, W10 = λ̂λ10S0, and W20 = λ̂λ20S0.

Starting with these initial endowments, at every instant of time t, each market participant

chooses a nonnegative consumption and a portfolio of available securities (πS
it, π

B1
it , πB2

it ) to

10We use the simple average for expositional clarity; a general weighted average of fees’ price index (X1p1t+
X2p2t = p̄), such as the well known Lowe and Laspeyres price indices, would not change our qualitative results
when X1, X2 > 0.

11A general initial distribution of the cryptocurrency (Wa0 = FaS0, W10 = F1S0, and W20 = F2S0, such
that Fa + F1 + F2 = 1 and with Fa, F1, F2 > 0) would not affect the equilibrium qualitative outcomes.
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maximize their utility subject to their dynamic budget constraint, which takes the following

standard form

dWit = Witπ
S
it

dSt + p1tλ1tYtdt+ p2tλ2tYtdt

St
+Witπ

B1
it

dB1t

B1t
+Witπ

B2
it

dB2t

B2t
− pitc

i
itdt, (12)

for Pool-i = 1, 2, and

dWat = Watπ
S
at

dSt + p1tλ1tYtdt+ p2tλ2tYtdt

St
+Watπ

B1
at

dB1t

B1t
+Watπ

B2
at

dB2t

B2t
− p1tc

1
atdt− p2tc

2
atdt, (13)

for the single miners. The quantity πj
it is endogenous and represents a fraction of Wit

invested at time t in security j, and i = 1, 2, a.

4 Equilibrium with Mining Pools’ Concentration

We define equilibrium in a standard way: cryptocurrency price, mining pools’ fees, bonds

prices, portfolio holdings, and consumption choices are such that (i) the mining pools and

single miners are price takes (non-strategic) and choose their optimal consumption of cryp-

tocurrency services and security holdings for given prices, and (ii) mining pools services clear

individually for each mining pool (goods markets clear), the cryptocurrency, and bonds mar-

kets clear.

We start the equilibrium analysis by characterizing the mining pool fees. The mining

pools compete with each other by posting fees to trade their services with the other market

participants. Equilibrium determines the market-clearing fees so that the supply of services

meets the demand for services in each mining pool. The following proposition summarizes

the key results.

Proposition 1 (Fees). The mining pools post fees given by

p1t = p̄

γ1
1+γ1

1
λ1t

γ1
1+γ1

1
λ1t

+ 1
1+γ1

1
λ2t

, p2t = p̄

1
1+γ1

1
λ2t

γ1
1+γ1

1
λ1t

+ 1
1+γ1

1
λ2t

, (14)

to trade their services. The fees of Pool-i decrease as that mining pool becomes larger,

∂p1t
∂λ1t

< 0,
∂p2t
∂λ1t

> 0, (15)

while it increases as the single miners shift its preference to that pool, ∂p1t
∂γ1

> 0, ∂p2t
∂γ1

< 0.

Proposition 1 reveals that an increase in Pool-1’s size (λ1t ↑) directly reduces that mining

pool’s fees and indirectly increases Pool-2’s fees, and it is independent of the bubble (β). This
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outcome represents a typical supply shift channel in which an increased supply translates to

lower fees, in line with Cong et al. (2021a)s’ findings, whereby mining pool size is inversely

related to the fees charged by that mining pool.

When the mined services are indistinguishable (γ1 = 1), the proposition reveals that the

two mining pools set up relative fees (p1t/p2t) proportional to the inverse of their relative

size (λ2t/λ1t). So, if Pool-1 has half the size of Pool-2, the price for Pool-1’s services is

double that of Pool-2’s services. When the services are distinguishable (γ1 > 1), the fees also

depend on the demand bias parameter (γ1): when the single miners prefer Pool-1’s services,

that mining pool fees increase. It is a typical demand channel in which stronger demand to

services translates to higher prices.
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Figure 2. Fees. These figures reveal that as the size of Pool-i increases, the mining pool
fees decrease. At λ1t = λ1∗, the decrease in Pool-i fees exactly offsets the increase in its size,
∂(p1t/p̄) = −∂λ1t. The left panel represents Pool-1, while the right panel Pool-2. Parameter
values are: D0 = 1, Dt = 2, ρ = 0.98, σ = σ̄ = 0.4, T = 3, t = 1, γ1 = 5, and p̄ = 5.

Due to the negative relationship between mining pool size and its fees, and since the sizes

(λit) and the fraction of fees (pit/p̄) are bounded in (0, 1), there is a single crossing between

the mining pool size and its fraction of fees, as Figure 2 illustrates. Accordingly, we define

the crossing point by λ1∗,
p1t (λ1∗)

p̄
≡ λ1∗. (16)

Intuitively, when Pool-1’s size equals its fraction of fees (16), the increase in Pool-1’s size

exactly offsets the decrease in its fraction of fees. As a result, the fees multiplied by the

mining pool’s size attains its maximum at λ1t = λ1∗. Economically, the mining pool size
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times its fees represents the revenue this mining pool attains in equilibrium relative to the

total revenue available. More explicitly, we define the revenue shares of Pool-1 and Pool-2

and the total revenue shares as

V1t ≡ p1tλ1t, V2t ≡ p2tλ2t, Vt ≡ V1t + V2t, (17)

respectively.

In reality, mining pools’ revenues have two other sources: newly minted coins and trans-

action fees. Since the cryptocurrency is a claim on services, the relative size of the mining

pool (the relative mass of cryptocurrency services at their disposal, λit) increases when it

attains newly minted coins and the transaction fees, and therefore the revenue share (17)

captures these sources in a reduced form.

Following Proposition 1, a shock to the mining pools’ size has two competing effects.

It increases one mining pool size, but at the same time, it decreases its fees. The revenue

share summarizes these two competing effects and reveals which force dominates and is

more important for pricing. When the increase in the mining pool size effect dominates,

the mining pool’s revenue share increases. Instead, when the decrease in the mining pool

fees effect dominates, the mining pool’s revenue share decreases. Alternatively, one could

translate the two competing effects to (i) an increase in one mining pool’s size, and (ii) a

decrease in the other mining pool’s size. What matters for pricing is the effect on the total

revenue shares. An increase in the total revenue shares has a positive effect on prices, while

a decrease has a negative effect on prices, as Figure 3 illustrates.

A simple manipulation shows that the revenue shares and the total revenue shares are

given by

V1t = p̄

γ1
1+γ1

γ1
1+γ1

1
λ1t

+ 1
1+γ1

1
λ2t

, V2t = p̄

1
1+γ1

γ1
1+γ1

1
λ1t

+ 1
1+γ1

1
λ2t

, Vt = p̄
1

γ1
1+γ1

1
λ1t

+ 1
1+γ1

1
λ2t

, (18)

and are independent of the bubble (β). The following Proposition verifies our intuition.

Proposition 2 (Revenue Share). The mining pools’ revenue shares and the total revenue

shares are given in (18), attain their maximum when the relative fees equal the size, λ1t = λ1∗,

where

λ1∗ =

√
γ1

1 +
√
γ1

, λ2∗ =
1

1 +
√
γ1

, (19)

and λ1∗ ≥ λ2∗ due to demand bias towards Pool-1 (γ1 ≥ 1).

The proposition reveals that when λ1t = λ1∗, the distribution of services across the mining
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pools is optimal. When services are indistinguishable and γ1 = 1, the mining pools generate

the highest revenue shares when their sizes are equal (λ1t = λ2t = 1/2). Of course, exogenous

shocks to the mining pools’ sizes knock them out of the optimal balance.

The equilibrium dynamics reveal that when Pool-2 size becomes exceedingly small (λ2t →
0), and it mines few cryptocurrencies, equilibrium mandates Pool-2’s fees to increase towards

the fees index (p2t → p̄) to ensure that Pool-2’s services are not attractive and the market

clearing condition is satisfied. At the same time, Pool-1 size becomes exceedingly large

(λ1t → 1), it mines almost all of the cryptocurrencies, and equilibrium mandates the fees to

decrease towards zero (p1t → 0) to attract all the demand to Pool-1’s services.

Since there are only two mining pools in our economy, when one mining pool’s fraction

of fees equal its size, it must also be true for the other mining pool,

p1t
p̄

= λ1t ⇐⇒ 1− p1t
p̄

= 1− λ1t ⇐⇒ p2t
p̄

= λ2t. (20)

Therefore, both mining pools must attain their maximum revenue share at λ1∗, eventually

giving rise to the inverted U-shape function of the total revenue shares with respect to Pool-

1’s size, λ1t. Furthermore, it is apparent that the fees index parameter (p̄) is not responsible

for the inverted U-shape revenue share because the result applies for relative fees (pit/p̄).

Demand bias toward Pool-1 (γ1 > 1) increases this mining pool’s maximal revenue share

(λ1∗ > 1
2
). The intuition comes from the fact that the revenue share summarizes the com-

peting effects of the mining pool’s size and fees and attains its maximum when the decrease

in relative fees offsets the increase in size. So, when the expenditure share in Pool-1 ( γ1
1+γ1

)

is larger, the mining pool fees are also higher (Proposition 1), requiring a larger mining pool

size to offset it (λ1∗ ↑).
Next, we connect mining pools’ concentration to their total revenue shares, and show

that shocks that increase concentration decrease the total revenue shares. We utilize the es-

tablished Herfindahl-Hirschman index (HHI) to measure concentration, when mining pools’

services are indistinguishable and there is no demand bias. However, when there is demand

bias (γ1 > 1), we centralize the HHI to ensure that it reaches its minimum when the distribu-

tion of services between the mining pools is optimal. In this way, the minimal concentration

is independent of the demand bias parameter.

Definition 1 (Concentration). Let Ht be the measure of concentration that attains its

minimum when mining pools’ sizes equal their relative fees, λ1t = λ1∗,

Ht ≡
λ2
1t

λ1∗
+

λ2
2t

λ2∗
, 1 ≤ Ht ≤

1

λ2∗
, λ2∗ ≤ λ1∗. (21)
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As λ1t moves towards λ1∗, it reduces concentration (Ht), while moving away from λ1∗ in-

creases it.

To develop our intuition about the concentration measure (21), assume that mining

pools’ services are indistinguishable and there is no demand bias (γ1 = 1). In that case,

the concentration measure (Ht) coincides with the well-known HHI. It is minimized when

the mining pools have the same size (λ1t = λ2t = 1/2), and it is maximized when there

is only one mining pool, (λ1t = 1 or λ2t = 1). Notice that the minimum concentration

is attained precisely at λ1∗, when the distribution of services between the mining pools is

optimal. When there is demand bias (γ1 > 1), we normalize the HHI to ensure that the

minimum concentration is still attained when the distribution of services is optimal.

Whenever a shock to mining pools’ sizes arrives, it changes the mining pools’ concentra-

tion, and, at the same time, the total revenue shares. Critically, whenever a shock to the

mining pools’ sizes increases concentration it decreases the total revenue shares

∂Ht

∂λ1t

> 0 ⇐⇒ ∂Vt

∂λ1t

< 0. (22)

Much like the mining pools’ total revenue shares, our concentration measure (Ht) summarizes

the two competing effects and reveals which force dominates and is more important for

pricing: (i) an increase in one mining pool’s size and (ii) a decrease in the other mining pool’s

size. What matters is the effect on concentration. A decrease in concentration has a positive

effect on prices because the total revenue shares increase, while an increase in concentration

has a negative effect on prices because the total revenue shares decrease. The revenue shares

attain maximum precisely when concentration attains its minimum, as Proposition 2 reveals

and Figure 3 illustrates.

Equilibrium reveals that the total revenue share determines how a shock to the mining

pools’ sizes propagates in the economy, as evident by the following no-arbitrage implicit

pricing equation.

St = Et

[∫ T

t

ξt,s (p1sλ1sYs + p2sλ2sYs) ds

]
= Et

[∫ T

t

ξt,sVsYsds

]
, (23)

where ξt,s ≡ ξs/ξt.

The no-arbitrage condition (23) implies that the cryptocurrency price is a claim to all the

future combined services, and equilibrium determines that price so that the total demand

for the cryptocurrency services meets the total supply of services. Indeed, the second term

reveals that the cryptocurrency price (St) equals the sum of the discounted future services
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Figure 3. Concentration and Revenue Shares. Whenever a shock to the mining pools’
sizes arrives, it increases one mining pool’s size and decreases the other mining pool’s size.
The equilibrium fees of both mining pools readjust to reflect the new distribution of services.
Both the total revenue shares and mining pools’ concentration determine the direction of
the two competing effects. The figure further reveals that both the revenue shares and the
total revenue shares attain their maximum at λ1t = λ1∗. Parameter values are as in Figure
2.

the cryptocurrency provides, where the deflator is the equilibrium discount factor, ξ. The

total available services are Yt, which is splitted between the mining pools based on their sizes

λ1t and λ2t. Therefore, Pool-1’s services equal λ1tYt, and Pool-2’s services equal λ2tYt, at

time t. Since the mining pools compete and require to clear their services individually, they

post equilibrium market clearing fees. Accordingly, the pricing equation requires multiplying

the mining pools’ services by their respective equilibrium fees, eventually leading to the first

equality in (23).

By plugging the revenue shares definitions (17) in the second term and noticing that the

total revenue share (Vt) times the services (Yt) represent the mining pools’ total revenues,

we derive the third term. This term reveals that the mining pools’ total revenues (V Y )

determine the cryptocurrency price. A prediction implying that the cryptocurrency value

(or a fraction of it if there is an inflationary bubble) can be determined by the revenues of

mining pools, thereby providing a new testable implication for cryptocurrency pricing.

Of course, other potential state variables besides the total revenue share (Vt) may deter-

mine how a shock to the mining pools’ sizes propagates because we have yet to characterize

the state price density. As we reveal soon, the total revenue share is the only mechanism for

mining pools’ sizes shocks.

19



Plugging the definition of Yt (1) into the no-arbitrage pricing equation (23) leads to

St = Et

[∫ T

t

ξt,sVs

(
(Ss)

β (Ds)
1−β
)
ds

]
, (24)

and reveals how future cryptocurrency prices feed back and determine the current cryp-

tocurrency price when there is a bubble (β > 0). At first glance, the feedback in the pricing

equation appears intractable. However, the logarithmic utility functions substantially im-

prove the tractability of the pricing equation and eventually lead to a closed-form and precise

characterization of the cryptocurrency price.

To further develop our equilibrium mechanism, it is helpful to first discuss the (stochastic)

discount factor in an implicit form as a function of the price-to-services ratio.

Lemma 1 (Implicit Discount Factor). The prevailing equilibrium discount factor is given

by

ξ0,t = S0

(
ρe−ρt

1− e−ρT

)
1

VtYt

= S0

(
ρe−ρt

1− e−ρT

)
1

Dt

1

Vt

(
St

Dt

)−β

, (25)

where ξs,t ≡ ξt/ξs, for s ≤ t.

In line with our intuitions and as (25) unravels, the discount factor, the process that

determines equilibrium prices, depends on prices by itself. Future cryptocurrency prices

feed back into the current price through the discount factor, introducing a bubble into the

cryptocurrency price controlled by the parameter β. It is clear from (25) that when there is

no bubble (β = 0), there is no feedback, and the discount factor is fully specified without

depending on endogenous prices. We derive the discount factor explicitly in the next section

after we characterize the cryptocurrency price.

Lemma 1 further reveals that the discount factor is inversely related to the exogenous

services (Dt) — a feature similar to a traditional asset pricing model — implying that high

values of services characterize good states of the world when there is no bubble (β = 0). Since

mining pools compete and equilibrium requires that they clear their services individually,

the discount factor is inversely related to mining pools’ total revenue shares (Vt), implying

that high values of total revenue shares and low concentration characterize good states when

there is no bubble. However, there is an additional effect through the price–to–services ratio

when there is a bubble (β > 0), revealing that the discount factor is inversely related to the

price–to–services raio and implying that high values characterize good states of the world.

Next, we investigate whether the bubble inflates or deflates the cryptocurrency price.

To answer that question, we first manipulate the services (1), and reveal that the price–to–

services ratio answers that question.
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Yt = Dt

(
St

Dt

)β

. (26)

As (26) reveals, when St > Dt, the bubble increases the available services (Yt ↑) and,

therefore, inflates the cryptocurrency price. The reverse happens when St < Dt. The bubble

decreases the available services (Yt ↓) and deflates the cryptocurrency price.

Since prices are the sum of all discounted future services, one would anticipate that the

cryptocurrency price is always greater than current exogenous services (St > Dt). However,

since the mining pools compete and must clear their services individually by posting fees,

the cryptocurrency price is not necessarily higher than exogenous services. Imagine an

extreme case whereby Pool-1’s size approaches one and owns nearly all the services. To

clear markets, Pool-1’s fees are nearly zero, and as a result, so is Pool-1’s revenue share.

Since the other mining pool size is nearly zero, Pool-2’s revenue share is also nearly zero,

resulting in a near-zero total revenue share. Plugging a near-zero total revenue share into

our no-arbitrage condition (23), we observe that the cryptocurrency price is nearly zero

and certainly below the strictly positive exogenous services, as Figure 3 illustrates. The

resulting intuition suggests that when concentration becomes extreme, the cryptocurrency

bubble deflates its prices, while the bubble inflates prices when concentration is not extreme.

We formalize this intuition in the following section once we characterize the cryptocurrency

price and volatility.

5 Implications of Mining Pools’ Concentration

So far, we have analyzed the equilibrium mechanism and the implicit pricing formula. This

section completes the equilibrium characterization. Despite the feedback between future

cryptocurrency prices and the current price, our equilibrium admits precise closed-form ex-

pressions.

While the price bubble (β > 0) tremendously impacts the cryptocurrency price and

volatility levels, it does not affect the equilibrium mechanism of mining pools’ concentration,

as this section reveals. We start by characterizing the equilibrium cryptocurrency price and

the discount factor.

Proposition 3 (Cryptocurrency Price and Discount Factor). When the total revenue

share attains its maximum, the concentration attains its minimum, and whenever a shock

to the mining pools’ sizes increases concentration it decreases the total revenue shares (22).
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The equilibrium cryptocurrency price is given by

St =

(
1− e−ρ(T−t)

ρ

) 1
1−β

Dt (Vt)
1

1−β . (27)

The discount factor between time 0 and t is given by

ξ0,t = ξ̄e−ρt

(
1− e−ρ(T−t)

ρ

)− β
1−β 1

Dt

(
1

Vt

) 1
1−β

, (28)

where Vt is the total revenue shares (18), Ht is the concentration measure (21), and ξ̄ ≡
S0

(
ρ

1−e−ρT

)
. The discount factor increases with concentration, and the cryptocurrency price

decreases with concentration, with or without a bubble.

The shocks to mining pools’ sizes have two opposing forces since when Pool-1’s size

increases, Pool-2’s size decreases in relative terms. It is not immediately clear whether

a shock that increases the size of one mining pool propagates positively or negatively to

prices. The equilibrium mechanism reveals, and Proposition 3 verifies that when a shock

to the mining pools’ sizes increases the total revenue share and decreases mining pools’

concentration (22), it propagates positively to the cryptocurrency prices. The proposition

further reveals that the cryptocurrency price peaks when concentration is minimized and

collapses to zero when concentration is maximized, even without a bubble (β = 0). Figure

4 illustrates this idea.

Similarly, the discount factor reveals that the economy achieves its best economic state

precisely when mining pools’ concentration is minimized, and the discount factor reaches

its minimum. The economic state deteriorates as concentration gets further away from its

minimum and reaches the worst economic state when concentration is the furthest away from

the minimum. When mining pools’ services are indistinguishable and there is no demand bias

(γ1 = 1), equilbrium achieves its worst economic state when either mining pool completely

dominates and becomes a monopoly (λ1t = 0 or 1) since both extreme states are equidistant

from the minimum concentration state, achieved at λ1∗ = 1/2. When there is a demand

bias (γ1 > 1), the worst economic state occurs when Pool-2 becomes a monopoly, and

Pool-1 vanishes (λ1t = 0) since this extreme state is the furthest away from the minimum

concentration state, achieved at λ1∗ > 1/2.

The cryptocurrency shock sensitivity complements the cryptocurrency price analysis.

When concentration leans towards Pool-2 (λ1t < λ1∗), the cryptocurrency shock sensitivity

is positive, and therefore, a positive shock to Pool-1’s size (λ1t ↑) reduces concentration and
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Figure 4. Discount Factor and the Cryptocurrency Price. When concentration is
minimized, the cryptocurrency price peaks and the discount factor reaches its minimum.
Alternatively, when concentration is maximized, the cryptocurrency price collapses to zero.
Parameter values are as in Figure 2 and β = 0.6.

increases the cryptocurrency price. Due to symmetry, when concentration leans towards

Pool-1 (λ1t > λ1∗), the shock sensitivity is negative, and therefore, a positive shock to

Pool-2’s size (λ1t ↓) reduces concentration and increases the cryptocurrency price.

As the concentration drifts away from the optimum, the effect of a shock to the mining

pools’ sizes heightens, resulting in a more extreme cryptocurrency return volatility. This

result further highlights the equilibrium’s workings. As mining pools’ total revenue share

deteriorates and concentration becomes extreme, the cryptocurrency price drops. The drop

in the cryptocurrency price makes it an attractive investment to all the market partici-

pants. To reduce the cryptocurrency’s attractiveness, equilibrium increases its volatility to

the point where market participants are indifferent between reducing and increasing their

cryptocurrency position, restoring the equilibrium. Overall, a shock to the mining pools’

size distribution that reduces concentration increases the cryptocurrency price but decreases

its total return volatility even without a bubble (β = 0). Proposition 4 summarizes our

findings, and Figure 5 illustrates them.

Similarly, when concentration drifts towards the optimum, the effect of a shock to the

mining pools’ sizes shrinks and is eventually turned off entirely when concentration is mini-

mized. At the optimum, a shock to the mining pools’ sizes does not affect the cryptocurrency

price.
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Figure 5. Volatility. On the left figure, we observe the cryptocurrency sensitivity to
positive technological shocks. On the right figure, we observe that the total return volatility is
minimized when mining pools’ concentration is the lowest, and increases with concentration.
Parameter values are as in Figure 2 and β = 0.6.

Proposition 4 (Cryptocurrency Volatility). The cryptocurrency shock sensitivities are

given by

σ̄S
t =

1

1− β

(
p1t
p̄
λ2t −

p2t
p̄
λ1t

)
σ̄, σS

t = σD. (29)

The cryptocurrency is insensitive to shocks to the mining pools’ size distribution when mining

pools’ concentration is minimized. The absolute-term magnitude of the cryptocurrency shock

sensitivity to mining pools’ size distribution shocks increases with concentration, with or

without a bubble:

∂ | σ̄S
t |

∂λ1t

=


∂σ̄S

t

∂λ1t
< 0 for λ1t < λ1∗,

− ∂σ̄S
t

∂λ1t
> 0 for λ1t > λ1∗.

Further, the absolute-term magnitude of the size distribution shock sensitivity increases with

the bubble:

∂ | σ̄S
t |

∂β
=


∂σ̄S

t

∂β
> 0 for λ1t < λ1∗,

−∂σ̄S
t

∂β
< 0 for λ1t > λ1∗.

5.1 Implications of the Price Bubble

We now turn our attention to analyzing the implications of the bubble on the cryptocurrency

price. The bubble inflates prices when St(β > 0) > St(β = 0), where St(β = 0) represents

the cryptocurrency intrinsic value (the value that depends on services), while St(β > 0)

represents the cryptocurrency price with a bubble and all else equal. In that case, only a
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fraction αt of the cryptocurrency price St depends on services

St(β = 0)

St(β > 0)
= αt ∈ (0, 1). (30)

However, the bubble (β > 0) either inflates or deflates the cryptocurrency price relative

to an economy without a bubble (β = 0). In the inflationary case, the cryptocurrency price

diverges from the value of the discounted exogenous services. We call this case an inflationary

bubble because as the bubble parameter increases and β approaches one, the cryptocurrency

price approaches infinity. In the deflationary case, instead, the cryptocurrency price is de-

pressed relative to the intrinsic, fundamental value. We call this case a deflationary bubble

because as the bubble increases and β approaches one, the cryptocurrency price collapses to

zero.

Interestingly, the fees index (p̄) determines the bubble type. There are two possible

scenarios. When the fees index is sufficiently high, the cryptocurrency price shifts between

an inflationary and deflationary bubble, depending on the concentration of the mining pools.

In states where the mining pools’ concentration is not extreme, the cryptocurrency is in an

inflationary bubble and shifts to a deflationary bubble as mining pools’ concentration crosses

a threshold and becomes extreme. When the fees index is low, instead, the economy is always

in a deflationary bubble, regardless of concentration. The following Proposition summarizes

our findings.

Proposition 5 (Bubble). The cryptocurrency price is in an inflationary bubble if and only

if the fees index is sufficiently elevated (p̄ > Pt) and mining pools’ concentration is not

extreme (λt < λ1t < λ̄t). An increased bubble implies

(i) a more substantial effect of concentration on the return volatility,

∂

∂β

∂

√
(σ̄S

t )
2
+ (σS

t )
2

∂λ1t

 < 0 ⇐⇒ λ1t < λ1∗. (31)

(ii) a more substantial effect of concentration on the cryptocurrency price, if the cryptocur-

rency price is in an inflationary bubble,

∂

∂β

(
∂St

∂λ1t

)
> 0 ⇐⇒ λ1t < λ1∗. (32)

(iii) a higher return volatility,
∂
√
(σ̄S

t )
2
+(σS

t )
2

∂β
> 0.
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(iv) a higher cryptocurrency price, ∂St

∂β
> 0, if and only if the cryptocurrency is in an

inflationary bubble.

The functions Pt, λt, and λ̄t are deterministic functions of time characterized in (A.39),

(A.40), and (A.41).

Proposition 5 verifies our intuitions derived from the implicit discount factor (1) and the

price–to–services ratio (26). When the ratio is bigger than one (St > Dt), the cryptocurrency

price feeds back positively to its services and introduces the inflationary bubble. In contrast,

when the ratio is smaller than one (St < Dt), the cryptocurrency price feeds back negatively

to its services and introduces the deflationary bubble.

Accordingly, when the fees index is sufficiently high (p̄ > P ), the total revenue shares

become higher (Vt ↑), and the cryptocurrency price is guaranteed to surpass the exogenous

services when the mining pools’ concentration is not extreme (λ < λ1t < λ̄). The effects are

stronger the bigger the bubble: in an extreme case where the bubble approaches its maximum

(β → 1), the positive feedback becomes so strong that it pushes the cryptocurrency price

towards infinity. In contrast, when the fees index is low (p̄ < P ), the total revenue shares

decrease, and the cryptocurrency price never surpasses the exogenous services regardless of

the mining pools’ concentration. The effects are again stronger the bigger the bubble: in

an extreme case where the bubble approaches its maximum (β → 1), the negative feedback

becomes so strong that it pushes the cryptocurrency price towards zero. Figure 6 illustrates

these two cases in an example.

The bubble amplifies the concentration effects on the cryptocurrency return volatility.

Proposition 5 reveals that a bigger bubble implies a more substantial effect of mining pools’

concentration on the total volatility, regardless of the bubble type (31). Though, the effect

of a shock to the mining pools’ sizes shrinks and is eventually turned off entirely when

concentration is minimized. A similar effect occurs with the cryptocurrency price is in an

inflationary bubble, revealing that the bigger the bubble, the more substantial the effects

of mining pools’ concentration on the cryptocurrency price, (32). In a deflationary bubble,

the two effects are competing: on the one hand, a lower concentration (∂λ1t, λ1t < λ1∗)

amplifies the cryptocurrency price, but on the other hand, a bigger bubble (∂β) depresses

the cryptocurrency price.

6 Empirical Evidence from Bitcoin

This section presents novel empirical evidence to support our model’s prediction. To start the

analysis, we illustrate the importance of mining pools’ concentration to the cryptocurrency
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Figure 6. In the left panel, the cryptocurrency total return volatility becomes more sensitive
to shocks to the mining pools’ size distribution when the bubble increases. In the middle
panel, the fees index is sufficiently high (p̄ = 5) and an inflationary bubble emerges when the
mining pools’ size distribution is not extreme (λ < λ1t < λ̄). As the mining pools’ sizes shift
away from the optimum and towards the extreme, the cryptocurrency exits the inflationary
bubble and enters the deflationary bubble; λ and λ̄ identify the switching points. On the
right panel, the fees index is not high enough (p̄ = 5

3
), and a deflationary bubble emerges.

The rest of the parameters are as in Figure 2.

price.

Since our predictions are in cryptocurrency real terms and do not reflect changes to

the exchange rate with other currencies, it is reasonable to analyze the ratio of Bitcoin to

Ethereum price and not Bitcoin in dollar terms (or in other fiat currencies, for that mat-

ter). The ratio of Bitcoin to Ethereum price is a much better proxy for the real value of

Bitcoin in cryptocurrency consumption good units. Furthermore, during the sample period,

Ethereum follows a proof-of-work mechanism unrelated to Bitcoin (the Ethereum set of min-

ing pools and Bitcoin set of mining pools do not overlap). However, the blockchain features

of Ethereum and Bitcoin are similar, implying that the ratio controls for features common to

proof-of-work mechanisms across different cryptocurrencies. This leads us to conclude that

the ratio of Bitcoin to Ethereum focuses on the implications of the concentration of mining

pools in Bitcoin.

Figure 7 plots the Bitcoin/Ethereum price ratio against the Herfindahl-Hirschman index

(HHI) of Bitcoin mining pools. The red line is the fitted linear regression line. The figure

clearly shows that the Bitcoin price drops relative to the Ethereum price when Bitcoin mining

pools’ concentration increases, in line with our model’s predictions.

To understand the economic magnitude of the effect, Table 1 shows that when the HHI

index increases by 227.8 points (one standard deviation), the Bitcoin price falls relative to

the Ethereum price by -0.63 standard deviations. Further, to illustrate the positive rela-

tionship between mining pools’ concentration and the cryptocurrency volatility, we estimate

the monthly Bitcoin return standard deviations using daily returns and the monthly HHI
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Figure 7. Scatterplot of the BTC/ETH dollar prices (y-axis) on the Herfindahl-Hirschman
index measure of Bitcoin mining pools (x-axis) with the fitted regression line. One standard
deviation increase in concentration decreases the Bitcoin price by 0.624 standard deviations
relative to the Ethereum price.

as the average of the daily HHIs. By doing so, we find a monthly correlation coefficient

of 0.54, which suggests that Bitcoin return standard deviation and Bitcoin mining pools’

concentration are highly correlated.

We downloaded the Bitcoin and Ethereum price data from Yahoo Finance and we

scrapped the website https://bitcoinchain.com/pools for the daily mining pool data. Our

sample period runs from 01/01/2018 until 01/28/2020 and includes US trading days only.

Finally, we calculated the Herfindahl-Hirschman index measure using the number of blocks

each mining pool has written, where we assume that unknown mining pools are small and

each one can mine either one or zero blocks per day.
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Table 1. Bitcoin/Ethereum Price On The Bitcoin’s Mining Pools’ HHI

BTC/ETH HHI

Mean 1.84 933

Standard deviation 0.84 228

Corr(BTC/ETH,HHI) -0.63

Daily observations 521 521 521

Corr(σ(BTC),HHI) 0.54

Monthly observations 25

Dependent Variable BTC/ETH

constant 4.77(***)

(0.33)

HHI −0.63(***)

(0.06)

R2 0.40

Notes: To derive Corr(σ(BTC),HHI), we compute σ(BTC), the monthly BTC return standard deviation,

from the daily Bitcoin returns, and define the monthly HHI as the average of the daily HHI’s. The bot-

tom table presents the OLS regression of Bitcoin dollar price relative to the Ethereum dollar price on the

Herfindahl-Hirschman index. Variables are Standardized. Newey-West standard errors in parenthesis. (***)

corresponds to 1%.

So far, we have separately shown that the cryptocurrency price decreases with HHI,

while the cryptocurrency volatility increases with HHI. We continue with a joint estimation

of the conditional Bitcoin expected return and the volatility using the GARCH(1,1) model

of Bollerslev (1986). We include the Ethereum standardized return and the HHI index as

external regressors to the mean equation and the HHI index as an external regressor to the

volatility equation. Figure 8 shows the standardized Bitcoin return volatility estimate.

Table 2 presents the parameter estimates for three specifications that vary the mean

equation. One thing unequivocally clear from all those specifications is that the HHI jointly

decreases the Bitcoin return and increases the Bitcoin volatility. To understand the eco-

nomic magnitude of the combined effect, the first column of Table 2 implies that when the

HHI index increases by 228 points (one standard deviation), the conditional Bitcoin daily

expected return falls by roughly 1.9%, while the conditional daily return standard deviation

increases by roughly 7.24.
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Table 2. Estimates of a GARCH(1,1) Model

Dependent Variable r(BTC)t r(BTC)t r(BTC)t

Mean equation

constant 0.0891(***) 0.0164(***) 0.0581(***)

(0.0202) (0.0033) (0.0051)

r(ETH)t 0.7748(***) 0.7933(***) 0.7811(***)

(0.1700) (0.0366) (0.0287)

HHIt −8.2× 10−5(***) — −4.3× 10−5(***)

(1.7× 10−5) — (4× 10−6)

ar1 — — 0.8562(***)

— — (0.0123)

ma1 — — -0.8093(***)

— — (0.0088)

Variance equation

constant 2.9× 10−5 2× 10−6 2.64× 10−4(***)

(0.0114) (11.9× 10−5) (0.85× 10−4)

HHIt 2.3× 10−5(**) 2.8× 10−5(***) 2.5× 10−5(**)

(1.2× 10−5) (9× 10−6) (1.0× 10−5)

α1 0.436(***) 0.4349(***) 0.4313(***)

(0.1415) (0.0633) (0.0441)

β1 0.5822(***) 0.5625(***) 0.5824(***)

(0.0973) (0.0307) (0.0387)

Q(5) Std.Residuals (p.value) 0.07520 0.06420 0.1405

Q(5) Std.Squared.Residuals (p.value) 0.6568 0.6054 0.6309

Notes: Returns are standartized. Q stands for the Weighted Ljung-Box Test. Robust standard errors

in parenthesis. (***),(**) corresponds to 1%, and 5%, respectively. We assume a skew-generalized error

distribution for the innovations’ conditional density.
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Figure 8. Standardized Bitcoin return volatility estimate using a GARCH(1,1) model.

7 Extension

So far, the main analysis focuses on the cryptocurrency pricing implications of concentra-

tion in the intensive margin when there are two mining pools and without entry. While the

resulting equilibrium mechanism is transparent, the economic setup is unsuitable for inves-

tigating the pricing implications in the extensive margin when the number of mining pools

changes. This section extends the model to three mining pools and investigates the pricing

implications of concentration in the extensive margin when the third mining pool enters the

economy.

The section reveals that the effects of mining pools’ concentration laid out in the primary

analysis carry over to a setup with multiple mining pools and apply to the extensive margin.

Similar to the main body, shocks to mining pools’ sizes propagate to the cryptocurrency

price through the total revenue shares, and these shocks have the opposite effect on the

concentration. As a result, when a third mining pool emerges and takes market power from

both incumbent mining pools, total revenue shares increase, and concentration decreases,

implying that cryptocurrency price increases and volatility drops. Concentration effects are

amplified when there is a bigger bubble, much as the primary analysis predicts.

We assume that the incumbent mining pools know that a third mining pool exists, but

its size is negligible. Thus, we model entry as the size of the third mining pool increases away

from zero (λ3t ↑). Accordingly, the two mining pools’ economy extends straightforwardly to

a three mining pools’ economy, and the economics and intuitions carries over from the main

analysis.

There is one Lucas tree that produces perishable services. But instead of two mining

pools, there are three mining pools that compete to own a share of services at the expense
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of the other mining pools. With three mining pools, there are two exogenous time-varying

dynamic processes that determine the proportion of the service tree that Pool-1 and Pool-2

own at every moment in time, and Pool-3 owns the residual share. Similar to the main

analysis, we assume that Pool-1’s and Pool-2’s size processes follow

dλ1t = λ1t

{
µλ1tdt+ λ2tσ̄1dZ̄1t + λ3tσ̄2dZ̄2t

}
, λ10 ∈ (0, 1), (33)

dλ2t = λ2t

{
µλ2tdt− (λ1t + λ3t) σ̄1dZ̄1t + λ3tσ̄2dZ̄2t

}
, λ20 ∈ (0, 1), (34)

and λ3t ≡ 1 − λ1t − λ2t, where σ̄1 and σ̄2 are strictly positive constants and the Brownian

motions Z̄1 and Z̄2 are correlated with correlation equaling ρ > 0, explicitly given in (36).12

This characterization ensures that mining pool sizes are strictly between zero and one and

their sum equals one all the time:

λit ∈ (0, 1), Σiλit = 1, i = 1, 2, 3, t ∈ [0, T ], (37)

We assume that mining pools’ services are indistinguishable and are no demand biases,

implying that single miners derive utility from consuming services of the three mining pools,

E

[∫ T

0

e−ρt
[
log
(
c1at
)
+ log

(
c2at
)
+ log

(
c2at
)]

dt

]
. (38)

The mining pools’ objectives are similar to the main analysis, given in (7). Our con-

centration measure (21) coincides with the well-known Herfindahl-Hirschman index, which

straightforwardly extends to an economy with three mining pools

Ht = λ2
1t + λ2

2t + λ2
3t. (39)

12We obtain λit dynamics by assuming that each mining pool’s size process follows a geometric Brownian
motion

dFi

Fi
= µidt+ σidZi, (35)

where i = 1, 2, 3, and Zi are standard independent Brownian motions uncorrelated with Z. Then, we define
the size of Pool-1 and Pool-2 as λ1 ≡ F1

F1+F2+F3
, and λ2 ≡ F2

F1+F2+F3
, respectively. By applying Itô’s Lemma

to this definition, we obtain (33) and (34). For further simplification, we introduce the standard Brownian
motions Z̄1 ≡ σ1Z1

σ̄1
− σ2Z2

σ̄1
and Z̄2 ≡ σ1Z1

σ̄2
− σ3Z3

σ̄2
, where σ̄1 ≡

√
σ2
1 + σ2

2 and σ̄2 ≡
√

σ2
1 + σ2

3 . Notice that

Z̄1 and Z̄2 are correlated with

ρ =
σ2
1

σ̄1σ̄2
. (36)
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The remaining economic ingredients are identical to the main economic setup in Section

3. Proposition 8 in the internet Appendix B reports the equilibrium quantities with three

mining pools, verifies that our equilibrium with two mining pools straightforwardly extends

to three mining pools, and the equilibrium mechanism and intuitions are generalized.

It is worth emphasizing that single miners’ demand biases would bias toward the in-

cumbents and against the entrant, reducing the entrant’s effect on equilibrium quantities.

Therefore, it is reasonable to assume that demand biases are time varying and shrink as the

third mining pool size increases. We leave this extension to future work.

Lastly, the following proposition summarizes the equilibrium effects of the entrant mining

pool on the incumbent mining pools. These effects are predicted by the equilibrium effects

of concentration in line with the main analysis.

Proposition 6 (Extensive Margin). As a third mining pool emerges and takes market

power from incumbents (λ1t, λ2t >
1
3
, λ3t <

1
3
), concentration decreases and

(i) The fees of incumbents increase

∂p1t
∂λ3t

> 0,
∂p2t
∂λ3t

> 0. (40)

(ii) Total revenue shares increase, resulting in a higher cryptocurrency price and a lower

discount factor even without a bubble.

(iii) The absolute-term magnitude of the cryptocurrency shock sensitivities to mining pools’

sizes shocks increase even without a bubble:

∂ | σ̄S
1t |

∂λ3t

< 0,
∂ | σ̄S

2t |
∂λ3t

< 0.

(iv) A bigger bubble implies that the effect of concentration on the return volatility is more

substantial

∂

∂β

∂

√
(σ̄S

1t)
2
+ (σ̄S

2t)
2
+ (σS

t )
2

∂λ3t

 < 0. (41)

(v) A bigger bubble implies that the effect of concentration on the cryptocurrency price

increases, if the cryptocurrency price is in an inflationary bubble,

∂

∂β

(
∂St

∂λ3t

)
> 0. (42)
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8 Conclusion

This paper studies the implications of mining pools’ concentration on the price and return

volatility of cryptocurrencies. We present all the equilibrium quantities in precise closed-

form expressions and find that as mining pools’ concentration increases, the cryptocurrency

price falls, and its return volatility spikes. We further show that the cryptocurrency pricing

implications are similar both on the extensive and intensive margin: the entry and exit

of mining pools do not affect prices insofar as through their effect on concentration. Our

empirical analysis of Bitcoin verifies the model’s predictions.

Our theory builds on the international finance asset pricing literature by modeling mining

pools as countries with different goods in which their relative sizes are time-varying and

determine concentration. Perhaps more importantly, we utilize country-specific goods to

force the mining pools to clear their cryptocurrency services competitively and independently

from the other mining pools. It is an intuitive and novel technique to introduce competition

to a traditional asset pricing economy.

Accordingly, the mining pools post fees for trading cryptocurrency services with other

market participants. The equilibrium shows that the mining pools’ fees are inversely related

to their size, corroborating empirical findings. Since each mining pool posts fees to clear

services separately from the other mining pools, the cryptocurrency fundamental price (the

sum of all the discounted future services) can be represented by the mining pools’ revenues:

mining pools’ fees times their services.

Our framework allows the cryptocurrency price to differ from its fundamental value and

form a bubble. When the bubble is inflationary, only a fraction of the cryptocurrency value

is determined by the sum of all the discounted future services it will provide. Our model

predicts that the bubble amplifies the effect of mining pools’ concentration on the cryp-

tocurrency price and its return volatility, though it has no material effect on the equilibrium

mechanism of mining pools’ concentration.

Although we cast the model with the proof-of-work terminology (mining pools and single

miners), our model’s predictions apply to other blockchain protocols, such as proof-of-stake,

as long as the concentration of transaction validators exogenously varies over time.

One novel and potentially testable implication of our model that has yet to be tested

is that the cryptocurrency’s fundamental value and return volatility are determined by the

sum of all the future total revenues of the mining pools.

The paper highlights the importance of mining pools’ concentration on cryptocurrencies’

asset pricing underpinnings. Nevertheless, since mining pool data is hard to come by, mining

pools’ concentration is explored by relatively few papers empirically. It would be interesting
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to extend our analysis beyond permissionless blockchains, such as Bitcoin, and investigate

mining pools’ concentration on permissioned blockchains. In those blockchains, mining pools

can coordinate to control concentration and, by doing that, regulate the cryptocurrency price

and return volatility advantageously.

A Proofs

In this section we show how to derive the equilibrium quantities. We conjecture and later

verify that the security market is dynamically complete. As such, there exist a unique state

price density process, ξ, and the no arbitrage condition always holds.

Proof of Lemma 1 (Implicit Discount Factor) . Following the martingale method,

we restate the dynamic budget constraints (12) and (13) as

ξtWit = Et

[∫ T

t

ξvpivc
i
ivdv

]
, i = 1, 2, (A.1)

ξtWat = Et

[∫ T

t

ξv
(
p1vc

1
av + p2vc

2
av

)
dv

]
. (A.2)

The mining pool i chooses ciit to maximize its utility subject to the budget constraint (A.1)
evaluated at time t = 0, while the single miners choose c1at, c

2
at to maximize (8) subject to

the budget constraint (A.2) evaluated at time t = 0. We obtain the following first order
conditions for the consumption choices of the mining pools and the single miners

e−ρt

c11t
=

1

y1
ξtp1t, (A.3)

e−ρt

c22t
=

1

y2
ξtp2t, (A.4)

e−ρtγ1
c1at

=
1

ya
ξtp1t, (A.5)

e−ρt

c2at
=

1

ya
ξtp2t, (A.6)

where yi denotes the Lagrange multiplier for mining pool i, and ya denotes the Lagrange

multiplier for the single miners. By utilizing the market clearing conditions in consumption

goods,

c11t + c1at = λ1tYt, (A.7)

c22t + c2at = λ2tYt, (A.8)
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we find that the pool-specific state price densities are

ξtp1t = (λ1tYt)
−1 e−ρt (y1 + γ1ya) , (A.9)

ξtp2t = (λ2tYt)
−1 e−ρt (y2 + ya) . (A.10)

By using the numeraire (9), we find the following expression for the state price density

ξt = e−ρt1

p̄

1

Yt

(
y1 + γ1ya

λ1t

+
y2 + ya
λ2t

)
. (A.11)

We find the following Lagrange multipliers by plugging the optimal consumptions (A.3),

(A.4), (A.5), (A.6) into the appropriate budget constraint (A.1), (A.2), and using the initial

endowments:

y1
1− e−ρT

ρ
= ξ0W10 = ξ0λ̂λ10S0, (A.12)

y2
1− e−ρT

ρ
= ξ0W20 = ξ0λ̂λ20S0, (A.13)

(γ1 + 1) ya
1− e−ρT

ρ
= ξ0Wa0 = ξ0

(
1− λ̂

)
S0. (A.14)

We substitute the Lagrange multipliers into the state price density (A.11), utilize the ex-
pression for Yt (1), and obtain the following desired result:

ξt = e−ρt 1

Yt

1

p̄

(
y1 + γ1ya

λ1t
+

y2 + ya
λ2t

)
=

1

p̄
ξ0S0

(
ρe−ρt

1− e−ρT

)
1

Yt

(
1

λ1t

{
λ̂λ10 +

γ1
γ1 + 1

(
1− λ̂

)}
+

1

λ2t

{
λ̂λ20 +

1

γ1 + 1

(
1− λ̂

)})
(A.15)

=
ξ0S0

p̄

(
ρe−ρt

1− e−ρT

)
1

Yt

(
λ10

λ1t
+

λ20

λ2t

)
= ξ0S0

(
ρe−ρt

1− e−ρT

)
1

Yt

(
γ1

1 + γ1

1

p̄λ1t
+

1

1 + γ1

1

p̄λ2t

)
(A.16)

= ξ0S0

(
ρe−ρt

1− e−ρT

)
1

Dt

(
St

Dt

)−β (
γ1

1 + γ1

1

p̄λ1t
+

1

1 + γ1

1

p̄λ2t

)
. (A.17)

Proof of Proposition 1 (Fees). We now determine the fees charged by the mining pools.

Substituting the Lagrange multipliers (A.12), (A.13) and (A.14) into the mining pool specific
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state price densities (A.9) and (A.10) we obtain

ξtp1t = (λ1tYt)
−1 ρ

(
e−ρt

1− e−ρT

)
ξ0S0

{
λ̂λ10 +

γ1
γ1 + 1

(
1− λ̂

)}
, (A.18)

ξtp2t = (λ2tYt)
−1 ρ

(
e−ρt

1− e−ρT

)
ξ0S0

{
λ̂λ20 +

1

γ1 + 1

(
1− λ̂

)}
. (A.19)

To isolate the fees, we plug the expression for ξ (A.17) into the equations above, and find

p1t
p̄

=

γ1
λ1t

γ1
λ1t

+ 1
λ2t

=

γ1
1+γ1

1
λ1t

γ1
1+γ1

1
λ1t

+ 1
1+γ1

1
λ2t

, (A.20)

p2t
p̄

=
1
λ2t

γ1
λ1t

+ 1
λ2t

=

1
1+γ1

1
λ2t

γ1
1+γ1

1
λ1t

+ 1
1+γ1

1
λ2t

. (A.21)

By differentiating the fees, it is straightforward to show that ∂p1t
∂λ1t

< 0, ∂p2t
∂λ1t

> 0, ∂p1t
∂γ1

> 0,

and ∂p2t
∂γ1

< 0.

Proof of Proposition 2 (Revenue Share). Plugging the equilibrium fees into the rev-

enue share definitions (17) we obtain our desired result,

V1t = p̄

γ1
1+γ1

γ1
1+γ1

1
λ1t

+ 1
1+γ1

1
λ2t

, V2t = p̄

1
1+γ1

γ1
1+γ1

1
λ1t

+ 1
1+γ1

1
λ2t

, Vt = p̄
1

γ1
1+γ1

1
λ1t

+ 1
1+γ1

1
λ2t

. (A.22)

In order to determine the maximal revenue shares and the total revenue shares, we set

∂

∂λ1t

(
1

γ1
1+γ1

1
λ1t

+ 1
1+γ1

1
λ2t

)
= 0,

and obtain our desired result,

λ1∗ =

√
γ1

1 +
√
γ1

, λ2∗ =
1

1 +
√
γ1

. (A.23)

The point λ1∗ is the global maximum because the revenue shares and the total revenue shares

are strictly concave and continuous functions of λ1t for 0 < λ1t < 1.

Proof of Proposition 3 (Cryptocurrency Price and Discount Factor). We find the

cryptocurrency price St from the no arbitrage relation, which identifies the cryptocurrency
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price as the discounted services produced by the two mining pools,

St =
1

ξt
Et

[∫ T

t

ξs {p1sλ1sYs + p2sλ2sYs} ds
]
=

1

ξt
e−ρt1− e−ρ(T−t)

1− e−ρT
ξ0S0, (A.24)

where the equality follows from plugging the individual state price densities (A.18) and
(A.19), and noting that λ10+λ20 = 1. Substituting the state price density ξt (A.15) into the
above characterization we obtain the following expression for the cryptocurrency price

St = Yt

[
1− e−ρ(T−t)

ρ

] 1

1
p̄λ1t

{
λ̂λ10 +

γ1

γ1+1

(
1− λ̂

)}
+ 1

p̄λ2t

{
λ̂λ20 +

1
γ1+1

(
1− λ̂

)}


= Yt

[
1− e−ρ(T−t)

ρ

] [
1

λ10

p̄λ1t
+ λ20

p̄λ2t

]
= Yt

[
1− e−ρ(T−t)

ρ

] [
γ1 + 1

γ1

p̄λ1t
+ 1

p̄λ2t

]
. (A.25)

The above expression can be further simplified by substituting the expressions for the fees

charged by mining pools (14). By doing so, we obtain

St = Yt

[
1− e−ρ(T−t)

ρ

]
[λ1tp1t + λ2tp2t] . (A.26)

The above expression for the cryptocurrency price depends on Yt, which then depends on the

endogenous cryptocurrency price. We substitute the expression for Yt (26) and the definition

of Vt ≡ λ1tp1t + λ2tp2t to obtain the desired expression for the cryptocurrency price,

St = Dt

(
1− e−ρ(T−t)

ρ

) 1
1−β

(Vt)
1

1−β . (A.27)

By plugging the total revenue shares (18), the closed-form expression of the cryptocurrency

price becomes

St = Dt

[
1− e−ρ(T−t)

ρ

] 1
1−β

[
γ1 + 1

γ1
p̄λ1t

+ 1
p̄λ2t

] 1
1−β

. (A.28)

By plugging the cryptocurrency price into the implicit discount factor (25), we find that the

discount factor is given by

ξ0,t = ξ̄e−ρt

(
1− e−ρ(T−t)

ρ

) −β
1−β 1

Dt

(
1

Vt

) 1
1−β

, (A.29)

where ξ̄ ≡ S0

(
ρ

1−e−ρT

)
. The cryptocurrency price S0 is obtained from the expression for St

(27) evaluated at t = 0. Lastly, observe that dSt/dVt > 0 (A.27) and dξt/dVt < 0 (A.29), for

38



any β ∈ [0, 1). We further note that

∂Ht

∂λ1t
= (1 +

√
γ1)

(
2λ1t√
γ1

− 2 (1− λ1t)

)
< 0 ⇐⇒ ∂Vt

∂λ1t
= − p̄ (1 + γ1)(

γ1

λ1t
+ 1

1−λ1t

)2
(
− γ1
λ2
1t

+
1

(1− λ1t)
2

)
> 0,

which leads to

dξt
dλ1t

=
dξt
dVt

dVt

dλ1t

> 0 ⇐⇒ dHt

dλ1t

> 0, (A.30)

dSt

dλ1t

=
dSt

dVt

dVt

dλ1t

< 0 ⇐⇒ dHt

dλ1t

> 0, (A.31)

for any β ∈ [0, 1).

Proof of Proposition 4 (Volatility). By applying Itô’s Lemma to both sides of the
cryptocurrency price (27) and comparing the volatility terms we find that

σS
t = σD, (A.32)

σ̄S
t =

1

1− β

(
γ1

1+γ1

1
λ1t

γ1

1+γ1

1
λ1t

+ 1
1+γ1

1
λ2t

λ2t +

1
1+γ1

1
λ2t

γ1

1+γ1

1
λ1t

+ 1
1+γ1

1
λ2t

λ1t

)
=

1

1− β

(
p1t
p̄
λ2t −

p2t
p̄
λ1t

)
σ̄, (A.33)

where the last equality follows from plugging the fees’ representation (14). We note that

σ̄S
t = 0 if and only if

(
p1t
p̄
λ2t − p2t

p̄
λ1t

)
= 0, which translates to

γ1
λ2
1t

− 1

λ2
2t

= 0,

after plugging the fees’ representation (14). Solving for λt that satisfies the σ̄S
t = 0 require-

ment we obtain

λ1t =

√
γ1

1 +
√
γ1

, (A.34)

which is the point at which the mining pools’ concentration is minimized. We further observe

that

∂σ̄S
t

∂λ1t

=
1

1− β

σ̄

p̄

(
∂p1t
∂λ1t

λ2t − p1t − p2t −
∂p2t
∂λ1t

λ1t

)
, (A.35)

which implies that
∂σ̄S

t

∂λ1t
< 0 since the signs of all the elements in the brackets are negative,
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as (15) reveals. The shock sensitivity magnitude can be expressed as

| σ̄S
t | =


σ̄S
t for λ1t < λ1∗,

0 for λ1t = λ1∗,

−σ̄S
t for λ1t > λ1∗.

By taking the derivative of the shock sensitivity magnitude and given the sign of
∂σ̄S

t

∂λ1t
, we

obtain our desired result,

∂ | σ̄S
t |

∂λ1t

=


∂σ̄S

t

∂λ1t
< 0 for λ1t < λ1∗,

− ∂σ̄S
t

∂λ1t
> 0 for λ1t > λ1∗.

Lastly,

∂σ̄S
t

∂β
=

1

1− β
σ̄S
t > 0, (A.36)

which implies

∂ |σ̄S
t |

∂β
=


∂σ̄S

t

∂β
> 0 for λ1t < λ1∗,

−∂σ̄S
t

∂β
< 0 for λ1t > λ1∗.

. (A.37)

Proof of Proposition 5 (Bubble). We denote by St (β = 0) and St (β > 0) the cryp-

tocurrency prices when β = 0 and β > 0, respectively. Following the cryptocurrency price

representation (27), a necessary and sufficient condition for the existence of an inflationary

bubble is

St (β > 0) > St (β = 0) ⇐⇒ 1− e−ρ(T−t)

ρ
Vt > 1. (A.38)

We look for the fees index p̄ that satisfies (A.38) when the revenue share is maximized

(λ1t = λ1∗). That is,

p̄ >

(
1 +

√
γ1
)2

(1 + γ1)

ρ

1− e−ρ(T−t)
≡ Pt. (A.39)

This condition guarantees that there exists some value of λ1t for which there is an inflationary
bubble (A.38). If the inflationary bubble exists at the maximum (λ1t = λ1∗) it must also
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exist in the neighbourhood of (λ1∗) since the total revenue shares are strictly concave in λ1t.
We define λt and λ̄t as the lower and upper bounds of this neighbourhood; we find λt and
λ̄t by looking for λt that solves (A.38) with equality:

λt =

[
γ1−1
γ1+1 + Ftp̄

]
−
√[

γ1−1
γ1+1 + Ftp̄

]2
− 4Ftp̄

γ1

γ1+1

2Ftp̄
, (A.40)

λ̄t =

[
γ1−1
γ1+1 + Ftp̄

]
+

√[
γ1−1
γ1+1 + Ftp̄

]2
− 4Ftp̄

γ1

γ1+1

2Ftp̄
, (A.41)

Ft =
1− e−ρ(T−t)

ρ
. (A.42)

We now turn to prove the four bullet points. To prove (i), we take the cross derivative
of the total volatility and find that

∂

∂β

∂

√(
σ̄S
t

)2
+
(
σS
t

)2
∂λ1t

 =
1

1− β

(
∂σ̄S

t

∂λ1t

)
σ̄S
t√(

σ̄S
t

)2
+
(
σS
t

)2
[
2−

(
σ̄S
t

)2(
σ̄S
t

)2
+
(
σS
t

)2
]
< 0 ⇐⇒ λ1t < λ1∗,

since
∂σ̄S

t

∂λ1t
< 0 all the time, and σ̄S

t > 0 if and only if λ1t > λ1∗. To prove (ii), we take the

cross derivative of the cryptocurrency price and find that

∂

∂β

(
∂St

∂λ1t

)
=

1

(1− β)2
∂Vt

∂λ1t

[
log

(
1− e−ρ(T−t)

ρ
Vt

)
+ 1− β

]
.

The square brackets are positive if the cryptocurrency is in an inflationary bubble since(
1−e−ρ(T−t)

ρ
Vt

)
> 1, and ∂Vt

∂λ1t
> 0 if and only if λ1t < λ1∗, as the proof of Proposition (2)

reveals. To prove part (iii), we differentiate the total volatility with respect to the bubble

parameter and find that

∂

√
(σ̄S

t )
2
+ (σS

t )
2

∂β
=

(
σ̄S
t

)2√
(σ̄S

t )
2
+ (σS

t )
2

1

1− β
> 0,

where σ̄S
t is given in (29). Lastly, to prove (iv) we take the derivative of St with respect to

the bubble parameter and find that

∂St

∂β
=Dt

(
1− e−ρ(T−t)

ρ
Vt

) 1
1−β
(

1

1− β

)2

log

(
1− e−ρ(T−t)

ρ
Vt

)
,

which implies that ∂St

∂β
> 0 if and only if the cryptocurrency is in an inflationary bubble, as

(A.38) reveals.
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Proposition 7 (Portfolios). Markets are dynamically complete; the mining pools and single

miners hold their entire wealth in the cryptocurrency.

Proof of Proposition 7 (Portfolios). We start by characterizing the dynamics of the

bonds. Each bond is riskless in terms of its mining pool’s numeraire:

dBi
it = riitB

i
itdt, i = 1, 2. (A.43)

Converting these bonds to the numeraire we obtain

B1t = p1tB
1
1t, B2t = p2tB

2
2t. (A.44)

By applying Itô’s Lemma to both sides of the above equations, we find that

σB1
t = 0, σ̄B1

t = −σ̄
λ1t

λ1t + γ1λ2t

, (A.45)

σB2
t = 0, σ̄B2

t = σ̄
γ1λ2t

λ1t + γ1λ2t

. (A.46)

Notice that σ̄B1
t ̸= 0 and σ̄B2

t ̸= 0 probability almost surely since λ1t ∈ (0, 1). We define the

global bond security BW , which is locally riskless in the numeraire. This additional security

is not required but it simplifies the analysis. It is simply defined as the sum of the two bonds.

To dynamically complete the financial markets and to replicate any financial claim, we

require three independent investment opportunities: the cryptocurrency, Pool-1’s bond, and

the global bond. We denote the vector of portfolio weights of agent i in the cryptocurrency

and mining pool one bond by πi, and the volatility matrix of these two securities by Σ, such

that

πi ≡

[
πS
i

πB1
i

]
, Σ ≡

[
σS
t σ̄S

t

0 σ̄B1
t

]
, (A.47)

where i = 1, 2, a. Solving for the optimal wealth (A.2) (A.1), we find that Wit ∝ 1
ξt
, and by

applying Itô’s Lemma to both sides of this equation we obtain

Σ′πi = θt, (A.48)

where θt is the vector of market prices of risk. It is given by

θt =

[
σS
t

σ̄S
t

]
, (A.49)
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which is obtained from applying Itô’s Lemma to both sides of (A.29). Since σS
t ̸= 0, as

Proposition 4 reveals, we invert Σ′ and obtain that πS
i = 1 and πB1

i = 0 for i = 1, 2, a.
Following Pavlova and Rigobon (2007), we obtain these interest rates, riit, by applying

Itô’s Lemma to the mining pool specific state price density, ξtpit, given in (A.9) and (A.10),
which leads to

r11t = ρ+ βµS
t + (1− β)µD

t +
1

2
β(β − 1)

1

S2
t

[(
σS
t

)2
+
(
σ̄S
t

)2]− 1

2
β(1− β)

1

D2
t

(
σD
t

)2
+ β(1− β)σD

t σS
t

+ λ2t

{(
µ1 − λ1t (σ1)

2
)
−
(
µ2 − λ2t (σ2)

2
)}

−
(
σD
t

)2 − [ 1

1− β
λ1tλ2tσ̄

1
γ1

λ1t
+ 1

λ2t

(
+

γ1
λ2
1t

− 1

λ2
2t

)]2

− λ2
2tσ̄

2 − λ2tσ̄

[
β

1− β
λ1tλ2tσ̄

1
γ1

λ1t
+ 1

λ2t

(
+

γ1
λ2
1t

− 1

λ2
2t

)]

and

r12t = ρ+ βµS
t + (1− β)µD

t +
1

2
β(β − 1)

1

S2
t

[(
σS
t

)2
+
(
σ̄S
t

)2]− 1

2
β(1− β)

1

D2
t

(
σD
t

)2
+ β(1− β)σD

t σS
t

− λ1t

{(
µ1 − λ1t (σ1)

2
)
−
(
µ2 − λ2t (σ2)

2
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−
(
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)2 − [ 1

1− β
λ1tλ2tσ̄

1
γ1

λ1t
+ 1
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(
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− 1
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2 − λ1tσ̄

[
β

1− β
λ1tλ2tσ̄

1
γ1

λ1t
+ 1

λ2t

(
+

γ1
λ2
1t

− 1

λ2
2t

)]
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B Internet Appendix – Three Mining Pools

Proposition 8 (Asset Prices with Three Mining Pools). The mining pools post fees

given by

pit = p̄
1
λit

1
λ1t

+ 1
λ2t

+ 1
λ3t

, i = 1, 2, 3, (B.1)

to trade their services. Mining pools’ revenue shares and the total revenue shares are given

by

Vit = pitλit = p̄
1

1
λ1t

+ 1
λ2t

+ 1
λ3t

, Vt = p̄
3

1
λ1t

+ 1
λ2t

+ 1
λ3t

. (B.2)

When the total revenue shares attains its maximum, the concentration attains its minimum,

and their partial derivatives are negatively related for any feasible λ1t and λ2t,

∂Ht

∂λit

< 0 ⇐⇒ ∂Vt

∂λit

> 0, i = 1, 2. (B.3)

The equilibrium cryptocurrency price and discount factor are given by

St =

(
1− e−ρ(T−t)

ρ

) 1
1−β

Dt (Vt)
1

1−β , ξ0,t = ξ̄e−ρt

(
1− e−ρ(T−t)

ρ

)− β
1−β 1

Dt

(
1

Vt

) 1
1−β

, (B.4)

where Vt is given in (B.2), and ξ̄ ≡ S0

(
ρ

1−e−ρT

)
. The discount factor increases with con-

centration, and the cryptocurrency price decreases with concentration, even without bubble
(β = 0). The cryptocurrency shock sensitivities are given by

σ̄S
1t =

1

1− β

(
p1t + p3t

p̄
λ2t −

p2t
p̄

(λ1t + λ3t)

)
σ̄1, σ̄S

2t =
1

1− β

(
p1t + p2t

p̄
λ3t −

p3t
p̄

(λ1t + λ2t)

)
σ̄2,

(B.5)

σS
t = σD. (B.6)

The cryptocurrency price is in an inflationary bubble if and only if the fees index is suffi-

ciently elevated (p̄ > P2t), and mining pools’ concentration is not extreme (B.51), where P2t

is a deterministic function of time, defined in (B.50). An increased bubble implies

(i) A higher return volatility,
∂
√
(σ̄S

1t)
2
+(σ̄S

2t)
2
+(σS

t )
2

∂β
> 0.

(ii) A higher cryptocurrency price, ∂St

∂β
> 0, if and only if the cryptocurrency is in an

inflationary bubble.

Proof of Proposition 8 (Asset Prices with Three Mining Pools). In this section we
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derive the equilibrium quantities for three mining pools. We conjecture and later verify that the security

market is dynamically complete, and therefore, there exist a unique state price density process, ξ, and the

no arbitrage condition always holds. The dynamic budget constraints are given by

dWit =Witπ
S
it

dSt + p1tλ1tYtdt+ p2tλ2tYtdt+ p3tλ3tYtdt

St
+Witπ

B1
it

dB1t

B1t
+Witπ

B2
it

dB2t

B2t
+Witπ

B3
it

dB3t

B3t

−pitc
i
itdt, (B.7)

for Pool-i = 1, 2, 3, and

dWat =Watπ
S
at

dSt + p1tλ1tYtdt+ p2tλ2tYtdt+ p3tλ3tYtdt

St
+Watπ

B1
at

dB1t

B1t
+Watπ

B2
at

dB2t

B2t
+Watπ

B3
at

dB3t

B3t

−p1tc
1
atdt− p2tc

2
atdt− p3tc

3
atdt, (B.8)

for the single miners. The quantity πj
it is endogenous and represents a fraction of Wit

invested at time t in security j, and i = 1, 2, 3, a. Following the martingale method, we

restate these dynamic budget constraints as

ξtWit = Et

[∫ T

t

ξvpivc
i
ivdv

]
, i = 1, 2, 3, (B.9)

ξtWat = Et

[∫ T

t

ξv
(
p1vc

1
av + p2vc

2
av + p3vc

3
av

)
dv

]
. (B.10)

The mining pool i chooses ciit to maximize its utility subject to the budget constraint (B.9)

evaluated at time t = 0, while the single miners choose c1at, c
2
at, c

3
at to maximize (38) subject

to the budget constraint (B.10) evaluated at time t = 0. We obtain the following first order

conditions for the consumption choices of the mining pools and the single miners
e−ρt

c11t
=

1

y1
ξtp1t, (B.11)

e−ρt

c22t
=

1

y2
ξtp2t, (B.12)

e−ρt

c33t
=

1

y3
ξtp3t, (B.13)

e−ρt

c1at
=

1

ya
ξtp1t, (B.14)

e−ρt

c2at
=

1

ya
ξtp2t, (B.15)

e−ρt

c3at
=

1

ya
ξtp3t, (B.16)

where yi denotes the Lagrange multiplier for mining pool i, and ya denotes the Lagrange

multiplier for the single miners. By utilizing the market clearing conditions in consumption

2



goods,

c11t + c1at = λ1tYt, (B.17)

c22t + c2at = λ2tYt, (B.18)

c33t + c3at = λ3tYt, (B.19)

we find that the pool-specific state price densities are

ξtp1t = (λ1tYt)
−1 e−ρt (y1 + ya) , (B.20)

ξtp2t = (λ2tYt)
−1 e−ρt (y2 + ya) , (B.21)

ξtp3t = (λ3tYt)
−1 e−ρt (y3 + ya) . (B.22)

By using the numeraire

p1t + p2t + p3t = p̄, (B.23)

we find the following expression for the state price density

ξt = e−ρt1

p̄

1

Yt

(
y1 + ya
λ1t

+
y2 + ya
λ2t

+
y3 + ya
λ3t

)
. (B.24)

Similar to the main analysis, the single miners and the mining pools are price takers, and

without loss of generality, we set the initial supply share to equal the initial wealth share so

that

λ10 =
1

3
, λ20 =

1

3
, λ30 =

1

3
. (B.25)

Further, we let Wa0 and Wi0, i = 1, 2, 3, be the single miners and the mining pools’ value

of the initial endowments, respectively. We assume that the single miners are endowed with

1 − λ̂ shares of services at time 0; of those 1 − λ̂ shares, a λ10 fraction is of Pool-1 good,

and a λ20 fraction is of Pool-2 good, and a λ30 fraction is of Pool-3 good. The three mining

pools are initially endowed with the residual λ̂ shares of services; of those λ̂ shares, a λ10

fraction is of Pool-1 good, a λ20 fraction is of Pool-2 good, and a λ30 fraction is of Pool-3

good. Thus, Wa0 = (1 − λ̂)S0, W10 = λ̂λ10S0, W20 = λ̂λ20S0, and W30 = λ̂λ30S0. By

plugging the optimal consumptions (B.11), (B.12), (B.13), (B.14), (B.15), (B.16) into the

appropriate budget constraint (B.9), (B.10), and using the initial endowments we find the

3



Lagrange multipliers:

y1
1− e−ρT

ρ
= W10 = λ̂λ10ξ0S0, (B.26)

y2
1− e−ρT

ρ
= W20 = λ̂λ20ξ0S0, (B.27)

y3
1− e−ρT

ρ
= W30 = λ̂λ30ξ0S0, (B.28)

3ya
1− e−ρT

ρ
= Wa0 =

(
1− λ̂

)
ξ0S0. (B.29)

We substitute the Lagrange multipliers into the state price density, (B.24), utilize the ex-
pression for Yt, (1), and obtain the following desired result:

ξt = e−ρt 1

Yt

1

p̄

(
y1 + ya
λ1t

+
y2 + ya
λ2t

+
y3 + ya
λ3t

)
=

S0ξ0
p̄Yt

(
ρe−ρt

1− e−ρT

)(
1

λ1t

{
λ̂λ10 +

1

3

(
1− λ̂

)}
+

1

λ2t

{
λ̂λ20 +

1

3

(
1− λ̂

)}
+

1

λ3t

{
λ̂λ20 +

1

3

(
1− λ̂

)})
.

(B.30)

Next, by substituting the Lagrange multipliers (B.26), (B.27), (B.28), and (B.29) into the

mining pool specific state price densities (B.20), (B.21) and (B.22), we obtain the mining

pools fees

ξtp1t = (λ1tYt)
−1 ρ

(
e−ρt

1− e−ρT

)
ξ0S0

{
λ̂λ10 +

1

3

(
1− λ̂

)}
, (B.31)

ξtp2t = (λ2tYt)
−1 ρ

(
e−ρt

1− e−ρT

)
ξ0S0

{
λ̂λ20 +

1

3

(
1− λ̂

)}
, (B.32)

ξtp3t = (λ3tYt)
−1 ρ

(
e−ρt

1− e−ρT

)
ξ0S0

{
λ̂λ30 +

1

3

(
1− λ̂

)}
. (B.33)

To isolate the fees, we plug the expression for ξ (B.30) into the equations above, and find

p1t
p̄

=
1
λ1t

1
λ1t

+ 1
λ2t

+ 1
λ3t

, (B.34)

p2t
p̄

=
1
λ2t

1
λ1t

+ 1
λ2t

+ 1
λ3t

, (B.35)

p3t
p̄

=
1
λ3t

1
λ1t

+ 1
λ2t

+ 1
λ3t

. (B.36)

By plugging the equilibrium fees into the revenue share definitions (17) we obtain our desired
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result,

Vit = p̄
1

1
λ1t

+ 1
λ2t

+ 1
λ3t

, Vt = p̄
3

1
λ1t

+ 1
λ2t

+ 1
λ3t

, i = 1, 2, 3. (B.37)

The cryptocurrency price St is obtained from the no arbitrage condition, which identifies the

cryptocurrency price as the discounted services produced by the three mining pools,

St =
1

ξt
Et

[∫ T

t

ξs {p1sλ1sYs + p2sλ2sYs + p3sλ3sYs} ds
]
=

1

ξt
e−ρt1− e−ρ(T−t)

1− e−ρT
ξ0S0, (B.38)

where the equality follows from plugging the individual state price densities (B.31), (B.32),

and (B.33), and noting that λ10+λ20+λ30 = 1. Substituting the state price density ξt (B.30)

into the above characterization we obtain the following expression for the cryptocurrency

price

St = Yt

[
1− e−ρ(T−t)

ρ

][
3

1
p̄λ1t

+ 1
p̄λ2t

+ 1
p̄λ3t

]
. (B.39)

The above expression can be further simplified by substituting the expressions for the fees

charged by mining pools (B.34), (B.35), and (B.36). By doing so, we obtain

St = Yt

[
1− e−ρ(T−t)

ρ

]
[λ1tp1t + λ2tp2t + λ3tp3t] . (B.40)

The above expression for the cryptocurrency price depends on Yt, which then depends on the

endogenous cryptocurrency price. We substitute the expression for Yt (26) and the definition

of Vt ≡ λ1tp1t + λ2tp2t + λ3tp3t to obtain the desired expression for the cryptocurrency price,

St = Dt

(
1− e−ρ(T−t)

ρ

) 1
1−β

(Vt)
1

1−β . (B.41)

By plugging the total revenue shares (18), the closed-form expression of the cryptocurrency

price becomes

St = Dt

[
1− e−ρ(T−t)

ρ

] 1
1−β

[
3

1
p̄λ1t

+ 1
p̄λ2t

+ 1
p̄λ3t

] 1
1−β

. (B.42)
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Similarly, we find that the discount factor is given by

ξ0,t = ξ̄e−ρt

(
1− e−ρ(T−t)

ρ

) −β
1−β 1

Dt

(
1

Vt

) 1
1−β

, (B.43)

where ξ̄ ≡ S0

(
ρ

1−e−ρT

)
. The cryptocurrency price S0 is obtained from the expression for St

evaluated at t = 0. Next, we show that the partial derivatives of the concentration and total
revenue shares are negatively related (B.3).

∂Ht

∂λ1t
= 2 (2λ1t − (1− λ2t)) < 0 ⇐⇒ ∂Vt

∂λ1t
= − 3p̄(

1
λ1t

+ 1
λ2t

+ 1
1−λ1t−λ2t

)2
(
− 1

λ2
1t

+
1

(1− λ1t − λ2t)
2

)
> 0.

Next, observe that ∂St/∂Vt > 0 (B.41) and ∂ξt/∂Vt < 0 (B.43), for any β ∈ [0, 1), leading

to

∂ξt
∂λ1t

=
∂ξt
∂Vt

∂Vt

∂λ1t

> 0 ⇐⇒ ∂Ht

∂λ1t

> 0, (B.44)

∂St

∂λ1t

=
∂St

∂Vt

∂Vt

∂λ1t

< 0 ⇐⇒ ∂Ht

∂λ1t

> 0, (B.45)

for any β ∈ [0, 1). The result applies for λ2t straightforwardly.

By applying Itô’s Lemma to both sides of the cryptocurrency price (B.42) and comparing

the volatility terms we find that

σS
t = σD, (B.46)

σ̄S
1t =

1

1− β

(
p1t
p̄
λ2t +

p3t
p̄
λ2t −

p2t
p̄
λ1t −

p2t
p̄
λ3t

)
σ̄1, (B.47)

σ̄S
2t =

1

1− β

(
p1t
p̄
λ3t −

p3t
p̄
λ1t +

p2t
p̄
λ3t −

p3t
p̄
λ2t

)
σ̄2. (B.48)

We denote by St (β = 0) and St (β > 0) the cryptocurrency prices when β = 0 and β > 0,

respectively. Following the cryptocurrency price representation (B.41), a necessary and

sufficient condition for the existence of an inflationary bubble is

St (β > 0) > St (β = 0) ⇐⇒ 1− e−ρ(T−t)

ρ
Vt > 1. (B.49)

We look for the fees index p̄ that satisfies (B.49) when the revenue share is maximized(
λ1∗ =

1
3
, λ2∗ =

1
3

)
, leading to

p̄ >
3ρ

1− e−ρ(T−t)
≡ P2t. (B.50)
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This condition guarantees that there exists some values of λ1t and λ2t for which there is
an inflationary bubble (B.49). If the inflationary bubble exists at the maximum (λ1t =
λ1∗, λ2t = λ2∗) it must also exist in the neighbourhood of (λ1∗, λ2∗) since the total revenue
shares are strictly concave in λ1t and λ2t. Accordingly, the cryptocurrency price is in an
inflationary bubble if and only if the following condition holds:

3p̄

(
1− e−ρ(T−t)

ρ

)
>

1

λ1t
+

1

λ2t
+

1

1− λ1t − λ2t
. (B.51)

We now turn to prove the results involving effects of increased bubble on return volatility

and cryptocurrency price. To prove (i), we differentiate the total volatility with respect to

the bubble parameter and find that

∂

√
(σ̄S

1t)
2
+ (σ̄S

2t)
2
+ (σS

t )
2

∂β
=

(
σ̄S
1t

)2
+
(
σ̄S
2t

)2√
(σ̄S

1t)
2
+ (σ̄S

2t)
2
+ (σS

t )
2

1

1− β
> 0, (B.52)

where σ̄S
1t and σ̄S

2t are given in (B.47) and (B.48). Lastly, to prove (ii) we take the derivative

of St with respect to the bubble parameter and find that

∂St

∂β
=Dt

(
1− e−ρ(T−t)

ρ
Vt

) 1
1−β
(

1

1− β

)2

log

(
1− e−ρ(T−t)

ρ
Vt

)
, (B.53)

which implies that ∂St

∂β
> 0 if and only if the cryptocurrency is in an inflationary bubble, as

(B.49) reveals.

Proof of Proposition 6 (Extensive Margin). Let (λ1t, λ2t, λ3t ≡ 1− λ1t − λ2t) be the

initial distribution of share of mining pools, where λ1t, λ2t > 1
3
, λ3t < 1

3
. When Pool-3

increases and takes market share from Pool-1 and Pool-2 we have dλ1t, dλ2t < 0, and we

observe that concentration decreases by

dHt =2λ1tdλ1t + 2λ2tdλ2t − 2 (1− λ1t − λ2t) (dλ1t + dλ2t)

=2 (λ1t − λ3t) dλ1t + 2 (λ2t − λ3t) dλ2t < 0. (B.54)

To prove (i), we observe that the change in Pool-1 fees is given by

dp1t =− p̄(
1 + λ1t

λ2t
+ λ1t

λ3t

)2 ( 1

λ2t
+

1

λ3t
+

λ1t

λ2
3t

)
dλ1t −

p̄(
1 + λ1t

λ2t
+ λ1t

λ3t

)2 (−λ1t

λ2
2t

+
λ1t

λ2
3t

)
dλ2t > 0, (B.55)

which is strictly positive because λ3t < λ2t. A similar outcome is obtained from p2t because

λ3t < λ1t.
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To prove (ii), we observe that the change in the total revenue shares is given by

dVt = − 3p̄(
1
λ1t

+ 1
λ2t

+ 1
λ3t

)2 {(− 1

λ2
1t

+
1

λ2
3t

)
dλ1t +

(
− 1

λ2
2t

+
1

λ2
3t

)
dλ2t

}
> 0, (B.56)

which follows from λ3t < λ1t, λ2t. The cryptocurrency price and the discount factor are given
in (B.4). Hence, an increase in the total revenue shares lead to a higher cryptocurrency price
and a lower discount factor, regardless of β ∈ [0, 1).
To prove (iii), we observe that the shock sensitivities can be represented as

σ̄S
1t =

(
1

1− β

)
1

p̄
(p1tλ2t + p3tλ2t − p2tλ1t − p2tλ3t) σ̄1 =

(
1

1− β

)
1

p̄
(p1tλ2t + p3tλ2t + p2tλ2t − p2t) σ̄1

=

(
1

1− β

)(
λ2t −

p2t
p̄

)
σ̄1 (B.57)

and

σ̄S
2t =

(
1

1− β

)
1

p̄
(p1tλ3t − p3tλ1t + p2tλ3t − p3tλ2t) σ̄2 =

(
1

1− β

)
1

p̄
(p1tλ3t + p2tλ3t + p3tλ3t − p3t) σ̄2

=

(
1

1− β

)(
λ3t −

p3t
p̄

)
σ̄2 (B.58)

Given our assumption on mining pools’ sizes: λ1t, λ2t >
1
3
, λ3t <

1
3
, we find that λ1t− p1t

p̄
>

0, λ2t − p2t
p̄

> 0, and λ3t − p3t
p̄

< 0. To see why, observe that

3
p1t
p̄

< 1 ⇐⇒ 1

λ1t

(
3

1
λ1t

+ 1
λ2t

+ 1
λ3t

)
≤ 1

λ1t

(
λ1t + λ2t + λ3t

3

)
=

1

λ1t

(
1

3

)
< 3

(
1

3

)
< 1,

(B.59)

where the first inequality follows because the harmonic mean is always less than the arith-

metic mean, the equality follows because λ1t + λ2t + λ3t = 1, and the last inequality follows

because λ1t >
1
3
. Consequently, we find that

p1t
p̄

<
1

3
< λ1t,

p2t
p̄

<
1

3
< λ2t. (B.60)

Since p1t
p̄
+ p2t

p̄
+ p3t

p̄
= 1, we conclude that p3t

p̄
> 1

3
> λ3t. Thus,

|σ̄S
1t| =

(
1

1− β

)(
λ2t −

p2t
p̄

)
σ̄1, |σ̄S

2t| = −
(

1

1− β

)(
λ3t −

p3t
p̄

)
σ̄2, (B.61)
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and the change in absolute value of σ̄S
1t is given by

d|σ̄S
1t| =

(
1

1− β

)(
dλ2t −

1

p̄
dp2t

)
σ̄1 < 0, (B.62)

since dλ2t < 0 and dp2t > 0. The change in absolute value of σ̄S
2t is given by

d|σ̄S
2t| = −

(
dλ3t −

1

p̄
dp3t

)
σ̄2 < 0, (B.63)

since dλ3t > 0 and dp3t = −dp1t − dp2t < 0.
To prove (iv), we start from the derivative of the total volatility with respect to the bubble,
given in (B.52), and find that it is characterized as follows

∂

√(
σ̄S
1t

)2
+
(
σ̄S
2t

)2
+
(
σS
t

)2
∂β

=

(
σ̄S
1t

)2
+
(
σ̄S
2t

)2√(
σ̄S
1t

)2
+
(
σ̄S
2t

)2
+
(
σS
t

)2 1

1− β
=

1√
1

(σ̄S
1t)

2
+(σ̄S

2t)
2 +

(σS
t )

2(
(σ̄S

1t)
2
+(σ̄S

2t)
2
)2

1

1− β
.

As a result, a change in concentration propagates to the total volatility only through the

following expression:

d
((

σ̄S
1t

)2
+
(
σ̄S
2t

)2)
= 2σ̄S

1tdσ̄
S
1t + 2σ̄S

2tdσ̄
S
2t, (B.64)

where σ̄S
1t and σ̄S

2t are given in (B.57) and (B.58), respectively. In light of (B.60), we observe

that σ̄S
1t > 0, σ̄S

2t < 0, and the change in σ̄S
1t is negative, while the change in σ̄S

2t is positive

dσ̄S
1t =

1

1− β

(
dλ2t −

1

p̄
dp2t

)
σ̄1 < 0, (B.65)

dσ̄S
2t =

1

1− β

(
dλ3t −

1

p̄
dp3t

)
σ̄2 > 0. (B.66)

Hence,

d
((

σ̄S
1t

)2
+
(
σ̄S
2t

)2)
= 2σ̄S

1tdσ̄
S
1t + 2σ̄S

2tdσ̄
S
2t < 0, (B.67)

d
((

σ̄S
1t

)2
+
(
σ̄S
2t

)2)2
= 2

((
σ̄S
1t

)2
+
(
σ̄S
2t

)2) (
2σ̄S

1tdσ̄
S
1t + 2σ̄S

2tdσ̄
S
2t

)
< 0. (B.68)

Eventually, this leads to a more substantial effect of concentration on the return volatility.

Lastly, we prove (v). We have derived ∂St

∂β
in (B.53), which is copied below for convenience.

∂St

∂β
=Dt

(
1− e−ρ(T−t)

ρ
Vt

) 1
1−β
(

1

1− β

)2

log

(
1− e−ρ(T−t)

ρ
Vt

)
.
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The total change in ∂St

∂β
when Pool-3 emerges is given by

d

(
∂St

∂β

)
=Dt

1

1− β

(
1− e−ρ(T−t)

ρ
Vt

) β
1−β 1− e−ρ(T−t)

ρ
dVt

(
1

1− β

)2

log

(
1− e−ρ(T−t)

ρ
Vt

)
+Dt

(
1− e−ρ(T−t)

ρ
Vt

) 1
1−β
(

1

1− β

)2
1

1−e−ρ(T−t)

ρ
Vt

1− e−ρ(T−t)

ρ
dVt > 0. (B.69)

We have already shown that when Pool-3 emerges, dVt > 0, (B.56), and when the cryptocur-

rency is in an inflationary bubble, 1−e−ρ(T−t)

ρ
Vt > 1, (B.49), eventually leading to our desired

result that an increased bubble implies that the effect of concentration on the cryptocurrency

price increases, if the cryptocurrency price is in an inflationary bubble.

Proposition 9 (Portfolios). Markets are dynamically complete; the mining pools and single

miners hold their entire wealth in the cryptocurrency.

Proof of Proposition 9 (Portfolios). We start by characterizing the dynamics of the

bonds. Each bond is riskless in terms of its mining pool’s numeraire:

dBi
it = riitB

i
itdt, i = 1, 2, 3. (B.70)

Converting these bonds to the numeraire we obtain

B1t = p1tB
1
1t, B2t = p2tB

2
2t, B3t = p3tB

3
3t (B.71)

By applying Itô’s Lemma to both sides of the above equations, we find that

σB1
t = 0, σ̄B1

1t = −σ̄1
λ1t

λ2t

p1t
p̄
, σ̄B1

2t = −σ̄2λ1t
p1t
p̄

1

λ2
3t

{λ3t (1− λ1t) + λ1t} (B.72)

σB2
t = 0, σ̄B2

1t = −σ̄1

(
1− p2t

p̄

)
, σ̄B2

2t = −σ̄2
λ2t

λ3t

p2t
p̄

(B.73)

σB3
t = 0, σ̄B3

1t = −σ̄1
λ3t

λ2t

p3t
p̄
, σ̄B3

2t = σ̄2

(
1− p3t

p̄

)
. (B.74)

Notice that σ̄B1
1t , σ̄

B1
2t , σ̄

B2
1t , σ̄

B2
2t , σ̄

B3
1t , σ̄

B3
2t ̸= 0 probability almost surely since λ1t, λ2t ∈ (0, 1).

We define the global bond security BW , which is locally riskless in the numeraire. This

additional security is not required but it simplifies the analysis. It is simply defined as the

sum of the three bonds.

To dynamically complete the financial markets and to replicate any financial claim, we

require four independent investment opportunities: the cryptocurrency, Pool-1’s bond, Pool-

2’s bond, and the global bond. We denote the vector of portfolio weights of agent i in the
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cryptocurrency and mining pool bonds by πi, and the volatility matrix of these two securities

by Σ, such that

πi ≡

 πS
i

πB1
i

πB2
i

 , Σ ≡

σ
S
t σ̄S

1t σ̄S
2t

0 σ̄B1
1t σ̄B1

2t

0 σ̄B2
1t σ̄B2

2t

 , (B.75)

where i = 1, 2, 3, a.

Solving for the optimal wealth (B.10) (B.9), we find that Wit ∝ 1
ξt
, and by applying Itô’s

Lemma to both sides of this equation we obtain

Σ′πi = θt, (B.76)

where θt is the vector of market prices of risk. It is given by

θt =

σ
S
t

σ̄S
1t

σ̄S
2t

 , (B.77)

which is obtained from applying Itô’s Lemma to both sides of (B.43). Since σS
1t, σ

S
2t ̸= 0,

as Proposition 8 reveals, we invert Σ′ and obtain that πS
i = 1 and πB1

i = 0, πB2
i = 0 for

i = 1, 2, 3, a.

Following Pavlova and Rigobon (2007), we obtain the interest rates, riit, by applying Itô’s

Lemma to the mining pool specific state price density, ξtpit, given in (B.20), (B.21), and

(B.22).
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