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Abstract

I provide a theory that connects the rise of market power (De Loecker, Eeck-

hout, and Unger 2020) to the decline in research productivity (Bloom et al. 2020).

I build a Schumpeterian firm dynamics model with directed innovation and show

that the directedness of innovations has macroeconomic implications: Directed inno-

vation leads to selection of firms based on market power. The model predicts rising

markups when ideas are getting harder to find: As the stakes in the innovation process

rise, the incentives to direct innovations increase; this leads to stronger selection on

market power and an upward shift of the whole markup distribution. Moreover, de-

spite all moments being untargeted, the model predictions on factor shares, average

firm size, productivity growth and R&D-to-GDP ratio are all in line with the data.

1 Introduction

For decades, markups have been on the rise (De Loecker, Eeckhout, and Unger 2020)

while ideas have gotten harder to find (Bloom et al. 2020). This is the first paper that

connects these two striking macroeconomic trends. To formalize the argument, I de-

velop a theory of directed innovation. The theory predicts that as research productivity

declines, innovators direct their innovation efforts away from markets owned by domi-

nant firms – consequently, dominant firm are more likely to survive, thereby increasing

the level of market power in the economy.
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The key mechanism for this result is directed innovation. I define directed innova-

tion as the process of searching for and innovating in an attractive market. The directed-

ness of innovation would not matter if creative destruction were frictionless and innova-

tors could always improve upon the existing technological frontier. In reality, however,

there are several barriers to frontier innovation: Companies have trade secrets, technology

diffusion is sluggish because knowledge does not flow freely, and incumbents may em-

ploy strategic patents to prevent entry. Dominant firms are less likely to be replaced,

giving rise to a notion of dynamic market power.

The relevance of the mechanism is supported by recent evidence indicating that

market power is self-reinforcing. Argente et al. (2020) show that patenting by market

leaders leads to less innovation by competitors and entrants. In a similar vein, Galasso

and Schankerman (2015) find that if patent rights of large firms are removed by court

invalidation, there are more patent citations building on the focal patent. This effect be-

gins only two years after the focal patent has been invalidated, which is consistent with

the entry of new firms that engage in cumulative innovation (Galasso and Schankerman

2015). In this case, the removal of technological dominance (and thus market power)

spurs innovative activity.

A natural interpretation of the above findings is that innovators have incentives to

direct their innovation efforts towards markets where they will be competing with a ce-

teris paribus less dominant leader. As a consequence, dominant firms are better shielded

against creative destruction, leading to selection of firms based on market power. This

selection effect, which I term Schumpeterian selection, determines the economy-wide level

of market power. The first goal of this paper is to incorporate directed innovation and

Schumpeterian selection effects into an otherwise standard framework of quality-ladder

firm dynamics. The key prediction of the model is that the degree of directed innovation

determines the degree of Schumpeterian selection, which in turn pins down the distri-

bution of markups and the average economy-wide markup.

I build upon the Schumpeterian firm dynamics framework of Klette and Kortum

(2004) and develop a Schumpeterian theory of innovation frictions, directed innovation,

and market power. The barriers to frontier innovation are summarized by a single parame-

ter: the probability that an innovator cannot improve upon the leading technology (and

has to build upon the second-best technology instead).

The novel concept of directed innovation entails market search and an innovation

effort directed to the most attractive market in randomly searched sample. Search is
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Figure 1: Average markup in the US. Source: Data from De Loecker, Eeckhout, and

Unger (2020)

costly, giving rise to a trade-off that balances the cost of search and the cost of R&D.

Market search allows innovators (both incumbents and entrants) to sample more po-

tential markets, enabling them to direct their innovation efforts towards more attractive

markets.

Innovating in a market of a less dominant (i.e. low markup) leader is desirable:

While it is hard to overcome a large leader-follower gap, innovation success is virtu-

ally guaranteed in a small leader-follower gap market. Given the implied imbalances in

appropriability of innovations, innovators have incentives to direct their efforts towards

markets where they face – ceteris paribus – less dominant leaders. This, in turn, provides

a rationale for market search.

Since dominant firms that strengthen their leadership with patents are often firms

with a lot of market power, high-markup firms are less likely to be targeted by inno-

vators – and thus less likely to be replaced. This gives rise to Schumpeterian selection

effects: Dominance in the product market shields from future competition, so firms with
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above-average markups tend to grow large relative to firms that are exposed to more

competitive pressure.

I find that the degree of innovation directedness is indeed a key variable for the

macroeconomy: it determines how much selection of firms based on market power

there is, which in turn affects the distribution of market power, the level of monopo-

listic markup distortion, the average markup, and factor shares of the economy.

What are the model predictions in an environment where ideas get harder to find?

In section 4, I calibrate the model to data from the US pre-1980 economy; in section 5,

I then study the implications of a decline in research productivity. As R&D becomes

costlier, the stakes in the innovation process rise. Anticipating the greater cost of R&D,

innovators are willing to allocate more resources towards market search in order to bet-

ter direct their R&D efforts. Compared to an initial steady state, high-markup firms are

targeted even less, which shields them even more from creative destruction. The greater

degree of Schumpeterian selection implies rising market power over time – as has been

observed empirically (see figure 1 and De Loecker, Eeckhout, and Unger 2020). More-

over, the profit share increases at the expense of the labor share, again mirroring the data

trend.

It is worth emphasizing that by definition (the decline in research productivity is

simply taken from Bloom et al. 2020), all moments are untargeted. Other predictions

of the model are also in line with the data: While declining research productivity itself

disincentivizes R&D, this is more than compensated by higher expected profits over the

firm life cycle due to higher average markups – the latter effect incentivizes R&D suf-

ficiently so that R&D-to-GDP expenditures increase. The rise in R&D-to-GDP is, how-

ever, still dominated by the decline in research productivity, meaning that productivity

growth slows down. Further, provided that entrant innovation is more elastic than in-

cumbent innovation 1, the number of entrant innovations is falling relatively more than

the number of incumbent innovations; as a consequence, the model not only predicts a

falling firm entry rate but also a rise in average firm size.

The model makes a number of testable predictions: (i) the persistence of prod-

uct market leadership should have increased over time; (ii) there is a positive relation-

ship between markups and survival rates; and (iii) this relationship should have gotten

stronger over time.

1. Which is, for instance, trivially satisfied if there is no entrant congestion externality; in this case the

entrant R&D cost is a constant.
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Related literature and main contributions

While the modelling tools introduced by this paper are novel, it is well known that the

social value of innovations often exceed their private values because of limited appropri-

ability of innovations (Nelson 1959, Arrow 1962). Yet, for reasons of analytical tractabil-

ity, the literature on economic growth has mostly abstracted from the interaction be-

tween the market-specific state of competition and the directedness of innovation.

In their seminal contributions, Aghion and Howitt (1992) and Grossman and Help-

man (1991) have formalized the paradigm of creative destruction that drives economic

growth. The Schumpeterian firm dynamics literature – starting with Klette and Kortum

(2004) – has subsequently built upon the seminal work from the 1990s. However, inno-

vations are still undirected and take place randomly in one of the markets. On the other

hand, the fruitful strand of step-by-step innovation models following the tradition of

(Aghion, Harris, and Vickers 1997) has studied both theoretically and empirically how

incumbent firms within an industry invest strategically in R&D depending on their rela-

tive technological level within the industry. A key feature of the step-by-step framework

is that the incentives to innovate are decreasing in the dominance of the leading firm.

However, these models chiefly miss important aspects of firm dynamics, as incumbent

firms do neither face creative destruction by entrants nor expand into new markets.

The model I develop can account for market-specific innovation incentives while re-

taining the Schumpeterian entry and exit dynamics. From the incumbents’ perspective,

the model gives rise to firm dynamics that feature selection based on market power.

In this paper, I make two main contributions: (i) I introduce a notion of directed

innovation into the Schumpeterian firm dynamics framework; and (ii) I provide an ex-

planation why we observe rising markups as ideas get harder to find. The model can

also account for other trends like the decline in productivity growth, the fall of the la-

bor share Elsby, Hobijn, and Sahin (2013), the fall of the firm entry rate (R. A. Decker

et al. 2016), the declining share of activity from young firms (R. Decker et al. 2014) and

the increase in average firm size (Hopenhayn, Neira, and Singhania 2018).

The mechanism of directed innovation and Schumpeterian selection is crucial for

all model predictions. If this channel were shut off, e.g. in the absence of barriers to

frontier innovation2, the framework could not account for any empirical trend other than

the falling rate of aggregate productivity growth; evidently, the simplifying assumption

2. In the absence of barriers to frontier innovation, incentives to direct innovations are absent and there

is no Schumpeterian selection.
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of undirected innovation – albeit common in the literature –, would mask important

dynamics.

Other explanations for some of the macroeconomic trends include the role of IT

(Aghion et al. 2021); the role of intangibles (De Ridder 2020); declining knowledge dif-

fusion between leaders and followers (Akcigit and Ates 2021); declining innovativeness

of small firms (Olmstead-Rumsey 2022); declining interest rates (Liu, Mian, and Sufi

2019); and declining population growth (Peters and Walsh 2021). Manera (2021) builds

a Schumpeterian growth model where monopolistic firms conduct defensive patenting,

giving rise to misallocation of innovative talent.

The remainder of the paper is organized as follows. Section 2 introduces a Schum-

peterian theory of directed innovation and section 3 discusses the implications of a de-

cline in research productivity through the lens of the model. Section 4 presents a calibra-

tion of the US pre-1980 economy and section 5 compares the quantitative predictions of

the 2010s economy and the pre-1980s economy of the United States. Section 6 concludes.

2 Model

In this section, I first present the model setup and describe the theoretical novelties (bar-

riers to frontier innovation, market search and directed innovation). Then, I characterize

the static equilibrium, the balanced growth path, and important comparative statics.

Preferences The representative consumer has logarithmic preferences,

U0 =
∫ ∞

0
e−ρtln(Ct) dt,

where Ct is consumption of the final good at time t and ρ is the time discount rate. The

price of the consumption good is normalized to one so that the budget constraint of the

representative consumer is given by

Ct + Ȧt = wtLt + rt At,

where At denotes total assets and Lt ≡ 1 is total labor which is constant and supplied

inelastically. The wage rate wt and the interest rate rt are the relevant relative prices.

Normalizing the price of the final good to unity, the Euler equation at any time t is given

by

rt = ρ +
Ċt

Ct
(1)
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Further, the following transversality condition holds:

lim
t→∞

exp
(
−
∫ t

0
rt dt

)
At = 0.

Final Good The perfectly competitive final good sector transforms differentiated in-

termediate products into the final good according to

Yt = exp
( ∫ 1

0
ln yit di

)
, (2)

where yit is the amount of intermediate variety i that is sourced from the intermediate

firm offering it at the lowest price.

All of the final good is consumed so that

Ct = Yt.

holds at each point in time t.

Intermediate Goods Intermediate producers hire labor to produce products. The leader

in product line i with labor productivity qit produces according to

yit = qitlit,

where lit denotes the labor input. All other firms have access to the public technology

q−it < qit, which restricts the leader’s pricing. Technological progress is labor-saving and

in any product line, the different brands of the leader and the fringe firms are perceived

as perfect substitutes.

Pricing In each product line i, the leader and the fringe firms engage in Bertrand com-

petition, and if the leader offers the same price as the fringe firms, the final good sector

purchases variety i entirely from the leader. In equilibrium, limit pricing by the leader

leads to prices equal to the marginal cost of the fringe firms. From the maximization

problem of the representative final good producer, it then follows that all intermediate

products are sources from the respective leader and that the same amount is spent on

each intermediate variety. Thus, product demands are

yit =
Yt

pit
,

where pit is the lowest price offered for product i.
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Free Entry There is free entry into market exploration. Entry requires hiring two types

of workers – analysts to search potential markets and R&D workers to generate an idea.

An entrant chooses how many randomly drawn markets s ≥ 1 to explore simultane-

ously, which requires hiring 1
φ ηs

1
η analysts at the market-clearing wage. The parameter

η denotes the search elasticity, φ the search productivity, and s is the search intensity. If

search were sufficiently costly, i.e. if φ is sufficiently small, the corner solution s̃ = 1

would be binding. In this case, there is only minimal search and no directed innova-

tion, thus nesting the canonical quality-ladder model of undirected innovation (Gross-

man and Helpman 1991 and Klette and Kortum 2004). However, in the more plausible

case, search is not prohibitively costly and s∗ > 1 holds, meaning that the margins of

search and directed innovation are relevant. In the calibration in section 4, s∗ (and by

consequence φ) is identified from empirical moments and the estimated value is approx-

imately 2 for the initial steady state.

At a Poisson rate of 1, a potential entrant receives a signal indicating which of

the s markets is most attractive for entry – which corresponds to the market with the

least dominant current leader charging the lowest markup. Markets with currently low

markups are more attractive for entrants because in these markets, entrants are more

likely to surpass the leaders and establish themselves as incumbents at the technologi-

cal frontier. While exploring more markets simultaneously yields higher-quality signals,

this becomes increasingly costly.

Once an entrant has received a signal in which market to innovate, she hires 1
θ (M0,t)δ

R&D scientists at the market-clearing wage wt in order to generate an innovation. The

R&D cost is weakly increasing in the total number of potential entrantsM0, which can

be interpreted as a congestion force (if δ > 0).

In summary, the total entry costs are

Lentry(s|M0) =
1
φ

ηs
1
η

︸ ︷︷ ︸
search

+
1
θ
(M0)

δ︸ ︷︷ ︸
R&D

.

Incumbent firms Firm dynamics are similar as in Klette and Kortum (2004). Firms

expand by innovating in product lines currently operated by other firms, and shrink if

another firm innovates in one of their product lines. While new firms enter with a single

product, one-product firms that lose their last product exit permanently.

To search a sample of s markets arriving at rate x, a firm needs to employ LS analysts,
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where

LS(s, x) = x
1
φ

ηs
1
η

.

Thus, the search technology is the same as for entrants, adjusted for the innovation

rate x (which is always equal to one in the case of entrants). This property implies that

the optimal search intensity of both entrants and incumbents is the same and model

remains tractable.

To innovate at rate x, a size-n firm needs to employ LR&D R&D scientists,

LR&D(x|n) = 1
θ̃

γx
1
γ n

γ−1
γ

The normalization n
γ−1

γ ensures that the optimal expansion rate x is proportional

to firm size as in Klette and Kortum (2004). Combining, a firm of size n that searches s

markets and innovates at rate x has to hire LS(s, x) + LR&D(x|n) units of labor.

Innovation Process Upon receiving a signal of the most attractive market, the innova-

tor – be it an entrant or an existing firm – commits to innovating in that market. Then, the

innovator learns whether she can improve upon the existing leading technology (with

probability 1− β) or not (with probability β).

One possible interpretation is that the leader’s patent may be infringed if the inno-

vation builds upon the leading technology qit, which happens with probability β > 0

(thus giving β an interpretation of patent rights enforcement). In case of a patent in-

fringement, the incumbent firm would possess all bargaining power and could extract

the entrant’s future profits in its entirety. Anticipating this outcome, entrants optimally

decide to build on the inferior public technology q−it if and only if the leading technology

is protected – and on the leading technology otherwise.

Hence, an entrant who has received a signal for market i builds upon the leading

technology qit with probability (1− β), and on the public technology q−it with probabil-

ity β.

The innovative steps λ achieved by entrants are drawn from a time-invariant distri-

bution F(λ). For tractability, I assume λ to be Pareto distributed, i.e. F(λ) = 1− λ−α,

where α denotes the Pareto shape parameter.

Innovation Success and Market Entry Whether an innovator can successfully enter

a market depends on whether or not he can supersede the leading technology at the

frontier. If an innovation builds directly on the leading technology, it is always successful
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since any innovation step satisfies λ ≥ 1; I will refer to these as frontier innovations.

On the other hand, if an innovation builds on the public technology, an innovator can

successfully enter the market if λq−it ≥ qit.

In order to keep track of the market-specific technological gaps, let µit ≡ qit
q−it

de-

note the technological gap in market i. Thus, if the leading technology is unavailable

to the innovator, only innovative steps λ ≥ µ are large enough to capture the market

and worthwhile to be protected by a patent. Smaller innovative steps λ < qit
q−it

are not

socially wasteful though: They push the public technology from q−it to λq−it and hence

still contribute to the stock of technological knowledge. In either case, the lower of the

two technological levels (i.e. min {λq−it, qit}) becomes the new public technology, while

max {λq−it, qit} constitutes the new frontier.

Labor Market Clearing Labor is used in production, for market search by incumbents,

for R&D activities by incumbents, and by potential entrants (which, in turn, hire workers

to do both market search and R&D). There is a common wage wt that clears that labor

market, and it holds at each instant t that

LP,t︸︷︷︸
production

+ LS,t︸︷︷︸
search

+ LR&D,t︸ ︷︷ ︸
R&D

+ Lentry,t︸ ︷︷ ︸
entry

= L, (3)

where L ≡ 1.

2.1 Static Equilibrium

The static equilibrium takes the leading technology qit and the public technology q−it for

each product line as given. Exploiting that the final good sector spends the same amount

Yt on each intermediate variety and that the leader of product line i sets the price equal to

the marginal cost of the fringe firms, i.e. pit = wt/q−it, the demand for variety i follows

as

yit =
Yt

pit
=

q−it

wt/Yt
=

q−it

ωt
,

where ωt ≡ wt/Yt denotes the wage normalized by total output. The labor share of the

economy is equal to

laborsharet =
wtL

GDPt
, (4)

where GDPt = Yt + wt
(

LS,t(ωt) + LR&D,t(ωt) + Lentry,t(ωt)
)

is defined as total final out-

put plus R&D and search expenditures (by both incumbents and entrants). Since the
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labor supply L is normalized to unity and using ωt ≡ wt/Yt, it follows

laborsharet =
ωt

1 + ωt
(

LS,t(ωt) + LR&D,t(ωt) + Lentry,t(ωt)
) . (5)

In equilibrium, the markups of active firms are equal to the productivity advan-

tages over their respective competitors (fringe firms). Hence, the markup charged by the

leader in line i at time t is

µit =
pit

mcit
=

qit

q−it
.

Operating profits are thus given by

π(µit) = (pit −mcit)yit = (1− 1
µit

)Yt ≥ 0.

Labor demand in product line i follows as

lit =
yit

qit
=

1
µit ωt

. (6)

Substituting this into the labor market clearing condition (3) yields∫ 1

0

1
µit ωt

di+ LS,t(ωt) + LR&D,t(ωt) + Lentry,t(ωt) = L.

Using LP,t(ωt) = L −
(

LS,t(ωt) + LR&D,t(ωt) + Lentry,t(ωt)
)
, the normalized wage is

pinned down as

ωt =

∫ 1
0

1
µit

di

LP,t(ωt)
, (7)

and the labor share follows from equation (5) as

laborsharet =
1

ψh
t LP,t(ωt) +

(
LS,t(ωt) + LR&D,t(ωt) + Lentry,t(ωt)

) ≤ 1, (8)

where ψh
t ≡ 1∫ 1

0
1

µit
di
≥ 1 defines the harmonic mean of markups. Note that laborsharet <

1 whenever some markups µit are strictly greater than 1. Given that the amount of labor

used for production does not vary dramatically across different parametrizations, the

key driver of the labor share is the average inverse markup. Since there is no capital in

the model, the remaining part of GDP constitutes the profit share.

It is instructive to express aggregate output Yt in terms of the production possibil-

ity frontier QtLP,t and a distortive term. Aggregate output is lower than QtLP,t if and

only if there is heterogeneity in markups and thus in labor demands, since the marginal

product of labor is then not equalised across varieties. Formally, using yit = q−it/ωt =

(qit/µit)/ωt and equation (2), aggregate output can be written as

Yt = exp
( ∫ 1

0
ln

qit

µit ωt
di
)
=

Qt

ψ
g
t ωt

=
QtLP,t

ψ
g
t
∫ 1

0
1

µit
di

, (9)
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where 1/(ψg
t
∫ 1

0
1

µit
di) ≤ 1 is the static macroeconomic distortion to total output due to

heterogeneous markups3 and ψ
g
t ≡ exp(

∫ 1
0 ln µit di

)
is the geometric average of product-

level markups. In the absence of heterogeneous markups, i.e. if µit = µ̄t, the geometric

and the arithmetic averages coincide and the economy produces at the production pos-

sibility frontier without distortion.

2.2 Balanced Growth Path

I now characterize the balanced growth path of the economy. Time indexes are usu-

ally omitted for convenience, and I sometimes use asterisks to emphasize steady state

variables. In steady state, the Euler equation (1) reads

r∗ = ρ + g∗, (10)

where g∗ is the steady state growth rate of consumption Ct. Aggregate output Yt and the

wage wt also grow at the common growth rate g∗.

Next, let us consider the distribution of markups, which is the key object to deter-

mine the labor share and factor misallocation but – by affecting profits – also shapes the

incentives to innovate. On the balanced growth path, the distribution of markups µ is

stationary, and factor shares are constant.

Productivity gap distribution The distribution of interest is the stationary distribution

of productivity gaps denoted by H(µ), which is is an equilibrium outcome as it depends

on s∗. The following key theoretical result can be established:

Proposition 1. Productivity gaps are Pareto distributed with an endogenously determined shape

parameter α
s∗ , that is, H(µ) = 1− µ−

α
s∗ ,

where s∗ is the optimal search intensity of both entrants and incumbents on the

balanced growth path. [detailed proof of the proposition will follow here]

As a corollary, it follows that the distribution of targeted markets is given by

Gs(µ) = 1− (1− H(µ))s. (11)

Proof: Innovators always target the market with the lowest markup in the sample. Given

a search intensity (and hence a sample size) of s∗, the cumulative distribution function

of the minimum of s∗ iid draws is 1− (1− H(µ))s∗ .

3. Using a slightly different notation, Peters (2019) refers to the markup distortion term 1/(ωt ψt) ≤ 1 as

the markup wedge.
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The intuition behind this is as follows: The targeted productivity gap is the mini-

mum of s i.i.d. draws from the cross-sectional distribution H(µ).

Combining Proposition (1) and equation (11), it follows that the productivity gaps

that can be targeted when screening N markets is

Gs(µ) = 1− µ−α s
s∗ , (12)

where s∗ is taken as given but s is a choice variable (s = s∗ holds on the unique bal-

anced growth path). By searching more markets, a prospective innovator tends to find a

market with a currently less dominant (i.e. lower markup) leader. Thus, the distribution

of markets that can be targeted by an innovator with search intensity s2 is first-order

stochastically dominated by the distribution of markets that can be targeted by an inno-

vator with a lower search intensity s1 < s2.4

Entrant Behavior The entrant problem determines the optimal number of markets s∗

that are screened simultaneously in the exploration stage, as well the total mass of prospec-

tive entrantsM0 that are actively exploring markets at any point in time on the balanced

growth path. The search intensity s∗ is chosen to maximize expected profits, whereas

M0 ensures that the free entry condition is satisfied in equilibrium. The equilibrium is

unique irrespective of whether there is an entry congestion force (δ > 0) or not: While

the cost of entry is weakly increasing in the number of entrantsM0, the value of a new

firm is strictly decreasing inM0 because of intensified creative destruction.

The likelihood of an innovation being successful – that is, the likelihood of overtak-

ing the current leader – depends on the steady state distribution of productivity gaps

and on s. By searching more intensely, innovators can increase their entry success rate.

However, an innovator cannot affect the productivity advantage in case the innovation

effort succeeds: conditional on superseding the leader’s technology, the new productiv-

ity gap will be Pareto distributed, irrespective of the current cross-sectional distribution

of productivity gaps5.

The entrant success probability conditional on innovating upon the public technology

equals the probability that the randomly drawn innovation exceeds the current produc-

tivity gap and thus is equal to (1− F(µ)). The optimization problem of a prospective

4. Formally, for any s2 > s1 ≥ 1, it holds that GN2 (µ) < GN1 (µ)∀µ.

5. Formally: Suppose λ ∼ Pareto(α). Then for any constant ζ ≥ 1, conditional on λ ≥ ζ, it holds ( λ
ζ ) ∼

Pareto(α), i.e. the Pareto distribution is preserved.
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entrant is then given by

max
s

[
1− β + β×

∫ ∞

1

(
1− F(µ)

)
dGs(µ)

]
︸ ︷︷ ︸

success probability, ↑ in s

× E
(
Ventrant,t

)
− 1

θ
(M0)

δ − 1
φ

ηs
1
η

wt︸ ︷︷ ︸
exploration cost

, (13)

where E
(
Ventrant,t) is the expected value of a firm entering at time t. Since each entrant

is atomistic, E
(
Ventrant,t) does not depend on s directly, hence the key tradeoff is between

the entrant success probability (first term) and the exploration costs. Moreover, the free

entry condition sets equation (13) equal to zero, implicitly pinning down the mass of

potential entrantsM0.

Firm Problem Each incumbent firm chooses its search intensity s and innovation rate x.

The firm problem is given by

max
x,s

x
[
1− β + β×

∫ ∞

1

(
1− F(µ)

)
dGs(µ)

]
︸ ︷︷ ︸

success probability, ↑ in s

× E
(
Vt
)
− 1

θ̃
γx1/γwt − x

1
φ

ηs
1
η

wt︸ ︷︷ ︸
exploration cost

, (14)

where E
(
Vt
)

denotes the expected value of an additional product for an incumbent. It

can be shown that the value of a firm is additive in its individual product values, thus

it holds that E
(
Vt
)
= E

(
Ventrant,t

)
. Let E(vt) ≡ E(Vt)

wt
denote the expected product value

normalized by the wage rate wt. Note that it again holds E
(
ventrant,t) = E

(
vt). Making

use of the fact that on the balanced growth path, the value function Vt(µ) grows at the

same rate as wt, it follows that E
(
vt) is constant. Exploiting equation (11) and setting

the first order condition of the firm problem equation (14) with respect to s to zero thus

yields

x
s∗

(s + s∗)2 βE(v) = x
1
φ

s1/η−1.

Similarly, setting the first order condition of the entrant problem equation (13) with re-

spect to s to zero implies again

s∗

(s + s∗)2 βE(v) =
1
φ

s1/η−1.

Thus, all firms and entrants search with the same intensity s∗ and exploiting s = s∗ yields

s∗ =
(

βφE(v)
4

)η

. (15)
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Substituting s∗ from equation (15) into (13) and setting this equation equal to zero yields

the free entry condition

(
1− β

2
)
× E(ventrant(M0))×

(
1− η

4
β − 2

)
− 1

θ
(M0)

δ = 0, (16)

where the notation highlights that the firm values depend on the total mass M0 of

prospective entrants that are actively exploring markets. Higher M0 implies a higher

rate of creative destruction, thus decreasing the expected lifetime and value of firms. At

the same time, more entry increases the effective R&D cost of entrants on the right-hand-

side of equation (16). On the balanced growth path,M0 is constant and uniquely pinned

down. The expected value of an entrant firm (normalized by the wage wt) follows from

the free entry condition as

E
(
ventrant) =

4
4− 2β− ηβ

× 1
θ
(M0)

δ. (17)

Substituting this back into equation (15) leads to the following closed-form solution for

s∗:

s∗ =

(
φ
θ (M0)δ

4
β − 2− η

)η

. (18)

The importance of the optimal search intensity s∗ is manifold: it determines the dis-

tribution of markups, the average markup, factor shares and factor misallocation across

firms. Fundamentally, s∗ determines the shape of the productivity gap distribution (and

thus the markup distribution) as is directly implied by equation (1), so it is worthwhile

to discuss how the different parameters affect s∗. Given that we live in an environment

where ideas are getting harder to find (Bloom et al. 2020), changes in θ ↓, θ̃ ↓ are naturally

the most relevant comparative statics. As the research productivity declines, incentives

to search markets increase:
∂s∗

∂θ
< 0. (19)

Note that while the entrant research productivity θ enters directly, incumbent research

productivity θ̄ has an indirect effect throughM0. A lower incumbent research produc-

tivity θ̄ leads ceteris paribus to less creative destruction and thus makes entry more at-

tractive, thereby increasingM0 and s∗. Nevertheless,M0 declines when ideas are get-

ting harder to find, because lower entrant research productivity disincentivizes entry

sufficiently.
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Moreover, a higher probability to build on the public technology β implies a higher

s∗ because it becomes more important to avoid markets with dominant (high productiv-

ity gap) leaders:
∂s∗

∂β
> 0 (20)

Furthermore, higher η means that exploration costs are less responsive to s, hence s∗ is

more sensitive to parameter changes if η is high. Further, s∗ depends positively on the

ratio φ
θ of the cost parameters of entrant’s R&D relative to market exploration.

Returning to equation (14) and setting the first order condition with respect to x to

zero yields

(1− β/2)E(Vt) =
1
θ̃

x(1−γ)/γwt +
1
φ

ηs1/ηwt, (21)

and again using the same notation as before, this can be written compactly as

(1− β/2)E(v) =
1
θ̃

x(1−γ)/γ +
1
φ

ηs1/η . (22)

Substituting for s∗ and for E(v) and rewriting yields

(4/β− 2)
1

4/β− 2− η
× 1

θ
(M0)

δ =
1
θ̃

x(1−γ)/γ + η

(
1
θ (M0)δ

4
β − 2− η

)
, (23)

which can be further simplified to

1
θ
(M0)

δ =
1
θ̃

x(1−γ)/γ, (24)

Growth rate It can be shown that the steady state growth rate of the economy is equal

to the product of three terms,

g∗ =
(

x∗ +M0
)
×
(
1− β

2
)
× E

(
log(µnew)

)
. (25)

The intuition is as follows. The term (x∗ +M0) is the rate at which the economy gener-

ates innovations; (1− β
2 ) is the probability that innovations are successful (in the sense

of capturing the market); and E(log(µnew)) is the average logarithm of productivity gaps

of a new cohort of firms, indicating how much the technological frontier is pushed for-

ward. Using the Pareto property that new cohorts of productivity gaps are identically

distributed as the underlying draws of innovative steps (and thus ∼ Pareto(α)), it can

be shown that E(log(µnew)) = 1/α. Under the additional assumption that each success-

ful innovation corresponds to the entry of a new establishment in the data, the first two
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terms are equal to the establishment entry rate. Put differently, the following relationship

can be established:

g∗

EstabEntryRate
= E

(
log(µnew)

)
=

1
α

(26)

Firm Values Normalized firm values v(µ) ≡ Vt(µ)
wt

satisfy

ρv(µ) =
(

1− 1
µ

)Y
w

+
( 1

γ
− 1
)1

θ̃
γ(x̃)

1
γ

︸ ︷︷ ︸
instantaneous payoff:

profits + option value of innovation

(27)

− (x̃ +M0)︸ ︷︷ ︸
aggregate #

of innovations

gs∗(µ)

h(µ)︸ ︷︷ ︸
gap-specific
correction of
hazard rate

(search effect)

(
v(µ)− β Pr(λ ≤ µ)E

(
v
(µ

λ

)
|λ ≤ µ

)
︸ ︷︷ ︸

leader survives but gap shrinks

)
, (28)

The first term on the right-hand-side are the instantaneous profits of a firm with produc-

tivity gap µ, and the second term is the option value of doing R&D that the additional

product adds to the firm. The hazard rate of an innovation being targeted towards a

market with gap µ is given by gs∗ (µ)
h(µ) (x̃ +M0), where (x̃ +M0) is the innovation arrival

rate of the economy and gs∗ (µ)
h(µ) reflects the fact that high productivity gap markets are less

likely to be targeted by innovators. It holds that gs∗(µ) = αµ
−α−1

and h(µ) = α
s∗µ

− α
s∗ −1

.

Given that v(1) = 0, firms values according to equation (27) can be computed se-

quentially since v(µ) only depends on firm values v(µ̃) where µ̃ < µ.

Thus, the steady state of the model can be solved for as follows:M0 and x are such

that equation (24) holds, and the 1-product firm value function defined in equation (27)

implies an expected entrant firm value E(ventrant(M0)) that is consistent with the free

entry condition (16).

Results on balanced growth path

In steady state, it can be shown that for entrants, the ratio of exploration costs relative to

R&D expenditures at the firm level is given by

1
γ

η

4

(
1

1/β− 1/2− η/4

)
, (29)

and for entrants the ratio is

η

4

(
1

1/β− 1/2− η/4

)
. (30)
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In both cases, the ratio of exploration costs relative to R&D expenditures is constant

across steady states (when research productivities θ and θ̄ decline). This again illustrates

that as ideas get harder to find and R&D becomes costlier, there is more market search

for any given innovation.

Using proposition (1), the cost-weighted average markup can be simplified to

average markup =
α + s∗

α
, (31)

which is increasing in s∗. The intuition is as follows: More market search implies more

selection based on market power, and hence higher markups on average.

Similarly, the labor share of the economy follows from equation (8) as

laborshare =
1

α
α+s∗ LP,t(ωt) +

(
LS,t(ωt) + LR&D,t(ωt) + Lentry,t(ωt)

) ≤ 1, (32)

and the profit share follows as 1− laborshare.

3 Predictions when ideas get harder to find

Research productivity has declined at a rate of up to five percent per annum over the last

decades (Bloom et al. 2020). To assess the ramifications of these trends, I decrease the

research productivity parameters of incumbents and entrants by the same factor while

leaving the search productivity and all other parameters of the model unchanged.

While this section provides the intuition of the economic forces at work, section 5

quantifies the model predictions over the course of time. I allow for a recalibration of the

size of the effective labor force in order to capture population growth and higher labor

force participation as well as a market size effect due to international trade; given that the

increase in the effective labor force is outweighed by the decline in research productivity,

the former can mitigate but not prevent falling growth.

As innovations become effectively more costly, the incentives to search markets in-

crease, thereby leading to stronger selection on profitability, higher and more dispersed

markups, and a higher profit share. Comparing the new to the initial steady state, there

is a direct effect of lower research productivity depressing the demand for R&D workers;

however, this effect is dominated by an endogenous effect of a higher profit share that

incentivizes R&D, thus raising the population share of researchers across steady states.

The model predicts a productivity growth slowdown since the increase in researchers

is not enough to compensate for the decline in research productivity. Finally, the aggre-

gate innovation rates by entrants and incumbents both decrease (leading to generally
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lower business dynamism and older firms), but the entrants’ innovation rate decreases

relatively more because the entry margin is more elastic (which holds under very weak

conditions). As a result, the firm entry rate declines and the average firm size increases.

All these model predictions are in line with the empirical trends of the US economy over

the last decades.

It is worthwhile to point out the implications of strengthened defensive capabilities

in the spirit of Akcigit and Ates (2021). If the degree of barriers to frontier innovation

were increased, market search would be further incentivized, because overcoming large

technological gaps becomes disproportionally harder. Markups become more dispersed

and market power increases, mirroring the data trends. Thus, strengthened defensive

behavior by industry leaders can qualitatively account for the macroeconomic experi-

ence of the US economy over the last decades. However, the model predicts changes that

are quantitatively too small in comparison to the data. Moreover, the existing empirical

evidence for a trend in defensive capabilities of incumbents is sparse, because it is an ab-

stract parameter that is inherently difficult to measure and tightly linked to institutional

details. On the other hand, declining research productivity is an ongoing technological

process. Nevertheless, it is plausible that an increased role of defensive behavior con-

tributed to the macroeconomic trends, which is a view corroborated by Akcigit and Ates

(2021).

4 Calibration

In this section, I calibrate the model to the pre-1980 economy; this will serve as a point of

comparison in the next section when I study the shift towards a new steady state of the

2010s.

There are ten parameters: {L, β, ρ, α, η, γ, φ, θ, θ̃, δ}. The inelastic labor supply is

normalized to unity, L = 1. I set the discount rate ρ = 1% implying a discount factor

of 99 percent. Following Acemoglu et al. (2018), the R&D elasticity is equal to γ = 0.5,

which implies a quadratic R&D costs specification. Since the search technology of my

model is a methodological novelty, there exist no comparable estimates in the literature;

I set the R&D elasticity equal to the search elasticity so that η = γ = 0.5. I choose the

intermediate value β = 0.5 for the degree of barriers to frontier innovation, meaning that

innovators build upon the leader or upon the follower with equal probability. Lastly, I

assign a congestion externality for entrants of δ = 0.7. The remaining four parameters
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are internally calibrated by exactly matching the following four moments:

Average TFP growth of the US economy (1.82% during the 30-year-period 1949-1978

according to the Fernald series) is informative of the incumbent research productivity θ̃.

Entrant research productivity θ can then be set to match the contribution of entrants to

TFP growth; I target a value of 25% that is equal to the contribution of entrants to TFP

growth among U.S. manufacturing establishments between 1977 and 1982 (Bartelsman

and Doms 2000). The key moment to calibrate the Pareto shape of innovations, α, is

the firm entry rate; a value of 0.13 is taken from the Census Bureau’s Business Dynam-

ics Statistics for the year 1980. Finally, the search productivity parameter can be set by

targetting the average markup, which I set to 1.1 corresponding to the simple average be-

tween the estimated values of i) De Loecker, Eeckhout, and Unger (2020), ii) Eggertsson,

Robbins, and Wold (2021), and iii) Nekarda and Ramey (2020).

The lower panel of table 2 shows the internally calibrated parameters. While the

productivity parameters cannot be directly interpreted, a brief discussion of the Pareto

shape parameter α is in order: The implied value of 13.2 is so high because TFP growth

is less than two percent while the firm entry rate (with each firm entry corresponding

to an instance of creative destruction) is thirteen percent – thus, the average innovative

step has to be small and the Pareto tail index relatively high.

5 Macroeconomic Trends since the 1980s

Since the 1980s, the US economy has experienced a number of salient macroeconomic

trends. These include i) the rise of market power (De Loecker, Eeckhout, and Unger

2020); ii) a decrease in the firm entry rate (R. A. Decker et al. 2016); iii) a declining share of

activity from firms of at most five years; iv) an increase in average firm size (Hopenhayn,

Neira, and Singhania 2018); and v) a growth slowdown (interrupted by IT-fueled boom

in late 1990s) despite a higher R&D-to-GDP ratio. Trends ii), iii) and iv) are symptoms of

what is commonly referred to as declining business dynamism (Akcigit and Ates 2021).

Through the lens of my model, the decline in research productivity (ideas are getting

harder to find à la Bloom et al. 2020) can jointly explain the other macroeconomic trends.

As established in proposition 1, the key object for the distribution of markups is the

search intensity s∗. I take the following stand on the parameters: The search elasticity η

and the entry congestion δ are fundamental time-invariant parameters. Of the remaining

three parameters, either i) a decrease in the research productivities θ (for entrants) and θ̃
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Assigned Value Description

ρ 0.01 Discount rate

β 0.5 Innovation barriers

η 0.5 Search elasticity

γ 0.5 Incumbent R&D elasticity

δ 0.7 Entry externality

L 1 Size of labor force

Estimated Value Description Key moment Model Data

θ̃ 0.63 Incumbent R&D prod. TFP growth 0.0182 0.0182

θ 0.45 Entrant R&D prod. Entrants’ % growth 0.25 0.25

α 13.2 Pareto shape innov. Firm entry rate 0.13 0.13

φ 25.2 Search productivity Average markup 1.1 1.1

Table 1: Baseline parameter values

(for incumbents), ii) an increase in the search productivity φ, or iii) an increase in barriers

to frontier innovation β induce a rising search intensity s∗ and, consequently, higher

markups.

Both the search productivity and the barriers to frontier innovation are abstract pa-

rameters and difficult (if not impossible) to measure. An increase in barriers to frontier

innovation would be reminiscent of the explanation provided by Akcigit & Ates (2021),

who use a theoretical framework to find that declining knowledge diffusion from lead-

ers to laggards is consistent with the macroeconomic trends. The decline in knowledge

diffusion is most likely a result of intensified defensive behavior by leaders, but it is

difficult to measure this empirically. My results corroborate their findings, but impor-

tantly, I show that there is an alternative explanation that is better supported by existing

evidence: ideas are getting harder to find.
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Change

pre-1980 s.s. 2010 s.s. Model Data

Model/Data

Targeted moments

TFP growth 0.0182 0.0096 −47% −72% 65%

Entrants’ % growth 0.25 0.206 −18% - -

Firm entry rate 0.13 0.064 −51% −39% 131%

Average markup 1.1 1.15 +4.5% +7% 64%

Untargeted moments

Average firm size 2.16 2.44 +13% +15% 87%

Profit share 0.041 0.084 +105% +75% 140%

R&D workers % of L 0.076 0.086 +13% +50% 26%

Table 2: Steady state comparison after a 75% decline in research productivities

Bloom et al. (2020) document a general decline in research productivity that is not

specific to any technology or industry. While the study by Bloom et al. (2020) is entirely

empirical, I show that their finding can, through the lens of my model, account for all

other macroeconomic trends jointly. To illustrate these macroeconomic ramifications,

I decrease the research productivities θ (for entrants) and θ̃ (for incumbents) by 75%

relative to the initial steady state (corresponding to a 5% per annum decline over 30

years).

Table 2 summarizes the results and compares the model predictions to the data

counterparts, where the data moments for the 2010-economy are computed in the same

way and based on the same data sources as in the initial calibration. For interpretability,

I focus on relative changes in all moments. The model predicts a five percentage point

increase in the average markup (corresponding to a 4.5% increase in relative terms),

thereby explaining as much as two thirds of the overall rise of market power. Thus, my

theory connects a substantial share of the rise of market power (De Loecker, Eeckhout,

and Unger 2020) to the decline in research productivity (Bloom et al. 2020).
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Moreover, while TFP growth decreased by 72% in the data, the model can account

for a 47% decrease (from 1.82% to 0.96% per annum) and thus for roughly two thirds of

the decline. The model slightly overestimates the response of the firm entry rate (−51%

relative to −39% in the data) and underestimates the response of the average markup

(+4.5% relative to +7% in the data), but all predictions have the correct sign and are

of the right order of magnitude. The lower panel of table 2 shows that the model’s

predictions are also in line with the data for a number of untargeted moments.

6 Conclusions

This is the first paper that connects the rise of market power to the decline in research

productivity. To this effect, I build a novel theory of directed innovation where innova-

tors conduct market search before targeting a specific market and undertaking R&D ef-

forts. In an environment of declining research productivity (as documented by Bloom et

al. 2020), R&D becomes costlier; as a consequence, innovators are more inclined to spend

on market search in order to avoid wasteful R&D expenditures in markets where they

would struggle to compete with superior incumbents. These superior (high-markup)

incumbents, in turn, are now less likely to be targeted by innovators and thus more

likely to survive than they were four decades ago. The model predicts an increase of

the economy-wide average markup in the US from 1.1 in the 1980s to 1.15 in the 2010s,

which is in the ballpark of estimates known from the literature. Similarly, the model

mirrors other relevant macro trends both qualitatively and quantitatively.

Evidently, declining research productivity has a lot of explanatory power. If research

productivity will decline in the future, the model would predict a continuation of the

ongoing trends – and thus a further rise of markups and firm sizes, and a further fall of

the labor share, the firm entry rate and aggregate productivity growth.
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