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Abstract

We present an experimental study of decentralized matching markets, such as labor

or marriage markets. Experimental participants are informed of everyone’s preferences

and can make arbitrary non-binding match o↵ers that get finalized when a period of mar-

ket inactivity has elapsed. Several insights emerge. First, stable outcomes are prevalent.

Second, while centralized clearinghouses commonly aim at implementing extremal stable

matchings, our decentralized markets most frequently culminate in the median stable

matching. Third, preferences’ cardinal representations impact the stable partners par-

ticipants match with. The dynamics underlying our results exhibit successive blocking

pairs, with agents accounting for the likelihood a match sticks.
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1 Introduction

1.1 Overview

This paper presents an experimental investigation of decentralized matching markets. We

consider two-sided markets, such as labor markets consisting of workers and firms, marriage

markets comprising women and men, and so on. We study the outcomes emerging from free

interactions between market participants. Would unconstrained decentralized interaction pro-

duce stable outcomes?1 When there are multiple stable matchings, would some have stronger

drawing power? What dynamics would decentralized interactions follow? Our experiments

are designed to answer these questions.

The motivation for our study is straightforward. Decentralized matching markets are

everywhere: many labor markets and private school systems, are by and large decentralized.

Likewise, marriage markets in many western countries operate in a decentralized fashion. Even

centralized matching systems are often preceded or followed by decentralized interactions.2

Furthermore, given the importance of stability in the design of centralized matching markets—

e.g., for the design of clearinghouses for certain entry-level labor markets and public school

systems—we wish to understand when a market would, on its own, result in a stable outcome

and, when it does, which stable outcome would emerge. Understanding market parameters

that generate di↵erent outcome features would indicate when market intervention in the form

of centralization would be particularly beneficial.

In our baseline experiments, each side of the market is composed of 8 participants. Each

participant is fully informed of all participants’ cardinal preferences. Payo↵s are designed

1A stable outcome corresponds to a pairing of agents from both market sides such that no agent prefers
to sever their partnership and no pair of agents prefer to pair with one another over remaining with their
assigned partners.

2See Echenique, Gonzalez, Wilson, and Yariv (2022) for a description of how pre-match interviews might
influence the medical residents’ centralized match outcomes in the US.
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so that each market participant has either one, two, or three stable match partners. Fur-

thermore, for each ordinal preference profile in the market, there are several cardinal utility

representations, di↵ering in the utilitarian welfare of each side of the market as well as the

marginal returns from matching with one partner as opposed to a more preferred one. In each

round, agents on each side are free to make match o↵ers to any agent on the other side of the

market, up to one o↵er at a time, as well as accept any o↵er that arrived, up to one at a time.

Markets end after 30 seconds of inactivity. Payo↵s are determined according to the matches

created, where unmatched agents receive a payo↵ of 0.

The cooperative theory of one-to-one matching o↵ers predictions on the set of plausible

outcomes, namely the set of stable matchings, or the core, under two basic premises on the

underlying markets: that all agents are completely informed of other participants’ preferences

(as well as their own) and that agents can freely match with one another. Our design aims

at mimicking as much as possible these premises. In particular, agents have complete in-

formation on everyone’s preferences and agents are free to make o↵ers to one another in a

rather unconstrained manner.3 Our design allows us to inspect the organic selection of stable

outcomes, when they are reached, and the endogenous path that generates them.

Three main insights come out of our experiments. First, stable outcomes appear in a

predominance of cases. Stable matchings occur in 88% of our markets. When there are few

stable matchings—one or two—the fraction of stable matching is even higher, exceeding 90%.

Furthermore, emergent unstable matchings are very close to stable in terms of payo↵s and

number of blocking pairs. Our markets are complex enough that eyeballing a stable matching is

extremely challenging. From a computational perspective, finding the set of stable matchings

is a hard problem in general, see Gusfield and Irving (1989). It is therefore interesting that

3This is reminiscent of some of the original general equilibrium experiments, which examined whether
markets reach an equilibrium without imposing constraints on the sequential actions that lead them there, see
our discussion below.
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market forces, when left to their own devices, do find a stable matching, and do so relatively

quickly: in time, rarely exceeding 5 minutes, as well as in o↵er volume, which averages 46

o↵ers per market.

Second, in markets in which each agent has three stable match partners, the median stable

matching emerges as the modal outcome:4 77% of pairings are between median stable match

partners, and 80% of markets converge to the median stable matching. This is particularly

interesting when contrasted with the leading clearinghouse used in the field, the Deferred

Acceptance (DA) algorithm of Gale and Shapley (1962), which implements one of the extremal

stable matchings that is most preferred by one market side.

Our last insight pertains to the selection and the cardinal representation of preferences.

Stability is an ordinal concept. Thus, the set of stable matchings in a market does not depend

on the participants’ cardinal assessments of partners. In the lab, these cardinal representations

have a strong e↵ect on the selection of stable matchings. In particular, the side of the market

that has “more to lose” by forgoing their most preferred matching—say, because their marginal

loss from shifting from their most preferred stable matching to a less preferred one is greater

than the other side’s—tends to establish its most preferred matching more frequently.

We report results from two sets of additional treatments that investigate our main results’

robustness, in terms of both market size and the bargaining power market participants have.

The first set of treatments involves larger markets, with 15 participants, instead of 8, on each

side. The main findings from our baseline markets continue to hold. Stable matchings, and

in particular median stable matchings, are very frequent. The second set of treatments allows

agents only on one market side to make o↵ers. Pairings between stable partners still occur

habitually at a rate of 87%. However, the fraction of markets that converge to full stability

4Stable matchings are ordered so that there are two stable matchings, each most preferred by one market
side and least preferred by the other. The median stable matching is ranked by all the agents in between the
other two.
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is substantially lower and stands at 26%. Perhaps surprisingly, despite the absence of o↵ers

from one side of the market, median stable outcomes prevail, occurring in 83% of the final

stable matchings. Furthermore, 65% of stable pairings are between median stable partners.

Our design tracks the dynamic path of o↵ers and countero↵ers by which our markets reach

stability. As already mentioned, convergence to stability is rather quick. We use discrete

choice models to explain the making of, and responses to, o↵ers. We find that participants

are strategically sophisticated: when making an o↵er, they appear to put themselves in the

place of the recipient of the o↵er, and gauge whether the o↵er is profitable to the receiver.

That is, they weigh both payo↵ and yield when evaluating o↵ers.5

Taken together, our results indicate that decentralized interactions yield stability for many

market structures. Furthermore, they do so e�ciently, converging quickly and with relatively

few o↵ers. Intervention via centralized clearinghouses may still be beneficial, however. First,

decentralized interactions tend to produce the median stable matchings, while common match-

ing clearinghouses tend to implement extremal stable matchings. To the extent that a market

designer favors one market side—e.g., young residents in the medical match, or students in a

school choice setting—centralized intervention may be beneficial. Second, while the number

of o↵ers in our experimental markets is relatively small, of the order of the number of possible

pairs, scaling this number to large markets suggests many o↵ers, which may entail substantial

costs. Centralized clearinghouses are helpful in eliminating the need for targeted individual

o↵ers and speeding up market-wide outcomes.

5We also use simulations to examine whether dynamic models that have been o↵ered in the theoretical
literature fit our data, namely the Roth and Vate (1990), and Ackermann, Goldberg, Mirrokni, Röglin, and
Vöcking (2011) dynamics, as well as an alternative version of Gale and Shapley’s 1962 DA in which proposers
are randomly selected from both sides of the market. While they are useful benchmarks, none of the three
models explains the features of the empirical dynamics we observe in our experiment satisfactorily.
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1.2 Literature Review

Theoretically, our experimental design corresponds to the cooperative model of matching mar-

kets, see Roth and Sotomayor (1990). The model provides clear predictions: outcomes coincide

with the core of the market, the set of stable matchings. In that respect, our experimental

results provide a strong experimental validation of the theory underlying the stability notion.

Several propose particular dynamic decentralized processes by which one-to-one matchings

are created; see, e.g., Haeringer and Wooders (2011), Ferdowsian, Niederle, and Yariv (2022),

and Pais (2008). These papers usually impose some structure on the process by which o↵ers

are made and accepted. The main focus of this literature is on the identification of conditions

under which stability is likely to arise through equilibrium. Complete information of the pre-

vailing preferences, as in our experiments, allows for stability to emerge in equilibrium, while

more stringent demands on preferences and equilibrium selection are required for stability

to be the unique prediction. To the extent of our knowledge, the literature is silent on the

selection of stable matchings when multiple ones exist in the market.

While the experimental literature on matching markets has grown rapidly in recent years

(Hakimov and Kübler, 2021), there are only a few studies of decentralized markets. Kagel

and Roth (2000) analyze the transition from decentralized matching to centralized clearing-

houses, when market features lead to ine�cient matching through unraveling. Nalbantian and

Schotter (1995) analyze several procedures for matching with transferable utility, decentral-

ized matching among them, where agents have private information about payo↵s. Nalbantian

and Schotter (1995) include private negotiations between potential match partners. O↵ers

in our treatment are private as well; only accepted o↵ers become public, but they are non-

binding. Agranov, Dianat, Samuelson, and Yariv (2022) allow for transfers in small decen-

tralized markets that follow protocols similar to ours, where information about preferences is

either complete or incomplete. Transfers and incomplete information make stability elusive,
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particularly when preferences are submodular. Pais, Pintér, and Veszteg (2020) study the ef-

fects of information and costly-o↵er frictions on outcomes and find that enough frictions may

make stability di�cult to achieve. Finally, Niederle and Roth (2009) also look at an incom-

plete information setting in which one side of the market (the firms) makes o↵ers to the other

side (the workers) over three experimental periods. They study the e↵ects of o↵er structure

on the information that gets used in the final matching and consequent market e�ciency.6

There is also a methodological link between the current paper and some of the experimental

work studying financial markets and general equilibrium predictions in the lab, see for instance

Smith (1962), Plott and Smith (1978), or the survey in Chapter 6 of Kagel and Roth (1995).

As in our paper, the underlying predictions of general equilibrium theory pertain to outcomes,

and by and large shine through in experiments; this despite the precise dynamics leading to

these outcomes not having been imposed by the experimenters.

2 Theoretical preliminaries

We start by reviewing the underlying cooperative matching model and the theoretical results

that are pertinent to our paper.

Let F and C be disjoint, finite sets. We call the elements of F “foods” and the elements of

C “colors.” We use the language of foods and colors in our experimental design, but these sets

can stand for firms and workers in labor markets, men and women in heterosexual marriage

markets, etc. A matching is a function µ : F [C ! F [C such that for all f 2 F and c 2 C,

1. µ (c) 2 F [ {c},

2. µ (f) 2 C [ {f},
6There is a growing experimental literature studying centralized matching systems, e.g., Bergstrom,

Bergstrom, and Garratt (2013), Harrison and McCabe (1996), Chen and Sönmez (2006), Haruvy and Ünver
(2007), Pais and Pintér (2008), Echenique, Wilson, and Yariv (2016), Featherstone, Mayefsky, and Sullivan
(2022), and Featherstone and Niederle (2016).
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3. f = µ (c) if and only if c = µ (f).

Whenever a is unmatched under µ, we write µ(a) = a; when f and c are matched under

µ, then c = µ(f) (and f = µ(c)). Let M denote the set of all matchings.

A preference relation is a linear order (a complete, transitive, and antisymmetric binary

relation). In particular, we assume preferences are strict. A preference relation for a food

f 2 F , denoted P (f), is understood to be over the set C [ {f}, with f representing the

possibility of being unmatched. Similarly, for c 2 C, P (c) denotes a preference relation over

F [ {c}. For simplicity and consistency with our experimental design, we assume that each

food (color) prefers any color (food) over remaining unmatched. A preference profile is a list

P of preference relations for foods and colors, i.e.,

P =
⇣
(P (f))

f2F , (P (c))
c2C

⌘
.

Denote by R(f) the weak version of P (f). That is, c0 R(f) c if either c
0 = c or c

0
P (f)c.

The definition of R(c), the weak version of P (c), is analogous.

Fix a preference profile P . We say that a pair (c, f) blocks µ if c 6= µ(f), c P (f) µ(f), and

f P (c) µ(c). In words, (c, f) is a blocking pair if c and f prefer to be matched to one another

over their assigned matches under µ. A matching is stable if there is no pair that blocks it.7

Denote by S(P ) the set of all stable matchings.

Gale-Shapley Theorem (Gale and Shapley, 1962) S(P ) is non empty, and there are

two matchings µF and µC in S(P ) such that, for all f 2 F , c 2 C, and µ 2 S(P ),

µF (f)R(f) µ(f)R(f) µC(f),

µC(c)R(c) µ(c)R(c) µF (c).

7We ignore individual rationality since we restrict attention to preferences under which all agents prefer
to be matched to another agent rather than remaining unmatched.
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The matchings µF and µC coincide when the market has a unique stable matching. The

matching µF is called food optimal, while µC is called color optimal. The matching µF is

preferred by all foods to any other stable matching, and all colors prefer any stable matching

to µF . Analogously for µC . The proof of the Gale-Shapley Theorem is constructive, and uses

what is often referred to as the Deferred Acceptance (DA) algorithm to identify one of the

extreme matchings, µF or µC . Beyond its theoretical role in establishing existence, DA is the

algorithm often used in centralized markets. For instance, the National Resident Matching

Program uses a variation of it (Roth and Peranson, 1999).

The set of stable partners of an agent a is the set of agents that are matched to a under

some stable matching, i.e., {µ0(a) | µ0 2 S(P )}. Likewise, a pair (f, c) 2 F ⇥C is said to be a

stable pair, or a stable match, if f and c are matched under some stable matching.8 Therefore,

in a stable matching, all matches are stable, and all agents are matched to a stable partner.

However, in unstable matchings, it might be reasonable for some agents who are not stable

partners to be matched: from an individual perspective, it makes sense to form matches in

which no agent has a blocking partner, regardless of whether the match is stable.

Consider a preference profile P for which S(P ) has an odd number K of matchings, and

denote the partners of agent a in each of these matchings by a1, . . . , aK (which may not all

be distinct). A median stable matching is a matching µ 2 S(P ) such that, for all agents

a 2 F [ C, µ(a) is a’s median partner among a’s stable partners under P (a). That is, µ(a)

occupies the K+1

2
-th place in a’s preference among a1, . . . , aK . We refer to µ(a) as the median

stable partner of a.

In general, median stable matchings are guaranteed to exist, see Teo, Sethuraman, and

Tan (2001) (in fact, they also exist when K is even). Median stable matchings present a

compromise between the two sides of the market. Interestingly, there are no known simple

8Note the distinction between a match and a matching. A match refers to a pair (f, c) who are matched.
A matching refers to the function describing all the matches in a market.
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algorithms that generate median stable matchings. Certainly, one can search for all stable

matchings of a market and then identify a median one. From a computational perspective,

however, this can potentially be quite demanding as the problem of finding all stable matchings

is computationally hard (see Gusfield and Irving, 1989, for general references; Irving and

Leather, 1986 show that determining the number of all stable matchings is generally #P-

complete; while Cheng, 2008 shows that finding the median stable matching is hard). These

results contrast with the problem of finding a color- or food-optimal stable matching, which

can be done in polynomial time by using DA.

The notion of stability, as well as the ranking of the di↵erent stable matchings, are ordinal

in nature. In particular, the theory does not allow for refined predictions on the basis of how

much agents prefer certain partners to others.

3 Experimental Design

Our experimental design corresponds to a decentralized one-to-one, two-sided market.9 The

two sides are termed colors and foods, and contain the same number of participants each. In

each round, each participant is randomly assigned a role: “red,” “blue,” etc. if a color; “apple,”

“banana,” etc. if a food. A participant can match with one and only one participant from

the other side of the market, each match resulting in a potentially di↵erent monetary payo↵.

All participants observed all potential payo↵s from a numerical matrix on the experimental

interface. If a participant is unmatched, they earn a payo↵ of 0.

We implemented a baseline design with 8 participants on each side of the market. We

also implemented two variations intended to check for robustness with respect to market size

and bargaining power. In the baseline design, over the course of the experiment, participants

9The instructions and the set of payo↵ matrices we used are available at
https://sites.google.com/site/decentralizedmatching/.
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are free to propose a match to anyone on the other side of the market. At any point in

time, participants observe all current matches through a panel of the experimental interface.

Importantly, participants can make an o↵er while (tentatively) matched, and o↵ers can be

made to any member of the opposing side of the market, including participants who are

already matched. If a matched agent accepts a new o↵er, their existing match is undone.

When receiving an o↵er, a participant has 10 seconds to respond. Each market ends after 30

seconds of inactivity.

We ran five baseline experimental sessions, each consisting of 2 practice rounds and 10

real rounds.10 Markets were designed with two objectives in mind. First, in order to see

whether cardinal representations of preferences matter, we implemented multiple cardinal

representations of the same ordinal markets. Specifically, for any ordinal preference—say, red

prefers apple to banana—there are many ways by which these preferences can be presented

cardinally. For example, red receiving $50 and $10, or $5 and $4, from matching with apple and

banana, respectively, would both correspond to the same ordinal ranking. Our design entailed

6 underlying ordinal descriptions of markets with 17 di↵erent cardinal representations. Second,

in order to study the endogenous selection of stable matchings, we designed our experimental

markets so that all participants had either one, two, or three possible stable partners. When

all agents have only one stable partner, the market as a whole has a unique stable matching.

For each fixed number of stable partners (ranging from 1 to 3), we use several markets

di↵ering in market participants’ ordinal and cardinal preferences. The following is a general

description of the match payo↵s used. Table 1 summarizes all our experimental treatments.

10Four of the sessions included 32 participants, so we ran two markets at the same time, each consisting of
16 participants (8 foods and 8 colors), for a total of 20 non-practice experimental rounds per session. In the
remaining session we only had 16 participants for a total of 10 non-practice experimental rounds. Hence, in
total, we ran 90 experimental rounds across five baseline sessions. Due to software malfunctions, 5 markets
were not presented as intended to participants; we drop these from the data. Thus, in total, we have 85 rounds
of experimental market data. Including data from the dropped rounds does not alter results qualitatively.
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Unique stable match partner. We used 4 di↵erent ordinal markets: assortative preference

markets, where participants on each side of the market agree on the ranking of participants

on the other market side; markets with assortative preferences on one side, where only the

members of one side of the market are in agreement; a market including a fully egalitarian

matching, providing all agents the same payo↵, which is unstable; and a “generic” market

with a unique stable matching without agents agreeing on the ranking of others on either

side. Each of the first three markets was implemented via one cardinal representation. The

last, generic market was implemented via four cardinal treatments. In two of these we varied

how aligned the interests were across the market: that is, if µ is the stable matching, we

computed the correlation of the vectors (ui(µ))i2F and (uµ(i)(µ))i2F , where ui(µ) denotes the

payo↵ of agent i in the matching µ. We created one market in which the correlation was �0.9

and one where it was 0.9. We used two additional cardinal representations: one in which,

for each agent, the di↵erence in utilities between matching with the agent’s k’th and k+ 1’th

choices was 20� and one in which these marginal di↵erences were 70�. Altogether, we used 7

di↵erent cardinal markets with a unique stable matching.

Two stable match partners. We used one ordinal market in which each agent had two possible

stable match partners. These were constructed so that there were two 4⇥4 embedded markets,

where any agent within a submarket preferred to match with anyone from that submarket

over anyone from the other. We varied the overall utilitarian e�ciency of each matching, the

utilitarian e�ciency of foods relative to colors from each matching, the distribution within

each matching,11 as well as the marginal loss for either side of the market from switching

from their more preferred stable matchings to their less preferred ones (higher for foods or for

colors). Overall, we used 6 cardinal markets of this sort.

11Since egalitarian motives appear frequently in experiments, we were concerned that some form of altruism
would be driving our results. We therefore designed payo↵s so that in some treatments, fully egalitarian match-
ings were unstable (see the description of our markets with a unique stable matching above). Furthermore,
we included cardinal representations in which certain stable matchings were more egalitarian than others.
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Table 1: Description of treatments

Agents

per side

Proposing

sides

#Exp.

Mkts.

#Ordinal

Mkts.

#Cardinal

Mkts. #Sessions #Particp’s

#Stable

matchings

Avg.

#stable

partners

Baseline

Unique stable matching*
8 2 30 4 7 5 144 1 1.00

Two embedded 4-by-4 markets†

35 1 6 5 144 2⇥ 2 1.75

5 stable matchings & 3 stable partners
20 1 4 3 80 5 3.00

Unilateral o↵ers

8 1 15 1 2 4 112 1 1.00
25 1 4 4 112 2⇥ 2 1.75
23 1 3 5 144 5 3.00

Large markets‡

15 2 8 3 3 3 90 1 1.00
4 2 2 2 60 3 2.93

Total 160 11 22 13 378

Notes: the table reports all experimental markets (round within a session). Markets are grouped into three

broad treatments: baseline (8-by-8 with two-sided proposals), unilateral o↵ers (8-by-8 with one-sided propos-

als), and large markets (15-by-15 with two-sided proposals). For each treatment, the table reports: the number

of experimental markets, and the ordinal and cardinal representations used, the number of sessions in which at

least one market in the corresponding treatment was played, the number of participants who played in at least

one market, the number of stable matchings, and the average number of stable partners. The last row reports

the totals across all experimental markets.
⇤
One of the ordinal markets (out of 4) had a salient egalitarian unstable matching, which was used in 4 experi-

mental markets (out of 30). Eight experimental markets (out of 30) were run with two alternative ordinal payo↵

matrices: four of them had one-sided aligned preferences, and the other four had two-sided aligned preferences.
†
In each of the two embedded markets, there were eight agents, four on each side. Three agents on each side

had two stable partners, and one agent had one, for an average of 1.75 stable partners per agent.
‡
In the markets with a unique stable matching, five (out of 8) had one-sided aligned preferences. In the markets

with multiple stable matchings, in one of the markets every agent had three stable partners, while in the other

one some agents had two stable partners and most had three (average = 2.87).

12



Three stable match partners. We used one ordinal market represented cardinally in 4 ways:

one in which the marginal di↵erences between utilities derived from matching with one’s k’th

and k+1’th most preferred partners was 20�, one in which it was 70�, one in which for foods

it was 20� and for colors 70�, and one in which these di↵erences were 20� for both market

sides, but colors’ payo↵s were all shifted up by $1. In these markets, while each individual has

precisely three distinct stable partners, there are five di↵erent market-wide stable matchings.

In addition to the baseline treatments, with 8 participants on each side who could all

make match o↵ers, we implemented two additional treatments that di↵ered from the baseline

in either market size or the relative bargaining power each market side had.

Large markets. We ran several treatments with larger markets, containing 15 participants on

each side. We concentrated on markets with either a unique matching or 3 stable matchings.

We used 3 distinct markets with a unique stable matching: assortative preferences on one

side, assortative preferences with a fully egalitarian unstable matching, and preferences that

were not assortative on either side. We used two markets with 3 stable matchings (in one

market, all agents had three stable partners; in the other one, most agents had three stable

partners, while some had two).

Unilateral o↵ers. We also ran several sessions with 8⇥8 markets and payo↵s as in our baseline

treatment in which only foods could make o↵ers. Otherwise, the market operated as in our

baseline treatments.

All sessions took place at the California Social Science Experimental Laboratory (CAS-

SEL), using a modification of the multi-stage software. All participants were UCLA under-

graduates and each participant participated in only one session. The average payment per

participant was $40 in our baseline treatments, $60 in the large 15 ⇥ 15 market treatments,
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and $39 in the treatments in which only foods were able to make o↵ers.12 All of these were

combined with a $5 show-up fee.

4 Market Outcomes

Three main findings emerge from our experiments. First, across our treatments, most market

outcomes are stable. Furthermore, market outcomes that are unstable are close to stable;

they are close in the sense that both the number of blocking pairs, as well as the unrealized

payo↵ gains from not forming them, are small. Second, in our treatments with three stable

partners, most agents are matched to their median stable partner. Surprisingly, even when

we “handicap” one side of the market, so that it cannot make any o↵ers, we continue to see

the median as the modal outcome. Last, cardinal representations of preferences a↵ect the

particular stable matchings that get selected. Specifically, higher cardinal incentives to colors

make the color optimal matching more likely to be selected; similarly for foods.

In all our treatments, learning across rounds did not appear to have significant e↵ects on

neither outcomes nor behavior. All of our results are therefore presented from an aggregation

across all 10 rounds.

4.1 Stability in Experimental Markets

Virtually all agents match through our markets’ operations, and a large fraction of markets

culminates in a stable matching, as shown in Table 2. The table summarizes the overall out-

comes in our baseline treatments. Over 99% of agents are matched when markets terminate.

Furthermore, 88.24% of markets are fully stable: no agent in the whole market has a blocking

partner. Markets with three stable partners exhibit slightly fewer market-wide stable out-

12Standard deviations were $3, $10, and $4 respectively.
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Table 2: Outcomes in baseline treatment

Unique stable
matching

Two embedded
4-by-4 markets

5 stable matchings
& 3 stable partners All baseline

#Mkts. with stable
matching / #Mkts

27 / 30 33 / 35 15 / 20 75 / 85

% Mkts. with stable
matching

90.00 94.29 75.00 88.24

Avg. % pairs w/o
blocking partners (BPs)

95.32 98.65 90.00 95.24

Avg. % pairs w/o BPs |
unstable matching

53.24 76.39 60.00 61.25

Avg. % agents with
� 1 BP

2.50 0.71 5.00 2.35

Avg. % agents with � 1
BP | unstable matching

25.00 12.50 20.00 20.00

Avg. # of BPs per
agent | � 1 BP

1.35 1.00 1.23 1.22

Avg. % unmatched
agents

0.42 0.36 0.00 0.29

Avg. % unmatched
agents | � 1 BP

4.76 25.00 0.00 6.43

Notes: the table reports the following final outcomes for each treatment in the baseline treatment: (i) number

and (ii) percent of final matchings that are stable; avg. number of final pairs (matches) in which no agent has

a blocking partner across (iii) all markets and (iv) markets with an unstable final matching; average percent of

agents with at least one blocking partner across (v) all markets and (vi) markets with an unstable final matching;

(vii) average number of blocking partners per agent across agents with at least one blocking partner; average

number of unmatched agents (viii) among all agents, and (ix) among agents who have at least one blocking

partner.
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comes, 75%. As a measure of stability at the match or pair level, we check the proportion

of matched pairs in which no member was part of a blocking pair. In over 95% of matches,

no member has a blocking partner, with little variation across markets. The treatment with

the lowest proportion of blocking partners is the one in which every agent has three stable

partners. Even in this case, in 90% of matches, no agent can form a blocking pair.13

Not all our markets reached full stability, but markets that were not fully stable were

fairly close to stable, as shown in Figure 1. Even in unstable markets, Table 2 indicates

that in the majority of ultimately matched pairs (61.25%), no agent has a blocking partner.

Indeed, only 20% of agents has a blocking partner when markets finalize (compared to 2.35%

of agents across all markets, culminating in stable or unstable matchings). Another way to

measure the proximity to a stable matching is by looking at the maximal number of disjoint

blocking pairs in a matching. The left panel of Figure 1 presents the empirical cumulative

distribution functions (CDFs) of the maximal number of disjoint blocking pairs across our

di↵erent treatments.14 The figure contains the distribution of blocking pairs pertaining to

markets in which outcomes were not fully stable.15 In our baseline treatment, most outcomes

are close to stable: most markets culminating in unstable outcomes have only one or two

disjoint blocking pairs.

We can also use payo↵s to measure the distance to stability. For every agent, we compare

the payo↵ they received from their final match, with the one they would have received had they

matched with their most preferred blocking partner. That is, we compute the maximum loss

due to instability per agent. Agents in markets that did not culminate in a stable matching

13The use of color and food labels in our markets did not seem to have any e↵ect. For example, if one
considers banana and mango to be associated with yellow, apple and cherry with red, and kiwi and pear with
green, there is no significant increase in the corresponding matches relative to any other classification.

14In our baseline treatments, when no agents are matched, the maximal number of disjoint blocking pairs
is 8, the number of potential disjoint pairs. When a stable matching is in place, there are 0 blocking pairs.

15Including all markets in the figure would not allow us to visualize the fine-grained distribution of blocking
pairs, as the prevalence of stable matchings implies a large spike at zero blocking pairs.
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Figure 1: Distance to stability in unstable markets

lost on average 12.82% of their final payo↵, equivalent to around 50�. By contrast, the same

average across all markets is 1.51%, equivalent to around 6�. The right panel of Figure 1

reports the CDFs of this measure across all unstable markets. Even in unstable markets, most

agents had very small payo↵ losses due to instability. Indeed, the median loss is equivalent to

2.08% of the final payo↵, which comes down to around 9�.16

In terms of the duration of market interactions, convergence to the stable matching was

rapid. On average, markets terminated after 2.78 minutes (sd = 1.35), including the final 30

seconds of inactivity; 89% of markets did so before the five minute mark. We return to the

dynamics underlying these observations in Section 7.

4.2 The Emergence of Median Stable Matches

The median stable matching has strong drawing power and cardinal representations of prefer-

ences a↵ect outcomes, as shown in Table 3. The top panel of the table reports the distribution

16Figure 4 in the Appendix shows CDFs for alternative measures of distance to stability across the distinct
treatments: total number of blocking pairs, and the average loss with respect to the best blocking partner in
absolute terms, relative to the average market payo↵, and relative to the average of the same measure across
random matchings (which with great likelihood are unstable). Roughly speaking, all measures point to the
same conclusion: the majority of agents in markets that did not reach full stability had few blocking partners
and did not incur in great payo↵ losses.
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of final matchings and matched pairs across the baseline markets in which each agent has three

stable match partners. A key di↵erence between the markets is the level, and marginal, dif-

ferences of payo↵s within each side of the market. We use the notation of “x-y marginals”

to denote a market in which the marginal di↵erence in utilities between one partner and the

next-best partner was x cents for foods and y cents for colors. In the 20-20 marginals market

with 100 color shift (labeled as 20-20+100 in the table), a 100� (or $1) was added to the color

payo↵s of the 20-20 market.

The median stable matching is the modal outcome: 80% of stable matchings correspond to

the median stable matching, entailing all participants being matched to their median stable

partner. Moreover, none of these markets converged to an extremal stable matching, food-

optimal or color-optimal. Recall that the baseline markets in which each agent has three stable

partners have five market-wide stable matchings. Hence, there are two stable matchings that

are neither the median nor extremal. We emphasize that, in these markets, a median matching

had to be “discovered” by participants: it is challenging to read the set of stable matchings

from looking at the payo↵ tables (an 8⇥ 8 table with 128 numerical entries).

Shifting attention to individual match-level outcomes, we observe similar patterns. 77%

of the final matched pairs that were stable correspond to median stable partners. From

the perspective of individual behavior, agents care about stable partners, not market-wide

matchings. It is remarkable that the vast majority of stable matches—which comprise 97%

of all final matched pairs—correspond to the median. That is, in the vast majority of cases,

agents ended up in stable matches in which neither of the two parties were matched to their

most preferred stable partner: no side of the market systematically got their way. Of the

remaining stable matches, the majority were color-optimal stable matches (20% out of 23%),

and the rest were food-optimal matches.17

17The preferences in these markets, both ordinal and cardinal, were not symmetric across the two sides,
which explains the imbalance.
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Table 3: Selection of stable matching and cardinal e↵ects

Marginal Utility
Di↵erences (foods–colors) 20–20 20–20+100 20–70 70–70 All

Baseline

# Markets 5 5 5 5 20

Market-level outcomes (matchings)

% stable 60 40 100 100 75
% median | stable 67 100 60 100 80
% non-extremal | stable 100 100 100 100 100
% food-optimal | stable 0 0 0 0 0
% color-optimal | stable 0 0 0 0 0

Individual-level outcomes (matches)

% stable 95 92 100 100 97
% median | stable 64 63 80 100 77
% food-optimal | stable 11 0 0 0 3
% color-optimal | stable 24 37 20 0 20

Unilateral o↵ers (foods propose)

# Markets 0 5 9 9 23

Market-level outcomes (matchings)

% stable – 20 11 44 26
% median | stable – 0 100 100 83
% non-extremal | stable – 100 100 100 100
% food-optimal | stable – 0 0 0 0
% color-optimal | stable – 0 0 0 0

Individual-level outcomes (matches)

% stable – 93 83 93 89
% median | stable – 49 61 79 65
% food-optimal | stable – 14 21 19 19
% color-optimal | stable – 38 18 2 16

Notes: The table reports (i) the percentage of markets which final matching corresponds to the median, non-

extremal, food-optimal, or color-optimal stable matching, and (ii) the percentage of final matches that are

food-optimal, color-optimal, or median stable matches (i.e., part of a stable matching). The tables reports

results for all experimental markets with five stable matchings, in baseline (top panel) and unilateral o↵ers

(bottom panel). The results are disaggregated into cardinal treatments, according to the marginal utility of

each side (payo↵ di↵erence from less preferred to more preferred partner). The second column corresponds

to markets in which utility di↵erences are 20� on each side, with the payo↵s of colors shifted upwards by

$1.
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Stability depends on agents’ ordinal preferences alone, not on their cardinal representation.

Of course, our experimental participants receive di↵erent monetary payments depending on

who they match with, and one would expect the di↵erent monetary magnitudes to play a role.

It is interesting, then, that in our data, the prevalence of stable matchings does not seem to

depend on any specific cardinal representation of preferences. But which stable matching gets

selected does depend on the cardinal utility representation, as shown in Table 3. Participants

on the side of the market (foods or colors) having “more to lose” tend to partner with their

most preferred match at higher frequencies (significant at any conventional levels).

5 Robustness to Bargaining Power and Market Size

We investigate the robustness of our results along two dimensions: the bargaining power

a↵orded to each side of the market, and the market’s size. As for bargaining power, in our

unilateral design, only one side of the market is allowed to make o↵ers. Specifically, only foods

are able to make o↵ers to colors. The e↵ect of market size is studied by means of our large-

market design, which resembles our baseline treatments but with 15 agents on each market

side. Table 4 summarizes our findings.

Unilateral O↵ers. A natural possible explanation for the prevalence of the median stable

matches is that, in our experiments, participants on both sides of the market could make

o↵ers. In a sense, they had equal bargaining power. In contrast, in Gale and Shapley’s DA,

only one side makes o↵ers while the other side decides which o↵ers to accept. DA produces

the optimal matching for one side, so it is possible that allowing both sides of the market

to make o↵ers is at the root of the frequent median matches we observe. This conjecture

is interesting, particularly in view of the fact that several real-world matching markets that

operate in a decentralized manner allow one side greater, if not sole responsibility for making
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Table 4: Outcomes in unilateral o↵ers and large markets

Unilateral o↵ers Large markets

#Mkts. with stable
matching / #Mkts

32 / 63 8 / 12

% Mkts. with stable
matching

50.79 66.67

Avg. % pairs w/o
blocking partners (BPs)

77.65 93.33

Avg. % pairs w/o BPs |
unstable matching

54.57 80.00

Avg. % agents with
� 1 BP

13.10 3.61

Avg. % agents with � 1
BP | unstable matching

26.61 10.83

Avg. # of BPs per
agent | � 1 BP

1.23 1.04

Avg. % unmatched
agents

1.39 0.00

Avg. % unmatched
agents | � 1 BP

3.71 0.00

Notes: the table reports the following final outcomes for markets with unilat-

eral o↵ers and in large markets: (i) number and (ii) percent of final matchings

that are stable; avg. number of final pairs (matches) in which no agent has

a blocking partner across (iii) all markets and (iv) markets with an unstable

final matching; average percent of agents with at least one blocking partner

across (v) all markets and (vi) markets with an unstable final matching; (vii)

average number of blocking partners per agent across agents with at least

one blocking partner; average number of unmatched agents (viii) among all

agents, and (ix) among agents who have at least one blocking partner.
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o↵ers: e.g., the job market for academics, the marriage market in certain cultures, etc. To

explore the e↵ects of bargaining or proposal power, in our unilateral o↵ers treatments, only

foods were allowed to propose matches. While stability rates are not as high as in our baseline

experiments, we find that outcomes are fairly stable and also correspond to median outcomes.

With unilateral o↵ers, outcomes are qualitatively similar to those in our baseline treat-

ments, as seen in the bottom panel of Table 3 and the left column of Table 4. In these

treatments, 99% of participants are matched. In 78% of the final matches, no agent is in a

blocking pair, compared with 95% in the baseline markets in which both sides can make o↵ers.

At the market level, 51% of the markets culminate in a stable matching, compared with 88%

in the baseline treatments.18 As Figure 1 shows, the observed unstable matchings are close

to stable, although not as close as in our baseline treatments. Across the markets that fail

to reach stability, on average, around a quarter of agents has at least one blocking partner,

compared to a fifth in the baseline treatments. Similar to the baseline treatments, agents

who have blocking partners, have 1.2 such partners on average. The convergence in unilateral

markets is somewhat faster than in our baseline treatments: markets terminate after 2.21

minutes (sd = 1.05), including the final 30 seconds of inactivity, around 20% earlier than in

the baseline treatment.

Regarding selection, two important observations emerge. First, in markets with four stable

matchings (two per each embedded submarket), the stable matchings favored by foods, the

proposers, are much more frequent. In the baseline treatments, 27% converge to the food-

optimal stable matching, 21% to the color-optimal, and the rest to a non-extremal stable

matching.19 By contrast, in markets in which only foods can make o↵ers, 79% of the markets

18The corresponding percent of final matches in which no one is in a blocking pair (namely, final matchings
that are stable) for markets with a unique stable matching, two embedded 4⇥ 4 markets, and with five stable
matchings and three stable partners are 80% (47%), 92% (76%), and 61% (26%).

19In these markets, non-extremal stable matchings are the ones in which one of the 4⇥ 4 submarkets is at
the food-optimal stable matching, and the other submarket is at the color-optimal one.
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converge to the food-optimal stable matching, and none to the color-optimal stable matching

(the rest to one of the two non-extremal ones). The same finding emerges when looking

at individual matches across all markets, not only those reaching stability. In the baseline

markets, among all the agents who have two stable partners (75%), 68% of final matches are

food-optimal, and the rest are color-optimal. With unilateral o↵ers, 88% of the final matches

are food-optimal.

For the markets with two embedded 4 ⇥ 4 markets, results are consistent with extremal

outcomes, but this is no longer true in markets with three stable partners. Indeed, for markets

in which each agent has three stable partners, median outcomes are again the most common.

As the bottom panel of Table 3 shows, 65% of final matches that are stable correspond to

median stable matches when only foods are able to make o↵ers, compared to 77% when both

sides can do so. Similarly, among markets that reach full stability, 83% reach the median

stable matching, compared to 80% in the baseline treatments. There is also an increase in

the number of matches that are optimal for foods, the proposing side, from 3% to 19%, but

this comes mainly at the expense of matches that are optimal for colors, the receiving side.

Nonetheless, cardinal incentives matter for the distribution of outcomes as they do in our

baseline treatments: when foods have more to lose from forgoing higher-ranked partners,

color-optimal matches are less common.

Market Size. The outcomes in our large-market treatment are very similar to those in our

baseline experiments, as seen in the right column of Table 4. Our large markets involve 30

participants, which is quite large as experimental markets go. They do not, of course, come

near the size of some real-world matching markets—such as, for example, the medical residents

market—but it is a comfort that duplicating the size of our baseline markets does not upset

our main results.
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In our large-market treatments, in 93% of the final matches, no agent was part of a

blocking pair. In terms of market-wide outcomes, while 67% of matchings are fully stable,

the number of blocking pairs within unstable markets is, again, very small, see Figure 1. Our

large experimental markets exhibit at most 3 disjoint blocking pairs, and in over 60% of cases

just one. Indeed, as Table 4 reports, even in markets that fail to reach full stability, the vast

majority of agents have no blocking partners (89%, as compared to 96% across all markets,

unstable and stable). Agents who have blocking partners have, on average, just one; and there

are no agents left unmatched. Interestingly, the seemingly more complex markets with three

stable matchings always culminate in a stable matching in our large 15⇥ 15 markets.

As one might expect, convergence is slower in these large markets. On average, markets

terminate after 5.35 minutes (sd = 3.06), including the final 30 seconds of inactivity, and half

do so before the five-minute mark.

As for the selected stable match partners, the results are similar to those in our baseline

treatments, although arguably more extreme. In the large market treatments, every agent

who has three stable partners (93%) matches with their median stable partner. Hence, the

market-wide stable matchings are exclusively median stable matchings.

6 Cardinal Incentives and Social Preferences

A matching delivers cardinal (monetary) payo↵s to market participants, and these payo↵s

may be more or less fair, they may be more or less equal across participants. The degree

of fairness of a matching can reasonably be expected to influence whether it is chosen: a

taste for egalitarian outcomes is well-documented in experimental economics (the literature

has suggested di↵erent types of social preferences, for surveys see, e.g., Chapter 4 in Kagel

and Roth, 2020, and Fehr and Gächter, 2000). Fairness considerations may, in particular, be

important given our finding that median matches are very common.
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Our design entailed several markets with identical ordinal preference profiles, but di↵erent

cardinal utility representations. Focusing on such variations, we have already seen that the

side that faces steeper cardinal incentives is more likely to achieve its optimal stable matching.

We now inspect the impact of payo↵ distributions. We show that equality of payo↵s across

match partners makes a matching more likely, as long as it is stable.

We first analyze markets with a salient egalitarian, but unstable, matching (see Section 3).

In these markets, one unstable matching entails identical payo↵s to all market participants,

and comparable utilitarian welfare to that generated by the unique stable matching.20 Partic-

ipants consistently fail to select the unstable egalitarian matching. In our baseline treatments,

none of these markets end up in the unstable, albeit more equal, matching outcome.

Our larger markets, in which more payo↵ variation could be introduced, generate similar

findings. For example, we ran one 15 ⇥ 15 market in which there was an unstable matching

under which all agents received exactly $4; there was a unique stable matching in which the

average payo↵ was also $4, which was much more unequal.21 While the final outcome in these

markets is not always stable—in some instances a few blocking pairs remain—participants

clearly avoid the egalitarian unstable matching.

Second, we use the markets with two stable matchings to assess the e↵ects of cardinal

utilities on the selection of food- and color-optimal stable matchings.22 Markets are more

likely to converge to the extremal stable matching, food- or color-optimal, which has the

lowest payo↵ variation. That is, when the dispersion of payo↵s is relatively high in, say, the

color-optimal matching, markets tend to achieve the food-optimal matching, and vice-versa.

20By specifying identical payo↵s to all market participants, we avoid the challenge of identifying the indi-
viduals that are relevant for participants’ social preferences.

21Its Gini index was 26. For a country’s income distribution, this is in the Scandinavian range, but it
appears starkly unequal compared to perfect egalitarianism with no utilitarian e�ciency loss.

22Recall that each of these markets was constructed by embedding two smaller 4⇥ 4 markets, which allows
us to gain more payo↵ variations, see Section 3. In these markets, 99% of final matches are stable. In
addition, the embedding of the “submarkets” was e↵ective—indeed, there are only 6% of cross-o↵ers and 1%
of cross-matches (the acceptance probability of cross-o↵ers is 0.05, compared with 0.42 of non-cross o↵ers).
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Specifically, we compute the coe�cient of variation of agents’ payo↵s in a given matching:

the standard deviation of payo↵s divided by their mean. The coe�cient of variation is a

“scale free” measure of the dispersion in payo↵s across agents. We then compute the ratio of

the coe�cient of variation at the food-optimal stable matching over that at the color-optimal

stable matching. Markets with a high ratio are those in which the payo↵ variation in the food-

optimal stable matching is high, relative to that in the color-optimal stable matching. When

the ratio is above the median ratio in our data, the food-optimal matching obtains 11.7%

of the time, and the color-optimal 35.3%. When it is below the median, they obtain 43.8%

and 6.3%, respectively. The di↵erence between these values is significant at any conventional

level of confidence. The implication is that when the variance in payo↵s at the color-optimal

matching is relatively high, we tend to get more food-optimal outcomes, and vice-versa.

To summarize, our results suggest that egalitarian, or fairness, considerations play a role

in selecting outcomes, but they are not so strong as to trump stability.23

7 Market Dynamics

So far, our discussion focused on final market outcomes. In this section, we describe the

dynamics generating the outcomes we observe.

7.1 Evolution of O↵ers, Responses, and Matches

Markets reach stability gradually, with the vast majority of blocking opportunities, especially

the most profitable ones, vanishing during the initial stages in a round, as shown in Figure 2.

The figure plots the total number of blocking pairs, the maximum number of disjoint blocking

23Our results cannot be directly compared with the experimental bargaining literature that has documented
a preference for fairness. The nature of bargaining in our experiments is substantially di↵erent from other
experiments, such as the dictator game, where the compromise between the two sides is obvious. In fact, as
noted, identifying the set of stable matchings in our markets is arguably extremely challenging.
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pairs, the number of agents in at least one blocking pair, and the average payo↵ loss with

respect to the best blocking partner of each agent. The solid lines correspond to averages

across all baseline markets, and the shaded regions to a standard deviation above and below

the average at every point in time. On average, after 20% of markets’ duration has elapsed,

half of all blocking opportunities vanish, and the average gains per agent from forming blocking

pairs are cut in half. Nonetheless, over half the agents still have a potential blocking pair.

When 90% of a market’s duration has elapsed, on average, there are only around four agents

who still have a blocking partner, and each has one or two blocking opportunities. Most

markets end with no blocking pairs. After a relatively short interval of time, most blocking

pairs are traded away.24

O↵ers echo the picture emerging from Figure 2. More o↵ers are made initially: about half

are made within the first 40% of markets’ duration. Table 5 provides an overall summary of

o↵er features throughout market operations.

Markets with a larger number of stable matchings exhibit more o↵ers, repeated o↵ers,

and matches, as shown in the top panels of Table 5. On average, 59 o↵ers are made, and 25

matches are formed in markets with five stable matchings. In markets with a single stable

matching, on average, only 45 o↵ers are made, and 16 matches are formed, while in the two

four-by-four markets, there are around 40 o↵ers and 16 matches.25

The o↵er volume contrasts with that of Gale and Shapley’s DA. Under DA, our markets

with multiple stable matchings require a relatively low number of o↵ers, depending on which

side is proposing, 13–14 for markets with five stable matchings, and 10–12 for the two four-

by-four markets, while the markets with a unique stable matching require 18–21 o↵ers. These

24A similar image emerges when di↵erentiating baseline markets according to their number of stable match-
ings; as well as for our additional treatments entailing larger markets and unilateral o↵ers. See Figure 5 in
the Appendix.

25These figures may reflect the complexity of our markets, where more complex markets require more
activity to converge. Recall that, even though the two four-by-four markets feature four stable matchings,
they e↵ectively operate as two smaller markets, each with four participants.
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Figure 2: Distance to stable matching over time

numbers are not a good predictor of the volume of o↵ers in our experimental markets, which

is consistent with the final outcomes we observe not coinciding with the extremal stable

matchings DA produces. Another contrast with the DA algorithm is the volume of repeat

o↵ers we observe. Under DA, an o↵er is never repeated. In our data, around a third of o↵ers

are made to agents whom the proposer had already made an o↵er to previously. While the

acceptance rate of o↵ers is around 43%, repeated o↵ers are accepted at lower rates of around

29%. Across our treatments, however, 19% of matches are repeat matches.
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Table 5: Summary statistics of dynamics

Unique stable

matching

Two embedded

4-by-4 markets

5 stable matchings

& 3 stable partners All baseline

# Mkts. 30 35 20 85
(35.3%) (41.2%) (23.5%) (100.0%)

# o↵ers 44.8 39.7 59.2 46.1
# matches 15.9 15.9 24.6 18.0
% accepted o↵ers 41.3 46.5 40.4 43.2

% repeated o↵ers 29.0 33.6 36.8 32.7
% accepted | repeated 28.1 30.3 27.3 28.8
% repeated matches 16.2 17.6 24.6 18.8

% o↵ers to blocking partners 65.5 65.0 63.5 64.8
% o↵ers only-proposer beneficial 31.1 29.8 33.6 31.2

% proposer is matched 28.5 36.5 42.3 35.0
% proposer is matched | #o↵er > 1 53.3 59.0 63.2 58.0
% receiver is matched 42.2 43.6 46.4 43.8
% receiver is matched | #o↵er > 1 65.5 61.8 63.7 63.5

% proposer is active 88.1 78.7 84.7 83.5
% o↵er is downward 76.7 77.8 61.1 73.5
% o↵er is Gale-Shapley 42.8 48.6 31.8 42.6
% o↵er skips someone 35.6 23.4 41.0 31.8

Notes: The table reports averages of the following variables across markets in the baseline treatment: number of o↵ers;

number of matches (same as number of accepted o↵ers); % of o↵ers that are accepted; % of o↵ers that are repeated

(proposer had already proposed to the receiver previously); % of o↵ers that are accepted among those that are repeated;

% of matches that are repeated (proposer and receiver had already been matched previously); % o↵ers made to a blocking

partner; % of o↵ers that would only be beneficial to the proposer if accepted; % of o↵ers in which the proposer/receiver

is matched (conditioning on o↵ers other than the first of each proposer); % o↵ers in which the proposer is active (a

proposer is active if there exists an agent they prefer to their current match whom they have not made an o↵er to); %

o↵ers that are downward (an o↵er is downward if the proposer has not proposed to an agent who they prefer less than

the receiver); % o↵ers that are Gale-Shapley (an o↵er is Gale-Shapley if the receiver is the proposer’s most preferred

agent among the ones the proposer has not proposed to); and % o↵ers that skip someone (an o↵er skips someone if

there exists an agent the proposer has not made an o↵er to and whom the proposer prefers more than the receiver).
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O↵ers are nearly always beneficial for proposers, frequently made to blocking partners,

and seemingly independent of whether either is matched, as shown in the middle panels of 5.

Roughly 65% of o↵ers are made to blocking pairs while 31% of o↵ers are beneficial only to the

proposer.26 Furthermore, agents continue making o↵ers while matched. Taking out the first

o↵er made by every agent, the majority of o↵ers, 58% of them, are made by matched agents.

Similarly, o↵ers are made regardless of whether the recipient of the o↵er is matched or not.

The bottom panel of Table 5 provides further insights on when participants decide to make

o↵ers. In line with our observations so far, participants make o↵ers when there are conceivable

benefits to doing so, but their behavior is distinctively di↵erent from that prescribed by the

DA algorithm. We call an agent active if there exists another agent they prefer to their current

match whom they have not proposed to previously.27 Across all our baseline treatments, most

proposers (84%) are active. This proportion is higher than that of proposers who are matched,

in line with our observation that agents make o↵ers while paired.

In terms of whom o↵ers are made to, we classify o↵ers into three overlapping categories:

downward, Gale-Shapley, and whether they skip someone. An o↵er is downward if the proposer

has not proposed to an agent whom they prefer less than the receiver. Intuitively, o↵ers are

downward if a proposer is going down their preference ranking when making an o↵er. The

condition for an o↵er being downward relates only to o↵ers made before, not proposals that

were accepted: even if a proposer makes an o↵er to a target they prefer to their current match,

their o↵er might still be downward. While the vast majority of the o↵ers we observe are

downward (74%), it is not uncommon for agents to go up their ranking. An o↵er is said to be

Gale-Shapley if the receiver is the proposer’s most preferred agent among the ones the proposer

26The remaining 4% can be catalogued as “mistakes,” in that these o↵ers would not be beneficial to the
proposer if accepted.

27In the DA algorithm, by construction, all agents who make o↵ers are active. However, the converse does
not hold: matched active agents cannot make o↵ers.
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has not proposed to.28 Aminority of o↵ers are Gale-Shapley (43%), implying that agents either

skip potential partners or make repeat o↵ers throughout the market. Accordingly, an o↵er

is said to skip someone if there exists an agent the proposer has not made an o↵er to whom

they prefer to the receiver. Around 32% of o↵ers skip someone.

In sum, while agents tend to go down their preference lists when making proposals, they

generally do not follow the order of proposals proscribed by the DA algorithm: they frequently

make repeat o↵ers and skip agents on their preference list. Similarly, while the vast majority

of proposals are beneficial to both the proposer and the receiver, a non-negligible fraction of

o↵ers ignore the incentives faced by receivers and are beneficial only to the proposers.

O↵er features vary over time. Figure 3 displays all o↵ers made, in all of our baseline

markets. On the x-axis, we plot the relative time of each proposal, where 0 indicates the start

of a round and 100 the time at which the last proposal occurs.29 The top two panels have

the receiver’s rank on the proposer’s preference list on the y-axis, where 1 stands for the most

preferred agent and 8 for the least preferred. The bottom two panels have the proposer’s rank

on the receiver’s preference list on the y-axis. The left two panels indicate which o↵ers are

rejected (in red) and which are accepted (in blue). The right two panels indicate whether

o↵ers are made to blocking partners (in green), beneficial only to the proposer and not to the

receiver (in yellow), beneficial only to the receiver (in red), or beneficial to neither (in gray).30

Figure 3 suggests several messages. First, o↵ers are much more likely to be accepted by

receivers who rank their proposers highly. Second, proposers internalize receivers’ responses.

While many of the o↵ers are made to the proposer’s top choice, 45% to be precise, a significant

fraction is made to the second and third choices, even at early stages of the market (overall,

28The label follows from noting that in the DA algorithm, all o↵ers are Gale-Shapley.
29On average, the last proposal took place after 2.28 minutes in our baseline markets; 30 seconds before

the round terminates.
30The percentages displayed in the legend are across all o↵ers made, pooling all the markets together.

Hence, they di↵er slightly from those in Table 5, which average across markets.
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Figure 3: Timing of proposals, rank of receiver (top) and of proposer (bottom)
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85% of o↵ers are made to one of the proposer’s three top choices). O↵ers made to the second,

third, and fourth top choices of a proposer are much more likely to be accepted than those

made to a proposer’s most preferred partner: over 50% acceptance rate compared with 27%.

Third, proposers do not internalize receivers’ responses fully. A substantial fraction of o↵ers

are made to receivers for whom proposers are low ranked. Such o↵ers are often rejected. In

fact, the majority of o↵ers that are only beneficial to proposers are made to proposers’ most

preferred partners, disregarding receivers’ preferences, at later stages of the market. These

o↵ers are frequently rejected.

Next, we inspect how our markets unfold over time and evaluate several theoretical models

of market dynamics. We then analyze agents’ choices to make or accept o↵ers over time.

7.2 Dynamic Models and Simulations

The theoretical literature on stabilization dynamics in matching markets is limited.31 Three

dynamic models guide our analysis of the evolution of matchings in our experimental markets.

First, we consider a version of the Gale and Shapley (1962) DA algorithm in which proposers

are chosen randomly from both sides. Second, we consider the Random Paths to Stability

(RPS) model of Roth and Vate (1990). Third, we consider the Random Best Reponse (RBR)

dynamics proposed by Ackermann et al. (2011), which allows (myopic) optimization in a

process resembling RPS.

Two-Sided Random Deferred Acceptance (Two-RDA). In the algorithm we consider,

a proposer is chosen uniformly at random from either side among all agents who are active.32

Proposers make o↵ers to agents they prefer the most among those they have not proposed

31There is an active literature on dynamic matching markets, see Baccara and Yariv (2022) and our lit-
erature review. However, relatively little attention has been dedicated to how agents reach stable outcomes,
analogous to the literature on learning in game theory, or tâtonnement dynamics in competitive markets.

32As before, an agent is active if there exists someone they have not proposed to, whom they prefer to their
current match.
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Table 6: Market Simulations—Two-Sided Random Deferred Acceptance (Two-RDA),
Random Paths to Stability (RPS), and Random Best Response (RBR)

Experiment Two-RDA RPS RBR

Market Activity

# o↵ers 59.2 54.2 37.6 38.2
# matches 24.6 30.7 37.6 38.2
% accepted o↵ers 40.4 56.4 100.0 100.0
% repeated o↵ers 36.8 0.0 17.6 24.1
% accepted | repeated 27.3 - 100.0 100.0
% repeated matches 27.2 12.8 17.6 24.1

# o↵ers to blocking partners 37.3 30.7 37.6 38.2
% o↵ers to blocking partners 63.5 56.4 100.0 100.0
% o↵ers only-proposer beneficial 33.6 43.6 0.0 0.0

% proposer is active 84.7 100.0 99.2 98.7
% o↵er is downward 61.1 100.0 69.8 67.8
% o↵er is Gale-Shapley 31.8 100.0 15.1 22.6
% o↵er skips someone 41.0 0.0 82.3 73.0

Market-level outcomes (matchings)

% stable 75.0 46.9 100.0 100.0
% median | stable 80.0 63.9 59.2 55.3
% non-extremal | stable 100.0 89.2 83.8 83.6
% food-optimal | stable 0.0 5.4 0.6 3.7
% color-optimal | stable 0.0 5.4 15.7 12.7

Individual-level outcomes (matches)

% stable 96.9 93.8 100.0 100.0
% median | stable 75.6 51.2 71.5 69.4
% fruit-optimal | stable 2.5 19.8 0.6 3.7
% color-optimal | stable 18.8 22.6 28.0 26.8

Notes: The table reports average activity and outcome measures across the Baseline markets

with five stable matchings and three stable partners (see Table 3). The first column reports

the experimental data, and the second through fourth report simulations using the Two-Sided

Random Deferred Acceptance (Two-RDA), the Random Paths to Stability (RPS) of Roth

and Vate (1990), and the Random Best Response (RBR) of Ackermann et al. (2011). For

each algorithm and market, we ran 10,000 simulations. In Two-RDA, proposers are chosen

uniformly at random. In RPS, blocking pairs are chosen with probability proportional to

exp(�gf,c), where gf,c denotes the total net gain of blocking pair (f, c) and � = 0.0175. In

RBR, agents who have at least one blocking partner are chosen with probability proportional

to exp(�ga), where ga is the maximum net gain of agent a across all its blocking partners

and � = 0.00425. We choose � in both cases to roughly match the number of o↵ers made to

blocking partners in the experimental markets. See Tables 9, 10, and 11 in the Appendix to

see results with distinct distributions for each algorithm.
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to previously. In turn, agents accept o↵ers when the proposers are ranked higher than their

current matches. The algorithm terminates when the set of active agents is empty.33

Results from Two-RDA generate similar o↵er volumes to those observed in the data, but

are inconsistent with other data features, as shown in Table 6. The table reports activity

and outcome measures for our baseline markets. The first column of table 6 reports the

experimental data, and the second column reports the average across 10,000 simulations of

Two-RDA. The volume of market activity in Two-RDA is similar to what we observe in our

data: the average number of o↵ers in the data is 59, and 54 in Two-RDA. Despite the slightly

higher number of o↵ers, in the data, o↵ers are less likely to be accepted, translating into a lower

number of matches than in Two-RDA. Our experimental markets converge to stable matchings

more often than Two-RDA, which yields stability in less than half of the simulations.34 When

Two-RDA does converge to a stable outcome, the median is the modal outcome both at the

market and the individual-level. However, conditional on achieving stability, the frequency of

the median stable matching is still far lower than in the data.

In the Appendix, we also report results from a variation of Two-RDA that captures agents’

cardinal incentives to form blocking pairs. Specifically, we run simulations in which an active

agent a is chosen to be a proposer with probability proportional to ga or exp(�ga), where ga is

the gain a would obtain if their next proposal were accepted, and � > 0 is a fixed parameter.

The resulting simulations generate a higher frequency of stable matchings, but they fail to

replicate other aspects of the data, in particular the volume of o↵ers. Table 9 in the Appendix

reports the results for the proportional case, and for di↵erent values of �.

Random Paths to Stability (RPS). This model assumes that blocking pairs are formed

at random. Starting from some matching at time t, say µt, the set of all blocking pairs is

33See the Appendix for a formal description of the algorithm.
34In contrast with the regular DA, Two-RDA is not guaranteed to result in a stable matching.
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tabulated, and one is formed at random. That is, the corresponding color and food in that

blocking pair get matched and their partners in µt (if they exist) are unmatched. The resulting

matching is µt+1, and the process continues iteratively. Roth and Vate (1990) proved that

these dynamics converge to a stable matching with probability one.35

RPS does a poor job at predicting the o↵er volume and the distribution of ultimate stable

matchings that we see in our experimental data. In order to give näıve dynamics such as

RPS a chance at explaining our data, we consider versions of RPS in which the probability a

blocking pair forms depends on the welfare gain for the agents participating.

In the Appendix, we also report results from versions of RPS in which the probability

that a blocking pair forms depends on the welfare gain of blocking partners. In particular, we

consider a version in which the probability a blocking pair forms is proportional to the sum of

payo↵ gains of the blocking partners. We also consider a version in which that probability is

logistic. Namely, the probability any blocking pair (f, c) forms is proportional to exp(�gf,c),

where gf,c is the sum of f and c’s payo↵s from matching and � is a sensitivity parameter.

Table 10 in the Appendix reports results from simulations of the original RPS, as well

as its two variants, including alternative values of the sensitivity parameter � of the logistic

variant. The logistic model seems to fit the data best, perhaps due to the additional degree

of freedom its sensitivity parameter a↵ords. The third column of Table 6 reports the results

of the simulated markets with this logistic variant with � = 0.0175, chosen to approximately

match the number of o↵ers made to blocking partners in our experimental markets.

Results from the logistic variant of RPS are consistent with some features of the data. By

design, outcomes are stable. Furthermore, the median stable matching is the modal outcome.

Nonetheless, the frequency of median stable matching is substantially lower than what we

35Rudov (2022) shows that, in fact, this prediction cannot be refined further: under mild conditions, any
unstable matching can reach any stable matching through these dynamics.
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observe in the data and the dynamics of o↵ers and responses is di↵erent.36 As Table 6 shows,

there are fewer repeated o↵ers and matches, somewhat more downward o↵ers and more o↵ers

exhibiting skips.

Random Best Response (RBR). This dynamic model, due to Ackermann et al. (2011),

is an alternative to RPS in which, instead of randomly choosing blocking pairs, a random

agent is selected at each stage. That agent’s most preferred blocking pair is then formed, if

one exists. Specifically, given a matching µt, we tabluate the set of agents that have at least

one blocking partner, and choose one at random. The next matching, µt+1, is obtained by

matching the chosen agent with their most preferred blocking partner. RBR converges with

probability one to a stable matching, just as RPS.

We consider versions of RBR in which cardinal payo↵ information is allowed to play a

role. The standard version of RBR does not and, as with RPS, is not in line with the o↵er

volume aspect of our data. We consider two variants analogous to those we consider for RPS.

Let ga denote the net gain agent a would obtain if matched to the most preferred blocking

partner. In the two variants of RBR, we choose each agent a who is part of a blocking pair

with probability proportional to ga, or exp(�ga), where � is a sensitivity parameter. Table 11

in the Appendix reports simulation results for these di↵erent variants of RBR, allowing for

an array of � values. The fourth column in Table 6 reports results for the logistic variant

with � = 0.00425, which yields simulated o↵er volumes to blocking partners resembling those

observed in our experimental markets.

As can be seen from Table 6, the logistic variant of RBR yields results similar to those

of RPS. Its outcomes are consistent with some global features of our data. As with RPS, it

yields stable outcomes by design. Additionally, it generates a high frequency of median stable

36Notably, the frequency of median stable matchings does not depend on the sensitivity parameter �.
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matchings, albeit at a substantially lower frequency than that observed in the data. However,

like RPS, this version of RBR fails to replicate many features of the dynamics we observe.

Taken together, while neither of the three classes of dynamic models we consider replicate

our experimental findings precisely, they shed some light into the dynamics underlying our

experimental results. First, both cardinal and ordinal incentives matter in the experiment.

While agents frequently go down their preference lists as in the DA, they also focus on exploit-

ing blocking opportunities, especially the most profitable. Second, the amount of repeated

o↵ers observed in the experiment cannot be explained by exploiting blocking opportunities

alone. Third, while the median stable matching is the modal outcome under each of the

models, none predict it at frequencies as high as those appearing in the data.

7.3 Individual Dynamics

As Figure 2 and our prior analysis indicated, o↵ers appear to be driven by the volume of

potential blocking pairs in the market. We now analyze the main determinants driving market

participants to make and accept o↵ers.

Determinants of O↵er Targets. O↵ers are driven by yield—the chance that the o↵er will

be accepted—and payo↵, as well as by past o↵ers and matches, as Table 7 shows. The table

reports the results of multiple conditional logits explaining o↵er targets. We use the following

regressors. Proposer’s and receiver’s Payo↵ Advantage (PA) is the change in payo↵ to the

agent if the o↵er is accepted. We include it as a dummy, indicating whether it is positive (i.e.,

the proposer or receiver find the match profitable given the payo↵ of their current match),

and also di↵erentiate gains from losses by splitting the variable into its positive and negative

components. In addition, we include the receiver’s rank in the proposer’s rank-order list

(higher rank means less preferred), whether the receiver is currently matched, whether the
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pair formed by the proposer and the receiver are a blocking pair, whether the pair has been

matched previously, the number of proposals the proposer has made to the receiver previously,

whether the pair formed by the proposer and the receiver is a stable pair, and whether the

proposal is downward, Gale-Shapley, or skips someone (as defined above). We estimate several

specifications, and test their fit in-sample and out-of-sample using the mean-squared error, the

percentage of choices in which the alternative chosen in the data has the maximum predicted

choice probability, and the average probability of correctly predicting the data.

The average marginal e↵ects reported in Table 7 confirm some of the observations already

made. First, proposers not only take their own preferences into account, but also those of

the receivers. The probability of proposing to a blocking partner is around 0.12 higher than

to someone who is not. Likewise, proposers are more likely to target receivers that find

it more profitable to match with them. Second, proposers are more likely to propose to

receivers who they have already proposed to in the past, and, especially, to receivers whom

they have already been matched with. Third, proposers are more likely to make downward

or Gale-Shapley proposals. Last, and perhaps surprisingly, proposers are more likely to make

proposals to receivers who are stable partners. As already noted, it is extremely challenging

to identify stable partners in our experimental markets. The draw of stable partners indicates

that stability may be intrinsically attractive.37

Determinants of O↵er Responses. Receivers are more likely to accept proposals that

are more profitable in monetary terms, disregarding proposers’ payo↵s, and are more selective

the more o↵ers they receive over time, as Table 8 illustrates. The table reports the results of

binary logits explaining which o↵ers are accepted. We include similar regressors to those in

Table 7, with the addition of a dummy variable capturing whether the proposal is the first

37In the Appendix, we also replicated our analysis here including cardinal payo↵ information for both
proposers and receivers, see Tables 12 and 13. Results are qualitatively the same.
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Table 7: Proposal Conditional Logits

(1) (2) (3) (4) (5) (6)

Proposer’s PA > 0 0.257*** 0.138*** 0.112*** 0.047 0.045 0.106***

(0.036) (0.034) (0.033) (0.030) (0.030) (0.035)

Receiver’s rank (in prop’s list) -0.075*** -0.076*** -0.074*** -0.071*** -0.064*** -0.060***

(0.001) (0.002) (0.002) (0.002) (0.002) (0.004)

Receiver is matched -0.010 0.087*** 0.102*** 0.039* 0.038*

(0.016) (0.028) (0.020) (0.020) (0.022)

Receiver’s PA > 0 -0.047 -0.151*** -0.167*** -0.153*** -0.181***

(0.054) (0.044) (0.046) (0.041) (0.047)

Are blocking pair (BP) 0.271*** 0.276*** 0.318*** 0.286*** 0.304***

(0.044) (0.042) (0.044) (0.040) (0.050)

max{Rec’s PA, 0} 0.033*** 0.035*** 0.019*** 0.027***

(0.006) (0.005) (0.005) (0.005)

min{Rec’s PA, 0} 0.050*** 0.047*** 0.034*** 0.034***

(0.008) (0.008) (0.007) (0.008)

Matched previously 0.054*** 0.037*** 0.067***

(0.011) (0.010) (0.012)

# previous proposals (prop. to rec.) 0.018*** 0.018*** 0.026***

(0.003) (0.003) (0.007)

Are stable partners (SP) 0.078*** 0.087***

(0.007) (0.008)

Proposal is downward 0.085***

(0.023)

Proposal is Gale-Shapley 0.109***

(0.035)

Proposal skips someone -0.006

(0.041)

Observations 31,506 31,506 31,506 31,506 31,506 31,506

Adj. R
2

0.311 0.374 0.389 0.410 0.420 0.442

MSE (sample) 8.699 7.949 7.757 7.586 7.487 7.234

MSE (2-fold ⇥ valid) 8.701 7.958 7.770 7.608 7.513 7.257

MSE (future | present) 8.207 7.493 7.260 7.260 7.142 6.737

MSE (present | future) 9.341 8.481 8.271 8.131 8.054 7.905

%CorrMaxCP (sample) 44.501 55.523 56.464 57.115 55.885 58.538

%CorrMaxCP (2-fold ⇥ valid) 44.551 55.195 56.065 57.265 55.970 58.603

%CorrMaxCP (future | present) 48.800 59.657 60.400 61.029 58.400 62.686

%CorrMaxCP (present | future) 41.361 51.294 51.836 53.506 52.129 54.007

Avg P(OK Pred) (sample) 34.097 39.338 40.402 42.214 43.047 45.277

Avg P(OK Pred) (2-fold ⇥ valid) 34.108 39.340 40.394 42.173 42.991 45.232

Avg P(OK Pred) (future | present) 33.736 39.667 41.212 42.747 43.896 46.761

Avg P(OK Pred) (present | future) 35.215 39.745 40.547 41.433 41.842 43.694

Notes: Table reports average marginal e↵ects of conditional logits. The response variable indicates the receiver

of every proposal in the data. Standard errors are clustered at participant level. *, **, and *** stand for 90%,

95%, and 99% confidence levels, respectively. The table also reports the mean-squared error (MSE) of the

predicted choice probability, percentage of choices in which the predicted probability of the alternative chosen

in the data is the greatest among all alternatives (%CorrMaxCP ), and the average probability of correctly

predicting the data (Avg P(OK Pred)). Each is computed in the estimation sample and out of the sample using:

random two-fold cross-validation, predicting the final five rounds with the first five rounds, and the first five

rounds using the final five. See the Appendix for more details.
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proposal made by the proposer to the receiver, and the total number of proposals the receiver

has received so far.

Larger monetary gains to receivers are associated with higher acceptance probabilities,

even for proposers who are ranked similarly, echoing the importance of cardinal payo↵s in our

markets. History matters for receivers: they are more likely to accept o↵ers from proposers

with whom they had already matched, but less likely to accept from those whom had already

rejected. In general, receivers are less likely to accept o↵ers as the receive more of them. Sim-

ilar to proposers, receivers seem to be drawn to proposers who are stable partners, accepting

their o↵ers at higher rates.38

8 Discussion and Conclusions

We provide an empirical benchmark for the performance of decentralized matching markets

using an array of lab experiments. We document three main findings. First, decentralized

markets very often culminate in stable matchings on their own, absent any centralized inter-

vention. The stabilization process is quick, in terms of both time and market activity. Second,

the median stable matching has very strong drawing power and is frequently selected. Third,

cardinal incentives impact the distribution of selected matchings that are not the median.

Roughly speaking, the side of the market that has “more to lose” from forgoing their favorite

stable matching, is more likely to implement it. We also describe the dynamics leading to

stability. By and large, participants form successive blocking pairs. However, participants are

perhaps more sophisticated than suggested by the näıve dynamics the literature has proposed,

with proposers strategically targeting receivers who value them highly and responders taking

into account past market activity.

38Adding participant fixed e↵ects to these regressions does not alter the results and decreases their predic-
tive power. This suggests that there is no significant unobserved heterogeneity across participants acting as
receivers; see Table 14 in the Appendix.
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Table 8: Acceptance Binary Logits

(1) (2) (3) (4) (5) (6)

Receiver’s PA > 0 0.761*** 0.586*** 0.568*** 0.850*** 0.718*** 0.698***

(0.032) (0.042) (0.042) (0.190) (0.164) (0.162)

Receiver is matched 0.208*** 0.408*** 0.240*** 0.238*** 0.239*** 0.213***

(0.028) (0.033) (0.037) (0.037) (0.033) (0.031)

max{Rec’s PA, 0} 0.078*** 0.038*** 0.038*** 0.037*** 0.034***

(0.008) (0.010) (0.010) (0.008) (0.008)

min{Rec’s PA, 0} 0.069** 0.032 0.029 0.003 -0.007

(0.028) (0.029) (0.030) (0.021) (0.017)

Proposer’s rank (in rec’s list) -0.037*** -0.037*** -0.030*** -0.016***

(0.005) (0.005) (0.004) (0.004)

Proposer’s PA > 0 0.230 0.135 0.112

(0.145) (0.125) (0.126)

Are blocking pair (BP) -0.292 -0.189 -0.196

(0.187) (0.163) (0.163)

Matched previously 0.154*** 0.135***

(0.020) (0.021)

First proposal (prop. to rec.) -0.009 -0.003

(0.029) (0.029)

# previous proposals (prop. to rec.) -0.039* -0.041**

(0.020) (0.020)

# previous proposals (total to rec) -0.018*** -0.015***

(0.005) (0.005)

Are stable partners (SP) 0.111***

(0.013)

Observations 4,147 4,147 4,147 4,147 4,147 4,147

Adj. R
2

0.317 0.351 0.370 0.371 0.397 0.410

MSE (sample) 15.407 14.307 13.702 13.690 13.117 12.794

MSE (2-fold ⇥ valid) 15.409 14.318 13.717 13.706 13.235 12.927

MSE (future | present) 16.039 14.786 14.154 14.136 13.832 13.333

MSE (present | future) 14.987 14.134 13.540 13.557 12.967 12.835

%CorrMaxCP (sample) 74.608 79.551 80.420 80.395 81.215 81.601

%CorrMaxCP (2-fold ⇥ valid) 74.605 79.560 80.420 80.394 80.762 81.590

%CorrMaxCP (future | present) 73.672 80.069 79.269 79.326 79.783 81.154

%CorrMaxCP (present | future) 75.292 78.923 80.676 80.634 81.845 81.135

Avg P(OK Pred) (sample) 69.187 71.301 72.473 72.493 73.614 74.303

Avg P(OK Pred) (2-fold ⇥ valid) 69.181 71.296 72.458 72.480 73.550 74.237

Avg P(OK Pred) (future | present) 67.867 69.723 70.952 70.989 71.871 72.604

Avg P(OK Pred) (present | future) 70.159 72.592 73.695 73.680 74.986 75.625

Notes: Table reports average marginal e↵ects of binary logits. The response variable is an indicator of whether

a proposal was accepted. Standard errors are clustered at participant level. *, **, and *** stand for significantly

di↵erent to zero at a 90%, 95%, and 99% confidence level, respectively. The table also reports the mean-

squared error (MSE) of the predicted probability, percentage of choices in which the predicted probability of

the alternative chosen in the data is the greatest among all alternatives (%CorrMaxCP ), and the average

probability of correctly predicting the data (Avg P(OK Pred)). Each is computed in the estimation sample and

out of the sample using: random two-fold cross-validation, predicting the final five rounds with the first five

rounds, and the first five rounds using the final five. See the Appendix for more details.
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Our findings are important from a market design perspective. While our experimental

markets often culminate in a stable matching, it is rarely an extremal stable matching. If there

are reasons for a market designer to desire extremal stable matchings—say, favoring young

interns in a labor market environment or students in a school-choice setting—a centralized

clearinghouse such as the commonly used DA may be beneficial. Indeed, most real-world stable

clearinghouses implement an extremal stable matching for submitted preferences. In addition,

while our decentralized markets took relatively little time and few o↵ers to converge, scaling

those durations, o↵er volumes, and necessary market turnover to large matching markets

may come at a substantial e�ciency cost. Centralization clearly allows a market designer to

establish a matching rapidly.

Our results also have implications for the theory of dynamic stabilization in matching

markets. Existing models that generate stable matchings through the sequential formation of

blocking pairs (such as Roth and Vate, 1990, or Ackermann et al., 2011), or which prescribe an

order for the proposals made by agents (such as the DA algorithm), do not match basic features

of our data. There is therefore room for further theoretical work that provides foundational

guidance on the selection of stable matchings in decentralized markets and takes into account

cardinal, not only ordinal, assessments of partners.

Our experiments are designed as a benchmark for decentralized interactions in an idealized

setting, allowing an examination of the cooperative theoretical predictions. Nonetheless, we

hope our design opens the door for further investigations that take into account various fric-

tions frequently present in applications: o↵er costs, rematching costs, incomplete information,

and the like.
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(2011): “Uncoordinated two-sided matching markets,” SIAM Journal on Computing, 40,

92–106. 4, 33, 34, 37, 43, 53

Agranov, M., A. Dianat, L. Samuelson, and L. Yariv (2022): “Paying to Match:

Decentralized Markets with Information Frictions,” mimeo. 5

Baccara, M. and L. Yariv (2022): “Dynamic matching,” Online and Matching-Based

Market Design. 33

Bergstrom, C. T., T. C. Bergstrom, and R. J. Garratt (2013): “Choosing partners:

A classroom experiment,” The Journal of Economic Education, 44, 47–57. 6

Chen, Y. and T. Sönmez (2006): “School choice: an experimental study,” Journal of

Economic Theory, 127, 202–231. 6

Cheng, C. T. (2008): “The generalized median stable matchings: finding them is not that

easy,” in Latin American Symposium on Theoretical Informatics, Springer, 568–579. 9

Echenique, F., R. Gonzalez, A. J. Wilson, and L. Yariv (2022): “Top of the Batch:

Interviews and the Match,” American Economic Review: Insights, 4, 223–38. 1

Echenique, F., A. J. Wilson, and L. Yariv (2016): “Clearinghouses for two-sided

matching: An experimental study,” Quantitative Economics, 7, 449–482. 6

Featherstone, C. R., E. Mayefsky, and C. D. Sullivan (2022): “Why do some

clearinghouses yield stable outcomes? Experimental evidence on out-of-equilibrium truth-

telling,” mimeo. 6

44



Featherstone, C. R. and M. Niederle (2016): “Boston versus deferred acceptance in

an interim setting: An experimental investigation,” Games and Economic Behavior, 100,

353–375. 6
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