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1 Introduction

Bond markets came under severe stress at the start of the COVID-19 crisis in March 2020. Investors

sought to sell bonds in such volumes that dealers ran into capacity constraints and could not accommo-

date all desired trades. Concerned about the systemic risk posed by fire sales, central banks stepped

in when dealers were overwhelmed and acted as backstop buyers of bonds to stabilise markets. This

has led to a debate about whether last-resort tools for intervening in capital markets in pursuit of

financial stability objectives should be part of central banks’ permanent policy toolkits. That debate

has intensified following the Bank of England’s gilt market operations in September-October 2022,

when it purchased long-dated securities at a spread to mid-prices to help restore market functioning

(Cunliffe 2022).

One concern with such a policy is that if the central bank is expected to provide an effective market

backstop, then problems akin to “moral hazard” can arise. The presence of a central bank backstop

ensures that investors do not face the negative consequences of fire sales, so they optimally take more

aggressive positions in risky assets. However, more aggressive positions would be more difficult to

unwind in a crisis. Central bank intervention could therefore make the financial system more fragile,

thus risking the incurrence of welfare costs associated with financial instability.

This paper develops a theoretical model to examine these issues motivated by the empirical literature

studying the “dash for cash” episode of March 2020. Haddad et al. (2021) argue that a key source of

the selling pressure was driven by bond mutual funds facing immediate liquidity shocks and fearing

future shocks. This selling pressure drove down bond prices because dealers struggled to intermediate

given the magnitude of the selling pressure. However, Haddad et al. (2021) show how announcements

by the Federal Reserve alone stabilised corporate bond markets. Kargar et al. (2021) also argue that

corporate bond markets stabilised primarily because the announcements immediately reduced funds’

demand for cash.1 This is consistent with central bank announcements reducing fears about potential

consequences of future shocks.

1Other papers that empirically examine various aspects of the “dash for cash” episode include Boyarchenko et al.
(2022), Gilchrist et al. (2021), O’Hara & Zhou (2021), and Vissing-Jorgensen (2021). Interestingly, Vissing-Jorgensen
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Our model therefore focuses on the behaviour of bond funds in a liquidity crisis. In the model, there

is a continuum of risk-neutral funds initially endowed with a portfolio of cash and bonds. Similar to

Bernardo & Welch (2004), funds then learn about the possibility of a future liquidity shock which

would force them to sell their bond holdings to a dealer at a discount to the bond’s expected return.

The discount is increasing in the dealer’s inventory of bonds, either because of risk-aversion (Bernardo

& Welch 2004, Morris & Shin 2004) or institutional constraints.

The discount can create an incentive for funds to pre-emptively sell their bonds before they learn

whether or not the liquidity shock has materialised. If a fund thinks that other funds will sell today, it

will worry about being hit by the liquidity shock tomorrow and having to sell to a dealer with a large

bond inventory charging a high discount. This makes it more attractive for the fund to sell today. If

all funds reason in a similar manner, the optimality of the decision to sell today becomes self-fulfilling.

But this is not the only possibility. If a fund thinks that all other funds will continue to hold bonds

today, it will think that the dealer will have a low bond inventory tomorrow and therefore it will

face the low discount if it is hit by the liquidity shock. This makes it more attractive for the fund

to hold today and, if all funds reason similarly, the optimality of the decision to hold today becomes

self-fulfilling. Therefore, the model features multiple equilibria: an equilibrium where funds hold and

an equilibrium where funds panic and cause a self-fulfilling fire sale.

A problem with a model featuring multiple equilibria is that sunspots rather than economic funda-

mentals determine which equilibrium is realised. To solve this problem, we employ a global games

approach (Carlsson & van Damme 1993, Morris & Shin 1998) to eliminate the multiplicity of equilibria

and link the probability of a self-fulfilling fire sale to economic fundamentals. In particular, we show

that there will be a self-fulfilling fire sale if and only if the capacity of the dealer to absorb bonds sales

is sufficiently low. We also show that the probability of a self-fulfilling fire sale is increasing in the

discount charged by the dealer in stressed market conditions and increasing in the probability of the

liquidity shock occurring. The probability of a fire sale is also greater if the funds’ initial endowment

of bonds is higher because the dealer would have to absorb more bonds if the funds chose to unwind

their positions.

Our next step is to introduce a portfolio choice decision for each fund. If there is small cost of holding

bonds linked to the variance of their returns, we can show that funds optimally hold fewer bonds and

more cash as the probability of a fire sale increases. The result is natural: a fire sale prevents the

fund from holding the bonds to maturity and instead forces it to sell at a discount to the dealer, so a

higher probability of fire sales makes holding bonds less attractive. As a result funds choose to hold

more cash, which could be seen as a form of ‘self insurance’. Since bond holdings of the funds itself

influences the probability of a fire sale, these two variables are jointly determined in equilibrium. We

(2021) provide evidence that Federal Reserve intervention in Treasury markets actually operated more through purchases
than announcements due to the immediate liquidity needs of Treasury sellers. However, prior literature has found a role
for announcement effects of Federal Reserve purchases of Treasuries (e.g., Krishnamurthy & Vissing-Jorgensen (2011))
showing that the need for purchases is not in general a special feature of the US Treasury market.
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show that an equilibrium exists and it is unique.

Our final step is to extend the model to introduce a central bank acting as a backstop buyer of assets.

We allow the central bank to provide additional capacity to absorb bond sales so that the total capacity

consists of both central bank and dealer capacity. The central bank also sets a discount (or spread)

to the market price at which it is willing to purchase bonds. In practice, central banks might prefer

to provide support through lending facilities ahead of a market backstop.2 As our focus is on market

backstops, however, we assume the funds in our model are non-levered, so they cannot borrow.3

We show that by committing to act aggressively, the central bank in our model can completely eliminate

the possibility of a self-fulfilling fire sale. Moreover, it does not actually have to purchase any bonds to

eliminate the self-fulfilling fire sale. The aggressive policy works via market expectations. In particular,

it makes the pessimistic beliefs that drive the self-fulfilling fire sale impossible for funds to rationalise

because they know that the central bank stands ready to act as a market backstop. If the central

bank does not act aggressively enough, however, we show that funds will hold more bonds in response

to its policy (‘moral hazard’). This acts to increase the probability of a fire sale and partially offsets

the effect of the policy.

It thus appears clear that the central bank should choose to act aggressively. However, we put forward

two arguments as to why a central bank may not want to pursue an aggressive policy. First, whilst a

commitment to act aggressively rules out self-fulfilling fire sales without the need for asset purchases,

the central bank would be forced to act if there was a fire sale due to the subsequent crystallisation of

the liquidity shock rather than self-fulfilling beliefs. The central bank may therefore wish to act less

aggressively to trade-off the benefit of reducing self-fulfilling fire sales with the cost of intervening in

fire sale events caused by fundamental liquidity shortfalls rather than expectations. Second, if market

participants expect an aggressive policy, they will choose to hold more bonds. If the central bank then

reneges on an aggressive policy or market participants lose faith in the ability of the central bank to

act aggressively, we show that the probability of self-fulfilling fire sales could increase relative to doing

nothing. This highlights the importance of a consistent and credible central bank policy.

Thus, this paper focuses on the effects of central bank market backstops when used to prevent self-

fulfilling fire sales. It does not conduct a full cost-benefit analysis of such backstops or other polices

that might reduce the probability of fire sales, such as reforms to enhance the resilience of market

participants to liquidity shocks or to strengthen market-wide infrastructure, although we discuss the

effects that such reforms may have on self-fulfilling fire sales within the context of our model in Section

4.3.4 It also does not discuss how these policies might overlay, though our presumption is that these

2Potential costs of central bank market backstops include moral hazard, losses on asset holdings which taxpayers
would have to bear and conflict with monetary policy if quantitative tightening were required.

3Non-levered funds invest shareholders’ funds alone in financial assets. They do not borrow in order to increase
their exposure to financial assets. This is approximately true of many funds in practice. In Europe, for example, funds
regulated as Undertakings for Collective Investment in Transferable Securities (UCITS) may borrow up to a limit of 10%
of their net assets, and only on a temporary basis, for example for liquidity management purposes.

4Hauser (2021) sets out how these policies may all play a role in enhancing the resilience of financial markets and,
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other policies would be considered for ongoing usage while market backstops would be only be called

upon in exceptional circumstances.

Related literature. Our paper builds upon the the financial market run literature initiated by

Bernardo & Welch (2004) and Morris & Shin (2004). We have a similar setup to Bernardo & Welch

(2004) in that funds have an incentive to pre-emptively sell because they are worried about future

liquidity shocks and having to sell in depressed market conditions. Bernardo & Welch (2004) generate

a downward sloping demand curve for risky assets via a risk-averse market maker. We do not micro-

found the dealer’s demand curve so that we can extend the model more easily to consider policy.

The main methodological difference with Bernardo & Welch (2004) is that their equilibrium concept

is Nash equilibrium. Their equilibrium features a mixed strategy Nash equilibrium where investors

choose just the right probability of selling to equate the expected payoff from selling today and holding.

We view the ability of investors to choose just the right probabilities somewhat at odds with crisis

periods which are infrequent and chaotic. Instead, our equilibrium features the possibility that funds

panic and all sell when fundamentals are weak but otherwise all hold. We see this as a better fit to a

crisis episode.

In Morris & Shin (2004), there is also a risk-neutral trading sector and a risk-averse market making

sector implying a downward sloping demand curve for risky assets. Traders may choose to pre-

emptively sell their risky assets because they are worried about prices falling such that they hit a loss

limit and they lose their job. Similar to our model, they devise a global game and show that there

exists a threshold equilibrium where traders hold if fundamentals are good enough and sell if they

are bad enough. The motivation for pre-emptively selling in our paper is a potential future liquidity

shock, which is more tailored to the dash-for-cash episode. We also extend our model to allow us to

investigate the effects of the central bank providing a market backstop.

More generally, this paper is related to the literature on runs in the financial system. Diamond &

Dybvig (1983) pioneered this literature by showing how the liquidity mismatch inherent in banking

make banks vulnerable a self-fulfilling run. The model in Diamond & Dybvig (1983) features another

equilibrium with no bank run and it is unclear which equilibrium will be realised. Therefore, Goldstein

& Pauzner (2005) examine a global game variant of a bank run which eliminates the multiplicity and

links the probability of bank runs to economic fundamentals. Allen et al. (2018) add a government to

the model of Goldstein & Pauzner (2005) to study how government guarantees affect the probability

of runs and welfare. The structure of our paper follows the development of the literature for bank

runs: we first consider a model with multiple equilibria, then we employ global games techniques to

eliminate the multiplicity of equilibria, and finally we extend the model to study the effects of policy.

The structure of open-ended mutual funds can also make them vulnerable to runs. As argued by Chen

et al. (2010), open-ended funds allow investors to redeem their investments on a daily basis whilst

thus, reducing the likelihood of fire sales.
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investing in illiquid assets. Crucially, investors are paid based on the most recent net asset value whilst

the trades are conducted in the following days. A large number of withdrawals, which forces the fund

to quickly sell some of its assets, can thus depress the net asset value for those remaining in the fund

which creates an incentive for them to also withdraw. Goldstein et al. (2017) show that this force

is stronger in funds investing in more-illiquid corporate bonds. Morris et al. (2017) provide evidence

to show that asset managers hoard cash in response to redemptions which can exacerbate fire sales

initiated by the redemptions themselves. These papers all examine the interaction between the fund

and its investors whereas our paper examines the interaction between the funds.

Our paper is also related to two recent papers studying central bank policy in response to the dash-

for-cash episode. Choi & Yorulmazer (2022) examine the role of a central bank as a market maker of

last resort. They employ a cash-in-the-market framework (Allen & Gale 1994, 1998) and model the

central bank policy as a promise to inject future cash into the market. They show that this promise

encourages private-sector dealers to make markets today. Interestingly, by committing to act more

aggressively in the future, the central bank can reduce its asset purchases and eliminate self-fulfilling

pessimistic equilibria. The results of Choi & Yorulmazer (2022) therefore mirror our own results

regarding the aggressiveness of central bank action within a different framework. Eisenbach & Phelan

(2022) also study the dash-for-cash episode as a market run. However, they focus on showing that a

flight to safety can trigger a dash for cash in times of stress. Our focus is on how the probability of

fire sales, the portfolio decision of funds, and central bank policy all interact.

2 Self-fulfilling fire sales

In this section, we fix the initial portfolio of the bond funds. The funds are faced with the risk of a

future liquidity shock and are able to pre-emptively sell their bond holdings today. We first show how

multiple equilibria can arise due to self-fulfilling beliefs. If funds believe that future market conditions

will be poor, they choose to pre-emptively sell their bonds which makes market conditions poor. If

funds believe market conditions will be good, they choose to hold their bonds which makes the future

market conditions good. We then consider a global game variation on the model by introducing some

uncertainty in the capacity of dealers to absorb bonds. We show that the global game has a unique

equilibrium where self-fulfilling fire sales only occur when dealer capacity is sufficiently low.

2.1 Multiple equilibria

There are three dates t = 0, 1, 2 and a continuum of risk-neutral bond funds of measure 1. The funds

are initially endowed with x units of bonds and 1 − x units of cash. Cash returns 1 in each period.

Bonds have an expected return R > 1 at t = 2. Before t = 2, bonds can be sold to dealers at a

discounted price p = R − δ where δ > 0. Dealers face difficulties holding large quantities of bonds
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so δ increases with the number of bonds held. This can be micro-founded by assuming a risk averse

dealer sector as in Bernardo & Welch (2004) and Morris & Shin (2004) or by appealing to balance

sheet constraints.5 In particular, assume that δ = δL when the quantity of bonds held is less than

K ∈ [0, 1] and δ = δH when the quantity of bonds held is greater than K where δL < δH .

At t = 0, dealers first set the price they are willing to pay for bonds p0. Since their bond holdings are

initially zero, they set p0 = R− δL. At t = 0, funds learn of the possibility of being hit by a liquidity

shock at t = 1 with probability q independent of the bond return. They can choose to sell their bond

holdings at t = 0 at price p0 to prepare for the liquidity shock or hold the asset. If they face the

liquidity shock, they are forced to sell their bonds at t = 1 at price p1. If they do not face the liquidity

shock, they can hold the bonds through to maturity at t = 2 and earn the return R.

A key assumption in our analysis is that prices do not fully adjust within the period due to selling

pressure within the same period. In particular, all selling at t = 0 takes place at p0 = R − δL, after

which the price adjusts for t = 1. We motivate this by assuming that the fund may submit their

sell order at p0 = R − δL but not take into account that prices may have adjusted by the time that

their sell order is executed.6 Indeed, Haddad et al. (2021) report that during the dash-for-cash period

there was evidence of “liquidity inversion” where assets that are normally more liquid experienced

price discounts greater than assets that are typically more illiquid. They argue that funds did not

take into account real time price adjustments when making their trading decisions due to the speed

at which the crisis took place. This assumption can create an incentive to pre-emptively sell bonds:

funds believe that selling at t = 0 guarantees a high price whereas waiting until t = 1 carries the risk

of being forced to sell at a low price if the liquidity shock hits and other funds have already sold to

the dealer.7

Given this assumption and since the funds are atomistic, they take p0 as given and choose to sell at

t = 0 if

p0 > qp1(δ̃) + (1− q)R (1)

where δ̃ ∈ {δL, δH} is a fund’s belief about the discount applied by the dealer for any trades at t = 1.

5For example, during the dash for cash, the leverage ratio that dealers must satisfy seemingly became a binding
constraint (Duffie 2020). Dealers also face a risk-weighted capital constraint that limits their ability to hold bonds on
their balance sheet.

6Alternatively, the existence of a small friction in dealer price setting so that dealers do not instantaneously adjust
the price in response to selling pressure would justify this assumption.

7Our assumption is similar to the assumption from the market-run literature (Bernardo & Welch 2004, Morris &
Shin 2004) that execution order is not perfectly sequential. In these models, when investors submit a sell order at t = 0,
they join a queue of investors wishing to sell at t = 0. Because investors do not know their exact position in the queue,
the models assume that investors believe they will be in the middle of the queue. Waiting to sell until t = 1 ensures a
position at the rear of the queue. Since investors further down the queue receive a lower price, this gives an incentive to
pre-emptively sell. In our model, our assumption that funds do not take into account within-period price adjustment is
equivalent to assuming that all funds believe they will be at the front of the queue rather than the middle. Therefore,
the underlying reason for pre-emptive selling in our model is identical to the market run literature.
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Using p = R− δ, we can write (1) as

qδ̃ > δL. (2)

Thus, the choice of an individual fund to sell depends on whether it expects the dealer to be under

strain or not. We look for an equilibrium where δ̃ = δ, that is, beliefs coincide with outcomes.

Proposition 1. An equilibrium with δ̃ = δL always exists. If (i) qδH > δL and (ii) x > K both hold,

then a second equilibrium exists with δ̃ = δH .

Proof. If δ̃ = δL, then from (2) the condition for selling is q > 1. Therefore, an individual fund has

no incentive to sell. Since all funds are identical, no fund sells. This means that the bond holdings of

the dealer going into t = 1 are zero. This implies δ = δL so we have an equilibrium.

Suppose instead that δ̃ = δH . If qδH ≤ δL, then from (2) we see that no fund chooses to sell. This

means that the bond holdings of the dealer remain zero which implies δ = δL. Therefore, this cannot

be an equilibrium. If qδH > δL, then an individual fund wishes to sell. Therefore, all funds choose to

sell and the dealer absorbs x assets. If x ≤ K, then we still have δ = δL so this is not an equilibrium.

If x > K, then the dealer will set δ = δH for period 1. This gives the other equilibrium.

From Proposition 1, we see that an equilibrium with no fire selling always exists. If funds expect

future market conditions to be good, there is no incentive to pre-emptively sell bonds. Because funds

do not pre-emptively sell their bonds, market conditions indeed are good.

However, we also see that there is potential for an equilibrium with self-fulfilling fire sales to exist.

In this equilibrium, funds sell their bonds at t = 0 leading to fire sale prices at t = 1 simply because

funds expect fire sale prices at t = 1. The first condition for the fire selling equilibrium to exist is that

it must be sufficiently likely that funds are hit by a liquidity shock and then have to sell their bonds at

depressed prices. This condition gives the incentive for funds to sell at t = 0 and potentially put the

dealer under strain. But even if this condition is satisfied, we still require that the total quantity of

bonds the dealer absorbs be large enough so that they are indeed put under strain when funds choose

to sell.

2.2 Unique equilibrium via global games

An undesirable feature of the multiple equilibria result in Proposition 1 is that the model is silent

about how likely the fire sale equilibrium is to arise. Following the global games literature (Carlsson &

van Damme 1993, Morris & Shin 1998), we now introduce a small amount of private noise to the model

which eliminates the multiplicity. The result is that we can link the probability of a self-fulfilling fire

sale to economic fundamentals.
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Now assume that funds face uncertainty about the dealer capacity K. Let the prior distribution of K

be uniform on [0, 1] and denote the density function by f(·). K is also independent of the liquidity

shock and the bond return. At t = 0, each fund i observes a private signal

zi = K + ei (3)

where ei is a noise term which is uniformly distributed on [−ε, ε] where ε > 0 is small.8 This assumption

reflects the fact that funds face some uncertainty related to the true capacity of the dealer bank because

they do not know the exact details of the dealer’s balance sheet position.

After observing their private signal, funds once again have a choice whether to sell their bond holdings

at p0 or hold. Let a ∈ {sell,hold} denote the action. Denote the proportion of funds selling by s.

Each fund’s payoff u(a, s,K) is a function of the action taken, the proportion of funds selling, and the

dealer capacity. We can therefore write the payoffs as

u(sell, s,K) = p0 = R− δL (4)

u(hold, s,K) = qp1(δ) + (1− q)R =

q(R− δL) + (1− q)R if sx ≤ K

q(R− δH) + (1− q)R if sx > K.
(5)

Each fund holds x bonds so, if a proportion s sell, the dealer will have to absorb sx bonds. If sx

exceeds K, the dealer sets p1 = R − δH . Defining π(s,K) ≡ u(sell, s,K)− u(hold, s,K) as the payoff

gain from selling, we have

π(s,K) =

−(1− q)δL if sx ≤ K

qδH − δL if sx > K.
(6)

Notice that if qδH ≤ δL or x ≤ K, the dominant strategy is to hold. If both of these conditions fail,

then the decision whether to sell or hold depends on a fund’s belief about s. We therefore need to

derive this belief.

To make progress, we look for an equilibrium where funds follow a switching strategy of the form:

a =

hold if zi > z∗

sell if zi ≤ z∗
(7)

where z∗ is a threshold value to be determined. We are then able to derive the distribution of s for a

fund whose private signal is exactly the threshold z∗.

Lemma 1. Suppose that funds follow the switching strategy around z∗ as in (7). Then the density of

s conditional on z∗ is uniform over [0, 1].

8The results go through for a general density function for the noise whenever the density becomes concentrated
around zero (see Morris & Shin (2003)).
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Proof. The proof follows Morris et al. (2017). When the true dealer capacity is K, the signals {zi}
are distributed uniformly over [K − ε,K + ε]. Funds with signals zi < z∗ choose to sell. Hence,

s =
z∗ − (K − ε)

2ε
.

To derive the distribution of s conditional on z∗, we derive the cumulative distribution function. In

particular, we compute the probability that s < b conditional on z∗. Define K0 as

b =
z∗ − (K0 − ε)

2ε
=⇒ K0 = z∗ + ε− 2εb.

Thus, s < b if and only if K > K0. We therefore need the probability of K > K0 conditional on z∗.

Fund i’s posterior density over K conditional on z∗ is [z∗ − ε, z∗ + ε]. Therefore,

Pr(K > K0|z∗) =
z∗ + ε−K0

2ε
=

z∗ + ε− (z∗ + ε− 2bε)

2ε
= b.

This is the cumulative distribution function of the uniform distribution.

Given Lemma 1, we can now determine the equilibrium of the game. We focus on the case when

ε → 0, that is, the private noise vanishes. This implies that the only role of the private noise is to

break down the perfect coordination that generates multiple equilibria and allows direct comparison

with Proposition 1.

Proposition 2. Let ε → 0. If qδH ≤ δL or x < K, all funds have a dominant strategy to hold. If

qδH > δL and x > K, then there is an equilibrium where all funds hold if K > K∗ and all funds sell

if K < K∗ where

K∗ =

[
qδH − δL
q(δH − δL)

]
x ≡ αx < x. (8)

K∗ is the ex-ante probability of a self-fulfilling fire sale occurring and α is the ex-ante probability of a

self-fulfilling fire sale occurring conditional on x > K.

Proof. Consider a fund observing a signal zi. Fund i’s expectation of K is then zi. If zi ≥ x, from

(6) we see that it is always optimal for fund i to hold regardless of the value of s. Therefore, since as

ε → 0 we have zi → K, we have that the funds have a dominant strategy to hold whenever x > K. It

is also evident from (6) that funds have a dominant strategy to hold when qδH ≤ δL.

If zi < x, then fund i’s optimal decision to sell or hold depends on the value of s. To make progress,

consider a fund observing signal z∗. From Lemma 1, we know that the fund believes the density of s

is uniform on [0, 1] if all funds play the threshold strategy according to (7). Therefore, for z∗ < x we

9
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Figure 1: Equilibrium outcomes for different values of K

have ∫ 1

0
π(s, z∗)ds = −(1− q)δL

z∗

x
+

(
1− z∗

x

)
(qδH − δL).

If s < z∗/x, then the fund believes that the dealer faces no stress. Since s is uniform on [0, 1] conditional

on z∗, the fund believes that the probability of no stress is z∗/x. This gives the first term. The second

term follows because the fund believes that the probability of the dealer being under stress is 1−z∗/x.

The threshold value z∗ must satisfy
∫ 1
0 π(s, z∗)ds = 0. This yields

z∗ =

[
qδH − δL
q(δH − δL)

]
x.

To complete the argument, we need to show that if zi < z∗, fund i prefers to sell, and if zi > z∗, fund

i prefers to hold. The details are given in the appendix.

Letting ε → 0 implies that the threshold value of z∗ corresponds to a threshold value of K∗. Therefore,

funds will hold if K > K∗ and we will get a self-fulfilling fire sale when K < K∗. Since the prior

distribution of K is uniform on [0, 1], K∗ is also the ex-ante probability of a self-fulfilling fire sale.

Finally, Pr(fire sale|x > K) = αx/x = α.

It is instructive to contrast Propositions 1 and 2. In both models, if qδH ≤ δL or x < K, then there

is only one equilibrium where all funds hold.9 The value of the global games approach arises when

qδH > δL and x > K, in which case there are multiple equilibria in the framework without private

noise. The global games approach tells us which one of these equilibria will arise as a function of

economic fundamentals. Figure 1 summarises the results of Propositions 1 and 2 by depicting the

equilibrium outcomes as a function of K, with Proposition 1 above the bold line and Proposition 2

below it.

We can also see how the ex-ante probability of the fire sale equilibrium changes as economic funda-

mentals change.

Corollary 1. The following are true:

9The ex-ante probability of x = K is zero so we ignore this case.
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1. ∂K∗/∂x > 0. A higher value of x means that funds hold more bonds at the outset. This

means that there are more bonds that could potentially be sold to the dealer, which increases the

probability that the dealer will be under stress. The incentive to sell today increases, so a fire

sale is ex-ante more likely.

2. ∂K∗/∂q > 0. A higher value of q means it is more likely that a fund will get hit by a liquidity

shock. The incentive to sell today increases, so a fire sale is ex-ante more likely.

3. ∂K∗/∂δH > 0. As the severity of the stressed state increases, the incentive to sell today increases.

The ex-ante probability of a fire sale occurring increases.

3 Optimal portfolio choice

In the analysis thus far, we have taken the choice of the quantity of bonds held as given. In this

section, we endogenise this choice and examine the interaction between the probability of fire sales K∗

and the optimal portfolio choice.

Suppose that before funds receive their private signals, they make their choice of x. In the current

setup, funds are risk-neutral. Therefore, they will simply choose to hold either all cash or all bonds

depending on which has a higher expected payoff. In reality, however, funds are unlikely to be risk

neutral and may hold some cash for self-insurance purposes, which would reduce the variance of their

portfolio. To introduce this in our model, we assume that there is a penalty for variance in the

portfolio c(x) = γx2 where γ > 0.10 Note that the binary action choice at t = 0 combined with

no time discounting implies that the introduction of this cost does not affect the optimal choice of

a fund to sell or hold in section 2. If they sell their entire bond holdings at t = 0, they gain some

benefit c > 0 for no longer holding bonds. If they hold their bonds into t = 1, they then either sell

their bonds or they mature giving the same benefit c in either case. Therefore, it is optimal to sell if

p0x+ c > q(p1x+ c) + (1− q)(Rx+ c) which simplifies to equation (1).

We focus on an equilibrium where the ex-ante probability of a fire sale is strictly positive. Following

Proposition 2, we therefore must have that (i) qδH > δL and (ii) x > K. The former condition we

can simply assume. However, since we are now endogenising x, we cannot simply assume that x > K.

Instead, we guess that x > K and show that we can find an equilibrium where our guess is indeed

true.

An individual fund thus takes the aggregate bond holding x (and therefore K∗) as given. Bonds are

available in perfectly elastic supply with the price normalised to 1. The fund therefore solves the

10Note that the variance of the portfolio is Var[(1− x) + xRB ] where RB is the overall return on holding bonds. The
overall bond return has three sources of stochasticity: the dealer capacity K which determines the occurence of a fire
sale, the liquidity shock, and the bond return itself. Using the rules for the variance operator, the portfolio variance is
x2Var[RB ] which motivates the quadratic penalty term. For simplicity, we assume that Var[RB ] is a constant γ, although
strictly speaking γ depends on other model parameters.
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problem

max
x∈[0,1]

(1− x) + x

[∫ K∗

0
(R− δL)f(K)dK +

∫ 1

K∗
(q(R− δL) + (1− q)R))f(K)dK

]
− γx2. (9)

The first term in the square brackets gives the payoff when a self-fulfilling fire sale occurs and funds

all sell their entire bond holdings at p0 = R − δL. This outcome occurs for values of K between 0

and K∗. The second term gives the payoff when everyone holds. With probability q, the funds face

a liquidity shock at t = 1 and are forced to sell their bond holdings. Since the stock of bonds held

on the dealer’s balance sheet going into t = 1 is zero, the price p1 is R − δL. With probability 1− q,

the funds are able to hold the funds through to maturity and obtain the expected return R. These

outcomes occur for values of K between K∗ and 1.

The solution to (9) gives the optimal x as a function of K∗. Proposition 2 derived K∗ as a function

of x. An equilibrium is thus an (xe,K
∗
e ) pair where xe solves (9) conditional on K∗

e and xe implies

K∗ = K∗
e according to (8).

Proposition 3. Conditional on K∗, aggregate fund bond holdings are

x =
R− 1− δL(q +K∗(1− q))

2γ
. (10)

There exists a unique equilibrium pair (xe,K
∗
e ) which simultaneously satisfies (8) and (10):

xe =
R− δLq

2γ + δLα(1− q)
, (11)

K∗
e = αxe. (12)

Proof. First guess that x > K so that it is possible for a self-fulfilling fire sale to occur. We can then

solve the fund’s problem in (9). Using the fact that the prior distribution of K is uniform over [0, 1],

we can write the term in the square brackets as

K∗(R− δL) + (1−K∗)(q(R− δL) + (1− q)R).

This simplifies to

R− δL(K
∗(1− q) + q).

The fund problem can thus be written as

max
x∈[0,1]

(1− x) + x(R− δL(q +K∗(1− q)))− γx2.

Assuming the parameters are such that an interior solution exists, there is a unique maximum given

by (10). Since all funds are ex-ante identical, this is the optimal x for all funds and therefore the
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aggregate fund bond holdings. Substituting K∗ = αx from (8) into (10) and solving for x gives xe

which then immediately implies K∗
e = αxe. Finally, we need to verify our guess that x > K. We can

always ensure this guess is correct by choosing R to be suitably large.

The first result in Proposition 3 is that aggregate fund bond holdings are decreasing in K∗. This

is because a fire sale prevents the fund from holding the bond to maturity and instead forces it to

sell at a discount to the dealer. Therefore, a higher probability of fire sales makes holding bonds less

attractive. Holding K∗ fixed, the effect of K∗ on x is attentuated by (i) a reduction in δL and (ii) an

increase in q. A reduction in δL makes fire sales less costly so changes in the probability of fire sales

have less of an effect on bond holdings. An increase in q makes it less likely that funds will be able

to hold their bonds to maturity due to the t = 1 liquidity shock so the fire sale at t = 0 becomes less

relevant.

We can build graphical intuition for the second result in Proposition 3 by drawing equations (8) and

(10), which characterise equilibrium, in (K∗, x) space. In particular, notice that (8) is an upward

sloping line passing through the origin with slope 1/α. Equation (10), is a downward sloping line with

vertical intercept (R− 1− δLq)/2γ and slope −δL(1− q)/2γ. The equilibrium is depicted by the black

lines in Figure 2 with the intersection giving the unique mutually consistent (x,K∗) pair.

We can also perform comparative statics exercises with the aid of our diagram. Suppose that there

a reduction in the discount the dealer applies to the bond in stressed market conditions: a reduction

in δH . From equations (8) and (10), we see that this increases the slope of the K∗(x) curve and does

not affect the x(K∗) curve. The new equilibrium is shown in red in Figure 2. The new equilibrium is

associated with a lower ex-ante probability of fire sales and funds holding a higher quantity of bonds.

Notice that the fall in K∗ would have been greater if funds did not have the ability to adjust their

portfolio in response to the change in δH . When δH falls, funds are ex-ante less likely to face a fire

sale. Bonds are therefore more attractive so funds choose to hold more bonds. But if funds hold more

bonds, they increase the probability of facing a fire sale. This partially undoes the effect the fall in

δH has on reducing the probabiilty of fire sales.

4 Central bank provision of a market backstop

We now extend our global games framework to study the central bank acting as a backstop buyer

of assets.11 We show that, if the central bank commits to act aggressively enough, then it is able

to completely eliminate the possibility of self-fulfilling fire sales. If the central bank does not act

with sufficient force, perhaps due to lack of credibility or political constraints, then it can reduce but

11As our model is highly stylised, the authority need not in fact be a central bank. Instead, it could be a fiscal
authority. Indeed, that could have some advantages, such as avoiding potential conflict with monetary policy objectives
and internalising potential costs to taxpayers.
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Figure 2: Joint determination of x and K∗ in equilibrium. A reduction in δH reduces the ex-ante
probability of a fire sale.
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not entirely eliminate the probability of a self-fulfilling fire sale. The effectiveness of an insufficiently

forceful policy is further reduced when funds re-optimise their portfolios in response to central bank

policy.

It thus appears that the central bank should simply commit to act aggressively to completely eliminate

the possibility of self-fulfilling fire sales. However, using our model, we highlight some reasons why this

aggressive policy stance may be undesirable. We complete this section with a discussion of alternative

policies that could reduce the probability of self-fulfilling fire sales within the context of our model.

4.1 Using market backstops to reduce the probability of fire sales

We introduce a market backstop policy by allowing the central bank to provide additional capacity for

absorbing bond sales through an asset purchasing facility. Denote this capacity by KCB. Consistent

with the central bank acting as a backstop buyer, it offers to purchase bonds at a discount δCB ∈
(δL, δH ]. Thus, the central bank policy is a price-quantity pair (KCB, δCB), whereKCB is the maximum

quantity of bonds that it is prepared to buy at any time and δCB is the discount (to the market mid-

price) at which it would buy.12 In most circumstances, market participants would not sell to the

central bank because the dealer in the model would not face balance sheet constraints and so would

offer to purchase bonds at a better price (i.e. smaller discount). The penal central bank discount

mirrors the principle set out by Bagehot (1873) for central banks acting as a lender of last resort.

Notice that this specification of policy includes the case of the central bank setting an asset price floor

at R − δCB. This would be achieved by setting KCB such that K +KCB = 1. The market backstop

policy is therefore fully described by the pair (KCB, δCB).

With a central bank, the payoffs become

u(sell, s,K) = R− δL (13)

u(hold, s,K) =


q(R− δL) + (1− q)R if sx ∈ [0,K]

q(R− δCB) + (1− q)R if sx ∈ (K,K +KCB]

q(R− δH) + (1− q)R if sx ∈ (K +KCB, 1].

(14)

The payoff gain from selling is

π(s,K) =


−(1− q)δL if sx ∈ [0,K]

qδCB − δL if sx ∈ (K,K +KCB]

qδH − δL if sx ∈ (K +KCB, 1].

(15)

Following similar steps to Proposition 2, we can prove the following result.

12So δCB is like the ‘reserve spread’ in the September-October 2022 Bank of England gilt market interventions.
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Proposition 4. Let ε → 0. Suppose that qδH > δL and x > K. If K+KCB > x and qδCB ≤ δL, then

funds have a dominant strategy to hold. If qδCB > δL, then there is an equilibrium where all funds

hold if K > K̃∗ and all funds sell if K < K̃∗ where

K̃∗ =


[

qδCB−δL
q(δCB−δL)

]
x if K +KCB > x[

qδH−δL
q(δH−δL)

]
x−

[
δH−δCB
δH−δL

]
KCB if K +KCB < x.

(16)

K̃∗ is decreasing in KCB and increasing in δCB.

Proof. See Appendix.

The first point to note about Proposition 4 is that by assuming that qδH > δL and x > K we provide

the conditions for a possible fire sale in the model without a central bank. If a central bank dislikes fire

sales, we therefore potentially have scope for policy action to reduce the probability of a self-fulfilling

fire sale occuring.

The central bank can eliminate the possibility of fire sales entirely by acting aggressively. For example,

if it sets KCB = 1−K and δCB ≤ δL/q, funds have a dominant strategy to hold for all values of x. This

result corresponds with the theoretical result in Choi & Yorulmazer (2022) where the central bank

may wish to act aggressively to rule out all equilibria except the good one with no fire sales. Notice

that the central bank facility needs to be sufficiently large and the discount needs to be small enough

to eliminate the fire sale outcome entirely: they are not substitutable. The reason is straightforward.

If the capacity is large but the discount δCB is also large, then selling to the central bank is still a

bad outcome so the central bank does not remove the incentive to pre-emptively sell. If the discount

δCB is small but the capacity is small, then the central bank’s purchasing facility is close to irrelevant

and funds will still put positive weight on the possibility of having to sell to the dealer at discount δH .

Also notice that the discount δCB does not need to equal δL to eliminate the possibility of fire sales.

Importantly, the central bank only needs to credibly announce a policy for it to be effective. Moreover,

the facility is not used at t = 0 because all funds choose to hold. This matches the empirical evidence

from the dash for cash where the announcement of the Federal Reserve’s corporate bond purchase

programme alone calmed corporate bond markets (Haddad et al. 2021). It also fits with the experience

of Euro area sovereign debt markets after Mario Draghi’s “whatever it takes” speech, when Draghi’s

promise calmed markets without the ECB having to buy any bonds. Indeed, this relates to the

general idea that asset purchases for financial stability purposes should be “catalytic” in the sense that

they restore the functioning of private markets rather than involving considerable direct intervention

(Cecchetti & Tucker 2021).

Now consider the case when qδCB > δL so the fire sale outcome is not ruled out. If central bank

capacity is sufficiently large, K +KCB > x, the central bank is essentially setting an asset price floor
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Figure 3: An increase in KCB and/or a reduction in δCB when K +KCB < x

at R − δCB. The expression for K̃∗ is identical to K∗ in Proposition 2 with δH replaced by δCB. A

reduction in δCB therefore reduces K̃∗. Further changes in KCB have no effect.

If the central bank capacity is smaller such that K +KCB < x, then the central bank does not rule

out the possibility of a fund having to sell to a stressed dealer. In this case, both an increase in KCB

and a reduction in δCB reduce the probability of a self-fulfilling fire sale. Thus, reducing the discount

δCB and increasing the size of the facility KCB can substitute for each other. Moreover, the policies

are complementary in the sense that |∂K∗/∂KCB| is larger if δCB is lower and |∂K∗/∂δCB| is larger

if KCB is larger.

Portfolio re-optimisation. Now suppose that the central bank announces the policy (KCB, δCB)

ahead of time such that funds are able to optimally choose their value of x in response to the policy.

Note that the optimal portfolio choice problem is not directly affected by the central bank providing

a market backstop. The only channel through which central bank policy affects the portfolio choice

problem is through influencing the probability of a fire sale K̃∗, which the atomistic funds take as

given when choosing x.

Consider first a reduction in δCB when K + KCB = 1, that is, the central bank sets an asset price
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floor at R − δCB. The equilibrium outcome is identical to Figure 2 showing a reduction in δH . The

endogenous response of funds to the policy, which is to hold more bonds and less cash, partially offsets

the reduction in the probability of a self-fulfilling fire from lowering δCB. The response of private-

sector agents to take more risk illustrates the ‘moral hazard’ that is often present in the provision of

public-sector insurance.

Next consider the case when K + KCB < x. A reduction in δCB or an increase in KCB will reduce

K̃∗ and the effect is independent of the value of x. This is shown graphically in Figure 3 as a leftward

shift in the K∗(x) curve. We again have a reduction in the equilibrium probability of a fire sale which

is partially offset by the endogenous increase in funds’ bond holdings x.

To summarise the discussion, we have seen that if the central bank commits to act with sufficient force,

it can completely eliminate self-fulfilling fire sales as a potential equilibrium outcome. Moreover, the

central bank will not actually have to purchase any bonds at t = 0 for the policy to be effective. If

it acts less aggressively, it can still reduce the probability of a self-fulfilling fire sale. However, if the

central bank does not take into account the effect of its policy on funds’ portfolio choice, it will think

its policy is more effective at reducing the probability of fire sales than it actually is. It therefore

appears as if central banks have a simple decision: act aggressively to rule out the fire sale outcome.

In the next section, however, we discuss some potential pitfalls with such a policy.

4.2 Potential problems with providing a market backstop

Costs of central banks holding assets. Thus far, we have implicitly assumed that the central bank

only cares about reducing the probability of a self-fulfilling fire sale. If enacting a policy (KCB, δCB)

is costless, then the central bank will optimally act aggressively to reduce the probability of a self-

fulfilling fire sale to zero. However, in practice, a central bank may not wish to take certain assets onto

its balance sheet. Reasons may include political economy considerations, with any losses on purchased

assets ultimately falling to the taxpayer; or conflicts with its monetary policy objectives, as central

bank asset purchases all else equal may loosen monetary conditions, which may not be appropriate

depending on the economic outlook. We can represent this cost with a central bank cost function

C(QCB, δCB) where QCB denotes the quantity of bonds purchased by the central bank. The cost

function is increasing in QCB and decreasing in δCB.

This cost, combined with the potential liquidity shock at t = 1, implies that acting aggressively to

eliminate the self-fulfilling fire sale in t = 0 may no longer be optimal. To see this, note that when

a central bank is choosing the policy (KCB, δCB) before the funds make any decisions, its ex-ante

expected cost is

C(Qfs
CB, δCB)K̃

∗(KCB, δCB) + C(Qls
CB, δCB)(1− K̃∗(KCB, δCB))q (17)
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Figure 4: Shifts in market expectations can increase the probability of self-fulfilling fire sales

where the dependence of K̃∗ on policy is made explicit. With probability K̃∗, there is a self-fulfilling

fire sale at t = 0 and the central bank purchases Qfs
CB bonds at discount δCB. With probability

(1− K̃∗)q, there is no self-fulfilling fire sale at t = 0 followed by a liquidity shock at t = 1. In this case,

a central bank committed to providing a market backstop would purchase Qls
CB bonds at discount

δCB. Evidently, Qfs
CB and Qls

CB are weakly increasing in KCB, though they may be less than KCB if

bond sales do not exhaust the central bank’s capacity to absorb bonds.

An aggressive backstop policy (high KCB and low δCB) ensures that K̃∗ = 0. With no cost of

purchasing bonds and a benefit to reducing the probability of self-fulfilling fire sales, it would clearly

be optimal to pursue an aggressive policy. However, from equation (17), we now see that there is a

positive ex-ante expected cost from an aggressive policy, C(Qls
CB, δCB)q, due to the presence of the

liquidity shock. Depending on the cost function C(·, ·) and the benefit of reducing the probability of

self-fulfilling fire sales, it may now be optimal for a central bank to pursue a less aggressive policy.

Such a policy would tradeoff an increased probability of self-fulfilling fire sales at t = 0 against the

reduced cost of intervening aggressively when there are liquidity needs at t = 1. Put differently, an

aggressive backstop policy is no longer a “free lunch” when there are (i) costs to intervening in markets

and (ii) fire sales driven by fundamental liquidity needs rather than self-fulfilling beliefs.
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Expectations of market participants. If the backstop policy is not clear, consistent, and credible,

central bank action may increase the probability of self-fulfilling fire sales.

Suppose, for example, that market participants expect the central bank to enact a policy (KCB, δCB)

consistent with the equilibrium given in red in Figure 4. Next suppose at the start of the crisis period

at t = 0, expectations shift so that the relevant K∗(x) curve is the black line (in this case representing

no backstop policy). The market run game played between the funds would therefore take place with

the higher red xe as the bond portfolio share. Following the blue line across in the example in Figure 4,

we see that the probability of a self-fulfilling fire sale actually increases relative to the scenario where

expectations remained anchored on the equilibrium in black.

Why might market expectations shift in this manner? One possible reason is if the central bank initially

promises the policy (KCB, δCB) and market participants believe the promise is credible. Expectations

could then shift if the central bank explicitly reneges on its policy commitment or market participants

suddenly believe that the central bank will no longer follow through on its promise. Thus, any central

bank committed to providing a market backstop must ensure that announced policy is consistent and

can be credibly implemented in a crisis.

In the absence of an explicit policy commitment, markets may instead infer the policy (KCB, δCB)

from central bank actions or statements. If this inference turns out to be incorrect, market expec-

tations could shift at the onset of the crisis. Our observation thus cautions against the principle of

“constructive ambiguity” advocated by some in the context of lender of last resort policies (see, for

example, George (1994)). The idea of constructive ambiguity is that the central bank can avoid moral

hazard by making access to emergency support facilities uncertain. However, such ambiguity creates

the possibility that market participants’ expectations will become overly optimistic about the extent

of central bank support and we see from Figure 4 that this can increase the risk of financial instability.

This point is therefore similar to Hanson et al. (2020), who show how mis-perceptions about central

bank interventions in asset markets can lead to sudden price declines if investors overestimate the

aggressiveness of central bank intervention.

Incorrect expectations of market participants could even force the central bank to provide a market

backstop when it would prefer not to. Suppose that the costs of providing a backstop are deemed

too high such that the central bank would not want to provide one: the central bank would prefer

the black equilibrium in Figure 4. However, if funds expect the policy (KCB, δCB), they will act in a

manner consistent with the red equilibrium in Figure 4. At the onset of the crisis, the central bank

therefore has a choice. It could not intervene and face an increased probability of self-fulfilling fire sales

relative to the black equilibrium. Alternatively, it could choose to intervene consistent with market

participants’ expectations and lower the probability of a self-fulfilling fire sale at the cost of providing

a market backstop. Depending on the objective function of the central bank, it may choose to provide

a backstop in line with the expectations of market participants.
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4.3 Alternative policies

Given the difficulties with providing a market backstop, the central bank may wish to consider using

alternative policies to reduce the probability of fire sales, with a market backstop potentially available

as a last resort. Indeed, Hauser (2021) identifies three steps to strengthen market functioning: (1)

reforms to improve the resilience of financial institutions to liquidity shocks, (2) strengthened market-

wide infrastructure, and (3) central bank backstops. We now provide a brief discussion on steps (1)

and (2) within the context of our model.

Improving resilience to liquidity shocks. The first fundamental driver of the self-fulfilling fire

sale is the fear of being hit by a future liquidity shock. It follows that policies that reduce the severity

of the liquidity shock should reduce the probability of a self-fulfilling fire sale.

In our current setup, the liquidity shock requires funds to shift to a 100% cash portfolio which does

not allow us to consider a reduction in the severity of a liquidity shock. Therefore, suppose instead

that a fund hit by a liquidity shock only has to sell a fraction f of their bond holdings. The liquidity

shock requiring 100% cash is the case when f = 1. One can easily show that equation (1), which gives

the condition for funds to optimally sell at t = 0, becomes

p0 > qfp1(δ̃) + (1− qf)R. (18)

A reduction in f , which we can interpret as a reduction in the severity of the liquidity shock to funds,

therefore has the same effect as a reduction in q. We thus see from Corollary 1 that a reduction in

f will reduce the probability of a self-fulfilling fire sale (other factors equal) because it reduces the

incentive to pre-emptively sell bonds. In our model, f would have some baseline value consistent with

the atomistic funds choosing liquidity buffers that were privately optimal. Such behaviour would not

take into account any benefits to other funds of raising their liquidity buffers further and thus reducing

the probability of a self-fulfilling fire sale below the baseline level.

However, enhancing liquidity management tools through regulation could reduce the severity of any

given liquidity shock to funds and therefore reduce the probability of a self-fulfilling fire sale. For

instance, requiring funds to hold larger liquidity buffers in normal times that could be drawn upon

in the event of a shock would reduce potential sales and thus reduce the probability of a self-fulfilling

fire sale. Another option could be the use of redemption gates that limit redemptions for a short

period of time. By design, this reduces the fraction of bonds the fund would need to sell when hit by

a liquidity shock. Another possible tool could be swing pricing (Jin et al. 2022). This tool reduces

run-like incentives on open-ended funds by forcing redeeming investors to internalise the trading costs

associated with selling instead of passing it onto those still invested in the fund. By reducing the

incentive to run on the fund, swing pricing should reduce the number of bonds the fund needs to sell

for any given liquidity shock.
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Strengthening market-wide infrastructure. The second fundamental driver of the self-fulfilling

fire sale is the presence of a constrained dealer which funds have to sell to. Policies to improve the ability

of the dealer to intermediate would therefore increase the expected price of bonds at t = 1 and reduce

the incentive to pre-emptively sell at t = 0. In the aftermath of the dash-for-cash episode, post-GFC

financial regulations have been highlighted as a contributor to dealer capital constraints (Bessembinder

et al. 2018, Dick-Nielsen & Rossi 2019). In particular, the leverage ratio, which is typically a non-

binding backstop, may have become binding during the dash for cash and prevented dealers from

taking more bonds onto their balance sheets (Breckenfelder & Ivashina 2021). Policymakers could

therefore consider ways to relax binding capital constraints at times of stress. Alternatively, they

could reduce the capital-ratio impact for dealers of new trades by mandating central clearing.13 This

means that dealers could net buy and sell trades regardless of the trading counterparties and only

record net buys on the balance sheet. Both of these policies could improve the ability of dealers to

intermediate and therefore reduce the fear of market participants that they may have to sell to a dealer

under stress.

Alternatively, policymakers could seek to break the fund-dealer relationship by promoting all-to-all

trading platforms. This would allow market participants to trade with dealers or each other. If the

liquidity shock at t = 1 is an idiosyncratic rather than an aggregate shock, there will be q funds that

are sellers of bonds and 1− q funds that are natural buyers of bonds. In situations where dealers were

constrained and could not intermediate between these buyers and sellers, such a policy would increase

the expected price of bonds at t = 1 and reduce the incentive to pre-emptively sell.

5 Conclusion

Following the “dash for cash” in March 2020, central banks stepped into secondary markets and

purchased bonds to meet their financial stability objectives. However, there are only a few papers

theoretically examining the use of central bank asset purchases as a financial stability tool. This

paper helps to fill this gap by introducing a central bank which provides a market backstop in a

model of self-fulfilling fire sales. We show that by committing to act aggressively, the central bank

can eliminate the possibility of a self-fulfilling fire sale. However, a central bank may wish to act less

aggressively to trade-off the benefit of reducing self-fulfilling fire sales with the cost of intervening in

other fire sale events. Furthermore, if market participants expect the central bank to act aggressively

and the central bank does not act in accordance with expectations, then we show that the probability

of self-fulfilling fire sales can increase relative to the baseline scenario of the central bank credibly

ruling out the provision of a market backstop.

Our model is highly stylised and intended as a conceptual overview of what may happen when a

central bank introduces a type of market backstop. It does not provide a full cost-benefit analysis

13See, for example, Duffie (2020) who proposes central counterparty clearing for the US Treasury market.
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of market backstops. Such a study would quantify the benefits of market backstops beyond reducing

the risk of self-fulfilling fire sales and weigh those benefits against costs such as those of encouraging

greater risk taking (‘moral hazard’) and the central bank having to manage a portfolio of risky assets.

In addition, there remain many open questions on the details of designing a market backstop. Such

issues include which assets to buy, how to best unwind any purchases and how to deal with market

dysfunction when financial stability objectives may conflict with monetary policy. There is also a

separate question about the relative merits of central bank market backstops or lending backstops,

where the latter may generate less moral hazard and pose less risk to the public finances.14 We leave

such questions for future research.

Appendix

Proof of Proposition 2 continued

In this appendix, we complete the proof of Proposition 2 by showing that if zi < z∗, fund i chooses

to sell, and if zi > z∗, fund i chooses to hold. The proof is similar to that presented in Morris & Shin

(2004).

We need to compute the probability density function of s conditional on fund i observing private

signal zi and all funds using the threshold strategy z∗. When the true market maker capacity is K,

the signals {zi} are distributed uniformly over [K − ε,K + ε]. Funds with signals zi < z∗ choose to

sell. Hence,

s =
z∗ − (K − ε)

2ε
.

To derive the conditional distribution of s, we derive the cumulative distribution function. In partic-

ular, we compute the conditional probability that s < b: G(·|zi, z∗). Define K0 as

b =
zi − (K0 − ε)

2ε
=⇒ K0 = zi + ε− 2εb.

Thus, s < b if and only if K > K0. We therefore need the probability of K > K0 conditional on zi.

Fund i’s posterior density over K conditional on zi is [zi − ε, zi + ε]. Therefore,

Pr(K > K0|zi) =
zi + ε−K0

2ε
=

zi + ε− (z∗ + ε− 2bε)

2ε
=

zi − z∗

2ε
+ b.

14Markets Committee (2022) discusses in further detail design considerations for alternative market backstop policies
as well as their potential benefits and costs.
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Thus,

G(b|zi, z∗) =


0 if zi−z∗

2ε + b < 0

1 if zi−z∗

2ε + b > 1

zi−z∗

2ε + b otherwise.

Consider the case where zi < z∗ (the case where zi > z∗ follows an analagous argument). We need to

show that fund i prefers to sell. The conditional density over the half-open interval s ∈ [0, 1) is given

by

g(s|zi, z∗) =

0 if s < z∗−zi
2ε

1 if s ≥ z∗−zi
2ε

with an atom at s = 1 with mass z∗−zi
2ε .

Now recall that the payoff gain from selling compared to holding for fund i after observing zi is

π(s, zi) =

−(1− q)δL if sx ≤ zi

qδH − δL if sx > zi.

The function π(s, zi) is increasing in s and decreasing in zi. Moreover, if we impose the parameter

restriction qδH > δL, the payoff gain is negative for sx ≤ zi and positive for sx > zi. Note that the

density g(s|zi, z∗) can be obtained from the uniform density by transferring weight from the interval[
0, z

∗−zi
2ε

]
to s = 1. Therefore,

0 =

∫ 1

0
π(s, z∗)ds

<

∫ 1

0
π(s, z∗)g(l|zi, z∗)ds

<

∫ 1

0
π(s, zi)g(l|zi, z∗)ds.

Thus, fund i strictly prefers to sell when zi < z∗.

Proof of Proposition 4

The proof is similar to Proposition 2 so we only provide a sketch of the argument.

Consider a fund observing a signal zi and thus its expectation of K is zi. We cannot have zi > x

because as ε → 0 this would imply K > x. Therefore, zi < x.
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The first case to consider is when zi + KCB ≥ x and qδCB ≤ δL. Then π(s, zi) ≤ 0 for all s: funds

have a dominant straetgy to hold. As ε → 0, zi → K so that funds have a dominant strategy to hold

whenever K +KCB > x.

The second case is zi + KCB ≥ x and qδCB > δL. Now the sign of π(s, zi) depends on the value of

s. To proceed, consider the fund observing the threshold signal z∗. From Lemma 1, we know that

s|z∗ ∼ U [0, 1]. If s < z∗/x, the fund believes the dealer will be under no stress. Otherwise the fund

believes it will sell to the central bank at discount δCB. Since z∗ + KCB ≥ x, the fund does not

believe it will ever sell to the dealer at discount δH even if s = 1. Therefore, the analysis is identical

to Proposition 2 with δH = δCB.

The final case is zi + KCB < x. The sign of π(s, zi) depends on the value of s so we consider the

indifference condition of a fund observing signal z∗. There are three possibilities: (i) sell to the dealer

under no stress with probability z∗/x; (ii) sell to the central bank with probability KCB/x; (iii) sell

to the dealer under stress with probability 1− (z∗ +KCB)/x. Therefore,∫ 1

0
π(s, z∗)ds = −(1− q)δL

z∗

x
+ (qδCB − δL)

KCB

x
+ (qδH − δL)

(
1− z∗ +KCB

x

)
.

The threshold value z∗ (or equivalently K∗ as ε → 0) sets this expression to zero. This gives the result

in Proposition 4. A similar argument to Proposition 2 establishes the optimality of selling (holding)

if zi < z∗ (zi ≥ z∗).

By inspection and Corollary 1, we can see that K̃∗ is increasing in δCB. For K+KCB < x, it is evident

that K̃∗ is decreasing in KCB. Letting KCB → x−K and performing some simple algebra shows that

the expression for K̃∗ when K +KCB converges to the expression for K̃∗ when K +KCB > x.
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Gilchrist, S., Wei, B., Yue, V. Z. & Zakraǰsek, E. (2021), The Fed takes on corporate credit risk: An

analysis of the efficacy of the SMCCF. BIS Working Paper No. 963.

Goldstein, I., Jiang, H. & Ng, D. T. (2017), ‘Investor flows and fragility in corporate bond funds’,

Journal of Financial Economics 126, 592–613.

Goldstein, I. & Pauzner, A. (2005), ‘Demand-deposit contracts and the probability of bank runs’, The

Journal of Finance 60(3), 1293–1327.

26



Haddad, V., Moreira, A. & Muir, T. (2021), ‘When selling becomes viral: Disruptions in debt markets

in the COVID-19 crisis and the Fed’s response’, The Review of Financial Studies 34, 5309–5351.

Hanson, S. G., Stein, J. C., Sunderman, A. & Zwick, E. (2020), Business credit programs in the

pandemic era. Brookings Papers on Economic Activity.

Hauser, A. (2021), From Lender of Last Resort to Market Maker of Last Resort via the dash for cash:

why central banks need new tools for dealing with market dysfunction. Speech at Reuters, London,

7 January 2021.

Jin, D., Kacperczyk, M., Kahraman, B. & Suntheim, F. (2022), ‘Swing pricing and fragility in open-end

mutual funds’, Review of Financial Studies 35(1), 1–50.

Kargar, M., Lester, B., Lindsay, D., Weill, S. L. P.-O. & Zúñiga, D. (2021), ‘Corporate bond liquidity

during the COVID-19 crisis’, The Review of Financial Studies 34, 5352–5401.

Krishnamurthy, A. & Vissing-Jorgensen, A. (2011), ‘The effects of Quantitative Easing on interest

rates: Channels and implications for policy’, Brookings Papers on Economic Activity 42(2), 215–

287.

Markets Committee (2022), Market dysfunction and central bank tools. Available at:

https://www.bis.org/publ/mc insights.pdf (Accessed: 19 October 2022).

Morris, S., Shim, I. & Shin, H. S. (2017), ‘Redemption risk and cash hoarding by asset managers’,

Journal of Monetary Economics 89, 71–87.

Morris, S. & Shin, H. S. (1998), ‘Unique equilibrium in a model of self-fulfilling currency attacks’, The

American Economic Review 88(3), 587–597.

Morris, S. & Shin, H. S. (2003), Global games: Theory and applications, in ‘Advances in Economics and

Econometrics: Theory and Applications, Eighth World Congress, Volume 1’, Cambridge University

Press, pp. 56–114.

Morris, S. & Shin, H. S. (2004), ‘Liquidity black holes’, Review of Finance 8, 1–18.

O’Hara, M. & Zhou, X. (2021), ‘Anatomy of a liquidity crisis: Corporate bonds in the COVID-19

crisis’, Journal of Financial Economics 142, 46–68.

Vissing-Jorgensen, A. (2021), ‘The Treasury market in Spring 2020 and the response of the Federal

Reserve’, Journal of Monetary Economics 124, 19–47.

27


