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Abstract

During the last four decades, the U.S. industries have experienced heterogeneous
increases in market power. This paper argues that this heterogeneity can be ex-
plained by the different dynamics of turbulence across sectors. To show it, we build
a model of a sector where firms differ by their productivity level, and they com-
pete under oligopolistic competition. Business dynamics are captured in the model
by sequential idiosyncratic entry, exit, and productivity shocks. A sector-specific
increase in turbulence accelerates the turnover of leaders and the mobility of firms
over the productivity distribution. This leads to reallocation of market shares to-
wards the most productive firms that charge the lowest price. Their cost leadership
allows them to charge the highest markups and gain the steepest profits, driving the
increase in sectoral market power. The model can explain between 35% and 57% of
the cumulative increase in the observed markups, and its predictions are supported
by the U.S. and European data.
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1 Introduction

The market power of U.S. firms has risen over the last four decades. Price markups,

market concentration and profit margins have all increased, but the magnitude of these

trends strongly differs across industries. The recent trends in market power have been

accompanied by growing barriers-to-entry and rising turbulence (Comin and Philippon

(2005), Comin and Mulani (2006)). In this paper, we investigate to what extent these two

trends can explain the heterogeneity in market power dynamics across sectors.

First, we build a measure of sectoral turbulence that captures the time-varying persis-

tence of firms’ productivity in a sector. Similar to Comin and Philippon (2005) and Dong,

Liu, and Wang (2022), we define turbulence as the inverse of the 5-year Spearman rank

correlation of firms’ productivity. An increase in turbulence captures a higher turnover

of firms over the productivity distribution and therefore it implies a more dynamic envi-

ronment. In Compustat data, in as much as 49% of sectors, the turbulence has, in fact,

increased since the 1960s. In sectors with the highest increases in turbulence, i.e. above

the median, the markups have grown the fastest. We call them high-turbulence sectors.

In sectors where the turbulence has declined (below the median) the markups have grown

the least. We refer to those sectors low-turbulence sectors.

To understand how increasing barriers-to-entry and turbulence affect market power

dynamics, we build a model of a sector that reflects the market structure of a typical

U.S. industry. In this economy, firms differ by their productivity level, and they compete

under oligopolistic competition. Their price markups, profits and market shares are all

endogenously determined by market conditions. Intuitively, a firm endowed with the

highest productivity, and thus with the lowest marginal cost, is able to charge the lowest

price and to expand its market share. Its cost leadership allows it to charge the highest

markup. Business dynamics are captured in the model by sequential idiosyncratic exit,

entry, and productivity shocks.

Initially, the model is calibrated to reproduce key features of the U.S. industries be-

tween 1960 and 1980, a period with relatively low and stable market power of firms and

turbulence. Then, we carry out two main experiments. In the first one, we permanently

increase turbulence and entry costs to mimic a high-turbulence sector. The second exper-

iment introduces only higher entry costs to proxy a low-turbulence sector. We compare

the transition paths to the new steady states in these two experiments (sectors).

Both sectors display an increase in market power: price markups, profit rates and

market concentration go up. However, the magnitudes and the mechanisms underlying

the observed trends are very different across sectors. In the high-turbulence sector, the

median revenue-weighted markup and market concentration grow, 35% more than in the
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low-turbulence markets. These trends are driven by the most productive, high markup

firms. Intuitively, a higher turbulence boosts the likelihood of changing the productivity

ranks for all firms. However, since the firms endowed with the most productive type

cannot further increase their productivity, by definition, a higher turbulence only raises

their chances of moving downwards in the productivity ranks. If this happens, the large

available market share is captured by the remaining highly productive firms. Given their

growing market shares, those firms charge even higher markups.

In contrast, in the low-turbulence sector, in the absence of a turbulence shock there

is little reallocation, and the modest increase in markups is mainly driven by growing

markups of the incumbents.

We evaluate the relevance of the model’s mechanism in the data and asses the im-

portance of reallocation and within components in markups’ growth. To do it, we apply

Haltiwanger (1997)’s decomposition to the markups in high and low-turbulence sectors in

Compustat. Because of the concern that publicly traded firms, covered by Compustat,

are not representative of the distribution of the entire universe of firms, we also rely on

a second dataset, CompNet, which covers a more representative sample of firms across

Europe.

We show that the reallocation of market shares is a distinctive feature of high-turbulence

sectors, both in the model and in the data. In both the U.S. Compustat and the European

CompNet, the reallocation of market shares towards the most productive firms primarily

drives the growth in markups and market concentration. In low-turbulence sectors, in-

stead, the (lower) growth in sectoral markups is driven by the growing markups of the

incumbents.

We also assess how well the model tracks the paths of market power variables in the U.S.

data over the last three decades and their heterogeneity across sectors. In Compustat, the

cumulative increase in the median markup in high-turbulence sectors is between 6.13% and

10.08% and our model can explain between 35% and 57% of this increase, depending on the

empirical markup’s measure. Because the market power measures crucially depend on the

patterns of the costs of firms, in addition to markups, we analyze revenue-weighted profit

rates. The observed increase in profit rates is substantially higher than in markups and

reaches 24% in high-turbulence sector and 16.19% in low-turbulence sector in Compustat

and 21% and 17% in the model.

We explore an alternative mechanism that relies solely on the heterogeneous entry costs

across sectors. An uneven increase in entry costs fails to mimic the data patterns in two

dimensions: (i) reallocation of market shares and (ii) divergence across sectors. Intuitively,

an increase in entry costs on its own drives the markups up through the crowding out of

small firms. The lack of reallocation of market shares towards high-markup firms translates
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into a sluggish increase in market power so that both types of sectors display similar

transition paths, in contrast to the data and the benchmark model dynamics.

Related literature

Our paper is closely related to the growing literature on the macroeconomic implications

of micro-level uncertainty, e.g. Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry

(2018). Specifically, we exploit the fact that firm-level volatility and turbulence have

increased since the 1980s. This trend has been documented by Comin (2000), Comin

and Philippon (2005), Campbell, Lettau, Malkiel, and Xu (2001), Chaney, Gabaix, and

Philippon (2002) and Davis et al. (2006)), among others. Comin and Philippon (2005)

and Comin and Mulani (2009) additionally show that the increase in turbulence has been

uneven across sectors. Our turbulence measure is very similar to the one proposed by

Dong et al. (2022), but they study its impact on business cycle fluctuations, while our

focus is on the long-run trends.

Our work is also related to the literature exploring the rise in market concentration and

markups in recent decades, e.g. Grullon, Larkin, and Michaely (2019) and De Loecker,

Eeckhout, and Unger (2020). Autor, Dorn, Katz, Patterson, and Van Reenen (2020)

attribute these developments to the rise of superstar firms, whose advantage in productivity

allows them to increase their market shares, without compromising consumers’ welfare and

firms’ investments. De Loecker et al. (2020) and Gutiérrez and Philippon (2019) argue,

instead, that the observed increase in the market concentration and markups reflects an

increase in the market power of large firms as well as a reduction in the competition within

U.S. industries. In a way, our paper reconciles both hypotheses: although the increase in

market power is largely driven by the reallocation of market shares towards the most

productive firms, rising entry costs amplify this trend. This finding is similar to the one

in De Loecker, Eeckhout, and Mongey (2019), who uncover the importance of changes in

both market structure and technology to shape the observed trends in market power. Yet,

we focus on differences in sectoral dynamics instead of aggregate trends.

In our model, the most productive firms determine market concentration and markups’

dynamics. The proposed mechanism conceptually builds on Gabaix (2011) since, in an

environment with a finite number of firms, idiosyncratic shocks propagate to the aggregate

economy. The most recent contributions to the literature studying the role of large firms

for the aggregate dynamics include Carvalho and Grassi (2019) and Burstein, Carvalho,

and Grassi (2019). In contrast to these papers, which study business cycle fluctuations,

we focus on long-run (sectoral) trends.

Our propagation mechanism relies on firms’ stochastic entry and exit dynamics in the
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spirit of Jovanovic (1982) and Hopenhayn (1992). Importantly, to capture more realis-

tically the current market structure of U.S. sectors, our framework departures from the

competitive environment of a continuum of firms in Hopenhayn (1992). We propose an

environment characterized by a finite number of heterogeneous firms competing under

oligopolistic competition, which is inspired by Atkeson and Burstein (2008). Because we

are interested in the evolution of market power over time, our model differs from the one

by Atkeson and Burstein (2008) in one crucial dimension. Instead of the static competi-

tion game, we introduce the sequential and forward-looking entry in the spirit of Bilbiie,

Ghironi, and Melitz (2012). Together with idiosyncratic productivity shocks, these model

features allow us to capture realistic business dynamics where the number of entrants,

price markups and profits are determined endogenously, similarly to Edmond, Midrigan,

and Xu (2018).

The remainder of the paper is organized as follows. Section 2 describes the sectoral

heterogeneity in the degree of the increase in market power, as well as in firms’ turbulence,

linking the two facts. In section 3, we describe a tractable, oligopolistic competition model

with a finite number of firms, which populate a single sector. In section 4, we explain the

calibration strategy. Section 5 carries out the main quantitative exercise where we compare

the transition dynamics of a high and a low-turbulence sector. In section 6, we confront

our model directly with the data. Section 7 presents an alternative experiment that relies

on heterogeneous increase in entry costs, while Section 8 concludes.

2 Facts

We first construct an empirical measure of turbulence and document the divergence of its

long-run trends across U.S. industries. We then present the evidence of sectoral hetero-

geneity in the market power shifts and demonstrate that they correlate with the turbulence

trends. We conclude with the discussion of the empirical evidence regarding the aggregate

increase in entry costs.

2.1 Turbulence across U.S. industries

Based on Comin and Philippon (2005), we compute a time-varying turbulence proxy at

the sectoral level. To do so, using Compustat data, we first construct a measure of firm-

level labor productivity and we rank all Compustat firms according to their productivity

within each NAICS 3-digit sector and each year.1 We then compute the Spearman’s rank

correlation of productivity, ιit, within each sector i over a five-year horizon, between year

1Our measure of labor productivity is output (revenues) per worker.
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Figure 1: Distribution of changes in turbulence ∆τi across NAICS 3-digit sectors between
1965 and 2012.

Notes: The graph plots the distribution of changes in turbulence measure ∆τi across NAICS-3
sectors between 1965 and 2012. The positive numbers indicate an increase in turbulence ∆τi.

t and t + 5, and repeat the computation for each year on a rolling window. Finally, we

define turbulence in sector i and year t as τit ≡ 1 − ιit. A high turbulence τit indicates

more churning of firm ranks in the productivity distribution.

While the recent literature documents an aggregate slowdown in the turnover of firms,

in many sectors the turbulence τit has, instead, increased since the 1960s. We compute

the change in the turbulence ∆τi in each NAICS-3 sector between 1965 and 2012 and plot

its distribution in Figure 1. As much as 49% of U.S. sectors have experienced an increase

in turbulence. We split the sectors into two groups: high-turbulence (superscript ht) and

low-turbulence (superscript lt), which are defined relatively to the median change in the

turbulence proxy M(∆τ) across all sectors.

Table 5 in Appendix F shows the outcome of the split with 15 largest high and low-

turbulence sectors, in terms of their revenue-based market shares. There is no typical

high and low-turbulence sector, however, some patterns emerge. Services are more fre-

quently classified as high-turbulence sectors while manufacturing industries are more likely

to fall into the low-turbulence category. Additionally, the heavy manufacturing industries

as Primary Metal (331) or Transportation equipment (336) and traditional services in-

cluding Rail transportation (481) tend to be classified as low-turbulence. In contrast,

high-turbulence sectors include younger industries that rely more heavily on new tech-

nologies: Manufacturing of Electrical Equipment and Components (335), Motion Pictures

and Sound Recording (513) or Telecommunications (517).
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Figure 2: Evolution of turbulence τit in high and low-turbulence sectors between 1960 and
2012.

Notes: The graph plots high-turbulence measure τhtt and low-turbulence measure τhtt between 1960
and 2012.

After classifying the sectors, we construct high-turbulence cost-weighted average τhtt

and low-turbulence cost-weighted τ ltt as follows:

τhtt =
N∑
i=1

τitωit if ∆τi > M(∆τ)

τ ltt =
N∑
i=1

τitωit if ∆τi ≤ M(∆τ) (1)

where ωit are the cost-based shares and M(∆τ) denotes the median across sectors. Figure

2 displays these two series. The black solid line plots the dynamics of τ ltt between 1965

and 2012 and the dashed black line shows the underlying HP trend. Similarly, the blue

solid line plots τhtt and the dashed blue line plots its trend.

Initially, both series display very similar levels of turbulence. However, around year

1980, the high-turbulence series τhtt exhibits an upwards shift and since then remains

permanently above the low-turbulence one, indicating a more frequent reshuffling of firms

within the sectors. Towards the end of the sample period, both series τhtt and τ ltt display

a declining trend. There are two reasons why this movement is unlikely to explain the

uneven growth in market power across sectors. First, the decline in turbulence occurs at

the end of the sample while the increase in markups has been the strongest in the 1980s
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(Figure 4). Second, the downward trend seems to be common to all types of sectors (the

trends move in parallel), and therefore is unlikely to rationalize the heterogeneous trends.

The heterogeneity in turbulence dynamics is not unique to Compustat data. In Figure

10 of Appendix B, we use CompNet dataset to document large differences in turbulence

across sectors in Europe.

2.2 Heterogeneous increase in market power and turbulence

There is a large body of empirical evidence showing the growing market power of U.S. firms

over the last four decades. A wide range of U.S. industries has experienced an increase in

concentration of sales and employment, and an increase in markups and profit margins.

This has been well documented by Autor et al. (2020), De Loecker et al. (2020), Grullon

et al. (2019), and Gutiérrez and Philippon (2017), among others. A less known fact is

that there are large differences in the degree to which sectors have experienced the recent

increase in market power.2

Figure 3 plots the distribution of the cumulative growth rates in cost-weighted sectoral

markups between 1965 and 2016, constructed in four different ways. To compute firm level

markups, we follow the definition proposed by De Loecker et al. (2020):

µk
it = θkit

PitQit

P v
itVit

, (2)

with k ∈ [1, 4] indicating the different identification used to estimate the (firm i specific)

output elasticity of the variable input in year t, θkit. PitQit represents the value of total

sales of firm i in year t and P v
itVit are the costs of the firm’s variable input of production.

Variable input value is defined as the ”cost of goods sold” (COGS in Compustat) and it

covers all expenses attributable to the production including materials, intermediate inputs,

labor cost, and overhead.

We start by assuming a constant and equal across sectors output elasticity: θ1it = θ1 =

0.85. θ2it is time-varying and firm-specific and is constructed from the cost shares as follows:

θ2it =
P v
itV

v
it

ΣJ
j P

j
itV

j
it

where
P v
itV

v
it

ΣJ
j P

j
itV

j
it

represents the share of the variable input of production: labor,

material and overhead relative to the sum of all inputs ΣJ
j P

j
itV

j
it being (i) labor, material

and overhead (COGS), and (ii) capital expenses. θ3it is constructed in a similar way, but

instead of the firm-level output elasticity, we take the median across all the firms in each

NAICS 3-digit sector and in each year t. Finally, θ4it is sector specific but constant over the

2A handful of studies documenting heterogeneous trends in markups include Bessen (2017), Calligaris,
Criscuolo, and Marcolin (2018), Diez, Fan, and Villegas-Sánchez (2019), and Bajgar, Criscuolo, and
Timmis (2021).

8



Figure 3: Distribution of markups growth rates between 1965 and 2016, across sectors.

Notes: The graph plots the distribution of markups growth rates across NAICS-3 sectors between
1965 and 2016. Sectoral markups are constructed from firm-level markups using cost-shares of firms
in the sector. The details on how markups are computed can be found in Appendix A.

sample period version of θ2it. All four firm-level markups µk
it are aggregated to the NAICS

3-digit level using production cost shares.

Figure 3 shows that, in some sectors, the markups have declined over the sample period

while in others they more than doubled. The differences between sectors are huge.

To verify if the heterogeneity in markup trends is related to the turbulence measure,

we split the NAICS 3-digit sectors in Compustat into high-turbulence sectors and low-

turbulence sectors, according to the definition in equation (1), and compute the median

markup in each type of sector.

Figure 4 plots the evolution of those markups in high-turbulence sectors (blue solid line)

and the underlying HP-filtered trend (blue dashed line), and for low-turbulence sectors

(black solid and dashed lines). No matter the measure, the increase in markups is always

higher in high-turbulence sectors than in the low-turbulence sectors. The median high-

turbulence markup’s growth is between 6% and 10% over the sample period, depending on
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Figure 4: Evolution of markups in high and low-turbulence sectors in the U.S.

Notes: The graph presents the median of the cost-weighted average markups for high-turbulence
sectors in Compustat (blue solid line), and the underlying HP-filtered trend (blue dashed line),
and for low-turbulence sectors (black solid line), and the underlying HP trend (black dashed line).
Each panel relies on a different methodology for the estimation of firm-level markups described in
Appendix A.

the markup’s measure. We therefore find a much more modest increase in markups than

De Loecker et al. (2020) but comparable to the findings by Gutiérrez and Philippon (2017),

Barkai (2020), Nekarda and Ramey (2020), and Edmond, Midrigan, and Xu (2021).

Similar to the turbulence series in Figure 2, both markups in Figure 4 comove in the

beginning of the sample and start to diverge around the year 1980; the high-turbulence

markups remain above the low-turbulence markups until the end of the sample. In con-

trast, the low-turbulence median markups in Figure 4 display flat or declining patterns.

Although publicly traded firms, covered by Compustat, account for 29% of the private

U.S. employment (Davis et al., 2006), there is a concern that they are not representative

of the distribution of the entire universe of firms. We therefore rely on a second dataset,

CompNet, that provides statistics computed for a more representative sample of firms

across Europe. In Appendix B, we show that also in CompNet (i) markups are systemati-

cally higher in sectors with higher turbulence and (ii) markups increase by more in sectors

where turbulence goes up.
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2.3 Entry Costs

A sharp decline in aggregate entry rates of both firms and establishments and in the

absolute number of entrants has been observed in the U.S. since the 1980s. The BDS

suggest that the decline is in the order of 25− 30% and 20− 15%, respectively.

An increase in entry costs has been proposed as one of the main reasons for the observed

decline in the U.S. business dynamism, e.g. Gutiérrez, Callum, and Philippon (2019) and

Gutiérrez and Philippon (2019). However, in contrast to the heterogeneous patterns of

turbulence, U.S. industries have experienced similar increases in entry barriers, making

them an unlikely explanation for the divergent trends in market power. In fact, the main

driver of the recent increase in barriers-to-entry seems to be the growing complexity of

regulation, as argued by Davis (2017) and Gutiérrez et al. (2019). Since most of the recent

regulations have been issued by the Environmental Protection Agency, which primarily

focuses on aggregate outcomes, this increase in regulation burden is an economy-wide

phenomenon, Goldschlag and Tabarrok (2018).

Importantly, although some sectoral variation in the degree of complexity exists be-

tween industries, Goldschlag and Tabarrok (2018) show that they are not predictive of the

sectoral heterogeneity in business dynamism. Yet, we do not entirely rule out the possi-

bility that an uneven increase in entry costs produced different market power dynamics

between sectors, and we test this hypothesis in our model in Section 7.

3 Model

To analyse the recent market power dynamics we build on the framework by Atkeson and

Burstein (2008). Because we are interested in the evolution of market power over time,

our model differs from the one by Atkeson and Burstein (2008) in one crucial dimension.

Instead of the static competition game, we introduce the sequential and forward-looking

entry in the spirit of Bilbiie et al. (2012). Together with idiosyncratic productivity shocks,

these model features allow us to capture realistic business dynamics where the number of

entrants, price markups and profits are determined period-by-period by changes in market

conditions, similarly to Edmond et al. (2018).

In our environment firms differ by their productivity level and they compete under

oligopoly. The economy is populated by a finite number of firms. This is important be-

cause it implies that every incumbent possesses a non-atomistic mass, which translates

into a strictly positive market share that depends on firms’ relative productivity level.

This allows for an intuitive link between the relevant quantities in the model, e.g. concen-

tration or markup indexes, with their empirical counterparts. Individual markups grow
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monotonically in individual market shares. Since the core dynamics take place on the

firms’ side, a simple representative household is modelled on the demand side, in the spirit

of Bilbiie et al. (2012).

3.1 Firms and Competition

3.1.1 Production

The economy features a single sector in which firms compete under oligopolistic competi-

tion á la Cournot, producing differentiated varieties yjt, where the subscript j represents

a firm with productivity j.3 After the production takes place, the individual goods are

aggregated into the bundle Yt through a standard C.E.S. function. The aggregate output

Yt is used solely for consumption purposes. We assume that the economy is populated by a

finite number of firms Nt. Their non-atomistic market share depends on the idiosyncratic

productivity level and on the number and type of active competitors. When allowing for

oligopolistic competition, the distribution of the market shares has a clear impact on the

markup distribution.

Firms draw their productivity level x(i) from a known discrete distribution function

f(x). Idiosyncratic productivity is assumed to be time-varying and its dynamics can be

summarized by a stationary and non-degenerating Markov process: in each period t, qij

represents the probability of moving from productivity level x(i) to x(j) between period

t and period t + 1 and
∑

j qij = 1, ∀i. The number of distinct and active productivity

levels, i.e. the number of firm types, is represented by S.4

Within each productivity type firms are identical and, thus, they are entirely identified

by their productivity level. In the following, the variables related to a firm with a pro-

ductivity, x(i), are identified by the index (i). Each firm type i produces an imperfectly

substitutable good yt(i), which is aggregated into the bundle Yt. The aggregator function

is a standard C.E.S. function for discrete aggregation:

Yt ≡

[
Nt∑
j=1

y
θ−1
θ

jt

] θ
θ−1

=

[
S∑

i=1

Nt(i)yt(i)
θ−1
θ

] θ
θ−1

(3)

where θ is the elasticity of substitution between varieties, with θ > 1, Nt(i) is the number of

firms endowed with productivity level i, and Nt represents the total number of incumbents.

3The case of Bertrand competition is described in Online Appendix 2.
4It is important to specify active. We model S + 1 types: the type 0, i.e. the firm with productivity

x(0), mimics a productivity level that is not enough to guarantee firm survival and it is a proxy for fixed
costs of production, which are not modelled explicitly. Thus, if a firm draws this productivity it is forced
to leave the market immediately and this allows us to focus on the dynamics of S types only.
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Production is linear in labor lt(i) and depends on the idiosyncratic productivity x(i),

which acts as a labor-augmenting technology:

yt(i) = x(i)lt(i) (4)

Firms compete under oligopolistic competition a la Cournot.5 Firms maximize their

per-period nominal profits by choosing the optimal quantity yt(i):

max
yt(i)

pt(i)yt(i)−Wtlt(i) (5)

Subject to (4) and to the aggregate demand constraint:

yt(i) =

(
pt(i)

Pt

)−θ

Yt

where Wt is the nominal wage, while Pt is the aggregate price index, defined as a function

of the individual prices pt(i) as: Pt ≡
[∑Nt

j=1 p
1−θ
jt

] 1
1−θ

=
[∑S

i=1 Nt(i)pt(i)
1−θ

] 1
1−θ

.

In Online Appendix 2, we show that under this form of competition the optimal real

price ρt(i) = pt(i)/Pt satisfies:

ρt(i) = µt(i)
wt

x(i)
(6)

where wt = Wt/Pt is the real wage. As in Edmond, Midrigan, and Xu (2015), the markup

µt(i) can be defined as a function of the market share ωt(i), where ωt(i) = ρt(i)
1−θ given

our structural assumptions about the sector(s). The markup µt(i) is:

µt(i) =

(
θ

θ − 1

)(
1

1− ωt(i)

)
(7)

The markup’s definition in equation (7) nests the monopolistic competition case: when

ωt(i) → 0, the resulting markup is the standard θ/(θ − 1), independent from the number

and type of competitors and from the idiosyncratic productivity level.

Our markup generalizes that result, and can be summarized as an extra idiosyncratic

markup over the monopolistic benchmark, which increases in the relative productivity

level and, thus, in the market share ωt(i). Using equation (6) and the aggregate demand

constraint, we can write the real profits for the firm with productivity x(i) as:

dt(i) =

(
1− 1

µt(i)

)
ρt(i)

1−θYt (8)

Profits dt(i) are increasing in the markup µt(i), with a lower bound on zero whenever

µt(i) = 1, as under perfect competition. Given that the markup is increasing in the

5Under the chosen specification, incumbents internalize that the quantity they select affects the sectoral
output Yt, but not the total expenditure PtYt allocated to consumption, as well as the wage of the economy.
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market share, profits are increasing in the market share as well. The intuition is straight-

forward: a firm endowed with technology x(S) and associated lowest marginal cost is able

to charge the lowest relative price, with respect to the other incumbents. Because of its

cost leadership, it gains largest market share and can charge, in turn, higher markups that

generate higher profits.

3.1.2 Idiosyncratic Exit, Entry and Productivity Shocks

Firms are subject to idiosyncratic entry, productivity and exit shocks. At the beginning

of period t, surviving incumbents from period t− 1, N s
t (i), are hit by productivity shocks,

whose ex ante type-specific probabilities are known and determined by a Markov process.

Then, entry occurs and potential entrants also draw a productivity level, x(i), which

determines whether the firms can successfully enter the market. At the very end of period

t, each firm can be hit by an idiosyncratic exit shock. The timing of the shocks’ occurrence

is summarized in the timeline and explained in detail below.

t

Nt(i)

shocks

entry Nt(i) +N e
t (i)

shocks

exit

t+1

N s
t+1(i)

shocks

productivity Nt+1(i)

Before entering the market, each potential entrant draws a productivity level x(i) from

a discrete distribution function f(x), the same as the incumbents’. With probability Ω0,

the potential entrant is successful, i.e. with probability 1 − Ω0 the firm draws the null

productivity and cannot join the market. Given the number of potential entrants Mt, the

number of successful entrants N e
t follows a binomial distribution with success probability

Ω0 and Mt trials. Conditional on successful entry, there is a probability Ωi of drawing

the productivity level x(i). Again, given N e
t , the number of successful entrants of type i,

N e
t (i), follows a multinomial distribution with N e

t trials.

After the successful draw, and before knowing the exact productivity level assigned for

period t, entry cost must be paid by each entrant in order to join the market. Real entry

costs are measured in terms of units of labor and they are equal to fe,twt.
6 The entry fee

fe,twt is payed conditional on successful entry only. Firms enter the market up to the point

where their expected value is at least equal to the cost of entry. The free entry condition

is:

(1− Ω0) 0 + Ω0

[
S∑

i=1

Ωiei,t(i)− fe,twt

]
≥ 0 (9)

where ei,t(i) is the value of the potential entrant when the productivity x(i) is drawn. When

considering entry, the marginal entrant internalizes that its action affects the (expected)

6Alternatively, we could have specified entry cost in terms of consumption. However, under this second
specification, profits are increasing in entry, if entry is low enough.
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number of operating firms in the following periods. As a result, the value of a potential

entrant is different from the value of an incumbent of the same type. We differentiate the

variables related to the entrants by subscript i.

Importantly, entry triggers the business stealing effect as it has an impact on the

expected sectoral price and, hence, on the expected profits and firm value and, it is a

direct consequence of the assumption of the finite number of firms.

The number of potential entrants Mt is pinned down, in each period, by a sequential

selection mechanism. Each potential entrant has the perfect knowledge of the market and

its active competitors but does not know its own type or the types of other potential

entrants. Given the number of incumbents and their type, the first potential entrant eval-

uates the entry condition in Equation 9. If the condition is positive, a second potential

entrant decides if entry is still profitable, internalizing the entry decision of the first en-

trant. This selection continues until the condition turns negative for the potential entrants

number Mt+1, and this pins down Mt.

At the very end of period t, each firm i can be hit by an idiosyncratic exit shock with a

time invariant exogenous probability δ(i).7 The exit shocks realize after the entry of new

firms has occurred, and they can hit potentially every firm. As in Bilbiie et al. (2012), the

entrants start producing only in the period that follows their entry so that new firms may

be forced to leave the market even before being active.

After exit has occurred at the end of period t, the economy enters period t+ 1 with a

given number of surviving firms of type (i)N s
t+1(i). Conditional on the number of survivors,

the number of incumbents of each type in period t+ 1 is determined by the realization of

idiosyncratic productivity shocks.8 In particular, the number of firms endowed with the

productivity x(i) in period t which survives in period t + 1, N s
t+1(i), follows a binomial

distribution with success probability 1 − δ(i) and N e
t (i) + Nt(i) trials. Finally, given the

number of survivors of each type, the realization of multinomial distributions determines

the fraction of survivors endowed with productivity x(i) that keeps their own productivity

level, N i
t+1(i), against the number of survivors that switch to any of the remaining types

j, N i
t+1(j).

7Exit is modelled as an exogenous shock due to our assumptions regarding types. Indeed, if we assumed
fixed costs of production, the resulting threshold for break even would either wipe out all the firms in
low-productive types or no firm at all. An alternative would be to let firms draw a fixed cost from a known
distribution each period. However, if we allow the distribution to be type specific, this is isomorphic to
our assumption about exogeneity.

8The law of large numbers cannot be used in our framework due to the finite number of firms. As a
result, it is not possible to reduce the idiosyncratic stochastic processes to their expected values, making
the aggregate exit, entry and productivity dynamics deterministic laws. Due to this feature, the law of
motion of firms evolves according to (the realization of) binomial or multinomial distributions. This is
the reason why we continue to talk about exit, entry and productivity dynamics as shocks.
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3.2 Households

The household side of the economy is kept as simple as possible. The economy is populated

by a continuum of identical households of unitary mass. The representative household

consumes an aggregate consumption bundle ct and supplies labor Lt. The quantity of

labor supplied has two purposes: a fraction of the aggregate labor supply is employed in

the production process and the remaining part is used to invest in new firms.9

The household can invest in a portfolio that represents the ownership of the firms, by

purchasing shares xt+1. Finally, the households receive the rents Ft from the investment

fund which pays the entry costs for every successful entrant. The rents equal, thus, the

difference between the total value of the entrants and the total entry costs paid.

The household maximizes her lifetime utility in real terms, U :

U = E0

∞∑
t=0

βt

ln ct − χ
L
1+ 1

ϕ

t

1 + 1
ϕ

 (10)

where ct and Lt are aggregate consumption and labor supply, as defined above, 0 ≤ β ≤ 1

is the discount factor, χ ≥ 0 is a scale parameter for the disutility of labor, useful for

calibration, and ϕ > 1 represents the elasticity of labor supply. The maximization is

subject to the budget constraint:

ct + xt+1Vt+1,t = Ltwt + xtVt + Ft (11)

For the sake of clarity, the period t value of the entire portfolio, gross of dividends, is rep-

resented here by Vt, while Vt+1,t describes the period t value of the new portfolio purchased

in period t to be carried to period t + 1. Given the definition above, wtLt describes the

total labor income.

The value of the portfolio is the sum of the net-of-dividend value of the portfolio in

period t, At, and dividends payments, Dt:

Vt = At +Dt =
S∑

i=1

[et(i) + dt(i)]Nt(i) (12)

9In the standard model with monopolistic competition, the marginal entrant has atomistic mass. Hence,
in equilibrium:

∑S
i=1 et(i)N

e
t (i) =

∑S
i=1 ei,t(i)N

e
t (i) = Ne

t wtfe,t = wtL
e
t , where L

e
t is the fraction of labor

supplied used to repay entry costs. However, in this setting, et(i) ̸= ei,t(i) and profits possibilities are not
exploited completely due to the integer nature of the number of competitors and entrants. Due to these
issues, we must assume the existence of an investment fund. The fund creates new firms at their costs and
sell them at their higher value to the households. Given that profit possibilities are not exhausted, the
fund makes profits, and these rents are distributed as lump sum transfers to the households, closing the
budget constraint. With the introduction of the fund, in equilibrium we still have that the labor supply
that is used to invest in new firms, i.e. Le

t , is equal to Ne
t fe,t.
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Entry occurs in the beginning of period t, when the representative household purchases

the portfolio to be brought to period t + 1. Because this happens before the exit shock

occurs (end of period t), the household does not know the number of surviving firms and

finances them all. The value of the purchased portfolio is:

Vt+1,t =
S∑

i=1

et(i) [Nt(i) +N e
t (i)] (13)

Finally, for completeness, the rents received by the intermediary are equal to the following

(note that they do not affect the maximization of the household being a lump sum transfer):

Ft =
S∑

i=1

et(i)N
e
t (i)−N e

t wtfe,t

Given that ct = 1/λt, the F.O.C. with respect to Lt is:

χL
1
ϕ

t ct = wt (14)

By combining the F.O.C.s with respect to ct and xt+1, the following equation can be

written:

Vt+1,t = βEt

[(
ct
ct+1

)
Vt+1

]
(15)

This condition is equivalent, in expectation, to the following Euler equations for assets

value that derive from the definition of et(i), similar to the one for ei,t(i), and of the

stochastic discount factor Λt+1,t as β
ct

ct+1
:10

et(i) = β (1− δ(i))Et
ct
ct+1

[
S∑

j=1

qij (dt+1(j) + et+1(j))

]
(16)

for i = 1, 2, ..., S.

3.3 Aggregation

In equilibrium, the representative household holds the entire portfolio of firms, i.e. xt+1 =

xt = 1. Using the definition of Ft the following resource constraint can be obtained:

ct +N e
t wtfe,t = Ltwt +

S∑
i=1

dt(i)Nt(i) (17)

10This is true provided that Etβ
ct

ct+1
(et+1(i) + dt+1(i))EtNt+1(i) = Etβ

ct
ct+1

(et+1(i) + dt+1(i))Nt+1(i)
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From the definition of the aggregate output, we obtain aggregate labor supply:

Lt = Lp
t + Le

t = N e
t fe,t +

S∑
i=1

lt(i)Nt(i)

where Lp
t represents the labor employed for production, Le

t the one used to finance entry.

Finally, from the definition of the aggregate price:

1 =
S∑

i=1

Nt(i)ρt(i)
1−θ (18)

and

Yt = ct (19)

3.4 Risky steady state

Due to the assumption regarding the finite number of firms, paired with stochastic entry,

exit and productivity dynamics, the standard definition of the deterministic steady state,

where entry perfectly balances exit, cannot be applied. Building on Coeurdacier, Rey,

and Winant (2011) and Juillard (2011), we derive instead a version of the Risky Steady

State. The proposed equilibrium with risk-neutral agents describes a state in which no

shocks occur but economic agents take into consideration the possibility that the shocks

might happen in the future. In the steady state, households invest in entry up to the

point where it compensates the expected exit, thus keeping the number of incumbents and

entrants constant over time in expectation.11 As in the calibration below, we consider a

particular case in which the number of active types S is equal to 3.

The definition of the Risky Steady State follows. Given the steady state value for the

exogenous entry costs fe, and given the calibration of the exogenous parameters, the steady

state is the set {ρ(i), w, d(i), Y,N(i), N e(i), N e,M, e(i), L, c} with i = 1, 2, 3 that solves

the system of equations described in Appendix C. Note that this deterministic equilibrium

holds in expectation, since we consider the expected realizations of the stochastic processes.

Because of that, no restriction is put on the integer nature of the variables relative to the

number of firms (incumbents and entrants). This means that a marginal entrant can be

of infinitesimal size, as the free entry condition closes: the effect of its entry on the mass

of competitor is negligible. Given that, marginally, entry does not affect the sectoral price

and the profits here, the value of an incumbent or of a potential entrant of the same type

is equivalent.

11The steady state we present here is the one that would also emerge under the assumption of oligopolis-
tic competition within sectors and continuum of sectors in aggregate, in the spirit of Atkeson and Burstein
(2008).
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4 Calibration

Our key quantitative exercise compares the transition paths between two steady states in

two types of sectors. The initial and common steady state of the economy is calibrated

to reproduce key features of the U.S. industries between 1960 and 1980, the period with

relatively low and stable market power of firms and turbulence. The values of the internally

and externally calibrated parameters are presented in Table 1. Since the two permanent

shocks are the key drivers of the model dynamics, we pay particular attention to their

calibration and present their values before and after the shocks in a separate table (Table

2).

To keep the analysis tractable, the discrete distribution function of productivities con-

sists of four mass points: x(0), x(1), x(2) and x(3), with x(3) > x(2) > x(1) > x(0). Thus,

we keep track of four types of firms and three active types: S = 3. The choice of S = 3

is based on the fact that the firms differ little from each other within different percentiles

of the size distribution and the main differences can be found between the very top firms

and the rest, Crouzet, Mehrotra, et al. (2017). The null productivity mimics the presence

of fixed costs of production, which are not introduced explicitly in the model.

Each period t represents a quarter and the discount factor β is fixed at the value of

0.99, implying an annual interest rate of approximately 4%. The parameter that governs

the elasticity of substitution between goods, θ, is set to 10, in line with the estimates from

Edmond et al. (2015).

The elasticity of labor supply ϕ is equal to 0.5, as in Boar and Midrigan (2019). We

normalize the multiplier for the disutility of labor, χ, to a value such that the labor supply

in the final steady state for the high-turbulence sector is equal to 1. Under this specific

calibration, in the baseline experiment χ ≈ 0.88. The remaining internally calibrated

parameters are set to match the key U.S. economy quantities.

4.1 Productivity levels, entry and exit probabilities

In the data, firm-level productivities are distributed under a power law. To accommodate

this fact, we assume that the function f(x) is the discrete counterpart of a continuous

Pareto distribution with a minimum at 1 and a tail parameter κ = 1.05.12 This results in

three productivity levels x(1) = 1.315, x(2) = 4.631 and x(3) = 80.309, which reflect the

underlying assumption about firms’ productivity: they represent, respectively, the 25th

percentile, the 80th percentile and 99th percentile of the Pareto distribution. Similarly,

the ex-ante probability of being a successful entrant, Ω0, is equal to 0.75, reflecting the

12Axtell (2001) estimates a tail parameter of 1.059.
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assumption that an entrant is successful whenever a productivity higher than x(1) is drawn

from the continuous Pareto distribution. This implies that Ω0 = Pr[x ≥ x(1)], which gives

Ω0 = 0.75. Given that Ω2 and Ω3 represent, respectively, the conditional probability of

drawing productivity level x(2) and x(3) for a successful entrant, they are set to 0.2533

and 0.0133.13 Given this calibration, x(3) describes large and highly productive firms,

x(2) medium-large incumbents and x(1) unproductive small to medium firms.

The parameter that determines the likelihood of an exit shock for type 3 firms, δ(3), is

calibrated to 0.005, the quarterly exit rate of top 1% firms in terms of size from the BDS

dataset, see Tian (2018).

In order to identify all the entries of Markov transition matrix, that governs the degree

of turbulence in a sector, we need to impose a set of restrictions. Our identification strategy

relies on the assumption that the most productive firms are a subset of highly-productive

type-2 firms and, therefore, both types share some characteristics. Accordingly, we assume

that exit probabilities are the same, i.e. δ(2) = δ(3) = 0.005, and that the probabilities

of receiving a detrimental productivity shock that lowers the productivity level to x(1)

are equal for both types as well, q31 = q21.
14 Following Tian (2018), we set δ(1) to 0.03.

Note that, although not targeted, this calibration, together with the Markov transition

described below, delivers a yearly business destruction rate of approximately 10%, as in

Colciago (2016).

4.2 Increase in turbulence and entry costs

We model two major changes that started to take place in the U.S. economy in the 1980s.

The first one is the sector-specific increase in turbulence, and the second is the common

increase in entry costs.

Sectoral Turbulence

In Compustat data, we split the sectors into 2 types according to Equation (1). Both

types of sectors exhibit a stable turbulence of 0.21 (5-year Spearman rank correlation of

0.79) before the 1980s. Accordingly, in both sectors’ initial steady states, the Markov

transition matrix, once iterated, displays a 5-year Spearman rank correlation of 0.79. In

contrast, after the 1980s, we see a strong heterogeneity between the two types: in high-

turbulence sectors, there is a structural break in the mean of turbulence, and the 5-year

13Since Ω2 = Pr[x ≥ x(2) ∧ x ≤ x(3)|x ≥ x(1)] = 0.19
Ω0

= 0.2533 and Ω3 = Pr[x ≥ x(3)|x ≥ x(1)] =
0.01
Ω0

= 0.0133.
14A different approach would be to set q31 = 0, as we do later for q13, and to iterate the Markov process

to pin down q21, given δ(2) and δ(3).
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Table 1: Calibration of fixed exogenous parameters
Parameter Calibration Target

S 3 Four types of firms, three active
β 0.99 ≈ 4% yearly interest rate
θ 10 Edmond et al. (2015)
ϕ 0.5 Elasticity of labor supply in Boar and Midrigan (2019)
χ 0.88 Aggregate labor supply = 1 in high-turbulence

x(1) 1.315 25th percentile in a Pareto with κ = 1.05
x(2) 4.631 80th percentile in a Pareto with κ = 1.05
x(3) 80.309 99th percentile in a Pareto with κ = 1.05
Ω0 0.75 Pr[x > x(1)] under Pareto with κ = 1.05
Ω2 0.2533 Pr[x ≥ x(2) ∧ x ≤ x(3)|x ≥ x(1)] under Pareto with κ = 1.05
Ω3 0.0133 Pr[x ≥ x(3)|x ≥ x(1)] under Pareto with κ = 1.05
δ(1) 0.03 ≈ Exit rate for small firms in BDS, Tian (2018)
δ(2) 0.005 = δ(3) for identification strategy
δ(3) 0.005 ≈ Exit rate for top 1% firms in BDS, Tian (2018)

Notes: The table presents the calibration of the exogenous parameters. The second column describes
the value assigned to the parameters. The third column describes the targets of the calibration. These
parameters are kept fixed along the entire transition in every simulation.

Spearman rank correlation drops from 0.79 to 0.62. There is only a small reduction in

the 5-year Spearman rank correlation in the low-turbulence sectors, and this reduction is

not significantly different from zero. Therefore, in the low-turbulence sector, the degree

of turbulence remains the same for the entire transition. In the high-turbulence sector,

the productivity process parameters are recalibrated to match the change in the target,

namely, the decline in 5-year Spearman rank correlation from 0.79 to 0.62. This implies

turbulence of 0.38 in the second steady state of high-turbulence sector.

The calibration of the elements of the Markov matrices is the following. First, we pin

down the ex-ante probability that a top-20% firm never leaves its leadership position for 5

years: [(1−δ(2))(1−q21)]
20. We calibrate it to match the turnover probability from Comin

and Philippon (2005), a 5-year top firms turnover of 0.1 in 1980 and 0.27 in 2005. This

delivers q21 = q31 = 2.5545e−04 for the common initial steady state and q21 = q31 = 0.0107

for the high-turbulence final steady state. Using the values for q21 and q31, we calibrate

the remaining elements of the Markov matrix by matching the 5-year productivity rank

Spearman correlation, for high (0.62) and low-turbulence sectors (0.79). The values of all

the Markov entries are reported in Table 2. Additional details are presented in Appendix

D.
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Increase in entry costs

Measuring entry cost is inherently difficult. In our calibration, we proceed as follows.

First, we set the initial entry costs to match the number of incumbents in a typical U.S.

4-digit or 6-digit NAICS sector. Second, we target the existing proxies for the increase in

entry costs in the data. Specifically, in the initial steady state, entry costs are normalized

to 0.05. In the benchmark exercise, we set the increase in entry costs to 100% so that

after the shock entry cost equals 0.1.15

We choose a 100% hike in entry costs, as it represents the magnitude implied by (i)

the increasing required investment in R&D and (ii) the observed growth in the complexity

of regulation.

Table 2: Calibration of the key exogenous parameters pre and post-shift
Parameter Pre-shock Post-shock Target

fe 0.05 0.1 Bloom et al. (2020) and Gutiérrez et al. (2019)

q11 0.9883 0.9734 5-year correlation = 0.79 pre-shock and = 0.62 post
q12 0.0117 0.0266 1− q11
q13 0 0 Assumption for computational purposes
q21 2.5545e−04 0.0107 5-year leaders turnover = 0.1 pre-shock and = 0.27 post
q22 0.9866 0.9704 5-year correlation = 0.79 pre-shock and = 0.62 post
q23 0.0131 0.0189 1− q21 − q22
q31 2.5545e−04 0.0107 = q21 for identification strategy
q32 0.0131 0.0162 1− q31 − q33
q33 0.9866 0.9731 5-year correlation = 0.79 pre-shock and = 0.62 post

Notes: The table presents the calibration of the remaining exogenous parameters. The numerical targets
for the turnover are taken from 1980 (pre-shock) and 2005 (post-shock) estimates in Comin and Philippon
(2005), as well as our empirical estimates from 1960 to 2015.

One way of interpreting the entry costs in our model is as the foregone labor force

required to introduce a new variety in the economy. Bloom, Jones, Van Reenen, and Webb

(2020) estimate a sharp increase in the number of effective workers employed in R&D in

the U.S., required to sustain a stable technological growth when the research productivity

is decreasing. They show that the number of researchers more than doubled between 1980

and 2000. Assuming that R&D is (also) used to create new varieties/products, this implies

a 100% increase in entry costs in our framework.

Davis (2017) and Gutiérrez et al. (2019) show that the main driver of the recent

increase in barriers-to-entry is the growing complexity of regulation. The median number

of regulatory clauses, a proxy for the complexity of regulation and, thus, entry costs, more

15We additionally calibrate the model with a smaller increase in entry costs of 0.06, which is used to
match the decline in the number of entrants in BDS between 1980 and 2016. As in the data, this cali-
bration delivers a 15% reduction in entrants. Our qualitative results are robust to this more conservative
calibration.
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than doubled during our sample period, suggesting more than 100% increase in entry costs.

These are the targets for our calibration.

5 Model simulations

In our main quantitative exercise, we study the transition dynamics between two steady

states of two different sectors. In both sectors, the initial steady state is the same and

corresponds to the period pre-80s, when the markups and other measures of U.S. market

concentration were low. We then assume that in both types of sectors entry costs go

up. In the high-turbulence sector, we additionally increase the turnover of firms over the

productivity distribution by imposing a sector-specific turbulence shock.

To highlight the key mechanism, we compute the stationary distributions of productiv-

ity types implied by the Markov process only, before and after the change in turbulence,

and report them in Table 3.16 x(1) − x(3) are the frequencies of each firm type. Before

the shift, both type-2 and type-3 are equally likely and only a small probability of being

type-1 firms exists (x(1) = 0.021). After the increase in turbulence that rises the likeli-

hood of movements in productivity ranks, type-1 is more frequent (x(1) = 0.286) and the

volatility of type is almost twice as high as before the shift (σ = 0.291 versus σ = 0.581).

The stationary distribution after the shift in turbulence implies therefore a more dynamic

environment.

Table 3: Stationary distribution of firm types pre and post increase in turbu-
lence

Parameter Pre-shock Post-shock

x(1) 0.021 0.286
x(2) 0.494 0.419
x(3) 0.485 0.295
EV 2.464 2.009
σ2 0.291 0.581

Notes: The table describes the stationary distributions of firm productivity types implied
by the Markov before and after the increase in turbulence. x(1)− x(3) are the frequencies of
each firm type, EV is the expected value of type, and σ2 is type’s variance.

5.1 Transition dynamics in a high versus low-turbulence sector

We solve the model using the original algorithm described in detail in Online Appendix

4. We simulate the model economy over 120 periods (30 years) and repeat the experiment

100 times to build confidence intervals. We present the results of one simulation instead

16The true stationary distribution of the model entails somewhat different firms’ shares, as it also
internalizes the presence of heterogeneous entry and exit shocks.
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Figure 5: Evolution of concentration and markups, high vs low-turbulence sector.

Notes: The graph presents the response of the sectors to a common increase in entry costs and a
sector-specific increase in turbulence, in the high-turbulence sector only. The blue solid lines describe
the dynamics of the variables over time, and the dotted blue lines their confidence intervals. The red
and green lines represent, respectively, the initial and the final steady state for the high-turbulence
sector. In the left-bottom panels, the grey lines represent the individual markups charged by the firms
endowed with the highest productivity type, while the purple line describes the median markup.

of averaging over 100 to preserve the properties deriving from our assumption about the

finite number of firms. Each one of 100 simulations can be interpreted as one sector in an

economy.17

Figure 5 presents the paths of the key variables of interest: market concentration and

price markups. The first two rows of the figure plot the evolution of sectoral markups

in high (first row) and low-turbulence sectors (second row) computed in two different

ways: (i) arithmetic average markup and (ii) cost-weighted markup. The average markup

increases in both types of sectors. This trend is mainly driven by higher entry cost that

17We also implement an alternative simulation where, instead of a one-time shift, the growth in entry
cost and turbulence follows progressive, empirical paths. The results of this exercise are qualitatively
similar to the ones presented here and they are described in Appendix E.
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results in a change in the composition of firms in the sector. In particular, increasing entry

costs prohibit type-1 firms from joining the market and their relative number declines in

favor of high-markup, type-3 firms.

The cost-weighted markup, presented in the 2 top-right panels of Figure 5 behaves

differently, conditional on the sector type. In high-turbulence sector, it increases by 4.5%

but only by 1.5% in the low-turbulence sector.18 The intuition is as follows. Higher

turbulence increases the likelihood of changing type for all firms. However, since the type-

3 firms cannot become more productive, by definition, higher turbulence only raises their

chances of moving downwards in the productivity ranks or exiting the market. If this

happens, a large available market share is captured by other type-3 firms.

The increase in cost-weighted markup in high-turbulence sector is therefore driven

by the high-markup firms via two mechanisms. First, the available market shares are

reallocated to the most productive high-markup firms. Second, given their growing market

shares, those firms charge even higher markups. In the next section, we evaluate the

importance of each of these channels.

The lower panels of Figure 5 corroborate the intuition that the dynamics of the cost-

weighted markups are mainly driven by high-markup firms. Two lower-left panels plot

individual markups in high and low-turbulence sectors. The grey solid line shows the

evolution of the markup of type-3 firms, whose increase is closely mirrored by the sectoral

cost-weighted markup (top-right panel of Figure 5). In contrast, the median firm (purple

solid lines) always charges the monopolistic competition markup of 1.11, because of its

atomistic market shares. The impact on the dynamics of aggregate markup is therefore

negligible. This is similar to the data, where the median markup has been constant over

the last several decades, while the increase in the average markup has been driven by

growing markups of the top firms, see De Loecker et al. (2020).

Both higher entry costs and turbulence contribute to the reduction of the number of

firms operating in the market. The declining number of firms translates into a growing

Herfindahl index (HHI) over the transition to the second steady state, in both sectors

(bottom-right panels in Figure 5). The increase in high-turbulence sector is however twice

as large as in the low-turbulence sector.

6 Model versus data

We study how well the model captures the market power dynamics across industries in two

following ways. First, we evaluate the importance of reallocation and within components

18These numbers are somewhat different when comparing the changes between 2 steady states and they
are presented in Table 4.
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in the markups growth. To do it, we apply Haltiwanger (1997)’s decomposition to the

model’s markups in high and low-turbulence sectors and contrast it with the markup’s de-

composition in Compustat NAICS-3 digid sectors. Second, we compute a set of untargeted

unconditional moments in our simulated sectors and compare them with their empirical

counterparts.

6.1 Reallocation of market shares

The growth of the revenue-weighted markup between period t and t − 1, ∆µ̄R
t , can be

written as:19

∆µ̄R
t =

3∑
i=1

Nt(i)ωt−1(i)
θ

θ − 1

(
1

1− ωt(i)
− 1

1− ωt−1(i)

)
+

+
3∑
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(
θ

θ − 1

1
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+
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+
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(
θ

θ − 1

1
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−

3∑
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(
θ

θ − 1

1

1− ωt−1(i)
− µ̄R
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)
(20)

where N ex
t is the number of exiting firms in period t.

The within changes (first line of Equation 20) represent variations in the average

markup driven by changes in the firm-level markups, keeping the market shares constant

at the previous period level.20

The reallocation of market power (between changes) are captured by the second and

third lines of Equation 20, which represent: (i) changes in average markup induced by

pure changes in market shares, keeping markups constant, and (ii) cross-terms changes.

The last line of 20 describes changes driven by net entry.

We apply a similar decomposition to the average markups’ changes in high and low-

turbulence sectors in Compustat data, between 1980 and 2016, keeping in minds that the

19We follow De Loecker et al. (2020) and decompose the revenue-weighted average. Note that, in our
framework, quantitative results are virtually unchanged when using the cost-weighted average.

20There is a drawback of this decomposition in the context of our model. Individual markups are a
function of market shares only. As a result, changes in market shares directly translate into the changes in
markups and hence appear as the within component. Consequently, the importance of the within channel
is likely to be overestimated by construction. We keep it in minds when interpreting the results of the
decomposition.
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Figure 6: Decomposition of the average change in markups in high versus low-turbulence
sectors between 1980 and 2016 in Compustat.

Notes: The figure presents the decomposition of the average change in the revenue-weighted markups
µ2 and µ4 in high-turbulence (top panel) and low-turbulence sectors (bottom panel). To decompose
the markup’s increase, we follow Haltiwanger (1997). The construction of µ2 and µ4 is described in
Appendix A.

net entry component is not meaningful.

Figure 6 shows the decomposition of two different markups in Compustat (µ2 and µ4

from section 2.2) and the left panel of Figure 7 displays a similar decomposition of the

markup in the model. There is a striking difference between sectors in the way their

markups’ growth is generated. In the data, in high-turbulence sectors, half of the increase

comes from the reallocation of market shares towards high-markup firms. In the model,

an even larger share of markups’ average growth is derived from the reallocation of market

shares. In contrast, both in the data and in the model, markups in the low-turbulence

sectors are primarily driven by the growth of the markups of the incumbents (within

component).

Since the results presented in the left panel of Figure 7 are based on one simulated

sector, the right panel of Figure 7 also shows the importance of reallocation component

in markups growth in each of 100 simulations. The figure plots the distribution of the
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Figure 7: Decomposition of the average change in markups in high versus low-turbulence
sectors in the model.

Notes: (Left panel) the graph presents the decomposition of the average change in sectoral markup
in high-turbulence sectors (top) and low-turbulence sectors (bottom). The decomposition is based on
one representative simulation from our baseline model. (Right panel) the graph shows the frequency
of the shares of the reallocation component in markups’ growth in high and low-turbulence sectors,
over 100 simulations.

shares of the reallocation component in the markup’s growth in simulated high-turbulence

sectors (blue) and low-turbulence sectors (red). While reallocation of market shares occurs

in both types of sector, only in the one with higher turbulence it is frequently the largest

driver of markups growth.

We provide additional empirical support for the main mechanism driving increase in

markups using CompNet. In Appendix B, we show that in 7 European countries (i)

stronger reallocation of the market shares is associated with higher turbulence and (ii) in

sectors with higher reallocation of market shares the markups grew the fastest.

6.2 Untargeted moments

To assess the model’s ability to replicate data behavior over time and across sectors, Table

4 reports the moments along two dimensions. The top panel of Table 4 presents statistics

28



based on time-series and the lower panel in cross-section. The top panel summarizes to

what extent the model can capture growth in the market power proxies. In the data,

the variables indicated as ∆xT correspond to cumulative changes in the median variable

x between 1980 and 2016. In the model, the changes ∆xT are computed as cumulative

changes in the variables of interest between the two steady states. The last two columns

of Table 4 report the ratios between high and low-turbulence sectors. The lower panel of

Table 4 reports the dispersion in the market power variables with σ∆xT
being a standard

deviation of the cumulative changes of the variable x. To calculate the dispersion of a

variable of interest in the model, we simulate it 100 times for each type of sector and

compute the standard deviation across all the realisations.

The top panel of Table 4 reports the increase in two measures of market power: cost-

weighted markups and revenue-weighted profit rates. We compute markups in four dif-

ferent ways, described in Appendix A. For all those measures, the cumulative growth

rates are higher in high-turbulence than low-turbulence sectors. The median increase in

markup in high-turbulence sectors is between 6.13% and 10.08% and in the model equals

3.5% implying that our model can explain between 35% and 57% of the observed increase,

depending on the markup’s measure. In the low-turbulence sector, the increase is between

3.83% and 6.84% and the model explains between 38% and 68% of it.

Any conclusions regarding whether market power increased depend on the patterns of

the costs of firms. Therefore, in addition to the evolution of markups, we analyze relative

profit rates. At the firm level, they are computed as sales minus total costs of production

(production including overhead and capital expenses) and they are weighted by relative

sales in a NAICS 3-digit sector.

The last row of the top panel of Table 4 reports the cumulative change in the profit

rates. The observed increase in profit rates are substantially higher than in markups and

reach 24% in high-turbulence sector and 16.19% in low-turbulence sector in Compustat

and 21% and 17% in the model. Intuitively, in a high-turbulence sector, the increasing

market shares allow the most productive firms to charge the highest markups and profits.

In a low-turbulence sector, the growth of the most productive firms in terms of size is

lower and so are their profits.

The last two columns of the table indicate that the model delivers even better predic-

tions for the relative growth in market power proxies across sector types.

The bottom panel of Table 4 shows how well the model matches the data in cross-

section. Specifically, we compute the standard deviation of the cumulative changes in

markups σ∆µT
and profit rates σ∆dT . Markup’s cumulative growth dispersion in the model

somewhat underestimates the one in the data. However, the model captures well the

relative dispersion between the sectors which is between 1.5 and 2 times as high in the
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Table 4: Model versus data: high-turbulence versus low-turbulence

Over-time
High-turbulence Low-turbulence Ratio

Data Model Data Model Data Model
∆µ1

T 6.13 3.50 5.56 2.60 1.10 1.35
∆µ2

T 8.02 3.50 5.54 2.60 1.48 1.35
∆µ3

T 9.47 3.50 6.84 2.60 1.38 1.35
∆µ4

T 10.08 3.50 3.83 2.60 2.63 1.35
∆dT 23.98 21.06 16.19 17.03 1.48 1.24

Cross-section
High-turbulence Low-turbulence Ratio

Data Model Data Model Data Model
σ∆µ1

T
0.554 0.016 0.246 0.007 2.252 2.178

σ∆µ2
T

0.404 0.016 0.283 0.007 1.425 2.178

σ∆µ3
T

0.554 0.016 0.246 0.007 2.252 2.178

σ∆µ4
T

0.501 0.016 0.281 0.007 1.785 2.178

σ∆dT
2.094 0.298 1.461 0.248 1.431 1.200

Notes: This table reports untargeted moments in high-turbulence relative to low-turbulence sectors,
in Compustat NAICS 3-digit sectors between 1980 and 2016. ∆xT denotes the cumulative changes
in variable x. µ is cost-weighed markup. d is the revenue-weighted profit rate and σ∆xT

reports
cross-sectional dispersion of cumulative changes in variable x across sectors. The last two columns
report the ratios between high and low-turbulence sector for the variable of interest.

high turbulence sector as in the low-turbulence one. The dispersion of cumulative profit

rates is about 40% higher in high-turbulence sectors in the data and 20% higher in the

model (last row of Table 4).

While the model underestimates the dispersion of the market power variables across

sectors, it matches rather well the observed cumulative changes in those quantities and

their heterogeneity across sectors.

7 Heterogeneous entry costs

An increase in entry costs is known to deteriorate competition. So far, we have assumed

that both sectors experience an increase in entry cost of the same magnitude. However,

if high-turbulence sectors are characterized by a higher increase in entry costs, this could

drive a stronger increase in market power, without resorting to the turbulence shock.

We investigate this competing hypothesis in an exercise where one sector experiences

the increase in entry cost of the same magnitude as in the baseline simulation, while in the

second sector the increase is half as large. None of the sectors experiences the turbulence

shock. All the other parameters of the model are set to the same values as in the baseline

exercise.

Figure 8 plots the paths of the markups in the two sectors generated by this alternative
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Figure 8: Comparison of markups, heterogeneous increase in entry costs.

Notes: The graph plots the markups in a sector with high entry cost (black line) and low entry cost
(blue line).

Figure 9: Decomposition of the increase in markup with higher entry costs.

Notes: The graph presents the decomposition of the average yearly percentage change in sectoral
markup in high-entry cost sector (top bars in the left panel) and low-cost entry sectors (bottom bars in
the left panel), in the model. The left panel shows the decomposition for one representative simulation.
The right panel shows the distribution of the shares of the reallocation component in markups’ growth
in sectors with high increase in entry cost (blue bars) and low entry cost (red bars).
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simulation. The blue line is the markup of the sector that experiences a lower increase in

entry costs.

An uneven increase in entry costs fails to mimic the data patterns in two dimensions:

(i) reallocation of market shares and (ii) divergence across sectors. Intuitively, an increase

in entry costs on its own drives the markups up through the crowding out of small firms

and through growing markups of the most productive incumbents. This is visualised in

the left panel of Figure 9 where, instead of reallocation, the observed increase in markups

comes from the within component (green bars) and the reallocation component is rarely

important in markups’ growth (right panel of Figure 9).

The lack of reallocation of market shares towards high-markup firms translates into a

sluggish increase in markups documented in Figure 8. Even after 60 periods both markups

move together in contrast to the data and the benchmark model.

8 Conclusion

In this paper, we argue that the heterogeneity in market power dynamics across sectors can

be explained by the divergent trends in turbulence observed since the 1980s. We show this

in an oligopolistic model economy, populated by a finite number of firms. Firms differ by

their productivity level and their markups increase in the market share and productivity

level. Business dynamics are captured by sequential entry, exit and productivity shocks.

The initial steady state is calibrated to reproduce key features of the U.S. industries pre-

1980. We then simulate an economy that approximates a high-turbulence sector which is

exposed to an increase in turbulence and to a sharp increase in entry costs. We contrast the

resulting dynamics with the simulation of a low-turbulence sector which only experiences

an increase in entry costs.

Although both sectors display an increase in market power, the magnitudes of these

trends are very different. A higher turbulence triggers reallocation of market shares to-

wards more productive, larger firms that charge higher markups. As a result, markups,

market concentration and profits increase in the high-turbulence sector. In contrast, in the

low-turbulence sector, the increase in markup is modest and mainly driven by the change

in the composition of firms populating the sector.

In a high-turbulence sector, the declining total number of firms translates into a growing

Herfindahl index (HHI) over the transition to the second steady state. In the absence of

a reallocation channel in the low-turbulence sector, the HHI displays hardly any growth

over the transition path.

The results demonstrate the importance of reallocation mechanism for market power

dynamics because it amplifies the trends generated by the change in the composition of
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firms populating the sector. The intuition of the model is strongly supported by the

U.S. (Compustat) and European (CompNet) data. The differences in the market power

dynamics across sectors are associated with heterogeneous turbulence trends.
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Appendix A: Compustat

We use the entire universe of firms included in Compustat between 1955 and 2016. We

trim the data on the cost shares. The top 1% and the bottom 1% of the firms in terms

of their cost shares are dropped. Since we compute the Spearman rank correlations of

productivity levels in each sector of each year, we only keep the sectors that have at least

5 firms in each year.

Markups

We follow De Loecker et al. (2020) to compute firm level markups resulting from the cost-

minimisation problem: To compute firm level markups, we follow the definition proposed

by De Loecker et al. (2020):

µk
it = θkit

PitQit

P v
itVit

, (21)

with k ∈ [1, 4] indicates the definition of θkit, the (firm i specific) output elasticity in year t.

PitQit represent the value of total sales of firm i and P v
itVit are the costs of its variable input

of production. Variable input value is defined as the ”cost of goods sold” (COGs) and it

covers all expenses attributable to the production of the goods sold by the firm including

materials, intermediate inputs, labor cost, and overhead. θ1it = θv = 0.85. θ2it is time-

verying and firm-specific and is constructed from the cost shares as follows: θ2it =
P v
itV

j
it

ΣJ
j P

v
itV

j
it

where
P v
itV

j
it

ΣJ
j P

v
itV

j
it

represents the share of the cost of production: labor, material and overhead

relative to the sum of all inputs ΣJ
j P

v
itV

j
it being (i) labor, material and overhead (COGS),

and (ii) capital expenses. θ3t is constructed similar to θ2it, but instead of the firm-level

one, we take the median of the NAICS 3-digit sector in each year t. Finally, θ4 is sector

specific but constant over the sample period version of θ2it. All four firm-level markups µk
it

are aggregated to the NAICS 3-digit level using production cost shares.

Profit rates

Profits are computed as (i) real sales minus real cost of production minus capital expenses.

The profit rates are computed as profits relative to the real sales and they are aggregated

to the NAICS 3-digid sector level using the sales weights.
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Figure 10: Dispersion of turbulence across sectors in 4 European countries

Notes: The graph plots the distribution of average turbulence across sectors in Slovenia, Croatia,
Netherlands and France.

Appendix B: CompNet

To ensure that the results are not driven by the specific sample of publicly listed firms,

we also test the main mechanisms of the model on the European dataset, CompNet, that

gathers information from the entire universe of firms. Since CompNet consists of the

information provided by national statistical offices that differ in a way of gathering and

processing the data, we test the hypotheses of our model for each country individually.

CompNet contains transition matrices for firms’ quintiles over size distribution, within

sectors and over a three-year window. We use these probabilities to compute the (inverse

of) 5-year Spearman correlation of the size distribution for each sector and use it as a

proxy for the turbulence.21 Not all the countries in CompNet sample contain the necessary

information on markups and transition probabilities and in several cases the time span is

too short so we need to eliminate several of them. That leaves us with 7 countries: the

Netherlands, Croatia, Finland, Italy, Slovenia, France and Romania. Additionally, the

sample for each country is short, ranging between 1999 and 2010. Instead of using the

changes in the turbulence, we therefore classify sectors according to their average degree of

turbulence. Figure 10 plots the dispersion of the turbulence across sectors in 4 countries.

In each of them, there are large differences in turbulence across sectors.

21In the model, productivity levels directly translate into firms’ size.
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Figure 11: Evolution of average markups in high-turbulence and low-turbulence sectors in
Europe

Notes: The graph presents the average markups for high-turbulence sectors in CompNet (blue
line) and low-turbulence sector (black line). The four panels plot De Loecker and Warzynski (2012)
markups derived from the OLS estimation of revenue-based translog production function at the
sector level. The dots indicate point estimates for individual countries and the bars 95% confidence
intervals.

For each country, we compute the median turbulence across sectors and qualify sectors

above the median as high-turbulence and below the median as low-turbulence.

Markups in high versus low-turbulence sectors

Figure 11 plots markups in high (blue lines) and low-turbulence (black lines) sectors in

four countries: Slovenia, Romania, the Netherlands and Croatia. Similar to the U.S. data,

markups in Europe are always higher in sectors with higher turbulence.

We test formally the relationship between markups and turbulence by estimating the

following panel regression for each country individually: µit = αi + βτit + γt + ϵit, where

µit is the markup in sector i and year t, τit stands for turbulence, γt for time dummies and

αi for sector fixed effects. The markups series, µit, are standardised.

Figure 12 plots β’s from the panel regressions for each of the 7 countries, over the

respective sample periods. All of the coefficients are positive and 4 of them are statistically

39



Figure 12: Markups and turbulence in European countries

Notes: The graph shows β’s from the regression: µit = αi + βτit + γt + ϵit. Markups are computed
according to De Loecker and Warzynski (2012) who estimate the revenue-based translog production
function at the sector level. The dots indicate point estimates for individual countries and the bars
95% confidence intervals.

significant at 5% level implying that higher turbulence is associated with higher markups.

Turbulence, markups and reallocation of market shares in European countries.

The finding that markups are higher in more turbulent sectors, presented in Figure 12,

does not necessarily imply that the increase in markups has been the result of a stronger

reallocation of market shares towards high-markup firms.

We test this hypothesis in 2 steps by investigating the following relationships (i) the

share of reallocation in markups change and turbulence and (ii) the share of reallocation

in markups change and the markups growth. Reallocation is measured by the between

component in the decomposition in Equation 20. Markups are directly available in Comp-

Net and they are computed according to De Loecker and Warzynski (2012) from the

revenue-based translog production function at the sector level.

Figure 13 displays β’s from the panel regressions: yit = αi + βxit + γt + ϵit. In the

left panel yit is the reallocation component of markups growth and xit is the turbulence

measure. In the right panel, yit is the reallocation component of markups growth and xit

is the markup.

In all 7 countries, stronger reallocation of the market shares is associated with higher

turbulence (left panel of Figure 13). In all countries but Croatia, this relationship is

statistically significant. Similarly, in all 7 countries, in sectors with higher reallocation of

market shares the markups grew the fastest (right panel). This relationship is significant
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Figure 13: Turbulence, markups and reallocation of market shares

Notes: The graph shows standardised β’s from the regression: yit = αi + βxit + γt + ϵit. In the left
panel yit is the between component in the decomposition in equation 20 and xit is the turbulence
measure. In the right panel yit is the between component and xit is the markup computed according
to De Loecker and Warzynski (2012) and based on the revenue-based translog production function
at the sector level. The dots indicate point estimates for individual countries and the bars 95%
confidence intervals.

at 5% level for 4 countries. These findings jointly corroborate the model’s hypothesis that

higher turbulence leads to stronger reallocation of market shares towards the high-markup

firms and drives the sectoral markups upwards.
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Appendix C: Risky Steady State

The equilibrium conditions for the Risky Steady State presented in the main text are:

Production

ρ(i) =

[(
θ − 1

θ

)(
1− ρ(i)1−θ

)]−1
w

x(i)
for i = {1, 2, 3}

d(i) =

(
1

θ
+

(
θ − 1

θ

)
ρ(i)1−θ

)
ρ(i)1−θY for i = {1, 2, 3}

Entry and Exit

N(i) =
3∑

j=1

qji [1− δ(j)] [N(j) +N e(j)] for i = {1, 2, 3}

N e = Ω0M

N e(i) = ΩiN
e for i = {2, 3}

N e = N e(1) +N e(2) +N e(3)

few = (1− Ω2 − Ω3) e(1) + Ω2e(2) + Ω3e(3)

Households

χL
1
ϕ c = w

e(i) = β [1− δ(i)]
3∑

j=1

[qij (d(j) + e(j))] for i = {1, 2, 3}

Aggregation

Y = c

c+N efew = wL+N(1)d(1) +N(2)d(2) +N(3)d(3)

1 = N(1)ρ(1)1−θ +N(2)ρ(2)1−θ +N(3)ρ(3)1−θ
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Appendix D: Calibration of Markov process

Given that we will obtain a system of three equations, we start by restricting the probabil-

ity to switch from productivity x(1) to x(3) to be equal to zero, i.e. q13 = 0. The Markov

process is then iterated for 20 periods while keeping the three unknown values: x 1− x 0
q21 y 1− y − q21
q31 1− z − q31 z


This means that, abstracting from exit shocks, the probability p(1|1)5 that a type 1 firm

keeps its own productivity level after a 5-year period (i.e. 20 periods in our model) is given

by the first element of the row vector resulting from:

[
1 0 0

]  x 1− x 0
q21 y 1− y − q21
q31 1− z − q31 z

20

=
[
p(1|1)5 p(2|1)5 p(3|1)5

]
The same can be computed for the probabilities of keeping productivity x(2) or x(3) after

5 years conditional on starting on that given productivity level. Given those highly non-

linear equations in terms of x, y and z, we restrict the solution for the three unknowns to be

in the interval [0, 1]. Our goal is to have p(1|1)5 = p(2|2)5 = p(3|3)5 = 0.79 in the common

initial steady state and p(1|1)5 = p(2|2)5 = p(3|3)5 = 0.62 for the final high-turbulence

steady state. In this way, no matter the initial condition, the ex-ante correlation between

the productivity of a firm at time t and at time t + 20 equals 0.79 before and 0.62 after

the permanent turbulence shock.

Appendix E: Alternative Calibration: Step Increase in

Entry Cost and Turbulence

In the following, we present an alternative benchmark. In this experiment, the magnitude

of the shocks in the same. However, we change their timing to better proxy the empirical

increase in entry costs and in turbulence: instead of imposing period-0 permanent shocks,

we directly feed their stylized series to the model.

Figure (14) presents the paths of two shocks. The left panel shows that firms’ turbu-

lence is constant in low-turbulence sectors at the calibrated pre-eighties value, exactly as

in the benchmark scenario. However, instead of a one-period jump, turbulence steadily

increase in the high-turbulence sector, as shown by the green line in the left panel of Fig-

ure (14). The same is true for the common increase in entry costs, displayed in the right

panel. Comin and Philippon (2005) estimate aggregate turbulence and how it rose from
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Figure 14: Paths of Shocks

Notes: The Figure presents the exogenous series for the shocks. The left panel display the flat pattern of
firms’ turbulence in low-turbulence sectors (red line) and the increase in turbulence for high-turbulence
sectors (green line). The right panel presents the common increase in entry costs.

0.2 in 1980 to almost 0.3 in 2000. Our series is slightly higher but because it is estimated

on high-turbulence sectors only.

Figure (15) represents the transition dynamics under the alternative simulation. Qual-

itatively, the two models deliver the same results. Yet, in this alternative simulation, it

takes much longer to reach the steady states. As a result, the sectoral heterogeneity is

weaker, and arises only at the end of the sample.
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Figure 15: Evolution of Concentration and Markups, high vs low-turbulence sector. Al-
ternative model

Notes: The graph presents the response of a sector to an increase in entry costs and a decline in
the persistence of the firms’ productivity distribution. The black solid lines describe the dynamics of
the variables over time, and the dotted black lines the confidence intervals. The red and green lines
represent, respectively, the initial and the final steady state in high-turbulence sector. Shocks occur in
steps.

Appendix F: Sectors’ Classification
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Table 5: Classification NAICS-3 Sectors, Low vs. High Turbulence, top-15
sectors per market share

Low-Turbulence High-Turbulence

ID Name ID Name

312 Beverages and tobacco 211 Oil and gas
322 Paper 311 Food and kindred products
324 Petroleum and coal products 325 Chemicals
326 Plastics and rubber products 332 Fabricated metal products
327 Nonmetallic mineral products 333 Machinery, except electrical
331 Primary Metal 335 Electrical equipment and components
334 Computer electronic products 423 Merchant wholesalers, durables
336 Transportation equipment 445 Food and beverage stores
422 Miscellaneous manufacturing 486 Pipeline transportation
424 Merchant wholesalers, nondurables 511 Newspaper and books
452 General merchandise stores 513 Motion picture and sound recording
481 Air transportation 517 Telecommunications
482 Rail transportation 523 Other information services
515 Broadcasting (except Internet) 524 Insurance carriers and related activities
519 Other information services 541 Professional, scientific, and technical services

Notes: The table presents the largest NAICS-3 sectors, in terms of market shares, within low and high-
turbulence sectors. ID represents the 3-digit NAICS code for the sector, according to which sectors are
ordered in the table.

Online Appendix 1: Derivation of the aggregate de-

mand constraint

In this appendix, the aggregate demand constraint is derived. There are two ways in which

the constraint can be derived: the first assumes a continuum of final good producers

competing under perfect competition, which purchase the individual firms’ production.

The final good producers use the individual outputs as inputs to produce the aggregate

bundle Yt, which is sold to the households at a price Pt. The second method, which

exploits the fact that the aggregate production is entirely consumed by the households,

is based on the minimization of the total aggregate expenditure. In the following, we

present both methods, primarily because they complement each other and, together, they

provide a consistent definition of the aggregate price Pt as a function of the individual

prices pt(i). Note that the time index t is dropped in the following since firms maximize

their per-period profits (no frictions regarding re-optimization are present).

The first method implies aggregate/sectoral producers. Each individual good y(i)

is aggregated into a final output Y , purchased by the households at a price P . The
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maximization of the final good producers is:

max
y(i)

PY −
N∑
i=1

p(i)y(i)

subject to:

Y =

[
N∑
i=1

y(i)
θ−1
θ

] θ
θ−1

The aggregator function through which the individual goods and the final good can be

linked follows a standard C.E.S. function, as presented in the constraint of the maximiza-

tion (note that N is the number of firms in the economy). Note that θ > 1 represents the

elasticity of substitution between intermediate goods. The F.O.C. with respect to y(i) is:

P

(
θ

θ − 1

)[
N∑
i=1

y(i)
θ−1
θ

] θ
θ−1

−1(
θ − 1

θ

)
y(i)

θ−1
θ

−1 = p(i)

This can be rewritten as:

PY
1
θ y(i)−

1
θ = p(i)

From this F.O.C., we obtain the demand for the individual output as:

y(i) =

(
p(i)

P

)−θ

Y

Alternatively, given that the entire production is consumed by the households, i.e. c(i) =

y(i) and C = Y , we can obtain the same condition, and a definition for the aggregate

price P , from the minimization of the households’ consumption expenditure. Households

choose the optimal mixture of varieties c(i) to minimize the aggregate expenditure, given

an aggregate level of consumption C, by purchasing each good directly from the firms.

Formally:

min
c(i)

N∑
i=1

p(i)c(i)

subject to:

C =

[
N∑
i=1

c(i)
θ−1
θ

] θ
θ−1

The Lagrangian is:

L =
N∑
i=1

p(i)c(i) + λ

C −

[
N∑
i=1

c(i)
θ−1
θ

] θ
θ−1


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The F.O.C. with respect to c(i) is:

p(i) = λ

(
θ

θ − 1

)[
N∑
i=1

c(i)
θ−1
θ

] θ
θ−1

−1(
θ − 1

θ

)
c(i)

θ−1
θ

−1

which is equal to:

λC
1
θ c(i)−

1
θ = p(i)

By raising each side to the power of 1− θ and summing from 1 to N , we can write:

λ1−θC
1−θ
θ

N∑
i=1

c(i)
θ−1
θ =

N∑
i=1

p(i)1−θ

Using the definition of aggregate consumption C provided above:

λ =

[
N∑
i=1

p(i)1−θ

] 1
1−θ

≡ P

Finally, we can plug back the expression for the Lagrange multiplier λ in the F.O.C. and

write:

c(i) =

(
p(i)

P

)−θ

C

which is consistent with the aggregate demand constraint presented above.
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Online Appendix 2: Maximization of the intermediate

goods’ producers under Cournot and Bertrand

Cournot In this appendix we present the maximization for the intermediate goods pro-

ducers. The notation follows the one introduced in the Online Appendix 1 and the time

index is dropped for convenience. Each variety y(i) is produced by employing one factor

of production only. In particular, production is linear in labor l(i) and depends on the

idiosyncratic productivity level x(i):

y(i) = x(i)l(i)

Inside the economy/industry, firms compete oligopolistically á la Cournot. In the next

appendix, we present an alternative market structure (Bertrand competition). The in-

cumbents internalize that their optimal quantity affects the sectoral output Y . However,

firms cannot alter the total consumption expenditure EXP = PY that is allocated to

the production side of the economy. Firms maximize their per-period nominal profits by

choosing the optimal quantity y(i):

max
y(i)

p(i)y(i)−Wl(i) = y(i)

(
p(i)− W

x(i)

)
subject to the following aggregate demand constraint:

y(i) =

(
p(i)

P

)−θ

Y

where W is the nominal wage. Substituting the idiosyncratic price p(i) using the demand

constraint, we can write the Lagrangian as:

L = y(i)−
1
θ
+1PY

1
θ −W

y(i)

x(i)
= EXPy(i)−

1
θ
+1Y

1
θ
−1 −W

y(i)

x(i)

where the second equality comes from the definition of aggregate expenditure EXP pro-

vided above. The F.O.C. with respect to y(i) is:

EXP

(
θ − 1

θ

)
y(i)−

1
θY

1
θ
−1 − EXP

(
θ − 1

θ

)
y(i)−

1
θ
+1Y

1
θ
−2

(
y(i)

Y

)− 1
θ

− W

x(i)
= 0

Plugging back the definition of total expenditure EXP , this can be written as:[(
θ − 1

θ

)
−

(
θ − 1

θ

)(
y(i)

Y

)1− 1
θ

]
PY

1
θ y(i)−

1
θ =

W

x(i)
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Note that the market share ω(i) can be defined as the ratio between the individual revenues

and the total revenues, i.e. p(i)y(i)
PY

. Hence, using the aggregate demand constraint for y(i):

ω(i) =
p(i)y(i)

PY
=

(
y(i)

Y

)1− 1
θ

=

(
p(i)

P

)1−θ

It is worth to mention that the market share reasonably reduces to 1/N if we assume

homogeneity across firms. This would provide the same markup function as the one

presented in Etro and Colciago (2010). Using the aggregate demand constraint again, we

can simplify the LHS of the F.O.C. and write:[(
θ − 1

θ

)
(1− ω(i))

]
p(i) =

W

x(i)

In the main text, we directly present the implicit formula for the relative price ρ(i) =

p(i)/P , which can be easily computed from the previous equation:

ρ(i) =

[(
θ − 1

θ

)(
1− ρ(i)1−θ

)]−1
w

x(i)
= µ(i)

w

x(i)

where w = W/P is the real wage.

Bertrand Assume that intermediate goods producers compete oligopolistically on prices

under Bertrand competition. Production still is linear in labor l(i) and depends on the

idiosyncratic productivity level x(i):

y(i) = x(i)l(i)

Inside the economy/industry, firms compete oligopolistically á la Bertrand. Thus, the

incumbents internalize that their optimally chosen price affects the sectoral price P , defined

in Online Appendix 1. However, firms cannot alter the total consumption expenditure

EXP = PY that is allocated to the production side of the economy. Firms maximize

their per-period nominal profits by choosing the optimal nominal price p(i):

max
p(i)

p(i)y(i)−Wl(i) = y(i)

(
p(i)− W

x(i)

)
subject to the aggregate demand constraint:

y(i) =

(
p(i)

P

)−θ

Y

where W is the nominal wage. Substituting the individual quantity y(i) using the demand

constraint, we can write the Lagrangian as:

L = p(i)1−θP θY − W

x(i)
p(i)−θP θY = p(i)1−θP θ−1EXP − W

x(i)
p(i)−θP θ−1EXP
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where the second equality comes from the definition of aggregate expenditure EXP , pro-

vided above.

The F.O.C. with respect to p(i) is:

(1− θ) p(i)−θP θ−1EXP + (θ − 1) p(i)1−θP θ−2EXP

(
p(i)

P

)−θ

+

+θ
W

x(i)
p(i)−θ−1P θ−1EXP − W

x(i)
(θ − 1) p(i)−θP θ−2EXP

(
p(i)

P

)−θ

= 0

Multiplying by p(i)1+θ

−θP θ−1EXP
, this can be written as:

p(i)

(
θ − 1

θ

)[
1−

(
p(i)

P

)1−θ
]
=

W

x(i)

[
1−

(
θ − 1

θ

)(
p(i)

P

)1−θ
]

As previously, the market share ω(i) can be defined as the ratio between the individual

revenues and the total revenues, i.e. p(i)y(i)
PY

. Hence, using the aggregate demand constraint

for y(i):

ω(i) =
p(i)y(i)

PY
=

(
p(i)

P

)1−θ

The implicit formula for the relative price ρ(i) = p(i)/P , can be easily computed from the

previous equation:

ρ(i) =
1−

(
θ−1
θ

)
ρ(i)1−θ(

θ−1
θ

)
(1− ρ(i)1−θ)

w

x(i)
= µ(i)

w

x(i)

where w = W/P is the real wage.

It is possible to compare the markup under both market structures. The markup under

Bertrand competition µ(i)B is:

µ(i)B =
1−

(
θ−1
θ

)
ρ(i)1−θ(

θ−1
θ

)
(1− ρ(i)1−θ)

=
1(

θ−1
θ

)
(1− ρ(i)1−θ)

−
(
θ−1
θ

)
ρ(i)1−θ(

θ−1
θ

)
(1− ρ(i)1−θ)

= µ(i)C− ω(i)

1− ω(i)

where µ(i)C is the markup under Cournot competition.

Whenever the market share goes to zero, the markups are the same as they both

converge to the monopolistic competition markup θ
θ−1

. If the market share is non-zero,

the markup is always lower under Bertrand competition. In particular as:

∂(µ(i)C − µ(i)B)

∂ω(i)
=

1

(1− ω(i))2

the difference in the markups is increasing in the market share. Given that high market

share firms charge higher markups, under Bertrand competition the markup dispersion is

lower.
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Figure 16: Comparison of markups, high vs. low-turbulence sectors.

Notes: The graph presents the comparison in markups between the low-turbulence sector and the high-
turbulence sectors, in which we allow the elasticity of substitution between goods to be sector-specific.
In particular, θ = 10 in low-turbulence sectors, as in the benchmark, while θ = 6 in high-turbulence
sectors. Both primitives are kept constant over the transition.

Online Appendix 3: Heterogeneous substitutability

Substituability between goods might differ across sectors. For instance, new high-tech

products cannot be readily substituted. Therefore, a lower substitutability in high-turbulence

sectors, which group several high-tech industries, could allow their producers to expand

their market shares more, and can justify the level differences in markups between high

and low-turbulence sectors. To test this hypothesis, we allow the elasticity of substitution

between goods, θ, to differ across sectors.

Figure (16) shows the trends in markups. Regarding the calibration, we set θ = 10 in

low-turbulence sectors, as in the benchmark model, while here θ = 6 in high-turbulence

sectors. Both primitives are kept constant over the transition. Under this alternative

model, results are qualitatively similar. However, by allowing θ to be sector-specific,

we can match the initial level difference in markups, as well as the larger increase in

markup in high-turbulence sector, relative to the benchmark exercise in the main text

(black line in Figure 16). There two drawbacks of this alternative calibration. First,

we would need to quantify the heterogeneity in substitutability between sector types.
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Second, heterogeneous elasticity of substitution could obscure the impact of turbulence on

the market power dynamics across sectors. We therefore opt for the benchmark calibration

with equal elasticities in the main text.

Online Appendix 4: Algorithm and Theoretical Chal-

lenges.

In this appendix, we present the original algorithm developed to simulate the dynamic

behavior of the economy. For tractability reasons, some further assumptions have been

added with respect to the baseline theoretical model: the discussion about their impact

on the equilibrium outcomes is presented below.22

In order to introduce the algorithm and its main mechanisms, we describe here the

dynamics of the economy for a given period t. When the entry decisions are formed during

period t, the current number of incumbents and their types, i.e. Nt(1), Nt(2) and Nt(3),

is known. Indeed, note that they come from the realization of the stochastic processes

that regulate exit and productivity shocks, which have already occurred between period

t− 1 and period t and at the very beginning of period t. Given those three quantities, the

first step in our solution technique is to pin down the number of potential entrants, Mt,

by using a sequential approach.

Starting from a given stock of zero entrants, namely from Mt = 0, we evaluate the free

entry condition for the first entrant, in formula:

(1− Ω2 − Ω3) e1,t(1) + Ω2e2,t(2) + Ω3e3,t(3)− fe,twt

Whenever the condition is positive, i.e. when the expected value for the new firm is higher

than the entry costs, the marginal entrant joins the market. If this happens, the algorithm

continues by re-evaluating the free entry condition. This time, however, the condition is

computed conditional on the number of potential entrants being one. The idea behind the

procedure is that the sector may present some unexploited profit possibilities. Whenever

those expected revenues are higher than the entry costs, the entrant joins the market.

However, its entry increases future competition and, thus, it lowers firms’ value, making

harder for new competitors to enter. The algorithm continues with this mechanism until

the free entry condition turns negative because entry is not profitable anymore.

22The assumptions are imposed on how firms form their expectations. The constraints simplify the
computation of the stream of expected future profits, which is required to pin down the value of the
firms. This type of restriction is not new to the literature and it is often assumed in order to solve similar
dynamic problems. See, for instance, Krusell and Smith (1998).
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Note that, in the computation of the competitive equilibrium, the number of successful

entrants N e
t , and, hence, N

e
t (1), N

e
t (2) and N e

t (3) as well, is not known with certainty

since it depends on the realization of stochastic processes, given the equilibrium Mt. The

same uncertainty holds for period t + 1 competitors Nt+1(1), Nt+1(2) and Nt+1(3), since

they depend on the realization of idiosyncratic exit and productivity shocks. The house-

holds solve this uncertainty by considering the expected values of these quantities in their

maximization process.23 In formulas:

Nt+1(i) =
3∑

j=1

[qji (1− δ(j)) (N e
t (j) +Nt(j))]

where

N e
t = Ω0Mt

N e
t (3) = Ω3N

e
t

N e
t (2) = Ω2N

e
t

N e
t = N e

t (1) +N e
t (2) +N e

t (3)

Furthermore, note that the equations above hold for the incumbents: from the perspective

of a potential entrant, the expected number of competitor is different since the latter

internalizes that, by entering the market with a productivity level x(i), the number of

type-i firms is Nt(i) + N e
t (i) + 1. As explained in the modelling section, this means that

the entrants internalize the effects of their entry on the future price index, hence creating

the wedge between their value and the value of the incumbents. These dynamics are taken

into account in the algorithm.

In order to be able to compute the first part of the algorithm, i.e. to pin downMt, some

simplifying assumptions have been included. The constraints regard how firms form their

expectations. First of all, potential entrants are imposed to expect that period t+1 output

Yt+1, and, hence, consumption ct+1, does not change between period t and period t + 1.

The assumption affects the computation of the expected profits for period t + 1, which

are necessary to pin down the value of the incumbents and of the (potential) entrants. In

other words, potential entrants do not consider the effect of their entry on the sectoral

production of the following periods and they assume that the economy is on a stable path.

This assumption is quite restrictive: in the per-period profits maximization, we assume

23One alternative solution is to consider separately every possible state of the world for Ne
t (i) and

Nt+1(i) given Nt(i) and a specific Mt. In every state of the world it is possible to pin down the value for
the marginal entrant and, only after this, obtain ei,t(i) as the average of the values computed, weighted by
the probability that a given state occurs. In this way, every state of the world conserves a finite number
of firms. However, this solution method gets computationally unsolvable quite easily.
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Cournot competition, which entails that the producers internalize that their optimally

chosen quantity has an impact on the contemporaneous aggregate output.

Nevertheless, the assumption may still be justified. When the number of active in-

cumbents in the sector grows, the marginal effect of entry on output growth is negligible,

since the competition is already tight. This is true in our case, given that the steady state

present hundreds of incumbents, and the effect of entry on output is particularly irrelevant

if the entrant does not realizes as a superstar firm with productivity x(3). Furthermore,

the effect of entry on future competition and prices, i.e. the increase in the expected

number of competitors, is clear from the firm’s perspective (this is why we assumed that

the entrant can internalize these dynamics). On the other hand, the aggregate effects on

consumption and output are significantly harder to be predicted ex ante, given that they

rely also on households’ response. Thus, it is not unreasonable to assume that firms are

partially myopic and that their period t expectation of Yt+1 is simply Yt.
24 Finally, note

that this assumption affects also the stochastic discount factor, which reduces to β.

A second assumption regards the computation of the firms’ value itself, and it is in line

with the previous constraint. When firms evaluate their stream of conditional expected

profits, which pins down their own value, they anticipate correctly the number of competi-

tors in period t+ 1, required to estimate period t+ 1 profits. However, it is imposed that

those profits are assumed to stay constant from period t+ 2 onward, conditional of being

active in the market. Again, firms are myopic, since they consider that similar entry and

exit dynamics occur every period. Given these assumptions, the value of incumbents and

entrants can be easily defined as, respectively:

et(i) =
β (1− δ(i))

1− β (1− δ(i))
dt+1(i)

and

ei,t(i) =
β (1− δ(i))

1− β (1− δ(i))
di,t+1(i)

Note that an alternative approach to the above restrictions is to directly assume that firms

are myopic and render the entry choice static.25 Results do not vary significantly since the

value function takes a similar form. However, we think that it is worth to keep the entry

choice dynamic, even at the costs of some restrictive assumptions.

Once Mt is pinned down, the algorithm proceeds with the simulation of the stochastic

realization of N e
t from the given Mt and of N e

t (1), N
e
t (2) and N e

t (3) from the realized

24Alternatively, one could say that firms are myopic simply because they perceive the economy as if it
was in the steady state. Hence, incumbents and entrants expect no variations in the aggregate quantities
over time, although they internalize idiosyncratic exit and entry dynamics.

25Similar to the approach in De Loecker et al. (2019).
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N e
t . Conditional on those variables, and recalling that Nt(1), Nt(2) and Nt(3) are pre-

determined, we can compute the competitive equilibrium of the economy by solving the

household’s maximization problem, constrained by the previous assumptions. It is worth

to mention that, when clearing the market, N e
t (1), N

e
t (2) and N e

t (3) are now known by the

households, differently from the information set through which Mt is determined. Finally,

having solved for the market equilibrium, the stochastic realizations of the idiosyncratic

exit and productivity processes are computed. In this way, we can obtain the realized

Nt+1(1), Nt+1(2) and Nt+1(3) from the previous quantities, which serve as a basis for the

algorithm in the following period.
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