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Abstract
I evaluate the performance of the band-spectral estimation approach applied to

business cycle models. Band-spectral methods are widely used to study frequency-
dependent relationships among variables. In business cycle research, this approach
permits the estimation of structural models on the basis of the frequencies they are
best suited to represent, such as the business cycle frequencies. In particular, the
frequency domain approximation of the likelihood function (the Whittle likelihood)
can be used to estimate the parameters of fully-specified models on the basis of a
targeted band of frequencies. Using the medium-scale model of Angeletos, Collard,
and Dellas (Econometrica, 2018) as a data-generating process, I perform a Monte
Carlo study to evaluate the finite-sample properties of the band-spectral maximum
likelihood estimator (MLE) and to compare them to those of the full spectrum
and the exact time-domain MLE. The results show that using the band-spectral
estimator leads to considerable biases and efficiency losses for most estimated
parameters. In fact, the performance of both Whittle likelihood-based estimators
is found to be seriously deficient in terms of bias and accuracy, in contrast to that
of the time domain estimator, which successfully recovers all model parameters. I
show how these findings can be explained with the theoretical properties of the
underlying model, and describe simple-to-use tools and diagnostics that can be
used to detect potential problems in band-spectral estimation for a wide class of
macroeconomic models.
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1 Introduction

Following the pioneering work of Hannan (1963), band-spectral methods have become
an important tool for estimating dynamic models on the basis of a restricted band of
frequencies. The rationale for a band-spectral estimation of structural macroeconomic
models is simple: a model should not be forced to fit data it is not intended to explain.
In particular, if a theoretical model lacks the features and mechanisms required for
it to account for data movements in some parts of the frequency range, then those
frequencies should be excluded from the estimation. Failure to do so would lead to
distorted estimates of the model parameters, as they would be forced to accommodate
empirical features outside of what the model is designed for. Therefore, for instance, a
business cycle model that is a priori known to be incapable of explaining high and low
frequency phenomena in the data, should be estimated using only data components with
business cycle periodicities. In other words, one should use band-spectral estimation
methods.1

Hansen and Sargent (1993) were the first to use the Whittle likelihood for band-
spectral estimation of macro models, with a focus on understanding the effect of using
seasonally adjusted data.2 Diebold et al. (1998) develop an estimation approach where
different frequencies receive different weights in the estimation loss function, as a way to
account for differential contamination of different frequency components due to model
misspecification. The band-spectral likelihood estimation, which they call Band-MLE,
emerges as a special case in that framework. Cogley (2001) also uses band-spectral
likelihood estimation to exclude low frequencies in the context of estimation of models
with uncertain trend specification. In spite of the compelling reasons for using band
spectral estimation, given the common focus in the empirical literature on explaining
business cycle phenomena, macroeconomic models are usually estimated in the time
domain, which is tantamount to using all frequencies. Notable exceptions are Qu
and Tkachenko (2012), Sala (2015), and, most recently, Angeletos et al. (2018), all of
whom consider likelihood-based estimation in the frequency domain using a subset of
frequencies.

1The same argument applies (among many others) to: (i) real business cycle models, which are not
expected to explain nominal variables; (ii) closed economy models, which are not expected to account
for international trade statistics; (iii) models without financial frictions or banks, which are not expected
to fit financial variables; etc.

2Band-spectral MLE can be interpreted as a full information analogue of the band-spectral linear
regression proposed by Hannan (1963) whose application in economics was popularized by Engle (1974).
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The purpose of this paper is to evaluate the performance of the band-spectral
likelihood estimation when applied to modern business cycle models. In particular,
I use the medium-scale DSGE model of Angeletos et al. (2018) as a data-generating
process in a Monte Carlo study that compares the finite-sample properties of the band-
spectral maximum likelihood estimator (MLE) to those of the full-spectrum and the
exact time-domain MLE. The results show that using the band-spectral estimator leads
to considerable biases and efficiency losses for most estimated parameters. In fact, the
performance of both Whittle likelihood-based estimators is found to be seriously deficient
in terms of bias and accuracy, in contrast to that of the time domain estimator, which
successfully recovers all model parameters. I show how these findings can be explained
with the theoretical properties of the underlying model, and describe simple-to-use tools
and diagnostics that can be used to detect potential problems in band-spectral estimation
for a wide class of macroeconomic models.

The plan of the paper is as follows: Section 2 introduces the model of Angeletos
et al. (2018). Section 3 gives an overview of the Whittle approximation of the Gaussian
likelihood function. Section 4 provides the Monte Carlo simulation results. A summary
of the main conclusions is given in Section 5.

2 The Model

The model is taken from Angeletos et al. (2018) (henceforth ACD). There are two reasons
for choosing this model. First, it is similar in size and shares many of the features found
in other estimated medium-scale DSGE models in the contemporary literature. These
include a neoclassical growth core augmented with sticky prices, habit formation in
consumption, adjustment costs in investment, monetary policy following a Taylor rule,
and a number of exogenous shocks driving business cycle fluctuations. What sets ACD
apart is the departure from the usual assumption of rational expectations and common
information about the state of the economy. In particular, in their model, agents’ beliefs
regarding the expectations of other agents (higher-order beliefs) are subject to autonomous
variation, called “confidence shock”, which causes divergence between the two forms
of beliefs. This leads to exogenous variations in agents’ expectations of the economic
outcomes in the short-run, without altering their medium or long-run expectations of
those outcomes, or the expectations of the exogenous fundamentals at any horizon. ACD
show that embedding their mechanism in an otherwise standard New Keynesian business
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cycle model can help better match observed patterns in macroeconomic data. Estimating
the model with U.S. data, they find that the confidence shock accounts for more than
half of the volatility in the main macro aggregates at business cycle frequencies.

The second reason for selecting the ACD model is that the authors state explicitly
that the model describes business cycle phenomena only, and lacks the features and
mechanisms that would be required for it to account for the low and high frequency
properties of empirical time series. For that reason, the model is estimated, in the
frequency domain, using only the business-cycle frequencies. While a focus on the
business cycle is common for the majority of studies in the literature, estimation is
typically done in the time domain using all frequencies. The few exceptions, such as
Sala (2015) and Qu and Tkachenko (2012), estimate in the frequency domain models
that were originally developed without being specifically tailored to fit only the business
cycle part of the spectrum.

The main methodological contribution of ACD is to show how to introduce higher-
order belief dynamics into macroeconomic models in a tractable way. As in most of the
DSGE literature, the model estimation is based on a linear state space representation
obtained from the solution of the log-linear approximation around steady state of the
model’s equilibrium conditions. For reference, the linearized equilibrium conditions of
the ACD model are presented below. For more details on the model and solution method
the reader is referred to the original publication.

2.1 Linearized equilibrium conditions

The economy consists of a continuum of islands and a mainland. Each island contain a
representative household and a continuum of monopolistically competitive firms producing
a differentiated commodity using labor and capital provided by the household. These
commodities are combined through a CES aggregator into an island-specific composite
good, which in turn enters the production of the final good in the mainland through
another CES aggregator. The final good is used for consumption and investment. The
log-linearized equilibrium conditions with variables presented as log-deviations from their
steady-state values are summarized as follows:
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Optimal consumption allocation

Eit [ζct + νnit] = ζct −
cit − bCt−1

1− b + Eit [sit + %Yt + (1− %)yit − nit] , (2.1)

where cit and Ct are consumption on island i and aggregate consumption, yit and Yt

are the quantity of the final good produced in island i and aggregate output, nit is
hours worked, sit denotes the realized markup in island i, and ζct is a preference shock.
The parameter ν determines the inverse labor supply elasticity, and the parameters b
and % denote the degree of habit persistence, and the degree of substitutability across
the islands’ composite goods in the production of the production of the final good,
respectively.

Optimal investment decision

Eit [λit + qit] = Eit [λit+1 + β(1− δ)qit+1 + (1− β(1− δ))(sit+1 + %Yt+1

+ (1− %)yit+1 − uit+1 − kit+1)] (2.2)

where qit is the price of capital, uit is the rate of capital utilization, and λit is the marginal
utility of consumption, given by

λit = ζct −
cit − bCt−1

1− b (2.3)

The parameter β is the intertemporal discount rate in the utility function of the house-
holds, and δ is the depreciation rate.

Optimal bond holdings decision

Rt = ζct − (1 + ν)nit − sit − %Yt − (1− %)yit − E′it[λit+1 − πit+1] (2.4)

where Rt is the nominal interest rate and πit is the inflation rate in island i.

Equilibrium price of capital

qit = (1 + β)ϕιit + ϕιt−1 − βϕE′it ιit+1 + ζIPt − ζITt (2.5)
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where iit denotes the level of investment, ζIPt is investment-specific technology shock,
ζITt is a shock shifting the demand for investment, and ϕ is a parameter governing the
size of investment adjustment costs.

Production function

yit = ζAt + α(uit + kit) + (1− α)nit (2.6)

where kit is the local capital stock, ζAt is the level of aggregate TFP, and α is the share
of capital in the production function. The capital accumulation equation is

kit+1 = (1− δ)kit + δ(ζITt + ιit), (2.7)

and level of TFP is the sum of a permanent (apt ) and a transitory (aτt ) component:

ζAt = apt + aτt , (2.8)

Resource constraint

%yt + (1− %)yit = xit + αuit, (2.9)

where xit denotes GDP on island i, given by

xit = sccit + (1− sc − sg)(ζIPt + ιit) + sgGt, (2.10)

and Gt, sc and sg denote the level of government spending and the steady-state ratios of
consumption and government spending to output. To ensure the existence of a balanced
growth path, government spending is defined as

Gt = ζgt + 1
1− αa

p
t −

α

1− αζ
IP
t (2.11)

where ζgt a government spending shock.

6



Equilibrium utilization

ζIPt + 1
1− ψuit = sit + %yt + (1− %)yit − kit, (2.12)

where ψ is a capital utilization elasticity parameter.

Inflation rate

πit = (1− χ)(1− βχ)
χ (1 + χ(1− β))sit + βχ(1− χ)πt + βχE′ πit+1

χ (1 + χ(1− β)) , (2.13)

where Πit is the aggregate inflation rate, and (1− χ) is the probability that a firm resets
its price in a given period.

Monetary policy rule

Rt = κRRt−1 + (1− κR)(κππit + κy(xit − xFit)) + ζmt (2.14)

where xFit denotes the GDP that would be attained in a flexible-price allocation, ζmt is a
monetary policy shock, κπ and κy are parameters determining the policy rate reaction
to inflation and the output gap and κRi controls the degree of interest-rate smoothing.
The flexible-price allocations are obtained from equations (2.1) – (2.12) by setting the
realized markup to zero (sit = 0) and replacing Rt in (2.4) with the real interest rate.

It is worth pointing out that there are two different subjective expectation operators
Eit and E′it in the above conditions. In the model, each time period t is divided into
two stages: in stage 1, the inhabitants of each island receive an unbiased signal about
the level of TFP in that period, and form beliefs that firms and households on other
islands receive a signal that is biased by the confidence shock ξt, which is also observed.
In stage 2, the true state of nature and the realized value of economic activity is publicly
revealed. ACD discuss two protocols for the timing of decisions of firms and households,
depending on whether supply is determined first and prices adjust to make demand
meet supply, or whether demand is determined first and supply adjusts to meet demand.
The model presented above is estimated under the second assumption, as seen by the
use of stage 1 expectations in the optimality conditions for consumption and saving in
equations (2.1), (2.2), and stage 2 expectations in equations (2.4), (2.5), (2.13).

There are nine shocks in the model: a permanent (apt ) and a transitory (aτt ) TFP
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shock; a permanent (ζIPt ) and a transitory (ζITt ) investment-specific shock; a news shock
regarding future productivity (ant ); a discount-rate shock (ζct ); a government-spending
shock (ζgt ); a monetary policy shock (ζmt ); and a confidence shock (ξt). The later shock
is an exogenous random variable observed in stage 1 of each period, representing the
perceived bias in the other islands’ signals about the level of TFP in that period. The
permanent TFP shock is given by

apt = apt−1 + ant−1 + εpt , (2.15)

and the permanent investment-specific shock follows a random walk

ζIPt = ζIPt−1 + εIPt , (2.16)

where εpt and εIPt are i.i.d. innovations. All remaining shocks are stationary AR(1)
processes.

The model is estimated using quarterly US data for six variables: GDP, consumption,
investment, hours worked, the inflation rate, and the federal fund rate. The sample
period is 1960Q1 - 2007Q4. The model parameters are estimated with Bayesian methods
using a frequency domain representation of the likelihood function. The estimated
median of the posterior distribution is reported in Table 1.
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Table 1: Parameter values, ACD (2018) model
parameter posterior median

ψ utilization elasticity 0.500
ν inverse labor supply elasticity 0.282
α capital share 0.255
ϕ investment adjustment costs 3.312
b habit persistence 0.758
χ Calvo parameter, 0.732
κR Taylor rule smoothing, 0.198
κπ Taylor rule inflation, 2.271
κy Taylor rule output, 0.121
ρm AR mon. policy 0.647
ρa AR transitory TFP component 0.412
ρn AR news 0.224
ρi AR transitory investment-specific technology 0.374
ρc AR preference 0.888
ρg AR government spending 0.786
ρξ AR confidence 0.833
σPa std. permanent TFP component 0.406
σTa std. transitory TFP component 0.347
σn std. news 0.378
σPi std. permanent investment-specific technology 0.610
σTi std. transitory investment-specific shocks 5.805
σc std. preference 0.357
σg std. government spending 1.705
σξ std. confidence 0.613
σm std. mon. policy 0.313
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3 The Whittle likelihood

3.1 General case

Let YT = (y′1,y′2, . . . ,y′T )′ be a T -dimensional sample from a zero mean stationary
Gaussian process {yt}∞t=−∞ with autocovariance function Γ (τ ;θ) = cov (yt+τ ,yt). Apart
from an additive constant, the log-likelihood function of YT is given by

`(θ;YT ) = −1
2 log det(ΣT (θ))− 1

2Y
′
TΣ−1

T (θ)YT (3.1)

= −1
2 log det(ΣT (θ))− 1

2 tr
(
Σ̂TΣ−1

T (θ)
)

(3.2)

where ΣT (θ) is a block Toeplitz matrix, with blocks given by Γ (τ ;θ) for τ ∈
{0, 1, 2, . . . , T − 1}, and Σ̂T = YTY

′
T is the sample version of Γ (τ ;θ).

Evaluating `(θ;YT ) requires computing the determinant and the inverse of ΣT (θ),
which can be computationally prohibitive for even moderate sample sizes. To circumvent
this problem, Whittle (1953) introduced a spectral approximation of ΣT (θ) as a compu-
tationally cheaper method for calculating the likelihood function of stationary Gaussian
time series. It uses the fact that block Toeplitz matrices can be approximated by block
circulant matrices,3 whose eigenvalue decomposition can be computed very efficiently
using the discrete Fourier transform (DFT). Specifically, it can be shown that for large
T ,

ΣT (θ) ≈ ΩT (θ) = F ∗TST (θ)FT (3.3)

where ΩT is a symmetric block circulant matrix, FT is an orthonormal matrix of Fourier
transform coefficients, and F ∗T is the conjugate transpose of FT . The matrix ST (θ) is
block diagonal with i-th block {ST (θ)}ii = s(θ, ωi) given by the spectral density matrix

3A block circulant matrix A has the following form

A =


A0 A1 A2 · · · An−1
An−1 A0 A1 · · · An−2

...
...

...
...

A1 A2 A3 · · · A0

 ,
where the blocks have the same size. If A is symmetric, we have An−j = A′j .
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of yt evaluated at the i−th Fourier frequency,

s(θ, ωi) = 1
2π

∞∑
τ=−∞

Γ (τ ;θ) exp(−iωiτ), ωi = 2π(i− 1)
T

(3.4)

The sample version of s(θ, ω), called periodogram of YT , is defined as

IT (ω) = 1
2π

T−1∑
τ=−(T−1)

Γ̂y(τ) exp(−iωτ) (3.5)

where Γ̂y(τ) = ∑T−τ
τ=1 yt+τy

′
t is the sample autocovariance of yt at lag τ and Γ̂y(−τ) =

Γ̂y(τ)′. The periodogram can be calculated very efficiently as

IT (ω) = 1
2πT JT (ω)JT (ω)∗ (3.6)

where JT (ω) = ∑T
t=1 yt exp(−iωt) is the DFT of YT . In fact, pre-multiplication of YT by

the matrix F in (3.3) performs this transformation for ω ∈ {0, 2π/T, . . . , 2π(T − 1)/T}.
The Whittle log-likelihood is obtained by replacing ΣT (θ) in (3.1)-(3.2) with ΩT (θ),

as follows:4

`w(θ; IT ) = −1
2 log det(ST (θ))− 1

2(FTYT )∗S−1(θ)(FTYT ) (3.7)

= −1
2

T−1∑
j=0

log det(s(θ, ωj)) + JT (ω)∗s−1(θ, ωj)JT (ω) (3.8)

= −1
2

T−1∑
j=0

log det(s(θ, ωj)) + tr
(
IT (ωj)s−1(θ, ωj)

)
(3.9)

This can be recognized as the log-likelihood function of a sample of T independent but
not identically distributed ny−dimensional zero mean complex Gaussian vectors, whose
covariance matrices are given by the spectral density of yt evaluated at the Fourier
frequencies. Furthermore, since IT (ωT−j) and s(θ, ωT−j) are complex conjugates of the
spectral density and periodogram evaluated at ωj, only half of the terms in (3.8)-(3.9)
need to be evaluated.

The Whittle log-likelihood is clearly much easier to evaluate than the expression in
(3.1)-(3.2) as it avoids inverting a potentially very large covariance matrix and can be

4Note that this is a discretized version of the log-likelihood using the Riemann sum as an approximation
of an integral in the original expression of Whittle (1953).
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done by leveraging existing fast algorithms for performing DFT. On the other hand, it is
only an approximation of the exact Gaussian log-likelihood because ΣT (θ) and ΩT (θ)
are not equal in finite samples. Moreover, other computationally efficient methods exist,
such as the Kalman filter, which evaluate the exact likelihood for a large class of models
also without having to invert large matrices. Therefore, the computational efficiency
argument for using the Whittle log-likelihood is not as relevant now as it was when it
was first proposed.5

Another appealing feature of the Whittle log-likelihood is that it allows for estimation
to be based on only a subset of frequencies. This may be desirable in cases where the
data is known to contain noise affecting only part of the periodogram, e.g. the high
frequencies, or when the theoretical model is only intended to match the data at a narrow
range of frequencies. This is particularly relevant in macroeconomic research where
theoretical models are often specifically designed to explain business cycle movements in
the data, and are known to be misspecified in terms of their implication for the lower
and higher frequencies of the data. This implies that one would want to fit the model to
business cycle frequencies and ignore those at the lower and higher end of the spectrum.
In practice, this can be achieved by performing the summation in (3.8)-(3.9) over the
frequencies of interest,

`w(θ; I ω̄T ) = −1
2
∑
j∈ω̄

log det(s(θ, ωj)) + tr
(
IT (ωj)s−1(θ, ωj)

)
(3.10)

where ω̄ denotes the set of included frequencies and is, in general, a set of disjoint
intervals from {0, 2π/T, . . . , 2π(T − 1)/T} such that if ωj ∈ ω̄ then 2π − ωj ∈ ω̄.

3.2 Linearized DSGE models

In general, a linearized DSGE model can be expressed as a recursive equilibrium law of
motion given by the following system of equations:

yt = C(θ)vt−1 +D(θ)ut (3.11)

vt = A(θ)vt−1 +B(θ)ut (3.12)

ut = G(θ)ut−1 + εt, εt ∼ N (0,Σε(θ)) (3.13)
5There are nevertheless models where the Whittle approximation is often the preferred approach for

efficiency-related reasons.

12



where yt is a ny vector of observed variables, vt is a nv vector of endogenous state
variables, ut is a nu vector of exogenous state variables, and εt is a nu vector of
exogenous shocks. The matrices A, B, C, D, and G are functions of the structural
parameters of the model, collected in the nθ vector θ.

Evaluating the Whittle log-likelihood function requires the spectral density matrix of
the observed variables yt, which is given by (see Uhlig (1999)):

syy(θ, ω) = 1
2πW (ω,θ)Σε(θ)W (ω,θ)∗ (3.14)

where

W (ω,θ) =
 C(θ)e−iω D(θ)

Inv Onv ,nu

 (Inv −A(θ)e−iω)−1
B(θ) (Inu −G(θ)e−iω)−1

(Inu −G(θ)e−iω)−1



4 Simulation Study

This section presents Monte Carlo simulations to investigate the finite sample performance
of three estimators: (1) the time domain MLE using the exact likelihood, (2) the
frequency domain MLE using all frequencies, and (3) the frequency domain MLE using
only the business cycle frequencies. The latter two estimators are based on the Whittle
approximation of the likelihood introduced in Section 3. The time domain MLE is based
on the exact Gaussian likelihood function evaluated using the Kalman filter. For brevity,
the three estimators will be referred to in the sequel as TD, FD, and BC.

4.1 Setup

The Monte Carlo simulation proceeds as follows:

1. Solve the model from Section 2 using the algorithm developed by Angeletos et al.
(2018) at the parameter values shown in Table 1.

2. Using the Gaussian linear state space representation of the model solution, generate
sample trajectories of size T for the six observed variables: GDP (y), consumption
(c), investment (i), hours worked (h), the inflation rate (π), and the federal fund
rate (r).
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3. Estimate the 25 free model parameters with the three estimators by maximizing
the respective log-likelihood function.

4. Repeat N times steps 2 and 3.

The sample size is set to T = 192 observations, which is the size of the sample used by
ACD. The simulation is initialized from the stationary distribution of the variables and
the first 500 observations are discarded to remove the dependence on initial conditions.
The number of replications is N = 1000. The numerical optimization in step (2) takes the
true values of the parameters as a starting point, and is performed by a combination of
global and local optimization algorithms. The same process is applied in the optimization
of the objective function of each estimator.

4.2 Results: baseline parametrization

The first set of results is presented in Table 2, which reports the mean, median, and
interquartile range (IQR) for each estimated parameter. Comparing the values of these
statistics to the true parameter values, reported in the first column of the table, is helpful
to get a sense of the relative performance of the three estimators. As expected, the
TD estimator performs best, both in terms of the accuracy of the point estimates, and
variability around the true values. The two Whittle likelihood-based estimators are
significantly worse for most parameters, with the BC estimator being generally both
the less accurate and the more volatile of the two. For instance, with the exceptions of
very few parameters, the BC estimator’s IQR is the widest, while the TD one is the
most narrow of the three, often by orders of magnitude. In spite of being very wide,
the FD and BC estimators’ IQR do not always include the true parameter values. In
particular, for both estimators the 25 percentile is above the true value of ρc, while
the 75 percentile is below the true values of σξ, ϕ, and b. In the case of FD, there are
additional two parameters (κy, and σaP ) for which the IQR is to the right of the true
value, and additional two parameters (κR and σiT ) for which the IQR is to the left of
the true value.6 In contrast, the true parameter values are always within the IQR of
the TD estimates. A graphical representation of these findings is presented in Figure 1,
which displays boxplots of the deviations of the parameter estimates for each parameter
as a percent of its true value.

6Note that the figures in the table are rounded to the second digit. The true value of κR is 0.198
while the 75th percentile of FD is 0.197689.
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Table 2: Monte Carlo results
Mean Median IQR

parameter true TD FD BC TD FD BC TD FD BC

ν 0.28 0.28 0.34 0.42 0.28 0.32 0.38 [0.23, 0.33] [0.27, 0.40] [0.28, 0.52]
α 0.26 0.25 0.25 0.25 0.25 0.25 0.25 [0.25, 0.26] [0.24, 0.26] [0.24, 0.27]
ψ 0.50 0.51 0.45 0.49 0.50 0.44 0.40 [0.43, 0.59] [0.34, 0.54] [0.26, 0.62]
ϕ 3.31 3.20 2.33 2.60 3.18 2.09 2.16 [2.63, 3.67] [1.44, 2.95] [1.56, 3.10]
b 0.76 0.75 0.60 0.64 0.75 0.54 0.64 [0.73, 0.77] [0.51, 0.69] [0.55, 0.72]
χ 0.73 0.72 0.70 0.75 0.72 0.71 0.75 [0.71, 0.74] [0.68, 0.73] [0.71, 0.79]
κR 0.20 0.20 0.14 0.13 0.19 0.13 0.03 [0.14, 0.25] [0.07, 0.20] [0.00, 0.22]
κπ 2.27 2.24 2.04 2.60 2.18 1.95 2.10 [1.96, 2.49] [1.67, 2.34] [1.51, 3.02]
κy 0.12 0.15 0.24 0.18 0.14 0.20 0.13 [0.11, 0.18] [0.13, 0.31] [0.08, 0.21]
ρa 0.41 0.39 0.59 0.56 0.40 0.62 0.59 [0.23, 0.56] [0.37, 0.82] [0.18, 0.97]
ρn 0.22 0.21 0.39 0.19 0.19 0.33 0.04 [0.08, 0.31] [0.16, 0.59] [0.00, 0.34]
ρi 0.37 0.35 0.38 0.28 0.35 0.38 0.25 [0.30, 0.41] [0.31, 0.45] [0.03, 0.48]
ρc 0.89 0.88 0.94 0.94 0.88 0.95 0.95 [0.86, 0.90] [0.90, 0.99] [0.91, 0.98]
ρg 0.79 0.76 0.76 0.74 0.77 0.77 0.76 [0.73, 0.80] [0.71, 0.81] [0.65, 0.88]
ρm 0.65 0.63 0.64 0.64 0.63 0.64 0.66 [0.59, 0.66] [0.60, 0.68] [0.57, 0.74]
ρξ 0.83 0.81 0.77 0.84 0.82 0.79 0.88 [0.79, 0.84] [0.72, 0.84] [0.78, 0.94]
σaP 0.41 0.38 0.81 0.51 0.39 0.70 0.48 [0.32, 0.44] [0.48, 1.07] [0.20, 0.73]
σaT 0.35 0.34 0.37 0.40 0.34 0.35 0.39 [0.30, 0.39] [0.28, 0.43] [0.26, 0.56]
σn 0.38 0.38 0.27 0.58 0.39 0.29 0.54 [0.33, 0.44] [0.14, 0.38] [0.31, 0.81]
σiP 0.61 0.53 0.64 0.58 0.55 0.65 0.16 [0.30, 0.76] [0.24, 0.98] [0.03, 1.08]
σiT 5.80 5.69 4.22 5.75 5.56 3.81 4.65 [4.69, 6.58] [2.52, 5.44] [2.78, 7.33]
σc 0.36 0.36 1.02 0.71 0.35 0.54 0.51 [0.25, 0.46] [0.34, 1.11] [0.28, 0.84]
σg 1.71 1.69 1.69 1.71 1.69 1.70 1.70 [1.63, 1.75] [1.62, 1.77] [1.56, 1.85]
σm 0.31 0.30 0.32 0.38 0.30 0.31 0.32 [0.28, 0.33] [0.28, 0.34] [0.27, 0.39]
σξ 0.61 0.66 0.45 0.49 0.61 0.41 0.18 [0.44, 0.80] [0.25, 0.58] [0.04, 0.60]

Note: Monte Carlo performance of the TD, FD, and BC estimators at the baseline parametrization of the
ACD model. The estimates of the mean, median and interquartile range (IQR) are based on 1000 MC
replications and sample size of T = 192.

These observations suggest that the Whittle likelihood-based estimators may suffer
from a significant estimation bias. This is confirmed in Table 3, which reports the
bias, standard deviation (SD) and root mean squared error (RMSE) for each parameter
over the 1000 replications. To avoid scale problems and facilitate comparison across
parameters, the figures are displayed relative to the true parameter values and are
expressed as a percentage. On average, the bias of the TD estimates is about 4% in
absolute value, while for FD and BC it is around 30% and 21%, respectively. The most
biased estimates obtained with the TD estimator are of κy, with bias of about 28%. In
the case of FD, the largest in absolute value bias is about 187% and is with respect to
σc, while two other parameters – σap and κy, have biases close to 100%. The estimates
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Figure 1: Boxplots of deviations of parameter estimates as a percentage of the true values.
Each box shows the interquartile range of the estimates obtained with the indicated estimator.
The vertical bars inside the boxes shows the median estimate. The results are based on 1000
MC replications and sample size of T = 192.

of σc are also the most biased ones for the BC estimator, with bias of slightly less than
100%. There is some agreement in terms of which parameters tend to be relatively
more or less biased, but only for the two Whittle likelihood-based estimators. Using
the rank (Spearman) correlation coefficient to quantify the overlap in terms of relative
bias, the value for FD and BC is around .47, while the rank correlation between TD and
FD is negative (−.3), and between TD and BC is positive but very weak (.1). The SD
shown in the middle panel measures the variability of the estimates. On average, the TD
estimates are about half as variable as the FD ones, and around one-third as variable
as the BC estimates. Looking at individual parameters, the FD estimates are, with a
few exceptions, less variable than the BC one, while the TD estimates always have the
lowest standard deviation. There are also some common patterns with respect to the
estimates of which parameters are relatively more or less variable: the estimates of α,
χ, ρc, and σg are among the least variable for all estimators, while the estimates of κy,
ρn, σc, and σiP are among the most variable ones. The rank correlation between SDs
of the TD and either one of the Whittle likelihood-based estimators is around .9, while
that between FD and BC is .93. The last three columns of Table 3 show the normalized
RMSE, which is a measure of the overall accuracy of the estimates, accounting for both
bias and variability. The patterns are very similar to the ones observed in the estimated
standard deviations, except for the even more pronounced relative superiority of the TD
estimator over the Whittle likelihood-based ones, due to the larger bias contaminating
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Table 3: Monte Carlo results (cont.)
Bias (%) SD (%) RMSE (%)

parameter TD FD BC TD FD BC TD FD BC

ν -1.8 19.5 49.2 26.1 38.7 90.5 26.1 43.3 103.0
α -0.4 -2.0 -0.4 4.2 6.0 7.2 4.2 6.3 7.2
ψ 2.6 -10.3 -1.6 25.0 29.6 67.5 25.1 31.4 67.5
ϕ -3.3 -29.8 -21.4 23.5 35.7 49.6 23.7 46.5 54.1
b -0.9 -21.0 -15.0 4.0 13.3 13.2 4.2 24.8 20.0
χ -1.2 -3.8 1.9 2.9 5.6 9.2 3.1 6.7 9.4
κR -0.3 -29.2 -33.3 38.6 45.5 91.9 38.6 54.0 97.7
κπ -1.3 -10.2 14.6 17.1 25.0 74.5 17.2 27.0 76.0
κy 27.8 94.9 47.5 58.7 123.8 148.3 65.0 156.0 155.7
ρa -4.6 42.4 35.6 56.0 72.4 91.5 56.2 83.9 98.2
ρn -5.5 73.7 -15.8 74.7 127.9 114.9 74.9 147.6 116.0
ρi -5.5 2.6 -25.6 20.8 28.5 64.5 21.6 28.7 69.4
ρc -1.1 6.1 5.3 3.5 5.7 7.4 3.6 8.3 9.1
ρg -3.1 -3.4 -5.3 7.1 11.1 23.4 7.8 11.6 24.0
ρm -3.0 -1.7 -0.5 8.8 10.2 25.7 9.3 10.3 25.7
ρξ -2.5 -8.0 1.4 5.1 12.0 14.4 5.7 14.4 14.5
σaP -6.8 99.4 26.4 23.1 104.7 94.8 24.0 144.3 98.4
σaT -1.7 7.2 15.2 19.7 54.0 68.1 19.8 54.5 69.8
σn 0.3 -29.4 54.2 23.7 37.9 97.6 23.8 47.9 111.6
σiP -12.9 4.8 -5.0 54.5 73.7 114.0 56.0 73.8 114.1
σiT -2.0 -27.3 -1.0 24.9 37.8 75.7 25.0 46.7 75.7
σc 1.1 186.7 99.8 42.7 302.2 192.9 42.8 355.2 217.2
σg -1.1 -1.1 0.4 5.3 7.3 14.4 5.4 7.4 14.4
σm -2.7 1.2 22.0 11.0 16.9 74.2 11.4 17.0 77.4
σξ 7.2 -26.6 -20.0 49.4 50.7 134.0 49.9 57.2 135.5

Note: Average percentage bias, standard deviation and root mean square error relative to the
true parameter values (in absolute value). The results are based on 1000 MC replications
and sample size of T = 192.

the latter. The rank correlations are slightly weaker compared to the ones observed
for SDs, but remain close to .9 for each pair of estimators. The parameters with the
lowest RMSE across all estimators are χ, ρξ, σg, α, and ρc, while the least accurately
estimated parameters in all cases are κy, ρn, σc, and σiP . Note, however, that even the
least accurately estimated parameters with the TD estimator have lower RMSE than
many of FD or BC estimates. For instance, in the case of BC, 11 of the 25 parameters
have larger RMSE than the TD estimates of ρn, which has the highest RMSE with that
estimator.

Figures 2 - 4 display histograms of the sampling distributions of the TD, FD, and
BC estimates. They provide further evidence for the superiority of the TD over the
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Whittle likelihood-based estimators. In particular, the distributions of the TD estimates
are, with a few exceptions, unimodal, approximately symmetric, and reasonably well
centered at the true parameter values. The exceptions are ρa, ρn, and σiP , all of which
have large number of parameter estimates at the lower end of the boundary of the
parameter space. As seen in tables 2 and 3, this leads to negative mean and median
bias for those parameters, with σiP being the most affected of the three parameters.
The results for the FD and BC estimators are clearly much worse, with multimodality,
skewness, and concentration of estimates at the boundaries and away from the true
values affecting many more parameters. The departures from normality are easier to see
from the Q-Q plots presented in Figure 5. The parameter estimates are normalized by
subtracting the respective means and dividing them by the respective standard deviations
of each estimator. While it cannot be expected that the normal approximation will be
particularly accurate for a sample of 192 observations, many of the TD estimates fit
relatively well with the 45 degree line and are generally much closer to the theoretical
quantiles of the normal distribution, compared to either one of the frequency domain
estimators.
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Figure 2: Sampling distributions of the estimated parameters, time domain MLE. The black
vertical lines indicate true values. The results are based on 1000 MC replications and sample
size of T = 192.
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Figure 3: Sampling distributions of the estimated parameters, frequency domain MLE using
all frequencies. The black vertical lines indicate true values. The results are based on 1000 MC
replications and sample size of T = 192.
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Figure 4: Sampling distributions of the estimated parameters, frequency domain MLE using
only business cycle frequencies. The black vertical lines indicate true values. The results are
based on 1000 MC replications and sample size of T = 192.
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Figure 5: Q-Q plots showing the quantiles of the standardized sampling distributions of the
estimated parameters vs the quantiles of the standard normal distribution. The black line
shows the 45 degree line. The results are based on 1000 MC replications and sample size of
T = 192. 22



Discussion

Taken together, the Monte Carlo results strongly favor the time domain estimator over
the two frequency domain estimators. As the analysis was done under the assumption
of correct model specification, the dominance of the exact likelihood function-based
estimator is not surprising. Nevertheless, the very poor performance of the Whittle
likelihood-based estimators merits further investigation, which is the goal of this section.

From the discussion in Section 3 (see in particular equations 3.3 – 3.9), we see that
there are two equivalent ways to think about the approximation involved in constructing
the Whittle likelihood function. First, we have an approximation of the likelihood
function of the time-domain data vector YT , whose covariance matrix ΣT (θ) is replaced
by a block-circulant matrix ΩT (θ). Alternatively, we can see it as an approximation of
the likelihood function of the Fourier-transformed data vector FTYT , whose covariance
matrix FTΣT (θ)F ∗T is replaced by a block diagonal matrix ST (θ). The vector Y (ω) =
FTYT , whose i-th block element is y(ωi) = [y(ωi), c(ωi), i(ωi), h(ωi), π(ωi), r(ωi)]′, is the
frequency domain representation of the observed data, collecting observations indexed by
frequency ω ∈ {0, 2π/T, . . . , 2π(T − 1)/T}, instead of time t ∈ {1, 2, . . . , T}. Then, to
obtain the band-spectral likelihood function one has to select the frequencies of interest,
i.e. the business cycle frequencies. This amounts to replacing the full sample Fourier
matrix FT with another Fourier matrix Fbc, which extracts the business cycle frequencies
from the original data vector. The covariance matrix of the exact band-spectral likelihood
function is then given by FbcΣT (θ)F ∗bc, while the Whittle approximation is obtained by
using the respective submatrix of ST (θ).7

Having a block diagonal covariance matrix means that observations at different
frequencies are uncorrelated. For example, the correlation between y(ωj) and y(ωk) is
zero for all frequencies ωj 6= ωk; similarly for the autocorrelations of the other observed
variables as well as the cross-correlations among them. A simple way to assess the
appropriateness of the Whittle approximation is to check whether this is true for the
correlation matrix in the exact frequency domain likelihood function. Figure 6 compares
the respective correlation matrices of the full spectrum and band-spectral likelihood
functions. It is clear that the off-diagonal blocks are not all zero. A closer examination
reveals that the largest, in absolute value, cross-frequency correlations are between
different frequency components of y, c, and, to a lesser extent, i. This is easier to see in

7Let K be a selection matrix of zeros and ones such that KST (θ)K ′ selects the BC frequency
submatrix of ST (θ). Then Fbc = KFT .
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panel (d) of Figure 6, which shows that there is a large number of nonzero off-diagonal
3×3 blocks corresponding to correlation matrices of these variables at different frequencies
from the BC part of the spectrum. Note that, to avoid visual clutter, all correlations
smaller than .1 in absolute value have been zeroed-out. The largest correlations tend to
be between different frequency components of c, followed by cross-frequency correlations
between c and y, and correlations between frequency components of y. In particular,
the largest correlation coefficients are .93 for c, 0.8 for c with y, and .73 for y. The auto
or cross-correlations of i tend to be weaker, with values around 0.4. None of the other
three variables – h, π, or r have pairwise correlation coefficients larger than 0.1.

As mentioned in Section 3, the Whittle likelihood is valid as an asymptotic approx-
imation of the true Gaussian likelihood function only when the process is stationary.
In particular, if a process is non-stationary, different frequency components of the
periodogram will not be asymptotically independent. This suggests that the strong
correlation patterns observed in Figure 6 may be the consequence of a high degree of
persistence of the variables in the model. Indeed, while all eigenvalues of matrix A in
(3.12) are inside the unit circle, thus ensuring the stationarity of yt, two of them are
equal to 0.999999. The reason for this can be traced to a modelling choice made by
Angeletos et al. (2018) in their implementation of the model from Section 2 in code:
the authors parameterize the permanent shocks apt and ζIPt as AR(1) processes with
autoregressive coefficients equal to 0.999999. Thus, the two shocks are stationary but
extremely persistent. Because of the very important role apt in particular plays for the
dynamics of the yt, ct, and it,8 these three variables inherit its persistence. For example,
their autocorrelations remain around .999 even at lag 1000; as a comparison, the other
three observed variable – ht, πt, and rt, all have autocorrelations of less than .5 by the
10th lag.

These observations provide a tentative explanation for the poor performance of the
Whittle likelihood-based estimators: the underlying data generating process is such that
the true likelihood function cannot be approximated well by the Whittle likelihood. This
leads to much worse results, both in terms of bias and RMSE, compared to the estimator
using the correct likelihood function. It remains an open question why the impact of
misspecification is stronger for some parameters than others. Naturally, this must be
related to where in the likelihood the information about different parameters originates
and how affected by misspecification those likelihood regions are. This is an interesting

8For instance, in the variance decompositions apt contributes most of the volatility of these variables.
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Figure 6: Correlation matrices in the Whittle approximation and the exact frequency domain
likelihood function. Because of symmetry, only frequencies from the [0, π] part of the spectrum
are displayed. Frequencies between π/16 and π/3 are business cycle frequencies. Correlation
coefficients smaller than .1 in absolute value have been zeroed-out.

question that will be pursued in future research.
An interesting question one may ask is whether the quality of the Whittle approxima-

tion would improve significantly with less persistent apt and ζIPt processes. To investigate
this, I set the value of the autoregressive coefficients of their AR(1) processes to 0.9,
which is on par with the value of the next most persistent shock in the model – the
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preference shock (see Table 1). In that case the degree of persistence of yt, ct, and it is
very similar and slightly greater than that of ht, πt, and rt. The correlation matrices of
the frequency domain likelihoods under that parametrization are shown in Figure 7. As
before, it is clear that the off-diagonal blocks are not all zero. However, correlations are
now significantly weaker, with a maximum value of 0.48. Again, the largest correlations
tend to be between different frequency components of c. This suggests that the Whittle
approximation should be more appropriate for the data generating process implied by
this alternative parametrization. In the following section I evaluate the effect this has on
the relative performance of the Whittle likelihood-based estimators.
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Figure 7: Correlation matrices in the Whittle approximation and the exact frequency domain
likelihood function under the alternative parametrization for apt and ζIPt
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Table 4: Monte Carlo results
Bias (%) SD (%) RMSE (%)

parameter TD FD BC TD FD BC TD FD BC

ν -0.4 6.9 10.9 27.0 32.1 51.6 27.0 32.8 52.8
α -0.2 -0.1 -0.3 3.5 4.0 6.0 3.5 4.0 6.0
ψ 6.3 7.7 13.5 23.7 30.5 59.2 24.5 31.4 60.8
ϕ 3.7 -10.3 1.9 26.8 32.8 48.8 27.1 34.4 48.9
b -0.0 -4.4 -2.0 4.6 8.5 9.8 4.6 9.6 10.0
χ -0.3 -0.2 0.2 2.5 2.9 5.9 2.5 2.9 5.9
κR -0.9 -7.3 -10.2 32.5 37.9 79.2 32.5 38.6 79.9
κπ 0.6 1.1 12.2 14.4 24.3 50.8 14.4 24.3 52.2
κy 31.3 51.3 47.8 62.4 87.4 144.7 69.8 101.3 152.4
ρa 1.2 11.6 11.1 63.8 75.2 88.6 63.8 76.1 89.3
ρn 4.2 12.5 37.7 91.1 106.1 137.4 91.2 106.9 142.5
ρi -7.3 -15.4 -29.2 24.2 29.7 63.0 25.3 33.4 69.4
ρc -0.7 1.0 1.1 3.9 4.6 7.8 3.9 4.7 7.9
ρg -3.4 -2.6 -4.0 7.0 7.6 20.3 7.8 8.0 20.7
ρm -0.9 1.2 -4.3 8.1 8.8 22.7 8.1 8.8 23.1
ρξ -2.5 -3.2 -2.9 4.8 7.3 13.5 5.4 7.9 13.8
σaP -9.5 1.2 -34.1 30.6 36.4 56.7 32.0 36.4 66.1
σaT -0.0 2.6 7.5 25.1 28.5 59.9 25.1 28.6 60.3
σn -2.7 -6.4 -1.3 26.7 31.6 52.9 26.9 32.3 52.9
σiP -2.6 3.4 -17.3 54.7 60.8 87.3 54.7 60.9 89.0
σiT 4.6 -0.7 29.1 27.5 35.8 80.5 27.9 35.8 85.5
σc 1.1 9.7 39.0 46.3 86.0 113.1 46.3 86.5 119.6
σg -1.4 -0.7 1.0 5.3 5.5 13.0 5.5 5.6 13.0
σm -0.0 4.0 12.2 10.4 14.8 47.6 10.4 15.3 49.1
σξ 18.8 17.1 59.6 70.5 83.7 196.8 73.0 85.4 205.6

Note: Alternative parametrization of the ACD model. See Notes to Table 2.

4.3 Results: alternative parametrization

The results for the second set of simulations are organized similarly to the previous
section. Table 4 reports the mean, median, and IQR for all parameters. While the TD
estimator still performs best in terms of accuracy and volatility, the Whittle likelihood-
based estimators are now much more competitive along these dimensions. In particular,
unlike before, the IQRs now include the true values for all parameters. Without any
exception, the lengths of the TD estimator’s IQRs are the shortest and those of the BC
estimators’ IQRs – the longest. However, the difference, on average, between TD and
FD estimators’ IQRs is only about 22%, which is in line with what one may expect from
theory, given that the two estimators are asymptotically equivalent. On the other hand,

27



the BC estimator’s IQRs are on average 80% wider than those of FD, and about 130%
wider than then TD estimator’s IQRs. These findings is also easy to see from Figure 8,
which displays boxplots of the percent deviations of the parameter estimates from the
true values.

ν α ψ ϕ b χ κR κπ κy ρa ρn ρi ρc ρg ρm ρξ σaP σaT σn σiP σiT σc σg σm σξ
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Figure 8: Alternative parametrization of the ACD model. See Notes to Figure 1.

Table 5 reports the bias, standard deviation and root mean squared error for all
parameters shown, as before, as percentages relative to the true values. On average,
the absolute value of bias of the TD, FD and BC estimates is about 4%, 7% and 16%
respectively. Note that this is the same bias for the TD estimator as in the baseline model,
while for the Whittle likelihood-based estimators it is significantly smaller than before.
Moreover, we see that there is much stronger agreement among the three estimators in
terms of which parameters tend to be relatively more or less biased: the values of the rank
correlation coefficients between biases are 0.56 in the case of TD and FD estimators, and
0.89 in the case of the TD and BC estimators. We can also confirm that the estimates
of α and χ are among the least biased across all estimators, while κy, ρi, ρn, and σξ are
common among the most biased parameters. Given the relatively much smaller biases,
the results for SD and RMSE are now much more similar. On average, the RMSE of the
TD estimator is about 80% of the FD and 45% of the BC estimator, respectively. The
rank correlation between the RMSEs of the TD and FD estimator is 0.98, while that
of either one of these estimators with the BC one is 0.95 The results in terms of which
parameters have lowest or highest RMSE across all estimators are very similar to what
was found before (see Table 3). In particular, χ, ρξ, σg, α, ρc, and ρg are the parameters
with the lowest RMSE, while κy, ρa, ρn, σc, and σiP , and σξ have the highest RMSE
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across all estimators.

Table 5: Monte Carlo results (cont.)
Bias (%) SD (%) RMSE (%)

parameter TD FD BC TD FD BC TD FD BC

ν -0.4 6.9 10.9 27.0 32.1 51.6 27.0 32.8 52.8
α -0.2 -0.1 -0.3 3.5 4.0 6.0 3.5 4.0 6.0
ψ 6.3 7.7 13.5 23.7 30.5 59.2 24.5 31.4 60.8
ϕ 3.7 -10.3 1.9 26.8 32.8 48.8 27.1 34.4 48.9
b -0.0 -4.4 -2.0 4.6 8.5 9.8 4.6 9.6 10.0
χ -0.3 -0.2 0.2 2.5 2.9 5.9 2.5 2.9 5.9
κR -0.9 -7.3 -10.2 32.5 37.9 79.2 32.5 38.6 79.9
κπ 0.6 1.1 12.2 14.4 24.3 50.8 14.4 24.3 52.2
κy 31.3 51.3 47.8 62.4 87.4 144.7 69.8 101.3 152.4
ρa 1.2 11.6 11.1 63.8 75.2 88.6 63.8 76.1 89.3
ρn 4.2 12.5 37.7 91.1 106.1 137.4 91.2 106.9 142.5
ρi -7.3 -15.4 -29.2 24.2 29.7 63.0 25.3 33.4 69.4
ρc -0.7 1.0 1.1 3.9 4.6 7.8 3.9 4.7 7.9
ρg -3.4 -2.6 -4.0 7.0 7.6 20.3 7.8 8.0 20.7
ρm -0.9 1.2 -4.3 8.1 8.8 22.7 8.1 8.8 23.1
ρξ -2.5 -3.2 -2.9 4.8 7.3 13.5 5.4 7.9 13.8
σaP -9.5 1.2 -34.1 30.6 36.4 56.7 32.0 36.4 66.1
σaT -0.0 2.6 7.5 25.1 28.5 59.9 25.1 28.6 60.3
σn -2.7 -6.4 -1.3 26.7 31.6 52.9 26.9 32.3 52.9
σiP -2.6 3.4 -17.3 54.7 60.8 87.3 54.7 60.9 89.0
σiT 4.6 -0.7 29.1 27.5 35.8 80.5 27.9 35.8 85.5
σc 1.1 9.7 39.0 46.3 86.0 113.1 46.3 86.5 119.6
σg -1.4 -0.7 1.0 5.3 5.5 13.0 5.5 5.6 13.0
σm -0.0 4.0 12.2 10.4 14.8 47.6 10.4 15.3 49.1
σξ 18.8 17.1 59.6 70.5 83.7 196.8 73.0 85.4 205.6

Note: Alternative parametrization of the ACD model. See Notes to Table 3

Figures 9 - 12 show histograms of the sampling distributions of the TD, FD, and
BC estimates, and Q-Q plots for their departures from normality. As explained before,
it cannot be expected that the normal approximation will be very accurate, given the
relatively short sample. Nevertheless, we see a significant improvement of the sampling
distributions in particular for the two Whittle likelihood based estimators.
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Figure 9: Alternative parametrization of the ACD model. Sampling distributions of the
estimated parameters, time domain MLE. The black vertical lines indicate true values. The
results are based on 1000 MC replications and sample size of T = 192.
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Figure 10: Alternative parametrization of the ACD model. Sampling distributions of the
estimated parameters, frequency domain MLE using all frequencies. The black vertical lines
indicate true values. The results are based on 1000 MC replications and sample size of
T = 192.
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Figure 11: Alternative parametrization of the ACD model. Sampling distributions of the
estimated parameters, frequency domain MLE using only business cycle frequencies. The black
vertical lines indicate true values. The results are based on 1000 MC replications and sample
size of T = 192.
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Figure 12: Q-Q plots for the alternative parametrization of the ACD model.
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5 Concluding Comments

The purpose of this study was to shed some light on the performance of the band-spectral
estimation approach applied to business cycle models. Band-spectral methods are widely
used to study frequency-dependent relationships among variables. In business cycle
research, this approach permits the estimation of structural models on the basis of the
frequencies they are best suited to represent, such as the business cycle frequencies. In
particular, the frequency domain approximation of the likelihood function (the Whittle
likelihood) can be used to estimate the parameters of fully-specified models on the
basis of a targeted band of frequencies. Using the medium-scale model of Angeletos
et al. (2018) as a data-generating process, I performed a Monte Carlo study to evaluate
the finite-sample properties of the band-spectral maximum likelihood estimator (MLE)
and to compare them to those of the full spectrum and the exact time-domain MLE.
The results show that using the band-spectral estimator leads to considerable biases
and efficiency losses for most estimated parameters. In fact, the performance of both
Whittle likelihood-based estimators is found to be seriously deficient in terms of bias and
accuracy, in contrast to that of the time domain estimator, which successfully recovers
all model parameters. I showed how these findings can be explained with the theoretical
properties of the underlying model, and describe simple-to-use tools and diagnostics that
can be used to detect potential problems in band-spectral estimation for a wide class of
macroeconomic models.
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