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Abstract

This paper experimentally studies how people learn about their environment when their
subjective understanding of the environment, their mental model, is misspeci�ed. We use
people’s tendency to hold optimistic beliefs about their abilities to generate model misspeci-
�cation and investigate the implications of overcon�dence as a source of misspeci�ed mental
model on learning about own ability and a fundamental. Consistent with the theoretical pre-
dictions, overcon�dent subjects develop pessimistic beliefs about the fundamental and take
growingly suboptimal actions. Inconsistent with the theoretical prediction, endogenous feed-
back does not exacerbate the extent of suboptimal behavior. Investigating how subjects learn
about their own ability reveals that abundant feedback "weakens" misspeci�ed mental mod-
els. The "weakening" of mental models is more pronounced with endogenous feedback and
explains why endogenous feedback may not exacerbate the extent of suboptimal behavior.
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1 Introduction

People regularly construct mental models of their environment to guide their reasoning, to make
inferences and to understand how their actions map into outcomes. Accumulating evidence from
psychology and economics documents that people frequently create mental models that fall short
of being an accurate representation of their decision environment, as they struggle gathering,
attending, and processing crucial information in their environment (Hanna, Mullainathan and
Schwartzstein (2014), Handel and Schwartzstein (2018)). An important question is then if the
constructed models do not admit the possibility of truth, what are the implications of this "mis-
speci�cation" for how people learn about their environment, and subsequently make decisions
that are informed by their learning? In particular, do more data necessarily mean that people will
correctly learn a fundamental variable and take the �rst-best action?

We set out to answer this question using a carefully designed laboratory experiment. In the
experiment, subjects repeatedly make investment decisions on a �xed project over 1000 periods,
and in each period observe a noisy signal on the pro�t they generate. Subjects do not know the
quality of their assigned project, but correctly know that the assignment is random. Moreover,
there are complementarities between the investment amount and the expected project quality –
projects with higher expected quality require higher investment at the optimum. Another key
determinant of the pro�t is an ability parameter for the subject that positively a�ects the pro�t. In
particular, we assign each subject an ability score based on their ranking on an "IQ test" that they
take at the beginning of the experiment. Tying an ego-relevant ability parameter to the pro�t and
not resolving the uncertainty over the ability parameter provides scope for model misspeci�cation
in how subjects perceive the pro�t equation. In our controlled environment, subjects frequently
create misspeci�ed models of the pro�t equation because of their overestimation of their ranking
on the IQ test. We �nd that 34% of our subjects assign 100% likelihood to ability scores that are
strictly above their true abilities.

The theory makes sharp predictions about how subjects with misspeci�ed models of the pro�t
equation should take actions throughout the experiment. Heidhues, Kőszegi and Strack (2018)
show that if agents with misspeci�ed models do not update their prior on their ability and learn
from feedback in a Bayesian fashion, they should on average make growingly suboptimal in-
vestments in this environment. Intuitively, this is because agents regularly experience less-than-
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expected pro�t because of their overcon�dence and explain the less-than-expected output by
developing pessimistic beliefs about the project quality. Consistent with this prediction, we �nd
that overcon�dent subjects with misspeci�ed models of the pro�t equation make growingly sub-
optimal investments throughout the experiment’s time horizon. By the last period of the experi-
ment, overcon�dent subjects signi�cantly under-invest relative to the �rst-best in their projects
compared to the subjects who have a correctly speci�ed model of the pro�t equation.

A further theoretical insight in Heidhues, Kőszegi and Strack (2018) that directly applies to our
setting is that endogenous learning exacerbates the extent of suboptimal behavior when agents
have misspeci�ed models. This is because suboptimal behavior generated through model mis-
speci�cation further depresses pro�t. Agents rationalize the additionally depressed pro�ts by
even more pessimistic beliefs about the project quality. These more pessimistic beliefs about the
project quality then lead overcon�dent subjects to curb investment even further because of the
complementarities in project qualities and investment amounts. In order to test this prediction
we create two treatments Exogenous and Endogenous where we manipulate the endogeneity
of feedback. While subjects in Endogenous see their investment decisions immediately imple-
mented in each period and receive feedback that comes from the "pro�t distribution" they select
in that period, subjects in Exogenous do not see their investment decisions immediately imple-
mented and instead receive feedback from a �xed pre-announced "pro�t distribution" throughout
the experiment. Although overcon�dent subjects in both treatments make growingly suboptimal
investments, we do not �nd that endogenous feedback exacerbates the suboptimal investment
behavior. Although subjects in Exogenous take actions that are statistically indistinguishable
from the action a myopically optimizing Bayesian agent would take on average by the last period
of the experiment, subjects in Endogenous sharply deviate from this Bayesian benchmark.

Investigating how subjects in Exogenous and Endogenous learn about their abilities reveals
insights into the deviation from the theoretical prediction and the Bayesian benchmark. Although
Bayesian learners would learn virtually nothing about their abilities in our experiment, a com-
parison of elicited prior and posterior means clearly indicate that overcon�dent subjects have
become less overcon�dent by the end of the experiment. This "weakening" of mental models,
including the truth within the set of possibilities, in the face of abundant objective feedback is
consistent with previous work (Esponda, Vespa and Yuksel (2020)). Interestingly, we �nd that
this "weakening" is more pronounced for subjects who face endogenous feedback although this
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e�ect is not signi�cant at conventional levels.1

Substantial evidence in psychology suggests that on average people have unrealistically pos-
itive views of their traits (e.g. Weinstein (1980), Svenson (1981), Moore and Healy (2008)). A
large literature in economics investigates how such overcon�dent beliefs about own traits and
prospects lead people to make suboptimal decisions (excess entry decisions in the laboratory,
Camerer and Lovallo (1999); over-trading by retail investors, Barber and Odean (2001); over-
investment by CEOs, Malmendier and Tate (2005), Malmendier and Tate (2008)). As the evidence
on the material costs of overcon�dence accumulates, theoretical and laboratory studies started
exploring how people produce and maintain overcon�dent beliefs about their abilities. While
the theoretical literature documented how overcon�dence may arise as a result of biased mem-
ory, ego utility , motivational and signalling values (Bénabou and Tirole (2002), Köszegi (2006)),
laboratory studies con�rmed these mechanisms (Zimmermann (2020), Möbius et al. (2014), Chen
and Schildberg-Hörisch (2019)) and further documented how biased processing of objective noisy
feedback prevent people from learning their true abilities (Eil and Rao (2011), Ertac (2011), Coutts
(2019)).

Our investigation pushes the literature on overcon�dent agents’ learning processes forward
in three fundamental ways. First, while the previous literature focuses on settings where there is
a single source of uncertainty (e.g. the agent’s ability) that generates noisy feedback, we focus on
a setting where the noisy feedback features two sources of uncertainty (e.g. the agent’s ability and
an external stable fundamental). Many economically important settings feature such multidimen-
sional sources of uncertainty and a lower dimensional feedback. Examples include an employee
not knowing her marginal return to e�ort, deciding how hard she wants to work and observ-
ing the output of her e�orts; a team member not knowing the ability of his teammate, deciding
how much of the work to delegate and observing the joint output produced by his team. Sec-
ond, while the focus of the previous literature is on how overcon�dent people learn about their
abilities through noisy feedback, we focus on how overcon�dent people learn not about their
ability, but about an external decision-relevant variable. There is ample evidence documenting
that people are good at supplying overcon�dent beliefs about their own abilities, however, in the
environments that we are investigating there is little evidence if the supply of such beliefs biases

1However, the greater reduction in overcon�dence is consistent with our main �nding that endogenous learning
does not exacerbate suboptimal investment
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the way people learn about their environment. Third, while the previous literature is interested
in exogenous learning situations where individuals learn about their abilities without choosing
actions, our focus is on endogenous learning situations where individuals are provided opportu-
nities to take actions that allow them to sample feedback from distinct distributions. It is clear
that most learning environments have this “experimentation" feature (e.g. an employee might
try working very hard or very little to get a more precise signal of her own ability) and hence,
arguably, is of greater economic relevance than exogenous learning situations.

2 Theoretical Framework

In this section, we present our theoretical framework and discuss its main predictions. The model
has two main goals. First, it illustrates an environment where overcon�dent agents who have a
misspeci�ed model of their environment underestimate an external fundamental while such un-
derestimation does not necessarily arise for agents who have a correctly speci�ed model. Second,
it highlights how endogenous learning might exacerbate the extent of underestimation for over-
con�dent agents.

2.1 Overview

We focus on a simple decision environment where the agent is uncertain about her ability and
an external fundamental that a�ects the output she generates. The agent periodically takes an
action and receives a noisy feedback on the output she generates. More speci�cally, let a ∈ A =

{20, 40, 60, 80, 100} represent the agent’s unchanging ability and � ∈ Φ = [0, 100] represent the
unobservable unchanging fundamental. We assume the fundamental is randomly drawn from
the uniform distribution �0 ∶ Φ → ℝ+ before the agent starts making her decisions and is
independent of the agent’s ability a. The agent chooses an action et ∈ E = [0, 100] in each period
and produces an output y(et , a, �) with partial derivatives ya ≥ 0, y� > 0. In particular, we assume
that the output has a simple functional form

y(et , a,ϕ) = (a + et)ϕ −

e
2

t

2
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After each action, the agent observes a noisy feedback ft on the output she generates. The
feedback is distributed Bernoulli with mean �(et , a, �) that corresponds to the normalization of
the output function:

�(et , a,ϕ) =

y(et , a, �) − y

ȳ − y

where ȳ = maxe,a,� y(e, a, �) and y = mine,a,� y(e, a, �).

2.2 Objective Model

Fix an ability level for the agent, ao , and her teammate, �o . For each e�ort level et , there is an
objective feedback distribution Qo(⋅|et) that is a Bernoulli density with mean �(et , ao ,ϕo).

2.3 Mental Model

The mental model represents the set of feedback distributions the agent considers possible a
priori. For a �xed objective decision problem Qo , a mental model is a tuple

 = ⟨Θ, (Q� )�∈Θ⟩

where Θ ⊂ A × Φ is the agent’s parameter set and Q� (⋅|et) is the action-dependent feedback
distributions parametrized by � = (a, �) ∈ Θ. While the action-dependent objective feedback
distribution Qo(⋅|et) represents the true environment, the mental model represents the agent’s
perception of their environment.

We assume that the agent correctly believes that the map from actions to probability distri-
butions over feedback is �xed and depends only on their current action, but they are uncertain
about the distribution each action induces. The agent’s uncertainty about what the true en-
vironment Qo(⋅|et) is captured by their mental model ⟨Θ, (q� )�∈Θ⟩ and a joint density function
Π0 ∶ A × Φ → ℝ+ that describes the agent’s prior belief. Following the previous literature, we
call the agent’s mental model correctly speci�ed if the true parameter vector lies in the support
of the agent’s prior beliefs (�o = (ao , �o) ∈ Θ), and otherwise call it misspeci�ed.

We assume that the agent correctly believes that the fundamental is independently drawn
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from their own ability and from the uniform distribution �0 with the support Φ. Due to indepen-
dence, we can decompose the agent’s prior density Π0(a,ϕ) = p0(a)�0(ϕ) where p0 is a probability
mass function that describes agent’s prior belief about own ability. In this environment, we as-
sume that the agent chooses myopically optimal actions at each period, aiming to maximize the
probability of getting a "positive" feedback and learns from feedback using Bayes’ rule.

2.4 Overcon�dence as a Misspeci�ed Mental Model

Since the agents in this framework have potentially misspeci�ed models of their environment,
we apply the solution concept proposed in Esponda and Pouzo (2016) to derive the set of possible
limit points of the agent’s learning process.

The equilibrium requires agents’ beliefs to put probability 1 on the set of subjective feedback
distributions that are “closest" to the objective distribution. Building on Berk (1966), Esponda
and Pouzo (2016) shows that the correct notion of “distance" is the Kullback-Leibler divergence
in statistics. It represents a “distance" between the objective output distribution Qo(⋅|e) and the
family of parametrized subjective distributions (Q� (⋅|e))�∈Θ for a �xed action e:

K (e, �) = EQo(⋅|e)
log

[

Qo(f |e)

Q� (f |e)
]

Both objective and subjective mental models belonging to the family of Bernoulli distribu-
tions, the KL divergence in our context is simply

K (e, �) = EQo(⋅|e)[
f log

�(e, ao , �o)

�(e, a, �)

+ (1 − f )log

1 − �(e, ao , �o)

1 − �(e, a, �)
]

= �(e, ao , �o)log

�(e, ao , �o)

�(e, a, �)

+ (1 − �(e, ao , �o))log

1 − �(e, ao , �o)

1 − �(e, a, �)

The set of closest parameter values for the agent given an e�ort decision e can then be de-
scribed as

Θ̂(e) = argmin

�∈Θ

K (e, �)

The interpretation is that Θ̂(e) ⊂ Θ is the set of parameter values that the agent can believe
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to be possible after observing feedback consistent with the e�ort decision e.
A pure strategy Berk-Nash equilibrium of a single agent problem is then a pair of action and

a belief (e∗,Π∗) that satis�es

i) e∗ ∈ argmax
e∈E

E
Q̄Π(⋅|e)

f where Q̄Π = ∫
Φ
Q�Π

∗
(d�)

ii) Π∗ ∈ Δ(Θ̂(e∗))

De�ning Overcon�dence. In this environment, we de�ne an overcon�dent agent to be one
whose prior on their own ability assigns zero mass on their true ability and is supported by
abilities that are greater than their own ability i.e. a > ao for any a ∈ suppp0(a). Hence an over-
con�dent agent’s mental models are misspeci�ed as �o = (a0, �o) ∉ Θ.

2.4.1 Exogenous Learning

We �rst look at how an overcon�dent agent learns the fundamental when their action is �xed
and when they are provided with in�nite feedback. Fix an e�ort decision ē. Assume that for
each a ∈ suppp0(a) , there is �a ∈ supp�0(�) such that �(ē, ao ,ϕo) = �(ē, a, �a). This assumption
ensures that for any �xed action, the agent can always �nd a fundamental that explains the
observed distribution of feedback irrespective of what they believe their own ability level to be.
This implies KL divergence is minimized at 0 for all (a, �a) where a ∈ suppp0(a) and generates
the following set of KL minimizers

Θ̂(ē) = {(a, �a =

ao + ē

a + ē

�o)|a ∈ suppp0(a)}

Lemma 1. Suppose that the agent takes a �xed action ē in all periods and for each a ∈ suppp0(a) ,
there exists �a ∈ supp�0(�) such that

�(ē, ao , �o) = �(ē, a, �a)

Then the agent’s beliefs on (a, �) almost surely converges and concentrates on Θ̂(ē).

Proof. See Berk (1966). ■
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Proposition 1. Let Πē

∞
be the limiting posterior distribution on (a, �) when the agent repeatedly

chooses e�ort ē. Then Π∞(a, �) = p0(a)1Θ̂(ē)(a, �).

Proof. By Lemma 1, Πē

∞
(a, �) = 0 whenever (a, �) ∉ Θ̂(ē). Moreover, Θ̂(ē) is �nite since po(a) has

�nite support. Take (a1, �a1) and (a2, �a2) ∈ Θ̂(ē),

lim
t→∞

Πt(a1, �a1
∣ f1, .., ft)

Πt(a2, �a2
∣ f1, .., ft)

= lim
t→∞

Π0(a1, �a1)

Π0(a2, �a2
)

Q�1
(f1, .., ft ∣ ē)

Q�2
(f1, .., ft ∣ ē)

= lim
t→∞

Π0(a1, �a1
)

Π0(a2, �a2
)

�(ē, a1, �a1
)
tf
(1 − �(ē, a1, �a1

))
t(1−f )

�(ē, a2, �a2
)
tf
(1 − �(ē, a2, �a2

))
t(1−f )

= lim
t→∞

Π0(a1, �a1
)

Π0(a2, �a2
)

�(ē, ao , �o)
tf
(1 − �(ē, ao , �o))

t(1−f )

�(ē, ao , �o)
tf
(1 − �(ē, ao , �o))

t(1−f )

= lim
t→∞

Π0(a1, �a1
)

Π0(a2, �a2
)

=

Π0(a1, �a1
)

Π0(a2, �a2
)

=

p0(a1)�0(�a1
)

p0(a2)�0(�a2)

=

p0(a1)

p0(a2)

Hence Πē

∞
(a, �a) = p0(a) for each (a, �a) ∈ Θ̂(ē) ■

Corollary 1. A overcon�dent agent’s learning process leads him to underestimate the fundamental
i.e. whenever min suppp0(a) > ao , EΠē

∞

[�] < �o .

Proof. For any a ∈ suppp0(a), �a = ao+ē

a+ē
�o < �o . Hence EΠē

∞

[�] < �o . ■

2.4.2 Endogenous Learning

We now look at what the overcon�dent agent comes to believe about the fundamental when
he is allowed to change his ction in each period in response to his beliefs. In particular, we
are interested in if his inferences about the fundamental improve when he chooses myopically
optimal actions in each period. A Berk-Nash equilibrium for an overcon�dent agent with prior
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p0(a) is a pair (Π∞(a, �), e∗) such that

i) e
∗
= EΠ∞[�] (1)

ii) Π∞(a, �) = p0(a)1Θ̂J (e∗)(a, �) (2)

where
Θ̂(e

∗
) = {(a, �a =

ao + e
∗

a + e
∗
�o)|a ∈ suppp0(a)} (3)

Lemma 2. Assume the equations (1) and (2) have a solution. Then e∗ = EΠ∞[�] < �o .

Proof. Note that ao+e
∗

a+e
∗
< 1 for any a ∈ suppp0(a). Then

e
∗
= EΠ∞

[�] = ∑

a∈suppp0(a)
p0(a)

ao + e
∗

a + e
∗
�o < �o (4)

■

The above lemma shows that the equilibrium action is lower than the fundamental.

Proposition 2. Let Πē

∞
be the limiting posterior distribution when the agent exogenously learns

from data with �xed action ē and let Π∞ be the limiting posterior distribution when the agent learns
endogenously with the optimal action. Then EΠ∞[�] < EΠē∞[�] whenever ē ≥ �o .

Proof. Note that for �a(ē) = ao+ē

a+ē
�o

sgn(

)�a

)ē
) = sgn(a − ao) > 0 (5)

Hence for an overcon�dent agent (min suppp0(a) > ao), learning from a higher �xed e�ort de-
cision leads to a higher belief on � for each KL minimizing pair (a, �a). Since e∗ < �o , whenever
ē ≥ �o

ao + e
∗

a + e
∗
�o <

ao + �o

a + �o

�o ≤

ao + ē

a + ē

�o ∀a ∈ suppp0(a) (6)
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Therefore,

∑

a∈suppp0(a)
p0(a)

ao + e
∗

a + e
∗
�o < ∑

a∈suppp0(a)
p0(a)

ao + ē

a + ē

�o (7)

EΠ∞
[�] < EΠē

∞

[�] (8)

■

Proposition 2 implies that if the agent starts o� with an e�ort level at or above the optimal
e�ort level, then the opportunity to change his e�ort decision in response to his inferences leads
to more incorrect long-run expectations than if he could not change his e�ort decision. We call
this type of learning self-defeating.

Corollary 2. When ē ≥ �o , an overcon�dent agent’s long-run optimal e�ort decision e∗ is more
inaccurate when he is allowed to change his e�ort decision in response to his inferences than a hypo-
thetical optimal e�ort decision ē∗ he would like to take when he could not change his e�ort decision.

Proof. Since the optimal e�ort level is equal to the expectation of � under the joint feedback, we
have e∗ = EΠ∞[�] < EΠē∞[�] = ē∗ < �o ■

Intuitively, the overcon�dent agent is “surprised" by the negative feedback he observes when
he collects su�cient data to identify the feedback distribution that he faces when he repeatedly
takes an action greater than the �rst-best action, that is, the action he would take if he were
to know the fundamental. The reason is that the feedback he receives increases in his ability
and hence he expects higher feedback than actually realized. Once he identi�es a feedback dis-
tribution that is lower than his expectation, he attributes the low output he generated to the
fundamental being lower than his expectation. The beliefs that the agent develop lead him to
exert lower than the �rst best action as his incentives to take higher actions increase in the fun-
damental. Since the action he takes increases the probability of receiving positive feedback when
he chooses an action that is lower the �rst-best level, he decreases his probability of receiving
positive feedback by choosing a lower action. This provides further negative feedback to the over-
con�dent agent that “surprises" him, he explains these further negative feedback by lowering his
expectations about the fundamental even further. This process continues until the overcon�dent
agent is no longer “surprised" about the feedback he receives.
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2.5 Hypotheses

Hypothesis 1. When the actions are exogenous and �xed at a level ē greater than the �rst-best
level and if beliefs converge:

• an overcon�dent agent’s expectation on the fundamental converges to a point that is less than
the fundamental i.e. EΠē

∞

[�] < �o

Our second hypothesis is that learning is self-defeating for overcon�dent agents i.e. when
provided an opportunity to revise their actions in response to their inferences, overcon�dent
agents’ expectations are further away from the truth.

Hypothesis 2. When the actions are endogenous and if beliefs and actions converge:

• an overcon�dent agent’s expectation converges to EΠ∞[�] that satis�es EΠ∞[�] < EΠē∞[�] < �o

• an overcon�dent agent’s action converges to a point that is less than the �rst-best level

Our third hypothesis involves learning about own ability.

Hypothesis 3. Irrespective of the endogeneity of actions, if beliefs converge:

• an overcon�dent agent’s expectation on his own ability converges to a point that is identical
to his prior expectation on his own ability i.e. EΠ∞[a] = EΠ0[a]

2.6 Correctly Speci�ed Mental Models

When the agent’s prior about his own ability assigns some mass to his true ability ao , his mental
model is correctly speci�ed. In this instance, the agent’s beliefs do not need to converge to his
true ability and the true fundamental as he can only exactly identify the feedback distribution he
faces while unable to pin down the underlying parameters (a and �) of that distribution. The pre-
dictions for such agents are ambiguous and prior-speci�c. The two examples below show that an
agent who has a correctly speci�ed mental model yet who expects his ability to be greater than his
actual ability might 1) grow pessimistic or optimistic about the fundamental and 2) endogenous
learning might either exacerbate or alleviate the extent of mislearning.
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Example 1 (Almost Misspeci�ed). Suppose the agent’s prior on his own ability p0(a) is
such that a ≥ ao for any a ∈ suppp0(a) with p0(ao) ∈ (0, 1). Clearly, Ep0[a] > ao . So the agent
has a correctly speci�ed model where he expects his ability to be strictly better than his actual
ability. It is easy to see that Lemma 2 and Proposition 2 are still valid for this agent. Hence the
agent is pessimistic about the fundamental when he learns under a �xed action and he exhibits
self-defeating learning when he is allowed to change his action in response to his inferences.

Example 2 (Almost Symmetric Prior Around a0). Suppose the agent’s prior on his own
ability p0(a) is such that suppp0(a) = {a+, ao , a−} where a+ − ao = ao − a− with p0(a+) = p̄ + ",
p0(ao) = p̄, p0(a−) = p̄ − ". Again, Ep0[a] > ao . Since the KL minimizing belief �a = ao+ē

a+ē
�o is

strictly decreasing and convex in a, EΠē
∞

[�] > �o . Hence the agent becomes optimistic about his
teammate’s ability when he learns under a �xed e�ort decision. We can use a little bit more
algebra to show that the agent’s expectations about his teammate move closer to the truth when
he learns endogenously compared to the situation where he learns exogenously at the �rst-best
e�ort level. Hence his endogenous learning is self-correcting.

3 Experimental Design

The objective of the design is to construct a decision environment in which i) agents are likely to
form misspe�cied mental models and ii) see if and how these mental models misguide learning
about payo�-relevant decision variables.

Overview

The experiment consists of �ve parts. At the beginning of each part of the experiment, we provide
subjects with the instructions, familiarize them with the interface and test their understanding
of the rules of the experiment through a series of understanding quizzes. In the �rst part of the
experiment, we measure the “ability" of our subjects using Raven matrices framed as an IQ test.
In the second part of the experiment, we elicit subjects’ beliefs about their relative performance
on the IQ test compared against 19 randomly selected participants who participated in a pilot
session.

The third part of the experiment is the main part where each subject is randomly assigned
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to one of our treatments. At the beginning of this part of the experiment, we assign subjects
di�erent fundamentals. More speci�cally, we frame the decision environment as subjects acting
as project managers for a company where projects correspond to fundamentals.2 Subjects’ rela-
tive ranking on the IQ test and their assigned fundamentals jointly determine the probability of
receiving a positive feedback. The assigned fundamental for each subject remains constant until
the end of this part. In each period, subjects are required to submit actions framed as investment
recommendations on their assigned projects. In order to help them with their decisions, subjects
are provided with special calculators that take their beliefs about their own ability parameter
"a" as an input and calculate the myopically optimal actions. In treatment Exogenous, subjects
actions are not implemented to generate feedback but they are implemented for their payment.
In treatment Endogenous, subjects’ actions are implemented to generate feedback and also for
the calculation of their payments.

In the fourth part of the experiment, we re-elicit subjects’ beliefs about their ranking on the
IQ test they have taken at the beginning of the experiment. In the �fth and the �nal part of
the experiment, subjects complete a survey where they are asked to provide basic demographic
information. In both treatments, subjects’ payo�s are determined by the sum of the amount they
made in a randomly selected part (either $25 or $0) and a show-up fee of $10.

3.1 Part 1: Establishing Ability Parameters

The goal of this part of the experiment is to establish an ability parameter for each subject. We
measure subjects’ ability parameters using Raven’s matrices. Subjects are introduced to Raven’s
matrices as a test of intelligence to accentuate the ego-relevance of the task and to provide scope
for overcon�dence. We ask each subject to solve the same 10 Raven’s matrices, present them in
the same order and provide the subjects with 10 minutes to �nish the test. Once subjects �nish the
test, we compare the number of correctly answered questions to the performance of 19 randomly
selected subjects who took the exact same IQ test in a pilot session of the experiment. Each subject

2Subjects’ task is to recommend investment decisions (actions) to the company that is to be invested into their
assigned projects (fundamentals). Their goal is to maximize their pro�t (output) from the project. In each period
after they make an investment recommendation, they get an evaluation from the company if their pro�t for that
period beats the company’s pro�t expectations or not (Bernoulli feedback on the output). We choose to frame
our decision environment to increase subjects’ understanding of our relatively complicated decision environment
Alekseev, Charness and Gneezy (2017).
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is then assigned an "IQ rank score" depending on their ranking within their assigned group of
19 other participants with random tie-breaking. Speci�cally, a subject that ranks within the itℎ

quintile is assigned an IQ rank score of 20i. We then establish subjects’ true ability parameters in
the main part of the experiment as their IQ rank scores, i.e. a0 = 20i. We incentivize subjects by
paying them $25 if a randomly selected answer in the IQ test is correct.

3.2 Part 2: Establishing Mental Models

The main goal of this part of the experiment is to elicit prior beliefs on own ability that we use
to establish mental models in the third part of the experiment. In order to achieve this goal, we
ask subjects how they think they rank in their randomly constructed group of 20 people based
on their IQ test scores. The reason we choose to measure relative overcon�dence (or "overplace-
ment") rather than absolute overcon�dence (or "overestimation") is that previous experiments
�nd a greater scope for overcon�dence when it is measured in relative terms.3 Another impor-
tant design choice is that we ask our subjects to state their beliefs over quintiles rather than the
more conventional way of measuring overcon�dence using 2-quantiles. The reason we ask our
subjects to state their full belief distribution over quintiles is that we want to provide scope for
model misspeci�cation while limiting the complexity of the belief elicitation procedure. The idea
is that eliciting beliefs using smaller quantiles would create situations in which subjects predom-
inantly assign positive probability to each quantile more frequently which would then render a
majority of our subjects as correctly speci�ed agents. On the other hand, if we elicit belief using
larger quantiles, we complicate the belief elicitation procedure as subjects are required to state
their full belief distribution over each quantile.

In order to simplify the belief elicitation procedure over quintiles, we use �ve sliders. Each
quintile is associated with a slider. Subjects assign a total likelihood of 100% over �ve di�erent
quintiles through associated sliders at a precision of two decimal points. We use a standard
incentive compatible mechanism to pay for the belief elicitation (Hossain and Okui (2013)). A
critical design choice here is that we elicit beliefs over quintiles as full belief distribution. Eliciting
full belief distribution with high precision allows us to sharply draw a line between subjects

3In particular, research in psychology documents that people "overplace" themselves in easy tasks (Larrick, Bur-
son and Soll (2007), Moore and Small (2007)). We speci�cally choose the Raven matrices to bene�t from this "easy"
e�ect. Indeed, the average number of correct answers in our experiment is 6.78 out of 10.
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with misspeci�ed mental models and correctly speci�ed mental models. In this regard, our belief
elicitation procedure is a key element of the design as it allows us to strictly follow the theoretical
conceptualization of overcon�dence as a model misspeci�cation.

3.3 Part 3: Learning Environment

After establishing an ability parameter for each subject and eliciting subjects’ beliefs over their
ability parameters, the only ingredient that is missing to construct a decision environment that
is identical to our theoretical framework is the assignment of a fundamental to each subject. At
the beginning of this part of the experiment, we randomly draw a fundamental for each subject
using a discrete uniform distribution. The assignment of fundamental being independent from
subjects’ ability parameters is clearly communicated to subjects. Once subjects are assigned fun-
damentals, each subject faces an objective decision environment and they have mental models of
their decision environments. As the researchers, we can observe both the objective and mental
models of each subject.

3.3.1 Feedback Design and Minimizing Problems Related to Bayesianism

A crucial part of the experiment is the feedback that we provide to our subjects. Since our predic-
tions are valid under Bayesian learning and the decision environment of our experiment is fairly
complex, we help our subjects substantially make accurate inferences using the feedback regard-
ing the fundamental. Consistent with the idea that people’s learning about non-ego relevant
variables is more in line with Bayesianism compared to learning about ego-relevant variables,
we completely rule out that possibility that subjects’ learning about the fundamental is incon-
sistent with Bayesian learning. We implement this critical feature of the design by providing
subjects with a simple report that we frame as "the Statistician’s Report" where we show subjects
the Bayesian posterior mean of the fundamental conditional on each ability level. The report
is updated in every period based on the feedback generated by the subject up until that period.
Figure 1 presents an example of these reports.
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Figure 1: The Statistician’s Report

Notes: Figure shows an example report. Each row shows how a particular IQ rank score corresponds to an expected project
quality where the expectation is taken over the Bayesian posterior conditional on the IQ rank score.

3.3.2 Endogeneity of Feedback across Treatments

The only di�erence between our treatments Exogenous and Endogenous is if the feedback
we provide to subjects is exogenous or endogenous to their actions. In treatment Exogenous,
we provide subjects feedback based on the highest possible action,which is 100, not their actual
actions. In contrast, we provide subjects feedback based on their actual actions in treatment En-
dogenous. We frame the lack of endogeneity of feedback to actions in treatment Exogenous
as the company not being able to implement the subjects’ recommended investment decisions
immediately and instead investing an originally planned investment amount of 100 throughout
the experiment. On the other hand, we frame the endogeneity of feedback in treatment Endoge-
nous as the company implementing subjects’ investment recommendations immediately instead
of implementing their originally planned investment amount of 100. Note that we still mention
the fact that there is an originally planned investment amount of 100 in treatment Endogenous
to control for the potential anchoring e�ects.

The reason we choose the �xed action in treatment Exogenous as the highest possible ac-
tion for each subject is two-fold. First, the predictions on self-defeating learning requires an
exogenous action that is at or above the fundamental in our environment. Choosing the maxi-
mum possible action ensures that this requirement is satis�ed irrespective of the realization of
the fundamental. Second, the di�erence between predictions in Exogenous and Endogenous
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treatments in terms of expected fundamentals and chosen actions increases with the �xed action
chosen in Exogenous treatment. Thus, choosing the highest possible action as the �xed action
generates the largest possible treatment e�ect in theory.

3.3.3 Myopically Optimal Actions and the Calculator

A crucial element of the literature on learning with misspeci�ed models is that agents take opti-
mal actions (myopic or dynamic) in each period using their subjective expectations on the deci-
sion variables. In order to create an environment that allows our subjects to easily take myopically
optimal actions, we choose a strictly concave output function that has a unique and simple opti-
mal decision rule that only depends on the fundamental: "match your action to your expectation
of the fundamental." We communicate this simple optimal action rule to our subjects as well as
going through the details of how subjects can arrive at this conclusion on their own. We further
test subjects’ understanding of the optimal action rule through understanding quizzes.

We go a step further to make it even easier for our subjects to take myopically optimal actions
by providing them with a calculator that takes their beliefs on their ability parameter as input
and produces the myopically optimal action for that period as output. Hence for any subjective
belief the subjects may have on their own ability parameter, they can accordingly calculate a
myopically optimal action.

We attach the calculator to the Statistician’s Report and ask subjects to enter their beliefs
about their IQ rank score in corresponding rows. Once subjects enter their beliefs, the calcula-
tor produces the corresponding myopically optimal action using the Statistician’s Report. More
speci�cally, the calculator calculates a myopically optimal action by taking a weighted average
of the expected project qualities with weights coming from the subjects’ assigned likelihoods on
each IQ rank score. Figure 2 provides an example.
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Figure 2: Calculator

Notes: Figure shows an example report with the calculator attached to it. Subject are asked to enter their beliefs about
their IQ rank score in corresponding rows as input. The calculator then calculates a myopically optimal action by taking a
weighted average of the expected project qualities with weights coming from the subjects’ assigned likelihoods on each IQ
rank score.

We choose to help subjects calculate myopically optimal actions rather than dynamically op-
timal ones for several reasons. The �rst and main reason is that myopically optimal actions are
signi�cantly easier to explain to our subjects. Second, investigating how people learn under my-
opically optimal actions is of empirical relevance as previous research documents many instances
where people narrowly bracket their decisions. Third, assuming that subjects’ actions are con-
sistent with myopic optimization allows us to interpret their choices re�ecting their mean beliefs
on the fundamental in our Endogenous treatment.4

Once a subject provides an input to the calculator and calculates an optimal action, a decision
box appears where subjects are allowed to submit their actions. Figure 3 provides an example.

4Note that subjects’ actions in treatment Exogenous directly correspond to their expectation of the fundamental
as the di�erence between myopic and dynamically optimal actions vanishes due to the fact that there is no scope
for experimentation in treatment Exogenous, that is, subjects sample from the same distribution throughout the
experiment irrespective of their actions.
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Figure 3: Decision Screen - Period 1

Notes: Figure shows an example decision screen. Once a subject provides an input to the calculator and calculates an optimal
action, a decision box appears where subjects are allowed to submit their actions.

Although we require subjects to enter their beliefs about their IQ rank scores and calculate
a myopically optimal action in each period, we still allow our subjects to submit actions that
are distinct from what they obtain from the calculator as they might appreciate actions that are
higher than the myopically optimal ones due to their informational value. The reason we require
subjects to use the calculator in each period is to get a sense of the evolution of their beliefs on
their own ability throughout the experiment.

3.3.4 The Amount of Opportunities to Learn

Since our goal is to investigate how subjects with misspeci�ed models learn about an external
fundamental, we design the experiment so that subjects have plenty of opportunities to take
actions, generate feedback and learn from the feedback that they generate. We create three con-
nected subparts for this part of the experiment. Although the number of actions subjects take
are similar in each subpart, the amount of feedback that is generated through the implemented
action gradually increases.
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Subpart 1: Periods 1 to 10

Subjects start this part of the experiment by taking 10 actions. After each action, subjects get a
binary feedback on the implemented action.

Subpart 2: Periods 11 to 100

Starting from the 11th period up to 100th period, subjects take actions every 10 periods, that is,
in periods 11,21,31,...,91. We count the actions subjects take in each of these periods towards the
following 9 periods and provide aggregate feedback for every 10 periods. For instance, when a
subject takes an action in period 11, the same action also counts as the action the subject takes
for periods 12 to 20. The subject is then provided aggregate feedback on implemented actions
from periods 11 to 20. Subjects take a total of 9 actions in this subpart and get feedback from 90
periods.

Subpart 3: Periods 101 to 1000

When subjects reach the 101st period, they start taking actions every 100 periods until period
1000, that is, in periods 101,201,301,...,901. Similar to the previous subpart, we count the actions
subjects take in each of these periods towards the following 99 periods and provide aggregate
feedback for every 100 periods. For instance, when a subject takes an action in period 101, the
same action also counts as the action the subject takes for periods 102 to 200. The subject is then
provided aggregate feedback on implemented actions from periods 101 to 200. Subjects take a
total of 9 actions in this subpart and get feedback from 900 periods.

Subjects continuously move from the �rst subpart to the third subpart and are informed of
the beginning of a new subpart along the way. The subpart structure we implement follows from
earlier designs carefully studying learning (Esponda, Vespa and Yuksel (2020)) and allows us to
generate a signi�cant amount of feedback without increasing the duration of the experiment.

3.3.5 Subjects’ Payments

We incentivize our subjects by paying them a �xed reward of $25 if the feedback in a randomly
chosen period is positive in treatment Endogenous. In treatment Exogenous, we re-draw a
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feedback for each period that is generated through subjects’ actions in the experiment. This
creates an incentive compatible mechanism for subjects to take optimal actions in a manner that
is equivalent to binarized scoring rule Hossain and Okui (2013).

3.4 Part 4: Re-Examining Mental Models

In the fourth part of the experiment, we elicit subjects’ beliefs about their ability parameter for
a second time. Eliciting the full posterior belief distribution after subjects receive 1000 periods
worth of feedback on their own ability allows us to answer if subjects retain their initial mental
models or switch to alternative models.

The belief elicitation procedure is identical to the second part of the experiment. Subjects use
�ve sliders to indicate their beliefs about which quintile their rank in their randomly constructed
group of 20 people based on their IQ test scores. We use binarized scoring rule to incentivize
subjects to truthfully report their beliefs about their IQ rank score.

3.5 Part 5: Exit Survey

We �nalize the experiment by asking subjects control questions about their gender, their year of
study, if they are enrolled in a STEM major and if they have taken a college-level statistics class.

3.6 Procedural Details

We conducted our experiment online using the subject pool of UCSB Experimental and Behavioral
Economics Laboratory. The experiment was coded using o-Tree software (Chen, Schonger and
Wickens (2016)). A total of 128 subjects, recruited through ORSEE (Online Recruitment System
For Economic Experiments) ?. The average payment per subject was $27.6 including a $10 show-
up fee. Each session lasted for 105 minutes.
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4 Results

4.1 Identifying Misspeci�ed Mental Models

We de�ne an overcon�dent agent as one whose prior belief assigns zero mass on their true and all
lower level IQ rank scores. Our clear identi�cation strategy directly follows from the theoretical
conceptualization of overcon�dence as a misspeci�ed mental model. Note that our conceptual-
ization of overcon�dence is more stringent than the typical conceptualization of overcon�dence
as having mean or median beliefs laying above the actual "ability" parameter. Figures 4 and
5 respectively display examples of overcon�dent subjects and subjects with correctly speci�ed
mental models.

Figure 4: Overcon�dence as a Misspeci�ed Mental Model

Notes: Figure shows the prior beliefs of selected subjects on their IQ rank scores. The grey bars display subjects’ true IQ
rank scores. The red bars display subjects’ priors as probability mass functions.
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We identify a total of 42 overcon�dent subjects (out of 124) distributed almost evenly across
our two treatments Exogenous and Endogenous. The share of overcon�dent subjects in treat-
ment Exogenous is 31.25% whereas the share of overcon�dent subjects in treatment Endoge-
nous is 34.4%. The fact that we generate a signi�cant amount of model misspeci�cation through
a simple task lends support to the main premise of the theoretical literature that people might
form priors that sharply exclude the possibility of truth. We do not identify undercon�dence
as a model misspeci�cation in our data, all remaining subjects in our experiment assigns some
positive mass on their true IQ rank score.

Figure 5: Correctly Speci�ed Mental Models

Notes: Figure shows the prior beliefs of selected subjects on their IQ rank scores. The grey bars display subjects’ true IQ
rank scores. The red bars display subjects’ priors as probability mass functions.
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4.2 Do Misspeci�ed Mental Models Generate Suboptimal Behavior?

In this subsection, we aim to answer two questions. First, we ask if overcon�dent subjects’ learn-
ing processes lead them to take suboptimal actions. Second, we ask how overcon�dent and cor-
rectly speci�ed subjects’ actions compare against the myopically optimizing Bayesian bench-
mark.

A First Look at How Overcon�dence Generates Growingly Suboptimal Behavior

Figure 6 shows the evolution of actions for overcon�dent and correctly speci�ed subjects when
we aggregate the data from treatments Exogenous and Endogenous. Since subjects’ fundamen-
tals are drawn uniform randomly over integers from 0 to 100, we expect the fundamentals and
hence the �rst-best optimal actions to average around 50. Indeed, Panel A of Figure 6 shows that
average �rst-best optimal action, that is the action a subject would take if they were to know the
true fundamental, for overcon�dent subjects is 53 and the average �rst-best optimal action for
correctly speci�ed subjects is 50.73. We �nd that correctly speci�ed subjects’ learning process do
not lead them away from the �rst-best optimal action, the average action for correctly speci�ed
agents remain around the �rst-best optimal action throughout the experiment and moves closer
to the �rst-best optimal action starting from period 11.

The behavior of overcon�dent subjects is dramatically di�erent from correctly speci�ed sub-
jects. We �nd that overcon�dent subjects start out by taking higher actions than the �rst-best
optimal actions re�ecting their optimistic beliefs about the fundamental. After 10 periods, we �nd
overcon�dent subjects start taking actions that are signi�cantly lower than the �rst-best optimal
action, re�ecting their pessimistic beliefs about the fundamental and persistently keep doing so
for the remainder of the experiment. By Period 901, we �nd a clear di�erence in behavior among
overcon�dent and correctly speci�ed subjects: overcon�dent subjects are on average taking ac-
tions that are signi�cantly lower than optimal whereas correctly speci�ed subjects on average
are taking optimal actions.

Panel B of Figure 6 shows that the stark di�erence in behavior we observe is consistent with
the theoretical predictions. When we simulate Bayesian learning with myopically optimal actions
for each subject taking their mental models as given, we �nd that correctly speci�ed subjects
should take an average action of 49.05 in Period 901, whereas overcon�dent subjects should take
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an average action of 36.37. The di�erence in simulated average actions between correctly spec-
i�ed and overcon�dent subjects is signi�cant (p < 0.01). We �nd that correctly speci�ed agents
take actions that are consistent with Bayesian learning. On the other hand, although overcon�-
dent subjects’ actions are moving towards the simulated Bayesian action, the average action is
still far away from the simulated Bayesian action.

Figure 6: Evolution of Actions

Notes: Both Panel A and Panel B show the average action for correctly speci�ed and overcon�dent subjects across periods. Panel A presents the
�rst-best optimal action as a benchmark. The blue dashed line in Panel A represents the average �rst-best optimal action for correctly speci�ed
subjects. The red dashed line in Panel A represents the average �rst-best optimal action for overcon�dent subjects. Panel B presents the average
action a myopically optimizing Bayesian agent would take in the last period of the experiment as a benchmark. The simulations are conducted
using each subject’s prior beliefs about their abilities. The blue dashed line in Panel B represents the average simulated Bayesian action for
correctly speci�ed subjects whereas the red dashed line in Panel B represents the average simulated Bayesian action for overcon�dent subjects.

Statistical Di�erences in Learning with and without a Misspeci�ed Model

We use a displacement measure ΔOPT = e − e∗(�0) to capture how far each action e is relative to
the �rst-best optimal action. Note that this measure is positive for actions that are greater than
the �rst-best optimal action and negative for actions that are smaller than the �rst-best optimal
action. We then estimate the following displacement-from-benchmark regression in di�erent
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periods: ΔOPT = � + �M + " where � captures displacement from �rst-best optimal action for
correctly speci�ed subjects, M is a dummy variables that takes the value 1 for overcon�dent
subjects, � captures the di�erence in displacement-from-benchmark for overcon�dent subjects
and " is an error term.

Table 1 presents the estimation results. First, note that correctly speci�ed subjects do not sig-
ni�cantly displace themselves from the �rst-best optimal action neither at the beginning nor to-
wards the end of the experiment. On the other hand, we �nd that overcon�dent subjects start out
positively yet not signi�cantly displacing themselves from the �rst-best optimal action (p = 0.48).
However, we �nd that initial positive displacement of overcon�dent subjects turn signi�cantly
and persistently negative in the later periods of the experiment. In particular, throughout the last
400 periods of the experiment, overcon�dent subjects displace themselves around 10 points away
from the �rst-best optimal action. Figure A1 in Appendix A presents these patterns in detail.

Table 1: Estimation of the E�ect of Overcon�dence on Displacement Relative to the First-Best
Optimal Action

Dependent Variable: ΔOPT

(1) (2) (3) (4)

� 5.087 -10.13∗∗ -11.03∗∗∗ -9.662∗∗

(6.348) (3.231) (3.032) (2.887)

� -1.326 -0.293 -0.217 -1.113
(3.556) (2.184) (2.195) (1.746)

Observations 128 128 128 128
Period 1 501 701 901

Notes: The table presents the average displacement relative to the �rst-best opti-
mal action for correctly speci�ed and overcon�dent agents. Each column conducts
the estimation ΔOPT = � + �M + " for the indicated period. Each observation in
a period corresponds to an individual action. The observations within periods
aggregated across treatments Exogenous and Endogenous.

We use a second displacement measure ΔBAYES = e − e∗(EΠsim[�]), where Πsim is the simulated
posterior distribution on � in the last period of the experiment, to capture how far each action e
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is relative to the simulated Bayesian action for the last period in the experiment.56 We separately
estimate a displacement-from-benchmark regression for correctly speci�ed and overcon�dent
subjects in di�erent periods: ΔBAYES = � + " where � captures displacement from the simulated
Bayesian action for either correctly speci�ed or overcon�dent subjects, and " is an error term.

Table 2: Estimation of Displacement Relative to the Simulated Bayesian Action

Panel A: Correctly Speci�ed Panel B: Overcon�dent

(1) (2) (3) (4) (1) (2) (3) (4)
� 0.357 1.389 1.465 0.570 20.40∗∗∗ 6.208∗∗∗ 5.389∗∗ 5.861∗

(3.427) (1.955) (1.965) (1.475) (4.296) (1.687) (1.567) (2.214)
Observations 86 86 86 86 42 42 42 42
Period 1 501 701 901 1 501 701 901

Notes: The table presents the average displacement from the simulated Bayesian action relative to the last period for correctly
speci�ed and overcon�dent agents. Each column conducts the estimation ΔBAYES = � + " for the indicated period. Each observation
in a period corresponds to an individual action. The observations within periods are aggregated across treatments Exogenous and
Endogenous.

Table 2 presents the estimation results. Note that correctly speci�ed subjects on average do
not displace themselves from the simulated Bayesian action. On the other hand, overcon�dent
subjects are systematically over the simulated Bayesian action. However, we see that the ex-
tent of displacement for the overcon�dent subjects is getting smaller as subjects move along the
experiment’s time horizon. Figure A2 in Appendix A presents these patterns in detail.

We summarize our �ndings in this subsection in the following result:

Result 1. Overcon�dent subjects’ learning processes lead them to take growingly suboptimal ac-
tions throughout the experiment’s time horizon. On the other hand, correctly speci�ed subjects’
learning processes do not generate a systematic deviation from the �rst-best optimal action through-
out the experiment. Moreover, overcon�dent subjects’ learning processes yield outcomes that are less

5To be more precise, e∗(EΠsim [�]) is the action that a myopically optimizing Bayesian agent would take in the last
period of the experiment.

6Similarly, this measure is positive for actions that are greater than the simulated Bayesian action and negative
for actions that are smaller than the simulated Bayesian action.
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suboptimal than the Bayesian prediction while correctly speci�ed subjects’ learning process is fully
consistent with the Bayesian prediction.

4.3 Does Endogenous Learning Exacerbate Suboptimal Behavior?

In this subsection, we aim to answer if endogenous learning exacerbate suboptimal behavior
when the feedback subjects receive is endogenous to their actions. Theoretical predictions are
such that endogenous learning should exacerbate overcon�dent agents’ suboptimal behavior. For
correctly speci�ed agents, the theory’s predictions are ambiguous. However, using simulations,
we �nd that endogenous learning should not lead to a change in behavior for correctly speci�ed
subjects by the end of the experiment. We start this subsection by comparing the behavior of
overcon�dent subjects in Exogenous and Endogenous. We then turn to correctly speci�ed
subjects and compare their behavior across treatments.

Behavior of Overcon�dent Subjects

Figure 7 shows the evolution of displacement relative to the �rst-best optimal action for over-
con�dent subjects in Exogenous and Endogenous. We �nd that overcon�dent subjects in both
treatments start out with actions that are close to the �rst-best optimal action. In both treatments,
subjects exhibit negative displacement over time and we �nd that overcon�dent subjects in En-
dogenous exhibit greater negative displacement starting with Period 10. However, the di�erence
in negative displacement vanishes towards the end of the experiment. Panel B provides further
insights as to why we see the di�erence between the treatments vanish towards the end of the
experiment. Overcon�dent subjects in Exogenous persistently move closer to the Bayesian pre-
diction and meets the Bayesian prediction in the �nal period of the experiment whereas overcon-
�dent subjects in Endogenous decelerate their move towards the Bayesian prediction towards
the end of the experiment.
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Figure 7: Evolution of Displacement for Overcon�dent Subjects

Notes: Panel A shows the average displacement relative to the �rst-best optimal action for overcon�dent subjects in treatment Exogenous and
Endogenous across periods. Panel B shows the average displacement relative to the simulated Bayesian action for overcon�dent subjects in
treatment Exogenous and Endogenous across periods. Each observation in a period corresponds to an individual action.

Table 3 provides the estimates of the treatment e�ect using displacement relative to the �rst-
best optimal action as a benchmark. We estimate the regression ΔOPT = � + �T + " where �
captures the average displacement-from-benchmark for subjects in Exogenous, T is a dummy
variable that takes the value 1 for subjects in Endogenous, � captures the treatment e�ect and
" is an error term. The estimates for � across periods clearly show that overcon�dent subjects’
actions in Exogenous growingly and signi�cantly moves away from to the �rst-best optimal
action exhibiting negative displacement from Period 1 to 901. On the other hand, the estimates
for � across periods show that there is no signi�cant exacerbation of displacement for overcon�-
dent subjects in Endogenous. Table A1 provides statistical evidence that overcon�dent subjects
in Exogenous act consistent with the Bayesian prediction by Period 901, while the behavior of
overcon�dent subjects remain markedly di�erent from the Bayesian prediction by Period 901.
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Table 3: Estimation of the Treatment E�ect for Overcon�dent Subjects

Dependent Variable: ΔOPT

(1) (2) (3) (4)
� 7.373 -7.683 -5.076 1.627

(10.51) (4.633) (4.127) (4.677)

� -0.100 -6.404∗ -8.588∗∗ -11.63∗∗

(6.604) (2.889) (2.564) (3.410)
Observations 42 42 42 42
Period 1 501 701 901

Notes: The table presents the average displacement relative to the �rst-best
optimal action for overcon�dent agents. Each column conducts the estimation
ΔOPT = � + �T + " for the indicated period. Each observation in a period corre-
sponds to an individual action.

Behavior of Correctly Speci�ed Subjects

Panel A of Figure 8 displays the evolution of displacement relative to the �rst-best optimal action
for overcon�dent subjects in Exogenous and Endogenous. There is no discernible di�erence
between the actions of correctly speci�ed subjects in our treatments. We see that in both treat-
ments behavior remains close to the �rst-best optimal benchmark throughout the experiment.
Panel B of Figure 8 displays the evolution of displacement relative to the simulated Bayesian
actions. Again, we do not see any systematic deviation from the Bayesian benchmark for the
duration of the experiment.
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Figure 8: Evolution of Displacement for Correctly Speci�ed Subjects

Notes: Panel A shows the average displacement relative to the �rst-best optimal action for correctly speci�ed subjects in treatment Exogenous
and Endogenous across periods. Panel B shows the average displacement relative to the simulated Bayesian action for overcon�dent subjects in
treatment Exogenous and Endogenous across periods. Each observation in a period corresponds to an individual action.

Table 4 provides the estimates of the treatment e�ect using displacement relative to the �rst-
best optimal action as a benchmark. We estimate the identical displacement-from-benchmark
regressionΔOPT = �+�T+" for correctly speci�ed subjects. The estimates for � show that subjects
in Exogenous exhibit negative displacement towards the end of the experiment although the
magnitude of this move in each period is insigni�cant. The estimates for � in each period indicate
that subjects in Endogenous do not take signi�cantly di�erent actions compared to the subjects
in Exogenous. Table A2 further documents that the subject behavior in both Exogenous and
Endogenous are consistent with the simulated Bayesian action by the end of the experiment.
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Table 4: Estimation of the Treatment E�ect for Correctly Speci�ed Subjects

Dependent Variable: ΔOPT

(1) (2) (3) (4)
� -11.32 7.426 1.965 4.209

(7.025) (4.298) (4.370) (3.462)

� 4.205 -3.920 -1.177 -3.168
(5.038) (3.212) (3.535) (2.626)

Observations 86 86 86 86
Period 1 501 701 901

Notes: The table presents the average displacement relative to the �rst-best
optimal action for correctly speci�ed subjects. Each column conducts the es-
timation ΔOPT = � + �T + " for the indicated period. Each observation in a
period corresponds to an individual action.

We summarize our �ndings from this subsection in the following result:

Result 2. Contrary to the theoretical prediction, endogenous learning does not exacerbate the extent
of suboptimal behavior for overcon�dent subjects. Similarly, although now consistent with the theory,
we do not detect a change in behavior for correctly speci�ed subjects when feedback is endogenous
to their actions. Moreover, we �nd that overcon�dent subjects’ behavior deviates from the Bayesian
benchmark when feedback is endogenous but not when feedback is exogenous. On the other hand,
correctly speci�ed subjects behavior do not deviate from the Bayesian benchmark irrespective of the
endogeneity of feedback.

4.4 Learning About One’s Self

We have so far investigated how subjects learn about the external decision variable in their en-
vironment. In this subsection, we turn to how subjects learn about their “ability" parameters. A
Berk-Nash equilibrium of the single agent problem we investigate is one in which beliefs about
the ability parameter concentrate on the prior where there is no self-learning as we have dis-
cussed earlier. Simulating a Bayesian learning model for the �nite duration of our experiment
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yields posteriors consistent with this equilibrium by the end of the experiment, that is Period 1000.
Simulations also con�rm that there should be no self-learning for the duration of the experiment
in subjects in Exogenous. We start this subsection by �rst looking at how overcon�dent subjects
learn about their ability compared to correctly speci�ed subjects at the aggregate. We then look
at how endogenous learning a�ects learning about self for overcon�dent and correctly speci�ed
subjects.

Throughout this subsection, we use a displacement measure Δa = Ep[a]−a0 to capture how far
each expected ability level Ep[a] is relative to the true ability a0 where the expectation is taken
using the probability mass function p on a. Note that this measure is positive for beliefs that
generate an expected ability level that is greater than the true ability level.

Di�erences in Self-Learning between Overcon�dent and Correctly Speci�ed Subjects

Figure 9 presents a comparison of the displacement of expected abilities relative to the true ability
using three di�erent probability mass functions: subject’s elicited prior on their ability, subject’s
elicited posterior on their ability and the simulated Bayesian posterior for the subject. Panel A
shows that overcon�dent agents’ expectations of their abilities move towards their true abilities
after receiving 1000 periods worth of feedback. This move is signi�cant at conventional levels (p =
0.02). The signi�cant reduction in displacement relative to the true ability is also inconsistent with
Bayesian learning. We �nd that subjects posterior means average 5.96 lower than the simulated
Bayesian posteriors (p = 0.04). Panel B documents that correctly speci�ed agents’ posterior
expectations about their abilities do not signi�cantly di�er from their prior expectations (p = 0.16)
or the Bayesian benchmark (p = 0.21).
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Figure 9: Displacement of Expected Ability Relative to the True Ability

Notes: Figure shows the average displacement of expected ability levels relative to the true abilities using subjects’ priors, posteriors, and simulated
Bayesian posteriors. Panel A focuses on overcon�dent subjects where as Panel B focuses on correctly speci�ed subjects. The black dashed line
indicates the Bayesian benchmark. Whiskers indicate 95% con�dence intervals.

One might then be curious if overcon�dent subjects move their expectations on their abilities
towards their true abilities within the con�nes of their initial mental models. Table 5 provides
evidence on how subjects’ learning processes may lead them to completely switch their mental
models. Although the majority of overcon�dent subjects stick with their initial mental models, we
�nd that 22% of overcon�dent subjects end up assigning some probability to their true ability level
after receiving feedback for 1000 periods. On the other hand, 13% of correctly speci�ed subjects
end up assigning no probability their true ability level at the end of their learning process.

Table 5: Switching Mental Models

Posterior Models
Overcon�dent Correctly Speci�ed Undercon�dent

Prior
Models

Overcon�dent 78% 22% 0%
Correctly Speci�ed 13% 85% 2%
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How Does Endogeneity of Feedback A�ect Self-Learning for Overcon�dent Subjects?

According to the Bayesian benchmark, there is no di�erence in self-learning depending on the
endogeneity of feedback. We expect overcon�dent subjects to exhibit virtually no self-learning in
both Exogenous and Endogenous after 1000 periods. Panel A of Figure 10 documents that sub-
jects in Exogenous somewhat learn their true ability after 1000 periods as the expected posterior
beliefs show a smaller displacement from the true ability. The di�erence in prior and posterior
means is insigni�cant (p = 0.10) and subjects’ posterior mean is consistent with Bayesian pos-
terior mean (p = 0.17). On the other hand, Panel B documents that posterior means of subjects
in Endogenous considerably move towards their true abilities, yet the move is not signi�cant at
conventional levels (p = 0.07).

Figure 10: Displacement of Expected Ability Relative to the True Ability - Overcon�dent Subjects

Notes: Figure shows the average displacement of expected ability levels relative to the true abilities using subjects’ priors, posteriors, and simulated
Bayesian posteriors. Panel A focuses on overcon�dent subjects inExogenouswhere as Panel B focuses on overcon�dent subjects inEndogenous.
The black dashed line indicates the Bayesian benchmark. Whiskers indicate 95% con�dence intervals.

An important point that is worth emphasizing here is the increased self-learning with endoge-
nous feedback is consistent with our earlier �nding that endogenous learning does not exacerbate
suboptimal behavior. If endogeneity of feedback leads subjects to better learn their own abilities,
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then subjects should take actions that are closer to the �rst-best optimal action in the main part
of the experiment.

How Does Endogeneity of Feedback A�ect Self-Learning for Correctly Speci�ed Sub-
jects?

As in the case of overcon�dence, Bayesian learning does not predict subjects’ self-learning to
depend on the endogeneity of feedback. We expect no di�erence in mean prior and posterior
beliefs for subjects in Exogenous and Endogenous. Panel A of Figure 11 con�rms the Bayesian
prediction for subjects inExogenous: there is virtually no di�erence in prior and posterior means
(p = 0.92). On the other hand, we �nd posterior means to move signi�cantly closer to the subjects’
true abilities in Endogenous (p = 0.04). The di�erence in posterior and the Bayesian posterior
means in Endogenous is also signi�cant (p = 0.03).

Figure 11: Displacement of Mean Beliefs Relative to the True Ability - Correctly Speci�ed Subjects

Notes: Figure shows the average displacement of expected ability levels relative to the true abilities using subjects’ priors, posteriors, and simulated
Bayesian posteriors. Panel A focuses on correctly speci�ed subjects in Exogenous where as Panel B focuses on correctly speci�ed subjects in
Endogenous. The black dashed line indicates the Bayesian benchmark. Whiskers indicate 95% con�dence intervals.

We summarize our �ndings from this subsection in the following result:
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Result 3. Inconsistent with Bayesian learning, overcon�dent subjects’ posterior expectations about
their ability signi�cantly move closer to their true abilities. On the other hand, consistent with
Bayesian learning, correctly speci�ed subjects’ prior and posterior expectations about their own abil-
ity do not di�er. Moreover, both overcon�dent and correctly speci�ed subjects exhibit greater self-
learning when feedback is endogenous to their actions.

5 Conclusion

In this paper we use people’s tendency to hold optimistic beliefs about their abilities to generate
model misspeci�cation and investigate the implications of overcon�dence as a misspeci�ed men-
tal model on learning about own ability and a fundamental. We �nd that overcon�dent subjects
develop pessimistic beliefs about the fundamental and take growingly suboptimal actions. On
the other hand, we �nd that endogenous feedback does not exacerbate the extent of suboptimal
behavior: a result that is inconsistent with the theoretical prediction. When we look at how sub-
jects learn about their own ability, we �nd that 1000 periods’ worth of objective feedback lead
some overcon�dent subjects to open their models to the possibility of truth. The "weakening" of
mental models we observe is consistent with previous evidence. Complementing the nascent ex-
perimental literature on learning with misspeci�ed mental models, we �nd that the "weakening"
of mental models is more pronounced with endogenous feedback, explaining why endogenous
feedback may not exacerbate the extent of suboptimal behavior.
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Appendix A Additional Results

Figure A1: Evolution of Displacement Relative to the First-Best Optimal Action

Notes: Figure shows the average displacement relative to the �rst-best optimal action for correctly speci�ed and overcon-
�dent agents across periods. Each observation in a period corresponds to an individual action. The observations within a
period are aggregated across treatments Exogenous and Endogenous.
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Figure A2: Evolution of Displacement Relative to the Simulated Bayesian Action

Notes: Figure shows the average displacement relative to the simulated Bayesian action for correctly speci�ed and overcon-
�dent agents across periods. Each observation in a period corresponds to an individual action. The observations within a
period are aggregated across treatments Exogenous and Endogenous.
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Figure A3: Evolution of Actions for Overcon�dent Subjects

Notes: Both Panel A and Panel B show the average action separately for overcon�dent subjects in Exogenous and Endogenous across periods.
Panel A presents the �rst-best optimal action as a benchmark. The blue dashed line in Panel A represents the average �rst-best optimal action for
overcon�dent subjects in Exogenous. The red dashed line in Panel A represents the average �rst-best optimal action for overcon�dent subjects
in Endogenous. Panel B presents the average action a myopically optimizing Bayesian agent would take in the last period of the experiment as
a benchmark. The simulations are conducted using each subject’s prior beliefs about their abilities. The blue dashed line in Panel B represents
the average simulated Bayesian action for overcon�dent subjects in Exogenous whereas the red dashed line in Panel B represents the average
simulated Bayesian action for overcon�dent subjects in Endogenous.
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Figure A4: Evolution of Actions for Correctly Speci�ed Subjects

Notes: Both Panel A and Panel B show the average action separately for correctly speci�ed subjects in Exogenous and Endogenous across
periods. Panel A presents the �rst-best optimal action as a benchmark. The blue dashed line in Panel A represents the average �rst-best optimal
action for correctly speci�ed subjects in Exogenous. The red dashed line in Panel A represents the average �rst-best optimal action for correctly
speci�ed subjects in Endogenous. Panel B presents the average action a myopically optimizing Bayesian agent would take in the last period of
the experiment as a benchmark. The simulations are conducted using each subject’s prior beliefs about their abilities. The blue dashed line in
Panel B represents the average simulated Bayesian action for correctly speci�ed subjects in Exogenous whereas the red dashed line in Panel B
represents the average simulated Bayesian action for correctly speci�ed subjects in Endogenous.
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Table A1: Estimation of Displacement Relative to the Simulated Bayesian Actions - Overcon�dent
Subjects

Panel A: Exogenous Panel B: Endogenous

Dependent Variable: ΔBAYES Dependent Variable: ΔBAYES
(1) (2) (3) (4) (1) (2) (3) (4)

� 11.95∗ 5.642∗ 3.458 0.418 28.08∗∗∗ 6.722∗ 7.145∗ 10.81∗∗

(5.249) (2.190) (1.676) (2.886) (6.341) (2.576) (2.556) (2.995)
Observations 20 20 20 20 22 22 22 22
Period 1 501 701 901 1 501 701 901

Notes: The table presents the average displacement relative to the �rst-best optimal action for overcon�dent agents in Exogenous
and Endogenous. Each column conducts the estimation ΔBAYES = � + " for the indicated period. Each observation in a period
corresponds to an individual action.

Table A2: Estimation of Displacement Relative to the Simulated Bayesian Actions - Correctly
Speci�ed Subjects

Panel A: Exogenous Panel B: Endogenous

Dependent Variable: ΔBAYES Dependent Variable: ΔBAYES
(1) (2) (3) (4) (1) (2) (3) (4)

� 5.972 -2.152 0.590 -1.401 -5.526 5.099∗ 2.381 2.634
(4.842) (2.978) (3.318) (2.364) (4.736) (2.415) (2.060) (1.700)

Observations 44 44 44 44 42 42 42 42
Period 1 501 701 901 1 501 701 901

Notes: The table presents the average displacement relative to the �rst-best optimal action for correctly speci�ed agents in Exoge-
nous and Endogenous. Each column conducts the estimation ΔBAYES = � + " for the indicated period. Each observation in a period
corresponds to an individual action.
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Appendix B Experiment Instructions andUnderstandingQuizzes
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INSTRUCTIONS 

Welcome 

You are about to participate in a decision-making experiment. In this experiment, you can 

earn a considerable amount of money, which will be paid to you through Venmo at the 

end of the experiment. The amount of money you earn will depend on your decisions. 

Therefore, it is in your best interest that you read these instructions carefully. If you need 

assistance, please raise your hand through the Zoom app. The experimenter will answer 

your question in a private chat.  

The experiment consists of four parts. One of these parts will be randomly selected for 

payment at the end of the experiment. In the part that is randomly selected for payment, 

you can make either $25 or $0. In addition to your earnings from the experiment, you will 

receive a show-up fee of $10 for participating in the experiment. This means that at the 

end of the experiment you will receive either a payment of $35 (if in the randomly selected 

part you made $25) or $10 (if in the randomly selected part you made $0). 

For each part of the experiment, you will be precisely instructed about your task. 

Please put away your cell phone and do not interact with other participants throughout 

the experiment. 

Instructions for Part 1 

You will go through an IQ test in this part of the experiment. Tests similar to this are 

frequently used to measure intelligence. 

The test consists of 10 questions, and you have 10 minutes to solve them. You should 

solve as many of the 10 questions as possible. Your earnings from this part of the 

experiment will be either $25 or $0. At the end of the experiment, we will randomly select 

one of your answers to the IQ test. If the selected answer is correct, you will earn $25 from 

this part of the experiment. This means the higher the number of correct answers, the 

more likely you will make $25 in this part of the experiment. 
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Instructions for Part 2 

We conducted the exact same IQ test with other participants who previously, exactly like 

you, participated in an experiment at UCSB Experimental and Behavioral Economics 

Laboratory. We randomly selected 19 of these participants. Together with these 19 

participants, you now form a group of 20 participants. 

We constructed a ranking of this group based on the IQ test scores. The group member 

that scored the highest on the IQ test obtained rank 1. The group member with the 

second-highest score obtained rank 2, and so on. The group member with the worst 

performance on the IQ test got rank 20. In case of a draw between group members, the 

computer randomly decided who received the higher rank. 

The computer then assigned you a color based on your ranking in your group. The top 

scoring members with ranking 1 to 4 are assigned Dark Green, the members with ranking 

5 to 8 are assigned Light Green, the members with ranking 9 to 12 are assigned yellow, 

the members with ranking 13 to 16 are assigned light red, and the bottom scoring 

members with ranking 17 to 20 are assigned dark red. 

How do you think you ranked on the IQ test? 

In this part of the experiment, we are interested in how you think you ranked based on 

your IQ test score within your group of 20. 

Your task is to submit your belief about how likely it is that you are assigned the color 

dark green, light green, yellow, light red or dark red based on the IQ test score rankings. 

To indicate your beliefs, you will use a slider. Where you move the slider will represent 

your best assessment of the likelihood (expressed as a chance out of 100) that you are 

assigned one of these colors. 

We will now go through an Explanation Stage to understand how the sliders work. 

--- 

In this Explanation Stage, I would like you to enter a hypothetical subject’s beliefs into the 

system. 

Let’s call this subject Ash. 
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Ash believes that their ranking is somewhere from 1st to 8th. However, they think it is 

more likely that they ranked from 1st to 4th rather than 5th to 8th. So, Ash believes they 

are more likely to be assigned the color dark green rather than light green. 

Suppose, specifically, that Ash believes they are assigned dark green with a likelihood of 

60 out of 100, and they are assigned light green with a likelihood of 40 out of 100. 

Let us now enter Ash’s beliefs into the system using sliders. 

--- 

Now I would like you to do another example on your own. 

In this exercise, you enter another hypothetical subject’s beliefs into the system. Let’s call 

this subject Blake. 

Blake believes their likelihood of ranking from 13th to 16th is 40 out of 100, and ranking 

from 17th to 20th is 60 out of 100. 

Please move the sliders to indicate Blake’s beliefs and finalize. 

 

Your Payment 

You will be paid based on the accuracy of your belief. Your earnings from this part of the 

experiment will be either 25 or 0 USD, depending on how accurate your belief is about 

your color assignment based on the IQ test scores. This means the higher the likelihood 

your belief assigns to your actual color, the more likely you will receive $25. 

If you understand this, you can click directly “Next”. If you want to know the details of how 

we calculate your payments, please click “Details”. 

 

[Details on Your Payment] 

After you state your belief, the computer will randomly draw a number k. This number is 

between 0 and 20,000. (More precisely, this number is drawn from a discrete uniform 

distribution on the interval from 0 to 20,000.) You will then receive $25 if the sum S is 

smaller or equal to k where S is the sum of the following elements: 

50



• The squared deviation between the likelihood (out of 100) that you allocated to 

your actual color and 100 points. 

• For each possible color that is not your actual color: The squared deviation 

between 0 points and the number of points that you allocated to that color. 

The exact formula that we use to determine S is 

𝑆 = ∑(𝐼(𝑌𝑜𝑢𝑟𝐶𝑜𝑙𝑜𝑟 = 𝑐) × 100 − 𝐿𝑐)
2

𝑐∈𝐶

 

Where 𝐼(𝑌𝑜𝑢𝑟𝑅𝑎𝑛𝑘𝑖𝑛𝑔 = 𝑐) is an indicator function that takes the value 1 if your color is 

𝑐,   𝐶 = {𝐷𝑎𝑟𝑘𝐺𝑟𝑒𝑒𝑛, 𝐿𝑖𝑔ℎ𝑡𝐺𝑟𝑒𝑒𝑛, 𝑌𝑒𝑙𝑙𝑜𝑤, 𝐿𝑖𝑔ℎ𝑡𝑅𝑒𝑑, 𝐷𝑎𝑟𝑘𝑅𝑒𝑑} is the set of colors and 𝐿𝑖 is the 

likelihood (out of 100) that you assign to color 𝑐. 

While this formula might look complicated, the basic idea is very simple: you can secure the largest 

chance of winning $25 by reporting your most accurate belief about your assigned color. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

51



Instructions for Part 3 

Welcome to the main part of the experiment! 

Introduction 

At the beginning of this part of the experiment, we will assign a project to you. Your job 

is to act as a project manager for a company. Specifically, we will ask you to repeatedly 

recommend investment decisions to the company on your assigned project to maximize 

total profits from this project over multiple periods. The higher the profit you generate 

from this project, the more likely you will earn $25 from this part of the experiment. 

Information on Projects 

Projects have different qualities. Higher quality projects generate more profits. 

Some projects are of higher quality than others. The project qualities can be any whole 

number between 0 and 100. The lowest possible project quality is 0, and the highest is 

100. The higher the quality of your assigned project, the higher your profits are from the 

project. 

You cannot choose or change your assigned project. 

Although a high-quality project increases your profits, you cannot choose your project or 

its quality. We will randomly assign a project to you at the beginning of the experiment. 

You will be working on the same project that we assigned you until the end of the 

experiment. 

You will not know your assigned project’s quality. 

The qualities of the projects vary between 0 and 100. All you will know about your 

assigned project’s quality is that it can be any whole number between 0 and 100. You will 

not know your assigned project’s quality until the end of the experiment. 

Recap: 

• You act as a project manager for a company in this part of the experiment 

• We randomly assign you a project at the beginning of this part of the experiment 

• You do not get to choose the project or its quality 

• You work on the same project until the end of the experiment 

• You repeatedly recommend to the company how much to invest into your assigned 

project 
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• Your assigned project’s quality can be any whole number between 0 to 100, each 

number equally likely 

• You do not know your project’s quality until the end of the experiment 

• Your goal is to maximize profits from the project you are assigned to 

How do you maximize the profit from your assigned project in each period? 

To make things easy for you, we designed the experiment so that it is straightforward to 

maximize the profit from your assigned project. You maximize your profit in each period 

by recommending an investment amount that exactly matches what you think your 

project’s quality is. 

Example. 

Suppose you believe that your project’s quality is 50. Then, you should recommend an 

investment amount of 50 to maximize the profit from the project in that period. Similarly, 

suppose you believe your project’s quality is 74. In that case, you should recommend an 

investment amount of 74 to maximize the profit from the project in that period. 

You can make sense of this simple profit-maximizing rule in the following way. If you have 

a high-quality project, you are better off investing a lot into that project as the return on 

that project is high. On the other hand, if you have a low-quality project, you are better 

off not investing too much into the project as the return on that project is low. Therefore, 

the profit-maximizing strategy is to match your recommended investment amount 

with the quality of the project. 

--- 

Now we will go through the details of calculating your profit when you recommend an 

investment decision. The instructions we will go through in the following pages might 

seem complex. However, please remember that we will NOT ask you to solve complex 

equations to maximize your profit during the experiment. The reason we provide these 

details is to ensure that you have a complete understanding of the experiment’s rules. 

The idea behind profit maximization is straightforward: recommend the investment 

amount that matches what you believe your project’s quality is. You do not need to 

worry about maximizing your profit as long as you match your investment amount to 

what you think your project’s quality is. 

Please feel free to ask any questions along the way. 
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Details of Profit Calculations 

The way we calculate profit in each period is straightforward. First, we will calculate the 

income you generate from the project and subtract the investment cost to calculate the 

profit. Then, we add a bonus of 5000 to ensure that no one ends up with a negative profit 

in the experiment. 

𝑃𝑟𝑜𝑓𝑖𝑡=𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝐼𝑛𝑐𝑜𝑚𝑒−𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝐶𝑜𝑠𝑡+5000 

As you see, profits have two main components: project income and investment cost. We 

will now go through each of these components individually. 

Step 1: Project Income 

1. Project Quality refers to the intrinsic quality of the project: 

o It will be a whole number between 0 and 100 in the experiment. 

o Higher quality projects generate higher incomes 

2. Investment Amount refers to the amount you recommend the company to invest into the 

project: 

o You can choose any number between 0 and 100 as your Investment Amount 

o The higher the amount that is invested into your project, the higher the project 

income you generate 

3. Your IQ Rank Score refers to your ranking in the IQ test you have completed in the 

previous part of the experiment. The Blue Table below describes how each ranking 

corresponds to a score: 

o The higher your ranking in the IQ test you have completed at the beginning of the 

experiment, the higher the project income you generate 

 

 

 

 

 

Specifically, we calculate the project income using the following equation: 

𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝐼𝑛𝑐𝑜𝑚𝑒=𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑄𝑢𝑎𝑙𝑖𝑡𝑦×(𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝐴𝑚𝑜𝑢𝑛𝑡+𝑌𝑜𝑢𝑟𝐼𝑄𝑅𝑎𝑛𝑘𝑆𝑐𝑜𝑟𝑒) 

Your Ranking 1-4 5-8 9-12 13-16 17-20 

Your 

IQRANKSCORE 
100 80 60 40 20 
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Step 2: Investment Cost 

Investments you recommend to be made into the project have costs. The higher the 

amount you recommend to be invested, the higher the investment cost. 

Specifically, we calculate the investment cost using the following equation: 

𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝐶𝑜𝑠𝑡 =
(𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝐴𝑚𝑜𝑢𝑛𝑡)2

2
 

We can rewrite the full profit equation as 

𝑃𝑟𝑜𝑓𝑖𝑡 = 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑄𝑢𝑎𝑙𝑖𝑡𝑦 × (𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝐴𝑚𝑜𝑢𝑛𝑡 + 𝑌𝑜𝑢𝑟𝐼𝑄𝑅𝑎𝑛𝑘𝑆𝑐𝑜𝑟𝑒)

−
 (𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝐴𝑚𝑜𝑢𝑛𝑡)2

2
+ 5000 

The green part of the profit equation is the income from the project and the red part of 

the profit equation is the investment cost. 

If you have taken calculus, you can verify that the profit is maximized when you match the 

investment amount to the project’s quality 

𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝐴𝑚𝑜𝑢𝑛𝑡=𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑄𝑢𝑎𝑙𝑖𝑡𝑦 

Recap: 

• You maximize your profit in each period by matching your recommended 

investment amount to what you believe the project’s quality is 

• Higher quality projects generate higher profits 

• We calculate an IQ rank score for you based on your ranking on the IQ test 

• Higher IQ rank score generates higher profits 

 

Will the company follow your investment recommendations immediately? 

The company originally planned to invest an amount of 100 in each period on your project 

before your assignment. However, the company will immediately implement your 

recommended investment decisions and choose the amount you recommend in each 

period rather than the originally planned investment amount of 100. 
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Will you know how much profit you make after each investment decision? 

A crucial point in the experiment is that you will not know how much profit you make 

after each investment decision. Instead, you will get an evaluation from your company if 

your profit is above or below your company’s profit expectation. Since the company 

immediately implements your recommendations in each period during the experiment, 

the evaluations you get from the company will be based on your investment 

recommendations, not based on the company’s originally planned investment amount of 

100. 

Recap: 

• The company immediately implements your recommended investment decisions 

• You will not know how much profit you make after each investment decision 

• …but you will know if you beat your company’s profit expectation or not 

• The evaluation you get from the company during the experiment is based on your 

recommended amount 

How does the company determine its profit expectation? 

The lowest possible profit you can generate in the experiment is 0, and the highest is 

20,000. In each period, the company will randomly choose a profit amount, call it X, from 

the lowest possible profit amount (0) to the highest one (20,000) to expect from your 

project. If your profit is at or above X in a period, you beat your company’s profit 

expectation. If your profit is below X, you do not meet your company’s profit expectation. 

Note that the higher your profit, the more likely you beat your company’s profit 

expectation. 

Will you know your company’s profit expectations while making your decisions? 

You will not know your company’s profit expectation X before or after making your 

investment decision. The only information we will provide is if the profit you generate is 

above or below this profit expectation X. 

What happens when you beat your company’s profit expectation? 

Once you make your last decision in the experiment, we will randomly select a period. If 

the profit based on your recommended investment decision beats the company’s profit 

expectation in the randomly selected period, you earn $25 from this part of the 

experiment! 
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Recap: 

• Your company chooses a number X between 0 and 20,000 as its profit expectation 

in each period, you will not know what X is 

• The higher your profit, the more likely you beat your company’s profit expectation 

• If you beat your company’s profit expectation in a randomly selected period, you 

earn $25 from this part of the experiment 

 

We have established that you maximize profit in a period by matching your recommended 

investment amount with your project’s quality. However, you do not know what your 

project’s quality is! We will now go through how you can make some sophisticated 

guesses about your project’s quality. 

 

How can you make sophisticated guesses about your project’s quality? 

You can use your company’s profit feedback to help you better understand your IQ rank 

score and your project’s quality. Remember that your profits increase with your IQ rank 

score and your project’s quality. Hence any feedback that tells you that you beat the 

company’s profit expectation is good news for your IQ rank score and your project’s 

quality. 

On the other hand, any feedback that tells you that you did not beat the company’s 

expectations is bad news for your IQ rank score and your project’s quality. 

To help you interpret the feedback that you get from the company, we will provide you 

with an expert statistician. In each period, the statistician will prepare a report for you, 

which you can use to make sophisticated guesses about your project’s quality. 
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The Statistician’s Report 

These reports are going to look like the one on this page: 

The Statistician’s Report 

Your IQ Rank 

Score 
Project Quality 

20 75 

40 71 

60 69 

80 66 

100 65 

The report is very straightforward to read. The statistician tells you: 

• If your IQ rank score is 20, you should expect your project’s quality to be 75. 

• If your IQ rank score is 40, you should expect your project’s quality to be 71, and 

so on. 

Depending on what you believe your IQ rank score is, you may then make a sophisticated 

guess about your project’s quality. 

The statistician will update the report in each period incorporating the evaluations you 

receive from your company up until that period. 

 

Instructions for Part 4 

Please remember that at the beginning of the experiment, we assigned each participant 

in this session to a group with 19 other randomly selected people who had previously 

taken the same IQ test at UCSB Experimental and Behavioral Economics Laboratory.  

We then constructed a ranking of each group based on the IQ test scores, and the 

computer assigned you a color based on your ranking in your group of 20. 

The top scoring members with ranking 1 to 4 are assigned Dark Green, the members with 

ranking 5 to 8 are assigned Light Green, the members with ranking 9 to 12 are assigned 

yellow, the members with ranking 13 to 16 are assigned light red, and the bottom scoring 

members with ranking 17 to 20 are assigned dark red. 
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In this part of the experiment, we are again interested in how you think you ranked based 

on your IQ test score within your group of 20. 

Your task is to submit your belief about how likely it is that you are assigned the color 

dark green, light green, yellow, light red or dark red based on the IQ test score rankings. 

To indicate your beliefs, you’ll use a slider exactly as before. 

Your Payment 

You will be paid based on the accuracy of your belief. Your earnings from this part of the 

experiment will be either 25 or 0 USD, depending on how accurate your belief is about 

your color assignment based on the IQ test scores. This means the higher the likelihood 

your belief assigns to your actual color, the more likely you will receive $25. 

If you understand this, you can click directly “Next”. If you want to know the details of how 

we calculate your payments, please click “Details”. 

[Details are identical to Part 2’s Payment Details] 
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Understanding Quiz 

Question 1. 

Do you get to choose your project or its quality in the experiment? 

• Yes, I choose both the project and its quality 

• No, I do not get to choose either the project or its quality 

• I only choose the project, but I don’t get to choose its quality 

• I do not get to choose the project, but I choose its quality 

Question 2. 

What type of decisions do you make on the project you are assigned to? 

• I repeatedly give recommendations on how much the company should invest in the project  

• I repeatedly give recommendations on how many projects the company should undertake 

• I repeatedly give recommendations on whom to delegate the project 

• I repeatedly give recommendations on which company should be responsible for the project 

Question 3. 

When do you learn your assigned project’s quality? 

• At the beginning of the experiment 

• After my first investment decision 

• Before my last investment decision 

• At the end of the experiment 

 

Understanding Quiz II 

Question 1. 

How do you maximize your profit in a period in the experiment? 

• I match my recommended investment amount to the project’s quality  

• I match my recommended investment amount to my IQ Rank score 

• I match my recommended investment amount to investment cost 

• None of the above 
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Question 2. 

Suppose you believe your project’s quality is 62 in a period. 

What investment amount maximizes your profits in that period? 

• 31 

• 62 

• 93 

• Not enough information to answer this question 

Question 3. 

Which of the below factors increase profits? [Multiple choice available.]  

• Project’s Quality 

• My IQ Rank Score 

• Investment Cost 

Question 4. 

What is your IQ rank score if you rank 1st in your group on the IQ test you have previously taken? 

• 0 

• 20 

• 60 

• 100 

Question 5. 

What is your IQ rank score if you rank 5th in your group on the IQ test you have previously taken? 

• 0 

• 20 

• 60 

• 100 
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Understanding Quiz III 

Question 1. 

When will the company implement your recommended investment decisions for each period? 

• Immediately after I make my decisions 

• Once I make my last decision 

• At the beginning of the experiment, before I make any decision 

• After I make my first decision, but before my last decision 

 

Question 2. 

What will we tell you after each investment decision you make? 

• How much profit I make 

• An evaluation from the company if my profit is higher than the company’s profit expectation or 

not 

• My assigned project’s quality 

• My IQ rank score 

Question 3. 

Before you make your last decision in the experiment, the evaluations you get from the company are 

based on which investment decisions? 

• My recommended investment decisions 

• The company’s originally planned investment amount of 100 

• Neither my recommended investment decisions nor the company’s originally planned 

investment amount of 100 

• Both my recommended investment decisions and the company’s originally planned investment 

amount of 100 
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Understanding Quiz IV 

Question 1. 

How does the company choose its profit expectation in each period? 

• It randomly chooses a number between the lowest and highest possible profit amounts (0 and 

20,000) 

• It uses historical data  

• It uses investment costs 

• It uses project’s quality 

 

Question 2. 

How do we decide to pay you $25 in this part of the experiment? 

• If my recommended investment decision generates a profit that beats my company’s profit 

expectation in the first period 

• If my recommended investment decision generates a profit that beats my company’s profit 

expectation in the last period 

• If my recommended investment decision generates a profit that beats my company’s profit 

expectation in a randomly selected period  

• None of the above 

 

Understanding Quiz V 

Question 1. 

If you beat your company’s profit expectations in a period, this is good news for  

• Only your IQ rank score 

• Only the project’s quality 

• Both your IQ rank score and the project’s quality 

• Neither your IQ score nor the project’s quality 
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Question 2. 

 

 

 

 

 

 

 

 

 

If you think your IQ rank score is 60, what should you expect your project’s quality to be according to the 

statistician’s report? 

• 75 

• 71 

• 69 

• 66 

 

Question 3. 

If you think your IQ rank score is 80, what should you expect your project’s quality to be according to the 

statistician’s report? 

• 75 

• 71 

• 69 

• 66 

 

The Statistician’s Report 
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