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Abstract

This paper studies learning from multiple informed agents where each agent has a
small piece of information about the unknown state of the world in the form of a noisy
signal and sends a message to the principal, who then makes a decision that is not
constrained by predetermined rules. In contrast to the existing literature, I model the
conflict of interest between the principal and the agents more generally and consider
the case where the preferences of the principal and the agents are misaligned in some
realized states. I show that if the conflict of interest between the principal and the agents
is moderate, there is a discontinuity: when the number of agents is large enough, adding
even a tiny probability of misaligned states leads to complete unraveling in which the
agents ignore their signals, in contrast to the almost complete revealing that is predicted
by the existing literature. Furthermore, I demonstrate that no matter how small the
conflict of interest between the principal and the agents is, the information contained
in each agent’s message must vanish as the number of agents grows large. Finally, no
matter how many agents there are, the total amount of information that is transmitted
is limited, and the principal always fails to fully learn the unknown state.
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1 Introduction

This paper studies learning from multiple informed agents where each agent has a small
piece of information about the unknown state of the world in the form of a noisy signal
and sends a message to the principal, who then makes a decision that is not constrained
by predetermined rules. This framework applies to scenarios that include non-binding
shareholder voting, public protests, and survey polls. This paper also contributes to the
literature on communication with cheap talk initiated by Crawford and Sobel (1982), and
analyzes the case where there are multiple imperfectly informed senders (agents).

If the principal and the agents share the same preferences, then the agents report their
signals truthfully and the principal can fully learn the unknown state of the world as the
number of agents grows large. However, if the principal and the agents do not share the same
preferences, that is, their interests conflict, then the agents might misrepresent information
in their messages, as shown by Wolinsky (2002), Morgan and Stocken (2008), Levit and
Malenko (2011), Battaglini (2017), and Ekmekci and Lauermann (2022) among others.
Several of these studies show that if the conflict of interest between the principal and the
agents is below a certain threshold, then as the number of agents grows large, the agents
report their signals almost truthfully and the principal can still fully learn the unknown
state, and if the conflict is above the threshold, the agents’ messages become completely
uninformative for any number of agents. However, the results in all of these cases depend
on the critical assumption that the preferences of the principal and the agents are aligned if
they have complete information about the realized state.

In many situations, the preferences of the principal and the agents might not be fully
aligned even if they have complete information about the realized state. Consider the
example of non-binding shareholder voting studied by Levit and Malenko (2011), in which
the shareholders receive dispersed information concerning the unknown payoff of a proposal
to the firm and decide whether to vote in favor of it, while the manager observes the outcome
of the vote and ultimately forms his own decision. Both the manager and the shareholders
care about the payoff of the proposal and agree on the same decision if the realized payoff
is at the extremes of either very high or very low. However, if the manager receives
additional private benefits from the proposal, then when the realized payoff is moderate, the
preferences of the principal and the agents are more likely to be misaligned: in this case,
only the manager might prefer the proposal due to his additional payoff. Similarly, in public
protests studied by Battaglini (2017), the citizens receive dispersed information concerning
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the effect of reform and decide whether to participate in a rally, while the policymaker
decides whether to implement the reform after observing the citizens’ activities. The
preferences of the politician and the citizens are aligned if the reform is dramatically better
or worse than the status-quo, but are misaligned for less significant changes, where the
policymaker’s private interests or ideologies may play a larger role. A similar situation also
arises in the example of survey polls.

In this paper, I model the conflict of interest between the principal and the agents more
generally and consider the case where the preferences of the principal and the agents are
misaligned in some realized states. I show that in the framework of the existing literature, if
the conflict between the principal and the agents is moderate, there is a discontinuity: when
the number of agents is large enough, adding even a tiny probability of misaligned states
leads to complete unraveling in which the agents ignore their signals and no information is
transmitted. This result stands in contrast to the predicted outcome in the existing literature,
in which the agents report almost truthfully. In addition, I demonstrate that no matter
how small the conflict of interest between the principal and the agents is, the information
contained in each agent’s message must vanish as the number of agents grows large. Finally,
and more surprisingly, no matter how many agents there are, the total amount of information
that is transmitted is limited, and the principal always fails to fully learn the unknown state.

More specifically, I develop a model based on Levit and Malenko (2011) and Battaglini
(2017) (henceforth, LMB). Both of these papers analyze a model with one principal and
𝑁 agents. The principal must decide between policy 𝐴 and policy 𝐵. Both the principal
and the agents find 𝐴 optimal in the high state and 𝐵 optimal in the low state, that is,
their preferences are fully aligned when the state is known. All the agents have the same
preferences, while the principal is biased toward 𝐴 in each state. Therefore, when the
realized state is uncertain, they have different “thresholds of acceptance”: the principal
already prefers 𝐴 at a relatively low probability of the high state, while the agents prefer it
only at a higher probability. In the table below, I provide an example in which the principal
receives an additional payoff of 2 from 𝐴. In this example, the principal prefers 𝐴 if the
probability that the realized state is high exceeds 3/8, while the agents prefer 𝐴 in cases
where this probability exceeds 5/8. For the information structure, both the principal and the
agents share the same prior belief about the unknown state. Each agent has a small piece
of private information about the realized state in the form of a noisy signal. She can then
choose whether to approve 𝐴. The principal, in turn, observes the total number of approvals
and then chooses a policy that is most in line with his interests.
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Table 1: Payoffs from 𝐴

High Low

Principal 3+2 -5+2

Agents 3 -5

Table 2: Payoffs from 𝐵

High Low

Principal 0 0

Agents 0 0

LMB apply this type of model to non-binding shareholder voting and public protests, in
which there are usually a large number of agents (shareholders or citizens). LMB show that
information transmission is all-or-nothing. If the conflict of interest between the principal
and the agents is below a certain threshold, then as 𝑁 grows large, the agents report their
signals almost truthfully. That is, they approve 𝐴 with a probability approaching 1 when
they receive signals favoring 𝐴, and they reject 𝐴 with a probability approaching 1 when
they receive signals opposing 𝐴. Hence, the principal can fully learn the unknown state,
and the information dispersed among the agents is effectively aggregated. However, if
the conflict is above the threshold, then complete unraveling happens, in which the agents
ignore their signals, and in this case, no information is transmitted.

In what follows, I consider a further possibility, which can be exemplified with a
relatively simple scenario. Let us add a middle state to LMB’s framework.1 This middle
state is a misaligned state in which the principal prefers 𝐴 while the agents prefer 𝐵.
I illustrate the preferences of the principal and the agents in the table below. For the
information structure, each agent’s signal is ordered by the “monotone likelihood ratio
property” (MLRP), which states that, as the realization of the signal increases, it becomes
increasingly likely that the state is higher.

Table 3: Payoffs from 𝐴

High Middle Low

Principal 3+2 -1+2 -5+2

Agents 3 -1 -5

Table 4: Payoffs from 𝐵

High Middle Low

Principal 0 0 0

Agents 0 0 0

I show that when the conflict of interest in LMB’s framework is moderate and below
the threshold provided by LMB, there is a discontinuity in the results: when 𝑁 is large
enough, adding the middle state with even a tiny probability leads to complete unraveling in

1The key difference between this paper and LMB is whether the preferences of the principal and agents
are always fully aligned if they know the state, instead of whether there are two or three states.
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which the agents ignore their signals and no information is transmitted. This result stands
in contrast to LMB’s prediction, in which the agents report almost truthfully.

I demonstrate that when the conflict of interest in LMB’s framework is sufficiently
small, information is still transmitted from the agents to the principal if the middle state is
also sufficiently unlikely. However, as the number of agents grows large, the information
contained in an agent’s message vanishes, that is, the agents reject 𝐴 with a probability
approaching 1 even when they receive the signal that favors 𝐴 the most. Furthermore,
the expected number of total approvals for 𝐴 in each state is always smaller than a finite
number that is independent of 𝑁 . Similarly, the principal chooses 𝐴 when the total number
of approvals exceeds a cut-off number, and this cut-off is also always smaller than a finite
number that is independent of 𝑁 . Hence, the principal must follow either the unanimity
rule under which he chooses 𝐴 if at least one agent approves 𝐴 or rules that are similar
to the unanimity rule. Finally, I show that no matter how large 𝑁 is, the total amount of
information that is transmitted is limited and the principal always fails to fully learn the
unknown state. With a strictly positive probability, the principal chooses the wrong policy
in both the high state and the low state, even though the preferences of the principal and the
agents are fully aligned in both states.

Another important finding by Battaglini (2017) is that communication among the agents
facilitates information transmission and aggregation, benefiting both the principal and the
agents. Battaglini thus highlights the value of social media for the effectiveness of petitions
and public protests since social media allow citizens to share information. In contrast, by
further considering the case in which the agents fully communicate with each other, I show
that communication among the agents might impede information transmission and hurt
both the principal and the agents. In this case, as 𝑁 approaches infinity, the agents learn
the state, and information is effectively aggregated. However, I find that in some situations,
the principal ignores messages from the agents if they fully communicate with each other,
while if they cannot communicate, information transmission is restored. A key intuition is
that we can interpret the failure of information aggregation as intentional vagueness that
mitigates the conflict of interest between the sender (agents) and the receiver (principal), as
discussed in the cheap-talk literature initiated by Crawford and Sobel (1982).

In this paper’s basic model, the agents can either approve 𝐴 or reject it, that is, they
can only send binary messages. However, I also extend the model to the case where the
set of available messages for the agents is not restricted to being binary, which allows
the framework of this paper to capture some natural features of applications, for example,
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the possibilities of abstaining in non-binding shareholder voting, staying neutral in public
protests, and sending medium scores in survey polls. In this case, the principal’s decision
rule becomes multi-dimensional rather than a cut-off in the total number of approvals,
which complicates the analysis. I provide a novel and tractable way to analyze this case by
taking inspiration from Chernoff’s (1952) fundamental connection between simple statistical
hypothesis tests and large deviation theory. I show that all of the results presented above
are robust in a natural class of equilibria in which the agents follow monotonic strategies.

It is also interesting to see how much information the principal can elicit if he can
ex-ante commit to a decision rule. In LMB’s framework, when 𝑁 is large, the principal can
approach his first-best outcome by committing to a voting mechanism with any qualified
majority rule in which he chooses 𝐴 if the ratio of approvals exceeds a certain cut-off.
However, I show that in the present paper’s framework, the principal cannot rely on any
qualified majority rule since according to the Condorcet jury theorem, they all lead to the
first-best outcome for the agents. However, the principal can approach his first-best outcome
by randomizing between two qualified majority rules, that is, between two cut-offs in the
ratio of approvals.

The rest of this paper proceeds as follows: Section 2 describes the model and character-
izes the equilibrium. Section 3 presents the main result that learning is always incomplete
no matter how many agents there are. Section 4 discusses information transmission from
the agents to the principal. Section 5 analyzes the case where the set of available messages
for the agents is not restricted to being binary. Section 6 studies the situation in which the
principal can ex-ante commit to a decision rule. Section 7 surveys the related literature,
and Section 8 concludes the paper. Most of the proofs are sketched in the main text, with
the details relegated to the appendix.

2 Model

2.1 Basic Setting

There is one principal (he) and 𝑁 agents (she). The principal has to decide between two
policies, 𝐴 and 𝐵. When he chooses 𝐵, the payoffs for all players are normalized to 0.
When he chooses 𝐴, the payoffs for all players depend on an unknown state of the world
𝜃 ∈ Θ, with Θ = {𝜃1, ..., 𝜃𝑛} ⊂ R and 𝜃1 < ... < 𝜃𝑛.2 In state 𝜃, the principal receives the

2In this paper, we mostly focus on the case where 𝑛 = 3.
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payoff 𝑉𝑝𝑐 (𝜃) by choosing 𝐴, while the agents all have the same preference and receive the
payoff 𝑉𝑎𝑔 (𝜃).

Both the principal and the agents receive higher payoffs from 𝐴 when the state is higher,
that is, both 𝑉𝑝𝑐 (𝜃) and 𝑉𝑎𝑔 (𝜃) strictly increase with 𝜃. There are thresholds 𝜃𝑝𝑐, 𝜃𝑎𝑔 ∈ Θ

such that for each 𝑗 ∈ {𝑝𝑐, 𝑎𝑔}:

𝑉 𝑗 (𝜃) > 0 if 𝜃 ≥ 𝜃 𝑗 ,
𝑉 𝑗 (𝜃) < 0 if 𝜃 < 𝜃 𝑗 .

The principal prefers 𝐴 more than the agents in every state, that is,3

𝑉𝑝𝑐 (𝜃) ≥ 𝑉𝑎𝑔 (𝜃), ∀𝜃 ∈ Θ, (1)

𝜃𝑝𝑐 < 𝜃𝑎𝑔 . (2)

𝜃1 𝜃𝑛𝜃𝑝𝑐 𝜃𝑎𝑔

Both prefer 𝐵 Both prefer 𝐴
Principal prefers 𝐴

Agents prefer 𝐵

Figure 1
The Preferences of the principal and the agents when the realized state is known.

Their preferences are not aligned when 𝜃 ∈ [𝜃𝑝𝑐, 𝜃𝑎𝑔).

For the information structure, the principal and the agents share a common prior belief
𝑞0 = (𝑞0

1, ..., 𝑞
0
𝑛) ∈ Δ𝑛 about the unknown state, with 𝑞0

𝑗
> 0 for each 𝑗 ∈ {1, ..., 𝑛}.

Conditional on the state 𝜃 ∈ Θ, each agent 𝑖 ∈ {1, ..., 𝑁} receives a private, independent
signal 𝑠𝑖 ∈ {ℓ, ℎ}, that is, a low or a high signal, with

𝜌 𝑗 = P[𝑠𝑖 = ℎ |𝜃 𝑗 ], ∀𝜃 𝑗 ∈ Θ,

0 < 𝜌1 < ... < 𝜌𝑛 < 1. (3)

Hence, the agents are more likely to receive signal ℎ when the state is higher.
After observing the private signal, each agent chooses whether to approve 𝐴. The

3The condition (2) that the principal and the agents have different cut-offs for states is critical for results,
while the condition (1) is for the better exposition. If (1) is violated, the main results of this paper (Theorems
1 and 2) still hold and the other results except for Lemma 1 can also be easily extended.
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principal observes the total number of approvals 𝑇 ∈ {0, ..., 𝑁} and chooses the policy that
maximizes his expected payoff.

2.2 Three-State Scenario

For simplicity, this paper focuses on the case where Θ = {𝜃1, 𝜃2, 𝜃3}.4 Both the principal
and the agents prefer 𝐴 to 𝐵 in state 𝜃3 and prefer 𝐵 to 𝐴 in state 𝜃1:

𝑉𝑝𝑐 (𝜃3) > 0 and 𝑉𝑎𝑔 (𝜃3) > 0,

𝑉𝑝𝑐 (𝜃1) < 0 and 𝑉𝑎𝑔 (𝜃1) < 0,

while only the principal prefers 𝐴 in state 𝜃2:

𝑉𝑝𝑐 (𝜃2) > 0 and 𝑉𝑎𝑔 (𝜃2) < 0, (4)

that is, we have 𝜃𝑝𝑐 = 𝜃2 and 𝜃𝑎𝑔 = 𝜃3. The preferences of the principal and the agents are
not aligned in state 𝜃2, which is a misaligned state. The preferences of the principal and
the agents are illustrated by the simplex of belief 𝑞 = (𝑞1, 𝑞2, 𝑞3) ∈ Δ3 in Figure 2.

𝜃2 𝜃1

𝜃3

𝐴

𝐵

Figure 2
Preferences when the realized state is uncertain.

The corner 𝜃𝑖 for 𝑖 ∈ {1, 2, 3} corresponds to the belief 𝑞 with 𝑞𝑖 = 1. The segment 𝜃𝑖𝜃 𝑗
corresponds to the set of beliefs {𝑞 |𝑞𝑖 + 𝑞 𝑗 = 1}. Both the principal and the agents prefer 𝐴 when
they all hold a belief 𝑞 in the black area, while both prefer 𝐵 in the white area. In the shaded area,

only the principal prefers 𝐴.

4This setting allows us to incorporate and compare the results with the existing literature. The main results
of this paper (Theorems 1 and 2) hold for the general setting in Section 2.1. The other results can also be
easily extended.
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If we assume that 𝑞0
2 = 0 and ignore the misaligned state 𝜃2, then the preferences of

the principal and the agents are aligned when the realized state is known and misaligned
when the realized state is uncertain. The conflict of interest is generated by different payoff
intensities in state 𝜃1 and 𝜃3 between the principal and the agents. From (1):

𝑉𝑝𝑐 (𝜃3) ≥ 𝑉𝑎𝑔 (𝜃3) > 0 > 𝑉𝑝𝑐 (𝜃1) ≥ 𝑉𝑎𝑔 (𝜃1).

Therefore,5

−
𝑉𝑝𝑐 (𝜃1)
𝑉𝑝𝑐 (𝜃3)

≤ −
𝑉𝑎𝑔 (𝜃1)
𝑉𝑎𝑔 (𝜃3)

. (5)

As illustrated in Figure 3,6 the principal and the agents have different thresholds of accep-
tance: for each belief 𝑞 = (𝑞1, 𝑞3) ∈ Δ2, the principal prefers 𝐴 to 𝐵 if 𝑞3

𝑞1
> −𝑉𝑝𝑐 (𝜃1)

𝑉𝑝𝑐 (𝜃3) , while

the agents prefer 𝐴 to 𝐵 if 𝑞3
𝑞1
> −𝑉𝑎𝑔 (𝜃1)

𝑉𝑎𝑔 (𝜃3) .

𝑞3
𝑞10 −𝑉𝑝𝑐 (𝜃1)

𝑉𝑝𝑐 (𝜃3) −𝑉𝑎𝑔 (𝜃1)
𝑉𝑎𝑔 (𝜃3)

Principal prefers 𝐵
Agents prefer 𝐵

Principal prefers 𝐴
Agents prefer 𝐴

Principal prefers 𝐴
Agents prefer 𝐵

Figure 3
Different thresholds of acceptance when 𝑞2 = 0.

2.3 Strategy and Equilibrium

We examine the symmetric Bayesian Nash equilibrium, in which all the agents use the same
strategy x = (𝑥ℓ, 𝑥ℎ) ∈ [0, 1]2. Each agent 𝑖 ∈ {1, ..., 𝑁} approves 𝐴 with probabilities 𝑥ℓ
and 𝑥ℎ respectively, when 𝑠𝑖 = ℓ and 𝑠𝑖 = ℎ.

We consider equilibria in which the agents who receive signal ℎ are more likely to
approve 𝐴 than the agents who receive signal ℓ, that is, 𝑥ℓ ≤ 𝑥ℎ.7 Note that there always
exists a babbling equilibrium in which 𝑥ℓ = 𝑥ℎ, that is, the agents ignore their signals. In
this equilibrium, the principal finds the total number of approvals uninformative and makes

5All results hold if (5) is valid but (1) is violated. When (2) is valid, the condition (5) is equivalent to
the argument that under each belief, if the agents prefer 𝐴, the principal does so. If (5) is violated, the main
results of this paper (Theorems 1 and 2) still hold and the other results except for Lemma 1 can also be easily
extended.

6Note that when we assume 𝑞0
2 = 0 and ignore the misaligned state 𝜃2, we suppress Figure 2 to its 𝜃3𝜃1

segment, which we convert to Figure 3.
7For equilibria with 𝑥ℓ ≥ 𝑥ℎ, we relabel approving 𝐴 as rejecting 𝐴, and the following analyses still hold.
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a decision based only on his prior belief. There is complete unraveling, and no information
is transmitted from the agents to the principal.

We now consider the case where 𝑥ℓ < 𝑥ℎ. In this case, the principal forms his posterior
belief based on his prior belief and the total number of approvals𝑇 . The posterior likelihood
ratios8

P[𝑇 ; 𝑁 |𝜃3]
P[𝑇 ; 𝑁 |𝜃1]

and
P[𝑇 ; 𝑁 |𝜃2]
P[𝑇 ; 𝑁 |𝜃1]

strictly increase with 𝑇 since the agents are more likely to receive higher signals and hence
are more likely to approve 𝐴 when the realized state is higher, that is,

𝜌1𝑥ℎ + (1 − 𝜌1)𝑥ℓ < 𝜌2𝑥ℎ + (1 − 𝜌2)𝑥ℓ < 𝜌3𝑥ℎ + (1 − 𝜌3)𝑥ℓ,

by (3) and 𝑥ℓ < 𝑥ℎ. Thus, the principal’s posterior belief that the realized state is 𝜃1 strictly
decreases with 𝑇 .

Hence, a pure strategy for the principal is a cut-off 𝑇 ∈ {0, ..., 𝑁 + 1} such that he
chooses 𝐴 if and only if 𝑇 ≥ 𝑇 . A mixed strategy for the principal allows him to randomize
when he observes 𝑇 approvals. For simplicity, we assume in the main text that the principal
always chooses 𝐵 when he is indifferent and hence that he always uses pure strategies. All
results remain valid when the principal can use a mixed strategy, as shown in the appendix.9

We focus on the informative equilibrium in which the agents use an informative strategy
x with 𝑥ℓ < 𝑥ℎ, that is, the agents make decisions according to their private information,
and the principal uses a responsive strategy 𝑇 with 𝑇 ∈ {1, ..., 𝑁}, that is, the principal
makes decisions according to the number of approvals.

2.4 Characterization of Informative Equilibria

Best Response of the Agents: Consider a strategy profile in which the agents choose an
informative strategy x and the principal chooses a responsive strategy 𝑇 . An agent is pivotal
if the principal receives𝑇−1 approvals from the other 𝑁−1 agents. When deciding whether

8P[𝑇 ; 𝑁 |𝜃𝑖] =
(𝑁
𝑇

)
[𝜌𝑖𝑥ℎ + (1 − 𝜌𝑖)𝑥ℓ︸                ︷︷                ︸

Prob of approving 𝐴

]𝑇 [1 − 𝜌𝑖𝑥ℎ − (1 − 𝜌𝑖)𝑥ℓ︸                      ︷︷                      ︸
Prob of rejecting 𝐴

]𝑁−𝑇 , ∀𝑖 ∈ {1, 2, 3}.

9In particular, we do not rely on the principal’s mixed strategies to ensure the existence of informative
equilibria. In the appendix, we characterize the equilibria where the principal can use a mixed strategy and
show that if there exists an equilibrium in which the principal randomizes at 𝑇 ∈ {0, ..., 𝑁 − 1}, then there
must exist an equilibrium in which the principal chooses 𝐴 if and only if 𝑇 > 𝑇 . If there exists an equilibrium
in which the principal randomizes at 𝑇 = 𝑁 , then there exists an equilibrium in which the principal chooses
𝐴 if and only if 𝑇 = 𝑁 .
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to approve 𝐴, it is optimal for an agent to condition on the pivotal event since this agent’s
decision cannot affect the outcome in any other event. The likelihood of being pivotal in
state 𝜃𝑖 ∈ {𝜃1, 𝜃2, 𝜃3} is

P[𝑝𝑖𝑣 |𝜃𝑖; x, 𝑇] =
(
𝑁 − 1
𝑇 − 1

)
[𝜌𝑖𝑥ℎ + (1 − 𝜌𝑖)𝑥ℓ︸               ︷︷               ︸

Prob of approving 𝐴

]𝑇−1 [1 − 𝜌𝑖𝑥ℎ − (1 − 𝜌𝑖)𝑥ℓ︸                     ︷︷                     ︸
Prob of rejecting 𝐴

]𝑁−𝑇 .

When this agents receives 𝑠 ∈ {ℓ, ℎ}, she approves 𝐴 only if

3∑︁
𝑖=1

𝑞0
𝑖︸︷︷︸

prior

· P[𝑠 |𝜃𝑖]︸  ︷︷  ︸
𝑠𝑖𝑔𝑛𝑎𝑙

· P[𝑝𝑖𝑣 |𝜃𝑖; x, 𝑇]︸            ︷︷            ︸
being pivotal

·𝑉𝑎𝑔 (𝜃𝑖) ≥ 0.

Rewriting this as a payoff-weighted likelihood ratio, we have

𝑞0
3 · P[𝑠 |𝜃3] · P[𝑝𝑖𝑣 |𝜃3; x, 𝑇] · 𝑉𝑎𝑔 (𝜃3)

−∑2
𝑖=1 𝑞

0
𝑖
· P[𝑠 |𝜃𝑖] · P[𝑝𝑖𝑣 |𝜃𝑖; x, 𝑇] · 𝑉𝑎𝑔 (𝜃𝑖)

≥ 1.

Letting 𝐿𝑎𝑔 (𝑠; x, 𝑇) denote the left side. This agent chooses x as the best response if for
each 𝑠 ∈ {ℓ, ℎ}, 

𝑥𝑠 = 1 when 𝐿𝑎𝑔 (𝑠; x, 𝑇) > 1,

𝑥𝑠 ∈ [0, 1] when 𝐿𝑎𝑔 (𝑠; x, 𝑇) = 1,

𝑥𝑠 = 0 when 𝐿𝑎𝑔 (𝑠; x, 𝑇) < 1.

(6)

By (3), we have
𝐿𝑎𝑔 (ℎ; x, 𝑇) > 𝐿𝑎𝑔 (ℓ; x, 𝑇). (7)

By (6) and (7), if x with 𝑥ℓ < 𝑥ℎ is the best response to itself and 𝑇 ∈ {1, ..., 𝑁}, then it
must satisfy the following: 

𝑥ℎ = 1 if 𝑥ℓ > 0,

𝑥ℓ = 0 if 𝑥ℎ < 1.

Best Response of the Principal: Consider the case where the agents choose an informative
strategy x. When the principal observes 𝑇 approvals from 𝑁 agents, he chooses 𝐴 only if

3∑︁
𝑖=1

𝑞0
𝑖︸︷︷︸

prior

· P[𝑇 ; 𝑁 |𝜃𝑖]︸      ︷︷      ︸
𝑇 approvals

·𝑉𝑝𝑐 (𝜃𝑖) > 0.
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Rewriting this as a payoff-weighted likelihood ratio, we have∑3
𝑖=2 𝑞

0
𝑖
· P[𝑇 ; 𝑁 |𝜃𝑖] · 𝑉𝑝𝑐 (𝜃𝑖)

−𝑞0
1 · P[𝑇 ; 𝑁 |𝜃1] · 𝑉𝑎𝑔 (𝜃1)

> 1.

Letting 𝐿𝑝𝑐 (𝑇 ; x) denote the left side.10 Note that 𝐿𝑝𝑐 (𝑇 ; x) strictly increases with 𝑇 since

𝜌1𝑥ℎ + (1 − 𝜌1)𝑥ℓ < 𝜌2𝑥ℎ + (1 − 𝜌2)𝑥ℓ < 𝜌3𝑥ℎ + (1 − 𝜌3)𝑥ℓ

by (3) and 𝑥ℓ < 𝑥ℎ, that is, the agents are more likely to approve 𝐴 when the realized state
is higher. The optimal cut-off for the principal is

𝑇 = min{𝑇 | 𝐿𝑝𝑐 (𝑇 ; x) > 1 and 𝑇 ∈ {0, ..., 𝑁 + 1}}. (8)

Informative Equilibrium: An informative equilibrium is characterized by a pair {(𝑥ℓ, 𝑥ℎ), 𝑇}
that satisfies (6) and (8), with 𝑥ℓ < 𝑥ℎ and 𝑇 ∈ {1, ..., 𝑁}.

We can show that in every informative equilibrium, the agents always reject 𝐴 when
they receive signal ℓ:

Lemma 1. The agents choose 𝑥ℓ = 0 in every informative equilibrium.

For a sketch of the proof, consider an informative equilibrium with 𝑥ℓ > 0. From (6) and
(7), we have 𝑥ℎ = 1 and hence 𝑥ℓ ∈ (0, 1). Therefore, conditional on being pivotal, the
agents always approve 𝐴 when they receive signal ℎ and are indifferent between 𝐴 and 𝐵
when they receive signal ℓ. Note that the principal prefers 𝐴 more than the agents do. If an
agent is indifferent conditional on being pivotal and receiving signal ℓ, then the principal
prefers 𝐴 when this agent is pivotal and receives signal ℓ. Since this agent only rejects 𝐴
when she receives signal ℓ, the principal prefers 𝐴 when this agent is pivotal and rejects 𝐴,
that is, when the principal observes 𝑇 − 1 approvals. However, it leads to a contradiction to
the optimality of 𝑇 as shown in (8).

3 Information Aggregation

In many situations, including non-binding shareholder voting, public protests, and survey
polls, among others, there are usually a large number of agents (shareholders, citizens, and

10We suppress x in P[𝑇 ; 𝑁 |𝜃𝑖] for each 𝑖 ∈ {1, 2, 3}.
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interviewees). In this section, we study whether information dispersed among the agents
is effectively aggregated and whether the principal fully learns the state as the number of
agents grows large:

Definition 1. A sequence of equilibria {Γ𝑁 }∞𝑁=1 aggregates information if

lim
𝑁→∞

P[𝐴|𝜃1; Γ𝑁 ] + P[𝐵 |𝜃3; Γ𝑁 ] = 0.

We consider information aggregation with minimal requirements by focusing on stated 𝜃1

and 𝜃3 in which the preferences of the principal and the agents are aligned. Note that the
failure of information aggregation implies that the principal fails to fully learn the state no
matter how many agents there are.

The present paper’s framework shares certain qualitative features with elections in which
voters decide whether to approve a policy and the total number of approvals matters. As
shown by the Condorcet jury theorem (see Ladha, 1992) and its modern versions (Feddersen
and Pesendorfer, 1997, 1998, Myerson, 1998, Duggan and Martinelli, 2001), elections
effectively aggregate dispersed information among the agents (voters) under any qualified
majority rule that depends on the ratio of votes. However, full information aggregation fails
under the unanimity rule or rules that are close to it.

The fundamental difference between this paper’s framework and elections is that the
principal can now choose the policy based on his own decision and is not constrained by
predetermined rules. The existing literature extends the idea behind the Condorcet jury
theorem and shows that information is still effectively aggregated if the conflict of interest
between the principal and the agents is small. However, we show that full information
aggregation always fails after adding the misaligned state 𝜃2.

3.1 Results from the Existing Literature

In this section, we assume that 𝑞0
2 = 0 and ignore the misaligned state 𝜃2. As discussed in

Section 2.2, the preferences of the principal and the agents are fully aligned if the realized
state is known and misaligned when the state is uncertain. The principal and the agents
have different thresholds of acceptance: for each belief 𝑞 = (𝑞1, 𝑞3) ∈ Δ2, the principal
prefers 𝐴 if 𝑞3

𝑞1
> −𝑉𝑝𝑐 (𝜃1)

𝑉𝑝𝑐 (𝜃3) , while the agents prefer 𝐴 if 𝑞3
𝑞1
> −𝑉𝑎𝑔 (𝜃1)

𝑉𝑎𝑔 (𝜃3) . Hence, the ratio of

−𝑉𝑎𝑔 (𝜃1)
𝑉𝑎𝑔 (𝜃3) to −𝑉𝑝𝑐 (𝜃1)

𝑉𝑝𝑐 (𝜃3) is a natural measure for the conflict of interest between the principal
and the agents due to the different payoff intensities in state 𝜃1 and state 𝜃3. The existing
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literature has considered this case and shown that if the ratio 𝑉𝑎𝑔 (𝜃1)
𝑉𝑎𝑔 (𝜃3)

𝑉𝑝𝑐 (𝜃3)
𝑉𝑝𝑐 (𝜃1) is below a certain

threshold, information is effectively aggregated.11

Proposition 1. Assume that 𝑞0
2 = 0.

1. If
𝑉𝑎𝑔 (𝜃1)
𝑉𝑎𝑔 (𝜃3)

·
𝑉𝑝𝑐 (𝜃3)
𝑉𝑝𝑐 (𝜃1)

<
𝜌3
𝜌1

· 1 − 𝜌1
1 − 𝜌3

, (9)

then there exists a sequence of equilibria that aggregates information.
2. If

𝑉𝑎𝑔 (𝜃1)
𝑉𝑎𝑔 (𝜃3)

·
𝑉𝑝𝑐 (𝜃3)
𝑉𝑝𝑐 (𝜃1)

>
𝜌3
𝜌1

· 1 − 𝜌1
1 − 𝜌3

, (10)

then only the babbling equilibrium exists for each 𝑁 .

Figure 4 illustrates the intuition behind Proposition 1. In an informative equilibrium,
the agents who receive signal ℎ must (weakly) prefer 𝐴 conditional on being pivotal. That
is, each agent’s posterior belief must be higher than −𝑉𝑎𝑔 (𝜃1)

𝑉𝑎𝑔 (𝜃3) conditional on signal ℎ and
𝑇 − 1 approvals from the other 𝑁 − 1 agents. However, the principal optimally chooses the
cut-off 𝑇 . He must prefer 𝐵 when he observes 𝑇 − 1 approvals from 𝑁 agents. That is,
his posterior belief must be less than −𝑉𝑝𝑐 (𝜃1)

𝑉𝑝𝑐 (𝜃3) when there are already 𝑇 − 1 approvals from
𝑁 − 1 agents and the pivotal agent rejects 𝐴. Therefore, the difference in the thresholds of
the posterior likelihood ratio between the agents and the principal depends at most on one
signal ℎ and one rejection in every informative equilibrium.

0
𝑞3
𝑞10 −𝑉𝑝𝑐 (𝜃1)

𝑉𝑝𝑐 (𝜃3) −𝑉𝑎𝑔 (𝜃1)
𝑉𝑎𝑔 (𝜃3)

P[𝜃3 |𝑝𝑖𝑣]
P[𝜃1 |𝑝𝑖𝑣]

agentsprincipal

one signal ℎone rejection

Figure 4
Inference from being pivotal and thresholds of acceptance.

The red line corresponds to the argument that the agents signal ℎ must prefer 𝐴 conditional on
being pivotal. The blue line corresponds to the argument that the principal must prefer 𝐵 when he

observes 𝑇 − 1 approvals, that is, when the pivotal agent rejects 𝐴.

11Levit and Malenko (2011) consider the setting with a symmetric information structure. Battaglini (2017)
considers the setting in which the number of voters follows a Poisson distribution. Ekmekci and Lauermann
(2022) consider the setting with a deterministic population size in their online appendix. We sketch their
proof.
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Note that if the agents report their signals truthfully, that is, if the agents approve 𝐴when
they receive signal ℎ and reject 𝐴 when they receive signal ℓ, the decrease in the posterior
likelihood ratio due to one rejection is maximized. Hence, we can replace “one rejection"
in Figure 4 with "one signal ℓ" and argue that a necessary condition for the existence of
informative equilibria is that the difference in the thresholds of the posterior likelihood ratio
depends on at most one signal ℎ and one signal ℓ, and thus we derive (9).

The inequality (9) is indeed a necessary condition for the existence of the informative
equilibrium in which the agents report truthfully, that is, it is a necessary condition for the
existence of 𝑇 such that

P[𝑇 ; 𝑁 |𝜃3]
P[𝑇 ; 𝑁 |𝜃1]

≥ −
𝑉𝑎𝑔 (𝜃1)
𝑉𝑎𝑔 (𝜃3)

,

P[𝑇 − 1; 𝑁 |𝜃3]
P[𝑇 − 1; 𝑁 |𝜃1]

≤ −
𝑉𝑝𝑐 (𝜃1)
𝑉𝑝𝑐 (𝜃3)

,

when 𝑥ℎ = 1 and 𝑥ℓ = 0. However, it is not a sufficient condition due to the requirement that
𝑇 must be an integer. We show that as 𝑁 grows large, the effect of this integer requirement
vanishes, and there exists an informative equilibrium in which the agents report almost
truthfully, with 𝑥ℎ ≈ 1 and 𝑥ℓ = 0:

Lemma 2. Assume that 𝑞0
2 = 0. If 𝑉𝑎𝑔 (𝜃1)

𝑉𝑎𝑔 (𝜃3)
𝑉𝑝𝑐 (𝜃3)
𝑉𝑝𝑐 (𝜃1) <

𝜌3
𝜌1

1−𝜌1
1−𝜌3

, then for each 𝜖 , there exists an
𝑁𝜖 such that for each 𝑁 > 𝑁𝜖 , there exists an informative equilibrium in which the agents
choose 𝑥ℎ = 1 − 𝜖 and 𝑥ℓ = 0 (almost truthtelling).

Therefore, when the conflict generated by the different payoff intensities is below the
threshold, the principal can fully learn the unknown state by the law of large numbers as
𝑁 → ∞, and information is effectively aggregated.

3.2 Failure of Information Aggregation

We consider the setting with the misaligned state 𝜃2 by assuming that 𝑞0
2 > 0 in the rest

of this paper. In this setting, the preferences of the principal and the agents might be
misaligned even if they know the realized state.

As reviewed in Section 3.1, the existing literature provides the condition under which
informative equilibria exist and shows that if this condition is satisfied, there exists a
sequence of informative equilibria that aggregates information with the agents reporting
their signals almost truthfully as 𝑁 → ∞. We now show that when 𝑞0

2 > 0, full information
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aggregation always fails even if informative equilibria exist. The principal therefore fails to
fully learn the realized state even if he receives a large number of informative messages.

Theorem 1. No sequence of equilibria aggregates information. That is, there exists a
constant 𝑐 > 012 such that for each 𝑁 and each equilibrium Γ with 𝑁 agents,

P[𝐴|𝜃1; Γ] + P[𝐵 |𝜃3; Γ] > 𝑐.

We illustrate the intuition behind Theorem 1 through two steps.
Step 1. Vanishing Information

We first argue that when 𝑞0
2 > 0, the information contained in an agent’s message

must vanish as 𝑁 → ∞ in every sequence of informative equilibria, which differs sharply
from Lemma 2. We also show how quickly the information vanishes, that is, the rate of
convergence for 𝑥ℎ → 0.

Proposition 2. For each 𝜖 > 0, there exists 𝑁′
𝜖 such that when 𝑁 > 𝑁′

𝜖 , the agents choose
𝑥ℎ < 𝜖 in every informative equilibrium. Furthermore, there exists 𝑇0 > 0 such that for
each 𝑁 and each informative equilibrium with 𝑁 agents,

𝑁 · 𝑥ℎ < 𝑇0.

To understand the intuition, fix an arbitrary 𝑥 ∈ (0, 1]) and suppose that the agents
behave according to 𝑥ℎ = 𝑥 and 𝑥ℓ = 0 for each 𝑁 ∈ N+. The expected number of approvals
in each state 𝜃𝑖 is 𝑁 · 𝜌𝑖𝑥 for 𝑖 ∈ {1, 2, 3}. Figure 5 illustrates the distributions of the total
number of approvals 𝑇 when 𝑁 is large.13 We can see that when 𝑁 is large, (i) the principal
chooses 𝑇 such that 𝑁𝜌1𝑥 < 𝑇 < 𝑁𝜌2𝑥 since he prefers 𝐴 when the realized state is 𝜃2 or
𝜃3, and (ii) as shown in Figure 5,

P[𝑇 ; 𝑁 |𝜃3]
P[𝑇 ; 𝑁 |𝜃2]

≈ 0,

and hence
P[𝑝𝑖𝑣 |𝜃3]
P[𝑝𝑖𝑣 |𝜃2]

=
P[𝑇 − 1; 𝑁 − 1|𝜃3]
P[𝑇 − 1; 𝑁 − 1|𝜃2]

≈ P[𝑇 ; 𝑁 |𝜃3]
P[𝑇 ; 𝑁 |𝜃2]

≈ 0.

12The value of 𝑐 depends on other parameters, as do 𝑁𝜖 , 𝑇0, 𝑇∗, 𝑁∗, 𝑀1, and 𝛿, introduced later in this
section.

13Note that we can approximate these distributions by normal distributions.
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Each agent believes that the realized state is very unlikely to be 𝜃3 conditional on being
pivotal. She rejects 𝐴 even when she receives signal ℎ. Hence, she does not choose 𝑥ℎ = 𝑥
as a best response.

𝑁 · 𝜌1𝑥 𝑁 · 𝜌2𝑥 𝑁 · 𝜌3𝑥𝑇
𝑇

𝜃1
𝜃2
𝜃3

Figure 5
The distribution of the total number of approvals for 𝐴 in each state when the agents choose

𝑥ℎ = 𝑥 ∈ (0, 1) and 𝑥ℓ = 0. The principal optimally chooses 𝑇 .

Each agent makes her decision conditional on her signal and being pivotal. However, the
number of approvals that makes an agent pivotal is endogenous, since the principal must be
nearly indifferent between 𝐴 and 𝐵 when he observes this number. If the agents’ messages
are informative and the principal receives a large number of messages, then each agent
believes that the realized state must be either 𝜃1 or 𝜃2 given that the principal is uncertain
whether the realized state is 𝜃1 and indifferent between 𝐴 and 𝐵, as shown in Figure 5.
Hence, each agent prefers 𝐵 regardless of her signal, conditional on being pivotal.

To prevent the inference conditional on being pivotal from overwhelming each agent’s
private information, the distributions of the total number of approvals in different states
must be close to each other, as shown in Figure 6.14,

15 Hence, the information contained
in an agent’s message must vanish as 𝑁 → ∞. We then show that the information in an
agent’s message must vanish at a high speed to make the differences in the mean 𝑁 · 𝜌𝑖𝑥ℎ of
different states finite. Thus, the rate of convergence for 𝑥ℎ → 0 must be comparable to 1

𝑁
.

𝑇
𝑇

𝜃1
𝜃2
𝜃3

Figure 6
The distributions of the total number of approvals in different states must be close to each other.

14When 𝑥ℓ = 0 and 𝑁𝑥ℎ is finite, we can approximate the distributions of the total number of approvals by
Poisson distributions.

15One might directly see the failure of information aggregation from Figure 6. The distribution in state 𝜃1
must be close to the distribution in state 𝜃3. Hence, the principal cannot find a 𝑇 to separate them.
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For an alternative intuition behind Proposition 2, once again fix an arbitrary 𝑥 ∈ (0, 1])
and suppose that the agents behave according to 𝑥ℎ = 𝑥 and 𝑥ℓ = 0. In this case, the principal
and the agents have different preferences, that is, they have different cut-offs for the total
number of approvals above which 𝐴 should be implemented. If the difference in cut-offs
is large, the strategy profile with 𝑥ℎ = 𝑥 and 𝑥ℓ = 0 cannot be a part of an informative
equilibrium. However, the difference in cut-offs increases with 𝑥, which measures the
information in an agent’s message, and the number of agents 𝑁 . Therefore, the information
contained in an agent’s message must vanish as 𝑁 → ∞ in every sequence of informative
equilibria. Note that in LMB’s setting analyzed in Section 3.1, the difference in cut-offs is
constant with respect to 𝑁 and decreases with 𝑥 if we ignore the integer requirement for 𝑇 .
Step 2. Unanimity Rule

By Proposition 2, the expected number of approvals in each state is always smaller than
a finite number that is independent of 𝑁 . We also show that the principal’s cut-off 𝑇 is
always smaller than a finite number that is independent of 𝑁 . Hence, the principal must
follow either the unanimity rule (𝑇 = 1) such that he chooses 𝐵 only if all the agents reject
𝐴 or rules that are similar to the unanimity rule.

Proposition 3. There exists 𝑇0 > 0 such that for each 𝑁 and each informative equilibrium
with 𝑁 agents,

𝑇 < 𝑇0.

Note that for each 𝑁 and each informative equilibrium with 𝑁 agents, the posterior
beliefs about state 𝜃3 and state 𝜃1 must have the same magnitude conditional on being
pivotal, that is, there exists an 𝑀1 > 0 such that

1
𝑀1

<
P[𝜃3 |𝑝𝑖𝑣]
P[𝜃1 |𝑝𝑖𝑣]

< 𝑀1. (11)

If P[𝜃3 |𝑝𝑖𝑣]
P[𝜃1 |𝑝𝑖𝑣] → 0, then the agents believe that the realized state is either 𝜃1 or 𝜃2 conditional

on being pivotal, and they reject 𝐴 when they receive 𝑠 = ℎ. If P[𝜃3 |𝑝𝑖𝑣]
P[𝜃1 |𝑝𝑖𝑣] → ∞, then the

principal believes that the realized state is either 𝜃2 or 𝜃3 when he observes 𝑇 − 1 approvals,
and then chooses 𝐴.

In what follows, we show that there is no sequence of equilibria that satisfies

lim
𝑁→∞

𝑇−1∑︁
𝑇=0
P[𝑇 ; 𝑁 |𝜃1] = 1 and lim

𝑁→∞

𝑇−1∑︁
𝑇=0
P[𝑇 ; 𝑁 |𝜃3] = 0,
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since (i) P[𝑇 − 1; 𝑁 |𝜃1] and P[𝑇 − 1; 𝑁 |𝜃3] have the same magnitude as shown in (11), and
(ii) 𝑇 is always smaller than a finite number 𝑇0 as shown in Proposition 3. Note that the left
term is the probability that the principal chooses 𝐵 in state 𝜃1, while the right term is the
probability that the principal chooses 𝐵 in state 𝜃3. Therefore, no sequence of equilibria
aggregates information. Further, we can show that the principal chooses the wrong policy
with a strictly positive probability in each state:

Corollary 1. There exists 𝛿 > 0 such that for each 𝑁 and each informative equilibrium with
𝑁 agents,

P[𝐴|𝜃] > 𝛿, ∀𝜃 ∈ {𝜃1, 𝜃2, 𝜃3},
P[𝐵 |𝜃] > 𝛿, ∀𝜃 ∈ {𝜃1, 𝜃2, 𝜃3}.

4 Information Transmission

In this section, we first discuss conditions under which informative equilibria exist. If there
exist multiple informative equilibria, we can rank them in both the Blackwell order and the
Pareto order. Hence, we can identify the most informative equilibrium that also maximizes
the payoffs of the principal and the agents. We then discuss the amount of information
transmission by focusing on the most informative equilibrium and show that the amount
of information transmission decreases with the conflict of interest between the principal
and the agents. Finally, we argue that it might be better to disperse information among
the agents instead of letting one agent receive all the information and further argue that
communication among the agents might impede information transmission and hurt both the
principal and the agents.

4.1 Existence of Informative Equilibria

We say information transmission persists if there exists 𝑁1 such that for each 𝑁 > 𝑁1, an
informative equilibrium exists. We say information transmission fails if there exists 𝑁2

such that for each 𝑁 > 𝑁2, only the babbling equilibrium exists.
Proposition 1 indicates that when 𝑞0

2 = 0, information transmission fails if

𝑉𝑎𝑔 (𝜃1)
𝑉𝑎𝑔 (𝜃3)

·
𝑉𝑝𝑐 (𝜃3)
𝑉𝑝𝑐 (𝜃1)

>
𝜌3
𝜌1

· 1 − 𝜌1
1 − 𝜌3

.
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We now provide a new condition when 𝑞0
2 > 0:

Proposition 4. When 𝑞0
2 > 0, information transmission fails if

𝑉𝑎𝑔 (𝜃1)
𝑉𝑎𝑔 (𝜃3)

·
𝑉𝑝𝑐 (𝜃3)
𝑉𝑝𝑐 (𝜃1)

>
𝜌3
𝜌1
.

Therefore, when 𝑉𝑎𝑔 (𝜃1)
𝑉𝑎𝑔 (𝜃3)

𝑉𝑝𝑐 (𝜃3)
𝑉𝑝𝑐 (𝜃1) ∈ ( 𝜌3

𝜌1
,
𝜌3
𝜌1

1−𝜌1
1−𝜌3

), there exists a sequence of equilibria that
aggregates information if 𝑞0

2 = 0 from Proposition 1, while information transmission fails
if 𝑞0

2 > 0, that is, only the babbling equilibrium exists when 𝑁 is large enough.
When we assume 𝑞0

2 = 0 and ignore the misaligned state 𝜃2, we show that informative
equilibria exist if the difference in the thresholds of the posterior likelihood ratio between
the principal and the agents depends at most on one signal ℎ and one rejection. We then let
the agents report messages sincerely to maximize the information contained in one rejection
and hence in one message.

However, the agents cannot send messages sincerely when 𝑞0
2 > 0 and 𝑁 is large, as

discussed before. Otherwise, the agents infer that the state must be either 𝜃1 or 𝜃2 conditional
on being pivotal, and ignore their signals. Instead, they choose 𝑥ℎ ≈ 0 and their messages
are nearly uninformative according to Proposition 2. Therefore, when 𝑁 is large, in an
informative equilibrium, the agents signal ℎ are indifferent between 𝐴 and 𝐵 conditional
on being pivotal, that is, the posterior likelihood ratio of state 𝜃3 to state 𝜃1 conditional on
signal ℎ and 𝑇 − 1 approvals from 𝑁 − 1 agents must be higher than −𝑉𝑎𝑔 (𝜃1)

𝑉𝑎𝑔 (𝜃3) . However,
since the principal prefers 𝐵 when he observes 𝑇 − 1 approvals from 𝑁 agents, the posterior
likelihood ratio of 𝜃3 to state 𝜃1 conditional on 𝑇 −1 approvals from 𝑁 agents must be lower
than −𝑉𝑝𝑐 (𝜃1)

𝑉𝑝𝑐 (𝜃3) . Then since almost no information is contained in an agent’s message hence
in one rejection, the posterior likelihood ratio conditional on 𝑇 − 1 approvals from 𝑁 − 1
agents must also be lower than −𝑉𝑝𝑐 (𝜃1)

𝑉𝑝𝑐 (𝜃3) . Therefore, the difference in the thresholds of the

posterior likelihood ratio −𝑉𝑎𝑔 (𝜃1)
𝑉𝑎𝑔 (𝜃3) and −𝑉𝑝𝑐 (𝜃1)

𝑉𝑝𝑐 (𝜃3) depends on at most one signal ℎ.

Note that when 𝑉𝑎𝑔 (𝜃1)
𝑉𝑎𝑔 (𝜃3)

𝑉𝑝𝑐 (𝜃3)
𝑉𝑝𝑐 (𝜃1) ∈ ( 𝜌3

𝜌1
,
𝜌3
𝜌1

1−𝜌1
1−𝜌3

) and 𝑞0
2 > 0, informative equilibria might

exist when 𝑁 is small. In this situation, the agents can choose an 𝑥ℎ away from 0, which
increases the information contained in one rejection and hence makes up for a larger
difference in the thresholds of the posterior likelihood ratio. Note that both the principal
and the agents receive higher expected payoffs from any informative equilibria than from
the babbling equilibrium. Hence, the amount of information transmission and the welfare
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for the principal and the agents16 are not monotonic with respect to 𝑁 . The expected payoffs
of both the principal and the agents are maximized if the number of agents equals some
finite number. In contrast, both the principal and the agents receive a lower expected payoff
when we let the number of agents go to infinity. We discuss the effect of the number of
agents on the welfare more generally in Section 8.

When 𝑉𝑎𝑔 (𝜃1)
𝑉𝑎𝑔 (𝜃3)

𝑉𝑝𝑐 (𝜃3)
𝑉𝑝𝑐 (𝜃1) <

𝜌3
𝜌1

, we argue that information transmission persists if the mis-
aligned state 𝜃2 is unlikely, that is, the prior 𝑞0

2 is small. However, we cannot freely vary 𝑞0
2

due to the constraint that 𝑞0 ∈ Δ3. We replace 𝑞0 with 𝜆 = {𝜆1, 𝜆2} such that

𝜆1 =
𝑞0

1

𝑞0
3

and 𝜆2 =
𝑞0

2

𝑞0
3
.

The ratio𝜆2 measures the conflict of interest between the principal and the agents concerning
the misaligned state 𝜃2. Both 𝑞0

1 and 𝑞0
3 are smaller while 𝑞0

2 is larger when 𝜆2 is larger and
𝜆1 is constant.

Proposition 5. If 𝑉𝑎𝑔 (𝜃1)
𝑉𝑎𝑔 (𝜃3)

𝑉𝑝𝑐 (𝜃3)
𝑉𝑝𝑐 (𝜃1) <

𝜌3
𝜌1

, then there exists 𝜆̂2 > 0 such that17

(i) if 𝜆2 < 𝜆̂2, information transmission persists,

(ii) if 𝜆2 > 𝜆̂2, information transmission fails.

In the appendix, we provide sufficient and necessary conditions under which there exists
an informative equilibrium with 𝑇 = 1, that is, the equilibrium in which the principal
chooses the unanimity rule. We show that there exists 𝜆̂2,1 such that when 𝑁 is large,
an informative equilibrium with 𝑇 = 1 exists if 𝜆2 < 𝜆̂2,1 and only if 𝜆2 ≤ 𝜆̂2,1. We then
extend this approach and further derive 𝜆̂2, 𝑗 for each 𝑗 ∈ N corresponding to the informative
equilibrium with 𝑇 = 𝑗 and derive18

𝜆̂2 = sup
𝑗∈N

𝜆̂2, 𝑗 .

We can further show that
lim
𝑗→∞

𝜆̂2, 𝑗 = 0.

16In Section 4.3, we show that if there exists at least one informative equilibrium, there exists an informative
equilibrium that maximizes the amount of information transmission and the welfare of the principal and the
agents among all informative equilibria.

17The value of 𝜆̂2 depends on the value of other parameters except 𝜆2 and 𝑁 .
18When 𝜆2 > 𝜆̂2, we only need to consider informative equilibria with 𝑇 < 𝑇0 by Proposition 3 that

guarantees that there exists 𝑁2 above which no informative equilibrium exists.
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Hence, for each 𝜆2 > 0, there exists 𝑇∗ that is independent of 𝑁 such that

𝜆2 > 𝜆̂2, 𝑗 , ∀ 𝑗 > 𝑇∗,

which is also indicated by Proposition 3 that 𝑇 in any informative equilibrium is always
smaller than a number that is independent of 𝑁 . The principal must follow the unanimity
rule or rules that are close to it, which leads to the failure of information aggregation.

We now investigate how 𝜆̂2 changes with other parameters.

Corollary 2. The threshold 𝜆̂2 increases with 𝑉𝑎𝑔 (𝜃𝑖) and decreases with 𝑉𝑝𝑐 (𝜃𝑖) for each
𝑖 ∈ {1, 2, 3}. 19

From Corollary 2, the threshold 𝜆̂2 decreases with 𝑉𝑎𝑔 (𝜃1)
𝑉𝑎𝑔 (𝜃3)

𝑉𝑝𝑐 (𝜃3)
𝑉𝑝𝑐 (𝜃1) when we only vary one

term. Note that 𝜆̂2 measures the conflict of interest concerning the misaligned state 𝜃2 while
𝑉𝑎𝑔 (𝜃1)
𝑉𝑎𝑔 (𝜃3)

𝑉𝑝𝑐 (𝜃3)
𝑉𝑝𝑐 (𝜃1) measures the conflict of interest concerning the payoff intensities in state 𝜃1

and state 𝜃3. Therefore, information transmission persists if both types of conflict are small,
as shown by Figure 7.

𝜌3
𝜌1

1−𝜌1
1−𝜌3

𝜌3
𝜌1

1

0
𝑉𝑎𝑔 (𝜃1)
𝑉𝑎𝑔 (𝜃3)

𝑉𝑝𝑐 (𝜃3)
𝑉𝑝𝑐 (𝜃1)

𝜆2

Figure 7
Information transmission and aggregation.

The existing literature considers the case where 𝜆2 = 0, and shows that there exists a sequence of
equilibria that transmits and aggregates information when 𝑉𝑎𝑔 (𝜃1 )

𝑉𝑎𝑔 (𝜃3 )
𝑉𝑝𝑐 (𝜃3 )
𝑉𝑝𝑐 (𝜃1 ) <

𝜌3
𝜌1

1−𝜌1
1−𝜌3

. When
𝜆2 > 0, we show that information transmission persists in the shaded area while information

aggregation always fails.

Corollary 3. The threshold 𝜆̂2 decreases with 𝜌1 while it is not monotonic with 𝜌2 and 𝜌3.

Consider the case where 𝜌2 decreases. On the one hand, each agent has a higher
incentive to approve 𝐴 conditional on receiving signal ℎ since this signal favors state 𝜃3

19When discussing the comparative statistics in Corollary 2, Corollary 3, and Corollary 4, we always change
one parameter and keep the others fixed.
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more. On the other hand, each agent has a lower incentive to approve 𝐴 conditional on being
pivotal since the distribution of the total number of approvals in state 𝜃2 moves closer to the
distribution in state 𝜃1, which decreases this agent’s posterior belief of state 𝜃3 conditional
on being pivotal. Thus, a smaller 𝜌2 has an ambiguous effect on the agents’ incentives to
approve 𝐴 conditional on being pivotal and receiving signal ℎ, and hence has an ambiguous
effect on information transmission. We can apply a similar intuition to the case where 𝜌3

increases. However, when 𝜌1 decreases, the two effects mentioned above move the agents’
posterior beliefs of state 𝜃3 in the same direction. Thus, a smaller 𝜌1 increases the agents’
incentives to approve 𝐴 conditional on being pivotal and receiving signal ℎ, and hence
contributes to information transmission.

Corollary 3 indicates that the boundary of information transmission, that is, the red
dashed line in Figure 7, moves outward when 𝜌1 decreases. However, changes in 𝜌3 and 𝜌2

have ambiguous effects on it.

Corollary 4. The threshold 𝜆̂2 is not monotonic with 𝜆1.

In Figure 8, we plot 𝜆̂2, 𝑗 for 𝑗 ∈ {1, 2, 3} and 𝜆̂2 as functions of 𝜆1. As stated before, an
informative equilibrium with 𝑇 = 𝑗 exists if 𝜆2 < 𝜆̂2, 𝑗 when 𝑁 is large.

𝜆1

𝜆̂2, 𝑗

𝑗 = 1
𝑗 = 2
𝑗 = 3

𝜆1

𝜆̂2

Figure 8
Non-monotonic boundaries.

The threshold 𝜆̂2, 𝑗 is not monotonic with 𝜆1 for each 𝑗 ∈ N. To see the intuition, let us
fix an arbitrary 𝑗 ∈ N+ and let the principal always choose 𝑇 = 𝑗 . We then consider the case
where 𝜆1 increases while other parameters are constant. The prior 𝑞0

2 is smaller and hence
the conflict of interest between the principal and the agents is smaller, which contributes
to information transmission and increases 𝜆̂2, 𝑗 . However, the prior 𝑞0

3 also decreases, and
hence the state 𝜃3 is less likely, which decreases the agents’ incentives to approve 𝐴 when
they receive signal ℎ, which impedes information transmission and decreases 𝜆̂2, 𝑗 .
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4.2 Ranking Informative Equilibria

When we fix all parameter values, there cannot exist more than one informative equilibrium
in which the principal chooses the same 𝑇 since there exists at most one 𝑥ℎ solving (6).
However, there might exist multiple informative equilibria with different 𝑇 , as shown by the
left panel of Figure 8. We now rank them according to the payoffs of the principal and the
agents. Let 𝑈𝑝𝑐 (Γ) and 𝑈𝑎𝑔 (Γ) be the expected payoff of the principal and the expected
payoff of the agents respectively for a given equilibrium Γ.

Proposition 6. Fix all parameter values. If there exist two informative equilibria Γ1 =

{𝑥ℎ,1, 𝑇1} and Γ2 = {𝑥ℎ,2, 𝑇2} such that 𝑇1 < 𝑇2, then

𝑥ℎ,1 ≤ 𝑥ℎ,2,

𝑈𝑝𝑐 (Γ1) ≤ 𝑈𝑝𝑐 (Γ2),
𝑈𝑎𝑔 (Γ1) ≤ 𝑈𝑎𝑔 (Γ2).

All inequalities are strict if 𝑥ℎ,1 < 1.

When the principal requires a higher 𝑇 , the agents approve 𝐴 with a higher probability
and hence increase 𝑥ℎ. The principal observes 𝑁 messages from the agents that are
identically distributed and independent conditional on the state and makes his decision
to maximize his expected payoff. When 𝑥ℎ is higher, each message is more Blackwell
informative, and hence the joint 𝑁 messages are also more Blackwell informative. Thus,
the principal receives a higher expected payoff from the equilibrium with a higher 𝑇 .

For the agents, consider an informative equilibrium Γ = {𝑥ℎ, 𝑇} with 𝑥ℎ < 1. Each agent
is indifferent between 𝐴 and 𝐵 conditional on receiving signal ℎ and being pivotal. Hence,
she is indifferent conditional on the event that there are 𝑇 approvals from 𝑁 agents since the
agents randomize when she receives signal ℎ. Therefore, the principal would still choose
𝑇 if he shared the same preference with the agents. Thus, an informative equilibrium with
a higher 𝑇 also benefits the agents since the principal chooses 𝑇 under a more Blackwell
informative information structure.

As discussed above, in every informative equilibrium, when we fix the strategy of the
agents, the principal and the agents agree on the same threshold 𝑇 , that is, they share
common interests. Therefore, we can rank all informative equilibria in the Blakweell order
or the Pareto order, and these two orders coincide with each other.

From Proposition 6, the informative equilibrium with the highest cut-off𝑇𝑚𝑎𝑥 maximizes
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the expected payoffs of the principal and the agents among all informative equilibria. We
denote this equilibrium by the most informative equilibrium. Note that the agents also
choose the highest 𝑥ℎ in the most informative equilibrium among all informative equilibria.
From Proposition 3, the highest cut-off 𝑇𝑚𝑎𝑥 is always smaller than a number that is
independent of 𝑁 since messages from the agents cannot be too informative. Otherwise,
the inference from being pivotal overwhelms each agent’s private information.

We can show that for almost all parameter values that satisfy 𝑉𝑎𝑔 (𝜃1)
𝑉𝑎𝑔 (𝜃3)

𝑉𝑝𝑐 (𝜃3)
𝑉𝑝𝑐 (𝜃1) <

𝜌3
𝜌1

and
𝜆2 < 𝜆̂2, that is, for almost all parameter values under which information transmission
persists, the highest cut-off 𝑇𝑚𝑎𝑥 is independent of 𝑁 when 𝑁 is above some threshold. For
the other parameter values that satisfy both conditions above, the highest cut-off 𝑇𝑚𝑎𝑥 takes
a value between two adjacent numbers. In the left panel of Figure 8, we can see that when
𝑁 is large, the cut-off 𝑇𝑚𝑎𝑥 = 1 if (𝜆1, 𝜆2) is above the orange line and below the purple line
while 𝑇𝑚𝑎𝑥 = 2 if (𝜆1, 𝜆2) is above the green line and below the orange line. However, for
some points of (𝜆1, 𝜆2) exactly on the orange line, the highest cut-off 𝑇𝑚𝑎𝑥 might be either
1 or 2 when 𝑁 is large.

4.3 Amount of Information Transmission

In this section, we discuss the maximal amount of information transmission by focusing on
the most informative equilibrium Γ𝑚𝑎𝑥 = {𝑥ℎ,𝑚𝑎𝑥 , 𝑇𝑚𝑎𝑥}.

Proposition 7. In the equilibrium Γ𝑚𝑎𝑥 , the agents’ equilibrium strategy 𝑥ℎ,𝑚𝑎𝑥 increases
with 𝑉𝑎𝑔 (𝜃𝑖) and decreases with 𝑉𝑝𝑐 (𝜃𝑖) for each 𝑖 ∈ {1, 2, 3}. Furthermore, it decreases
with 𝜆2. 20

As discussed in Section 4.2, the principal receives more information from the agents
if the agents choose a higher 𝑥ℎ. By Proposition 7, the agents’ equilibrium strategy 𝑥ℎ,𝑚𝑎𝑥
decreases with 𝑉𝑎𝑔 (𝜃1)

𝑉𝑎𝑔 (𝜃3)
𝑉𝑝𝑐 (𝜃3)
𝑉𝑝𝑐 (𝜃1) when we only vary one term, and also decreases with 𝜆2.

Hence, the maximal amount of information transmission decreases with both types of
conflict between the principal and the agents.

We now compare the maximal amount of information transmission as 𝑁 → ∞ in
the setting with the misaligned state 𝜃2 with the one in the setting with no misaligned
state analyzed by the existing literature. We measure the maximal amount of information

20We always change one parameter and keep others including 𝑁 fixed.
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transmission by21

𝐼 = lim sup
𝑁→∞

𝑉𝑚𝑎𝑥𝑝𝑐 −𝑉0
𝑝𝑐

𝑉
𝑓 𝑢𝑙𝑙
𝑝𝑐 −𝑉0

𝑝𝑐

∈ [0, 1],

where (i) 𝑉𝑚𝑎𝑥𝑝𝑐 is the principal’s expected payoff from the most informative equilibrium,
(ii) 𝑉0

𝑝𝑐 is the principal’s expected payoff from the uninformative babbling equilibrium, and
(iii) 𝑉 𝑓 𝑢𝑙𝑙

𝑝𝑐 is the principal’s expected payoff if he can observe the realized state.
Figure 9 illustrates the maximal amount of information transmission regarding the two

types of conflict between the principal and the agents, the conflict generated by the different
payoff intensities in state 𝜃1 and 𝜃3 that is measured by 𝑉𝑎𝑔 (𝜃1)

𝑉𝑎𝑔 (𝜃3)
𝑉𝑝𝑐 (𝜃3)
𝑉𝑝𝑐 (𝜃1) ,22 and the conflict

concerning the misaligned state 𝜃2 that is measured by 𝜆2.

𝜌3
𝜌1

𝜌3
𝜌1

1−𝜌1
1−𝜌3

Full Information

No Information

Partial Information

1

0

1

𝑉𝑎𝑔 (𝜃1 )
𝑉𝑎𝑔 (𝜃3 )

𝑉𝑝𝑐 (𝜃3 )
𝑉𝑝𝑐 (𝜃1 )

𝐼

𝜆2 = 0
𝜆2 > 0

𝜌3
𝜌1

𝜌3
𝜌1

1−𝜌1
1−𝜌3

Full Information

No Information

1

0

1

𝑉𝑎𝑔 (𝜃1 )
𝑉𝑎𝑔 (𝜃3 )

𝑉𝑝𝑐 (𝜃3 )
𝑉𝑝𝑐 (𝜃1 )

𝐼

𝜆2 = 0
𝜆2 > 0

Figure 9
Maximal amount of information transmission.

We plot 𝐼 as a function of 𝑉𝑎𝑔 (𝜃1 )
𝑉𝑎𝑔 (𝜃3 )

𝑉𝑝𝑐 (𝜃3 )
𝑉𝑝𝑐 (𝜃1 ) in different cases. The blue line corresponds to the case

where 𝜆2 = 0. The red line corresponds to the case where 𝜆2 > 0. In the left panel, we choose
𝜆2 < 𝜆̂2 given that 𝑉𝑎𝑔 (𝜃1 )

𝑉𝑎𝑔 (𝜃3 )
𝑉𝑝𝑐 (𝜃3 )
𝑉𝑝𝑐 (𝜃1 ) = 1 for the red line. In the right panel, we chooses 𝜆2 > 𝜆̂2

given that 𝑉𝑎𝑔 (𝜃1 )
𝑉𝑎𝑔 (𝜃3 )

𝑉𝑝𝑐 (𝜃3 )
𝑉𝑝𝑐 (𝜃1 ) = 1 for the red line.

When 𝜆2 = 0, Proposition 1 shows that the principal fully learns the state as 𝑁 → ∞ if
𝑉𝑎𝑔 (𝜃1)
𝑉𝑎𝑔 (𝜃3)

𝑉𝑝𝑐 (𝜃3)
𝑉𝑝𝑐 (𝜃1) is below the threshold 𝜌3

𝜌1

1−𝜌1
1−𝜌3

. Otherwise, information transmission fails and
only the babbling equilibrium exists.

This paper analyzes the setting with 𝜆2 > 0. In the left panel with a small 𝜆2, even if

21The limit always exists in the situations where 𝜆2 = 0.
22When varying 𝑉𝑎𝑔 (𝜃1 )

𝑉𝑎𝑔 (𝜃3 )
𝑉𝑝𝑐 (𝜃3 )
𝑉𝑝𝑐 (𝜃1 ) , we either only change 𝑉𝑎𝑔 (𝜃1) or only change 𝑉𝑎𝑔 (𝜃3), while keeping

other parameters fixed.
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the principal and the agents have the same payoffs in state 𝜃1 and state 𝜃3 with

𝑉𝑎𝑔 (𝜃1)
𝑉𝑎𝑔 (𝜃3)

·
𝑉𝑝𝑐 (𝜃3)
𝑉𝑝𝑐 (𝜃1)

= 1,

information aggregation fails and the amount of information transmission is limited. As
𝑉𝑎𝑔 (𝜃1)
𝑉𝑎𝑔 (𝜃3)

𝑉𝑝𝑐 (𝜃3)
𝑉𝑝𝑐 (𝜃1) increases, the principal receives less information. When 𝑉𝑎𝑔 (𝜃1)

𝑉𝑎𝑔 (𝜃3)
𝑉𝑝𝑐 (𝜃3)
𝑉𝑝𝑐 (𝜃1) is

above a threshold that is lower than 𝜌3
𝜌1

, the principal receives no information. In this
case, information transmission fails and only the babbling equilibrium exists. Note that the
threshold above which information transmission fails decreases with 𝜆2. In the right panel
with a large 𝜆2, information transmission always fails according to Proposition 5.

4.4 Information Aggregation and Transmission

We claim that the failure of information aggregation might facilitate information transmis-
sion and further argue that communication among the agents might impede information
transmission and hurt both the principal and the agents.

Consider the case where there is only one agent and this agent receives all 𝑁 signals.
She advises the principal to choose 𝐴 or not. As 𝑁 → ∞, this agent is fully informed about
the realized state. She advises the principal to choose 𝐴 in state 𝜃3 and choose 𝐵 in state
𝜃2 and state 𝜃1. The principal follows this agent’s advice of choosing 𝐵 if he receives a
negative expected payoff from choosing 𝐴,

𝑞0
2𝑉𝑝𝑐 (𝜃2) + 𝑞0

1𝑉𝑝𝑐 (𝜃1) < 0,

that is, if
𝜆2
𝜆1

< −
𝑉𝑝𝑐 (𝜃1)
𝑉𝑝𝑐 (𝜃2)

.

Proposition 8. There exists 𝜆̄1 such that23

𝜆̂2
𝜆1

> −
𝑉𝑝𝑐 (𝜃1)
𝑉𝑝𝑐 (𝜃2)

iff 𝜆1 < 𝜆̄1.

We plot 𝜆̂2 as a function of 𝜆1 in Figure 10, which illustrates Proposition 8. Consider
a pair of (𝜆1, 𝜆2) in the shaded area. If there are 𝑁 agents and each of them receives a
private signal, full information aggregation fails but information transmission persists since

23The value of 𝜆̄1 depends on the value of other parameters except 𝜆1 and 𝑁 .
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𝜆2 < 𝜆̂2. If there is only one agent who receives all 𝑁 signals, as 𝑁 → ∞, she fully learns
the realized state but information transmission fails since

𝜆2𝑉𝑝𝑐 (𝜃2) + 𝜆1𝑉𝑝𝑐 (𝜃1) > 0.

The principal chooses 𝐴 even if the agent advises him to choose 𝐵.

𝜆̄1 𝜆1

𝜆2

𝜆̂2

−𝑉𝑝𝑐 (𝜃1)
𝑉𝑝𝑐 (𝜃2) · 𝜆1

Figure 10
Information transmission with the failure of information aggregation.

The intuition for the argument that the failure of information aggregation might facilitate
information transmission goes as follows. Many studies in cheap-talk literature, initiated
by Crawford and Sobel (1982) consider a model of information transmission between one
sender and one receiver. They show that the sender might make her message intentionally
vague since intentional vagueness mitigates the conflict of interest between the sender and
the receiver and further facilitates information transmission. Now, we can also interpret the
failure of information aggregation as intentional vagueness if we regard all 𝑁 agents as the
sender and the principal as the receiver. Such intentional vagueness disappears in the case
where an agent fully learns the state but does not have commitment power.

Furthermore, we can show that for each (𝜆1, 𝜆2) in the shaded area, there always exists
an informative equilibrium with 𝑇 = 1 when 𝑁 is large since the unanimity rule aggregates
information the least efficiently and hence generates the largest intentional vagueness.

Both the principal and the agents benefit from the failure of information aggregation
when (𝜆1, 𝜆2) is in the shaded area since both of them receive higher payoffs from any
informative equilibrium than from the babbling equilibrium. Hence, it might be better to
disperse the information among the agents instead of letting an agent receive all the signals
when this agent cannot commit to generating intentional vagueness.

An important finding of Battaglini (2017) is that communication among the agents
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facilitates information transmission and aggregation, benefiting both the principal and the
agents. He hence highlights the value of social media to the effectiveness of petitions and
public protests, since social media allow citizens to share information. In contrast, we show
that the communication among the agents might impede information transmission and hurt
both the principal and the agents. Note that the case where the agents fully communicate
with each other and share their signals is equivalent to the case analyzed above in which
there is only one agent and this agent receives all 𝑁 signals.

5 Beyond the Binary Situation

We now extend the model to the case where neither the signal space nor the message space
is binary. Each agent 𝑖 ∈ {1, ..., 𝑁} receives a private signal 𝑠𝑖 ∈ {𝑠1, ..., 𝑠𝐽} with 𝐽 ≥ 2.
The signals are identically distributed and independent across the agents conditional on the
state 𝜃 ∈ {𝜃1, 𝜃2, 𝜃3}. There exists 𝛼 > 0 such that

P[𝑠 𝑗 |𝜃] > 𝛼, ∀ 𝑗 ∈ {1, ..., 𝐽} and 𝜃 ∈ {𝜃1, 𝜃2, 𝜃3}.

That is, an agent cannot exclude any state if she receives a particular signal. We generalize
(3) by assuming the strict Monotone Likelihood Ratio Property (MLRP):

P[𝑠 𝑗 |𝜃3]
P[𝑠 𝑗 |𝜃2]

and
P[𝑠 𝑗 |𝜃2]
P[𝑠 𝑗 |𝜃1]

strictly increase with 𝑗 . (12)

Each agent 𝑖 can send a message 𝑧𝑖 ∈ {𝑧1, ..., 𝑧𝐾} with 𝐾 ≥ 2. The principal observes
𝑇 = (𝑇1, ..., 𝑇𝐾) ∈ Δ𝐾 (𝑁), that is, the total number of each kind of message, and chooses
between 𝐴 and 𝐵.

In the example of non-binding shareholder voting, besides voting in favor of or rejecting
the new proposal, the shareholders can also stay neutral and abstain. Similarly, in the
example of public protests, the citizens can choose among joining the rally for implementing
reform, joining the rally for keeping the status-quo, or staying neutral and remaining silent.
We can also use this framework to study survey polls in which each interviewee sends a
score rating the desirability of a new policy.

We examine symmetric Bayesian Nash equilibrium in which the agents use the same
strategy 𝑃 = {𝑝 𝑗 ,𝑘 }𝐽×𝐾 such that an agent sends the message 𝑧𝑘 with a probability 𝑝 𝑗 ,𝑘
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when she receives the signal 𝑠 𝑗 . The strategy of the principal is a function

𝜓 : Δ𝐾 (𝑁) → [0, 1]

such that he chooses 𝐴 with probability 𝜓(𝑇) when he observes 𝑇 = (𝑇1, ..., 𝑇𝐾).
The agents follow a monotonic strategy if they are more likely to send higher messages

when they receive higher signals, that is,24

𝑝 𝑗 ′,𝑘 · 𝑝 𝑗 ,𝑘 ′ ≤ 𝑝 𝑗 ,𝑘 · 𝑝 𝑗 ′,𝑘 ′ for each 𝑗 < 𝑗 ′ and 𝑘 < 𝑘′. (13)

The principal follows a monotonic strategy if he chooses 𝐴 with a higher probability
when an agent switches from a lower message to a higher one, that is, for each 𝑇 =

(𝑇1, ..., 𝑇𝐾) ∈ Δ𝐾 (𝑁 − 1) and each 𝑚 < 𝑚′,

𝜓(𝑇1, ..., 𝑇𝑚 + 1, ..., 𝑇𝑚′ , ..., 𝑇𝐾) ≤ 𝜓(𝑇1, ..., 𝑇𝑚, ..., 𝑇𝑚′ + 1, ..., 𝑇𝐾).

Note that when one side uses a monotonic strategy, it is without loss of generality to let
the other side use a monotonic strategy as the best response. We focus on the monotonic
equilibrium in which both the principal and the agents use monotonic strategies.

Monotonic equilibria are reasonable and fit applications well while non-monotonic
equilibria are counterintuitive and hard to be implemented. Intuitively, a shareholder should
support the new proposal more, a citizen should be more likely to quit the rally for keeping
the status-quo and join the one for implementing reform, and an interviewee should rate the
new policy with a higher score if they are more optimistic about the new proposal, reform,
or new policy based on their private information. It is also reasonable that a manager should
accept the new proposal with a higher probability if fewer shareholders object to it or more
shareholders support it, a politician should implement reform with a higher probability if
fewer citizens join in the rally for keeping the status-quo or more citizens join the rally for
implementing the reform, and an interviewer should choose the new policy with a higher
probability if more interviewees rate it with higher scores. There is growling literature
studying the monotonic equilibrium in communication games, as discussed in Section 7.

Proposition 9. For each 𝜖 > 0, there exists 𝑁′′
𝜖 such that for each 𝑁 > 𝑁′′

𝜖 , in every
monotonic equilibrium except the babbling one, the agents only send 𝑧125 when they receive

24It is equivalent to 𝑝 𝑗′ ,𝑘
𝑝 𝑗,𝑘

≤ 𝑝 𝑗′ ,𝑘′
𝑝 𝑗,𝑘′

when both 𝑝 𝑗 ,𝑘 and 𝑝 𝑗 ,𝑘′ are positive.
25We ignore the degenerate case where agents never send 𝑧1. In this case, just relabel the lowest message
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𝑠 ∈ {𝑠1, ..., 𝑠𝐽−1} and send 𝑧1 with probability larger than 1 − 𝜖 when they receive 𝑠𝐽 , that
is,

𝑝 𝑗 ,1 = 1, ∀ 𝑗 ∈ {1, ..., 𝐽 − 1},
𝑝𝐽,1 > 1 − 𝜖 .

By Proposition 9, when 𝑁 is large enough, there is no difference among {𝑧2, ..., 𝑧𝐾}.
The agents send these messages only if 𝑠 = 𝑠𝐽 . Therefore, when 𝑁 is large enough, we
return to the basic model with binary signals and binary messages such that

𝜌𝑖 = P[𝑠𝐽 |𝜃𝑖], ∀𝑖 ∈ {1, 2, 3}.

Hence, we can easily extend all results in Section 3.2 and Section 4. In particular,

Theorem 2. No sequence of monotonic equilibria aggregates information. That is, there
exists a constant 𝑐 > 0 such that for each 𝑁 and each monotonic equilibrium Γ with 𝑁
agents,

P[𝐴|𝜃1; Γ] + P[𝐵 |𝜃3; Γ] > 𝑐.

We now sketch the proof for Proposition 9. For simplicity, consider the case where each
agent can send a message 𝑧 ∈ {𝑧1, 𝑧2, 𝑧3}. Let the agents use a monotonic strategy 𝑃. From
(12), (13) and some additional regularity assumptions concerning 𝑃 to avoid degenerate
cases, we can show that the distributions of the message from an agent also satisfy strict
MLRP,

P[𝑧𝑘 |𝜃3]
P[𝑧𝑘 |𝜃2]

and
P[𝑧𝑘 |𝜃2]
P[𝑧𝑘 |𝜃1]

strictly increase with 𝑘.

Denote the distributions of the message from an agent in 𝜃1, 𝜃2, and 𝜃3 by 𝐺1, 𝐺2, and 𝐺3

respectively. We have
𝐺3 ≻ 𝐺2 ≻ 𝐺1 (14)

in the monotone likelihood ratio order.
Consider the set of pivotal events,

𝐸𝑁 = {𝑇 = (𝑇1, 𝑇2, 𝑇3) ∈ Δ3(𝑁 − 1) | 𝜓(𝑇1 + 1, 𝑇2, 𝑇3) ≠ 𝜓(𝑇1, 𝑇2, 𝑇3 + 1)},

that is, consider the set of events in which one additional message might change the

that the agents send with a positive probability by 𝑧1.

30



principal’s decision.26
Now, let us fix the strategy of the agents and let 𝑁 → ∞. We can show that

lim
𝑁→∞

P[𝐸𝑁 |𝜃3]
P[𝐸𝑁 |𝜃2]

= 0 and lim
𝑁→∞

P[𝐸𝑁 |𝜃3]
P[𝐸𝑁 |𝜃1]

= 0. (15)

Intuitively, given that the principal is not sure whether the realized state is 𝜃1 or not, the
realized state must be either 𝜃1 or 𝜃2 since the “distance" between distributions 𝐺1 and 𝐺2

is smaller than the one between 𝐺1 and 𝐺3 according to (14). We extend the intuition in
Section 3.2 to higher dimensions.

To see more precisely why (15) is true, consider the posterior likelihood ratio for
𝑇 ∈ Δ3(𝑁 − 1) and each 𝑖, 𝑖′ ∈ {1, 2, 3},

P[𝑇 |𝜃𝑖]
P[𝑇 |𝜃𝑖′]

=

3∏
𝑘=1

[
P[𝑧𝑘 |𝜃𝑖]
P[𝑧𝑘 |𝜃𝑖′]

]𝑇𝑘
= exp

{ 3∑︁
𝑘=1

𝑇𝑘 log
P[𝑧𝑘 |𝜃𝑖]
P[𝑧𝑘 |𝜃𝑖′]

}
= exp {(𝑁 − 1) · [𝐾𝐿 (𝛾(𝑇), 𝐺𝑖′) − 𝐾𝐿 (𝛾(𝑇), 𝐺𝑖)]} ,

(16)

where 𝛾(𝑇) is the sample frequency with

𝛾(𝑇) = (𝛾1(𝑇), 𝛾2(𝑇), 𝛾3(𝑇)) =
(
𝑇1

𝑁 − 1
,
𝑇2
𝑁 − 1

,
𝑇3
𝑁 − 1

)
,

and 𝐾𝐿 (·, ·) is the Kullback–Leibler divergence (KL divergence) with

𝐾𝐿 (𝛾, 𝐺𝑖) =
3∑︁
𝑘=1

𝛾𝑘 log
𝛾𝑘

P[𝑧𝑘 |𝜃𝑖]
, ∀𝑖 ∈ {1, 2, 3}.

It measures how 𝛾 (observed frequency) deviates from 𝐺𝑖 (mean in state 𝜃𝑖). The larger
𝐾𝐿 (𝛾, 𝐺𝑖) is, the more rare that a sample with a frequency 𝛾 in state 𝜃𝑖 is.

From (16), as when 𝑁 is large, instead of focusing on the set of pivotal events 𝐸𝑁 , we
can work with the set of pivotal frequencies,

𝐹 =
{
𝛾 ∈ Δ3(1) |𝐾𝐿 (𝛾, 𝐺1) = min [𝐾𝐿 (𝛾, 𝐺2), 𝐾𝐿(𝛾, 𝐺3)]

}
.

For each 𝛾 ∉ 𝐹, we have 𝑇 ∉ 𝐸𝑁 for each 𝑇 with 𝛾(𝑇) = 𝛾 when 𝑁 is large. For example,

26Note the in any monotonic equilibrium except the babbling equilibrium, for each 𝑇 = (𝑇1, 𝑇2, 𝑇3) ∈
Δ3 (𝑁 − 1), if 𝜓(𝑇1 + 1, 𝑇2, 𝑇3) ≠ 𝜓(𝑇1, 𝑇2 + 1, 𝑇3) or 𝜓(𝑇1, 𝑇2 + 1, 𝑇3) ≠ 𝜓(𝑇1, 𝑇2, 𝑇3 + 1), then we must have
𝜓(𝑇1 + 1, 𝑇2, 𝑇3) ≠ 𝜓(𝑇1, 𝑇2, 𝑇3 + 1).
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consider a 𝛾̃ ∉ 𝐹 such that

𝐾𝐿 (𝛾̃, 𝐺1) < min [𝐾𝐿 (𝛾̃, 𝐺2), 𝐾𝐿(𝛾̃, 𝐺3)] .

When 𝑁 is large and the principal observes 𝑇 from 𝑁 − 1 agents such that 𝛾(𝑇) = 𝛾̃, he
must be sure that the state is 𝜃1 by (16). Hence, one additional message cannot change his
decision. We have 𝑇 ∉ 𝐸𝑁 .

Note that in the binary setting analyzed in Section 3.2, the set 𝐹 is a singleton, which is
not true when we move beyond the binary setting. We provide a way to identify the unique
most likely pivotal frequency

𝛾∗ = arg min
𝛾∈𝐹

𝐾𝐿 (𝛾, 𝐺1).

Not that we only need to consider the pivotal events with frequencies concentrated around
𝛾∗ since the unconditional likelihoods of them dominate the unconditional likelihoods of
other pivotal events at an exponential rate as shown in (16). We further show that

𝐾𝐿 (𝛾∗, 𝐺1) = 𝐾𝐿 (𝛾∗, 𝐺2) < 𝐾𝐿(𝛾∗, 𝐺3). (17)

We prove (15) by using (16) and (17).
To find the most likely pivotal frequency, let us consider a type of statistical distance

between distribution 𝐺𝑖 and 𝐺𝑖′ for 𝑖 ≠ 𝑖′, the Chernoff Information:

𝑐(𝐺𝑖, 𝐺𝑖′) = min
𝛾∈Δ3 (1)

𝐾𝐿 (𝛾, 𝐺𝑖) 𝑠.𝑡. 𝐾𝐿(𝛾, 𝐺𝑖) = 𝐾𝐿 (𝛾, 𝐺𝑖′).

The minimizing problem has a unique minimizer.27 Denote it by 𝛾𝑖,𝑖′ or 𝛾𝑖′,𝑖.
It can be show that28

𝑐(𝐺1, 𝐺2) < 𝑐(𝐺1, 𝐺3),

if (14) is satisfied. We further show that

𝐾𝐿 (𝛾1,2, 𝐺1) = 𝐾𝐿 (𝛾1,2, 𝐺2) < 𝐾𝐿(𝛾1,2, 𝐺3).

27Both the function 𝐾𝐿 (𝛾, 𝐺𝑖) and the set
{
𝛾 ∈ Δ3 (1) | 𝐾𝐿 (𝛾, 𝐺𝑖) = 𝐾𝐿 (𝛾, 𝐺𝑖′ )

}
are convex.

28Frick et al. (2021a) first find this result. There will be a note forthcoming for further discussion.
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The key step is to show that
𝐺3 ≻ 𝐺2 ≻ 𝛾1,2 ≻ 𝐺1

in the monotonic likelihood ratio order if we regard 𝛾1,2 as a signal distribution. Therefore,
the frequency 𝛾1,2 is the most likely pivotal frequency and satisfies (17).

We plot the simplex of distributions and frequencies in Figure 11, which illustrates the
reasoning presented above.

𝑧2 𝑧3

𝑧1

𝐺1

𝐺2
𝐺3

𝛾1,2

Figure 11
The most likely pivotal frequency.

The corner 𝑧𝑘 corresponds to the distribution or the sample frequency that the message is always
𝑧𝑘 . The segment 𝑧𝑘𝑧𝑘′ corresponds to the set of distributions and sample frequencies that the

message is always either 𝑧𝑘 or 𝑧𝑘′ . The red line is the set of pivotal frequencies from which the
“distance" (KL divergence) to 𝐺1 equals the minimum of distances to 𝐺2 and 𝐺3. Among all
pivotal frequencies, the frequency 𝛾1,2 has the shortest distance to 𝐺1 and hence it is the most

likely pivotal frequency.

We show that in every sequence of monotonic equilibria, we must have

lim
𝑁→∞

𝐾𝐿 (𝐺𝑖, 𝐺𝑖′) = 0, ∀𝑖, 𝑖′ ∈ {1, 2, 3},

lim
𝑁→∞

𝑐(𝐺𝑖, 𝐺𝑖′) = 0, ∀𝑖, 𝑖′ ∈ {1, 2, 3},

that is, the distributions of messages in different states must be close to each other. Other-
wise, the agents realize that the state must be either 𝜃1 or 𝜃2 conditional on being pivotal by
(15) and ignore their own signals. Hence, the information contained in an agent’s message
must vanish as 𝑁 → ∞.

By extending Lemma 1, we show that the agents only send the lowest message 𝑧1 when
they receive the lowest signal 𝑠1. Finally, we demonstrate that as 𝑁 grows large, the agents
only send 𝑧1 when they receive 𝑠 ∈ {𝑠1, ..., 𝑠𝐽−1} and send 𝑧1 with probability near 1 when
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they receive 𝑠 = 𝑠𝐽 since (i) the strategy of the agents must be a monotonic mapping and
satisfy a single crossing condition29 due to the strict MLRP of signals, and (ii) information
contained in an agent’s message must vanish.

6 Commitment Case

In the basic model, the principal cannot ex-ante commit to a decision rule. Consequently,
conditional on being pivotal, each agent learns that the principal must be nearly indifferent
between 𝐴 and 𝐵 and infers the realized state from such an event. We now consider the
case where the principal can design and commit to a decision mechanism. In this section,
we show that the principal can approach his first-best outcome as 𝑁 → ∞ by committing
to mechanisms with a simple structure.
With no misaligned state

We first consider the case with no misaligned state, that is, the case where 𝑞0
2 = 0. Let

us start with direct and anonymous mechanisms that depend only on 𝑇 , that is, the total
number of agents reporting signal ℎ. The principal commits to a cut-off mechanism if there
exists 𝑇 ∈ N such that the principal chooses 𝐴 when 𝑇 ≥ 𝑇 and choose 𝐵 otherwise.

Note that when the agents can observe all signals together, for each 𝑁 , there exists a
cut-off 𝑇𝑁 such that the agents prefer 𝐴 if and only if more than 𝑇𝑁 of them receive signal ℎ.
The principal then commits to a sequence of cut-off mechanisms {𝑇𝑁 }∞𝑁=1 with 𝑇𝑁 = 𝑇𝑁 for
each 𝑁 . It is always incentive compatible for the agents to report truthfully. The principal
can approach his first-best outcome as 𝑁 → ∞.

The principal can also pick any 𝑡 ∈ (0, 1) and run an election among the agents following
a qualified majority rule with 𝑡, in which the agents choose whether to vote for 𝐴, and 𝐴 is
chosen if the ratio of votes for it exceeds 𝑡. By the Condorcet jury theorem and its modern
versions (Feddersen and Pesendorfer, 1997, 1998, Myerson, 1998, Duggan and Martinelli,
2001), as 𝑁 → ∞, dispersed information among the agents is effectively aggregated and
the principal approaches his first-best outcome.
With the misaligned state

We now consider the case with the misaligned state 𝜃2, that is, with 𝑞0
2 > 0. First, the

principal cannot approach his first-best outcome by committing to a sequence of cut-off
mechanisms. Figure 12 illustrates this argument. When 𝑁 is large, the principal must

29That is, for each 𝑘 ′ > 𝑘 , if the agents send message 𝑧𝑘 with a positive probability when they receive
signal 𝑠 𝑗 , then they never send message 𝑧𝑘′ when they receive signals 𝑠 𝑗′ with 𝑗 ′ < 𝑗 .
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choose 𝑇𝑁 ∈ (𝑁𝜌1, 𝑁𝜌2) to approach his first-best outcome. However, each agent realizes
that the state must be either 𝜃1 or 𝜃2 conditional on being pivotal, that is, conditional on the
event that from the other 𝑁 − 1 agents, 𝑇𝑁 − 1 of them receive signal ℎ. She does not have
the incentive to report truthfully when she receives signal ℎ.

𝑁𝜌1 𝑁𝜌2 𝑁𝜌3𝑇𝑁
𝑇

𝜃1
𝜃2
𝜃3

Figure 12
Distributions of the total number of signal ℎ and one cut-off 𝑇𝑁 .

The cut-off mechanism with 𝑇̂𝑁
𝑁

∈ (𝜌1, 𝜌2) is not incentive compatible.

Furthermore, for each 𝑡 ∈ (0, 1), the principal cannot approach his first-best outcome by
committing to an election following a qualified majority rule with 𝑡, in which according to
the Condorcet jury theorem, information is aggregated as 𝑁 → ∞ but the agents approach
their first-best outcome.

The principal can approach his first-best outcome by mixing two cut-off mechanisms.
Consider a mechanism 𝑀 = (𝜇, 𝑇𝛼, 𝑇 𝛽) such that the principal commits to choosing the
cut-off mechanism 𝑇𝛼 with probability 𝜇 and choosing the cut-off mechanism 𝑇 𝛽 with
probability 1 − 𝜇. The agents cannot observe the principal’s choice.

Proposition 10. there exists a sequence of mechanisms {𝑀𝑁 }∞𝑁=1 with 𝑀𝑁 = (𝜇𝑁 , 𝑇𝛼𝑁 , 𝑇
𝛽

𝑁
, )

for each 𝑁 such that

lim
𝑁→∞

𝑃𝑟 (𝐴| 𝜃3;𝑀𝑁 ) = 1,

lim
𝑁→∞

𝑃𝑟 (𝐴| 𝜃2;𝑀𝑁 ) = 1,

lim
𝑁→∞

𝑃𝑟 (𝐵 | 𝜃1;𝑀𝑁 ) = 1.

Note that each agent makes a decision conditional on being pivotal, that is, conditional
on the event that her report can change the decision of the principal. In the mechanism
𝑀𝑁 = (𝜇𝑁 , 𝑇𝛼𝑁 , 𝑇

𝛽

𝑁
, ) with 𝑁 agents, when the principal chooses 𝑇𝛼

𝑁
, an agent is pivotal if

from the other 𝑁 − 1 agents, there are 𝑇𝛼
𝑁
− 1 agents who receive signal ℎ, and when the

principal chooses 𝑇 𝛽
𝑁

, an agent is pivotal if from the other 𝑁 − 1 agents, there are 𝑇 𝛽
𝑁
− 1
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agents who receive signal ℎ. The principal hence can mix between 𝑇𝛼
𝑁

and 𝑇 𝛽
𝑁

to manipulate
the agents’ inferences from being pivotal.

As illustrated by Figure 13, the principal chooses 𝑇𝛼
𝑁

∈ (𝑁𝜌1, 𝑁𝜌2) for his first-best
outcome and chooses 𝑇 𝛽

𝑁
close to 𝑁𝜌3 to fulfill the incentive-compatible constraint. Note

that the agents prefer 𝐵 conditional on being pivotal in the cut-off mechanism with 𝑇𝛼
𝑁

,
while they prefer 𝐴 conditional on being pivotal in the cut-off mechanism with 𝑇 𝛽

𝑁
. By

mixing between 𝑇𝛼
𝑁

and 𝑇 𝛽
𝑁

, the principal can make the agents indifferent between 𝐴 and 𝐵
conditional on being pivotal. Hence, they have incentives to report their signals truthfully.
Furthermore, by choosing 𝑇 𝛽

𝑁
close to 𝑁𝜌3, the principal can choose 𝑇 𝛽

𝑁
with a probability

approaching 0 as 𝑁 → ∞. He pays almost no information rent to the agents and approaches
his first-best outcome.

𝑁𝜌1 𝑁𝜌2 𝑁𝜌3

𝑇𝛼
𝑁

𝑇
𝛽

𝑁

𝑇

𝜃1
𝜃2
𝜃3

Figure 13
Distributions of the total number of signal ℎ and two cut-offs 𝑇 𝛼

𝑁
and 𝑇𝛽

𝑁
.

The principal mixes between two cut-offs and lets 𝑇̂
𝛽

𝑁

𝑁
be close to 𝜌3.

Similarly, the principal can approach his first-best outcome by randomizing between
two qualified majority rules with different 𝑡.

7 Related Literature

This paper is related to the literature on cheap talk with multiple senders. This paper further
considers the case where senders (agents) have the same preference. Besides Levit and
Malenko (2011) and Battaglini (2017), Wolinsky (2002) analyzes a similar model and also
shows that information transmission fails and complete unraveling happens if the conflict
of interest between the principal and the agents is large. Ekmekci and Lauermann (2022)
follow the setting of Battaglini (2017) but add costly participation, that is, each agent in our
basic model needs to pay a cost drawn from a distribution when rejecting 𝐴.30 They show

30In this case, approving 𝐴 is the default choice for the agents.
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that information is aggregated even if the conflict of interest is above the threshold given
by Levit and Malenko (2011) and Battaglini (2017). However, It is ambiguous whether a
similar result holds in our setting with the misaligned state 𝜃2. Morgan and Stocken (2008)
consider a model where the agents have heterogeneous preferences. They show that when
the principal and the agents have similar preferences, information is effectively aggregated
and the principal fully learns the state when the number of agents grows large.

This paper is also related to the literature on information aggregation in elections
(Feddersen and Pesendorfer, 1997, 1998, Myerson, 1998, Duggan and Martinelli, 2001),
which demonstrates that information dispersed among voters is effectively aggregated in
elections with pre-determined qualified majority rules while information aggregation fails
under the unanimity rule. In contrast, we consider the case where the principal cannot ex-
ante commit to a rule. We show that he optimally follows the unanimity rule or rules close
to it, and information aggregation fails. Razin (2003) considers a novel model in which
the voters vote between two candidates and the winning candidate chooses the policy based
on his own decision. He shows that if both candidates have large conflicts of interest with
voters, full information aggregation fails in a special subset of symmetric equilibria under a
symmetric setting. We consider a different setting and show that the principal always fails
to fully learn the state in all symmetric equilibria, even if the conflict of interest between
him and the agents is small.

We further demonstrate that if the principal has the commitment power, he cannot ap-
proach his first-best outcome by committing to a qualified majority rule.31 However, the
principal can approach his first-best outcome by committing to randomizing between two
qualified majority rules to manipulate the agents’ inferences from being pivotal. Gerardi et
al. (2009) consider a similar mechanism in which the principal mixes between asking differ-
ent numbers of agents to manipulate the agents’ inferences from being pivotal. Kattwinkel
and Winter (2022) characterize the optimal mechanism in the setting of Levit and Malenko
(2011) and Battaglini (2017), which is a non-monotonic voting mechanism in which the
principal chooses 𝐴 when the number of agents voting for it is neither too high nor too low.
However, the principal cannot rely on this mechanism to approach his first-best outcome in
our setting with the misaligned state 𝜃2.

We take inspiration from the literature on comparisons of statistical experiments.
Moscarini and Smith (2002) consider a model in which a decision-maker is uncertain
about the state of the world but can draw signals that are identically distributed and in-

31However, the voters might obtain information aggregation, as discussed in Section 4.4.
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dependent conditional on the state by performing an experiment repeatedly. Frick et al.
(2021b) further consider the case of misspecified learning. They both provide rankings over
statistical experiments by calculating the expected payoff of the decision-maker when he
can perform a large number of experiments. Both rankings depend critically on Chernoff’s
information introduced in Section 6. Note that when the number of experiments approaches
infinity, the speed at which the belief of the decision-maker converges depends crucially
on the most likely events in which the principal stays uncertain about the realized state and
hence the frequency that we derive when calculating Chernoff’s information.

Finally, Section 6 contributes to the growing literature on the monotonic equilibrium
in communication games, including Cho and Sobel (1990), Krishna and Morgan (2001),
Chen et al. (2008), Ivanov (2010), Gordon et al. (2021), Kolotilin and Li (2021), and
Vida et al. (2022). In addition, most of the literature studying the communication game in
which each sender receives a noisy signal about the unknown state, including Austen-Smith
(1990, 1993), Morgan and Stocken (2008), Hagenbach and Koessler (2010), Galeotti et al.
(2013), and Currarini et al. (2020) among others, focuses on binary signals and messages
like our basic model, which guarantees the monotonicity of the equilibrium. The proof of
Proposition 9 provides a novel and tractable way to analyze the case with multiple signals
and messages.

8 Concluding Remarks

This paper analyzes a model of learning from multiple agents. In contrast to the exist-
ing literature, this paper considers the situation in which the preferences of the principal
and the agents might not be completely aligned even if they fully know the state of the
world, and introduce a different way to model the conflict of interest between the principal
and the agents. The paper provides new insights regarding information transmission and
demonstrates that learning is always incomplete no matter how many agents there are.

One promising direction for future research is to understand the effect of the number of
agents on the welfare of the principal and the agents. We can show that in some situations,
the expected payoffs of both the principal and the agents are maximized if the number of
agents equals some finite number, while both the principal and the agents receive a lower
expected payoff when we let the number of agents go to infinity, whenever we focus on the
sequence of informative equilibria that maximize the welfare of the principal and the agents
or the sequence of informative equilibria that minimize the welfare. As discussed in Section
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4.3, there exist situations in which informative equilibria exist only if the number of agents is
below some threshold. Furthermore, even when information transmission persists, we can
find situations in which the maximal amount of information transmission is non-monotonic
with the number of agents, and more surprisingly, the maximal amount of information
transmission, the cut-off chosen by the principal, and the expected payoffs of the principal
and the agents, are all maximized when the number of agents equals to a finite number. We
expect that such results should hold generally for all parameter values.

Appendices
The appendices proceed as follows:

(i) In Appendix A, we prove Lemma 1, Proposition 2, Proposition 3.

(ii) In Appendix B, we provide sufficient and necessary conditions under which there
exists an informative equilibrium with 𝑇 = 1, that is, the equilibrium in which the
principal chooses the unanimity rule. We then extend this approach for the informative
equilibrium with 𝑇 = 𝑖 for each 𝑖 ∈ N.

(iii) In Appendix C, we prove the results in Section 4 based on results in Appendix B.

(iv) In Appendix D, we characterize the equilibria in which the principal uses mixed
strategies and demonstrate that it is without loss of generality to focus on the equilibria
in which the principal uses pure strategies.

(v) In Appendix E, we construct the mechanisms in which the principal approaches his
first-best outcome as 𝑁 → ∞.

Appendix A

A.1 Proof of Lemma 1

Assume there exists an informative equilibrium with 𝑥ℓ > 0. From (6) and (7), we have
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𝑥ℎ = 1. Hence, we have 𝑥ℓ ∈ (0, 1). From (6),

𝑞0
3 · (1 − 𝜌3) · P[𝑝𝑖𝑣 |𝜃3; x, 𝑇] · 𝑉𝑎𝑔 (𝜃3)

−∑2
𝑖=1 𝑞

0
𝑖
· (1 − 𝜌𝑖) · P[𝑝𝑖𝑣 |𝜃𝑖; x, 𝑇] · 𝑉𝑎𝑔 (𝜃𝑖)

= 1. (18)

In state 𝜃𝑖 ∈ {𝜃1, 𝜃2, 𝜃3}, the probability that one agent rejects 𝐴 is (1− 𝜌𝑖) (1− 𝑥ℓ). Hence,

(1 − 𝜌𝑖) · P[𝑝𝑖𝑣 |𝜃𝑖; x, 𝑇]
(1 − 𝜌𝑖′) · P[𝑝𝑖𝑣 |𝜃𝑖′ ; x, 𝑇]

=
(1 − 𝜌𝑖) · P[𝑇 − 1; 𝑁 − 1|𝜃𝑖]
(1 − 𝜌𝑖′) · P[𝑇 − 1; 𝑁 − 1|𝜃𝑖′]

=
P[𝑇 − 1; 𝑁 − 1|𝜃𝑖]
P[𝑇 − 1; 𝑁 − 1|𝜃𝑖′]

.

Plug it into (18),
𝑞0

3 · P[𝑇 − 1; 𝑁 |𝜃3] · 𝑉𝑎𝑔 (𝜃3)
−∑2

𝑖=1 𝑞
0
𝑖
· P[𝑇 − 1; 𝑁 |𝜃𝑖] · 𝑉𝑎𝑔 (𝜃𝑖)

= 1.

From (1) and (4), ∑3
𝑖=2 𝑞

0
𝑖
· P[𝑇 − 1; 𝑁 |𝜃𝑖] · 𝑉𝑝𝑐 (𝜃𝑖)

−𝑞0
1 · P[𝑇 − 1; 𝑁 |𝜃1] · 𝑉𝑝𝑐 (𝜃1)

> 1.

That is,
𝐿𝑝𝑐 (𝑇 − 1; x) > 1,

which contradicts (8).

A.2 Proof of Proposition 2

Consider a strategy profile that the agents choose 𝑥ℎ ∈ (0, 1) and 𝑥ℓ = 0, we have

P[𝑇 ; 𝑁 |𝜃𝑖]
P[𝑇 ; 𝑁 |𝜃𝑖′]

=
(𝜌𝑖𝑥ℎ)𝑇 (1 − 𝜌𝑖𝑥ℎ)𝑁−𝑇
(𝜌𝑖′𝑥ℎ)𝑇 (1 − 𝜌𝑖′𝑥ℎ)𝑁−𝑇

= exp
[
𝑇 · log

𝜌𝑖𝑥ℎ

𝜌𝑖′𝑥ℎ
+ (𝑁 − 𝑇) · log

1 − 𝜌𝑖𝑥ℎ
1 − 𝜌𝑖′𝑥ℎ

]
= exp

{
𝑁

[
𝐾𝐿 ( 𝑇

𝑁
, 𝜌𝑖′𝑥ℎ) − 𝐾𝐿 (

𝑇

𝑁
, 𝜌𝑖𝑥ℎ)

]}
.

(19)

where 𝐾𝐿 (·, ·) is the relative entropy with

𝐾𝐿 (𝑥, 𝑦) = 𝑥 log
𝑥

𝑦
+ (1 − 𝑥) log

1 − 𝑥
1 − 𝑦 .

Fix some arbitrary 𝑥 ∈ (0, 1). Consider a sequence of informative equilibrium {Γ𝑁 =

(𝑥ℎ,𝑁 , 𝑇𝑁 )} with
lim
𝑁→∞

𝑥ℎ,𝑁 = 𝑥. (20)
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We first claim that there exists 𝑁̂1 such that when 𝑁 > 𝑁̂1, we must have

𝑇𝑁 < 𝑁 · 𝜌2𝑥ℎ,𝑁 . (21)

Note that if (21) does not hold,

𝐾𝐿 (𝑇𝑁
𝑁
, 𝜌1𝑥ℎ,𝑁 ) − 𝐾𝐿 (

𝑇𝑁

𝑁
, 𝜌2𝑥ℎ,𝑁 ) =

𝑇𝑁

𝑁
log

𝜌2𝑥ℎ,𝑁

𝜌1𝑥ℎ,𝑁
+ (1 − 𝑇𝑁

𝑁
) log

1 − 𝜌2𝑥ℎ,𝑁

1 − 𝜌1𝑥ℎ,𝑁

≥ 𝜌2𝑥ℎ,𝑁 · log
𝜌2𝑥ℎ,𝑁

𝜌1𝑥ℎ,𝑁
+ (1 − 𝜌2𝑥ℎ,𝑁 ) log

1 − 𝜌2𝑥ℎ,𝑁

1 − 𝜌1𝑥ℎ,𝑁
= 𝐾𝐿 (𝜌2𝑥ℎ,𝑁 , 𝜌1𝑥ℎ,𝑁 )
> 0.

The first inequality is from taking the derivative in 𝑇𝑁
𝑁

. The second inequality is a result
known as Gibbs’ inequality. From (20), we can see that 𝐾𝐿 (𝜌2𝑥ℎ,𝑁 , 𝜌1𝑥ℎ,𝑁 ) is always larger
than a strictly positive number independent of 𝑁 . Therefore, if (21) does not hold, then

𝐾𝐿 (𝑇𝑁
𝑁
, 𝜌1𝑥ℎ,𝑁 ) − 𝐾𝐿 (

𝑇𝑁

𝑁
, 𝜌2𝑥ℎ,𝑁 )

is always smaller than a positive number independent of 𝑁. Hence, if we cannot find an 𝑁̂1

such that (21) holds when 𝑁 > 𝑁̂1, then from (19), for each 𝑀̂1 > 0, we can find 𝑁̄1 such
that

P[𝑇𝑁̄1; 𝑁̄1 |𝜃2]
P[𝑇𝑁̄1; 𝑁̄1 |𝜃1]

> 𝑀̂1,

and
P[𝑇𝑁̄1 − 1; 𝑁̄1 |𝜃2]
P[𝑇𝑁̄1 − 1; 𝑁̄1 |𝜃1]

> 𝑀̂1,

By choosing 𝑀̂1 large enough, we can see that the principal strictly prefers 𝐴 when he
observes 𝑇𝑁̄1 − 1 approvals from 𝑁̄1 agents, which contradicts the optimality of 𝑇𝑁̄1 as
shown in (8).

However, if there exists 𝑁̂1 such that (21) holds when 𝑁 > 𝑁̂1, we must have

lim
𝑁→∞

P[𝑇𝑁 ; 𝑁 |𝜃2]
P[𝑇𝑁 ; 𝑁 |𝜃3]

= ∞. (22)
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Note that when 𝑇𝑁 < 𝑁 · 𝜌2𝑥ℎ,𝑁 ,

𝐾𝐿 (𝑇𝑁
𝑁
, 𝜌3𝑥ℎ,𝑁 ) − 𝐾𝐿 (

𝑇𝑁

𝑁
, 𝜌2𝑥ℎ,𝑁 ) =

𝑇𝑁

𝑁
log

𝜌2𝑥ℎ,𝑁

𝜌3𝑥ℎ,𝑁
+ (1 − 𝑇𝑁

𝑁
) log

1 − 𝜌2𝑥ℎ,𝑁

1 − 𝜌3𝑥ℎ,𝑁

≥ 𝜌2𝑥ℎ,𝑁 · log
𝜌2𝑥ℎ,𝑁

𝜌3𝑥ℎ,𝑁
+ (1 − 𝜌2𝑥ℎ,𝑁 ) log

1 − 𝜌2𝑥ℎ,𝑁

1 − 𝜌3𝑥ℎ,𝑁
= 𝐾𝐿 (𝜌2𝑥ℎ,𝑁 , 𝜌3𝑥ℎ,𝑁 ).
> 0.

From (20), we can see that 𝐾𝐿 (𝜌2𝑥ℎ,𝑁 , 𝜌3𝑥ℎ,𝑁 ) is always larger than a strictly positive
number independent of 𝑁 . We then prove (22) by (19).

From (22),

lim
𝑁→∞

P[𝑇𝑁 − 1; 𝑁 |𝜃3]
P[𝑇𝑁 − 1; 𝑁 |𝜃2]

= 0,

Hence, the agents choose 𝑥ℎ,𝑁 = 𝑥𝑙,𝑁 = 0 when 𝑁 is above some threshold by (6), which
leads to a contradiction.

Therefore, in every sequence of informative equilibrium {Γ𝑁 = (𝑥ℎ,𝑁 , 𝑇𝑁 )}, we must
have

lim
𝑁→∞

𝑥ℎ,𝑁 = 0. (23)

Otherwise, we can construct a subsequence from it and show that 𝑥ℎ converges to a positive
number along this sub-sequence, which leads to a contraction as shown above.

We now assume that there exists a sequence of informative equilibrium {Γ𝑁 = (𝑥ℎ,𝑁 , 𝑇𝑁 )}
with

lim
𝑁→∞

𝑁 · 𝑥ℎ,𝑁 = ∞. (24)

From the proof above, we have

𝐾𝐿 (𝑇𝑁
𝑁
, 𝜌1𝑥ℎ,𝑁 ) − 𝐾𝐿 (

𝑇𝑁

𝑁
, 𝜌2𝑥ℎ,𝑁 ) ≥ 𝐾𝐿 (𝜌2𝑥ℎ,𝑁 , 𝜌1𝑥ℎ,𝑁 ), if 𝑇𝑁 ≥ 𝑁 · 𝜌2𝑥ℎ,𝑁 , (25)

𝐾𝐿 (𝑇𝑁
𝑁
, 𝜌3𝑥ℎ,𝑁 ) − 𝐾𝐿 (

𝑇𝑁

𝑁
, 𝜌2𝑥ℎ,𝑁 ) ≥ 𝐾𝐿 (𝜌2𝑥ℎ,𝑁 , 𝜌3𝑥ℎ,𝑁 ), , if 𝑇𝑁 ≤ 𝑁 · 𝜌2𝑥ℎ,𝑁 . (26)

We can linearize 𝐾𝐿 (𝜌2𝑥ℎ,𝑁 , 𝜌𝑖𝑥ℎ,𝑁 )) with respect to 𝑥ℎ,𝑁 when 𝑥ℎ,𝑁 ≈ 0 for 𝑖 ∈ {1, 3},

𝐾𝐿 (𝜌2𝑥ℎ,𝑁 , 𝜌𝑖𝑥ℎ,𝑁 ) = 𝜅𝑖𝑥ℎ,𝑁 + 𝑜(𝑥ℎ,𝑁 ), ∀𝑖 ∈ {1, 3}, (27)
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where
𝜅𝑖 = 𝜌2 log

𝜌2
𝜌𝑖

+ 𝜌𝑖 − 𝜌2 > 0, ∀𝑖 ∈ {1, 3}.

Similar to the proof before, when (23) and (24) hold, from (19), (25) and (27), when 𝑁
is above some threshold, we must have (21), which leads to (22) from (19), (26) and (27),
and a further contradiction.

Therefore, there exists a finite number 𝑇0 independent to 𝑁 such that for each 𝑁 and
each informative equilibrium with 𝑁 agnets,

𝑁 · 𝑥ℎ < 𝑇0.

Otherwise, we can construct a sequence of informative equilibria and construct a subse-
quence from it, showing that 𝑁 · 𝑥ℎ,𝑁 grows without bound along this sub-sequence, which
leads to a contradiction as shown above.

A.3 Proof of Proposition 3

Consider a sequence of informative equilibrium {Γ𝑁 = (𝑥ℎ,𝑁 , 𝑇𝑁 )}. From Proposition
2,

𝑥ℎ,𝑁 <
𝑇0
𝑁
, ∀𝑁 ∈ N+.

Hence,

P[𝑇 ; 𝑁 |𝜃3]
P[𝑇 ; 𝑁 |𝜃1]

=
(𝜌3𝑥ℎ,𝑁 )𝑇 (1 − 𝜌3𝑥ℎ,𝑁 )𝑁−𝑇

(𝜌1𝑥ℎ,𝑁 )𝑇 (1 − 𝜌1𝑥ℎ,𝑁 )𝑁−𝑇
>

(
𝜌3
𝜌1

)𝑇 (
1 − 𝜌3 · 𝑇0

𝑁

1 − 𝜌1 · 𝑇0
𝑁

)𝑁−𝑇
>

(
𝜌3
𝜌1

)𝑇 (
1 − 𝜌3 · 𝑇0

𝑁

1 − 𝜌1 · 𝑇0
𝑁

)𝑁
.

Since

lim
𝑁→∞

(
1 − 𝜌3 · 𝑇0

𝑁

1 − 𝜌1 · 𝑇0
𝑁

)𝑁
= exp[(𝜌1 − 𝜌3)𝑇0] > 0.

We can find 𝛾 > 0 independent of 𝑇 and 𝑁 such that

P[𝑇 ; 𝑁 |𝜃3]
P[𝑇 ; 𝑁 |𝜃1]

>

(
𝜌3
𝜌1

)𝑇
· 𝛾, ∀𝑁 ∈ N+ and ∀𝑇 ∈ {0, ..., 𝑁}. (28)

Note that P[𝑇𝑁−1;𝑁 |𝜃3]
P[𝑇𝑁−1;𝑁 |𝜃1]

must be always smaller than a number independent of 𝑁 for each
𝑁 ∈ N+. Otherwise, the principal chooses 𝐴 when he observes 𝑇𝑁 − 1 approvals, which
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contradicts the optimality of𝑇𝑁 as shown in (8). From (28), for each 𝑁 ∈ N+, the equilirium
cut-off 𝑇𝑁 is always smaller than a number indepenedent of 𝑁 .

Appendix B

We provide sufficient and necessary conditions under which there exists an informative
equilibrium with𝑇 = 1, that is, the equilibrium in which the principal chooses the unanimity
rule. We then extend this approach for the informative equilibrium with 𝑇 = 𝑖 for each
𝑖 ∈ N.

We only consider the case where

𝑉𝑎𝑔 (𝜃1)
𝑉𝑎𝑔 (𝜃3)

·
𝑉𝑝𝑐 (𝜃3)
𝑉𝑝𝑐 (𝜃1)

<
𝜌3
𝜌1
.

Otherwise, from Proposition 4, information transmission fails when 𝑁 is large enough.
For each 𝑖 ∈ N+, we say information transmission persists with T̂ = i (𝐼𝑇𝑃𝑖) if there

exists 𝑁̂1 such that for each 𝑁 > 𝑁̂1, an informative equilibrium with 𝑇 = 𝑖 exists. We
say information transmission fails with T̂ = i (𝐼𝑇𝐹𝑖) if there exists 𝑁̂2 such that for each
𝑁 > 𝑁̂2, there does not exist an informative equilibrium with 𝑇 = 𝑖.

B.1 Unanimity Rule

We now provide the sufficient and necessary conditions for 𝐼𝑇𝑃1 and 𝐼𝐹𝑃1. We consider
the case where the principal always chooses 𝑇 = 1, that is, he follows the unanimity rule
under which 𝐵 is chosen if all the agents reject it. From Proposition 2, when 𝑁 is large
enough, the agents must choose 𝑥ℎ < 1 in each informative equilibrium. Therefore,
if 𝐼𝑇𝑃1 holds, then there exists 𝑁̂1 and a sequence of informative equilibrium {Γ𝑁 =

(𝑥ℎ,𝑁 , 𝑥ℓ,𝑁 , 𝑇)}∞
𝑁=𝑁̂1

with

𝑥ℎ,𝑁 ∈ (0, 1), 𝑥ℓ,𝑁 = 0, 𝑇 = 1,

for each 𝑁 > 𝑁̂1. We suppress 𝑥ℎ,𝑁 to 𝑥𝑁 to save notation. If 𝐼𝑇𝑃1 holds, there exists a
strictly positive sequence {𝑥𝑁 }∞

𝑁=𝑁̂1
satisfying

𝜌3 · (1 − 𝜌3𝑥𝑁 )𝑁−1 · 𝑉𝑎𝑔 (𝜃3)
−𝜆2 · 𝜌2 · (1 − 𝜌2𝑥𝑁 )𝑁−1 · 𝑉𝑎𝑔 (𝜃2) − 𝜆1 · 𝜌1 · (1 − 𝜌1𝑥𝑁 )𝑁−1 · 𝑉𝑎𝑔 (𝜃1)

= 1, (29)
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𝜌3 · (1 − 𝜌3𝑥𝑁 )𝑁−1 · 𝑉𝑝𝑐 (𝜃3) + 𝜆2 · 𝜌2 · (1 − 𝜌2𝑥𝑁 )𝑁−1 · 𝑉𝑝𝑐 (𝜃2)
−𝜆1 · 𝜌1 · (1 − 𝜌1𝑥𝑁 )𝑁−1 · 𝑉𝑝𝑐 (𝜃1)

> 1, (30)

(1 − 𝜌3𝑥𝑁 )𝑁 · 𝑉𝑝𝑐 (𝜃3) + 𝜆2 · (1 − 𝜌2𝑥𝑁 )𝑁 · 𝑉𝑝𝑐 (𝜃2)
−𝜆1 · (1 − 𝜌1𝑥𝑁 )𝑁 · 𝑉𝑝𝑐 (𝜃1)

≤ 1. (31)

for each 𝑁 > 𝑁̂1. We derive (29) from (6) since the agents are indifferent conditional on
receiving signal ℎ and being pivotal. We derive (30) and (31) from (6) since the principal
prefers 𝐴 when one agent approve it and prefers 𝐵 when all the agents reject it.

Note that we can interpret the agents as voters who vote between 𝐴 and 𝐵 under the
unanimity rule. An informative voting equilibrium under the unanimity rule exists if there
is a positive 𝑥𝑁 satisfying (29). We now provide conditions under which there exists 𝑁̂1

such that when 𝑁 > 𝑁̂1, there exists an informative equilibrium under the unanimity rule.
Note that the left side of (29) decreases with 𝑥𝑁 . Furthermore, for each 𝑥 ∈ (0, 1), if we
fix 𝑥𝑁 = 𝑥 for each 𝑁 and let 𝑁 go to infinity, the left side approaches 0. Therefore, by the
intermediate value theorem, a sufficient and necessary condition under which informative
voting equilibria exist when 𝑁 is large enough is that the value of the left side (29) given
that 𝑥𝑁 = 0 is strictly bigger than 1, by which we have

𝜆2 < −
𝜌3𝑉𝑎𝑔 (𝜃3) + 𝜆1𝜌1𝑉𝑎𝑔 (𝜃1)

𝜌2𝑉𝑎𝑔 (𝜃2)
.

Denote the right side by 𝜆̂′2,1. Note that if 𝜆2 < 𝜆̂′2,1. There exists a unique informative
voting equilibrium since (29) admits a unique solution. Therefore, a necessary condition
for 𝐼𝑇𝑃1 is 𝜆2 < 𝜆̂

′
2,1 while a sufficient condition for 𝐼𝑇𝐹1 is 𝜆2 ≥ 𝜆̂′2,1.

Now consider the case where 𝜆2 < 𝜆̂
′
2,1, there exists 𝑁̂1 such that there exists a strictly

positive sequence {𝑥𝑁 }∞
𝑁=𝑁̂1

satisfying (29) for each 𝑁 > 𝑁̂1. Note that (29) implies (30)
since

𝑉𝑝𝑐 (𝜃2) > 0 > 𝑉𝑝𝑐 (𝜃2),

−
𝑉𝑝𝑐 (𝜃1)
𝑉𝑝𝑐 (𝜃3)

≤ −
𝑉𝑎𝑔 (𝜃1)
𝑉𝑎𝑔 (𝜃3)

.

Assume that there exists 𝑁̂1 such that there exists a strictly positive sequence {𝑥𝑁 }∞
𝑁=𝑁̂1

satisfying (29) and (31) for each 𝑁 > 𝑁̂1, by which we have 𝐼𝑇𝑃1. By Proposition 2,

lim
𝑁→∞

𝑥𝑁 = 0. (32)
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Therefore, we can find {𝜖𝑁 }∞
𝑁1

with lim𝑁→∞ 𝜖𝑁 = 0 such that for each 𝑁 > 𝑁̂1

(1 − 𝜌3𝑥𝑁 )𝑁−1 · 𝑉𝑝𝑐 (𝜃3) + 𝜆2 · (1 − 𝜌2𝑥𝑁 )𝑁−1 · 𝑉𝑝𝑐 (𝜃2)
−𝜆1 · (1 − 𝜌1𝑥𝑁 )𝑁−1 · 𝑉𝑝𝑐 (𝜃1)

<
1

1 − 𝜖𝑁
(33)

by (31) and (32).
Note that we can rewrite (29) as

𝑎1

(
1 − 𝜌1𝑥𝑁
1 − 𝜌3𝑥𝑁

)𝑁−1
+ 𝑎2

(
1 − 𝜌2𝑥𝑁
1 − 𝜌3𝑥𝑁

)𝑁−1
= 1, (34)

where 𝑎1 > 0 and 𝑎2 > 0 are calculated from (29). We can also rewrite (33) as

𝑏1

(
1 − 𝜌1𝑥𝑁
1 − 𝜌3𝑥𝑁

)𝑁−1
− 𝑏2

(
1 − 𝜌2𝑥𝑁
1 − 𝜌3𝑥𝑁

)𝑁−1
> 1 − 𝜖𝑁 , (35)

where 𝑏1 > 0 and 𝑏2 > 0 are calculated from (33). By (34) and (35),(
1 − 𝜌1𝑥𝑁
1 − 𝜌3𝑥𝑁

)𝑁−1
>
𝑏2 + 𝑎2(1 − 𝜖𝑁 )
𝑎2𝑏1 + 𝑎1𝑏2

, (36)

(
1 − 𝜌2𝑥𝑁
1 − 𝜌3𝑥𝑁

)𝑁−1
<
𝑏1 − 𝑎1(1 − 𝜖𝑁 )
𝑎2𝑏1 + 𝑎1𝑏2

. (37)

Note that for each 𝑡 > 0, if there exists a sequence {𝑦𝑁 }∞
𝑁=𝑁̂1

such that

(
1 − 𝜌1𝑦𝑁
1 − 𝜌3𝑦𝑁

)𝑁−1
> 𝑡, ∀𝑁 > 𝑁̂1.

then

lim inf
𝑁→∞

(
1 − 𝜌2𝑦𝑁
1 − 𝜌3𝑦𝑁

)𝑁−1
> 𝑡

𝜌3−𝜌2
𝜌3−𝜌1 ,

which is shown by considering the sequence {𝑦𝑁 }∞
𝑁=𝑁̂1

such that

(
1 − 𝜌1𝑦𝑁
1 − 𝜌3𝑦𝑁

)𝑁−1
= 𝑡, ∀𝑁 > 𝑁̂1.

Therefore, if both (36) and (37) for each 𝑥𝑁 when 𝑁 > 𝑁̂1 with lim𝑁→∞ 𝜖𝑁 = 0, we
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must have (
𝑏2 + 𝑎2

𝑎2𝑏1 + 𝑎1𝑏2

) 𝜌3−𝜌2
𝜌3−𝜌1

≤ 𝑏1 − 𝑎1
𝑎2𝑏1 + 𝑎1𝑏2

That is,

𝜆2 ≤ 𝜆
𝜌3−𝜌2
𝜌3−𝜌1
1 · 𝜌3𝑢13 − 𝜌1𝑣13

(𝜌3𝑢23 + 𝜌2𝑣23)
𝜌3−𝜌2
𝜌3−𝜌1 (𝜌1𝑢23𝑣13 + 𝜌2𝑢13𝑣23)

𝜌2−𝜌1
𝜌3−𝜌1

.

with

𝑢𝑖 𝑗 =

��𝑉𝑝𝑐 (𝜃𝑖)����𝑉𝑝𝑐 (𝜃 𝑗 )�� , ∀𝑖, 𝑗 ∈ {1, 2, 3},

𝑣𝑖 𝑗 =

��𝑉𝑎𝑔 (𝜃𝑖)����𝑉𝑎𝑔 (𝜃 𝑗 )�� , ∀𝑖, 𝑗 ∈ {1, 2, 3}.

Denote the right side by 𝜆̂′′2,1. A nessessary condition for 𝐼𝑇𝑃1 is 𝜆2 ≤ 𝜆̂′′2,1. Furthermore,
if 𝜆2 > 𝜆̂

′′
2,1, we can find 𝑁̂2 such that for each 𝑁 > 𝑁̂2, there does not exist 𝑥𝑁 satisfying

both (36) and (37). Therefore, a sufficiecnt condition for 𝐼𝑇𝐹1 is 𝜆2 > 𝜆̂
′′
2,1.

Let
𝜆̂2,1 = min{𝜆̂′2,1, 𝜆̂

′′
2,1}.

A nessessary condition for 𝐼𝑇𝑃1 is 𝜆2 ≤ 𝜆̂2,1 while a sufficient condition for 𝐼𝑇𝐹1 is
𝜆2 > 𝜆̂2,1.

We now show that a sufficient condition for 𝐼𝑇𝑃1 is 𝜆2 < 𝜆̂2,1. Note that we can find
sequences {𝑦𝑁 }∞𝑁=1, {𝜖𝑁 }∞𝑁=1, and {𝜖′

𝑁
}∞
𝑁=1 with

lim
𝑁→∞

𝑦𝑁 = lim
𝑁→∞

𝜖𝑁 = lim
𝑁→∞

𝜖 ′𝑁 = 0,

such that

𝜌3 · (1 − 𝜌3𝑦𝑁 )𝑁−1 · 𝑉𝑎𝑔 (𝜃3)
−𝜆̂′′2,1 · 𝜌2 · (1 − 𝜌2𝑦𝑁 )𝑁−1 · 𝑉𝑎𝑔 (𝜃2) − 𝜆1 · 𝜌1 · (1 − 𝜌1𝑦𝑁 )𝑁−1 · 𝑉𝑎𝑔 (𝜃1)

= 1 + 𝜖𝑁 ,

(1 − 𝜌3𝑦𝑁 )𝑁 · 𝑉𝑝𝑐 (𝜃3) + 𝜆̂′′2,1 · (1 − 𝜌2𝑦𝑁 )𝑁 · 𝑉𝑝𝑐 (𝜃2)
−𝜆1 · (1 − 𝜌1𝑦𝑁 )𝑁 · 𝑉𝑝𝑐 (𝜃1)

= 1 + 𝜖 ′𝑁

Hence, for each 𝜆2 < 𝜆̂2,1, we can find 𝑁̂1 such that for each 𝑁 > 𝑁̂1,

𝜌3 · (1 − 𝜌3𝑦𝑁 )𝑁−1 · 𝑉𝑎𝑔 (𝜃3)
𝜆2 · 𝜌2 · (1 − 𝜌2𝑦𝑁 )𝑁−1 · 𝑉𝑎𝑔 (𝜃2) − 𝜆1 · 𝜌1 · (1 − 𝜌1𝑦𝑁 )𝑁−1 · 𝑉𝑎𝑔 (𝜃1)

> 1,
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(1 − 𝜌3𝑦𝑁 )𝑁 · 𝑉𝑝𝑐 (𝜃3) + 𝜆2 · (1 − 𝜌2𝑦𝑁 )𝑁 · 𝑉𝑝𝑐 (𝜃2)
−𝜆1 · (1 − 𝜌1𝑦𝑁 )𝑁 · 𝑉𝑝𝑐 (𝜃1)

< 1.

Note that the left sides of both equations above decrease with 𝑦𝑁 . Therefore, for each
𝑁 > 𝑁̂1, if we can find 𝑥𝑁 ≤ 1 satisfying (29), then we have 𝑥𝑁 > 𝑦𝑁 and (31) is satisfied.
In this case, since 𝜆2 < 𝜆̂2,1 ≤ 𝜆̂2,1 and 𝑥𝑁 is the unique solution of (29), we must have
𝑥𝑁 > 0. Therefore, we construct an informative equilibrium with 𝑇 = 1. If we cannot find
𝑥𝑁 ≤ 1 satisfying (29), we have

𝜌3 · (1 − 𝜌3)𝑁−1 · 𝑉𝑎𝑔 (𝜃3)
𝜆2 · 𝜌2 · (1 − 𝜌2)𝑁−1 · 𝑉𝑎𝑔 (𝜃2) − 𝜆1 · 𝜌1 · (1 − 𝜌1)𝑁−1 · 𝑉𝑎𝑔 (𝜃1)

> 1, (38)

(1 − 𝜌3)𝑁 · 𝑉𝑝𝑐 (𝜃3) + 𝜆2 · (1 − 𝜌2)𝑁 · 𝑉𝑝𝑐 (𝜃2)
−𝜆1 · (1 − 𝜌1)𝑁 · 𝑉𝑝𝑐 (𝜃1)

< 1. (39)

From (38),

𝜌3 · (1 − 𝜌3)𝑁−1 · 𝑉𝑝𝑐 (𝜃3) + 𝜆2 · 𝜌2 · (1 − 𝜌2)𝑁−1 · 𝑉𝑝𝑐 (𝜃2)
−𝜆1 · 𝜌1 · (1 − 𝜌1)𝑁−1 · 𝑉𝑝𝑐 (𝜃1)

< 1. (40)

From (39),

(1 − 𝜌3) · (1 − 𝜌3)𝑁−1 · 𝑉𝑎𝑔 (𝜃3)
𝜆2 · (1 − 𝜌2) · (1 − 𝜌2)𝑁−1 · 𝑉𝑎𝑔 (𝜃2) − 𝜆1 · (1 − 𝜌1) · (1 − 𝜌1)𝑁−1 · 𝑉𝑎𝑔 (𝜃1)

< 1, (41)

From (38) and (41), the agents strictly prefer 𝐴 conditional receiving signal ℎ and being
pivotal while strictly prefer 𝐵 conditional on receiving signal ℓ and being pivotal. Hence, it
is optimal for the agents to choose 𝑥ℎ = 1 and 𝑥ℓ = 0. From (39) and (40), it is optimal for
the principal to choose 𝑇 = 1. Hence, we construct an informative equilibrium. Therefore,
for each 𝜆2 < 𝜆̂2,1, we can find 𝑁̂1 such that for each 𝑁 > 𝑁̂1, an informative equilibrium
with 𝑇 = 1 exists.

In Figure 14, we plot 𝜆̂′2,𝑖, 𝜆̂
′′
2,𝑖 and 𝜆̂2,𝑖 as functions of 𝜆1.
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𝜆1

𝜆2

𝜆̂′′2,1
𝜆̂′2,1

𝜆1

𝜆2

𝜆̂2,1

Figure 14
Conditions for 𝐼𝑇𝑃1 and 𝐼𝑇𝐹1.

B.2 General Case

We now discuss the sufficient conditions for 𝐼𝑇𝑃𝑖 and 𝐼𝐹𝑃𝑖 for each 𝑖 > 1. Fix an
arbitrary 𝑖 > 1 and consider the case where the principal always chooses 𝑇 = 𝑖. From
Proposition 2, when 𝑁 is large enough, the agents must chooses 𝑥ℎ < 1 in each informative
equilibrium. Therefore, if 𝐼𝑇𝑃𝑖 holds, then there exists 𝑁̂1 and a sequence of informative
equilibrium {Γ𝑁 = (𝑥ℎ,𝑁 , 𝑥ℓ,𝑁 , 𝑇)}∞

𝑁=𝑁̂1
with

𝑥ℎ,𝑁 ∈ (0, 1), 𝑥ℓ,𝑁 = 0, 𝑇 = 𝑖,

for each 𝑁 > 𝑁̂1. We suppress 𝑥ℎ,𝑁 to 𝑥𝑁 to save notation. If 𝐼𝑇𝑃𝑖 holds, there exists a
strictly positive sequence {𝑥𝑁 }∞

𝑁=𝑁̂1
satisfying

𝜌3 · (𝜌3𝑥𝑁 )𝑖−1 · (1 − 𝜌3𝑥𝑁 )𝑁−𝑖 · 𝑉𝑎𝑔 (𝜃3)
−𝜆2 · 𝜌2 · (𝜌2𝑥𝑁 )𝑖−1 · (1 − 𝜌2𝑥𝑁 )𝑁−𝑖 · 𝑉𝑎𝑔 (𝜃2) − 𝜆1 · 𝜌1 · (𝜌1𝑥𝑁 )𝑖−1 · (1 − 𝜌1𝑥𝑁 )𝑁−𝑖 · 𝑉𝑎𝑔 (𝜃1)

= 1,

(42)
𝜌3 · (𝜌3𝑥𝑁 )𝑖 · (1 − 𝜌3𝑥𝑁 )𝑁−𝑖 · 𝑉𝑝𝑐 (𝜃3) + 𝜆2 · 𝜌2 · (𝜌2𝑥𝑁 )𝑖 · (1 − 𝜌2𝑥𝑁 )𝑁−𝑖 · 𝑉𝑝𝑐 (𝜃2)

−𝜆1 · 𝜌1 · (𝜌1𝑥𝑁 )𝑖 · (1 − 𝜌1𝑥𝑁 )𝑁−𝑖 · 𝑉𝑝𝑐 (𝜃1)
> 1,

(43)
(𝜌3𝑥𝑁 )𝑖−1 · (1 − 𝜌3𝑥𝑁 )𝑁−𝑖+1 · 𝑉𝑝𝑐 (𝜃3) + 𝜆2 · (𝜌3𝑥𝑁 )𝑖−1 · (1 − 𝜌2𝑥𝑁 )𝑁−𝑖+1 · 𝑉𝑝𝑐 (𝜃2)

−𝜆1 · (𝜌3𝑥𝑁 )𝑖−1 · (1 − 𝜌1𝑥𝑁 )𝑁−𝑖+1 · 𝑉𝑝𝑐 (𝜃1)
≤ 1.

(44)
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Note that we can choose

𝜆′1 = 𝜆2 ·
(
𝜌1
𝜌3

) 𝑖−1
,

𝜆′2 = 𝜆2 ·
(
𝜌2
𝜌3

) 𝑖−1
,

and convert (42), (43), and (44) regading 𝜆1 and 𝜆2 to (29), (30), and (31) regarding 𝜆′1 and
𝜆′2. In this way, we can follow the analysis in A.2.1 and find 𝜆̂2,𝑖 such that 𝐼𝑇𝑃𝑖 holds if
𝜆2 < 𝜆̂2,𝑖 and while 𝐼𝑇𝐹𝑖 holds if 𝜆2 > 𝜆̂2,𝑖. The left panel of Figure 8 illustrateS 𝜆̂2,1, 𝜆̂2,2,
and 𝜆̂2,3.

Appendix C

C.1 Proof of Proposition 4

Assume that there exists an informative equilibrium with 𝑥ℎ ∈ (0, 1) and 𝑥ℓ = 0, that is,
the agents are indifferent conditional on receiving signal ℎ and being pivotal. From (6),

𝑞0
3 · 𝜌3 · P[𝑇 − 1; 𝑁 − 1|𝜃3] · 𝑉𝑎𝑔 (𝜃3)

−∑2
𝑖=1 𝑞

0
𝑖
· 𝜌𝑖 · P[𝑇 − 1; 𝑁 − 1|𝜃𝑖] · 𝑉𝑎𝑔 (𝜃𝑖)

= 1.

Therefore,
𝑞0

3 · 𝜌3 · P[𝑇 − 1; 𝑁 − 1|𝜃3] · 𝑉𝑎𝑔 (𝜃3)
−𝑞0

1 · 𝜌1 · P[𝑇 − 1; 𝑁 − 1|𝜃1] · 𝑉𝑎𝑔 (𝜃1)
> 1,

𝑞0
3 · P[𝑇 − 1; 𝑁 − 1|𝜃3]
𝑞0

1 · P[𝑇 − 1; 𝑁 − 1|𝜃1]
> −𝜌1

𝜌3

𝑉𝑎𝑔 (𝜃1)
𝑉𝑎𝑔 (𝜃3)

. (45)

Furthermore, since the principal must prefer 𝐵 when he observes 𝑇 − 1 approvals by (8),∑3
𝑖=2 𝑞

0
𝑖
· P[𝑇 − 1; 𝑁 |𝜃𝑖] · 𝑉𝑝𝑐 (𝜃𝑖)

−𝑞0
1 · P[𝑇 − 1; 𝑁 |𝜃1] · 𝑉𝑝𝑐 (𝜃1)

≤ 1.

Therefore,
𝑞0

3 · P[𝑇 − 1; 𝑁 |𝜃3] · 𝑉𝑝𝑐 (𝜃3)
−𝑞0

1 · P[𝑇 − 1; 𝑁 |𝜃1] · 𝑉𝑝𝑐 (𝜃1)
≤ 1,

𝑞0
3 · (1 − 𝜌3𝑥ℎ) · P[𝑇 − 1; 𝑁 − 1|𝜃3] · 𝑉𝑝𝑐 (𝜃3)
−𝑞0

1 · (1 − 𝜌1𝑥ℎ) · P[𝑇 − 1; 𝑁 |𝜃1] · 𝑉𝑝𝑐 (𝜃1)
≤ 1,
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∑3
𝑖=2 𝑞

0
𝑖
· P[𝑇 − 1; 𝑁 |𝜃𝑖] · 𝑉𝑝𝑐 (𝜃𝑖)

−𝑞0
1 · P[𝑇 − 1; 𝑁 − 1|𝜃1] · 𝑉𝑝𝑐 (𝜃1)

≤ −1 − 𝜌1𝑥ℎ
1 − 𝜌3𝑥ℎ

𝑉𝑝𝑐 (𝜃1)
𝑉𝑝𝑐 (𝜃3)

. (46)

From (45) and (46),

−𝜌1
𝜌3

𝑉𝑎𝑔 (𝜃1)
𝑉𝑎𝑔 (𝜃3)

< −1 − 𝜌1𝑥ℎ
1 − 𝜌3𝑥ℎ

𝑉𝑝𝑐 (𝜃1)
𝑉𝑝𝑐 (𝜃3)

,

𝑉𝑎𝑔 (𝜃1)
𝑉𝑎𝑔 (𝜃3)

·
𝑉𝑝𝑐 (𝜃3)
𝑉𝑝𝑐 (𝜃1)

<
𝜌3
𝜌1

· 1 − 𝜌1𝑥ℎ
1 − 𝜌3𝑥ℎ

. (47)

By Proposition 2, when 𝑁 is large enough, in every informative equilibrium, we must have
𝑥ℎ ≈ 0. Therefore, if

𝑉𝑎𝑔 (𝜃1)
𝑉𝑎𝑔 (𝜃3)

·
𝑉𝑝𝑐 (𝜃3)
𝑉𝑝𝑐 (𝜃1)

>
𝜌3
𝜌1
,

there does not exist any informative equilibrium when 𝑁 is large enough, by which we prove
Proposition 4.

C.2 Proof of Proposition 5

We choose
𝜆̂2 = sup

𝑖∈N+
𝜆̂2,𝑖 .

From the analysis in Appendix B, it is direct to see that information transmission persists if
𝜆2 < 𝜆̂2.

For each 𝜆2 > 𝜆̂2, by Proposition 3, we can find 𝑇0 independent of 𝑁 such that in any
informative equilibrium, the principal chooses 𝑇 < 𝑇0. We further have

𝜆2 > max
𝑖∈N+

𝜆̂2,𝑖 > max
𝑖<𝑇0

𝜆̂2,𝑖 .

Hence, we have 𝐼𝑇𝐹𝑖 for each 𝑖 < 𝑇0. We then can find 𝑁̂2 such that when 𝑁 > 𝑁̂2, only
the babbling equilibrium exists since 𝑇0 is a finite number independent to 𝑁 , by which
information transmission fails.
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C.3 Rest Results of Section 4

The proofs of Corollary 2, Corollary 3, and Proposition 7 are similar. We only need
to show that given that there exists an informative equilibrium, there always exists an
informative equilibrium with a higher 𝑥ℎ when there are a lower 𝜆2, a lower 𝜌1, higher
𝑉𝑎𝑔 (𝜃𝑖), and lower𝑉𝑝𝑐 (𝜃𝑖) for each 𝑖 ∈ {1, 2, 3}. We skip the proof here since we already do
a similar construction when proving a sufficient condition for 𝐼𝑇𝑃1 is 𝜆2 < 𝜆̂

′′
2,1 in Appendix

B.
The part of Corollary 3 that 𝜆̂2 is non-monotonic with 𝜌2 and 𝜌3 is proved by taking

the derivative of 𝜆̂2 over 𝜌2 and 𝜌3. Proposition 6 is direct from Blackwell’s informative
ranking. Proposition 8 is based on calculation, which can be directly seen by the fact that
𝜆̂′′2,1 is concave in 𝜆1.

Appendix D

In this section, we characterize the informative equilibrium in which the principal uses a
mixed strategy. Consider an equilibrium in which the agents choose an informative strategy
x with 𝑥ℓ < 𝑥ℎ and the principal chooses 𝑇 ∈ {1, ..., 𝑁 − 1} and 𝑝 ∈ (0, 1) such that he
chooses 𝐵 when 𝑇 < 𝑇 , chooses 𝐴 with probability 𝑝 when 𝑇 = 𝑇 , and chooses 𝐴 when
𝑇 > 𝑇 .32

In this case, if one agent is pivotal, with probability 𝑝, there are 𝑇 − 1 approvals from
𝑁 − 1 agents while with probability 1− 𝑝, there are 𝑇 approvals from 𝑁 − 1 agents. Hence,

P[𝑝𝑖𝑣 |𝜃𝑖; x, 𝑇, 𝑝] = 𝑝 · P[𝑇 − 1, 𝑁 − 1|𝜃𝑖; x, 𝑇, 𝑝] + (1 − 𝑝) · P[𝑇, 𝑁 − 1|𝜃𝑖; x, 𝑇, 𝑝] .

We then define

𝐿𝑎𝑔 (𝑠; x, 𝑇, 𝑝) =
𝑞0

3 · P[𝑠 |𝜃3] · P[𝑝𝑖𝑣 |𝜃3; x, 𝑇, 𝑝] · 𝑉𝑎𝑔 (𝜃3)
−∑2

𝑖=1 𝑞
0
𝑖
· P[𝑠 |𝜃𝑖] · P[𝑝𝑖𝑣 |𝜃𝑖; x, 𝑇, 𝑝] · 𝑉𝑎𝑔 (𝜃𝑖)

.

32We skip the case where 𝑇 = 0 and 𝑝 ∈ (0, 1) since if there exists such an equilibrium, there must exist
one informative with 𝑇 = 1 and 𝑝 = 1. Similarly, we skip the case where 𝑇 = 𝑁 and 𝑝 ∈ (0, 1).
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We have 
𝑥𝑠 = 1 when 𝐿𝑎𝑔 (𝑠; x, 𝑇, 𝑝) > 1,

𝑥𝑠 ∈ [0, 1] when 𝐿𝑎𝑔 (𝑠; x, 𝑇, 𝑝) = 1,

𝑥𝑠 = 0 when 𝐿𝑎𝑔 (𝑠; x, 𝑇, 𝑝) < 1.

(48)

For the principal, he must be indifferent when he observes 𝑇 ,∑3
𝑖=2 𝑞

0
𝑖
· P[𝑇 ; 𝑁 |𝜃𝑖] · 𝑉𝑝𝑐 (𝜃𝑖)

−𝑞0
1 · P[𝑇 ; 𝑁 |𝜃1] · 𝑉𝑎𝑔 (𝜃1)

= 1. (49)

Therefore, an informative equilibrium {x, 𝑇, 𝑝} with 𝑝 ∈ (0, 1) is characterized by (48)
and (49).

It is direct to verify that Lemma 1, Proposition 2, Proposition 3, and hence Theorem 1
stay valid when we allow the principal to use a mixed strategy. We extend results in Section
4 based on the following lemma.
Lemma 3. If there exists an informative equilibrium in which the principal chooses 𝐴 with
probability 𝑝 ∈ (0, 1) when he observes 𝑇 approvals with 𝑇 ∈ {1, ..., 𝑁 − 1}, then there
exists an informative equilibrium in which the principal chooses 𝐴 if and only if 𝑇 > 𝑇 .

Proof. Consider the case that there exists an informative equilibrium {𝑥ℎ, 𝑇, 𝑝} in which
the principal chooses 𝐴 with probability 𝑝 ∈ (0, 1) when he observes 𝑇 approvals. Since
the agents chooses 𝑥ℎ > 0, from (48), we have

𝑞0
3 · 𝜌3 · P[𝑝𝑖𝑣 |𝜃3; x, 𝑇, 𝑝] · 𝑉𝑎𝑔 (𝜃3)

−∑2
𝑖=1 𝑞

0
𝑖
· 𝜌𝑖 · P[𝑝𝑖𝑣 |𝜃𝑖; x, 𝑇, 𝑝] · 𝑉𝑎𝑔 (𝜃𝑖)

≤ 1. (50)

Note that since 𝑥ℓ < 𝑥ℎ, we have

P[𝑇 ; 𝑁 |𝜃3]
P[𝑇 ; 𝑁 |𝜃1]

and
P[𝑇 ; 𝑁 |𝜃2]
P[𝑇 ; 𝑁 |𝜃1]

both strictly increase with 𝑇 . Hence, from (50),

𝑞0
3 · 𝜌3 · P[𝑇, 𝑁 − 1|𝜃3; x, 𝑇, 𝑝] · 𝑉𝑎𝑔 (𝜃3)

−∑2
𝑖=1 𝑞

0
𝑖
· 𝜌𝑖 · P[𝑇, 𝑁 − 1|𝜃𝑖; x, 𝑇, 𝑝] · 𝑉𝑎𝑔 (𝜃𝑖)

> 1. (51)

Note that if 𝑥ℎ = 1, equations (49) and (51) guarantee that there exists an information
equilibrium in which the agents choose the same 𝑥ℎ and the principal chooses 𝐴 if and
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only if 𝑇 > 𝑇 . Note that (49) implies that the agents must choose 𝑥ℓ = 0 conditional on
receiving signal ℓ and being pivotal. If 𝑥ℎ < 1, we can follow the construction when proving
a sufficient condition for 𝐼𝑇𝑃1 is 𝜆2 < 𝜆̂

′′
2,1 in Appendix B, showing that there must exist

𝑥′
ℎ
∈ (𝑥ℎ, 1] such that there exists an informative equilibrium in which the agents choose

the same 𝑥′
ℎ

and the principal chooses 𝐴 if and only if 𝑇 > 𝑇 .
□

From Lemma 3, we can see that we only need to focus on the informative equilibrium
in which the principal follows pure strategy when discussing the existence of informative
equilibria.

Appendix E

E.1 Proof of Proposition 10

Fix 𝑁 ∈ N+ and conider a mechanism 𝑀𝑁 = (𝜇𝑁 , 𝑇𝛼𝑁 , 𝑇
𝛽

𝑁
, ). When one agent is pivotal,

with probability 𝜇𝑁 , there are 𝑇𝛼
𝑁

agents receving signal ℎ for 𝑁 − 1 agents, and with
probability 1 − 𝜇𝑁 , there are 𝑇 𝛽

𝑁
agents receving signal ℎ for 𝑁 − 1 agents.

Define

P[𝑝𝑖𝑣𝛼 |𝜃𝑖;𝑇𝛼𝑁 ] =
(
𝑁 − 1
𝑇𝛼
𝑁
− 1

)
[𝜌𝑖]𝑇

𝛼
𝑁
−1 [1 − 𝜌𝑖]𝑁−𝑇

𝛼
𝑁 , ∀𝑖 ∈ {1, 2, 3},

P[𝑝𝑖𝑣𝛽 |𝜃𝑖;𝑇 𝛽𝑁 ] =
(
𝑁 − 1
𝑇
𝛽

𝑁
− 1

)
[𝜌𝑖]𝑇

𝛽

𝑁
−1 [1 − 𝜌𝑖]𝑁−𝑇

𝛽

𝑁 , ∀𝑖 ∈ {1, 2, 3},

P[𝑝𝑖𝑣 |𝜃𝑖; T̂N, 𝜇𝑁 ] = 𝜇𝑁 · P[𝑝𝑖𝑣𝛼 |𝜃𝑖;𝑇𝛼𝑁 ] + (1 − 𝜇𝑁 ) · P[𝑝𝑖𝑣𝛽 |𝜃𝑖;𝑇 𝛽𝑁 ], ∀𝑖 ∈ {1, 2, 3},

where T̂N = (𝑇𝛼, 𝑇 𝛽). The mechanism 𝑀𝑁 must satisfy the incentive compatibility con-
straints under which the agents report truthfully,

𝑞0
3 · 𝜌3 · P[𝑝𝑖𝑣 |𝜃3; T̂N, 𝜇𝑁 ] · 𝑉𝑎𝑔 (𝜃3)

−∑2
𝑖=1 𝑞

0
𝑖
· 𝜌𝑖 · P[𝑝𝑖𝑣 |𝜃𝑖; T̂N, 𝜇𝑁 ] · 𝑉𝑎𝑔 (𝜃𝑖)

≥ 1, (52)

𝑞0
3 · (1 − 𝜌3) · P[𝑝𝑖𝑣 |𝜃3; T̂N, 𝜇𝑁 ] · 𝑉𝑎𝑔 (𝜃3)

−∑2
𝑖=1 𝑞

0
𝑖
· (1 − 𝜌𝑖) · P[𝑝𝑖𝑣 |𝜃𝑖; T̂N, 𝜇𝑁 ] · 𝑉𝑎𝑔 (𝜃𝑖)

≥ 1. (53)
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From (19),

P[𝑇 ; 𝑁 |𝜃𝑖]
P[𝑇 ; 𝑁 |𝜃𝑖′]

= exp
{
𝑁

[
𝐾𝐿 ( 𝑇

𝑁
, 𝜌𝑖′) − 𝐾𝐿 (

𝑇

𝑁
, 𝜌𝑖)

]}
. (54)

Note that for 𝑖′ > 𝑖, if

𝑡 >
log 1−𝜌𝑖

1−𝜌𝑖′

log 𝜌′
𝑖

𝜌𝑖
+ log 1−𝜌𝑖

1−𝜌𝑖′

,

then
𝐾𝐿 (𝑡, 𝜌𝑖′) − 𝐾𝐿 (𝑡, 𝜌𝑖) > 0.

While if

𝑡 <
log 1−𝜌𝑖

1−𝜌𝑖′

log 𝜌𝑖′
𝜌𝑖

+ log 1−𝜌𝑖
1−𝜌𝑖′

,

then
𝐾𝐿 (𝑡, 𝜌𝑖′) − 𝐾𝐿 (𝑡, 𝜌𝑖) < 0.

Hence, we can choose 𝑡𝛼 and 𝑡𝛽 such that

𝑡𝛼 ∈ (𝜌1,
log 1−𝜌1

1−𝜌2

log 𝜌2
𝜌1

+ log 1−𝜌1
1−𝜌2

), (55)

𝑡𝛽 ∈ (
log 1−𝜌2

1−𝜌3

log 𝜌3
𝜌2

+ log 1−𝜌2
1−𝜌3

, 𝜌3), (56)

and let 𝑇𝛼
𝑁

, 𝑇 𝛽
𝑁

be the integers closest to 𝑁𝑡𝛼 and 𝑁𝑡𝛽 respectively. We have

lim
𝑁→∞

P[𝑝𝑖𝑣𝛼 |𝜃𝑖;𝑇𝛼𝑁 ]
P[𝑝𝑖𝑣𝛼 |𝜃1;𝑇𝛼

𝑁
]
= 0;∀𝑖 ∈ {2, 3}, (57)

lim
𝑁→∞

P[𝑝𝑖𝑣𝛽 |𝜃𝑖;𝑇 𝛽𝑁 ]
P[𝑝𝑖𝑣𝛽 |𝜃3;𝑇 𝛽

𝑁
]
= 0;∀𝑖 ∈ {1, 2}. (58)

By Sterling approximation and (19),

P[𝑝𝑖𝑣𝛼 |𝜃𝑖;𝑇𝛼𝑁 ]
P[𝑝𝑖𝑣𝛽 |𝜃 𝑗 ;𝑇 𝛽𝑁 ]

= exp
{
𝑁

[
𝐾𝐿 (𝑡𝛽, 𝜌 𝑗 ) − 𝐾𝐿 (𝑡𝛼, 𝜌𝑖) + 𝑜(1)

]}
, ∀𝑖, 𝑗 ∈ {1, 2, 3}. (59)
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Note that for each 𝑖 ∈ {1, 2, 3}), the function 𝐾𝐿 (𝑡, 𝜌𝑖) strictly decreases with 𝑡 when 𝑡 < 𝜌𝑖
and strictly increases with 𝑡 when 𝑡 > 𝜌𝑖. We further have 𝐾𝐿 (𝑡, 𝜌𝑖) = 0 if and only if
𝑡 = 𝜌𝑖. We further choose 𝑡𝛼 and 𝑡𝛽 such that

𝐾𝐿 (𝑡𝛼, 𝜌1) > 𝐾𝐿(𝑡𝛽, 𝜌3),

and choose 𝜇𝑁 ∈ (0, 1) such that

𝜇𝑁

1 − 𝜇𝑁
·
P[𝑝𝑖𝑣𝛼 |𝜃1;𝑇𝛼

𝑁
]

P[𝑝𝑖𝑣𝛽 |𝜃3;𝑇 𝛽
𝑁
]
·
−𝑉𝑎𝑔 (𝜃1)
𝑉𝑎𝑔 (𝜃3)

= 1. (60)

From (59), we can see that 𝜇𝑁 must exist when 𝑁 is large enough and

lim
𝑁→∞

𝜇𝑁 = 0. (61)

From (58) and (60),

lim
𝑁→∞

𝜇𝑁

1 − 𝜇𝑁
·
P[𝑝𝑖𝑣𝛼 |𝜃1;𝑇𝛼

𝑁
]

P[𝑝𝑖𝑣𝛽 |𝜃1;𝑇 𝛽
𝑁
]
= ∞.

Hence,

lim
𝑁→∞

𝜇𝑁 · P[𝑝𝑖𝑣𝛼 |𝜃1;𝑇𝛼
𝑁
]

P[𝑝𝑖𝑣 |𝜃1; T̂N, 𝜇𝑁 ]
= 1.

Similarly,

lim
𝑁→∞

(1 − 𝜇𝑁 ) · P[𝑝𝑖𝑣𝛽 |𝜃3;𝑇 𝛽
𝑁
]

P[𝑝𝑖𝑣 |𝜃3; T̂N, 𝜇𝑁 ]
= 1.

Furthermore, from (58), (59) and (60),

lim
𝑁→∞

P[𝑝𝑖𝑣 |𝜃2; T̂N, 𝜇𝑁 ]
P[𝑝𝑖𝑣 |𝜃1; T̂N, 𝜇𝑁 ]

= 0,

lim
𝑁→∞

P[𝑝𝑖𝑣 |𝜃2; T̂N, 𝜇𝑁 ]
P[𝑝𝑖𝑣 |𝜃3; T̂N, 𝜇𝑁 ]

= 0.

Therefore, when 𝑁 is large,

𝑞0
3 · P[𝑝𝑖𝑣 |𝜃3; T̂N, 𝜇𝑁 ] · 𝑉𝑎𝑔 (𝜃3)

−∑2
𝑖=1 𝑞

0
𝑖
· P[𝑝𝑖𝑣 |𝜃𝑖; T̂N, 𝜇𝑁 ] · 𝑉𝑎𝑔 (𝜃𝑖)

≈ 𝜇𝑁

1 − 𝜇𝑁
·
P[𝑝𝑖𝑣𝛼 |𝜃1;𝑇𝛼

𝑁
]

P[𝑝𝑖𝑣𝛽 |𝜃3;𝑇 𝛽
𝑁
]
·
−𝑉𝑎𝑔 (𝜃1)
𝑉𝑎𝑔 (𝜃3)

= 1,

by which (52) and (53) are satisfied and we hence construct an incentive-compatible mech-
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anism. By (55), (56), (61), and the law of large numbers, we can see that the principal can
approach his first-best outcome as 𝑁 → ∞.
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