
Optimal Delegation in a Multidimensional World

Andreas Kleiner∗

Preliminary Draft
September 26, 2022

We study a model of delegation in which a principal takes a multidimensional action
and an agent has private information about a multidimensional state of the world. The
principal can design any direct mechanism, including stochastic ones. We provide necessary
and sufficient conditions for an arbitrary mechanism to maximize the principal’s expected
payoff. We also discuss simple conditions which ensure that some convex delegation set is
optimal. A key step of our analysis shows that a mechanism is incentive compatible if and
only if its induced indirect utility is convex and lies below the agent’s first-best payoff.

∗Department of Economics, Arizona State University. Email: andreas.kleiner@asu.edu. I thank Navin
Kartik, Alejandro Manelli, and Kun Zhang for useful comments and discussions.

mailto:andreas.kleiner@asu.edu


1. Introduction

In many economic and political environments, a principal faces a better-informed but biased
agent. The principal can choose a permissible set of actions and ‘delegate’ the decision to
the agent: a firm appoints a manager to select investment levels in different projects; US
Congress delegates power to federal agencies; a legislative forms a committee to draft bills;
a regulator lets a monopolist choose prices. The principal may yield some discretion to
the agent to utilize his informational advantage but may impose restrictions on the agent’s
actions to counter his bias. Following Holmström (1977), an extensive literature models such
delegation problems by assuming that both the action and the state of the world lie in a
one-dimensional space. A main result of this literature characterizes when it is optimal for
the principal to constrain the agent’s choice to lie in an interval, and this conclusion has
been used to explain why managers face spending caps, regulators impose price ceilings, and
trade agreements specify maximum tariff levels.

The assumption that the action and state space are one-dimensional is made for tractabil-
ity. In many applications, the underlying states and actions are more complex and more
realistically modeled as multidimensional: managers invest in several projects, Congress del-
egates many decisions to the EPA, and committees draft multiple bills. What mechanisms
are optimal in such multidimensional settings? How robust are conclusions obtained for one-
dimensional models? And can we still expect that relatively simple mechanisms are often
optimal?

To study these questions, we consider a principal that takes a multidimensional action
and faces an agent with private information about a multidimensional state of the world
(the agent’s type). Payoffs depend on the action and the state of the world, and transfers
are infeasible. The principal can design arbitrary mechanisms, including stochastic ones, to
maximize her expected payoff. Our main result characterizes, for an arbitrary mechanism,
when this mechanism is optimal. Often, it is optimal to delegate the decision to the agent but
to constrain the agent by requiring that her action lies in some set. For convex delegation sets,
we provide a simple characterization, which is a direct analog of conditions characterizing
when interval delegation is optimal in one-dimensional models. Even for one-dimensional
models, this approach provides new insights: our main result characterizes for arbitrary
mechanisms—not just interval delegation sets—when this mechanism is optimal. And as
corollaries, we obtain novel conditions under which some interval delegation set will be
optimal.
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A key step to deriving our results lies in obtaining a simple characterization of the set
of feasible mechanisms. Given a mechanism, the corresponding indirect utility assigns to
any type the payoff this type would get by choosing his report optimally. This payoff must
be less than the first-best payoff, i.e., the payoff this type would get if he could choose the
action without any restrictions. Moreover, our assumption that the agent’s utility is an affine
function of the state implies that the indirect utility must be a convex function because it
is the maximum of a family of affine functions. Lemma 1 shows that any function satisfying
these two properties is the indirect utility of an incentive-compatible mechanism.

This characterization is easy to use and already helpful for one-dimensional delegation
models. Our formulation differs from the previous literature, which often considered only
deterministic mechanisms. Since the convex combination of two incentive-compatible deter-
ministic mechanisms is not necessarily incentive compatible, the set of deterministic mecha-
nisms is not even convex.1 Moreover, a common approach is to first treat the model as one
with transfers and then impose that these transfers are zero (or negative). Compared to this
approach, formulating the problem via indirect utilities is more direct and provides valuable
geometric insights into which mechanisms can be optimal. For the multidimensional prob-
lem, the approach via indirect utilities provides additional benefits because it circumvents
intricate characterizations of incentive compatibility (see Rochet, 1987).

To find the optimal mechanism, we formulate the principal’s problem in terms of indirect
utilities. In this formulation, the problem becomes a linear program, and we use linear pro-
gramming duality to derive necessary and sufficient conditions for a given mechanism to be
optimal. Typically, optimal mechanisms pool certain types, and our main result shows that a
mechanism is optimal if conditional on any pooling region, a stochastic dominance condition
(using the convex order) is satisfied. Intuitively, this condition requires that, restricted to the
pooling region (where the indirect utility function is affine), any convex indirect utility yields
a lower payoff. If the pooling regions are at most one-dimensional, the stochastic dominance
condition has a simple formulation in terms of majorization. Using this observation, we pro-
vide necessary and sufficient conditions for a convex delegation set with a smooth boundary
to be optimal. These conditions are easy to check and are straightforward extensions of
conditions that ensure the optimality of interval delegation sets in one-dimensional models

1 Some earlier papers also consider stochastic mechanisms (or allow for money burning/restricted transfer)
and obtain a convex set of mechanisms; see, for example, Amador and Bagwell (2013), Kovác and Mylovanov
(2009), Ambrus and Egorov (2017), Amador and Bagwell (2020), Kartik, Kleiner, and Van Weelden (2021),
and Kleiner, Moldovanu, and Strack (2021).
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(see Amador and Bagwell, 2013).

Related Literature The literature on delegation has focused mainly on problems in which
the principal delegates a single one-dimensional decision and therefore assumed that both the
action and state spaces are one-dimensional; see, for example, Holmström (1977), Holmström
(1984), Melumad and Shibano (1991), Alonso and Matouschek (2008), Amador and Bagwell
(2013), and Kolotilin and Zapechelnyuk (2019).

A few delegation papers do consider richer action and/or type spaces. Armstrong (1995)
considers an agent with two-dimensional private information and discusses several appli-
cations. Since the principal’s action is assumed to be one-dimensional (and only interval
delegation sets are considered), there is only limited scope to screen two-dimensional types
in his analysis. Koessler and Martimort (2012) characterize the optimal mechanism in a set-
ting where two decisions depend on a single-dimensional underlying state. Galperti (2019)
considers multidimensional information and actions but restricts the principal’s choice to a
particular class of “budgeting mechanisms”. The closest paper to ours is Frankel (2016),
which studies the delegation of several independent decisions, which yield multidimensional
action and state spaces. For quadratic preferences with a constant bias, he shows that if the
states are independently and identically distributed according to normal distributions then
it is optimal to delegate a ‘half space’. Without the normality assumption, he shows that
the principal’s payoff from such a mechanism converges to the first-best as the number of
independent decision problems grows. Frankel (2014) also considers multidimensional del-
egation problems and characterizes the max-min optimal mechanism, which maximizes the
principal’s payoff against the worst-case preference type of the agent.

The elicitation of information about multiple independent decisions from a biased agent
has been studied in general mechanism design (e.g., Jackson and Sonnenschein, 2007) and
cheap talk environments (Chakraborty and Harbaugh, 2007; Lipnowski and Ravid, 2020).
Jackson and Sonnenschein (2007) show that by linking independent decisions, the principal’s
payoff converges to the first-best as the number of decisions grows. Our results can be used
to show how the principal should optimally link decisions, which can be important if there
is a limited number of decisions.

On a methodological level, our work is related to the literature on multidimensional
mechanism design, and in particular on multiproduct monopolists (see, e.g., Rochet, 1987;
Manelli and Vincent, 2006; Manelli and Vincent, 2007; Daskalakis, Deckelbaum, and Tzamos,
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2017; Haghpanah and Hartline, 2021).

2. Model

A principal chooses an action a ∈ Rn. An agent is privately informed about the state of
the world s ∈ S, where S ⊆ Rn is compact and convex. The agent’s and principal’s payoffs
depend on both the action and the state of the world, and are given by

uA(a, s) := a · s + b(a)

uP (a, s) := a · g(s) + κb(a),

respectively, where b : Rn → R is strictly concave, differentiable with a Lipschitz-continuous
gradient mapping, and satisfies lim∥a∥→∞

b(a)
∥a∥ = −∞,2 g : S → Rn is Lipschitz-continuous,

and κ > 0.

We assume that the state s is distributed according to a probability distribution F with
differentiable density f and support S. The principal aims to maximize her expected payoff
and can design arbitrary mechanisms.

The revelation principle applies and we define a mechanism to be a function m : S →
∆(Rn) such that all expected payoffs are finite and integrable.3 To simplify notation, we
extend the domain of b(·) and ui(·, s) linearly to include probability distributions over Rn, so
that b(m(s)) = Em(s)[b(a)] and analogously for ui(·, s). A mechanism is incentive compatible
if for all s and s′ in S,

uA(m(s), s) ≥ uA(m(s′), s).

3. Characterizing incentive-compatible mechanisms

We characterize the set of incentive-compatible mechanisms in terms of their indirect utilities.
To any incentive-compatible mechanism m corresponds an indirect utility U : Rn → R defined

2 Since the set of actions is unbounded, some assumptions are needed to ensure that for every type s ∈ S
there is an optimal action. This is ensured by the assumptions on b; weaker conditions could be used but
would complicate some arguments.

3 We denote by ∆(Rn) the Borel σ-algebra on Rn.
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Figure 1: The function U satisfies U(s) ≤ h(s) for all s ∈ S but does not correspond to a feasible
mechanism. To see this, note that there is no convex extension of U to R such that the extension
lies below h. Lemma 1 then implies that U is not the indirect utility of any feasible mechanism.

by
U(s) := sup

s′∈S
E[m(s′)] · s + b(m(s′)).

Which indirect utilities correspond to some incentive-compatible mechanism? First, any
indirect utility is convex as the supremum of a family of functions that are affine in the state
s. Second, in the absence of transfers the agent’s utility cannot be higher than if he was free
to choose his action. Defining the first-best payoff h : Rn → R by

h(s) := sup
a∈Rn

a · s + b(a),

U ≤ h is clearly necessary.4 The following result shows that these two conditions characterize
the set of feasible indirect utilities.

Lemma 1. An indirect utility U corresponds to an incentive-compatible mechanism if and
only if U is convex and lies below the first-best payoff: U ≤ h.

Intuitively, if U is convex then it would correspond to an incentive-compatible mechanism
if transfers were available and the agent had quasi-linear preferences. If the required transfers
are all negative then we can use the agent’s risk aversion (coming from the strict concavity
of b) to simulate these transfers via stochastic actions. One can show that U ≤ h implies
that the required transfers are negative. This last step relies on the domain of U and h

4 We denote the pointwise order by ≤, so U ≤ h means U(s) ≤ h(s) for all s in the common domain of U
and h.

5



being large enough and it would not suffice to require only that U(s) ≤ h(s) for all s ∈ S.
Figure 1 illustrates a convex function U which lies below h on all of S, but which does not
correspond to a mechanism because the lotteries assigned to low types would yield a strictly
higher payoff than the first-best payoffs for some hypothetical types, an impossibility.

Proof. Let us first recall basic observations from convex analysis. The convex conjugate of
a function U is denoted by U∗ and defined by U∗(a) := sups∈Rn a · s − U(s). We will use
the following facts, which follow immediately from this definition: (i) h = (−b)∗, (ii) U ≤ h

implies h∗ ≤ U∗, and (iii) a ∈ ∂U(s) implies U∗(a) = a · s − U(s).5

Suppose U is convex and satisfies U ≤ h. Let the mechanism m assign to any type s ∈ S

a lottery with expected value a ∈ ∂U(s) that yields the payoff a · s + b(a) − U∗(a) + h∗(a).
Such a lottery exists because a · s + b(a) would be the payoff for type s from always getting
action a, because fact (ii) implies that the agents payoff is lower, and because b is strictly
concave.6 Then facts (i) and (iii) imply that the payoff of a truthful type s is U(s):

uA(m(s), s) = s · a + b(a) − U∗(a) + h∗(a) = U(s).

It remains to show that m is incentive compatible. For all s and s′,

uA(m(s), s) = U(s) ≥ U(s′) + E[m(s′)] · (s − s′)

=E[m(s′)] · s′ + b(m(s′)) + E[m(s′)] · (s − s′) = uA(m(s′), s),

where the first inequality follows since E[m(s)] ∈ ∂U(s′). Q.E.D.

Figure 2 illustrates the result for one-dimensional types and quadratic payoffs. It shows
four indirect utilities that, according to Lemma 1, correspond to incentive-compatible mech-
anisms. In Figure 2a, all types between s1 and s2 obtain their first-best utility and U is affine
below s1 and above s2. This indirect utility can be obtained by letting types choose their
preferred action from the interval of deterministic actions [s1, s2]. In Figure 2b, the menu of

5 Here, ∂U(s) denotes the subdifferential of U at s. To see (iii), note that the definition of U∗ implies
U∗(a) ≥ a·s−U(s). Conversely, convexity of U and a ∈ ∂U(s) imply that for all s′, a·s−U(s) ≥ a·s′ −U(s′).
Taking the supremum of the right-hand side with respect to s′ yields a · s − U(s) ≥ U∗(a).

6 More formally, strict concavity of b implies that for any a ∈ Rn and nonzero d ∈ Rn there is ε > 0 such
that 1/2[b(a + d) + b(a − d)] < b(a) − ε. It follows that for any α > 1, 1/2[b(a + αd) + b(a − αd)] ≤ b(a) − αε.
Therefore, by choosing α arbitrarily large, one can design lotteries with expected value a that yield arbitrarily
low payoff to the agent.
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(a) Interval delegation (b) A deterministic mechanism

(c) A stochastic mechanism
(d) A stochastic mechanism with two adjacent
stochastic actions

Figure 2: Examples of indirect utilities. The blue curves show the function h for one-dimensional
types and quadratic payoffs (i.e., assuming b(a) = −a2

2 ). The green curves show indirect utilities
corresponding to incentive-compatible mechanisms.

actions from which the agent can choose contains an additional deterministic action above
s2. The indirect utility in Figure 2c contains an affine piece that lies strictly below the graph
of h. This part of the indirect utility corresponds to types that obtain a (nondegenerate)
stochastic action, which yields no type its first-best payoff. Finally, Figure 2d illustrates an
indirect utility corresponding to a mechanism in which types in two adjacent regions obtain
a stochastic action.

4. Characterizing optimal mechanisms

We characterize the optimal mechanisms in this section. To do so, we first formulate the
principal’s problem in terms of indirect utilities (Section 4.1). We then state the main
characterization of optimal mechanisms in Section 4.2 and illustrate the result for particular
mechanisms. Finally, we outline the proof of the main result in Section 4.3.
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4.1. Formulating the principal’s problem

Consider an indirect utility U that corresponds to some incentive-compatible mechanism.
In general, there are many incentive-compatible mechanisms that induce the same indirect
utility; however, all such mechanism induce the same payoff for the principal. To see this,
let m be an incentive-compatible mechanism with corresponding indirect utility U . Using
∇U(s) = E[m(s)] (by an Envelope theorem) and U(s) = ∇U(s) · s + b(m(s)), the principal’s
payoff from mechanism m in state s is completely determined by U :

E[m(s)] · g(s) + κb(m(s)) = ∇U(s) · [g(s) − κs] + κU(s).

This observation implies that the principal’s payoff is a linear function of U . Therefore,
a solution to the principal’s problem can be found at an extreme point of the feasible set.
Returning to Figure 2, it is easy to see that the indirect utilities in Figures 2a–2c are extremal
in that they cannot be written as a nontrivial convex combination of two feasible indirect
utilities. In contrast, the indirect utility in Figure 2d can be written as such a convex
combination. This implies that whenever this mechanism is optimal, there is another (and
simpler) mechanism which is also optimal. Intuively, one can write this indirect utility
as a convex combination because two adjacent regions obtain distinct stochastic actions.
This insight shows how, without loss of optimality, one can restrict attention to a smaller
class of mechanism.7 For multidimensional settings, analogous arguments show that many
complicated mechanisms are not extremal and therefore the principal need not consider these
mechanisms.

As is standard in multidimensional mechanism design (see, for example, Rochet and
Choné, 1998), we can use the divergence theorem to reformulate the objective function as
follows:

∫ [
κU(s) + ∇U(s) · [g(s) − κs]

]
dF (s)

=
∫

U(s)
[
κf(s) − div[(g(s) − κs)f(s)]

]
ds +

∫
bd S

U(s)[g(s) − κs]f(s) · n̂S(s) dH(s),

where div denotes the divergence of a function, for any set A its boundary is denoted by

7 Kleiner, Moldovanu, and Strack, 2021 develop this point more formally in the context of one-dimensional
types/actions and quadratic utilities and characterize the set of extremal mechanisms. Formulating the prob-
lem in terms of indirect utilities and using our Lemma 1, one can obtain this characterization more directly. It
would be interesting to extend the characterization of extremal mechanisms to the multidimensional setting.
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bd A, H denotes the n − 1-dimensional Hausdorff measure on the boundary of S, and n̂S(s)
denotes the outward normal vector to the convex set S at s ∈ bd S.8

This allows us to write the principal’s problem as9

max
U convex

∫
U(s) dµ(s)

s. t. U ≤ h,

where the measure µ is defined by

µ(E) =
∫

E
ν(s) dλ(s),

λ is the Lebesgue measure on S plus the Hausdorff measure on the boundary of S,10 and

ν(s) :=

κf(s) − div[(g(s) − κs)f(s)] if s ∈ int S

[g(s) − κs]f(s) · n̂S(s) if s ∈ bd S.

Cearly, ν plays an important role in determining which mechanisms are optimal. Heuris-
tically, ν(s) measures how much the prinicipal’s payoff increases if the indirect utility of type
s is increased, but where types on the boundary get extra weight.

To illustrate ν and for later use, let use compute ν for a one-dimensional type space
S = [s, s]:

ν(s) :=


κf(s) − [g′(s) − κ]f(s) − [g(s) − κs]f ′(s) if s ∈ (s, s)

[g(s) − κs]f(s) if s = s

[κs − g(s)]f(s) if s = s.

(1)

Example 1. Suppose S = [−1
2 , 1

2 ]n and F is the uniform distribution on S. Let us assume
payoffs are quadratic and that g(s) = αs for some α ∈ (0, κ]; this implies that the principal

8 Since U , g, and f are bounded and Lipschitz continuous functions on the compact and convex set S, all
requirements of the divergence theorem in Pfeffer (1991, Theorem 5.19) are satisfied and his result implies∫

bd S
f(s)U(s)[g(s)−s] · n̂S(s) dH(s) =

∫
S

div
[
f(s)U(s)[g(s)−κs]

]
ds. Using the definition of the divergence

and rearranging terms yields our expression.
9 The existence of a maximizer follows from standard arguments.

10 That is, λ(E) = µ(E) + H(E ∩ bd S) for any measurable set E.
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is biased towards the ex-ante optimal action 0. In that case, ν simplifies to

ν(s) :=

κ + (κ − α)n if s ∈ int S

(α − κ)s · n̂S(s) if s ∈ bd S.
(2)

4.2. Optimal mechanisms

Given an indirect utility U , we let Q denote a coarsest partition of Rn such that U is affine
on each partition element. We denote by {µ|Q}Q∈Q a conditional measure of µ given Q.

Theorem 1. Let U be a feasible indirect utility. Then U is optimal if for a.e. Q ∈ Q,
µ|Q(Q) ≥ 0 and µ|Q ≤cx δQ, where δQ is a point mass of mass µ|Q(Q) at s if there is s ∈ Q

satisfying U(s) = h(s) and δQ is the zero-measure otherwise.

Moreover, this condition is necessary for U to be optimal if U is differentiable |µ|-almost
everywhere.

Two comments on the conditions in Theorem 1 are in order. First, if there is s ∈ Q such
that U(s) = h(s) then it is unique because U is affine on Q and h is strictly convex. Second,
for the necessity result, observe that U is differentiable Lebesgue-almost everywhere since it
is a convex function. Since |µ| is absolutely continuous with respect to the Lebesgue measure
on the interior of S, U is differentiable |µ|-almost everywhere if, for example, the density f

is zero on the boundary of S or if U is differentiable H-almost everywhere on the boundary
of S. In the one-dimensional case, this last condition can always be satisfied.

Why are the conditions in Theorem 1 sufficient for U to be optimal? Consider a partition
element Q ∈ Q and suppose δQ is a point mass at s∗. Then any feasible indirect utility V will
be convex and lie below U at s∗. Also, µ|Q ≤cx δQ implies

∫
V (s) dµ|Q(s) ≤

∫
V (s) dδQ(s).

Moreover, if a is an affine function that coincides with V at the barycenter of µ|Q then we
get

∫
V (s) dµ|Q(s) ≤

∫
a(s) dµ|Q(s). Since U restricted to Q is affine, lies above V at s∗,

and µ|Q(Q) ≥ 0, this implies that conditional on the type belonging to Q, the principal’s
expected payoff under U is higher than under V . And if δQ is the zero measure then V might
lie above U but the same conclusion follows since µ|Q(Q) = 0 and conditional on Q, adding
a constant to the indirect utility does not change the principal’s payoff. The conclusion that
these conditions are also essentially necessary shows that the problem can in some sense be
decomposed: whenever the principal can improve U conditional on Q, she can extend this
improved version to a feasible indirect utility that yields unconditionally a higher payoff.
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A particularly simple mechanism is if the principal delegates the decision to the agent,
potentially restricting the agents action to belong to some set A. Note that any deterministic
mechanism can be implemented as an indirect mechanism in this way. For a closed set A ⊆ S,
we say that delegating to A is optimal if an optimal mechanism takes the form that any type
in A gets her first-best action, and any other type gets her most preferred action among the
first-best actions of types in A. For example, if n = 1 and A = [s1, s2] then delegating to A

is optimal if there is an optimal mechanism in which any type below s1 gets the first-best
action of type s1, any type in [s1, s2] gets her first best action, and any type above s2 gets
the first-best action of type s2. In the following we will specialize Theorem 1 and discuss
under what conditions such a mechanism is optimal.

We can simplify the conditions in Theorem 1 by recalling that the convex order has a
simple structure for one-dimensional spaces. A cdf H1 on a one-dimensional interval [x, y]
dominates a cdf H2 in the convex order if and only if H2 majorizes H1:∫ y

s
H1(z) dz ≤

∫ y

s
H2(z) dz

for all s ∈ [x, y] with equality for s = x (Shaked and Shanthikumar, 2007, Theorem 3.A.1).
This observation simplifies the characterization in Theorem 1 whenever U is affine on at most
one-dimensional sets. As we will see, this is useful even if the type space is multidimensional.
To illustrate the simpler conditions, we first consider when interval delegation is optimal
with one-dimensional types (for earlier characterizations, see Alonso and Matouschek, 2008;
Amador and Bagwell, 2013).

Corollary 1. Suppose n = 1 and s1, s2 ∈ S with s1 < s2. Delegating to the interval [s1, s2]
is optimal if and only if

(i) ν(s) ≥ 0 for all s ∈ [s1, s2],

(ii)
∫ s

s (x − s)ν(x) dλ(x|x ≥ s2) ≤ 0 for all s ≥ s2 with equality for s = s2, and

(iii)
∫ s

s (s − x)ν(x) dλ(x|x ≤ s1) ≤ 0 for all s ≤ s1 with equality for s = s1.

The corollary follows from Theorem 1 by rewriting the convex order constraint using ma-
jorization (for the following heuristic discussion, we drop any ‘almost everywhere’-qualifiers).
The partition Q that is induced by delegating to the interval [s1, s2] contains the singletons
{s} for all s ∈ (s1, s2) and the additional partition elements (−∞, s1] and [s2, ∞). For any
Q = {s} with s ∈ (s1, s2), Condition (i) is equivalent to µ|Q(Q) ≥ 0. And since µ|Q is a
point mass, µ|Q ≤cx δQ is trivially satisfied.
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Figure 3: Optimality of interval delegation

For Q = [s2, ∞), µ|Q ≤cx δQ can be rewritten as Condition (ii) using the above-mentioned
formulation of the convex order in terms of majorization. Moreover, µ|Q(Q) ≥ 0 follows from
Condition (ii) after observing that the derivative of the left-hand side with respect to s and
evaluated at s2 is negative (since the left-hand side equals zero for s = s2 and is negative
for s ≥ s2) and equals

∫ s
s2

−ν(x) dλ(x|x ≥ s2) = −µQ(Q). An analogous argument for
Q = (−∞, s1] establishes the result.

Figure 3 illustrates Condition (ii) of Corollary 1. Suppose that starting with interval
delegation (represented by the solid indirect utility), the principal changes the mechanism
and assigns a lottery with expected value strictly above ∇U(s2) to all types above s. This
tilts the indirect utility starting at s upwards (see the dashed indirect utility) and therefore
increases the indirect utility for every type x ≥ s in proportion to x − s. The change
in the principal’s expected payoff is therefore proportional to

∫ s
s (x − s)ν(x) dλ(x|x ≥ s2).

Consequently, condition (ii) ensures that such changes are not profitable. Equality for s = s2

implies, in addition, that it would not be profitable to marginally reduce the action for all
types above s2 either.

Interestingly, the conditions identified in Corollary 1 are in our setting equivalent to
the ones obtained in Amador and Bagwell (2013, Proposition 2a). This might initially be
surprising since we characterize optimality of interval delegation in the class of stochastic
mechanisms and Amador and Bagwell characterize optimality in the class of determinis-
tic mechanisms (and stochastic mechanisms can do strictly better in general). Figure 3
illustrates why the conditions are the same: Suppose the principal strictly benefits from
deviating to the dashed indirect utility, which represents a stochastic mechanism. Since her
payoff is linear in U , the arguments in the previous paragraph imply that she also benefits
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from deviating to the dotted indirect utility. Since the dotted linear utility corresponds to a
deterministic mechanism, we conclude that conditions (ii) in (iii) in Corollary 1 are necessary
for interval delegation to be optimal in the class of deterministic mechanisms (and necessity
of condition (i) can be shown easily). Later, it will become clear that this equivalence is
specific to the one-dimensional setting.

Corollary 2. If n = 1 and {s ∈ S : ν(s) ≥ 0} is an interval, then delegating to an interval
is optimal.

The key insight for this result is that any pooling region (i.e., any Q such that Q ∩ S is
not a singleton) must contain types s with ν(s) ≥ 0 (since µ|Q(Q) ≥ 0) and types s with
ν(s) ≤ 0 (since no point measure δQ can dominate a distinct positive measure in the convex
order). If ν is positive on an interval, it follows that there can be at most two pooling regions.
A simple argument then shows that delegating to an interval is an optimal mechanism.

Corollary 2 extends Proposition 2(a) in Amador, Bagwell, and Frankel (2018), which in
our notation requires ν to be positive on (s, s). An simple implication of our result is the
following, which can be useful for applications.

Corollary 3. Suppose the type space is one-dimensional (i.e., n = 1), κ = 1, and the agent
has a constant bias (i.e., g(s) = s + β for some β ∈ R). If f is logconcave then delegating
to an interval is optimal.

As another illustration, let us return to Example 1 specializing to a one-dimensional type
space.

Example 1 (continued). For n = 1 and κ = 1, the objective function simplifies to ν(s) =
2κ−α for s ∈ (s, s), ν(s) = (κ−α)s, and ν(s) = (α−κ)s. Since ν is positive on an interval,
Corollary 2 implies that delegating to an interval is optimal, and it only remains to find the
best interval.

The optimal interval must satisfy Condition (ii) as an equality for s = s2, which requires

(2 − α)
[1
8 − 1

2s2
2 − s2

(1
2 − s2

)]
= 0,

and simple algebra yields s2 = α
2−α

. Using symmetry, it follows that it is optimal to delegate
to the interval

[
− α

2−α
, α

2−α

]
.
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Figure 4: Indirect utility for delegation to a convex set.

For a one-dimensional type space, the approach used in Corollary 1 can be used to
simplify the conditions in Theorem 1 for any mechanism, not just interval delegation. More
generally, this approach is useful even with multidimensional types. To see this, let A be
a closed and convex set and, for s ∈ bd A, let NA(s) denote the normal cone to A at
s. With quadratic payoffs, if the principal delegates A and s ∈ bd A, then all types in
s+NA(s) will choose action s. Moreover, if the boundary of A is differentiable then NA(s) is
a (one-dimensional) ray and we can again use majorization to simplify the convex dominance
conditions in Theorem 1.

Corollary 4. Suppose payoffs are quadratic and A ⊆ S is closed, convex, has nonempty
interior and a differentiable boundary. Delegating to A is optimal if and only if

(i) ν(s) ≥ 0 for all s ∈ A and

(ii) for all s ∈ bd A and z > 0,
∫ ∞

z
(x − z)ν(s + xn̂A(s)) dλ(s + xn̂A(s)|s + NA(s)) ≤ 0

with equality for z = 0.

The conditions in Corollary 4 closely resemble those in Corollary 1. Indeed, Condition
(i) in either case requires that ν is positive on the set of types that obtain their first-best
payoffs, and Condition (ii) (and Conditions (ii) and (iii), respectively) impose that for each
point on the boundary the analogous stochastic dominance condition holds.
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The economic interpretation of Condition (ii) is analogous to how we interpreted Con-
dition (ii) in Corollary 1. This condition ensures that the principal does not benefit from
marginally tilting the indirect utility along line segments that are orthogonal to the boundary
of A, e.g., the solid line segment in Figure 4. Observe that there is a stochastic mechanism
in which the indirect utility is increased only in a small neighborhood of the solid line seg-
ment (by Lemma 1). On the other hand, there is no deterministic mechanism achieving this
because for any deterministic action the indirect utility would have to increase significantly
along the solid line segment (in order to reach the first-best payoff for some type) and convex-
ity then requires that all types in a neighborhood of the line segment obtain higher indirect
utilities. This indicates that our characterization relies in the multidimensional setting on
stochastic mechanisms being feasible.

Example 1 (continued). Consider a two-dimensional example and recall that F is the uni-
form distribution and g(s) = αs for some α ∈ [0, κ). We assume quadratic payoffs; in that
case, the problem is separable across dimensions: the principal’s optimal action in dimen-
sion 1 depends only on the first component of the state and is independent of the action in
dimension 2.

Suppose first that there are two agents: For i = 1, 2, agent i has private information
about si (but not sj for j ̸= i) and cares only about the action and state in dimension i. It
follows that the principal faces two independent delegation problems, and our earlier analysis
implies that it is optimal to let each agent choose any action in

[
− α

2−α
, α

2−α

]
. In effect, the

agents’ choice will be the action in the red square in Figure 5 that is closed to the realized
state.

Now compare this to the situation where there is only one agent. This agent has pri-
vate information about both dimensions of the state and cares about both dimensions of the
action. How can the principal improve her expected payoff? Intuitively, she could offer the
agent to take more extreme actions in one dimension if he moderates his action in the other
dimension. How can the principal optimally bundle the two decision problems?

Corollary 4 provides insights into how to solve the problem: if one can find an A satisfying
the conditions stated there, delegating to this set will be an optimal mechanism. Since ν is
positive on the interior of S and strictly negative on the boundary of S, Condition (i) will be
satisfied if A ⊆ int S and Condition (ii) will be satisfied if, for every s ∈ bd A, equality holds
in Condition (ii) for z = 0. This yields a second-order differential equation, whose solution
describes the boundary of the optimal delegation set, see the blue curve in Figure 5 for an
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Figure 5: Optimal bundling

illustration.

4.3. Proof Sketch

To proof Theorem 1, we use duality in linear programming. To formulate the dual program,
it is more convenient to work with indirect utilities that are defined on a compact domain.
But recall that it is not enough in Lemma 1 to only require that U(s) ≤ h(s) for all s ∈ S.
The following technical result ensures that we can restrict the indirect utilities to have a
compact domain as long as this domain is chosen large enough.

Lemma 2. There is a compact X ⊆ Rn such that the principal’s problem can be written as
max{

∫
U dµ|U : X → R, U convex, U ≤ h}.

Formally, we show that if X is chosen large enough then for any solution to the above
problem there is a corresponding solution to the original problem. For a convex function U

defined on S, we consider the smallest convex function defined on Rn that extends U . If
this extension lies below h on a large set X then h(y) < U(y) for some y is possible only
if ∥∇U(s)∥ is large for some s ∈ S, i.e., the expected action for some type is large. We
show that this implies that the principal’s expected payoff is low, contradicting that U is a
solution.
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Now let X be as in the above lemma and denote by U the set of convex continuous
functions that map X to R and by M+ the set of positive measures on X. We can formulate
the principal’s problem as follows (and call this formulation the primal problem):

max
U∈U

∫
U(s) dµ(s) (P)

s. t. U ≤ h

The dual problem We will show that the following problem is the dual problem:

inf
γ∈M+

∫
h(s) dγ(s) (D)

s. t. γ ≥cx µ,

where ≥cx denotes the convex order on the space of measures.

Note that h is a convex function; therefore, if µ was a positive measure, this would be a
trivial problem with solution γ = µ. However, since µ is a signed measure and γ has to be
a positive measure, µ is not feasible in general.

It is easy to see that weak duality holds, i.e., that the value of the primal problem (P) is
always below the value of the dual problem (D). Indeed, for any feasible U and γ,

∫
U(s) dµ(s) ≤︸︷︷︸

(i)

∫
U(s) dγ(s) ≤︸︷︷︸

(ii)

∫
h(s) dγ(s) (3)

since (i) U is convex and µ ≤cx γ and (ii) γ is a positive measure and U ≤ h. The following
result shows that strong duality holds, that is the optimal values of both problems are equal
and the dual problem has a solution.

Lemma 3 (Strong duality). A feasible mechanism U is optimal if and only if there exists a
positive measure γ ≥cx µ such that

U(s) = h(s) for γ-almost every v (4)∫
U(s) dµ(s) =

∫
U(s) dγ(s). (5)

This result is an analogue of a result in the revenue-maximization problem of a multi-
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product monopolist (see Theorem 2 in Daskalakis, Deckelbaum, and Tzamos, 2017). Our
formulation of the delegation problem allows us to easily deduce strong duality. Note that
there is a convex function U such that h(x)−U(x) > 0 for all x ∈ X. Therefore, Slater’s con-
dition is satisfied and standard results from linear programming imply that the dual problem
has a solution and that the optimal solutions of the primal and dual problems achieve the
same value. Since both inequalities in (3) have to hold as equalities, Lemma 3 follows.

Proof idea for Theorem 1. It is easy to show that the conditions in Theorem 1 imply that
U is optimal: by aggregating the measures δQ, one obtains a positive measure γ satisfying
the complementary slackness conditions (4) and (5) and γ ≥cx µ. Lemma 3 then implies
that U is optimal.

For the converse direction, suppose U is optimal. By Lemma 3, there is a positive
measure γ such that the complementary slackness conditions (4) and (5) hold and γ ≥cx µ.
Letting µ+ (µ−) denote the positive (negative) part of µ, this last condition is equivalent to
γ + µ− ≥cx µ+. Strassen’s theorem then implies that γ + µ− is a mean-preserving spread
of µ+: one can obtain the measure γ + µ− by taking, for every s, the mass µ+ puts on s

and spreading it according to a probability measure Ds with expected value s. Since U is
convex, Jensen’s inequality implies that U(s) ≤

∫
U(x) dDs(x) and equality holds only if

U is affine on the convex hull of the support of Ds. Since equality must hold by (5), we
obtain that for all Q ∈ Q and s ∈ Q, the support of Ds is contained in the closure of Q. To
simplify this informal discussion, suppose that for all Q ∈ Q and s ∈ Q, the support of Ds

is actually contained in Q (and not just the closure of Q) and consider a partition element
Q of positive measure. Then the conditional measure γ|Q is positive (since γ is positive)
and satisfies γ|Q + µ−|Q ≥cx µ+|Q (since the left-hand side is a mean-preserving spread of
the right-hand side). Moreover, by (5) we get U(s) = h(s) for every s in the support of γ|Q.
Since h is strictly convex and U is affine on Q, there is at most one s ∈ Q with U(s) = h(s)
and therefore γ|Q is a point mass at this s or the zero measure. It follows that µ|Q ≤cx δQ,
where δQ is a point mass at s or is the zero measure. The proof in the Appendix follows this
sketch but uses the additional assumption in Theorem 1 and additional arguments to deal
with the case where the support of Ds is a subset of the closure of Q but not a subset of Q.11

11 If s lies in the closure of Q and Q′ ̸= Q, then U is not differentiable at s and, therefore, U(s) < h(s). If
follows from (4) that such points have measure zero under γ. The additional assumption ensures that such
points also have measure zero under µ+ and µ−, and hence play no role.
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A. Omitted Proofs

Proof of Lemma 2. Let Br denote a ball of radius r around 0 and let U be a solution to
max{

∫
U dµ|U : Br → R, U convex, U ≤ h}. We will show that U can be extended to

a solution to the principal’s original problem. Let Ũ denote the smallest convex extension
to Rn of the restriction of U to S (see Dragomirescu and Ivan, 1992). If Ũ is not feasible
for the original problem then there is y ̸∈ Br such that Ũ(y) > h(y) and there is s ∈ S

such that Ũ(y) = U(s) + ∇U(s) · (y − s) (since Ũ is the smallest convex extension). Using
strong convexity of h (which follows since b has Lipschitz-continuous gradients, see Theorem
E.4.2.2 in Hiriart-Urruty and Lemaréchal (2004)), one can show that U(s) < h(s) − z(r),
where z(r) → ∞ as r → ∞.12 Then either U(s′) ≤ h(s) − z(r)/2 for all s′ ∈ S or, on a
set of positive Lebesgue-measure, ∇U(s′) ̸∈ Br/c for some constant c > 0 independent of r, s

and s′. Since lim∥a∥→∞ b(a) = −∞ by assumption, this implies that in either case for r large
enough, the principals payoff from U will be less than her payoff from taking the ex-ante
optimal action. This contradicts our assumption that U was optimal. Hence, any solution
can be extended to a solution of the original problem. Q.E.D.

Proof of Lemma 3. Let C(X) denote the vector space of continuous functions on X with
the supremum norm and recall that its dual space is the space of (Radon) measures on X,
which we denote by M(X). Let V := {g ∈ C(X) : ∀x ∈ V, g(x) ≥ 0}; the polar cones of U
and V are defined by

U∗ := {γ ∈ M(X) : ∀U ∈ U ,
∫

U dγ ≥ 0}

V∗ := {γ ∈ M(X) : ∀g ∈ V ,
∫

g dγ ≥ 0}.

The principal’s problem can be written as maxU∈U
∫

U dµ subject to h − U ∈ V . This is
a conical linear program and its dual is infγ∈V∗

∫
h dγ subject to µ − γ ∈ U∗ (e.g., Shapiro,

2010). Since V∗ = M+(X) by the Riesz representation theorem (Dunford and Schwartz,
1988, p. 265) and µ − γ ∈ U∗ is equivalent to µ ≥cx γ, (D) is the dual problem.

Since there is U ∈ U such that h − U is in the interior of V , Slater’s condition is satisfied
and standard results imply that strong duality holds (e.g., Shapiro, 2010, Proposition 2.8).

12 Let c′ denote modulus of convexity of h. Then, for all y ∈ Br that lie on the line segment from s to x,
and all t ∈ ∂(h − Ũ)(y), h(s) − Ũ(s) ≥ [h(y) − Ũ(y)] + t · (s − y) + c′

2 ∥y − s∥2. Since Ũ(s) = U(s) and the
first two terms of the RHS are positive, the claim follows.
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Given (3), it follows that U is optimal if and only if there is a positive measure γ ≥cx µ such
that

∫
U dµ =

∫
U dγ and

∫
U dγ =

∫
h dγ, which implies the result. Q.E.D.

Proof of Theorem 1. Given s ∈ X, we denote by Q(s) the partition element of Q that
contains s.

Sufficiency: Let γ :=
∫

δQ(s) d|µ|(s). Given the properties of µ|Q, we conclude that
γ ∈ M+ and supp γ ⊆ {s : U(s) = h(s)}. Moreover, for all c ∈ U ,

∫
c(x) dγ(x) =

∫ ∫
c(x) dδQ(s)(x) d|µ|(s) ≥

∫ ∫
c(x) dµ|Q(s) d|µ|(s) =

∫
c(x) dµ(x).

and equality holds for c ≡ U because (i) U is affine on each Q ∈ Q and (ii) δQ ≥cx µ|Q
implies

∫
a(x) dδQ =

∫
a(x) dµ|Q for any affine function a ∈ C(X). Therefore, γ is feasible

for the dual problem and satisfies the complementary slackness conditions (4) and (5). We
conclude that U is optimal.

Necessity: By Lemma 3, U is optimal if and only if there is γ ∈ M+ satisfying (4), (5),
and γ ≥cx µ. Letting µ+ and µ− denote the positive and negative parts of µ, respectively,
the last condition is equivalent to γ + µ− ≥cx µ+. Since both sides of the inequality are
positive measures, Strassen’s theorem (see, for example, Phelps, 2001, p. 93-94) implies that
there is a dilation Ds (that is, for each s, Ds is a probability measure with barycenter s)
satisfying γ + µ− =

∫
Ds dµ+(s).

Let µ|Q be a (regular, proper) system of conditional measures (such conditional measures
exist by Example 10.4.11 in Bogachev, 2007b), which by definition satisfies

∫
X

c(s) dµ(s) =
∫

X

∫
X

c(y) dµ|Q(s)(y) d|µ|(s)

for all c ∈ C(X). Letting αQ :=
∫

Ds dµ|+Q(s) − µ|−Q, we claim that there is Q′ ⊆ Q such that
Q′ has |µ|-measure 0 and, for all Q ∈ Q \ Q′, αQ is a positive measure and its support is a
subset of Q ∩ {s : U(s) = h(s)}.

Before proving this claim, we show that it implies the necessity result: From the definition
of αQ it follows that if αQ is a positive measure then µ|Q(Q) ≥ αQ(Q) ≥ 0. Also, αQ ≥cx µ|Q
since Ds is a dilation. Morevoer, if αQ has support in Q∩{s : U(s) = h(s)} then αQ is either
a point mass at Q ∩ {s : U(s) = h(s)} or the zero measure, which implies the result.

To prove the claim, we show first that the support of αQ is a subset of the closure of
Q ∩ {s : U(s) = h(s)} for |µ|−a.e. Q. To obtain a contradiction, suppose there is Q′ ⊆ Q
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with strictly positive |µ|-measure such that, for all Q′ ∈ Q′, the support of αQ′ is not a
subset of the closure of Q. Fix arbitrary Q′ ∈ Q′. Since the support of αQ′ is not contained
in the closure of Q′, there is a set A ⊆ Q′ of strictly positive µ|+Q′-measure such that, for all
x ∈ A, the support of Dx is not contained in the closure of Q′. Since Jensen’s inequality is
strict whenever the convex function is not affine on the convex hull of the support (Marshall,
Olkin, and Arnold, 2010, Proposition 16.C.1), we obtain

∫
U(s) dµ|+Q′(s) <

∫ [∫
U(x) dDs(x)

]
dµ|+Q′(s).

This yields
∫

U(s) dµ(s) =
∫ [∫

U(x) dµ|+Q(s)(x) −
∫

U(x) dµ|−Q(s)(x)
]

d|µ|(s)

<
∫ [∫ (∫

U(y) dDx(y)
)

dµ|+Q(s)(x) −
∫

U(x) dµ|−Q(s)(x)
]

d|µ|(s)

=
∫ ∫

U(y) dDs(y) dµ+(s) −
∫

U(x) dµ−(s)

=
∫

U(s) dγ(s),

which contradicts (5). We conclude that, except possibly on a |µ|-Null set, the support of
αQ is a subset of the closure of Q.

Second, we show that αQ(s) is a positive measure for |µ|-almost every s: Let

B := {s ∈ X : s ∈ cl Q ∩ cl Q′ for Q ̸= Q′},

and note that for any s ∈ B, U is not differentiable at s and therefore U(s) < h(s). Since
supp γ ⊆ {s : U(s) = h(s)} by (4), γ(B) = 0. Moreover, µ−(B) = 0 because U is con-
tinuously differentiable |µ|-almost everywhere by assumption. Let G denote the σ-algebra
generated by Q and note that the Borel σ-algebra on X is generated by some countable
algebra {A1, A2, ...} (Preston, 2008, Propositions 3.1 and 3.3). For each n and G ∈ G,

∫
G

αQ(s)(An) d|µ|(s) =
∫

G

∫
X

Ds′(An) dµ|+Q(s)(s
′) − µ|−Q(s)(An) d|µ|(s)

=
∫

G
Ds(An) dµ+(s) − µ−(An ∩ G)

≥
[∫

X
Ds(An ∩ G) dµ+(s) − µ−(An ∩ G)

]
−

∫
X\G

Ds(An ∩ G) dµ+(s).

23



The bracketed term equals γ(An ∩ G) and is therefore positive. The last term is zero since
∫

X\G
Ds(An ∩ G) dµ+(s) ≤

∫
Ds(An ∩ G ∩ B) dµ+(s) − µ−(An ∩ G ∩ B) = γ(An ∩ G ∩ B) = 0

(recall that γ(B) = µ−(B) = 0). Since αQ(s)(An) is G-measurable in s, it follows that there
is a |µ|-Null set Zn such that αQ(s)(An) ≥ 0 for all s ∈ X \ Zn. Letting Z := ⋃∞

n=1 Zn, for
all s ∈ X \ Z and Borel sets A, αQ(s)(A) ≥ 0 by Caratheodory’s extension theorem (see
Bogachev, 2007a, Theorem 1.5.6 and the comment afterward).

Finally, if it is not true that for |µ|-almost every s, the support of αQ(s) is a subset of
{s : U(s) = h(s)}, then

∫
U dγ <

∫
h dγ, contradicting (4). Moreover, for any s ∈ cl Q\Q, U

is not differentiable at s and therefore U(s) < h(s) (because U ≤ h and h is differentiable).
We conclude that there is a collection Q′ ⊂ Q with |µ|-measure 0 such that, for all Q ∈ Q\Q′,
αQ is a positive measure that has support on Q ∩ {s : U(s) = h(s)}. Q.E.D.

Proof of Corollary 1. Note that the partition Q induced by U has elements (−∞, s1],
[s2, ∞), and {s} for all s ∈ (s1, s2). For all s ∈ (s1, s2), ν(s) ≥ 0 is equivalent to µ|Q(Q) ≥ 0
and µ|Q ≤cx δQ for Q = {s}.13 Now consider Q = [s2, ∞) and let λ(x|x ≥ s2) denote the
conditional distribution of λ conditional on x ≥ s2. Since δQ is a point mass of mass µ|Q(Q)
at s2, we can use majorization to rewrite µ|Q ≤cx δQ as

∫ s

s

∫ s

x
ν(z) dλ(z|z ≥ s2) dx ≤ 0

for all s ≥ s2 with equality for s = s2. Integrating by parts, this becomes condition (ii).
Moreover, since the derivative with respect to s of the left-hand side of the above inequality
evaluated at s2 is negative, we obtain µ|Q(Q) ≥ 0. The argument for Q = (−∞), s1] is
analogous. Q.E.D.

Proof of Corollary 2. Let U be an optimal indirect utility and Q a corresponding parti-
tion. Since µ|Q(Q) ≥ 0 and µ|Q ≤cx δQ, any pooling region14 Q ∈ Q must contain types
with ν(s) ≥ 0 and types with ν(s) ≤ s.

If ν(s) ≥ 0 and ν(s) ≥ 0, ν is positive everywhere and the claim follows. So suppose
ν(s) < 0; then there is a pooling region Q := [x, y] ∈ Q which contains s and some s

13 For s ∈ {s1, s2}, if s ∈ int S then ν(s) ≥ 0 follows because ν is continuous on the interior of S. And if
s ∈ bd S, there is Q ∈ Q with Q ∩ S = {s} and hence µ|Q(Q) ≥ 0 implies ν(s) ≥ 0.

14 That is, any Q such that Q ∩ S contains strictly more than one element.
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with ν(s) > 0. If ν(y) < 0, then [x, y] ⊆ Q must hold and the claim follows. Therefore,
assume ν(y) ≥ 0. The measure δQ from Theorem 1 must be a point mass at some z ∈ Q

with ν(z) ≥ 0 (if δQ were the zero measure or a point mass at z′ with ν(z′) < 0, then∫
x−x∗ dµ|Q >

∫
x−x∗ dδQ whenever x∗ = inf{x : ν(x) ≥ 0}, which contradicts µ|Q ≤cx δQ).

It follows that U(z) = h(z).

If ν(s) ≥ 0 then ν(s) ≥ 0 for all s ∈ [z, s] and delegating to [z, s] is optimal. If ν(s) < 0,
repeating our previous argument implies that there is an interval [x′, y′] ∈ Q which contains
s and some z′ with ν(z′) ≥ 0 and U(z′) = h(z′). Since ν(s) ≥ 0 for all s ∈ [z, z′], delegating
to [z, z′] is optimal. If ν(s) ≥ 0 and ν(s) < 0, a symmetric argument applies. Q.E.D.

Proof of Corollary 3. It follows from (1) that ν(s) = f(s)
[
1 − β f ′(s)

f(s)

]
for s ∈ (s, s). If

β ≥ 0 then ν is singlecrossing from below on (s, s) (since f is logconcave) and ν(s) ≤ 0. The
claim then follows from Corollary 2. Q.E.D.

Proof of Corollary 4. The corresponding indirect utility induces the partition with the
following elements: for any a in the interior of A, {a}, and for any a ∈ bd A, the normal
cone NA(a), which is a ray through a and orthogonal to bd A. For any such normal ray Q,
condition (ii) is equivalent to µ|Q ≥cx δQ by the same argument as in Corollary 1.

“⇐”: Condition (i) ensures that µ|{a} is positive for all a in the interior of A. Since it
has singleton support, µ|{a} ≥cx δ{a}. For any normal ray Q, µ|Q ≥cx δQ by condition (ii)
and µ|Q(Q) ≥ 0 since

∫ ∞
0 ν(s + xn̂A(s)) dλ(s + xn̂A(s)|ray) ≥ 0 follows from condition (ii).

It follows from Theorem 1 that U is optimal.

“⇒”: If ν(a) < 0 for some a in the interior of A then there is a subset of A with positive
|µ|-measure on which ν is strictly negative, which implies µ|Q(Q) < 0 on a set of positive
measure, which contradicts optimality of U . Similarly, if ν(a) < 0 for some a ∈ bd A then it
can be shown that µ|Q(Q) < 0 on a set of positive measure, which contradicts optimality of
U by Theorem 1.

If condition (ii) is violated, µ|Q ̸≥cx δQ on a set of positive measure, which again contra-
dicts optimality of U by Theorem 1. Q.E.D.
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