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Abstract

The evaluation of many policies of interest (e.g., educational and training programs) in-
evitably face incomplete treatment group take-up. Estimation of causal effects in these con-
trolled or natural “experiments with imperfect compliance” usually relies on an Instrumental
Variable (IV) strategy, which often yields imprecise and thus possibly uninformative inference
when compliance rates are low. We tackle this problem by proposing a Test-and-Select estima-
tor that exploits covariate information to restrict estimation to a subpopulation with non-zero
compliance. We derive the asymptotic properties of our proposed estimator under standard
and weak-IV-like asymptotics, and study its finite sample properties in Monte Carlo simula-
tions. We provide conditions under which it dominates the usual 2SLS estimator in terms of
precision. Under an assumption on the degree of treatment effect heterogeneity, our estimator
remains first-order unbiased with respect to the Local Average Treatment Effect (LATE) esti-
mand, setting it apart from alternatives in the burgeoning literature on the use of first-stage
heterogeneity to improve the precision of IV estimators. This robustness to treatment effect
heterogeneity and the potential for precision gains are illustrated using Monte Carlo simula-
tions and two empirical applications. Applying this new estimation procedure to the returns
to schooling example (where compulsory schooling laws serve as instruments for educational
attainment), we document that our methodology reduces standard errors by 12% to 48% de-
pending on specifications.

Keywords: IV, LATE, imperfect compliance, precision, variance

JEL Codes: C01, C21, C26

*Hazard: PhD candidate, Paris School of Economics. Löwe: PhD candidate, Paris School of Economics. We would
like to thank warmly Luc Behaghel and Xavier D’Haultfœuille for their invaluable and unfailing support — without
which this research would have been undoubtedly far less enjoyable and rewarding. Y. Hazard is deeply grateful to
Toru Kitagawa, Jon Roth, Peter Hull, Soonwoo Kwon, Emily Oster and Jesse Shapiro for enlightening discussions at
Brown University. We also thank Philipp Ketz, Marc Gurgand, Eric Maurin, and seminar participants at the PSE-CREST
internal seminar and the Brown Econometrics Coffee for helpful comments and discussions. All remaining errors are
our own.

1

https://yaganhazard.github.io/assets/files/LATEPS_JMP.pdf


1 INTRODUCTION

Instrumental variables (IV) strategies are an integral part of the standard toolkit of applied eco-

nomists and social scientists. This is due in part to their use for the estimation of causal effects

in controlled or natural experiments with imperfect compliance. Such experiments are pervasive

in applied research, since many interventions (such as education or training programs) cannot be

imposed on a randomly selected group. Instead, in such cases, members of the treatment group

are simply encouraged or given the opportunity to benefit from the intervention. Yet IV estimation

in these settings is commonly plagued by low compliance rates, which lead to an inflated variance

and thus possibly uninformative inference on the causal effects of interest.1 Given the substantial

financial and human investment associated with implementing a typical Randomized Controlled

Trial (RCT) and the scarcity of existing natural experiments, failing to inform policymaking due

to imprecise estimation procedures in such experiments has a significant social cost.

Yet a low average compliance rate can obscure highly heterogeneous compliance behaviors

across sub-populations with different observable characteristics. This leaves room for researchers

to improve the precision of their estimation by taking into account this heterogeneity. In this paper,

we propose and study the properties of an intuitive way to take advantage of such heterogeneity.

Our Test-and-Select estimator restricts IV estimation to sub-populations with significant non-zero

compliance rates in sample. Excluding sub-groups estimated to have a zero first-stage effect from

the estimation sample gets rid of observations that bring little to no signal on the causal effect of

interest while possibly adding considerable noise to the distribution of the standard IV estimator.2

The present paper is structured as follows. We first underline the pitfalls of “naïvely” im-

plementing such a selection rule based on estimated compliance rates, and then propose that

data-splitting provides a simple fix to this issue. Next, we study the asymptotic properties of the

Test-and-Select estimator under both standard and weak-IV-like asymptotic sequences. The for-

mer analysis allows us to illustrate the potential gains in precision while the latter aims at better

1By “uninformative inference”, we mean for instance confidence intervals wide enough to include values that re-
searchers (and policy-makers) would deem large enough to justify the implementation of the treatment at hand, and at
the same time, values too low to lead to such conclusion.

2We will use equivalently the terms “compliance rates” and “first-stages” in this paper. This is because in the
“simple” IV model with a binary instrument and binary treatment considered here, the first-stage coefficient — i.e., the
coefficient on the instrument from the regression of the treatment indicator on the instrument indicator — coincides
with the share of compliers in the (sub-)population on which the IV model is estimated.
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approximating the finite sample properties of our proposed estimator. These analyses underline

the robustness of the Test-and-Select procedure to treatment effect heterogeneity. Indeed, we show

that it remains first-order unbiased for the usual causal effect of interest — commonly known as

the Local Average Treatment Effect (LATE) — under patterns of treatment effect heterogeneity

that would generate a first-order bias in alternative estimation strategies proposed in the litera-

ture. Lastly, we study the finite sample properties of this estimator in Monte-Carlo simulations

and in two applications — a natural experiment using changes in compulsory schooling laws as

an instrument for education, and a large-scale experiment on job search counseling. These sec-

tions illustrate (i) the potential gains in precision from implementing our methodology instead

of the usual 2SLS estimator, and (ii) the improved robustness of our estimator to treatment effect

heterogeneity compared to alternatives.

The burden placed by low compliance rate on the precision of the Two-Stage-Least-Squares

(2SLS) estimator is well-known to most empiricists, and best illustrated by the variance formula of

the 2SLS estimator in the simple case where the variance of the errors (denoted σ2ε ) is homoscedas-

tic.3 Denoting by N the sample size, p the share of encouraged individuals, and π the share of

compliers, we get:4

Var

[
L̂ATE

2SLS
]
=

1

N
· 1

π2
· σ2ε
p · (1− p)

Here, we can clearly notice that a low compliance rate has a disproportionately large effect on the

variance of the 2SLS estimator of the LATE. Let’s take an illustrative example, studying the vari-

ance in two experiments evaluating the same program, one with a 10% compliance rate (π = 0.1)

and another with a perfect compliance (π = 1). The compliance rate in the first experiment is

only 10 times lower than in the second experiment, and yet the sample size needs to be a 100

3Here, ε is the structural error term in what is usually called the “second stage” equation, i.e., the regression of the
outcome on the treatment variable (and some controls if necessary).

4For the unaccustomed reader, p and π might seem similar. Instead, p is the share of individuals who are incentivized
(or assigned) to take the treatment, while π is the difference in effective treatment take-up rates between individuals who
are encouraged to take the treatment and those who are not. These objects are defined more formally in section 2 after
introducing our formal framework.
Meanwhile, the variance formula presented above can be derived from the standard 2SLS variance formula in the
homoscedastic case. Indeed, denoting by D the (binary) endogenous variable, and Z the (binary) instrument, recall
that the formula for the asymptotic variance of the 2SLS estimator is given by:

V 2SLS = σ2
ε

[
ΣDZΣ

−1
ZZΣZD

]−1
=

σ2
ε

(E[D|Z = 1]− E[D|Z = 0])2 · E[Z](1− E[Z])
=

σ2
ε

π2 · p(1− p)

where we used the notation ΣXY ≡ E[XY ′] and the definitions π = E[D|Z = 1]− E[D|Z = 0] and p = E[Z].
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times larger to reach the same precision (variance) as in the perfect compliance experiment. Put

it differently, suppose it were possible in the first experiment to use some observables to identify

the subpopulation of compliers. Focusing on this fraction (10%) of the population would divide

the estimation sample by 10, but it would still decrease the variance by a factor of 10, and thus

significantly improve inference. In summary, even if a given experiment passes some weak iden-

tification tests successfully — which it could even with relatively low compliance rates — a low

take-up rate can still be highly detrimental by immensely decreasing precision, possibly leading

to uninformative inference.

To fix ideas in a more concrete setting, consider the quarter-of-birth instrument (Angrist and

Krueger, 1991). This paper builds on the idea that because of compulsory schooling laws, children

born in the beginning of the year will be legally allowed to drop out earlier than those born in

the end of the year — which leads the former to complete fewer years of schooling than the latter

on average. Yet preferences for education are likely to be highly heterogeneous along multiple

dimensions (e.g., parent’s income and qualifications). For instance, it could be that none of the

children of parents belonging to the top 50% (or 60, 70, 80%) of the income distribution ever

consider dropping out of school before being legally able to do so. In such a case, their quarter of

birth would have no effect on their educational attainment. To put it briefly, some sub-populations

might not react to the quarter-of-birth instrument, and as such they would not contribute to the

identification of the LATE. Importantly, the existence of such non-compliant groups is not a threat

to identification,5 but their presence in the estimation sample does reduce the precision with which

the LATE is estimated. It is intuitive to drop these groups without compliers from the estimation

sample. This paper shows how to make this strategy operational and studies its properties.

Under “standard asymptotics”,6 which ultimately leads to a perfect selection of groups with-

out compliers, our estimator targets the same LATE parameter as the usual 2SLS/Wald estimator,

while yielding precision gains. Yet such asymptotics are likely to provide a poor approximation

for the behavior of our proposed estimator in finite samples. Therefore we study more realistic

asymptotic sequences where compliance rates are allowed to be “local-to-zero” in some groups,7

5To be precise, such non-compliant groups do not threaten identification unless they represent the majority of the
sample. In such a case, the LATE might be weakly identified.

6The precise definition of what we call “standard asymptotics” is given in section 3.1.
7Compared to the weak instrument literature, in which such “local-to-zero” first-stages were first introduced (Staiger

and Stock, 1997), we still maintain the assumption that the overall first-stage is well separated from 0, allowing strong
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because such asymptotics leave room for erroneous exclusions of groups with a non-zero share

of compliers. Under no assumptions on treatment effect heterogeneity, our proposed estimator

has a first-order bias for the LATE, as wrongly excluded groups could have an arbitrarily large

treatment effect.8 We thus provide conditions under which the estimand that our methodology

targets is first-order equivalent to the LATE estimand. A sufficient condition for this property to be

fulfilled is to restrict the degree of treatment effect heterogeneity across groups to be of the same

order of magnitude as the sampling variation. In other words, between-group heterogeneity is

such that it would not be systematically detected in finite samples. We discuss in detail why this

is a reasonable condition in practice. We also propose a data-splitting (and cross-fitting) strategy

that generates valid inference despite the pre-test our estimation strategy relies on. We investigate

the finite sample properties of our proposed procedure in Monte Carlo simulations.

Related literature. For ethical reasons, many programs of interests (e.g., training programs) can-

not be imposed on (or refused to) a random population of individuals. In the absence of any

natural source of randomness in the allocation of the treatment of interest, evaluators can only

use so-called encouragement designs in which a contrast in the program take-up rate between

treated and control populations is created by randomly allocating incentives to take up the treat-

ment, rather than randomly allocating the treatment itself. The seminal work of Angrist, Imbens

and Rubin in a series of papers (Imbens and Angrist, 1994; Angrist et al., 1996) clarified the causal

parameter — often called the Local Average Treatment Effect (LATE) — that can be identified

from such controlled or natural experiments where an encouragement is used as an instrument

for treatment. This parameter is “local” in the sense that it corresponds to the average treatment

effect among the “compliers”, that is the population for whom treatment status is affected by the

identification of the LATE. In other words, we do not assume away the possibility that some sub-populations would
have “local-to-zero”/weak first-stages, yet there must be at the same time some other groups in which first-stages are
strong for our assumption to be satisfied.

8An estimator θ̂ of a parameter θ has a “first-order” or “asymptotic” bias when the limiting distribution of
√
n ·

(
θ̂ − θ

)
is not centered on 0. For instance, if θ̂ is asymptotically normal with first-order bias B, then we have:

√
n·
(
θ̂ − θ

)
d−−−−→

n→∞
N (B,Σ). Notice that it does not prevent θ̂ from being a consistent estimator of θ. Yet it indicates that

it does not converges towards θ at a
√
n-rate, which can invalidate inference based on such asymptotic approximation.

Notice that throughout the paper, we will use the term “
√
n-rate consistency” as synonymous to asymptotic unbiased-

ness. We acknowledge the fact that often times, these terms are not used equivalently, as a
√
n-rate consistent estimator

can denote the situation where we have: (θ̂)θ) = O(1/
√
n). When used in this way, θ̂ can still be asymptotically biased

while
√
n-rate consistent.
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randomly modified incentive.9

This better understanding of instrumental variables (IV henceforth) led to a large body of work

on the limitations of such an identification strategy when the instrument is “weak”, i.e., when it

creates only little variation in the treatment of interest — in the language of Angrist et al. (1996),

when where there are only very few compliers. Yet apart from weak identification issues, low

compliance settings raise other challenges in particular by affecting the precision of IV estimators.

And even though some important work has been done on the optimal choice among many (weak)

instruments (Belloni et al., 2012; Hansen and Kozbur, 2012), it typically does not deal with hetero-

geneous treatment effects — a framework that has become predominant in analyses of RCTs with

imperfect compliance since the aforementioned work of Angrist and Imbens. This might sound

surprising as besides the weak identification issue, a low compliance rate also has a tremendous

cost in terms of variance of the usual IV/2SLS estimator for the LATE.

Though still less developed than the weak instrument corpus, a burgeoning literature has re-

visited the IV estimation strategy to achieve precision gains when the first-stage is heterogeneous

along observable covariates (Huntington-Klein, 2020; Coussens and Spiess, 2021; Abadie et al.,

2022). This renewed interest can be related to empirical attempts to identify treatment effects “on

those who take it up” (Crépon et al., 2015). Recently, Coussens and Spiess (2021) and Abadie et al.

(2022) proposed to use a “weighted-IV” or “interacted-IV” estimator that is optimal in the constant

treatment effect regime which, under treatment effect heterogeneity, identifies a convex weighted

average of LATEs (Huntington-Klein, 2020). They illustrate the precision gains from using this

estimator in the presence of first-stage heterogeneity along observables. Though the decrease in

variance obtained using our estimator comes from a similar source, we differ by maintaining the

goalpost of estimating the standard LATE parameter instead of a weighted average of LATEs.10

We do so because the LATE parameter might be considered a more directly policy-relevant pa-

rameter, as it corresponds to an existing sub-population that can be targeted by policy-makers

by using the exact same encouragement device (instrument) as in the experimental setting. Ul-

9Notice that the same holds for natural experiments that would generate randomness in an encouragement to take
up the treatment of interest. For instance, compulsory law schools create higher incentives for some individuals to
attend school for a longer period of time, depending on their birth date. In such settings, one can only recover the
average “local” effect among compliers, who are the individuals who actually attended school for a longer period of
time because of their birth date and the associated compulsory schooling laws.

10In the words of Huntington-Klein (2020), the parameter targeted by such estimation strategy is a “Super-Local
Average Treatment Effect”, since it gives a disproportionate weight to groups with larger compliance rates.
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timately, choosing between our approach and one in the vein of Coussens and Spiess (2021) or

Abadie et al. (2022) boils down to choosing between (i) smaller variance gains yet limited devi-

ations from the original estimand of interest, the LATE, or (ii) larger variance gains at the cost

of potentially large changes in the targeted estimand. Our paper is also related to the literature

on semiparametrically efficient estimation of the LATE parameter. A common assumption in this

literature is that all groups (defined by observable covariates) in the population have a share of

compliers well separated from 0.11 Under that assumption, this literature characterizes the semi-

parametric efficiency bound and provides estimators reaching it. Yet such a bound does not apply

when compliance rates can be 0 or local to 0 in some sub-groups defined by the covariates.12 Our

work also uses a two-step procedure akin to the one studied in Abadie et al. (2022), dropping

groups of observations displaying non-significant first-stage coefficients prior to the estimation

step. Yet Abadie et al. (2022) consider such a strategy mainly as a way to reduce a weak-IV issue,

while the estimator (and its associated MSE minimization problem) they study afterwards heavily

rely on their constant treatment effect assumption.13

The remainder of the paper unfolds as follows. Section 2 presents the general framework and

introduces the proposed estimator. Section 3 develops the theoretical results, and section 4 sug-

gests some extensions. Section 5 studies the finite sample properties of our proposed estimation

strategy, and compares it to alternatives. Section 6 presents two empirical applications — the first

on a natural experiment using variation in compulsory schooling laws as an instrument for edu-

cational attainment, and the second on a large-scale RCT on job search counseling. Lastly, section

7 concludes and presents some avenues for further research on this topic.

2 FRAMEWORK AND PROPOSED ESTIMATOR

We consider a data-generating process with a super-population (Y (1), Y (0), D(1), D(0), Z,G), where

(Y (1), Y (0)) are the potential outcomes when treated or not (D = 1 or 0), (D(1), D(0)) are the po-

11See, e.g., assumption 1.ii in Hong and Nekipelov (2010) and assumption 1.iv in Singh and Sun (2021)
12Intuitively, the results from this literature do not apply in this case as identification of the LATE conditional on

covariates — which is always assumed in this literature — fails for some values of the covariates.
13Abadie et al. (2022) do propose an interpretation of the estimand targeted by their methodology under heteroge-

neous treatment effects, which is similar to the weighted average of conditional LATEs considered in Huntington-Klein
(2020) and Coussens and Spiess (2021). As such, their approach differs from ours as it changes the targeted estimand.
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tential outcomes when encouraged or not (Z = 1 or 0), Z is the encouragement status, and G is a

discrete pre-determined covariate (assumed binary in this section for illustrative purposes).14 We

have:

Y = D · Y (1) + (1−D) · Y (0)

D = Z ·D(1) + (1− Z) ·D(0)

Hence we consider the simple (yet common in empirical work) case where the treatment D and

the instrument Z are binary. We sample n independent and identically distributed observations

{(Yi, Di, Zi, Gi)}1,...,n from this superpopulation. We work under the standard identifying as-

sumptions of the LATE (Angrist et al., 1996) stated below.

ASSUMPTION 1 (LATE identifying assumptions).

1. Independence: (Y (1), Y (0), D(1), D(0), G) ⊥ Z15

2. Exclusion restriction: Y (D,Z) = Y (D)

3. First Stage: E [D = 1 | Z = 1]− E [D = 1 | Z = 0] > 0

4. Monotonicity: D(1) ≥ D(0)

The only additional assumption compared to the framework considered in Angrist et al. (1996)

is the independence of the covariates G and the instrument Z.16 This is trivially satisfied for any

covariates that would be determined prior to the draw of the instrument Z. Under this set of

assumptions, Angrist et al. (1996) showed that the LATE, defined as the average treatment effect

among compliers E[Y (1) − Y (0)|D(1) > D(0)], is identified. The usual estimator for the LATE is

the Wald estimator — which coincides with the two-stage-least-squares (2SLS) estimator in our

14Assuming a discrete covariate is restrictive. Yet it is not uncommon in empirical work (especially when analyzing
experimental data) to use discretized covariates — as it makes econometric analyses more transparent.

15In natural experiments, such assumption might only hold conditional on some observables. For now, we do not
consider this case, and our results only apply to controlled or natural experiments that would fulfill this unconditional
independence condition. Yet we conjecture that some of our results could be extended to the conditional independence
case without too much additional work. We leave this for future research.

16In Angrist et al. (1996), the authors consider a setting where there are not any covariates in addition to Y,D and Z.
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case where D and Z are binary:

L̂ATE
2SLS

=
(
∑

i Zi)
−1∑

i ZiYi − (
∑

i (1− Zi))
−1∑

i (1− Zi)Yi

(
∑

i Zi)
−1∑

i ZiDi − (
∑

i (1− Zi))
−1∑

i (1− Zi)Di

=
En[Y |Z = 1]− En[Y |Z = 0]

En[D|Z = 1]− En[D|Z = 0]

where En denotes the empirical mean operator.

For illustrative purposes, consider the case where researchers have access to a binary pre-

determined covariate G ∈ {0, 1}. By “pre-determined”, we mean that G is unaffected by Z nor

D — as it is determined before the realization of Z and D. To fix ideas, let us think of G as a sex

indicator taking value 0 for women, 1 for men. We allow for heterogeneous shares of compliers

across sex, i.e., women might react more (or less) than men to the encouragement. Formally:

π0 ≡ E [D(1)−D(0) | G = 0] ̸= E [D(1)−D(0) | G = 1] ≡ π1.

We do not impose that both π0 and π1 are strictly larger than 0, only that the average share of

compliers in the population is well separated from 0 (assumption 1.3). In other words, we allow

for one of the two groups to be absolutely fully unresponsive to the encouragement — as long

as the other is, allowing the identification of the overall LATE. This is key in our reasoning, as

considering the existence of sub-populations with few compliers17 (or no compliers at all) is what

creates room for precision gains in the estimation of the (overall) LATE.18 Consider the extreme

case where women’s share of compliers is π0 = 0, when men’s share is π1 > 0. In such a case,

women’s observations do not bring any signal in the estimation of the overall LATE, as none of

17This vague terminology (“few” compliers) will be translated later in the paper in the concept of a “weak” share of
compliers — i.e., a “local-to-zero” compliance rate that vanishes at a 1/

√
n rate (Staiger and Stock, 1997).

18By “overall” LATE, we mean the LATE across all groups defined by G, E[Y (1) − Y (0)|D(1) > D(0)], as opposed
to the LATE within a given group G = g, E[Y (1) − Y (0)|D(1) > D(0), G = g]. The two are by the law of iterated
expectations related as follows:

E[Y (1)− Y (0)|D(1) > D(0)] =
∑
g

E[Y (1)− Y (0)|D(1) > D(0), G = x] · Pr[G = g|D(1) > D(0)]
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the compliers are women:

LATE = E[Y (1)− Y (0)|D(1) > D(0), G = 1] ·
=1︷ ︸︸ ︷

P[G = 1|D(1) > D(0)]

+ E[Y (1)− Y (0)|D(1) > D(0), G = 0] · P[G = 0|D(1) > D(0)]︸ ︷︷ ︸
=0

= E[Y (1)− Y (0)|D(1) > D(0), G = 1]

Neither do they prevent us from getting a consistent estimator of the LATE, as the difference in

outcomes among encouraged vs. control women in the numerator of the usual LATE estimator

cancels out on average (see equations below). Yet they do bring additional noise to the estimation

procedure, worsening the precision of the estimator.

Ŵaldn =
En[Y |Z = 1]− En[Y |Z = 0]

En[D|Z = 1]− En[D|Z = 0]

=
∆
Y |G=1
n · Pn[G = 1] +

Mean-zero noise︷ ︸︸ ︷
∆Y |G=0
n · Pn[G = 0]

En[D|Z = 1]− En[D|Z = 0]

where ∆
W |G=g
n ≡ En[W |Z = 1, G = g] − En[W |Z = 0, G = g]. As already mentioned in the

introduction, this is easily seen when comparing the variance of a 2SLS estimator that would be

computed on the sample of men only (VTSLS,G=1) with the one of a 2SLS estimator on the full

sample (VTSLS), assuming homoscedasticity of the errors:

VTSLS =
1

N
· 1

(π1 · P[G = 1])2
· σ2ε
p · (1− p)

VTSLS, G=1 =
1

N · P[G = 1]
· 1

(π1)2
· σ2ε
p · (1− p)

= (1− Pr[G = 0]) ·VTSLS < VTSLS

where σ2ε denotes the variance of the errors,19 N is the sample size and p = E[Z] is the share

of encouraged individuals. Excluding the group without compliers (G = 0) from the estimation

decreases the variance by a factor (1 − Pr[G = 0]). This is intuitive: the more we can get rid of

19Here, ε is the structural error term in what is usually called the “second stage” equation, i.e., the regression of the
outcome on the treatment variable. Formally: ε = Y − LATE ·D.
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groups without compliers, the larger the precision gains.

Motivated by this illustrative example, we propose the following estimation procedure (Esti-

mator 1), which we will call the “naïve” Test-and-Select (naïve TS) estimator.20

Estimator 1 “Naïve” Test-and-Select
1: For each group defined by G: t-test on the first stage coefficient πg. Set a given level α for the

test (e.g., 5%).

2: Select only groups for which we reject the null of πg = 0 against the alternative π > 0 (or

π < 0) at a pre-specified level α (e.g., 0.05).

3: Compute the usual Wald/TSLS estimator on the selected sample.

Compared to our example, the main challenge lies in the need to pre-test on the first-stage

coefficients in order to determine what are the groups without compliers. Pre-testing can create

challenges for inference (Leeb and Pötscher, 2005), and recent work underlined issues with the

specific procedure of pre-testing on the first-stage in IV estimation (Abadie et al., 2022). The fol-

lowing lemma shows that pre-testing as suggested above and estimating in the same sample will

lead to a first-order bias in the estimation of the LATE parameter.

LEMMA 1 (Pre-testing and first-order bias in LATE estimation). Let G be a binary covariate parti-

tioning the population such that the share of compliers in groups G = 0 and G = 1 are respectively given

by π0 = 0 and π1 > 0. Selecting groups based on a one-sided t-test with fixed test size on group-specific

first-stage coefficients will lead to a first-order bias in the estimation of the LATE parameter.

Proof. See appendix A.

Lemma 1 states that there might be significant distortions due to the pre-testing step of the

suggested procedure that ultimately could lead to non-valid inference. There are two sources of

first-order bias introduced by this pre-testing procedure, as we make it clear in the proof of lemma

1. The first is that this pre-test leads to an overestimation of the first-stage coefficient in the group

that does not contain any compliers. This logically tends to shrink the LATE estimator (in which

20Usually, in the context of RCTs, researchers will have a strong prior about the way their encouragement affects the
treatment status, hence the ability to use as an alternative hypothesis π > 0 (or π < 0) instead of π ̸= 0 (see step 2 in
Estimator 1). Andrews and Armstrong (2017) propose an unbiased estimator of the LATE (as an alternative to the 2SLS
estimator, which is consistent yet biased in finite samples) in such cases where researchers know ex-ante the sign of the
first-stage. We do not consider the use of such estimator for now in this paper.
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the overall first-stage estimator appears in the denominator) towards 0. The second source of

first-order bias come from the fact that in group G = 0 (the one without any compliers), we end

up comparing always-takers with never-takers once we condition on the estimated first-stage π̂0

being larger than a threshold. This is not an issue when the expected outcome of always takers

and never-takers is the same, as this difference will concentrate around zero in this case. Yet there

is no reason for these expected outcomes to coincide. When they differ, then their comparison

leads to the introduction of a additional first-order bias.21

Simulations presented in appendix C tend to confirm such concerns. We report in Table 1 be-

low the results of a Monte-Carlo simulation using DGP0 described in appendix C. In summary,

this DGP generates a sample of size N = 1000, divided randomly into 30 groups (i.e., roughly 33

observations per group). The share of compliers in the sample (and thus in each randomly created

group on average) is 25%. In such a setting, we do not expect our procedure to yield any gains,

as there are no sub-populations without compliers. Yet selecting “naïvely” based on a t-test —

without any sample split to alleviate the pre-testing issues mentioned above — could introduce

a bias in the estimation of the LATE (see lemma 1) that could invalidate the inference conducted

based on such estimator. In order to provide additional evidence on this issue, Table 1 reports

the bias and coverage rate of 95%-confidence intervals of three estimators of the LATE over 10,000

Monte-Carlo repetitions. The first column reports the performance of the 2SLS estimator, the sec-

ond column the performance of our proposed methodology with sample splitting and cross-fitting,

and the third column a “naïve” version of our methodology that would test, select and estimate

the LATE in the same sample without any sample split. The results show that the naïve version of

the Test-and-Select estimator exhibits a clear bias (-0.221), which is ultimately detrimental to the

coverage of its associated 95%−confidence interval that fail to cover at their nominal rate (0.861).

Given the issues documented with the “naïve” approach presented above, we propose an

modified procedure that aims at solving the problems associated with pre-testing, building on

data-splitting and cross-fitting. This Test-and-Select (TS) estimation procedure is described below

(Estimator 2).
21There is no reason for these two sources of bias to counterbalance one another. The comparison of the expected

outcomes of always-takers and never-takers can either lead to a downward or upward bias on the estimated LATE,
depending on whether the expected outcome of always-takers is larger (upward bias) or smaller (downward bias) than
the one of never-takers.
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Estimator 2 Test-and-Select
1: Divide the sample in two equally sized random sub-samples I1 and I2 — stratifying the ran-

dom split by G.

2: Within subsample I1: for each group defined by G: t-test on the first stage coefficient πg. Set a

given level α for the test (e.g., 5%).

3: Select in subsample I2 the groups for which we rejected — in sample I1 — the null of πg = 0

against the alternative π > 0 (or π < 0) at a pre-specified level α (e.g., 0.05).

4: Compute the usual Wald/TSLS estimator on the selected sub-sample of I2.

5: Repeat steps 2 to 4 reversing the roles of I1 and I2 (cross-fitting).

6: Take the average of the estimators obtained in step 4 within I1 and I2.

Our proposed methodology that associates the Test-and-Select procedure with sample splitting

and (2-fold) cross-fitting yields a much less biased estimator (0.097), and valid coverage (0.976) in

Table 1. The remaining bias despite the use of data splitting and cross-fitting could be explained

by the finite sample bias of 2SLS estimator.22

Table 1: Pre-test bias, and the use of cross-fitting

2SLS Test-and-Select (with 2-fold-CF) Test-and-select (without CF)

Bias 0.003 0.097 -0.221

Coverage 0.953 0.976 0.861

Notes: This table presents the results of a simulation using the DGP0 described in section 5, with
a number of groups of 30 — i.e., around 33 observations per group. In rows, we report the bias
(with respect to the LATE parameter) and the coverage rate of 95%-confidence intervals. The
first column reports the performance of the 2SLS estimator, the second column the performance
of our proposed methodology with sample splitting and cross-fitting, and the third column a
“naïve” version of our methodology that would test, select and estimate the LATE in the same
sample without any sample split.

Therefore, one of the main contributions of this work is to develop valid procedures to im-

plement the selection of groups with or without compliers in a given sample. In section 3 and as

already introduced above, we propose to use data-splitting to fix the pre-testing issues previously

mentioned, and we suggest the use of cross-fitting to alleviate the efficiency loss incurred when

22Indeed, ultimately our Test-and-Select procedure with cross-fitting estimates the LATE by 2SLS on a smaller sample
than the standard 2SLS estimator presented in the first column of Table 1. Therefore, its larger bias (0.097 vs. 0.003)
could be explained by the finite sample bias of the 2SLS estimator, that vanishes as the sample size used for estimation
grows.
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using data-splitting.

3 THEORETICAL RESULTS

Throughout this section, we will consider a framework with two i.i.d. samples: a test sample

(denoted IT ) used in order to t-test on group-specific first-stage coefficients, and an estimation

sample (denoted IE) used in order to compute the resulting estimator with the selection rule

induced by the tests’ results in IT . Such samples can always be constructed from a full sample of

size n, by randomly splitting it with a fraction pT (respectively pE = 1 − pT ) going to sample IT

(respectively IE). We will denote by nT (= pT ·n) and nE (= pE ·n) the corresponding sample sizes —

and we will use the notation n→ ∞ to describe an asymptotic in both nE and nT simultaneously.

At the end of the section, we will consider the use of cross-fitting — i.e., reversing the roles of

IT and IE to get two estimators subsequently averaged — as an attempt to mitigate the loss of

precision induced by sample splitting.

The study of the properties of our suggested estimator will be divided into two parts. Firstly,

we will consider the case where covariate-defined sub-groups contain either a share of compliers

well-separated from zero, or no compliers at all. This case will simplify the study of the potential

precision gains derived from the suggested procedure. In a second step, we will introduce groups

with a “local-to-zero” (or “weak”) share of compliers, à la Staiger and Stock (1997) — meaning

that the share of compliers in those groups decreases at a 1/
√
n rate, placing them in the same

order of magnitude as sampling variation. Such a modeling choice is made in an effort to better

approximate the finite-sample behavior of the estimator, by allowing for imperfect selection of

groups with non-zero shares of compliers.23 Recall from the previous section introducing our

framework that our population is partitioned by a grouping variable G. Following the notations

introduced in this previous section, we will denote by πg the share of compliers in group G = g.

We denote by G the support of G. In order to distinguish groups with “strong”, “weak” and zero

shares of compliers, we will further define:

23An alternative modeling choice would consider a growing number of groups, so that the number of observations
per group could remain stable as the overall sample size goes to infinity. This is not our framework here: the share that
each group g represents in the population is assumed stable with respect to the sample size. We shall investigate in
future versions of this work whether this alternative modeling brings new insights.
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1. GS = {all groups with strong first stage}

2. GW = {all groups with weak first stage}

3. G0 = {all groups with zero first stage}

3.1 Standard asymptotics

In this section, we will work under the assumption that there are only two types of groups: the

ones without any compliers, and the ones with a strong first-stage (i.e., a share of compliers well

separated from 0).

ASSUMPTION 2 (No weak first-stages). There are no groups for which the share of compliers is local-to-

zero. Formally: GW = ∅.

Let S ∈ {0, 1}|G| denote an arbitrary selection vector, where Sg = 1 indicates that group G = g

is selected in the restricted sample used for estimation in our proposed procedure. Let us define

the selected estimator:

τ̂(S) =

( ∑
i|SGi

=1

Zi

)−1 ∑
i|SGi

=1

ZiYi −

( ∑
i|SGi

=1

(1− Zi)

)−1 ∑
i|SGi

=1

(1− Zi)Yi( ∑
i|SGi

=1

Zi

)−1 ∑
i|SGi

=1

ZiDi −

( ∑
i|SGi

=1

(1− Zi)

)−1 ∑
i|SGi

=1

(1− Zi)Di

=
En[Y |Z = 1, SG = 1]− En[Y |Z = 0, SG = 1]

En[D|Z = 1, SG = 1]− En[D|Z = 0, SG = 1]

In words, τ̂(S) is the Wald estimator on the subsample such that SGi = 1, which is the subsample

designated by S. As an example, for |G| = 2,

τ̂(S) = S1S0τ̂
WALD + S1(1− S0)τ̂

WALD
1 + S0(1− S1)τ̂

WALD
0 (1)

=


τ̂WALD if S1 = S0 = 1

τ̂WALD
1 if S1 = 1 & S0 = 0

τ̂WALD
0 if S1 = 0 & S0 = 1

(2)
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where τ̂WALD
g denotes the Wald estimator computed on the observations with G = g. The se-

lection vector S of interest here is the one determined through group-by-group t-tests in the test

sample IT — constructed as a random split of the initial sample.24 We will denote the latter by

Ŝ(T ), where the hat and superscript (T ) indicate that this vector comes from an estimation step in

sample IT . We can then define:

τ̂E = τ̂
(
Ŝ(T )

)
(3)

which is ultimately our estimator of interest, the TS estimator computed on split IE .25 Equiva-

lently, for any selection vector S, we wille denote by τ̂E(S) the estimator computed on the sub-

sample defined by S, within split IE .

We start by characterizing the asymptotic behavior of this selection procedure.

LEMMA 2 (Asymptotic distribution of the selection procedure). Under assumptions 1 and 2, and if

E[|Y |2] <∞, as the test sample size nT goes to infinity, the probability of selecting groups with a first stage

of 0 goes to α (the level of the t-test used) and the probability of selecting groups with strong first-stages

goes to 1.

Proof. See appendix B.

Notice that it would be possible to decrease the threshold of the t-test at an appropriate rate so

that the probability to exclude groups with no first-stages goes to 1 as the sample size goes to infin-

ity. Yet the resulting asymptotic approximation would likely not reflect accurately what happens

in finite samples — in which the likelihood of keeping groups with zero first-stages would remain

positive — hence we do not consider such type of testing for our selection procedure. Lemma 2

shows that groups with strong first stages will always be selected asymptotically. Hence, when

studying the asymptotic distribution of τ̂E(S) when both the test and estimation sample sizes (nT

and nE) tends to infinity, we can restrict ourselves to vectors S which select at least all vectors

with strong first stages. We denote by Sstrong this subset of all selection vectors (i.e., a subset of

{0, 1}|G|) that never excludes groups with strong first-stages. Formally, for any S̃ ∈ Sstrong, we

24This vector stacks the |G| test decisions resulting from our |G| t-tests (one per group) in IT .
25We consider the use of cross-fitting, leading to the use of the “symmetric” estimator τ̂T = τ̂

(
Ŝ(E)

)
later in this

section.
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have: ∀g ∈ GS , S̃g = 1.

PROPOSITION 1. Under assumptions 1 and 2, and if E[|Y |2] <∞, then we have:

1. ∀S ∈ Sstrong,
√
nE (τ̂E(S)− LATE)

d−→ N (0, V τ̂E(S))

2. ∀S ∈ Sstrong, V τ̂E(S) ≤ V TSLS with equality iff: ∀g, Sg = 1 or in degenerate cases

3. We have: √
nE · τ̂E − LATE√

V τ̂E

d−−−→
n→∞

N (0, 1)

Proof. See appendix A.

For any realization of Ŝ denoted S ∈ Sstrong, one can build asymptotically valid confidence

intervals with coverage (1− α) conditional on the realization of Ŝ in the usual way:

CIα(S) =

[
τ̂E(S)−

√
V̂ τ̂E(S)

√
nE

· q1−α
2
, τ̂E(S) +

√
V̂ τ̂E(S)

√
nE

· q1−α
2

]

where V̂ τ̂E(S) is a consistent estimator of the asymptotic variance of τ̂E(S), and q1−α
2

is the (1− α
2 )

quantile of the N (0, 1) distribution. Those CIs are asymptotically valid by proposition 1.1, i.e.:

P[LATE ∈ CIα(S)] −−−−→
n−→∞

1− α

The following corollary states that such intervals have asymptotically valid unconditional coverage

for the LATE. It also states that when the selection S is such that the asymptotic variance of the

resulting estimator is strictly lower than the one of the TSLS estimator (inequality case of proposi-

tion 1.2), then the length of a CI conditional on such an S is going to be lower than usual CIs based

on the TSLS estimator with probability going to 1 as n goes to infinity — reflecting the gains in

terms of inference. Notice that the asymptotic study of CIs lengths requires to rescale CIs by
√
nE

to allow for a meaningful comparison.26

COROLLARY 1. Under assumptions 1 and 2, if E[|Y |2] < ∞ and S is such that we are in the inequality

case of proposition 1.2, then the estimators τ̂E(S) and τ̂TSLSE (the TS estimator conditional on S and TSLS

26Otherwise, any CI constructed in the usual way based on asymptotically normal estimators for a point-identified
parameter will have a length that shrinks to 0 (at a

√
nE rate).
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estimator computed in split IE) are such that:

lim
n→∞

P
[√
nE · length[CIα(S)] ≤

√
nE · length[CITSLSα ]

]
= 1

Moreover, we have that:

P
[
LATE ∈ CIα(Ŝ)

]
−→
n→∞

1− α

where Ŝ is the (random) selection vector estimated from the test data IT .

Proof. See appendix A.

Proposition 1 and corollary 1 show — under assumption 2 ruling out the presence of sub-

populations with weak first-stages — that our procedure dominates unequivocally the usual ap-

proach (based on TSLS/Wald estimator) for estimation of and inference on the LATE parameter.

Yet it should be noted that the use of sample splitting was key to derive those results, as it al-

lowed us to consider as independent the selection process and the estimation. And the variance

comparison made in proposition 1.2 between our TS procedure and the 2SLS estimator is based

on a comparison of asymptotic variances, while the second statement of corollary 1 assumes that

the sample size used for estimation are identical when implementing our TS strategy or the usual

TSLS estimation approach. But given the sample splitting step inherent to our methodology, a fair

comparison between the inference derived from the TSLS approach and our proposed strategy

should take into account the reduction in sample size in the latter approach. Indeed, this reduced

sample size tempers the gains in asymptotic variance. A simple numeric example inspired from

the one presented in the introduction illustrates this issue. Suppose again an experiment with

a 10% compliance rate in the whole population, yet where compliers are all concentrated in a

sub-population representing half of the total population. In principle, if the researcher had some

additional pilot sample allowing her to test and restrict accordingly the estimation to this compli-

ant population, then the variance of the estimator would be halved — compared to the variance of

the usual TSLS estimator, see equation 1.27 Indeed, the sample size used for estimation is divided

by 2 (doubling the variance of the estimator all else equal), yet the compliance rate is doubled,

27This is assuming homoscedasticity in order to simplify the computations for illustrative purposes.
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dividing by 4 the variance. Yet in general, the researcher won’t have an additional separate sam-

ple to implement the testing step. In this case, she will need to (randomly) split her sample in

two sub-samples to implement our methodology, reducing the size of the estimation sample in

comparison to the usual TSLS estimation. Suppose she implements a 20%-80% split to create a

test and estimation sample.28 Then instead of dividing by two the size of the estimation sample

(post-selection), she ends up reducing it by a factor of 4
5 · 1

2 = 2
5 <

1
2 — compared to the sample

size used in TSLS estimation. Hence the reduction in variance goes from a factor of 1
2 to a factor

of 5
2 · 1

4 = 5
8 >

1
2 . More generally, if the gains in variance derived from the increased compliance

rate in the selected population aren’t large enough, they can be cancelled by the losses due to the

sample split — to the point that the overall procedure might lead to an inflated variance in the

worst cases.

Cross-fitting The example above makes it clear that the sample splitting step is not innocuous

for precision, due to the loss in the sample size effectively used in the estimation step. Yet it is a key

step of our approach as it allows to make the testing-selecting and estimation steps independent.

As shown in lemma 1 and illustrated in Table 1, our procedure would yield a biased estimator in

the absence of sample splitting.

Ideally, one would like to benefit from the advantages of sample splitting without facing the

precision loss due to burning a fraction of the sample in the testing-selecting step. A way to do

so consists in using both splits of the sample for both the testing-selecting and estimation steps

by reversing their roles — what is usually called cross-fitting in the machine learning literature.

In other words, the researcher divides the sample in two (or more) equally-sized folds, I1 and I2.

She constructs a first estimator using I1 as the test sample and I2 as the estimation sample, and

a second using I2 as the test sample and I1 as the estimation sample (see the description of our

procedure in section 2, Estimator 2). This way, all the sample is used for estimation, and the hope

to recover some form of efficiency is revived. Indeed, the two (or more, if more folds are created)

estimators constructed in this way benefit from the same gains in (asymptotic) variance than the

28There isn’t a clear way to determine the proper splitting rule between a test and estimation sample. In principle, the
test sample only needs to be large enough so that asymptotic approximations within each group are valid. The remaining
of the initial sample should be assigned to the estimation step, as the purpose of this strategy is ultimately to improve
inference.
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ones discussed above for the sample split estimator. Hence averaging those estimators would po-

tentially yield an estimator with the same variance than a hypothetical one constructed using the

full sample, with an additional independent test sample used for selection. A sufficient condition

for such gains in variance to be restored is that the two cross-fit estimators are independent one

from another. This is what the following lemma establishes.

LEMMA 3 (Independence of cross-fit estimators). Under assumptions 1 and 2, two estimators con-

structed following our suggested procedure and reversing the roles of two independent samples I1 and I2

are asymptotically independent one from another.

Proof. See appendix A.

Cross-fitting is therefore a way to restore the full variance gains described in the above section,

despite the use of sample splitting. Indeed, the asymptotic variance of the average of τ̂1 and τ̂2 is

given by:

V

(
N (0, V τ̂1) +N (0, V τ̂2)

2

)
=
V τ̂1 + V τ̂2

4
=
V τ̂1

2

where the first equality uses the independence between the limiting distributions of τ̂1 and τ̂2

demonstrated in lemma 3. Hence our cross-fitted TS estimator (τ̂1 + τ̂2)/2 has an asymptotic

variance that is half the one of an estimator computed on a single split. In parallel, the sample

splitting step results in a loss of a factor
√
2 in the speed of convergence (compared to the speed

of convergence of an hypothetical TS estimator that could be computed on the whole sample of

size n). Therefore, overall the gain in asymptotic variance described in the above display exactly

compensate the precision loss due to the sample split.

The above results are encouraging as they suggest that asymptotically there are indeed gains

in precision from testing and selecting a sub-sample with statistically significant first-stages. Yet

as already vastly documented in the statistical and econometrics literature, pre-testing methods

should be treated with caution as standard asymptotic approximations of these procedures can

often be misleading.29 In particular, our framework so far ruled out the possibility to wrongly

exclude groups with some compliers — as by consistency of the t-test against any (well-separated

from 0) alternative, the probability to exclude such groups from the selected sample was asymp-

29For a seminal exposition to these issues, see Leeb and Pötscher (2005).
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totically zero. This is not a satisfactory approximation of what would happen in finite samples

— in which groups with small shares of compliers might be wrongly excluded by the selection

procedure. Therefore, we need to extend our framework in order to account for such cases.

3.2 Asymptotic results with “weak” first-stages

Now, we introduce groups with local-to-zero first-stages. Those groups are such that their share

of compliers evolves at the same rate as 1/
√
n, so that a t-test will not systematically conclude that

the first-stage coefficient is different from zero even with a sample size going to infinity.

ASSUMPTION 3 (Weak first-stages, fixed shares and fixed conditional LATEs). There are groups

with a local-to-zero share of compliers. Formally:

∃g ∈ G s.t. πgn =
Hg

√
n
, with Hg ∈ R+\{0}

All such values of g for which first-stages are weak are gathered in GW .

In parallel, the data-generating process is assumed to be such that for any group g, the share of observations

contained in the group is constant (it does not vary with n), nor does the LATE within the group. Formally:

∀g ∈ G, ∀n, P[G = g] = pg ∈ (0, 1)

E[Y (1)− Y (0)|D(1) > D(0), G = g] = lg ∈ R

One should still keep in mind that we maintain the assumption of a strong first-stage overall

(see assumption 1), meaning that:

∀n, π =

|G|∑
g=1

πgn ≥ c > 0

where c is a constant that does not depend on n. In other words, we still assume that there are some

groups with strong first-stages in the population. Moving away from such a setting would place

ourselves in the realm of weak-identification, which is not the focus of our work here. Instead, we

consider settings in which identification strength is high enough, and precision of the estimation

procedure is the ”only” problem to be fixed (if and when possible).
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We start by characterizing the asymptotic behavior of the selection procedure when there are

some groups with weak first stages.

LEMMA 4 (Asymptotic distribution of the selection procedure with some weak group first-stages).

Under assumptions 1 and 3, and if E[|Y |2] <∞, as the test sample size nT goes to infinity, the probability

to select groups with 0 first stages goes to α (the level of the t-test used), the probability to select groups with

strong first-stages goes to 1, and the probability to select groups with weak (“local-to-zero”) first-stages goes

to values in the [α, 1) range — depending on the localization parameter Hg.

Proof. See appendix B.

As in lemma 2, lemma 4 above justifies that when studying the asymptotic distribution of τ̂(S)

as both the test and estimation sample size tend to infinity, we only consider selection vectors

S that satisfy: ∀g ∈ GS , Sg = 1 (where Sg denotes the g-th term of vector S). This is because

asymptotically, we won’t make any exclusion error regarding groups with strong first-stages, that

will always be selected in the estimation sample. Yet this is not the case for groups with weak

first-stages, as we will exclude them with a non-zero probability (even asymptotically) despite

their non-zero share of compliers. In the previous subsection 3.1 and its associated proposition 1,

we showed that in the absence of such groups with weak first-stages, our estimator could yield

precision gains without introducing any first-order bias. The following proposition (the analog to

proposition 1) shows that it is no longer true in the presence of some weak first-stages.

PROPOSITION 2. Under assumptions 1 and 3, and if E[|Y |2] <∞, we have:

1. ∀S ∈ Sstrong,
30 √

nE (τ̂(S)− LATE)
d−→ N (B(S), V S)).

2. B(S) ∝ |LATEW (S) − LATE|, where LATEW (S) denotes the average treatment effect among

compliers within groups with weak first-stages that are wrongly dropped by selection procedure S.

3. B(S) ̸= 0 if ∃j s.t. {Sj = 0 ∩ j ∈ GW } and LATEW (S) ̸= LATE.

Proof. See appendix A.

Without any further assumptions on treatment effect heterogeneity, the above proposition

suggests that our proposed estimator will systematically be first-order biased in the presence of
30Recall that Sstrong is defined such that for any S̃ ∈ Sstrong , we have: ∀g ∈ GS , S̃g = 1.
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groups with weak first-stages. Indeed, the probability of wrongly excluding those groups does

not go to zero asymptotically (see lemma 4) and proposition 2.3 shows that in the presence of such

exclusion errors, the first-order bias of our procedure is non-zero. The intuition behind such a bias

is relatively simple: the LATE within groups that contain a weak share of compliers might differ

from the LATE within groups that are kept for the estimation step. If we were to bundle all groups

with a weak first-stage in a single group G = 2, and all groups with a strong first-stage in G = 1,

the asymptotic bias (conditional on the event that group G = 2 is dropped from the estimation

step) would take the following form:

B =
H2 · Pr[G = 2]

π︸ ︷︷ ︸
Sh. of compliers w/ G=2

among all compliers(×
√
n)

·
(
LATE1 − LATE2

)︸ ︷︷ ︸
Treatment effect

heterogeneity

where π ≡ P[D(1) > D(0)] is the share of compliers in the population, LATEg ≡ E[Y (1) −

Y (0) | D(1) > D(0), G = g] is the LATE in group G = g and H2 is the localization parame-

ter for the first stage in group G = 2. The reason why this is “only” a first-order bias can also

be seen in the above display. Indeed, the share of compliers with G = 2 among all compliers

decreases at a
√
n-rate under assumption 3. Hence even once rescaled by

√
n, the bias (with re-

spect to the LATE parameter) remains bounded as long as the treatment effect heterogeneity term(
LATE1 − LATE2

)
is bounded.

In order to better grasp the nature of the first-order bias of our estimator, corollary 2 provides

sufficient conditions on treatment effect heterogeneity for our estimator to remain first-order un-

biased.

COROLLARY 2. Under assumptions 1 and 3, E[|Y |2] < ∞, and homogeneous treatment effects, we have

that τ̂(S) is first-order unbiased and asymptotically normal, i.e.:

∀S ∈ Sstrong,
√
nE (τ̂(S)− LATE)

d−→ N (0, V S)).

Less restrictively, under assumptions 1 and 3, E[|Y |2] < ∞, and vanishing treatment effect heterogeneity,

i.e.:

∀g ∈ GW , |LATEg − LATE| = o(1)
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τ̂(S) is also first-order unbiased and asymptotically normal.

Assuming homogeneous treatment effect is not realistic either, and rather in opposition to

the spirit of the LATE literature. On the other hand, vanishing treatment heterogeneity might

be a realistic assumption to describe the data-generating processes studied in applied economics

and social sciences in general. For instance, Coussens and Spiess (2021) studied the properties of

their proposed estimator under the assumption that treatment effect heterogeneity would be of

the same order of magnitude as sampling variation, i.e., decreasing at a 1/
√
n rate. This type of

restriction can be motivated by the usual difficulties faced by researchers in detecting treatment

effect heterogeneity in empirical research, given the usual sample sizes at their disposal. Let us

consider what are the properties of our estimator under such restrictions placed on treatment

effect heterogeneity.31

ASSUMPTION 4 (First order negligible heterogeneity or noisy heterogeneity). The heterogeneity of

conditional LATEs across groups is of the same order of magnitude as the sampling variation. Formally:

∀g ∈ GW , |LATEg − LATE| = O(n−1/2)

The next theorem studies the asymptotic distribution of our estimator in such a framework.

Notice that the results presented in the theorem below would hold under the less stringent as-

sumption of vanishing treatment effect heterogeneity, i.e.:

∀g ∈ GW , |LATEg − LATE| = o(1)

instead of assumption 4. We state it under assumption 4 in the hope that relating treatment effect

heterogeneity to the order of magnitude of sampling variation would be more interpretable.

THEOREM 1. Under assumptions 1, 3, 4, and if E[|Y |2] <∞, we have:

1. ∀S ∈ Sstrong,
√
nE (τ̂(S)− LATE)

d−→ N (0, V (τ̂(S))) with V (τ̂(S)) ≤ V TSLS .

2. We have √
nE · τ̂E − LATE√

V τ̂E

d−−−→
n→∞

N (0, 1)

31Let us note that contrary to Coussens and Spiess (2021), we do not assume that the average treatment effect in
general is of the order of magnitude of 1/

√
n, but rather that treatment effect heterogeneity is. We justify this further

below. This seems a less stringent assumption, and is sufficient for our purposes.

24



Proof. See appendix A.

Theorem 1 above establishes the
√
n-convergence of our estimator under assumptions 3 and 4.

The gains in inference already studied in the absence of any weak first-stage groups (see corollary

1) remain following the same reasoning. Compared to alternatives such as the one suggested in

Coussens and Spiess (2021) — equivalent to the estimator studied in Huntington-Klein (2020) —

our procedure presents the benefit of being exempt of any first-order bias under the restriction on

treatment effect heterogeneity made in assumption 4 — see lemma 9 and its proof in appendix

B for a proof of the bias of Coussens and Spiess (2021) procedure under our framework.32 The

intuition behind the relatively good behavior of our estimator can be given as follows. In the ab-

sence of any restrictions on treatment effect heterogeneity, both our estimator and the one studied

by Coussens and Spiess (2021) converge to weighted averages of conditional LATEs. Yet the es-

timand towards which Coussens and Spiess (2021) estimator converges weights each LATEg by

the square of the share of compliers in group g, creating possibly large deviations from the usual

LATE parameter — which weights each LATEg by the share of compliers (unsquared). Therefore,

assuming that the heterogeneity across conditional LATEs is of the order of 1/
√
n is not sufficient

to compensate for the deviations from the LATE created by the weighting scheme. On the con-

trary, our estimator’s bias in the absence of assumption 4 is due to the failure to systematically

select groups with weak shares of compliers. Hence the conditional LATEs of such groups end

up being weighted less than they should to match with the overall LATE parameter. Yet for our

estimator, this only affects groups with very low compliance rates, that do not represent a very

large share of the total population of compliers. Hence the deviation from the LATE in our case

is less important than in Coussens and Spiess (2021), and the restriction on heterogeneity made

in assumption 4 is sufficient to rule out any first-order bias. We view such a discrepancy in the

behavior of our estimator compared to the one of Coussens and Spiess (2021) as revealing two

points:

1. the heterogeneity restriction made in assumption 4 is far from being equivalent to homo-

geneous treatment effects, as estimators such as the one of Coussens and Spiess (2021) that

32Coussens and Spiess (2021) already establish the bias of the estimator they study under the assumption that all
conditional LATEs are local to zero. In lemma 4, we simply prove that their result still holds under our own assumption
that only restricts treatment effect heterogeneity to be local to zero.
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would converge to the LATE in the homogeneous case exhibit a first-order bias under this

assumption ;

2. our estimator offers gains in variance while remaining more tightly related to the LATE pa-

rameter than the one studied in Coussens and Spiess (2021). Hence we offer another alterna-

tive in the bias-variance trade-off, from no asymptotic bias (yet larger variance) when using

TSLS to potentially larger gains in variance when using Coussens and Spiess (2021) (at the

cost of a larger asymptotic bias, even under restrictions on treatment effect heterogeneity).

Yet empirical researchers might view assumption 4 as merely a convenient theoretical device

without any ground in empirical practice. We would like to offer some heuristic suggesting that

such an assumption might be justified in empirically relevant settings. Consider the case of re-

searchers implementing an encouragement design to study the impact of a given policy (e.g.,

training programs). A common practice is to choose the sample size to be able to detect a given

magnitude of effect κ% of the time (where κ = 80 is the usual choice). This “minimum detectable

effect” (MDE, often denoted e∗) sometimes coincides with what researchers deem to be an eco-

nomically significant effect, and/or the magnitude of effects typically measured in the literature.

The usual formula to express this e∗ as a function of the sample size if the following:

e∗ =

√
σ2

n · E[Z] · (1− E[Z])
· 1

E(D | Z = 1)− E(D | Z = 0)
·
(
q1−α

2
+ qκ

)

where we assumed Var[Y (0)] = Var[Y (1)] = σ2,33 and qx is the xth-quantile of a N (0, 1). Hence in

studies designed based on power analyses, we have by design: e∗ = O(n−1/2). It can still be that

the true effect (and treatment effect heterogeneity) is way larger than e∗, in which case our study

will systematically detect the effect of the policy (and its heterogeneity). This would be the case in

general in sciences that are over-powered... yet social sciences (and economics in particular) have

rather been documented to be under-powered in meta-analyses — e.g., in Ioannidis et al. (2017).

Experimenters in social sciences certainly do not detect 100% of the time significant effects (and

even less often treatment effect heterogeneity). Hence it might seem reasonable to assume that most

of the time, the true effects (and true heterogeneity) is of the same order of magnitude as the MDE

33I.e., under the simplifying assumption of constant (or uncorrelated with X) treatment effects, and homoscedastic
errors.
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of the study designed to detect them. In such a case, assumption 4 would be fulfilled.

4 EXTENSIONS

In this section, we present some of the extensions we plan to develop in future versions of this

paper.

Breakdown analysis Instead of relying on an assumption of the type of assumption 4, researchers

might prefer to acknowledge the potential (first-order) difference in the estimand targeted by our

estimator and the LATE, and make use of sensitivity analyses to determine under which condi-

tions some inferential statements derived based on our proposed estimator — e.g., the LATE is

higher than a given threshold — might be erroneous.

Here is one way to approach such sensitivity analyses. It relies on the observation that the gap

between the estimand targeted by our procedure — the average effect among compliers within

the selected population — and the original LATE (on the whole population) has the following

expression:

B = P[G = 2|D(1) > D(0)] ·
(
LATE2 − LATE1

)
where G = 2 denotes the population not selected, G = 1 the selected population, and LATE1and

LATE2 the LATEs within those two populations — i.e., LATE1 denoted the estimand targeted

by our procedure. Of course, G = 1 and G = 2 depend on the realization of the sample. Let us

consider a sensitivity analysis that would condition on the sample realization, so that G = 1 and

G = 2 are considered as deterministic.34 The quantity P[G = 2|D(1) > D(0)] can be estimated by

2SLS as suggested in Abadie (2003).35 Yet by construction of G = 2, Z is a weak instrument for D

in this subpopulation, thus P[G = 2|D(1) > D(0)] cannot be consistently estimated. However, that

does not prevent us from constructing asymptotically valid (1−α)-confidence interval around this

parameter — e.g., using inversion of an Anderson-Rubin statistic. Suppose we construct 99%-CI

34In other words, LATE1 and LATE2 become estimands that are sample-dependent. This is not an issue as ulti-
mately, this sensitivity analysis will still be related to an estimand that is sample-independent, namely the LATE in the
whole population.

35It suffices to regress 1{G = 2} ×D on D instrumented by Z.
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around P[G = 2|D(1) > D(0)], and take the upper bound of this quantity, denoted ÛB
P

. The bias

term B is increasing in P[G = 2|D(1) > D(0)], hence the worst-case bias can be obtained by replac-

ing P[G = 2|D(1) > D(0)] with ÛB
P

. We are left with the unknown
(
LATE2 − LATE1

)
≡ M ,

that is going to be our sensitivity parameter. For a given value ofM , the worst-case bias of our pro-

posed estimator for the LATE is given byM ·ÛB
P

. Suppose we widen our 96%-CI around LATE1

— the effect among compliers in the population selected by our procedure — by ±M · ÛB
P

. Such

CI is (asymptotically) valid with a 95% coverage for the overall LATE parameter.36 The “break-

down” analysis would then consist in determining for which value of M the CI constructed in

such a way includes a threshold value (e.g., 0). If this value is very high, the analysis — and infer-

ential statements on the LATE — based on our proposed estimation strategy could be considered

robust to treatment effect heterogeneity.

High-dimensional groups Assuming Xs can define groups with weak/0 share of compliers is

arguably more credible when Xs are high dimensional (e.g., when there is a large number of co-

variates, interactions between covariates, continuous covariates etc.). The question then becomes:

how to adapt our procedure to this setting? We will have to maintain the assumption of strong

identification overall, i.e. π > 0. Then the most natural way to proceed seems to follow a strategy

along the lines of Chernozhukov et al. (2021), e.g.:

1. Build a flexible prediction of s(X) ≡ E[D(1)−D(0)|X], denoted ŝ(X)

2. No assumption on the rate of convergence of ŝ(X). The hope is merely that ŝ(X) contains

some signal for the true s(X).

3. Define Ḡ (a fixed number) groups based on quantiles of ŝ(X), and use Chernozhukov et al.

(2021) results to make inference on:

E[s(X)|ŝ(X) ∈ [qg−1, qg]] = E[D(1)−D(0)|ŝ(X) ∈ [qg−1, qg]] ≡ πg

That way, we are back to a situation in which the covariates are reduced to a partition of the

population: {Iŝ(x)∈[qg−1,qg ]}g∈{1,...,G}. Unfortunately, the procedure proposed in Chernozhukov

36Indeed, our worst-case bias estimate is only valid with probability 0.99, as it is based on the upper bound of a
99%-CI on P[G = 2|D(1) > D(0)]. Therefore, using 96%-CI around LATE1, we get a CI that has coverage equal to
0.99× 0.96 = 0.9504.
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et al. (2021) cannot be directly applied to our setting since it is based on repeated data-splits,

with ŝ(X) being estimated repeatedly, such that inference on so-called GATEs — grouped average

treatment effects, of the form E[s(X)|ŝ(X) ∈ [qg−1, qg]] — can be made without offering a clear way

to associate a given observation to a given group — since such a mapping will change from one

data-split to another. A simple fix to this issue is to commit to a single data-split. This is the choice

we make in our application in section 6. Chernozhukov et al. (2021) defend instead the variational

inference approach they develop, as (i) it limits the risk of p-hacking from researchers if they do

not commit (e.g., by setting a seed) to a single random split and search for a “favorable” one and

(ii) such commitment would expose researchers to the risk of drawing a “bad” split. That said, the

variational inference approach cannot be readily applied to our setting,37 and as of today we have

not found any alternatives to such a “commitment” in the high dimensional covariates setting.

Re-weighting strategy Instead of taking a binary decision to either drop or include groups in the

estimation sample, an alternative might be to re-weight groups based on their probability to have

a 0 share of compliers. This probability is directly given by the p-value associated to the t-test we

were using so far for the selection decision. It is possible that such an alternative procedure could

be properly motivated by a model-selection framework in which we optimally trade-off bias and

variance (to minimize RMSE) by taking weighted averages of LATE estimators estimated on the

full sample — lower bias, higher variance — or on a sample selected based on group-specific first-

stage coefficients — higher bias, lower variance — in the spirit of Claeskens and Hjort (2003) and

Kitagawa and Muris (2016). Our main results might still hold for such weighted estimator since

(asymptotically) groups with strong first-stages would have Pr[sh. of compliers = 0|g ∈ GS ] that

goes to 0, hence a weight that goes to 1 as is already the case in our proposed estimation strategy.

Notice that this would still be distinct from Coussens and Spiess (2021) “weighted-IV” ap-

proach, as our weights would tend to 1 and be uniform among all groups with a strong first-stage.

This way, we could still hope that changes in the targeted estimand remain negligible under re-

strictions on treatment heterogeneity of the type described in assumption 4 — which is not the

case for the “weighted-IV” approach (see lemma 9).

37Indeed, this approach relies on repeating the data splitting step a certain number of times (taking median of p-
values or CIs bounds at level α/2 to construct p-values and CIs of level α. Yet in our case, repeating the splitting step
would prevent us from creating a single fixed partition of the population to be used as our covariate G.
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5 SIMULATIONS

This section presents a simulation study that compares the performance of the various estimators

mentioned above: the standard 2SLS, our proposed Test-and-Select estimator, Huntington-Klein

(2020)’s interacted IV estimator and Coussens and Spiess (2021)’s compliance-weighted IV esti-

mator. We consider a number of Data Generating Processes (DGPs) that vary the degree of het-

erogeneity in compliance and treatment effects, and the correlation between conditional LATEs

(E [Y (1)− Y (0)|D(1) > D(0), G = g]) and compliance rates (E [D(1)−D(0)| G = g]).

DGP parameters To simulate a flexible DGP, we use the threshold crossing model representation

(Vytlacil, 2002).38 Let (δi, εi)′ ∼ N (0,Σ), with

Σ =

σδ = 1 ρδε

ρδε σε = 1


where δi is the latent tendency to receive treatment and εi is the baseline untreated potential out-

come for individual i. We denote by ρδε the correlation coefficient between δi and εi. The potential

treatment indicators are given by:

Di(0) = 1(ΦΣ(δi) < SAT ), Di(1) = 1(ΦΣ(δi) < 1− SNT )

where ΦΣ denotes the cdf of a N
(
0⃗,Σ

)
, and SAT and SNT represent the share of always-takers

and never-takers in the population, respectively. The realized treatment is given by:

Di = Di(0) · (1− Zi) +Di(1) · Zi

We also define a covariate X as:

Xi = δi + ηi

38For comparison purposes, we follow Coussens and Spiess (2021) closely in the DGP specifications of their simula-
tions, but deviate in key aspects for reasons that will be explained below.
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where ηi ∼ N (0, σ2η). The covariate X is therefore a noisy predictor of treatment receipt. We also

define groups G as the J-quantiles of X :

Gi = 1

(
F (Xi) ∈

[
j − 1

J
,
j

J

])

So far we have followed the simulation study of Coussens and Spiess (2021), but for the poten-

tial outcomes we deviate significantly:

Yi(0) = εi, Yi(1)− Yi(0) = β ·
[
απ̃G(i) + (1− α)νi

]
where π̃G = πG − EG(πG) is the centered compliance rate by group with G(i) representing the

group G of individual i and νi ∼ N (0, σ2πG). The reason we choose this parametrization of the

treatment effect is to generate a significant dependence between compliance rates and treatment

effects. Indeed, with this parametrization we have:

σ2Y (1)−Y (0) = β2σ2πG
(
α2 + (1− α)2

)
cov(πG, Yi(1)− Yi(0)) = β · α · σ2πG

cor(πG, Yi(1)− Yi(0)) =
1√

1 +
(
1− 1

α

)2
so that β controls the treatment effect heterogeneity and α the dependence between the treatment

effect and the compliance rate. Compared to this choice of parametrization, the one chosen in

Coussens and Spiess (2021) simulation study generates very little covariance between compliance

rates and treatment effects,39 which is precisely the condition leading to a first-order bias in their

estimation strategy.

The Monte Carlo simulations are therefore governed by the following set of parameters:

1. N : Sample size

2. J : Number of groups

3. SAT , SNT : Fraction of always-takers and never-takers in the population, respectively

39This comes from the fact that the compliance rate as generated in their DGPs varies non-linearly as a function of δ
whereas the LATE depends linearly on δ.
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4. ρδε: correlation between latency to treat and baseline untreated potential. Controls selection

into treatment and hence the necessity for instrumentation.

5. σ2η : Controls how good of a predictor the groups are for compliance

6. α, β: Control the dependence between treatment effect and compliance as well as the overall

treatment effect heterogeneity

Results The selection of DGPs for Monte-Carlo simulations is always a delicate balancing act.

We only present 2 classes of DGPs, which we believe showcase some key points we have dis-

cussed in the theoretical section. The first DGP (DGP1) illustrates the good properties of our

test-and-select estimator in a "best-case scenario" for our estimator, with many groups with 0 com-

pliance alongside groups with large (“strong”) first-stages. Besides demonstrating the potential

gains in precision compared to the standard 2SLS estimator, it also highlights the robustness of

our estimator to patterns of treatment effect heterogeneity that would bias other alternatives from

the literature. The second DGP (DGP2) aims at studying the properties of the various estimators

considered in a DGP where no group has 0 compliers, but there are several groups with weak

first-stages. This is a setting in which (i) we do not expect significant gains in precision from our

estimator and (ii) our selection procedure could lead to some bias depending on the amount of

treatment effect heterogeneity. Therefore, this second simulation is another occasion to compare

the robustness of our methodology (and its alternatives) to patterns of treatment effect hetero-

geneity in an adverse DGP.

DGP1: a “best-case scenario” We start by studying a DGP which is an "ideal" application for our

method, because 60% of groups have no compliers and the other groups have large compliance

rates — in the wording used in section 3, there are only groups with The DGP parameters are the

following:

DGP1 ≡
(
N = 1000, J = 10, SAT = SNT =

0.75

2
, ρδε = 0.3, ση = 0.01, α = 0.5, β ∈ {1, 2, 3, 4, 6, 10, 20, 40, 80}

)
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It generates the following distribution of compliance rates in the J = 10 groups created:

πG = (π1 = π2 = π3 = π8 = π9 = π10 = 0, π4 = π7 ≈ 0.25, π5 = π6 ≈ 0.99)

with an overall compliance rate of 25%. The other important feature of this DGP, encoded by

α = 0.5, is that there is a significant correlation between compliance and treatment effect. This

feature is important because it is the type of treatment effect heterogeneity that can generate bias

(with respect to the LATE) in the alternative estimation procedures that have been proposed in the

literature (Huntington-Klein, 2020; Coussens and Spiess, 2021; Abadie et al., 2022). In the absence

of such correlation, there is no threat of bias neither for our estimator nor these alternatives. Yet

as illustrated in section 6, such correlation does exist in real-world applications.

We run a Monte-Carlo simulation with 10,000 repetitions. The results are shown in the panels

of figure 1. We vary treatment effect heterogeneity, and quantify the latter on the x-axis by scaling

the standard deviation of Y (1)− Y (0) by the Minimum Detectable Effect (MDE):

x =

√
V (Y (1)− Y (0))√

V (Y (1))+V (Y (0))
0.5·n · q0.975+q0.8π

where qx represents the quantile function of a normal. This re-scaling allows a meaningful quan-

tification of treatment effect heterogeneity, by relating it to a quantity (the MDE) that (i) is a well-

known object to most empiricists and (ii) varies with the sample size at a 1/
√
n rate. Recall that

in the end of section 3, we highlighted the robustness of our procedure to treatment effect hetero-

geneity by demonstrating the absence of first-order bias of our estimator when treatment effect

heterogeneity is of the order of 1/
√
n. The MDE being itself a quantity of this order, quantifying

treatment effect heterogeneity with respect to this object allows to get a sense of whether the level

of heterogeneity considered is “small” — i.e., can be deemed of the order 1/
√
n — or “large” and

likely to create bias.

Figure 1 presents the bias, length and coverage of 95%-CIs, and RMSE of the different estima-

tors considered in these simulations under DGP1. Panel 1a highlights the low bias of our estima-

tor up to very large levels of treatment heterogeneity. Estimators based on interacted of weighted

instruments display much larger amounts of bias at any level of treatment effect heterogeneity (ex-

33



cept zero), as expected. This translates in poor coverage rates of these estimation strategies, when

ours covers at the nominal level for any amount of treatment effect heterogeneity — see panel 1c.

Moreover, panel 1b highlights the large decrease in CI length (for all alternative estimation meth-

ods) compared to the standard 2SLS. In this DGP, our estimation procedure displays very similar

gains in precision compared to Huntington-Klein (2020) or Coussens and Spiess (2021)’s estima-

tors, hence the similar reduction in CI length. Overall, this leads logically to a domination of our

method in terms of RMSE in such a setting — see panel 1d. Notice that in general, Huntington-

Klein (2020) or Coussens and Spiess (2021)’s estimators could very well display a larger decrease

in variance compared to our methodology. Yet one of the points illustrated in this simulation is

that such gain would come along with some bias as long as treatment effect heterogeneity and

(conditional) compliance rates are correlated, thus possibly hurting badly inference on the LATE.
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Figure 1: Comparison of estimators with varying treatment effect heterogeneity for DGP1

(a) Bias (b) Length of 95% confidence interval

(c) Coverage of 95% confidence interval (d) Root mean square error

Notes: This panel shows the results of a 10,000 repetitions of a Monte-Carlo simulation of DGP1, described
in the text. Four different estimators are considered: the standard 2SLS estimator in red, our proposed
Test-and-Select estimator with cross-fitting using 2 folds in blue, the re-weighted IV approach suggested
by Coussens and Spiess (2021) in green and the interacted IV approach suggest by Huntington-Klein
(2020) in purple.
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DGP2: introduction of “weak” compliance groups This second DGP is selected for its adverse

properties, in order to delineate the robustness frontiers of our method. Indeed, this DGP does

not feature any group without compliers. Instead, it introduces several weak compliance groups,

which are (as studied in 3) the main source of bias for our estimator. The DGP parameters are the

following:

DGP2 ≡
(
N = 1000, J = 10, SAT = SNT =

0.75

2
, ρδε = 0.3, ση = 0.5, α = 0.5, β ∈ {1, 2, 3, 4, 6, 10, 20, 40, 80}

)

It generates the following distribution of compliance rates in the J = 10 groups created:

πG = (π1 = π10 ≈ 0.001, π2 = π9 ≈ 0.08, π3 = π8 ≈ 0.24, π4 = π7 ≈ 0.40, π5 = π6 ≈ 0.5)

for an overall compliance of 25%, as in DGP1. In the spirit of varying parameters as little as

possible across DGPs, we keep the same α = 0.5 as in DGP1, which again means that there is a

significant correlation between compliance and treatment effects across groups.

We run a Monte-Carlo simulation with 10,000 repetitions. The results are shown in the panels

of figure 2. Compared to what we observed in DGP1 — and as expected from our theoretical

results from section 3 — panel 2a highlights a much larger bias of our procedure, that grows as

treatment effect heterogeneity increases. Therefore, at first glance we could expect very similar

performance of our estimator compared to the ones proposed in Huntington-Klein (2020) and

Coussens and Spiess (2021) as their level of bias seems relatively similar. Yet panel 2a conceals the

different distributions of such estimators compared to ours. Indeed, and as implicitly illustrated

in panel 2b, Huntington-Klein (2020) and Coussens and Spiess (2021)’s estimators have a lower

variance than ours, yielding significantly shorter 95%-CIs. In absence of any bias, this would un-

equivocally be synonymous of a better performance. Yet since neither our procedure nor theirs

is unbiased, these shorter CIs yield worse coverage properties than our estimator — see panel

2c. Indeed, as demonstrated in section 3 our estimator remains unbiased to the first-order when

treatment effect heterogeneity is moderate — in the sense of being of the same order as the sample

variation, or the MDE. Ultimately, such a property does not guarantee unbiasedness in finite sam-

ples — panel 2a illustrates this very well — yet it allows for valid inference as long as treatment
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effect heterogeneity remains moderate. This is precisely what can be seen in panel 2c. As treat-

ment effect heterogeneity grows, the coverage of the Test-and-Select estimator’s 95%-CIs remains

at its nominal level at least up to x = 100, while this is not the case of alternative estimators —

except for the standard 2SLS of course. Lastly, panel 2d shows that the ordering of estimators in

terms of RMSE is ambiguous, depending on the level of treatment effect heterogeneity. Yet as we

hope to make it clear in this discussion, despite being a standard and useful performance criterion,

the RMSE of estimators has to be interpreted with caution here. Indeed, trading off too much bias

for gains in precision can very well lead to a decrease in RMSE, yet at the same time be detrimental

to the quality of inference by deteriorating the coverage property of standard CIs.40

40At this point, it is worth mentioning that one could try to correct standard CIs based on estimates of worst-case
bias of the estimator considered — yielding bias-aware CIs. See Donoho (1996); Armstrong and Kolesár (2018, 2021)
for examples of such an approach. This is not explored in this paper, nor in the ones of Huntington-Klein (2020) or
Coussens and Spiess (2021). In a companion paper, we study in more details such an alternative.
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Figure 2: Comparison of estimators with varying treatment effect heterogeneity for DGP2

(a) Bias (b) Length of 95% confidence interval

(c) Coverage of 95% confidence interval (d) Root mean square error

Notes: This panel shows the results of a 10,000 repetitions of a Monte-Carlo simulation of DGP2, described
in the text. Four different estimators are considered: the standard 2SLS estimator in red, our proposed
Test-and-Select estimator with cross-fitting using 2 folds in blue, the re-weighted IV approach suggested
by Coussens and Spiess (2021) in green and the interacted IV approach suggest by Huntington-Klein
(2020) in purple.
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6 EMPIRICAL APPLICATIONS

6.1 Application to a natural experiment on compulsory schooling laws (Stephens

and Yang, 2014)

In this section, we apply our proposed methodology to census data on compulsory schooling laws

in the US — as studied in Stephens and Yang (2014).41 Compulsory schooling laws (that restrict

the age at which individuals are allowed to drop out of school) vary across states and along time.

Assuming that such legal changes occur at random, one can use these variations as an instrument

for the amount of schooling of individuals, and therefore identify the causal effect of schooling

on wages. In their paper, Stephens and Yang (2014) use an alternative identification strategy,

based on parallel trends assumption and a two-way fixed effects model. For the purpose of this

application, we propose to make the stronger assumption of random legal changes across states

and along time.

We start from a sample of 1,175,889 individuals, following the sample selection of Stephens

and Yang (2014) except for the fact that the authors choose to focus on white male individuals in

their paper while we do not restrict our sample in such a way. Stephens and Yang (2014) justify

this restriction by underlining that ethnic minorities and female individuals appear to react less to

compulsory schooling laws than male individuals. Motivated by the new estimator proposed in

this paper, we suggest to make such a selection in a data-driven way, starting from the full sample.

As our main covariate (G in the theory section above), we use an interaction between demo-

graphic controls (ethnicity × sex) × US census division × survey year (1960, 1970, 1980). Since

we make the assumption that legal changes happen at random, we exclude from our sample the

cells defined by G in which there is not any variation in compulsory schooling laws.42 Indeed, we

do not want to identify the effect of compulsory schooling laws on education by comparing cells

in which there has not been any legal changes with some in which there has been some, as such

cells are arguably quite different. This restriction is quite stringent, and yields a sample of 171,096

individuals.
41Census data has been used in several other papers to study the effect of education on wages, using compulsory

schooling laws as an instrument (Angrist and Krueger, 1991; Acemoglu and Angrist, 2006; Oreopoulos, 2006). We
follow Stephens and Yang (2014) for the data cleaning.

42This turns out to be necessary once we propose later in this section a natural variation of our estimator that controls
non-parametrically for G.
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Since at this time our methodology only applies to settings with a binary instrument and bi-

nary treatment, we need to discretize the original instrument and treatment variables. The original

instrument variable in Stephens and Yang (2014) is the number of remaining compulsory years of

schooling at age 6 in the state of individuals, at the time they were aged 6. The authors end up dis-

cretizing this variable in dummies for whether or not this number is 7, 8 or 9. In order to consider

all changes of legislations that imposed to get some high school education, we consider as a single

binary instrument the indicator variable that equals one when the number of remaining compul-

sory years of schooling at age 6 is larger or equal to 7. The original treatment variable is the number

of years of schooling completed after age 6. Since some laws require up to 9 years of schooling

after age 6, we consider as a treatment variable completing 10 years or more of education. In other

words, our treatment variable corresponds to completing some high-school education.

The test-and-select procedure — based on one-sided t-test on the first stage coefficient within

each cell defined by G — tends to select groups of white individuals, as reported in Table 2. This

confirms the observation of Stephens and Yang (2014) that ethnic minorities tend to react less to the

compulsory schooling laws instrument. In fact, these groups often display a negative first-stage,

threatening the validity of the identifying assumptions (in particular, the monotonicity assump-

tion) for the LATE.

Table 2: Selection probability of G-cells, by demographic group

Selection proba. (α = 0.05) Selection proba. (α = 0.01)

Non-white female 0.39 0.28

Non-white male 0.44 0.33

White female 0.72 0.61

White male 0.67 0.61

Notes: In this application, G is a partition of the population along demographic controls (ethnicity × sex)
× US census division × survey year (1960, 1970, 1980). It defines 108 cells, 72 of which are kept in the
analysis — those that still contain some variation in our instrument (changes in compulsory schooling
laws). This table presents the probability that a cell involving a given demographic group is dropped
from the estimation sample once we select based on a one-sided t-test with level 0.05 (first column) or 0.01
(second column).

Table 3 reports the results of various estimation procedures applied to the sample described

above. Panel (A) reports the results of estimators that do not control in any way for the effect of

G on the outcome (log weekly earnings). These include the 2SLS estimator, and the TS estimator
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with a one-sided t-test with a level of 0.05 or 0.01. We observe that the point estimate of the 2SLS

estimator (1.861) differs a bit from the ones of the TS estimators (1.470 or 1.302). Yet the standard

errors associated to the TS estimators are smaller — they are reduced by around 12%.

Panel (B) of table 3 reports the results of estimators that control (somehow linearly) for G.

These include in particular the interacted IV estimator (Huntington-Klein, 2020; Coussens and

Spiess, 2021) and a version of the estimator proposed in Abadie et al. (2022), the select and interact

IV estimator. In fact, these two estimators saturate the first and second stage by including G along

with its interactions with Z in the regression. Yet as already mentioned above, the authors show

that in such a case, they not identify the LATE, but a convex-weighted average of conditional

LATEs. Since G is highly predictive of the outcome in the context of the present application,

the variance of these estimators is significantly smaller than the one of the 2SLS estimator and

the TS estimator presented in Panel (A). Once we implement the 2SLS and TS estimator after

residualizing all variables onG in a first step, the TS estimator display very similar standard errors

as the ones of the interacted IV estimators (around 0.150). Moreover, it remains significantly more

precise than the 2SLS estimator (0.195).

However, controlling for G in a linear way as suggested above does not necessarily guarantee

that the resulting estimators (2SLS and TS) still target the LATE parameter. In fact, sometimes

they could even target a parameter that is a non-convex weighted average of conditional LATEs

(Słoczyński, 2022). An alternative is to use another estimator than the 2SLS estimator to control

non-parametrically for G. One such estimator has been proposed by Frölich (2007), as an esti-

mator of the LATE when the instrument Z is valid only after conditioning on G. This estimator

relies on the following identification results, that states that under unconfoundedness, we can still

identify the LATE as the ratio of two weighted average of conditional Intention-To-Treat (ITTs) at

the numerator and conditional first-stages at the denominator (see Frölich (2007), theorem 1):

E [Y (1)− Y (0) | D(1) > D(0)] =

∫
G (E[Y | G = g, Z = 1]− E[Y | G = g, Z = 0]) fG(g)dg∫
G (E[D | G = g, Z = 1]− E[D | G = g, Z = 0]) fG(g)dg

SinceG is discrete in our setting, we can simply use empirical analogs to build a valid estimator of

the LATE in our context, that controls non-parametrically for G. We can also construct TS estima-

tors in a similar fashion, by restricting our estimation to the sub-sample of groups selected based
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on their first-stage. We report the results in table 4. One can observe that the resulting point esti-

mates differ quite a lot from the ones previously documented in table 3. Indeed, the plain vanilla

Frölich estimate is around 0.907 (against 1.86 for the 2SLS estimate without controls). If the instru-

ment were independent from G, then both estimators should target the same LATE parameter.

The data does not entirely reject such a scenario since the variance of the Frölich estimator is quite

large (1.160). Yet such a difference does suggest that Z might be confounded in the absence of a

control for G — which would not be that surprising in this context. If this is the case, then the

Frölich estimator is more appropriate. At this stage, this paper does not include a formal discus-

sion of the variance gains of the TS procedure when coupled with the Frölich estimator. Still, in

this application, it seems that such a procedure yields considerable variance gains — from 1.16 to

0.604, a reduction by around 48% of the standard errors. The variance of the TS estimator remains

larger than the one of the interacted IV estimators in this application. Yet the point estimates of

such estimators differ quite a lot from the ones of the Frölich and TS estimators. This suggests the

heterogeneity in treatment effect might be such that the interacted IV estimators no longer target

the LATE parameter — while the Frölich and TS estimators do. As already discussed in section 3

and 5, this first-order bias of interacted IV estimators can be highly detrimental to the quality of

the inference derived based on such estimators. Without the possibility to de-bias them, and in

the absence of a bias-aware procedure for the construction of confidence intervals, it is likely that

the said CIs would not cover the LATE parameter at their nominal rate when based on the inter-

acted IV estimators. Indeed, this is due to the failure of such estimators to converge to the LATE

at a
√
n rate (see section 3). On the contrary, the TS procedure yields an asymptotically unbiased

estimator, and thus asymptotically valid CIs can be constructed based on this method. Given the

significant variance reduction it provides compared to the 2SLS or Frölich alternatives, it appears

as the best option to construct tighter, yet asymptotically valid, CIs for the LATE parameter.
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Table 3: Comparison of estimation methods

2SLS Test and Select (0.05) Test and Select (0.01) Interacted IV Select (0.05) & Interacted IV

A. Without controlling for G (demographic controls)

D (educ. ≥ some high-school) 1.861 1.470 1.302

(0.365) (0.320) (0.312)

[1.145, 2.578] [0.843, 2.098] [0.691, 1.913]

First-stage coef. 0.523 0.518 0.513

%. sample drop. 0 28.6 32.7

N 171 096 122 150 115 159

B. Controlling (linearly) for G (demographic controls)

D (educ. ≥ some high-school) 1.370 1.143 1.130 1.348 1.149

(0.195) (0.150) (0.154) (0.182) (0.149)

[0.989, 1.751] [0.849, 1.437] [0.828, 1.432] [0.991, 1.705] [0.858, 1.441]

First-stage coef. 0.053 0.083 0.087 0.088 0.103

%. sample drop. 0 28.6 32.7 0 28.6

N 171 096 122 150 115 159 171 096 122 150

Notes: Standard errors (clustered at the demographic control (ethnicity × sex) × birth state × year of birth level) in parenthesis, 95% confidence
intervals in brackets. We report estimates of the effect of having some high-school education (or more) on log weekly earnings.
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Table 4: Comparison of estimation methods (continued)

Frölich (2007) TS (0.05) TS (0.01) Interacted IV Select (0.05) & Interacted IV

& Frölich (2007) & Frölich (2007)

C. Controlling (non-parametrically) for G (demographic controls)

D (educ. ≥ some high-school) 0.907 0.791 0.776 1.348 1.149

(1.16) (0.604) (0.576) (0.182) (0.149)

[−1.367, 3.181] [−0.392, 1.975] [−0.353, 1.905] [0.991, 1.705] [0.858, 1.441]

First-stage coef. 0.064 0.094 0.097 0.088 0.103

%. sample drop. 0 28.6 32.7 0 28.6

N 171 096 122 150 115 159 171 096 122 150

Notes: Standard errors (clustered at the demographic control (ethnicity × sex) × birth state × year of birth level) in parenthesis. We report estimates
of the effect of having some high-school education (or more) on log weekly earnings.
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6.2 Application to a large-scale controlled experiment on job search counseling

(Behaghel et al., 2014)

In this section, we apply our proposed methodology to a large-scale labor market experiment on

job search counseling studied in Behaghel et al. (2014). This randomized controlled trial aimed

at measuring (and comparing) the impact of intensive job search counseling delivered either by

public (CVE) or private (OPP) providers. Among a pool of job seekers at risk of long-term un-

employment, the ones assigned to either of those two treatment arms were eligible to receive

counseling from advisors whose caseload was reduced (on average) from 120 to 40 job seekers.

We restrict our sample to control individuals and job seekers assigned to the intensive coun-

seling program of public providers (CVE) — in order to focus on a single treatment arm, while

keeping the largest number of observations possible. We are left with a sample of 113,738 job

seekers for our analysis.43 We focus on measuring the effect on the number of days spent as un-

employed during the year after the date of the assignment.

We have access to a rich set of individual covariates from the administrative data of the French

Public Employment Services (PES) — e.g. the age, region, marital status, number of children,

nationality, area of residence, occupation he/she is looking for, qualification, level of education,

reasons for unemployment registration (fired, quit, economical downsizing) etc. In order to fit into

our framework, we build a synthetic variable that aims at summarizing the predictive power of

those covariates for compliance behavior. In order to do so, we grow a random forest on the sub-

sample of assigned individuals, whose objective is to best predict the treatment variable (entering

into the CVE program) based on observables. In future research, we would like to investigate the

best way to use high-dimensional covariates in our setting, taking into account the use of such

prediction algorithm in our analysis. At this stage, in order to best approximate the existence of

an exogenous partition of the population — as assumed in our theoretical framework — we ran-

domly split our sample in two halves, and build two distinct prediction models. The prediction

function estimated in split 1 is then applied to split 2, and vice versa. From there, within each split,

we create 500 quantiles of this compliance score, that are going to be used as the main covariates in

43Compared to the original published paper of Behaghel et al. (2014), our sample is larger than the one used in their
main analysis. This is because they had to restrict their analysis to job seekers that were eligible to both programs (CVE
and OPP). There was a higher number of job seekers in the experiment that were eligible to CVE (and not necessarily
to OPP), hence our bigger sample.
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our analysis. This data-splitting and cross-fitting allows us to consider this covariate as essentially

exogenous, as the prediction function used in each split to create those quantiles does not depend

on the realizations of the data within the split.

Table 5 presents the heterogeneity of the (conditional) LATE along quartiles of the predicted

compliance rate. We highlight two main points from this table. First, it provides evidence that we

successfully captured some heterogeneity in compliance behavior, as the first-stage coefficients

estimated in each quartile of predicted compliance are highly heterogeneous, from an average

take-up rate of 18.4% in the first quartile to a rate of 49.5% in the last quartile. This demonstrates

the ability of prediction models to capture heterogeneous compliance behaviors along observables

in real-world datasets. The second fact worth noticing is the covariance between the conditional

LATEs estimated in each quartile, and the conditional take-up rates mentioned above. Indeed,

LATE estimates vary considerably from the first to the last quartile of compliance, going from

around +17 to -16 days of unemployment. This can easily be rationalized by a Roy model in which

job seekers self-select into treatment (when assigned to) based on their expected gains from such

program. However, it is critical to document such a pattern in a real-world dataset. Indeed, we

highlighted in our theoretical derivations and Monte-Carlo simulations that our proposed Test-

and-Select estimator was more robust to such covariance between compliance rates and treatment

effects (compared to alternative estimators). Yet this robustness could be deemed vain if real

datasets failed to present significant covariance between treatment effects and compliance rates.

Table 6 then compares the different estimation methods for the LATE parameter. Its first col-

umn presents the standard 2SLS estimate, at around -5.3 days of unemployment. The second and

third columns of the table present the results obtained when applying our methodology when

testing either at the 0.05 or 0.01 level in the selection step. Mechanically, using a 0.01 level leads to

a larger fraction of the sample being dropped. Both alternatives do not yield significant gains in

variance, which can be explained by the very moderate increase in the average take-up rate. The

last two columns present estimates based on alternative methodologies. The second to last column

corresponds to an interacted instrument estimation approach as suggested in Huntington-Klein

(2020), while the last column presents an estimate based on the weighted-instrument strategy

suggested in Coussens and Spiess (2021), with our compliance score estimated by random forest

as the weight. Both are (as expected) very similar, with significant gains in variance along with
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Table 5: Heterogeneity across quartiles of predicted compliance

Q1 Q2 Q3 Q4

Constant 186.361 216.297 233.778 264.426

(1.146) (1.128) (1.103) (1.039)

[184.114, 188.607] [214.087, 218.507] [231.616, 235.940] [262.390, 266.462]

Treatment (CVE) 16.916 −0.304 −10.758 −15.993

(8.652) (5.872) (4.210) (2.785)

[−0.042, 33.875] [−11.814, 11.205] [−19.010, −2.507] [−21.453, −10.534]

First-stage coef. 0.184 0.261 0.356 0.495

(0.004) (0.004) (0.004) (0.005)

N 28 272 28 489 28 375 28 602

Notes: Robust standard errors in parenthesis, 95% confidence intervals in brackets. The dependent variable
is the number of days spent as unemployed during the year after date of the assignment. Each column
reports the 2SLS estimates from a subsample restricted to observations among a given quartile of predicted
compliance score.

relatively larger deviation of their point estimates from the 2SLS one (compared to our method-

ology). This is not surprising as those methodologies target a weighted average of conditional

LATEs where populations with higher compliance rates get a larger weight. Therefore, as Table 5

documented the covariance between compliance rates and larger (negative) effects on days spent

in unemployment, we would expect those estimators to be centered on larger estimands, which is

what the results in Table 6 seem to confirm. Notice that the version of our TS procedure at the 0.01

level does show a similar pattern, yet to a lesser extent, as expected from our theoretical results.
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Table 6: Comparison of estimation methods

2SLS Test and Select (0.05) Test and Select (0.01) H.-K. (2020) C. & S. (2021)

Constant 224.993 226.057 229.268 177.338 162.682

(0.569) (0.576) (0.602) (0.781) (0.930)

[223.878, 226.109] [224.928, 227.186] [228.089, 230.447] [175.807, 178.868] [160.859, 164.505]

Treatment (CVE) −5.294 −5.664 −8.796 −10.600 −11.134

(2.352) (2.356) (2.379) (2.092) (2.097)

[−9.903, −0.684] [−10.281, −1.046] [−13.459, −4.132] [−14.701, −6.500] [−15.243, −7.024]

First-stage coef. 0.326 0.329 0.337

%. sample drop. 0 2.4 9.8 0 0

N 113 738 110 998 102 560 113 738 113 738

Notes: Robust standard errors in parenthesis, 95% confidence intervals in brackets. The dependent variable is the number of days spent as un-
employed during the year after date of the assignment. The first model reports the results of 2SLS estimation of the full sample. The second and
third columns report the results of estimating the LATE on a subsample selected based on a first testing step (implemented using data splitting and
cross-fitting as described in the main text). The second column corresponds to a selection rule based on a 0.95 level t-test, and the third column
corresponds to selection rule based on a 0.99 level t-test. The last but one column corresponds to a an interacted instrument estimation approach as
suggested in Huntington-Klein (2020). The last column presents an estimate based on the weighted-instrument strategy suggested in Coussens and
Spiess (2021), with our compliance score estimated by random forest as the weight.
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7 CONCLUSION

In this paper, we consider a simple and intuitive way to exploit heterogeneity in compliance rates

along observable characteristics in order to improve the estimation of the LATE in experiments

with imperfect compliance. We start by underlining the fact that excluding non-compliant sub-

populations from the analysis does not affect the estimand identified while allowing to reduce

considerably the variance of a hypothetical oracle estimator that would exclude observations from

such population without any exclusion mistakes. Quite naturally, this result on precision gains

extends asymptotically to a feasible estimator that would identify such non-compliant groups by

t-testing the first-stage coefficient as long as we consider standard asymptotic sequences in which

compliance rates per group are either zero or fixed with n and well-separated from 0. Yet such

asymptotic results are likely to yield unsatisfactory approximations of our estimator’s behaviour

in finite samples. Therefore, we next consider weak-IV-like asymptotic sequences in which some

groups display local-to-zero compliance rates — i.e., their first-stage coefficient decreases at the

1/
√
n rate, making them difficult to distinguish from non-compliant groups in samples of any size.

We provide sufficient conditions — in particular, restrictions on treatment effect heterogeneity —

for our estimator to remain first-order unbiased for the LATE under such asymptotic sequences.

We discuss the interpretability of such conditions in applied work and compare the performance

of our estimator to alternative procedures recently proposed in the literature exploiting first-stage

heterogeneity in a different way from us. The main takeaway from this discussion is that our

estimator appears more robust to treatment effect heterogeneity, mainly because it exploits spe-

cific patterns of compliance rates heterogeneity — namely, the presence of non-compliant groups.

The cost of such robustness is limited gains in precision when the non-compliant sub-population

cannot be described accurately by observable characteristics. In light of our theoretical findings,

we explore the finite sample performance of our estimator in Monte-Carlo simulations and in an

application on a large RCT on job search counseling. Both our simulations and the application

confirm the higher robustness of our estimator to treatment effect heterogeneity. The potential for

precision gains is also clearly highlighted in Monte-Carlo simulations.

The econometrics literature on the use of first-stage heterogeneity in LATE estimation is very

recent and thus still quite active and promising. As an example, in a follow-up project (joint with
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X. D’Hautefœuille) we reflect on the setting studied in this paper under the milder restriction of

bounded treatment effect heterogeneity. We consider the use of bias-aware inference techniques,

that have received a renewed attention in the recent econometric literature on treatment effect

estimation. In the case of LATE estimation with heterogeneous first-stages across groups defined

by covariates, this assumption of bounded treatment effect heterogeneity yields a set of restrictions

on the relationship between the Intention-to-Treat (ITT) and the first-stage statistics within each

group — which can then be used to construct bias-aware CIs on the LATE, with the hope that such

procedure could yield a more precise inference than standard approaches. Aside from the benefits

from taking first-stage heterogeneity into account in estimation and inferential procedures — as

in this paper and its follow-up — we believe that these insights could be used for the design of

experiments with imperfect compliance. We plan on investigating this in future research.
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A PROOFS OF MAIN RESULTS

Proof. Lemma 1.

Let G be a binary covariate partitioning the population such that:

• the share of compliers in groups G = 0 and G = 1 are respectively given by π0 = 0 and

π1 > 0. We denote by π̂0 and π̂1 the first-stage estimators in each of those two groups.

• the LATE in group G = 1 is denoted LATE1. Note that is matches the LATE in the overall

population since there are not any compliers in group G = 0.

• in group G = 0, we have:

BAT−NT ≡ E [Y (1)|G = 0, D(1) = D(0) = 1]− E [Y (0)|G = 0, D(1) = D(0) = 0] ̸= 0

The last point states that the average outcome of always-takers — characterized byD(1) = D(0) =

1, and for whom we always observe Y (1) — is different from the average outcome of never-takers

— characterized by D(1) = D(0) = 0, and for whom we always observe Y (0).

First of all, notice that groupG = 1 is selected with probability tending to 1 as n goes to infinity

(by consistency of the t-test against alternatives well separated from 0). With probability tending

to (1−α) — where α is the level of the t-test used for selection — group G = 0 is not selected. See

lemma 2 for a proof of these statements. Therefore, the event (resulting from our unilateral t-test

on group first-stages) we are interested in is:

{Group G=0 is selected} ⇔
{
1

{√
n0 · π̂

0

σ̂π̂0 > q1−α

}
= 1

}

With probability tending to (1 − α), only group G = 1 is selected. The event determining

whether group 1 is selected alone or not does not depend on the observations in this group. There-

fore, the 2SLS estimator computed on observations of group G = 1 alone has an asymptotic distri-

bution conditonal on the event {Group G=0 is selected} that remains the same as its unconditional

asymptotic distribution. By standard results on 2SLS estimation we get that the standard 2SLS es-

timator computed on observations from subgroupG = 1 (denoted L̂ATE1) will be asymptotically
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normal and centered on LATE1:

√
n1 ·

(
L̂ATE1 − LATE1

)
−−−→
n→∞

N (0, V 1)

Yet when both group G = 0 and G = 1 are selected — with asymptotic probability α — the 2SLS

estimator computed on both groups (denoted L̂ATE) satisfies:

√
n ·
(
L̂ATE − LATE

)
=

√
n ·
(
L̂ATE − LATE1

)

=
√
n ·

 ÎTT1π̂1
− LATE1 −

ÎTT1
π̂1

· P̂0 · π̂0

P̂0 · π̂0 + P̂1 · π̂1︸ ︷︷ ︸
≡A

+
P̂0 · π̂0 · ÎTT0
P̂0 · π̂0 + P̂1 · π̂1︸ ︷︷ ︸

≡B


=

√
n ·

(
ÎTT1
π̂1

− LATE1

)
−
√
n ·A+

√
n ·B

where P̂g ≡ P̂[G = g] = ng/n and ÎTTg denotes the difference-in-means estimator of the intention-

to-treat estimand (E[Y |Z = 1]−E[Y |Z = 0]) in groupG = g. If we were reasoning unconditionally

— i.e., without conditioning on the event {Group G=0 is selected} — then we would have that

bothA andB have distributions centered on 0 — by Slutsky and the continuous mapping theorem,

since
√
n · π̂0 d−−−→

n→∞
N (0, Vπ̂0). Thus L̂ATE would be

√
n-consistent for the LATE. Yet, we are

interested in the distribution of L̂ATE conditional on the event {Group G=0 is selected}, which is

equivalent to conditioning on
√
n · π̂0 being larger than a given threshold t. We trivially have:

√
n · π̂0 |

√
n · π̂0 > t

d−−−→
n→∞

N (0, LB = t, Vπ̂0)

where N (0, LB = t, Vπ̂0) denote the distribution of a truncated normal distribution N (0, Vπ̂0) with

lower bound t. Such distribution is not centered on 0. Therefore, since ÎTT1 does not go to 0, we

already have that our first bias termA does not vanish anymore. This is a first source of first-order

bias in the estimation of the LATE with this naïve pre-testing procedure. This one is quite intu-

itive: as our pre-test tends to select cases in which we overestimate the share of compliers in group

G = 0, we tend to overestimate the overall share of compliers, and thus this shrinks the estimator
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towards 0.

However, there is potentially a second source of bias that comes from the non causal compari-

son between always-takers and never-takers in group G = 0. Indeed, since there are not any

compliers in this group, having a large first-stage in G = 0 necessarily means that there is an im-

balance between the share of always takers and the share of never-takers in this sub-sample. If

we do not condition on the size of the estimated first-stage coefficient π̂0, then we still have that

those shares are balanced on average, and thus we have ÎTT 0 p−−−→
n→∞

0 and, by Slutsky’s lemma
√
n · π̂0 · ÎTT 0 d−−−→

n→∞
N (0, Ṽ0). Yet once we condition on the estimated first-stage coefficient, the

probability limit of ÎTT 0 and the limiting distribution of
√
n · π̂0 · ÎTT 0 are quite different. Indeed,

we have:

ÎTT 0 | π̂0 = f
p−−−→

n→∞
f ·BAT−NT

Hence once we turn to the study of the limiting distribution of
√
n · π̂0 · ÎTT 0, we get:

√
n · π̂0 · ÎTT 0 |

√
n · π̂0 > t

d−−−→
n→∞

N (0, LB = t, Vπ̂0) ·BAT−NT

If BAT−NT = 0, then this limiting distribution becomes degenerate at 0, and the second bias term

B is null. Yet if BAT−NT = 0, then this additional term B is not centered at 0, and therefore it

adds an additional first-order bias to the estimator L̂ATE. Once again, this is intuitive as this

second bias term B comes from the fact that in group G = 0, we end up comparing always-takers

with never-takers once we condition on the estimated first-stage π̂0 to be larger than a threshold.

This is not an issue when the expected outcome of always takers and never-takers is the same

(BAT−NT = 0), as this difference will concentrate around zero in this case. This is not the case if

the expected outcome of always-takers and never-takers differ (BAT−NT ̸= 0), in which case their

comparison leads to the introduction of a first-order bias.

Proof. Proposition 1.

Proposition 1.1 We’ll closely follow the proof of lemma 7, that presents the asymptotic distribu-

tion of the usual 2SLS/Wald estimator. The steps are essentially identical, but for an additional
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conditioning on SGi , the selection dummy indicating whether the covariate-based group individ-

ual i belongs to (denoted by Gi) has been selected. This is indicated in vector S ∈ {0, 1}|G|. SGi is

merely the Gth
i line of the vector S. Let us also us the following notation:

• GS = {all groups with strong fist stage}

• G0 = {all groups with zero fist stage}

We do not consider groups with weak first-stages at this point, as proposition 1 focuses on stan-

dard asymptotics in order to illustrate the potential for gains in precision from selection.

Notice that Propositions 1.1 and 1.2 are developed under a conditioning on the value of the selec-

tion vector S. This is key to our reasoning, as this conditioning allows us to study separately the

randomness of the estimation sample, and the one coming from the selection step.

Consider a given (fixed, deterministic) selection process S ∈ Sstrong. We know that asymptotically,

it cannot be that a group with a strong first-stage is not selected. Hence there are only two main

cases we need to consider:

1. {∀g ∈ GS , Sg = 1} ∩ {∀g ∈ G0, Sg = 0}

2. {∀g ∈ GS , Sg = 1} ∩ {∃g ∈ G0, Sg = 1}

The various components of τ̂(S) are:

Â =

(∑
i

ZiSGi

)−1∑
i

ZiSGiYi, A = E[Y |Z = 1, SG = 1]

B̂ =

(∑
i

((1− Zi)SGi)

)−1∑
i

(1− Zi)SGiYi, B = E[Y |Z = 0, SG = 1]

Ĉ =

(∑
i

ZiSGi

)−1∑
i

ZiSGiDi, C = E[D|Z = 1, SG = 1]

D̂ =

(∑
i

((1− Zi)SGi)

)−1∑
i

(1− Zi)SGiDi, D = E[D|Z = 0, SG = 1]

⇒ LATE =
A−B

C −D

⇒ τ̂(S) =
Â− B̂

Ĉ − D̂
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Notice that the fact that LATE = A−B
C−D comes from the fact that no matter the selection procedure

S ∈ Sstrong considered, the only groups that might be excluded are groups without any compliers.

Therefore we get:

LATE = E[Y (1)− Y (0)|D(1) > D(0), SG = 1] ·
=1︷ ︸︸ ︷

P[SG = 1|D(1) > D(0)]

+ E[Y (1)− Y (0)|D(1) > D(0), SG = 0] · P[SG = 0|D(1) > D(0)]︸ ︷︷ ︸
=0

= E[Y (1)− Y (0)|D(1) > D(0), SG = 1]

=
E[Y |Z = 1, SG = 1]− E[Y |Z = 0, SG = 1]

E[D|Z = 1, SG = 1]− E[D|Z = 0, SG = 1]
(by standard identification result for LATE)

In exactly the same way as the proof of lemma 7, we have:

ai =
ZiSGi(Yi − E[Y |Z = 1, SG = 1])

E[ZS]

bi =
(1− Zi)SGi(Yi − E[Y |Z = 0, SG = 1])

E[(1− Z)SG]

ci =
ZiSGi(Di − E[D|Z = 1, SG = 1])

E[ZSG]

di =
(1− Zi)SGi(Yi − E[D|Z = 0, SG = 1])

E[(1− Z)SG]

Therefore we get:

ψτ̂(S),i =
(ai − bi)− LATE · (ci − di)

Ci −Di

=
1

pC,SG=1

(
ZiSGi(Yi − E[Y |Z = 1, SG = 1])

E[ZSG]
− (1− Zi)SGi(Yi − E[Y |Z = 0, SG = 1])

E[(1− Z)SG]

−LATE ·
(
ZiSGi(Di − E[D|Z = 1, SG = 1])

E[ZSG]
− (1− Zi)SGi(Di − E[D|Z = 0, SG = 1])

E[(1− Z)SG]

))
=

1

pC,SG=1

(
1

E[ZSG]
ZiSGi · (εi − E[ε|Z = 1, SG = 1])− 1

E[(1− Z)SG]
(1− Zi)SGi · (εi − E[ε|Z = 0, SG = 1])

)

where ε ≡ Y −LATE ·D is the structural error term of the second stage, and pC,SG=1 = E[D(1)−

D(0)|SG = 1] is the share of compliers among the selected. As expected from an influence function,
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one can check that E[ψτ̂(S),i] = 0. It follows that asymptotically,

√
n(E)(τ̂(S)− LATE)

d→ N (0, V τ̂(S))

where V τ̂(S) = V (ψτ̂(S),i) equals:

V (ψτ̂(S),i) = E[ψ2
τ̂(S),i]

=
1

p2C,SG=1

(
1

E[ZSG]
E[(ε− E[ε|Z = 1, SG = 1])2|Z = 1, SG = 1]

+
1

E[(1− Z)SG]
E[(ε− E[ε|Z = 0, SG = 1])2|Z = 0, SG = 1]

)

We also have Z ⊥ SG (because Z ⊥ G and S is deterministic as we condition on it), so that:

E[ZSG] = p · pSG

E[(1− Z)SG] = (1− p) · pSG

π = pC,SG=1 · pSG
+ pC,SG=0 · (1− pSG

) = pC,SG=1 · pSG

⇒ V (ψτ̂(S),i) =
pSG

π2

(
1

p
E[(ε− E[ε|Z = 1, SG = 1])2|Z = 1, SG = 1]

+
1

1− p
E[(ε− E[ε|Z = 0, SG = 1])2|Z = 0, SG = 1]

)

where pSG
≡ Pr[SG = 1].

Proposition 1.2 From lemma 7, and from proposition 1.1 we have that:

V TSLS =
1

π2

(
1

p
V [ε|Z = 1] +

1

1− p
V [ε|Z = 0]

)
V τ̂(S) =

1

π2

(
pSG

p
V [(ε|Z = 1, SG = 1] +

pSG

1− p
V [(ε|Z = 0, SG = 1]

)

Therefore, we only need to prove that:

V [ε|Z = z] ≥ pSG
· V [ε|Z = z, SG = 1]
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This is proven below:

V (ε|Z = z) = E [V (ε|Z = z, SG)|Z = z] + V (E [ε|Z = z, SG] |Z = z)

≥ E [V (ε|Z = z, SG)|Z = z]

≥ pSG
· V (ε|Z = z, SG = 1)

where the first equality follows from the law of total variance, and first and second inequalities

follow from the fact that variances are always positive or null (in degenerate cases).

Therefore, V TSLS has been shown to be a linear combination (with positive coefficients) of terms

greater or equal than the ones appearing in V τ̂(S), proving the proposition 1.2.

Proposition 1.3 In order to properly study the asymptotic distribution of τ̂T = τ̂(Ŝ(T )), we need

to take a step back and study the distribution of Ŝ(T ), the vector of selection indicators estimated

in the test sample IT . We can focus on any single indicator Ŝg,(T ), the gth line of vector Ŝ(T ), which

is defined as follows:

Ŝg,(T ) ≡ 1

π̂g(T ) > σ̂π
g√

ng(T )

· q1−α


where ng(T ) is the number of observations in group g in sample IT , π̂g(T ) is the (difference in means)

estimator of the first-stage in group g, and σ̂π
g

is a consistent estimator of the (asymptotic) variance

of π̂g(T ). Notice that π̂g(T ) is asymptotically linear, as following lemma 6 we have:

√
ng(T ) · [π̂

g − πg]

=
√
ng(T ) ·

[∑
i ZiDi∑
i Zi

−
∑

i (1− Zi)Di∑
i (1− Zi)

− (E[D | Z = 1]− E[D | Z = 0])

]

=
1√
ng(T )

·


ng
(T )∑
i=1

(
Zi (Di − E[D | Z = 1]

E[Z]
+

(1− Zi) · (Di − E[D | Z = 0])

1− E[Z]

)
︸ ︷︷ ︸

≡ψ̃g
i


=

1√
ng(T )

·
ng
(T )∑
i=1

ψ̃gi
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Our estimator τ̂T depends on the selection variables stacked in Ŝ(T ). Indeed, we have:

√
n(E)(τ̂T − LATE) =

1
√
n(E)

∑
i

ψτ̂T ,i

where the expression of the influence function is given by:

ψτ̂T ,i =
1

pC,ŜG,T=1

(
1

E[ZŜG,T ]
ZiŜGi,T · (εi − E[ε|Z = 1, ŜG,T = 1])

− 1

E[(1− Z)ŜG,T ]
(1− Zi)ŜGi,T · (εi − E[ε|Z = 0, ŜG,T = 1])

)

The above display makes it clear that the ψτ̂T ,i’s of individuals within a given group g are depen-

dent, as they all depend on Ŝg,T , the selection indicator computed in the test sample IT . Yet the

fact that this variable is computed in a different sample allows us to disentangle the randomness

of τ̂T conditional on the selection vector ŜT , and the randomness of the selection process ŜT itself.

Conditioning on the selection vector ŜT re-establishes independence across the ψτ̂T ,i’s, and we are

back to the case studied in proposition 1.1 and 1.2. Now let us define:

T̂E ≡√n(E) ·
τ̂T − LATE√
V̂ (τ(ŜT ))

where V τ̂E is the asymptotic variance of τ̂E = τ̂(ŜT ). Now, turning to the study of the characteris-

tic function of T̂E conditional on ŜT , we have:

E[eitT̂E |ŜT ] =
∑

S∈{0,1}|G|

1{Ŝ = S} · E[eitT̂E |ŜT = S]

p−−−→
n→∞

∑
S∈Sstrong

1{Ŝ = S} · e−t2/2 +
∑

S ̸∈Sstrong

0 · E[eitT̂E |ŜT = S]

Indeed, by proposition 1.1 we have that for ŜT ∈ Sstrong, T̂E converges to a N (0, 1). And by con-

sistency of the t-test against any alternative well separated from 0„ we have that all groups with

strong first-stages are selected asymptotically, implying: ∀S ̸∈ Sstrong, 1{ŜT = S} p−−−→
n→∞

0, hence

the second line of the above display (by continuous mapping theorem).

Notice that by Jensen inequality: |E[eitT̂E |ŜT ]| ≤ E[|eitT̂E ||ŜT ] = 1, hence by the dominated con-
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vergence theorem we get:

E[eitT̂E ] = E
[
E[eitT̂E |ŜT ]

]
p−−−→

n→∞
E

 ∑
S∈Sstrong

1{Ŝ = S} · e−t2/2 +
∑

S ̸∈Sstrong

0


= e−t

2/2 (characteristic function of a N (0, 1) )

By Jensen inequality we have: |E[eitT̂E ]| ≤ E[|eitT̂E |] = 1 and since convergence in probability and

boundedness (in C) imply convergence in L1, we have:

E
[∣∣∣E[eitT̂E |ŜT ]− e−t

2/2
∣∣∣] −−−→

n→∞
0

By Jensen inequality again, we have:

∣∣∣E[eitT̂E ]− e−t
2/2
∣∣∣ = ∣∣∣E[eitT̂E − e−t

2/2]
∣∣∣

≤ E
[∣∣∣eitT̂E − e−t

2/2
∣∣∣] −−−→

n→∞
0

Hence we have that unconditionally, T̂E converges to a N (0, 1).

Proof. Corollary 1.

Firstly, by proposition 1.1 we have that for any realization of Ŝ denoted S ∈ Sstrong, one can

build asymptotically valid conditional confidence intervals with coverage (1−α) in the usual way:

CIα(S) =

[
τ̂(S)−

√
V̂ τ̂(S)

√
nE

· q1−α
2
, τ̂(S) +

√
V̂ τ̂(S)

√
nE

· q1−α
2

]

where V̂ τ̂(S) is a consistent estimator of the asymptotic variance of τ̂(S), and q1−α
2

is the (1 − α
2 )

quantile of the N (0, 1) distribution. Those CIs are asymptotically valid by proposition 1.1, i.e.:

P[LATE ∈ CIα(Ŝ)] | Ŝ = S −−−−→
n−→∞

1− α
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Now, by the law of iterated expectations, we have that:

P[LATE ∈ CIα(Ŝ)] = E
[
E[1{LATE ∈ CIα(Ŝ)}|Ŝ = S]

]
−−−→
n→∞

1− α

which is the second statement of corollary 1.

Now let us turn to the first statement, i.e.,

lim
n→∞

P
[√
nE · length[CIα(S)] ≤

√
nE · length[CITSLSα ]

]
= 1

√
nE · length[CIα(S)] and

√
nE · length[CITSLSα ] are entirely governed by and strictly increasing

in V̂ τ̂(S) and V̂ TSLS respectively. Let V̂ τ̂(S) and V̂ TSLS be estimators that converge in probability

to V τ̂(S) and V TSLS, and we assumed that S was such that we were in the inequality case of

proposition 1.2, i.e.,

V τ̂E(S) < V TSLS

Let us denote by
√
nE · length[CI0α(S)] and

√
nE · length[CI0,TSLSα ] the (rescaled) CIs constructed

with the true values of the asymptotic variances, i.e., V τ̂(S) and V TSLS respectively. We thus have:

∀ε1 > 0, lim
n→∞

P[
∣∣√nE · length[CIα(S)−

√
nE · length[CI0α(S)

∣∣ > ε] = 0

and

∀ε2 > 0, lim
n→∞

P[
∣∣√nE · length[CITSLSα ]−

√
nE · length[CI0,TSLSα ]

∣∣ > ε] = 0

Since V τ̂E(S) < V TSLS, we have that

√
nE · length[CI0α(S) <

√
nE · length[CI0,TSLSα ]

Hence we have:

lim
n→∞

P
[√
nE · length[CIα(S)] <

√
nE · length[CITSLSα ]

]
= 1
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Proof. Lemma 3.

A few elements need to be reminded to the reader in order to prove this lemma.

First of all, if we denote by τ̂1 the estimator constructed using the fold I2 as the test sample and I1

as the estimation sample, recall that we can decompose it as follows:

√
n(1)(τ̂1 − LATE) =

1
√
n(1)

∑
i

ψτ̂1,i

where the expression of the influence function is given by:

ψτ̂1,i =
1

pC,ŜG,(2)=1

(
1

E[ZŜG,(2)]
ZiŜGi,2 · (εi − E[ε|Z = 1, ŜG,(2) = 1])

− 1

E[(1− Z)ŜG,(2)]
(1− Zi)ŜGi,2 · (εi − E[ε|Z = 0, ŜG,(2) = 1])

)

with Ŝg,(2) denoting the selection indicator for group g computed in fold I2 as follows:

Ŝg,(2) ≡ 1

π̂g(2) > σ̂π
g√
ng(2)

· q1−α


where ng(2) is the number of observations in group g in sample I1, π̂g(2) is the (difference in means)

estimator of the first-stage in group g, and σ̂π
g

is a consistent estimator of the (asymptotic) variance

of π̂g(2). Second, recall (from the proof of corollary 1 above) that:

√
ng(2) ·

[
π̂g(2) − πg

]
=

1√
ng(2)

·


ng
(2)∑
i=1

(
Zi (Di − E[D | Z = 1]

E[Z]
+

(1− Zi) · (Di − E[D | Z = 0])

1− E[2]

)
︸ ︷︷ ︸

≡ψ̃g
i


=

1√
ng(2)

·
ng
(2)∑
i=1

ψ̃gi

The above formulas make it clear that the potential source of dependence between τ̂1 and τ̂2 lies

in Ŝg,(2), that appears in the influence function of τ̂1 and is computed based on observations from

fold I2, also used in τ̂2. We will now study the (asymptotic) dependence of Ŝg,(2) on ψ̃gn, the nth
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individual influence function entering in π̂g(2). For groups g such that πg > 0 (strong first-stage), we

have that P[Ŝg,(2) = 1] −−−→
n→∞

1 and Ŝg,(2) becomes essentially deterministic, hence asymptotically

there aren’t any dependence issues for such groups. We will therefore focus on groups g such that

πg = 0. For any such group g, and for a given number of observations ng(2) in this group (in fold

I2), we have:

Ŝ
(ng

(2)
)

g,(2) = 1

π̂g(2) > σ̂π
g√
ng(2)

· q1−α


= 1

 1√
ng(2)

·
ng
(2)∑
i=1

ψ̃gi >
σ̂π

g√
ng(2)

· q1−α


= 1

F g,ng
(2) >

σ̂π
g√
ng(2)

· q1−α


where we defined: F g,n

g
(2) ≡ 1√

ng
(2)

·
∑ng

(2)

i=1 ψ̃
g
i . Hence we can study the probability that any addi-

tional observation modifies the value of Ŝ
(ng

(2)
)

g,(2) as follows:

P

[
Ŝ
(ng

(2)
−1)

g,(2) = 0, Ŝ
(ng

(2)
)

g,(2) = 1

]

= P

F g,ng
(2)

−1 ≤ σ̂π
g√

ng(2) − 1
· (q1−α − ϵ) , F

g,ng
(2) >

σ̂π
g√
ng(2)

· q1−α


≤ P

∣∣∣F g,ng
(2)

−1
∣∣∣ ≤ σ̂π

g√
ng(2) − 1

· (q1−α − ϵ) ,
∣∣∣F g,ng

(2)

∣∣∣ > σ̂π
g√
ng(2)

· q1−α


= P

[∣∣∣(ng(2) − 1
)
· F g,n

g
(2)

−1
∣∣∣ ≤√ng(2) − 1 · σ̂πg · (q1−α − ϵ) , ng(2) ·

∣∣∣F g,ng
(2)

∣∣∣ >√ng(2) · σ̂πg · q1−α
]

Notice that:

ng(2) ·
∣∣∣F g,ng

(2)

∣∣∣ =
∣∣∣∣∣∣∣ψ̃gng

(2)

+
1√
ng(2)

·
ng
(2)

−1∑
i=1

ψ̃gi

∣∣∣∣∣∣∣
=

∣∣∣∣ψ̃gng
(2)

+
(
ng(2) − 1

)
· F g,n

g
(2)

−1

∣∣∣∣
≤
∣∣∣∣ψ̃gng

(2)

∣∣∣∣+ (ng(2) − 1
)
·
∣∣∣F g,ng

(2)
−1
∣∣∣ (by the triangle inequality)

65



where ψ̃g
ng
(2)

denotes the influence function of the ng(2)-th observation. Hence we get:

P

[
Ŝ
(ng

(2)
−1)

g,(2) = 0, Ŝ
(ng

(2)
)

g,(2) = 1

]
≤ P

[∣∣∣(ng(2) − 1
)
· F g,n

g
(2)

−1
∣∣∣ ≤√ng(2) − 1 · σ̂πg · (q1−α − ϵ) , ng(2) ·

∣∣∣F g,ng
(2)

∣∣∣ >√ng(2) · σ̂πg · q1−α
]

= P
[∣∣∣(ng(2) − 1

)
· F g,n

g
(2)

−1
∣∣∣ ≤√ng(2) − 1 · σ̂πg · (q1−α − ϵ) , ng(2) ·

∣∣∣F g,ng
(2)

∣∣∣ >√ng(2) · σ̂πg · q1−α
]

≤ P

[∣∣∣∣ψ̃gng
(2)

∣∣∣∣ >√ng(2) · σ̂πg · q1−α −
(
ng(2) − 1

)
·
∣∣∣F g,ng

(2)
−1
∣∣∣ , (

ng(2) − 1
)
·
∣∣∣F g,ng

(2)
−1
∣∣∣ ≤√ng(2) · σ̂πg · (q1−α − ϵ)

]
≤ P

[∣∣∣∣ψ̃gng
(2)

∣∣∣∣ >√ng(2) · σ̂πg · q1−α −
(
ng(2) − 1

)
·
∣∣∣F g,ng

(2)
−1
∣∣∣ ,(

ng(2) − 1
)
·
∣∣∣F g,ng

(2)
−1
∣∣∣ ≤√ng(2) − 1 · σ̂πg · (q1−α − ϵ)

]
≤ P

[∣∣∣∣ψ̃gng
(2)

∣∣∣∣ >√ng(2) · σ̂πg · q1−α −
√
ng(2) − 1 · σ̂πg · (q1−α − ϵ)

]
= P

[∣∣∣∣ψ̃gng
(2)

∣∣∣∣ > σ̂π
g · q1−α ·

(√
ng(2) −

√
ng(2) − 1

)
+ ϵ ·

√
ng(2) − 1 · σ̂πg

]

For ng(2) large enough, we have:

σ̂π
g · q1−α ·

(√
ng(2) −

√
ng(2) − 1

)
+ ϵ ·

√
ng(2) − 1 · σ̂πg ≈ ϵ ·

√
ng(2) − 1 · σπg −−−→

n→∞
∞

Hence we get:

P

[
Ŝ
(ng

(2)
−1)

g,(2) = 0, Ŝ
(ng

(2)
)

g,(2) = 1

]
≤ P

[∣∣∣∣ψ̃gng
(2)

∣∣∣∣ > σ̂π
g · q1−α ·

(√
ng(2) −

√
ng(2) − 1

)
+ ϵ ·

√
ng(2) − 1 · σ̂πg

]
−−−→
n→∞

0

Therefore, for n (and therefore ng(2)) large enough, Ŝ
(ng

(2)
)

g,(2) becomes independent of any single ob-

servations from sample I2, and consequently so does τ̂1. Therefore, under those standard asymp-

totics, τ̂1 and τ̂2 are asymptotically independent.

Proof. Proposition 2.

Lemma 4 states that as nT goes to infinity, there are only a certain set of values that Ŝ can take,

denoted Sstrong. When S takes its value in some subsets of Sstrong, the analysis of the asymptotic

distribution of τ̂(S) is rather straightforward. Indeed, as long as all groups with weak first-stages

are included in the selected sample, we are back to the case previously studied in proposition 1 as

we can recast the problem as one with two groups:
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1. One including all groups with a strong or a weak first-stage, plus groups with zero first

stages that are included in the selected sample defined by S. By construction, overall this

group has a strong first-stage.

2. One including all groups with zero first-stages that are not included in the selected sample

defined by S. By construction, overall this group has a zero first-stage.

Then we know by proposition 1 that the asymptotic distribution of τ̂(S) in such a setting will be

centered on the LATE. Formally, let us defined:

S0
strong ≡ {S ∈ Sstrong : ∀g ∈ GW , Sg = 1}

S1
strong ≡ {S ∈ Sstrong : ∃g ∈ GW , Sg = 0}

By proposition 1 and the argument above, we have:

∀S ∈ S0
strong,

√
nE · (τ̂(S)− LATE)

d−→ N (0, V S)

Now, we turn to the case where S belongs to the set S1
strong. This includes all cases in which some

of the groups with a weak share of compliers get excluded from the restricted sample. We can

always reframe such a situation by redefining two groups:

1. Group 1 including all selected groups as defined S. By construction, overall this group has

a strong first-stage.

2. Group 2 including all excluded groups. By construction, since (by definition of S1
strong) it

contains groups with weak first-stages, overall this group has a weak first-stage as well.

Recasting the problem in this way places it in the setting studied in lemma 8, which proves the

result.

Proof. Theorem 1.

Theorem 1.1 Lemma 8 and proposition 2 show that for all possible values of the selection vector

S in Sstrong — that is, all the values that the random vector Ŝ (determined in sample IT ) takes with
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non-zero probability asymptotically — the asymptotic bias of
√
nE (τ̂(S)− LATE) is of the form:

C ·
(
LATEGS

W − LATEGS

)

where C denotes a finite constant, LATEGS
W denotes the LATE among groups with a weak first-

stage that are selected according to S, and LATEGS denotes the LATE among groups with a strong

first-stage (always selected for S ∈ Sstrong). A sufficient condition for this asymptotic bias to be

negligible is assumption 4, that implies: LATEGS
W − LATEGS = o(1). Under this assumption, we

have:

∀S ∈ Sstrong, B(S) = 0

Hence the first result. Notice further that under assumption 4, groups g ∈ GWIV can be treated

essentially in the same way as groups g ∈ G0. Indeed, one can redefine the target estimand as

LATE + B(S) — which is first-order equivalent to LATE under assumption 4 — and the influ-

ence function of τ̂(S) has naturally the same form as the one studied in 1. Hence following the

reasoning of the proofs of proposition 1.1 and 1.2 — yet using appropriate central limit theorem

for triangular arrays (Lindeberg-Feller CLT) instead of the standard CLT — we get:

V τ̂(S) ≤ V TSLS

Theorem 1.2 The proof follows the exact same line of reasoning as in the proof of 1.3, yet making

use of assumption 4 and its implication in theorem 1.1 to get the result. Indeed, the proof relies

on the consistency of τ̂(S) for any S ∈ Sstrong, which (in the presence of groups with weak first-

stages) is guaranteed under assumption 4 as shown above in the proof of theorem 1.1.
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B PROOFS OF USEFUL LEMMAS

Proof. Lemma 2.

The random vector Ŝ stacks the tests statistics:

T gα,nT
= 1

{√
ngT · π̂

g

σ̂g
> q1−α

}

where ngT denotes the test sample size in group X = x. Notice that here we are assuming that the

sample sizes of the groups are not random, which is asymptotically equivalent to sampling with

a fixed fraction. We also denote by π̂g the estimator of πg, σ̂g the estimator of the variance of π̂g,

and q1−α
2

the 1− α
2 quantile of a N (0, 1).

The t-test being consistent against any alternative well separated from 0, we have:

∀g ∈ GS , lim
nT→∞

Pr[T gα,nT
= 1] = 1

since we have: ∀g ∈ GS , πg > 0.

As the level of the test is α, we also have:

∀g ∈ G0, lim
nT→∞

Pr[T gα,nT
= 1] = α

since we have: ∀g ∈ G0, π
g = 0.

Proof. Lemma 4.

The proof follows exactly the same steps as for lemma 2 for groups with 0 and strong first-

stages, yet using appropriate central limit theorem for triangular arrays (Lindeberg-Feller CLT)

instead of the standard CLT — as the presence of groups with weak first-stages requires that the

DGP changes with n. For groups with weak first-stages, we have that the first-stage parameter

takes the form πg = Hg
√
nT

— where Hg is what if often called the “location parameter”. Therefore,

we have:
√
nT · π̂

g

σ̂g
d−→ N (Hg, 1)

The quantiles of a |N (b, 1)| are increasing in b, and by assumption Hg > 0. Hence using the same
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definition of the test statistic as in the proof of lemma 2, we get:

∀g ∈ GW , lim
nT→∞

Pr[T gα,nT
= 1] > α

LEMMA 5 (Influence function of the ratio of two asymptotically linear estimators). Let Â and B̂ be

asymptotically linear estimators:

√
n(Â−A) =

1√
n

n∑
i=1

ai + oP (1)

and
√
n(B̂ −B) =

1√
n

n∑
i=1

bi + oP (1)

with E[ai] = E[bi] = 0. Then we have:

√
n

(
Â

B̂
− A

B

)
=

1√
n

n∑
i=1

ai − (A/B)bi
B

+ oP (1)

Proof. There is a general relationship which is easy to verify:

Â

B̂
− A

B
=

(
Â−A

B
− A

B

B̂ −B

B

)
·

(
1− B̂ −B

B̂

)

Plugging in the asymptotically linear formula into the first formula, we obtain:

√
n

(
Â

B̂
− A

B

)
=

( 1√
n

∑n
i=1 ai + oP (1)

B
− A

B

1√
n

∑n
i=1 bi + oP (1)

B

)
·

(
1− B̂ −B

B̂

)

=

(
1√
n

n∑
i=1

ai − (A/B)bi
B

+ oP (1)

)
·
(
1− oP (1)

OP (1)

)

=
1√
n

n∑
i=1

ai − (A/B)bi
B

+ oP (1)

where we went from the first to the second equality because (i) (B̂ − B) = oP (1) by the weak

LLN, since it is an empirical mean of terms bi with expectation 0, (ii) B̂ = Op(1) since it converges

in probability to B < ∞, and (iii) since OP (1)−1 = OP (1) and oP (1) · OP (1) = oP (1), we have:
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B̂−B
B̂

= oP (1).

LEMMA 6 (Influence function of the estimator of a CEF). The influence function of the estimator∑
i ZiYi∑
Zi

of the conditional expectation function E[Y |Z = 1] is given by: ψi =
Zi(Yi−E[Y |Z=1])

E[Z] .

Proof.

√
n

(∑
i ZiYi∑
Zi

− E[Y |Z = 1]

)
=

√
n

(∑
i Zi(Yi − E[Y |Z = 1])∑

Zi

)
=

√
n

(∑
i Zi(Yi − E[Y |Z = 1])

E[Z]

)
E[Z]∑
Zi

=
1√
n

(∑
i Zi(Yi − E[Y |Z = 1])

E[Z]

)
E[Z]∑

Zi

n

=
1√
n

(∑
i Zi(Yi − E[Y |Z = 1])

E[Z]

)
+

1√
n

(∑
i Zi(Yi − E[Y |Z = 1])

E[Z]

)
E[Z]−

∑
Zi

n∑
Zi

n

=
1√
n

∑
i Zi(Yi − E[Y |Z = 1])

E[Z]
+ oP (1)

or equivalently from lemma 5, which gives the same influence function when setting Â =
∑

i ZiYi,

A = E[ZY ] = E[Y |Z = 1]E[Z], ai = ZiYi − E[Y |Z = 1]E[Z], and B̂ =
∑

i Zi, B = E[Z],

bi = Zi − E[Z].

LEMMA 7 (Asymptotic distribution of 2SLS/Wald estimator).

√
n(τ̂Wald − LATE)

d→ N (0, V (ψτ̂Wald,i))

where V (ψτ̂Wald,i) equals:

V (ψτ̂Wald,i) =
1

p2C

(
1

p
V [ε|Z = 1] +

1

1− p
V [ε|Z = 0]

)

Proof. The Wald estimator is merely a ratio of difference of conditional expectation function (CEF)

estimators — and it estimates the LATE, which is a ratio of difference of CEFs. Therefore, we can
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see it as the combination of several asymptotically linear estimators:

Â =

(∑
i

Zi

)−1∑
i

ZiYi, A = E[Y |Z = 1]

B̂ =

(∑
i

(1− Zi)

)−1∑
i

(1− Zi)Yi, B = E[Y |Z = 0]

Ĉ =

(∑
i

Zi

)−1∑
i

ZiDi, C = E[D|Z = 1]

D̂ =

(∑
i

(1− Zi)

)−1∑
i

(1− Zi)Di, D = E[D|Z = 0]

⇒ LATE =
A−B

C −D

⇒ τ̂Wald =
Â− B̂

Ĉ − D̂

By lemma 6, the influence functions of Â, B̂, Ĉ and D̂ are given respectively by:

ai =
Zi(Yi − E[Y |Z = 1])

E[Z]

bi =
(1− Zi)(Yi − E[Y |Z = 0])

1− E[Z]

ci =
Zi(Di − E[D|Z = 1])

E[Z]

di =
(1− Zi)(Yi − E[D|Z = 0])

1− E[Z]

We then have:

√
n(τ̂Wald − LATE) =

1√
n

∑
i

ψτ̂Wald,i + oP (1)
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where (following lemma 5) ψτ̂Wald,i is given by:

ψτ̂Wald,i =
(ai − bi)− LATE · (ci − di)

C −D

=
1

π

(
Zi(Yi − E[Y |Z = 1])

E[Z]
− (1− Zi)(Yi − E[Y |Z = 0])

1− E[Z]

−LATE ·
(
Zi(Di − E[D|Z = 1])

E[Z]
− (1− Zi)(Di − E[D|Z = 0])

1− E[Z]

))
=

1

π

(
1

p
Zi · (εi − E(ε|Z = 1))− 1

1− p
(1− Zi) · (εi − E(ε|Z = 0))

)

where ε = Y −LATE ·D is the structural error term of the second stage, and π = E[D(1)−D(0)] is

the share of compliers. As expected from an influence function, one can check thatE[ψτ̂Wald,i] = 0.

It follows that asymptotically,

√
n(τ̂Wald − LATE)

d→ N (0, V (ψτ̂Wald,i))

where V (ψτ̂Wald,i) equals:

V (ψτ̂Wald,i) = E(ψ2
τ̂Wald,i)

= E(ψ2
τ̂Wald,i|Z = 1)p+ E(ψ2

τ̂Wald,i|Z = 0)(1− p)

=
1

π2

(
1

p
E[(ε− E[ε|Z = 1])2|Z = 1] +

1

1− p
E[(ε− E[ε|Z = 0])2|Z = 0]

)
=

1

π2

(
1

p
V [ε|Z = 1] +

1

1− p
V [ε|Z = 0]

)

LEMMA 8 (Bias of the test-and-select estimator in the 3-group case). Let’s consider a case with only

three groups: a group with a strong first-stage (π1 > 0), a group with a weak first-stage (π2 = H2/
√
n),

and a group with a zero first-stage (π3 = 0). Under assumption 3, and we have:

√
nE (τ̂(S)− LATE)

d−→ N (B(S), V S))

with B(S) = H2·Pr[G=2]
π ·

(
LATE1 − LATE2

)
if group 2 is not selected.

Proof. Let’s consider a case with only three groups: a group with a strong first-stage (π1 > 0), a
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group with a weak first-stage (π2 = H2/
√
n), and a group with a zero first-stage (π3 = 0).

Group 1 is always selected as asymptotically (as nT goes to infinity), the selection procedure selects

groups with a strong first-stage with probability 1.

Group 3 being selected or not does not affect the expectation of the limiting distribution of the

(
√
n−scaled) resulting estimator, as shown in the proof of proposition 1.1. Hence we can ignore

group 3 — or simply redefine group 1 or group 2 as including group 3 as well — without any

changes in the result, and simply consider the two following cases:

1. Group 1 is selected, group 2 is selected

2. Group 1 is selected, group 2 is not selected

In the first case, the resulting estimator is the standard Wald estimator44 computed on the whole

estimation sample... hence it is
√
n−consistent (no asymptotic bias).

In the second case, the resulting estimator corresponds to the Wald estimator computed on group

1. Hence it is a
√
n−consistent estimator for the LATE conditional on being in group 1, which we

define below:

LATE1 ≡ E[Y (1)− Y (0)|D(1) > D(0), G = 1]

In other words, denoting by τ̂(S2) the estimator in case 2, we have:

√
nE ·

(
τ̂(S2)− LATE1

) d−→ N (0, V S2
)

Now, since we are interested in the limiting distribution of
√
nE ·

(
τ̂(S2)− LATE

)
, what is left to

study is the behavior of:
√
nE ·

(
LATE1 − LATE

) ?−→ 0

At first, the quantities involved above might seem independent of nE . The dependence of

LATE on nE comes from the fact that the share of compliers in group 2 depends on nE , as we

have: π2 = H2/
√
nE .

44Whether or not group 3 (group with no first-stage at all) is included or not in the estimation will have an effect on
the variance of the resulting estimator, as argued in the first part of this paper (with standard asymptotics).
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We have:

LATEg = E[Y (1)− Y (0)|D(1) > D(0), G = g]

LATE = E[Y (1)− Y (0)|D(1) > D(0)]

= E[Y (1)− Y (0)|D(1) > D(0), G = 1] · Pr[G = 1|D(1) > D(0)]

+ E[Y (1)− Y (0)|D(1) > D(0), G = 2] · Pr[G = 2|D(1) > D(0)] (Law of iterated exp.)

= LATE1 · Pr[D(1) > D(0)|G = 1] · Pr[G = 1]

Pr[D(1) > D(0)]

+ LATE2 · Pr[D(1) > D(0)|G = 2] · Pr[G = 0]

Pr[D(1) > D(0)]
(Bayes’ rule)

= LATE1 · π
1 · Pr[G = 1]

π
+ LATE2 · π

2 · Pr[G = 2]

π

where the last line uses our standard notations:

πg ≡ E[D(1)−D(0)|G = g]

π ≡ E[D(1)−D(0)] = π1 · Pr[G = 1] + π2 · Pr[G = 2]

Hence we get:

√
nE ·

(
LATE1 − LATE

)
=

√
nE ·

(
LATE1 ·

(
1− π1 · Pr[G = 1]

π

)
− LATE2 · π

2 · Pr[G = 2]

π

)
=

√
nE · π

2 · Pr[G = 2]

π
·
(
LATE1 − LATE2

)
=
H2 · Pr[G = 2]

π
·
(
LATE1 − LATE2

)
Therefore, we have in this case:

√
nE ·

(
τ̂(S2)− LATE

)
=

√
nE ·

(
τ̂(S2)− LATE1

)
+
√
nE ·

(
LATE1 − LATE

)
=

√
nE ·

(
τ̂(S2)− LATE1

)
+B(S2)

d−→ N (B(S2), V S2
) (Slutsky’s lemma)

with B(S2) ≡ H2·Pr[G=2]
π ·

(
LATE1 − LATE2

)
.
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LEMMA 9 (Bias of Coussens and Spiess (2021) estimator). Under assumption 4, the estimator studied

in Coussens and Spiess (2021) has a first-order bias.

Proof. The proof follows the one of Proposition 6 in Coussens and Spiess (2021). The only differ-

ence resides in the fact that assumption 4 does not assume that all treatment effects are of order

1/
√
n, but simply that the treatment effect heterogeneity is. We will use Coussens and Spiess

(2021) notations.

Assumption 4, translated in their notations, can be written as: τ(X) = λ+ µ(X)√
n

.

Their proof goes as follows:

√
n (τ̂w − τ) =

√
n (τ̂w − τw) +

√
n (τw − τ)︸ ︷︷ ︸

=Bw

=
√
n (τ̂w − τw) +Bw

d−→ N (Bw, Vw)

where:

Bw =
Cov(µ(X), w(X) | D(1) > D(0))

E[w(X) | D(1) > D(0)]

The convergence of
√
n (τ̂w − τw) to a normal centered on 0 results from proposition 5 in Coussens

and Spiess (2021). τw is the estimand towards which their estimator τ̂w converges in the absence

of any restrictions on heterogeneity, and τ is the LATE parameter.

We simply need to study whether we still have:

√
n (τw − τ) = Bw

under the treatment effect modeling τ(X) = λ+ µ(X)√
n

.
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Indeed, we have:

√
n (τw − τ)

=
E[α(X)w(X)

√
nτ(X)]

E[α(X)w(X)]
− E[α(X)

√
nτ(X)]

E[α(X)]

=
E[α(X)w(X)µ(X)]E[α(X)]− E[α(X)µ(X)]E[α(X)w(X)]

E[α(X)]E[α(X)w(X)]

− E[α(X)w(X)
√
nµ]E[α(X)]− E[α(X)

√
nµ]E[α(X)w(X)]

E[α(X)]E[α(X)w(X)]

=

E[α(X)w(X)µ(X)]
E[α(X)] − E[α(X)µ(X)]

E[α(X)]
E[α(X)w(X)]

E[α(X)]

E[α(X)w(X)]
E[α(X)]

−
√
nµ

E[α(X)w(X)]E[α(X)]− E[α(X)]E[α(X)w(X)]

E[α(X)]E[α(X)w(X)]︸ ︷︷ ︸
=0

= Bw + 0

Hence the result of proposition 6 of Coussens and Spiess (2021) remains under our own assump-

tion 4 on treatment effect heterogeneity.

C ADDITIONAL SIMULATIONS

Illustrating the necessity of data-splitting

This DGP has been selected in order to illustrate the bias of a naïve selection rules that would

test first-stages, select groups accordingly, and estimate the LATE in the same sample without any

sample split. Indeed, this DGP does not feature any first-stage heterogeneity nor treatment effect

heterogeneity across groups — hence the potential bias of any selection procedure would be of a

different nature than the one studied in the simulations presented in section 5. Yet as discussed

in the end of section 2, pre-testing on the first-stage might generate bias in the estimator of the

first-stage coefficient (see lemma 1) and thus ultimately in the resulting LATE estimator.

The DGP parameters are the following:

DGP0 ≡
(
N = 1000, J ∈ {10, 20, 30, 50}, SAT = SNT =

0.75

2
, ρδε = 0.3, ση = 1, α = 0.0

)

We vary the number of groups as a way to exacerbate the pre-testing issue in simulations. We

report in Table 1 below the results of a Monte-Carlo simulation following DGP0 (with a number
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of groups J = 30) with 10,000 repetitions. In summary, this DGP generates a sample of size

N = 1000, divided randomly into 30 groups (i.e., roughly 33 observations per group). The share

of compliers in the sample (and thus in each randomly created group on average) is 25%. In such a

setting, we do not expect our procedure to yield any gains, as there are no sub-populations without

compliers. Yet selecting “naïvely” based on a t-test — without any sample split to alleviate the pre-

testing issues mentioned above — might introduce a bias in the estimation of the LATE, that could

invalidate the inference conducted based on such estimator. In order to answer this question,

Table 1 reports the bias and coverage rate of 95%-confidence intervals of three estimators of the

LATE over 10,000 Monte-Carlo repetitions. The first column reports the performance of the 2SLS

estimator, the second column the performance of our proposed methodology with sample splitting

and cross-fitting, and the third column a “naïve” version of our methodology that would test,

select and estimate the LATE in the same sample without any sample split. The results show that

the naïve version of the Test-and-Select estimator exhibits a clear bias (-0.221), which is ultimately

detrimental to the coverage of its associated 95%−confidence interval that fail to cover at their

nominal rate (0.861). Our proposed methodology that associates the Test-and-Select procedure

with sample splitting and (2-folds) cross-fitting yields a much less biased estimator (0.097), and

valid coverage (0.976). The remaining bias despite the use of data splitting and cross-fitting could

be explained by the finite sample bias of 2SLS estimator.45

Table 7: Pre-test bias, and the use of cross-fitting

2SLS Test-and-Select (with 2-fold-CF) Test-and-select (without CF)

Bias 0.003 0.097 -0.221

Coverage 0.953 0.976 0.861

Notes: This table presents the results of a simulation using the DGP0 described in section 5, with
a number of groups of 30 — i.e., around 33 observations per group. In rows, we report the bias
(with respect to the LATE parameter) and the coverage rate of 95%-confidence intervals. The
first column reports the performance of the 2SLS estimator, the second column the performance
of our proposed methodology with sample splitting and cross-fitting, and the third column a
“naïve” version of our methodology that would test, select and estimate the LATE in the same
sample without any sample split.

Figure 3 reports the bias of the three estimators presented in Table 1 for a varying number of
45Indeed, ultimately our Test-and-Select procedure with cross-fitting estimates the LATE by 2SLS on a smaller sample

than the standard 2SLS estimator presented in the first column of Table 1. Therefore, its larger bias (0.097 vs. 0.003)
could be explained by the finite sample bias of the 2SLS estimator, that vanishes as the sample size used for estimation
grows.
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Figure 3: Bias from lack of data-splitting as function of the number of groups

Notes: This figure shows the results of a 10,000 repetitions of a Monte-Carlo simulation of DGP0, described
in the text. Three different estimators are considered: the standard 2SLS estimator in red, our proposed
Test-and-Select estimator with cross-fitting using 2 folds in blue, and a version of our Test-and-Select
without data-splitting nor cross-fitting in green.

groups. As can be seen in this graph, the bias generated by pre-testing and estimating in the same

sample is larger when the number of observations per group is lower (larger number of groups).

Yet our sample-splitting strategy corrects this bias equally well no matter the number of groups

considered.
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