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Abstract

Economists typically make simplifying assumptions to make the solution and estimation

of their highly complex models feasible. These simplifications include approximating the

true nonlinear dynamics of the model, disregarding aggregate uncertainty or assuming

that all agents are identical. While relaxing these assumptions is well-known to give rise

to complicated curse-of-dimensionality problems, it is often unclear how seriously these

simplifications distort the dynamics and predictions of the model. We leverage the recent

advancements in machine learning to develop a solution and estimation method based on

neural networks that does not require these strong assumptions. We apply our method

to a nonlinear Heterogeneous Agents New Keynesian (HANK) model with a zero lower

bound (ZLB) constraint for the nominal interest rate to show that the method is much

more efficient than existing global solution methods and that the estimation converges

to the true parameter values. Further, this application sheds light on how effectively

our method is capable to simultaneously deal with a large number of state variables and

parameters, nonlinear dynamics, heterogeneity as well as aggregate uncertainty.
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1 Introduction

Modern economic models are often hard to solve, forcing economists to study tractable ap-

proximations of these models and limiting their empirical analysis. However, this tractability

often comes at the cost of losing interesting features of the model, such as important nonlin-

earities like the zero lower bound (ZLB) for the nominal interest rate, agents heterogeneity,

and stochastic volatility. We propose an approach based on machine learning to solve and

estimate models without resorting to approximations or simplifications that necessarily dis-

tort their properties and predictions. We then apply our method to estimate a quantitative

Heterogeneous Agent New Keynesian (HANK) model in its nonlinear specification.

Our method exploits the many advantages of neural networks. Since neural networks

can handle a large number of inputs, they are well-suited to learn the solution mapping of

models with many state variables and nonlinear dynamics with great accuracy. In particu-

lar, an important property of neural networks is scalability, implying that additional extra

inputs (e.g., state variables) can be added at low computational costs. This enables neural

networks to obtain a global approximation of macroeconomic models that feature hundreds

or thousands of state variables. As a consequence, neural networks can be used to tackle the

well-known curse-of-dimensionality phenomenon that conventional global solution methods

face. Even though increasing the complexity of the problem comes with lower costs, it is still

very time-consuming to solve only once such elaborated models with neural networks. This

is a particularly challenging issue because an estimation framework usually requires a model

to be solved at hundreds of thousands of different parameter combinations. This problem

renders a conventional estimation strategy impossible.

We overcome this crucial problem by exploiting the fact that neural networks minimize

the issue of curse-of-dimensionality that inevitably arises when handling problems with an

extremely large number of inputs. But this would not be enough to achieve our goal of

estimating high-dimensional economic models. A critical step we propose in this paper is to

use the model’s parameter vector as direct input in the neural network. In other words, we

treat the parameters as pseudo state variables by exploiting the scalability of neural networks.

We then train this extended neural network with the parameters as inputs over the entire

parameter space. This step turns out to be critical because it yields the model’s solution

mapping (i.e., the mapping from the parameter space to the model’s equilibrium law of

motion) instead of just one point in this solution mapping – associated with the model solution

for a single point in the parameter space. Even though treating the model’s parameter

vector as pseudo state variables makes it more challenging to train this neural network, the

computational gains are enormous compared to repeatedly evaluating the model’s solution

mapping at as many points as needed to get an appreciable evaluation of the likelihood

function. The reason behind this result is twofold: the scalability of neural networks and the

extraordinary efficiency of modern machine learning software and hardware.

Another computational hurdle is that the likelihood function of nonlinear models needs

to be evaluated using a Monte Carlo filter (e.g., the particle filter), which are computation-
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ally more costly than linear filters (e.g., the Kalman filter). This issue limits the amount of

parameter combinations we can evaluate, restricting considerably the scope of estimation. To

overcome this problem, we train an additional neural network that provides a direct mapping

from the model parameters to the value of the likelihood function – via the particle filter.

This is the so-called surrogate model, which is trained only on some selected data points to

approximate the outcome of the particle filter in an efficient manner. For this strategy, we

calculate the values of the likelihood with the particle filter for different parameter combina-

tions over the parameter space and then use these as data points to train the neural network.

Importantly, the training requires only thousands of data points so that this strategy reduces

the computation time significantly compared to conventional estimation with typically re-

quires millions of draws. We dubbed this approach as neural network particle filter. Once

this neural network is trained, it takes us a few milliseconds to evaluate the likelihood of

models with hundreds of state variables at one parameter value.

To validate our approach, we provide two proofs of concept and then move to the esti-

mation of the HANK model. First, we demonstrate that our extended neural network with

the parameters as pseudo state variables captures the dynamics of a standard linearized NK

model, for which the true solution can be derived analytically. Second, we focus on a more

complex model with a meaningful nonlinearity and compare the results of our estimation

framework to a conventional estimation for nonlinear models. The conventional approach

requires to resolve the model at each parameter draw with classical global solution methods

and then to employ the particle filter. As the conventional approach restricts severely the

potential scope of the estimation, we use a tractable RANK model that features an aggregate

nonlinearity (zero lower bound). We establish that estimation results are very similar for

both approaches.

Finally, we use our approach to solve and estimate a nonlinear HANK model that contains

simultaneously idiosyncratic and aggregate risk. Specifically, the model features idiosyncratic

and aggregate shocks as well as individual and aggregate nonlinearities in the form of individ-

ual borrowing limits for the agents and a ZLB for the monetary authority, respectively. We

include 12 parameters in our estimation. As our method does not restrict us to a specific set

of parameters, the estimation also contains parameters that affect directly the heterogeneity

of the model. Taken all together, the model features hundreds of state variables and pseudo

state variables because we have aggregate shocks, aggregate states, an idiosyncratic shock

for each agent and asset holdings for each single agent. To provide a controlled environment

for the estimation of the HANK model, we generate simulated aggregate data and assess if

the estimation can recover the true parameters. For this, we employ our neural network ap-

proach to run a Bayesian estimation with 1 million draws. Importantly, the described neural

network based estimation of a nonlinear HANK model is completed in less than two days

using a modern desktop computer, which underlines the potential of the method.1

We demonstrate that our method recovers the true data generating process of all 12

1We use an AMD Ryzen 5 5600X 6-Core processor (CPU) and Nvidia GeForce RTX A4500 (GPU) for the
neural network based Bayesian estimation.
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parameters using standard aggregate data. However, the identification of the parameter

varies strongly over the parameters. Our results suggest that standard aggregate data, such

as output growth, inflation or interest rates only marginally help pin down the degree of

heterogeneity as the likelihood is rather flat. Our method also allows to analyze interactions

between nonlinearities, aggregate uncertainty and heterogeneity.

Literature The paper is connected to the literature that develops global solution methods

using neural networks to solve complex dynamic economic models. In particular, we build on

the approach introduced by Maliar et al. (2021) to allow estimation of models with hundreds

or thousands of state variables. Other exciting approaches that rely on neural networks

to solve economic models are developed by Fernández-Villaverde et al. (2020), Valaitis and

Villa (2021) and Azinovic et al. (2022), among others. However, none of these papers estimate

nonlinear, heterogeneous agents models with likelihood methods.

Likelihood estimation adds an additional important layer of complication in that it re-

quires solving the model at hundred of thousands of different points in the parameter space.

As a result, only extremely fast and efficient solution methods are compatible with likelihood

analysis. Fernández-Villaverde et al. (2019) estimate the critical parameter of a model with

a financial sector and heterogeneous households with neural networks using the time series

of GDP growth. We can expand the scale of the estimation exercise and estimate 12 param-

eters using 3 observable variables because (i) we combine the scalability of neural networks

with the intuition of treating the model parameters as pseudo state variables when solving

the model and (ii) we use neural networks to facilitate the evaluation of the likelihood via

the filter - which we called neural network particle filter. Furthermore, unlike that paper,

we estimate a HANK model. To our knowledge, we are the first ones to estimate a HANK

model in its nonlinear specification.

The first papers that pioneered the analysis of HANK models resort to MIT shocks and

disregard aggregate uncertainty in order to facilitate the task of solving these models (e.g.,

Oh and Reis, 2012; McKay et al., 2016; Challe et al., 2017; Kaplan et al., 2018; Bayer

et al., 2019; Bilbiie, 2020; Ottonello and Winberry, 2020; Acharya and Dogra, 2020). More

recently, scholars have studied the role of aggregate uncertainty in HANK models by using

linear perturbation methods (Reiter, 2009; Winberry, 2021; Ahn et al., 2018; Boppart et al.,

2018 and Auclert et al., 2021). There are only very few papers that pioneered the solving of

HANK models with macroeconomic uncertainty and non-negative constraints. Maliar and

Maliar (2020), Gorodnichenko et al. (2021), and Fernández-Villaverde et al. (2021) rely on

neural networks, while Schaab (2020) studies a nonlinear HANK model based on a solution

method unrelated to machine learning. Unlike these papers, we show that computational

gains from using neural networks are so large to make likelihood estimation of these models

feasible. To achieve this result, we take advantage of the scalability of neural networks and

of the neural network particle filter.

We lay down an estimation method that can be applied to quantitative nonlinear HANK

models with idiosyncratic and aggregate risk. Other papers have estimated HANK models
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by approximating aggregate risk to a first order or on the assumption of perfect foresight

regarding aggregate shocks (Bayer et al., 2020; Lee, 2020; Auclert et al., 2021). A strength of

our approach is that it does not impose any restrictions on the set of parameters that can be

estimated because our method allows us to solve for the model equilibrium in one step.2 As a

consequence, we can additionally estimate the parameters that affect the (stochastic) steady

state of the economy including parameters affecting the heterogeneous agents’ problem (e.g.,

agents’ idiosyncratic volatility or borrowing limit). Furthermore, our approach can fully

capture interesting interactions between the ZLB, stochastic volatility, aggregate risk, the

stationary distribution, and other aggregate nonlinearities.

Outline The paper is organized as follows. In Section 2, we develop the neural network

based estimation method. Section 3 provides proofs of concept of our method. In Section 4,

we solve and estimate a quantitative nonlinear HANK model with our developed approach.

Section 5 concludes the paper.

2 An Estimation Framework Based on Neural Networks

This paper develops an estimation framework that utilizes neural networks to estimate

macroeconomic models in its fully nonlinear specification. Neural networks, which are at

the core of our method, are the fundamental building block of deep learning, which belongs

to the family of machine learning methods.3 Neural networks are well suited to solve complex

nonlinear macroeconomic models because they can handle many inputs and are an efficient

method to learn fast about highly complicated mathematical functions or mappings. How-

ever, a decisive challenge for the estimation of complex models is that it requires the repeated

solving of the model for different parameter combinations. Even though neural networks can

solve elaborated models such as nonlinear HANK model, it is computationally infeasible to

solve these models sufficiently often with neural networks or other global solution methods.

We overcome this decisive problem for the estimation by exploiting the circumstance that

neural networks can handle many inputs without encountering the curse-of-dimensionality.

In particular, we include the parameters of the model as pseudo state variables in the neural

network. We then solve only once for this extended neural network that includes the pa-

rameters as pseudo state variables. The extended neural network allows to directly evaluate

the solution of the model for different parameter combinations. Even though the inclusion of

parameters as pseudo state variables increases the computation time, it is incomparable to

repeatedly solving the model without pseudo state variables.

2The estimation methods proposed by those papers solve for the stationary distribution in a first step.
In a second step, a perturbation techniques is applied to approximate the aggregate dynamics around the
stationary distribution. The estimation itself centers then on this second step, which precludes the estimation
of any parameter that affects the stationary distribution.

3Appendix A provides a brief summary of neural networks and their key properties for our approach.
Goodfellow et al. (2016) provides an overview of deep learning. Fernández-Villaverde et al. (2020) and Maliar
et al. (2021), among others, discuss machine learning in the context of macroeconomic modeling.
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An additional challenge for the estimation is related to the computations of the likelihood,

which evaluates the fit of the model with the data. In particular, the nonlinearity of the model

solution precludes the usage of the Kalman filter. Instead, we employ a particle filter to obtain

the likelihood. However, the execution of the particle filter is computationally much more

costly than the Kalman filter. This limits the amount of parameter combinations that we

can consider and restricts severely the scope of the estimation.

We overcome this limitation by relying on a surrogate model, which is trained on some

data points and then provides the outcome of interest in a computationally cheap way.4

Specifically, we train a new additional neural network as surrogate model to approximate the

results of the particle filter. For this strategy, we first calculate the likelihoods for different

parameter combinations from the solved parameter space with a particle filter. We then use

these calculated likelihoods as data points to train an additional neural network. The training

of the neural network requires only thousands of data points, which reduces the computation

significantly compared to a conventional estimation with typically millions of draws. We

denote this approach as neural network based particle filter. Once we are equipped with the

neural network based particle filter, it takes us less than 1ms to evaluate a single draw.

It is instructive to compare our estimation procedure to a conventional approach. In

a conventional estimation, the model is first solved with numerical methods for a specific

parameter combination. In a second step, a filter evaluates the likelihood of the solved model.

Based on the likelihood value, a new parameter combination is considered. A conventional

estimation requires the repetition of the solving and filtering steps hundreds of thousand

times. However, both steps are computationally costly, which renders this approach infeasible

for large and complex models. In contrast to this, our developed approach first solves the

model over the entire parameter space and then provides a mapping from the parameters to

the likelihood in a quick and efficient manner. Once these neural networks are obtained, it is

straightforward and very very fast to execute the estimation. Therefore, the developed neural

networks approach creates this new possibility of estimating complex nonlinear models.

2.1 Extended Nonlinear Model Representation

We are interested in solving and estimating dynamic stochastic general equilibrium models

in its nonlinear specification. The economy in each period is described by a finite vector of

state variables St. The economy is subject to exogenous shocks νt that affect the response of

the state variables. The model features S state variables and U structural shocks. The last

part are the structural parameters of the model Θ. These objects describe the dynamics of

the model and can be expressed as transition equation:

St = f (St−1, νt|Θ), (1)

4In physics and engineering, the use of surrogate models is well-established. An application to estimated
finance models is Chen et al. (2021).
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where f is a nonlinear function. This function f is generally unknown and needs to be solved

with numerical methods.

For expressing the solution to this type of models, it is useful to distinguish between state

variables and control variables. Control variables ψt characterize the optimal policy choices

by the agents. The model features O control variables. The decisive step in solving these

model is to determine the mapping from the state variables to the control variables, which is

given from the policy functions ψ (·):

ψt = ψ(St|Θ), (2)

where the policy functions are nonlinear and depend on the state variables. Once the control

variables are determined, the dynamics of the state variables can be analytically calculated.5

For this reason, the focus in our description is on the policy functions ψ(St|Θ̄).

The policy functions ψ(St, Θ̃|Θ̄) are derived as the solution to a function space F :

F (ψ(St|Θ)) = 0, (3)

where the function space is derived in line with Euler equation methods.

Key Trick: Incorporating Parameters as Pseudo State Variables The problem

in estimating is that we need to solve for the policy function again and again for different

parameter values. However, this is very costly and can render estimation of challenging

models infeasible. The crucial key is that we want to solve the policy function only once, but

at the same time, to account for the entire set of parameters that we want to estimate. The

set of parameters can be divided in two subsets:

Θ = {Θ̃, Θ̄}, (4)

where Θ̃ is the set of parameters to be estimated and Θ̄ is the set of parameters to be

calibrated. We treat the parameters to be estimated as pseudo state variables of the economy.

The extended policy function with the pseudo state variables can be written as:

ψt = ψ
(
St, Θ̃|Θ̄

)
, (5)

where now the values for the parameters Θ̃ are treated as pseudo state variables.6 The next

subsection explains how we approximate the extended policy function using neural networks

in a deep learning approach.

Incorporating Heterogeneity The approach can also capture models that feature het-

erogeneous agents (e.g. on the household or firm side) as well as multiple countries, counties,

5We can separate between endogenous and exogenous state variables. The dynamics of the exogenous state
variables do not depend on the control variables.

6Examples of computational papers that use pseudo state variables in combination with machine learning
techniques are Norets (2012), Duarte (2018) and Scheidegger and Bilionis (2019).
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sectors or banks. Heterogeneity often assumes the existence of a continuum of agents, which

implies that the distribution of individual states and shocks is infinite:∫
SitdΩ and

∫
νitdΩ, (6)

where the superscript i stands for an individual agents.

To map such a scenario in our framework with finite states, the key assumption is that

we approximate the continuum of households with a large but finite number of agents L

as in Maliar et al. (2021).7 This allows to capture the continuous distribution with a large

but finite number of states.8 This approach is very appealing for a neural network based

procedure as neural networks can overcome the curse-of-dimensionality. The distribution can

be summarized as:{
Sit
}L
i=1

and
{
νit
}L
i=1

. (7)

The state variables and shock can be written as:

St =
{{

Sit
}L
i=1

,SAt
}

and νt =
{{
νit
}L
i=1

, νAt

}
, (8)

where the superscript A is concerned for aggregate state variables and shocks. In case of

heterogeneity with a finite number of agents, e.g. countries, counties, sectors or banks, this

directly defines the state variables without an approximation.

In a similar fashion, we adjust the policy functions:

ψi
t = ψI(Sit, St|Θ̄) and ψA

t = ψA(St|Θ̄). (9)

where we assumed that agents only differ in their state variables and structural shocks so

that the same policy function ψI can be used for all agents if conditioned on the individual

variables additionally.

We can now rewrite the transition equation and policy functions as:

St =
{{

Sit
}L
i=1

,SAt
}
= f

({{
Sit−1

}L
i=1

, SAt−1

}
,
{{
νit
}L
i=1

, νAt

}
, Θ̃|Θ̄

)
(10)

ψt =
{{
ψi
t

}L
i=1

, ψA
t

}
=
{{
ψI(Sit, St|Θ̄)

}L
i=1

, ψA(St, Θ̃|Θ̄)
}

(11)

The number of individual and aggregate state variables are Si and SA
t , respectively, so that

the total number of state variables is S = Si×L+SA. The number of exogenous shocks and

policy functions is similar defined as U = U i × L+ UA and O = Oi × L+OA, respectively.

7Agents assume in their maximization problem that their individual weight is zero.
8The approach is related to Le Grand and Ragot (2021), where heterogeneity is captured in form of a

truncated-history of idiosyncratic shocks. Their method requires that the past realizations depend on an
arbitrary but finite number of states, which requires that the idiosyncratic shock needs to be discretized. Our
approach refrains from discretizing, and as a consequence, there are no agents with exactly the same history.
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2.2 Extended Neural Network-Based Solution Method

We use neural networks to solve the extended policy functions. In particular, we incorporate

the parameters to be estimated as pseudo state variables as new elements in a neural network

solution algorithm based on Maliar et al. (2021). The difference is remarkable. The obtained

extended neural network from our approach provides the numerical solution for all macroe-

conomic model that are covered by the parameter space. Normally, a procedure without the

pseudo state variables gives just the solution for one single combination of parameters. In

other words, our approach solves an infinite amount of models instead of one single model.

While the additional state variables would create a problem for classical global solution

method due to the curse-of-dimensionality, our approach relies on the scalability of the neu-

ral network in handling many inputs. Therefore, the additional burden of including the

parameters as pseudo state variables is by far not comparable to resolving the model for each

parameterization. We provide a brief summary of neural networks and their key properties

that are so handy for our approach in Appendix A.

Extended Neural Networks and Policy Functions We use neural networks to approx-

imate the individual and aggregate policy functions, ψI and ψA.9 In particular, we set up

two neural networks, ψI
NN and ψA

NN , that approximate the individual and aggregate policy,

respectively. We train the neural networks to map the inputs, which consists of S state

variables and P parameters to be estimated, into a number of output variables O (policy

functions). This provides then the numerical solution for all macroeconomic model that are

covered by the parameter space. The mapping from the state variables and parameters to

the control variables with neural networks as function approximator is:10

ψi
t = ψI

NN

(
Sit,St, Θ̃|Θ̄

)
, (12)

ψA
t = ψA

NN

(
St, Θ̃|Θ̄

)
. (13)

The entire vector of control variables is given as:

ψt =
{{
ψi
t

}L
i=1

, ψA
t

}
=

{{
ψI
NN

(
Sit,St, Θ̃|Θ̄

)}L

i=1
, ψA

NN

(
St, Θ̃|Θ̄

)}
. (14)

For simplicity, we define ψNN

(
St, Θ̃|Θ̄

)
≡
{{

ψI
NN

(
Sit, St, Θ̃|Θ̄

)}L

i=1
, ψA

NN

(
St, Θ̃|Θ̄

)}
.

This formulation highlights that our approach solves simultaneously for the individual law of

motion and the aggregate law of motion.11

9The description nests the scenario of a representative agent economy, which then only includes the aggre-
gate state variables SA and aggregate policy functions ψA.

10The number of neural networks can be adjusted according to the needs of the model. In the outlined case
with individual and aggregate policy functions, it is very handy to choose two neural networks.

11This differs to the aggregation approach of Krusell and Smith (1998), as discussed in detail in Maliar and
Maliar (2020).
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Loss Function and Training of Neural Networks The next step is to train the extended

neural network to approximate the policy functions. The neural networks ψI
NN and ψA

NN are

trained to minimize a defined loss function. In particular, we minimize the residual error of

a set of equations, where the equations are chosen in line with the Euler equation method. It

should be noted that in a setup with heterogeneity, the entire set of equilibrium conditions

contains individual and aggregate intertemporal optimality conditions, transition equations,

equilibrium conditions, etc. The number of equations that are minimized in line with the

Euler equation method corresponds to the number of policy functions O = Oi×L+OA. The

loss function is the sum of the square of the equations from the Euler equation method.12

Furthermore, the neural networks ψNN are trained on a batch with size B. This can be

thought of having B economies operating in parallel that are used to train the neural network.

As a consequence, we minimize B × (Oi × L + OA) equations in each iteration using deep

learning techniques.13 The neural network is then trained for tens of thousands of iterations

using a stochastic gradient descent method, which minimizes the loss function.

Stochastic Solution Domain and Expectations The grid points for the state variables

and parameter values in each iteration are drawn randomly from the state and the parameter

space. In particular, the neural network is trained on a stochastic solution domain, from

which the values of the state variables are drawn. We are interested in training the algorithm

only on the relevant n-dimensional domain of the state space. We ensure this via a simulation

step in our solution algorithm that approximates the ergodic distribution of the model. After

training the neural network with the given draw of state variables over the batch B in the

current iteration, we simulate each economy (batch) for T sim periods forward. The end

point of the simulation gives than the solution domain that we use in the next iteration

for the optimization of the neural network. In that regard, we draw random points from a

S = Si × L+ SA-dimensional domain, which covers the ergodic distribution.

The expectations are evaluated with a Monte Carlo approach, which additionally relies on

the antithetic variate to increase the precision.14 The approach handles hundreds of shocks

and is well suited to evaluate expectations in a stochastic setup with randomly drawn shocks.

Parameter Space We train the neural network for the entire parameter space that we

consider. We restrict each parameter that is estimated to lie inside some bounds:

Θ̃ =
{[

Θ̃1, Θ̃1
]
,
[
Θ̃2, Θ̃2

]
, . . . ,

[
Θ̃P , Θ̃P

]}
, (15)

12The weight on the different equations can vary, this enables that aggregate conditions have a higher weight
than the equations related to agent i to give an example.

13The loss function is the mean of the square of the K equations residuals from the Euler equa-
tion method. The loss is averaged over the batch size B . The loss function is then: ΦL =
1
B

∑B 1
K

∑K
k=1 αk(Et

[
ΓK
k (st+1,b, ψt+1,b, st,b, ψt,b, νt+1,b)

]
)2, where αk determines the weight of each equation.

14We randomly draw M sets of next period shocks, that is {νmt+1}Mm=1, to approximate expectations. To
increase the efficiency of Monte Carlo integration and reduce the amount of necessary draws, we use the
antithetic variate method. The antithetic variates technique creates to a given path {ν1, ν2, ν3, . . . , νM/2} also
its antithetic path {−ν1,−ν2,−ν3, . . . ,−νM/2}.
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Figure 1: Extended neural network presentation that captures the mapping from state variables as well as
model parameters to the policy function. The left plot varies the state variable and displays the
policy functions for selected parameters. The right plot fixed the state variables at S = 0 and
varies the model parameter. The two plots are directly connected as they are created with the
same neural network. The points in the left plot at S = 0.00 correspond to the policy variable on
the right axis for the chosen parameter.

where Θ̃i and Θ̃i is the lower bound and upper bound for each parameter that is estimated.

Due to the bounded space, we can then draw from a more tight distribution and increase the

precision.15 For each iteration, we draw randomly from the parameter space.16 Therefore,

each economy (batch) has a different parameter combination, which is used to train the

extended neural network. After the maximizing step, we redraw the parameter space and

then simulate each economy (batch) forward. This also ensures that we train each economy

in its relevant stochastic solution domain for the drawn parameter combination. To sum up,

we train the neural network over the entire parameter space as we consider in each training

step a different set of economies. At the same time, we ensure via simulation that we are

solving for the policy function in its relevant stochastic solution domain.

While the extended neural network contains now a solution for the entire parameter space,

it is important to validate that the model is solved with a sufficient precision at a given

parameter combination. It is well known that economic models may only have a solution

for some parameter combinations. Compared to linear models, where the Blanchard Kahn

establish local conditions for the existence and uniqueness of the solution, the issue is more

complicated with nonlinear models. As this is a general problem for global solution methods,

it also directly affects our method. We can use different measures such as the residual error

to evaluate the validity of the solution. This helps to evaluate if a solution exist in this area.

In particular, we train a neural network that provides a mapping from the parameter space to

the residual error. If the residual error is sufficiently small, we keep the solution. Appendix

B contains more details on our procedure to validate the solution and disregard parts of the

parameter space in an efficient way. We also discuss this issue in more detail in our second

proof of concept.

15The bounds are conceptually not necessary and the parameters could be drawn from a random distribution.
16We draw from a Sobol sequence as it has good distributions in the unit hypercube. We could also draw

from other distributions such as a truncated multivariate normal or a distribution motivated by the priors.
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Graphical Characterization of the Extended Neural Network A graphical charac-

terization of the extended neural network and its connection to the policy functions can be

seen in Figure 1. The left panel shows the mapping from state variables to policy functions

for different parameter values. The mapping from state variables to policy variable depends

on the chosen model parameter. Importantly, the three mappings are created with the same

neural network as the neural network is conditioned on state variables and parameter simul-

taneously. The right panel further illustrates the idea of treating the model parameters as

pseudo state variables. Fixing the state variable(s), the impact of the parameter on the policy

function can be directly seen. Importantly, the two plots are created with the same extended

neural network. The points in the left plot at S = 0 correspond to the policy variable on the

right axis for the chosen parameter.

Advantages of the Extended Neural Network Approach The neural network ap-

proximates the policy functions for an entire bounded parameter space. As a consequence,

we need to solve the neural network only once to evaluate hundreds of thousand different -

infinitely many to be precise - parameter combinations! While we theoretically could also

adpat more traditional solution methods to incorporate parameters as pseudo state variables,

the curse-of-dimensionality prevents this already for slightly complex models. By contrast,

a solution approach based on neural networks is much more scalable and can incorporate a

large amount of inputs, which allows to relax very significantly the curse-of-dimensionality.

As a consequence, neural networks allow to overcome several key computational isssues in

estimating nonlinear models. First, we include each additional parameter as a pseudo state

variables, which increases the amount of inputs. Classical methods would be very limited in

the amount of extra parameters, whereas this key trick only slightly increases the complexity

for the neural network solution method. Second, a model with heterogenous agents consists

of hundreds of shocks. Approximating the expectation function for just a few shocks is very

cumbersome with Gauss-Hermiture quadrature or a finite state Markov chain, which are

usually used for conventional global methods. Exploiting the stochastic setup of our model,

we use a Monte Carlo approach for integration that can features hundreds of shocks. Another

advantage is that we solve for the entire equilibrium without distinguishing between variables

that affect idiosyncratic and aggregate dynamics. Therefore, our approach does not impose

any restrictions on the parameters selected for the estimation and we can consider parameters

that affect the stochastic steady state. Finally, elevated models are often hard to solve so that

tractable approximations are studied and used for an empirical analysis. Our method is very

general and covers a large class of macroeconomic models. As a consequence, researchers can

employ more complex nonlinear models for their empirical analysis.

2.3 Likelihood, Particle Filter and Neural Networks

The next step is to compute the likelihood, which evaluate the fit of the model with the data

in an efficient manner. The nonlinear model solution requires to use a nonlinear filter such as

the particle filter. However, the execution of the particle filter is computationally much more
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costly than the Kalman filter, which can be used in linear setups. This limits the amount of

parameter combinations that the estimation procedure can evaluate in due time.

To overcome this issue, we train a neural network that provides a direct mapping from

the parameter combination to the likelihood value obtained by the particle filter. This is

a so called surrogate model, which is trained on some data points and then provides in

a computationally cheap way the outcome of interest. Instead of repeatedly applying the

particle filter for each draw, we use this neural network to approximate the results of the

particle filter. Specifically, we calculate the likelihoods with the particle filter for different

parameter combinations over the parameter space and then use these as data points to train

the neural network. The advantage is that we need to run the particle filter much less often

in this setup, while we can at the same time evaluate the likelihood over the entire parameter

space. We denote this as a neural network based particle filter.

Measurement Equation The measurement equation that connects the state variables

with the observables Yt can be written as:

Yt = g(St|Θ̃) + ut, (16)

where g is a function and ut is a measurement error.

Likelihood Evaluation and Particle Filter We use a particle filter to extract the hidden

states and shocks due to the nonlinearity of the solution.17 The particle filter gives us then

the likelihood of the model:

L
(
Y1:T |Θ̃

)
. (17)

While the particle filter could be directly used within our approach, it can be very time

consuming for sufficient complex models. This is a particular problem as the filtering step is

usually repeated hundreds of thousand times, which would render estimation infeasible.

Neural Network as Surrogate Model for the Likelihood To overcome this bottleneck,

we propose a new neural network-based particle filter method. The particle filter determines

the likelihood for the parameters Θ̃ conditional on the data, which can be written as:

L
(
Y1:T |Θ̃

)
= ΩPF

(
Y1:T |Θ̃

)
, (18)

where L is the likelihood and the function ΩPF is unknown.18 A normal estimation procedure

calculates the value of the likelihood at each drawn point. This implies that ΩPF
(
Y1:T |Θ̃

)
is

17The particle filter (e.g. Herbst and Schorfheide, 2015) has been used to filter highly nonlinear models
with for instance occasionally binding constraints (Gust et al., 2017; Atkinson et al., 2020) or (endogenous)
multiple equilibria (Aruoba et al., 2018; Rottner, 2021). However, the particle filter has not been applied in
the context of large HANK models so far.

18Importantly, the extended neural network is used during the particle filter to calculate the likelihood.
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Figure 2: Neural network based particle filter method that captures the mapping from the parameter to the
log likelihood. The orange dots represent the data sample, where the log likelihood value has been
calculated with the particle filter. The blue line is the neural network, which was trained with
these data points from the particle filter. The red dashed line indicates the true value.

evaluated each single time for a given new draw of a parameter. Our strategy differs funda-

mentally and uses the advantages of neural networks as a very flexible function approximator.

We train a neural network ΩPF
NN that gives us directly the output of the particle filter:

L
(
Y1:T |Θ̃

)
= ΩPF

NN

(
Y1:T |Θ̃

)
(19)

where L is the likelihood of the model and ΩPF
NN is the neural network associated with the

particle filter. This neural network provides the likelihood in a very efficient manner.

Training of the Neural Network Based Particle Filter To train this separate neural

network, we create a dataset of parameter values and corresponding likelihoods that we

obtained by employing the particle filter. To avoid overfitting of the neural network, we

split the calculated points in in a training and testing sample.19 After we have trained

ΩPF
NN

(
Y1:T |Θ̃

)
, the likelihood of the model can be evaluated at a specific draw for negligible

costs. This neural network is then a surrogate model because it maps the parameters as

inputs directly to the associated likelihood value.

Graphical Characterization An example of the neural network based particle filter

method can be seen in Figure 2. The orange dots represent the data sample, where the

log likelihood value has been calculated with the particle filter. We use these points to train

a neural network that directly maps the parameter values into a log likelihood value.

Remarks on the Neural Network Based Particle Filter This approach differs on one

important margin to the standard approach of using filters. The standard approach evaluates

19Overfitting is not an issue for the policy functions neural networks as we draw always new random points.
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the likelihood with the filter without using any information of the likelihood of points that

are close to it. While we evaluate the likelihood at only several thousand points, we use the

neural network to learn the connection between these points. Conceptually, this idea could

be seen as a nonlinear interpolation of the likelihood values with neural networks. This allows

us then to evaluate the likelihood at points that we did not assess initially. Once the neural

network is trained, we can evaluate the likelihood for millions of parameter combinations in

a very short time. Another important advantage of this method is that the neural network

removes some of the noise associated with the particle filter as Figure 2 highlights. While

other class of models than neural networks could be also used as a surrogate models, we

choose neural networks as they are flexible and can approximate nonlinearities.

2.4 Estimation

We can now proceed to the final estimation step.. Equipped with the particle filter trained

neural network, we can evaluate each likelihood over the entire parameter space in less than

1ms. This opens up the possibility to either conduct maximum likelihood estimation or

Bayesian estimation with millions of draws.

Maximum Likelihood Estimation Maximum likelihood estimation maximizes the like-

lihood of the model:

Θ̃ML = argmax
Θ̃

L
(
Y1:T |Θ̃

)
(20)

We restrict the parameter space to be inside the boundaries of our extended neural network.

This is not a constraining assumption as we could extend the lower and upper bounds of the

neural network. In practice, it should be ensured that the extended neural network covers a

large enough area so that the mode lies very likely inside its bounds.

Bayesian Estimation The particle filter similarly allows us to estimate the model with

Bayesian methods. Bayesian inference uses the posterior distribution p
(
Θ̃|Y1:T

)
, which

combines the likelihood with a prior distribution:

p
(
Θ̃|Y1:T

)
∝ L

(
Y1:T |Θ̃

)
× p(Θ̃). (21)

where p(Θ̃) is the prior distribution. We are using truncated densities for the priors to ensure

that the draws of the parameters are inside the boundaries of our solved neural network.

We can then construct the posterior distribution with a Random Walk Metropolis Hast-

ings algorithm. We start to draw from the proposal density and can then use our precomputed

particle filter neural network to directly evaluate the posterior.

Other Estimation Approaches Other methods such as method of moments, generalized

method of moments or impulse response matching could be also decoded in this framework.
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Instead of creating the particle filter neural network, the appropriate alternative network

would then be trained with selected simulated moments or the impulse response functions.

2.5 Algorithm

The neural network based estimation approach consists of three key steps: i) Train the ex-

tended neural network to get the policy functions over the parameter space, ii Train the

particle filter neural network to get the likelihood over the parameter space, iii) Run max-

imum likelihood estimation or a Metropolis Hastings algorithm. A detailed description of

the algorithm to estimate macroeconomic models with Bayesian methods is in the Appendix

C. Our accompanied codes rely on PyTorch as the machine learning framework and Adam

(Kingma and Ba, 2014) as the stochastic optimizer.

3 Proofs of Concept

We provide two proofs of concept to establish the validity of our estimation approach. Specifi-

cally, we compare our neural network based method to i) the true solution of a small linearized

NK model that can be solved analytically and to ii) the estimation of a RANK model with

a zero lower bound based on conventional methods for nonlinear models.

3.1 Comparison to an Analytically Derived True Solution

We begin with solving a version of the linearized 3 equation New Keynesian model. The

reason for this choice is that this workhorse model has an analytical solution. We can then

compare the outcome of the extended neural network with the true solution. We demonstrate

that the extended neural network provides a very precise solution for the entire considered

parameter space.

The model is a small off-the-shelf NK model with a TFP shock that can be written in

linearized form as follows:

X̂ = EtX̂t+1 − σ−1
(
ϕΠΠ̂t + ϕY X̂t − EtΠ̂t+1 − R̂F

t

)
(22)

,Π̂t = κX̂t + βEtΠ̂t+1, (23)

R̂F
t = ρAR̂

F
t−1 + σ(ρA − 1)ωσAϵ

A
t , (24)

where the output gap is defined as X̂t = (Xt − X)/X, inflation as Π̂t = Πt − Π. The

strucutral parameters are described in Table 1. Furthermore, the distribution of the shock is

ϵAt ∼ N(0, 1) and we define ω = (1+ η)/(η+σ) as well as κ = (1−ϕ)(1−ϕβ)(σ+ η)/ϕ. The

system of equations can be either solved numerically or analytically.

The analytical solution, which can be derived with the method of undetermined coeffi-

cients, is given as:

X̂t =
1− βρA

(σ(1− ρA) + θY )(1− βρA) + κ(θΠ − ρA)
R̂F

t (25)
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Parameters LB UB Parameters LB UB

β Discount factor 0.95 0.99 θΠ MP inflation response 1.25 2.5
σ Relative risk aversion 1 3 θY MP output response 0.0 0.5
η Inverse Frisch elasticity 1 4 ρA Persistence TFP shock 0.8 0.95
φ Price duration 0.5 0.9 σA Std. dev. TFP shock 0.02 0.1

Table 1: The panel shows the parameters of the three equation NK model. We solve the neural network
for the parameter space that is spanned by the lower bound (LB) and upper bound (UB) of all
parameters.

Π̂t =
κ

(σ(1− ρA) + θY )(1− βρA) + κ(θΠ − ρA)
R̂F

t (26)

The analytical solution points out the idea of extended neural network, in which the solution

is simultaneously conditioned on the parameters and state variables. The analytical solution

of the output gap and inflation depends on the state variable R̂F
t . At the same time, the

output and inflation level also depends on the parameters.

Extended Neural Network To obtain a numerical solution, we use our neural network

approach. A neural network is trained to find the policy functions of inflation and output gap.

Importantly, the policy functions are simultaneously conditioned on the state variable and

the parameters. We minimize the residual error in the equations (22) and (23), while the law

of motion of the exogenous state variable is described in equation (24). Table 1 describes the

upper and lower bounds of the parameters, for which we solve the extended neural network.

While each parameter is varied for demonstration purposes, the method allows also to fix a

subset of parameters. Appendix F shows how this model can be mapped in the general form

that is outlined in Section 2.

We use 100,000 iterations to train the extended neural network.20 After each iteration,

the economy is simulated for 20 periods to get a new draw for the state variable. While we

initially (for the first 5,000 iterations) redraw the parameters after 20 iterations, we change

this to a new draw after each iteration afterwards. The batch size is set to 500, which can

loosely be thought of having 500 different parallel economies in each iteration to train the

neutral network.21

The convergence of the neural network is shown in Figure 3. The graph shows the mean

weighted residual error. The mean is taken across the batches and the weights of the Euler

equation and NKPC are equalized. The residual error drops form an initial level of around

10−4 to 10−8 on average, which is a decrease of 99.99%. This chart points out that the neural

network is very successful in minimizing the residual error over the entire set of parameters.

20The neural network contains 5 hidden layers with 128 neurons each. The activation function for the hidden
layers are Sigmoid Linear Unit (SiLU). The learning rate of the deep learning algorithm is lowered after 50000,
60000, 70000, 80000 and 90000 iterations.

21Our algorithm follows the general setup that we have derived in Section 2.2. The simple setting would
actually allow to fine-tune the method. For instance, we could directly sample from our state space as the
only state is an exogenous shock. We also do not need Monte Carlo integration due to the linear setup. The
expectations would be also pinned down if we would just assume that next the period shock is zero.

17



Figure 3: Figure shows the convergence of the neural network over the 100,000 iterations. The line displays
the mean weighted residual error. The mean is taken across the batches and the weights of the
Euler equation and NKPC are equalized. Both axis use a base-10 logarithmic scale.

Results Figure 4 shows the policy function of the output gap for variations of the parame-

ters. The policy function is evaluated at the one standard deviation of the ergodic distribution

and the unvaried parameters are fixed in the middle of their bound. The advantage of the

simple model is that the neural network solution can be compared to the true solution. The

comparison demonstrates that our extended neural network can capture the true solution as

the lines almost perfectly coincide. The shown connection is also highly nonlinear, which

emphasizes the potential of neural networks to capture nonlinearities.22 The variations in

the standard deviation of the shock is a noteworthy case. First, both lines are horizontal.

The reason is that the model is linearized so that the standard deviation of the shock has no

impact on the mapping from Rf
t to Π̂t and X̂t. Second, there is a small uptick in the neural

network for low values of the standard deviations. The reason is that we evaluate the neural

network at a rather large deviations from the steady state. The stochastic state space visits

this region very rarely so that the precision is slightly lower. As the solution is too far off from

the normal region, this is not a problem. However, increasing the number of iterations or

oversampling large shocks can help to remedy this problem. While we have focused here only

on the output gap, Figure 9 in the Appendix demonstrates the same take-aways for inflation.

The neural network based solution coincides almost perfectly with the true solution. This

concludes the first proof of concept.

22While the model is linearized, variations in the structural parameters can be nonlinear.
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Figure 4: Comparison between the neural network based solution and the true analytical solution. The plot
shows how variations in the structural parameter affect the policy function for the output gap X̂t.
The policy function is evaluated at the one standard deviation of the ergodic distribution and the
unvaried parameters are fixed at their mean.
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3.2 Comparison to a Conventional Estimation of Nonlinear Models

We now evaluate if our estimation strategy can recover the true data generating process of a

nonlinear model. In particular, we employ a Bayesian estimation with our neural network for

a nonlinear RANK model augmented with a ZLB. Additionally, we compare the results to

a conventional estimation approach of nonlinear macroeconomic models. The conventional

method relies on solving the model with global methods and then evaluating the likelihood

with a particle filter for each single draw of the Metropolis Hastings algorithm (Herbst and

Schorfheide, 2015). However, the conventional approach restricts the size of the model be-

cause of the curse-of-dimensionality and the costs to run the particle filter sufficiently often.

Therefore, we focus on a small-scale version of the RANK model with a ZLB.23 In fact, we can

later extend it to our nonlinear HANK model that we are actually after. Another advantage

is that this model does not feature an actual solution if the ZLB binds too often, as shown

e.g. in Bianchi et al. (2021). This provides a great testing ground how we can assess the

validity of a solution at a specific parameter combination.

3.2.1 Model

The model is a small RANK model with a zero lower bound.

Households The economy consists of a representative household. The household chooses

consumption Ct, labor Nt and assets Bt to maximize their utility:

E0

∑∞

t=0
βt exp(ζDt )

[(
Ct

1− σ

)1−σ

− χ

(
1

1 + η

)
(Ht)

1+η

]
,

where ζt is an aggregate preference shock, which follows an AR(1) process ζt = ρζζt−1 + ϵζt .

Ct is aggregate consumption. The budget constraint in real terms can be written as:

Ct +Bt =WtHt +
Rt−1

Πt
Bt−1 − Tt +Divt, (27)

where Divt is the real dividend, Wt is real wage, Ht is labor, Rt is the gross nominal interest

rate, Πt is the gross inflation rate and T i
t is real lump sum taxes. The first order conditions

are as follows:

1 = βRtEt

[(
ζt+1

ζt

)(
Ct

Ct+1

)σ 1

Πt+1

]
, (28)

χ(H i
t)

η = (Ct)
−σsitWt. (29)

Firms The firm sector consists of a continuum of final goods producer and intermediate

goods firms. The final goods retailers buy the intermediate goods and transform it into a

23Even though there are impressive examples that estimate nonlinear RANK models (e.g. Gust et al., 2017;
Atkinson et al., 2020), the scope of the models is unavoidably still quite limited.
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homogeneous final good using a CES production technology:

Yt =

(∫ 1

0
(Y j

t )
ϵ−1
ϵ df

) ϵ
ϵ−1

, (30)

where Y j
t is the output of intermediate goods firm j. The equilibrium price of the final good

and the demand for the intermediate goods of firm j can be expressed as:

Pt =

(∫ 1

0
(P j

t )
1−ϵ)

) 1
1−ϵ

, Y j
t =

(
P j
t

Pt

)−ϵ

Yt. (31)

Intermediate goods producers are monopolistically competitive. The firm j uses labor N j
t as

input to produce output Y j
t with the following production technology:

Y j
t = ZN j

t , (32)

where Z is the total factor productivity. Labor is hired in competitive markets so that the

wage is given as follows

Wt = ZtMCt. (33)

The firm j sets the price of its goods to maximize its profit subject to the demand curve for

intermediate goods and Rotemberg adjustment costs for changing prices:

max
P j
t

P j
t

(
P j
t

Pt

)−ϵ
Yt
Pt

−MCt

(
P j
t

Pt

)−ϵ

− φ

2

(
P j
t

ΠP j
t−1

− 1

)2

Yt, (34)

where Π is the inflation target of the central bank. Imposing a symmetric equilibrium and

discounting future profits with the real interest rate, the New Keynesian Phillips curve can

be written as:[
φR

(
Πt

Π
− 1

)
Πt

Π

]
= (1− ϵ) + ϵMCt + βφREt

Πt+1

Rt

[(
Πt+1

Π
− 1

)
Πt+1

Π

Yt+1

Yt

]
, (35)

where Πt = Pt/Pt−1. The Rotemberg adjustment costs are given back as lump sum. The

real dividends of the firm sector is Divt = Yt −WtYt.

Policy makers The central bank sets the nominal interest Rt using a Taylor rule that

responds to inflation and output deviations from their targets Π and Y . The rule is persistent

as the the interest rate response is smoothed with the previous period interest rate. The zero

lower bound restricts the nominal interest rate. The rule is given as:

Rt = max

[
1, R

(
Πt

Π

)θΠ
(
Yt
Y

)θY
]
. (36)

The fiscal authority follows a passive policy rule, where it uses lump-sum tax taxes Tt to
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keep their debts D on a constant path:

D =
Rt−1

Πt
Dt − Tt. (37)

3.2.2 Calibration and Data-Generating-Process

The calibrated model is used as data-generating-process. This provides a controlled environ-

ment for our experiment if the neural network can recover the true value of the parameters.

The upper panel of Table 2 summarizes the calibration of the model. We set the discount

factor β to 0.9975, which implies an annualized real interest rate of 1%. The persistence of

the shock is set to 0.7, while the standard deviation of the shock is set to 0.02. This ensures

that the model occasionally encounters the ZLB. The remaining parameters are standard.

3.2.3 Estimation

We now estimate the nonlinear model in a Bayesian setup by employing our developed ap-

proach, which relies on the extended neural network and the neural network based particle

filter. We compare the results to a estimation with a conventional approach.

Estimated Parameters and Priors The estimation includes five structural parameters:

The response of the monetary authority to inflation θΠ and to output θY , the Rotemberg

pricing parameter φ as measure of price stickiness as well as the persistence ρζ and standard

deviation σζ of the preference shocks. The prior distributions are truncated normal densi-

ties.24 The prior mean correspond to the true value, while the standard deviation σ is very

loose to avoid that the results are driven by the prior. The truncation ensures that the drawn

parameters lie inside the bounds that have been imposed while solving the extended neural

network.25 The lower panel of Table 2 summarizes the priors.

Measurement Equation We base the analysis on the quartlery output growth rate, an-

nualized quarterly inflation rate and nominal interest rate. The sample is generated with the

calibrated model and covers a period of 1000 periods. The measurement equation is given as:Output Growth

Inflation

Interest Rate

 =


100 ln

(
Yt

Yt−1

)
400 ln (Πt)

400 ln (Rt)

+ ut, (38)

where the measurement error follows a Gaussian distribution ut ∼ N (0,Σu). We include a

measurement error to avoid a degeneracy of the particle filter and to include more data series

than shocks. As in Gust et al. (2017), the variance of the measurement error for each time

24The probability density function of the truncated normal is f(x;µ, σ, a, b, ) = 1
σ

ϕ((x−µ)/σ)
Φ((b−µ)/σ)−Φ((a−µ)/σ)

. If
the bounds are not symmetric, the parameter µ does not correspond to the mean of the truncated normal.
For simplicity, we refer to µ as mean independent of the bounds.

25Even though a truncated prior density is helpful, it is not necessary. The extended neural network can be
solved over a distribution without bounds and can, to some extent, extrapolate.
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Calibration for the data-generating process

Parameters Value Parameters Value

β Discount factor 0.9975 θΠ MP inflation response 2
σ Relative risk aversion 1 θY MP output response 0.25
η Inverse Frisch elasticity 1 4 log(Π) Inflation target (annualized) 2
ϵ Price elasticity demand 11 Y Output target 1
χ Disutility labor 0.91 ρζ Persistence preference shock 0.7

φ Rotemberg pricing 1000 100σζ Std. dev. preference shock 2

Estimation

Par. Prior Neural Network Conventional Approach

Type Mean Std
Lower Upper Posterior Posterior
Bound Bound Median 5% 95% Median 5% 95%

θΠ Trc.N 2.0 0.1 1.5 2.5 2.11 1.92 2.24 2.06 1.93 2.20
θY Trc.N 0.25 0.05 0.05 0.5 0.248 0.236 0.259 0.248 0.237 0.260
φ Trc.N 1000 50 700 1300 985 925 1048 970 909 1033
ρζ Trc.N 0.7 0.05 0.5 0.9 0.691 0.672 0.709 0.688 0.670 0.707

σζ Trc.N 0.02 2.5e− 3 0.01 0.025 0.020 0.019 0.021 0.020 0.019 0.021

Table 2: The upper panel shows the calibration for the nonlinear RANK model with the ZLB, which is used
as data-generating process. The lower panel shows the prior and compares the posterior for the
neural network based estimation with a conventional approach. The prior type indicate the prior
density function, where Trc.N stands for a truncated normal distribution.

series is a fraction mE of its own variance. We set mE = 0.1. To be consistent, we combine

our simulated data series with a measurement error.

Neural Networks Based Estimation Approach The neural network based estimation

approach consists of three steps: i) Train the extended neural network to get the policy

functions over the parameter space and assess the residual error, ii) Train the neural network

based particle filter to get a direct mapping for the likelihood, iii) Run the Metropolis Hastings

algorithm.

The computationally most challenging step ist the first one, where we solve for the policy

functions. The neural network minimize the residual error in the Euler equation and the

NKPC. The neural network provides the policy functions for labor and consumption and is

conditioned on the parameters to be estimated and the state variables. Appendix F shows

how this model can be expressed in the general form that is outlined in Section 2.

We use 100,000 iterations to train the extended neural network.26 After each iteration, the

economy is simulated for 20 periods. The batch size is set to 500. As an additional element,

we train a surrogate model that evaluates the residual error over the entire parameter space.

This additional neural network, which helps to evaluate the existence of an equilibrium, is

also described in detail in Appendix B. We generate 15,000 likelihoods with the particle filter

to train the neural network based particle filter. The surrogate models for the validation

and the particle filter are computationally easier so that we choose a less complex neural

networks. We now easily obtain the posterior with a Random Walk Metropolis Hastings

26The neural networks contains 5 hidden layers with 128 neurons each. The activation function for the
hidden layers are parametric Rectified Linear Unit (PReLU).
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Figure 5: Posterior comparison between the neural network method (solid blue) and the conventional ap-
proach (dashed orange). Each estimated parameter is varied and its impact on the posterior shown.
The other parameters are fixed at the posterior median. The cutoff value indicates the range for
which a sufficient precise solution cannot be found due to deflationary spirals.

algorithm, which uses 50,000 draws after a burn-in.

We compare the results to a conventional nonlinear estimation approach that does not

use machine learning techniques to solve the model and calculate the posterior. The global

solution method is based on time iteration with piecewise linear policy functions as in Richter

et al. (2014) and the particle filter follows Herbst and Schorfheide (2015). Appendix D.2

provides more details on the conventional etsimation procedure. The conventional approach

also uses the nonlinear model as the data-generating-process.27 However, this approach is

27We use the same sequence of structural shocks and measurement error shocks to generate the data. For
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much slower as we need to resolve the model and run the particle filter for each draw. These

limitations rationalizes our restriction to a rather low amount of only 50,000 draws in the

Metropolis Hastings algorithm.

3.2.4 Results

The estimation results are summarized in Table 2. First of all, the neural network approach

performs very well in recovering the true data-generating process. The posterior median

is very close to the true value and is always cointained inside the 90% confidence interval.

The largest relative deviation from the true value is for the response of inflation, where the

posterior median is 2.11 relative to the true value of 2.0. However, the true value is contained

in the 90% confidence interval. Furthermore, the posterior median results for the conventional

method are very similar. In addition to this, the ranges of the 90% confidence interval are

also close.

Figure 5 compares the posterior of the neural network method to the conventional ap-

proach. Starting from the posterior median, each estimated parameter is varied and its impact

on the posterior shown. This shows that the posterior median is well identified. While the

posterior median of inflation is slightly away from the true value, this is related to the rather

flat posterior. A longer time series or a lower measurement error would help to identify this

parameter more precisely. Both methods provide a similiar shape of the posterior. This

shows that solving the neural network and training a surrogate model for the particle filter

allows to estimate such models. Nevertheless, Figure 5 also shows that the right tail differs

for the parameters θY , σζ and ρζ to some extent. This is related to the impact of the zero

lower bound on the solution. If the persistence is high, the standard deviation is large or the

monetary authority responds strongly to output, the economy encounters the ZLB very of-

ten. This creates a strong deflationary pressure and bias. However, there is a slight difference

between the neural network solution method and a conventional global method regarding the

deflationary bias. The neural network suggests a slightly lower deflationary bias. As a conse-

quence, the solution is more close to the data-generating process, which explains the higher

likelihood value at the right tail for the neural network method.

Furthermore, the deflationary pressure can also result in the non-existence of equilibria,

as shown in Bianchi et al. (2021). While this results in a collapse of the algorithm for

a conventional global solution method, we do not observe necessarily the same with the

extended neural network in the relevant parameter space. Instead, we observe that the

residual error is sufficiently larger in this area. In other words, the loss function, which is

minimized in the training, is larger in some areas of the parameter space. The reason is that a

collapse of the algorithm leads to a breakdown of the economy and ultimately to a very large

residual error. In contrast to this, a wedge in the Euler equation can break the deflationary

spiral resulting from the risk that the ZLB constraint will become binding. This is exactly the

the neural network, we feed the shocks in the model at the true parameters solved with neural networks. For
the conventional method, we feed the shocks in the model at the true parameters solved with standard global
methods.
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mechanism that we implicitly observe. The neural network allows for a larger residual error

to generate a wedge that avoids a deflationary spiral. Therefore, we discard the solutions,

where the residual error is larger.28 To find this area in an efficient manner, we rely on neural

networks. We train a surrogate neural network model that provides a mapping from the

parameter space to the average residual error. Appendix B contains a general description on

training a surrogate neural network for the residual error to disregard parts of the parameter

space in an efficient way. We use this surrogate model to discard solutions and only consider

solutions with a sufficient low residual error in the estimation. Figure 5 shows the cut-off

value if we vary the one parameter. Importantly, the cut-off value is also rather close to the

conventional solution approach. Appendix G.2 contains more information on the surrogate

model and provides a heat map of the residual error.

4 Estimating a Nonlinear HANK Model

To demonstrate the potential of our developed neural network based estimation approach,

we solve and estimate a nonlinear HANK model that features hundreds of state variables,

structural shocks and policy variables as well as nonlinearities at the aggregate and individual

level. Using this model as our laboratory true-data generating process, we apply our neural

network based Bayesian estimation approach to recover the true model. We use our estimation

to shed light on how well the parameters related to the heterogeneous setup can be identified

using standard aggregate data. For this analysis, we exploit that our approach does not

impose any restrictions on the set of parameters that can be included in the estimation.

Furthermore, we also emphasize the importance of the connection between idiosyncratic and

aggregate risk, which underlines the necessity of establishing such a nonlinear approach.

4.1 Model

The model is a medium scale nonlinear HANK model that captures idiosyncratic and aggre-

gate risk. The first key ingredient is heterogeneity. The households face idiosyncratic income

risk and a borrowing limit. The second key ingredient is that the zero lower bound constrains

monetary policy. The model features demand, supply and monetary policy shocks. Backward

looking components in the form of habit formation and persistence in the monetary policy

rule are also included.

28This approach to detect areas with a deflationary spiral is only possible because we work with an extended
neural network. If we would solve the neural network only for one parameter combination, we could not assess
how the residual error for this combination fares compared to other regions. Therefore, the discussed problem
can affect other neural network approaches even more severely and is potentially undetectable.
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4.1.1 Households

The economy consists of a continuum of households. The households choose consumption

Ci
t , labor N

i
t , and assets Bi

t to maximize their utility:

E0

∑∞

t=0
βt exp(ζDt )

[(
1

1− σ

)
(Ci

t − hCt−1)
1−σ − χ

(
1

1 + η

)
(H i

t)
1+η

]
,

where ζt is an aggregate preference shock, which follows an AR(1) process ζt = ρζζt−1 + ϵζt .

Ct is aggregate consumption and the parameter h controls the degree of habit formation.29

The budget constraint in real terms can be written as:

Ci
t +Bi

t =Wts
i
tH

i
t +

Rt−1

Πt
Bi

t−1 − T i
t +Divit, (39)

where Divit is the real dividend, Wt is real wage, H
i
t is labor, Rt is the gross nominal interest

rate, Πt is the gross inflation rate and T i
t is real lump sum taxes and. The agents individual

labor productivity sit is stochastic and follows an AR(1) process in logs sit = ρss
i
t−1 + ϵs,it .

The agents face a borrowing limit B, which implies:

Bt ≥ B. (40)

The first order conditions can be written as

1 = βRtEt

[(
ζt+1

ζt

)(
λit
λit+1

)σ
1

Πt+1

]
+ µit, (41)

λit = Ci
t − hCt−1 (42)

χ(H i
t)

η = (λit)
−σsitWt (43)

where µit ≥ 0 is the normalized multiplier on the individual borrowing limit in equation (40).

4.1.2 Firms

The firm sector consists of a continuum of final goods producer and intermediate goods firms.

Final Goods Producers The final goods retailers buy the intermediate goods and trans-

form it into the homogeneous final good using a CES production technology:

Yt =

(∫ 1

0
(Y j

t )
ϵ−1
ϵ df

) ϵ
ϵ−1

, (44)

where Y j
t is the output of intermediate goods firm j. The equilibrium price of the final good

and the demand for the intermediate goods of firm j can be expressed as:

Pt =

(∫ 1

0
(P j

t )
1−ϵ)

) 1
1−ϵ

, Y j
t =

(
P j
t

Pt

)−ϵ

Yt. (45)

29Auclert et al. (2020) discuss the role of habit formation for the marginal propensity to consume.
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Intermediate Goods Producers Intermediate goods producers are monopolistically

competitive. The firm j uses labor N j
t as input to produce output Y j

t with the following

production technology:

Y j
t = ZtN

j
t , (46)

where Zt is the total factor productivity. Total factor productivity follows a stochastic trend

Zt = gtZt−1, (47)

where the trend growth rate is subject to idiosyncratic shocks

gt = ḡ exp(ϵgt ). (48)

Labor is hired in competitive markets so that the wage is given as follows

Wt = ZtMCt. (49)

The firm j sets the price of its goods to maximize its profit subject to the demand curve for

intermediate goods and Rotemberg adjustment costs for changing prices:

max
P j
t

P j
t

(
P j
t

Pt

)−ϵ
Yt
Pt

−MCt

(
P j
t

Pt

)−ϵ

− φ

2

(
P j
t

ΠP j
t−1

− 1

)2

Yt, (50)

where Π is the inflation target of the central bank. Imposing a symmetric equilibrium and

discounting future profits with the real interest rate, the New Keynesian Phillips curve can

be written as:[
φR

(
Πt

Π
− 1

)
Πt

Π

]
= (1− ϵ) + ϵMCt + βφREt

Πt+1

Rt

[(
Πt+1

Π
− 1

)
Πt+1

Π

Yt+1

Yt

]
, (51)

where Πt = Pt/Pt−1. The Rotemberg adjustment costs are ex-post given back. The real

dividends of the firm sector can then be written as

Divt = Yt −WtYt. (52)

The dividends are distributed equally among the households so that Divt = Divit.
30

4.1.3 Policy makers

The central bank sets the nominal interest Rt using a Taylor rule that responds to inflation

and output deviations from their targets Π and Y . The rule is persistent because the the

interest rate response is smoothed with the previous period interest rate. In addition to this,

there are i.i.d. monetary policy shocks mpt. The zero lower bound restricts the nominal

30An alternative formulation would be to make the dividend payments depending on the individual produc-
tivity of the agent along the lines of Kaplan et al. (2018).
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interest rate. The rule is given as:

RN
t =

(
RN

t−1

)ρR (
R

(
Πt

Π

)θΠ
(
Yt
ZtY

)θY
)1−ρR

exp(mpt), (53)

Rt = max
[
1, RN

t

]
. (54)

The fiscal authority follows a passive policy rule, where it uses lump-sum tax taxes Tt to

keep their debts Dt on a constant path:

Dt =
Rt−1

Πt
Dt−1 − Tt. (55)

4.1.4 Market Clearing

Market clearing for the labor market, bond market and goods market requires

Nt =

∫
N j

t dj =

∫
sitH

i
tdi (56)

Dt =

∫
Bi

tdi (57)

Yt =

∫
Ci
tdi. (58)

4.2 Calibration

The calibrated model is used as data-generating-process to provide a laboratory setup for

our approach. The upper panel of Table 3 summarizes the calibration of the model. We

fit the model to the current low interest rate environment and capture the heterogeneity

of households in line with the nonlinear models of Gust et al. (2017) and Bianchi et al.

(2021) as well as the heterogeneous agent frameworks of Kaplan et al. (2018) and Fernández-

Villaverde et al. (2021). We set the discount factor β to 0.995, which implies a 200 basis

points contribution to the annualized real interest rate. The persistence of the preference

shock is set to 0.7, while the standard deviation is set to 0.03. This ensures that the economy

encounters the zero lower bond regularly. The standard deviation of the growth rate and

monetary policy shock are set to be in line with the standard deviation of GDP per capita

output growth and the effective federal funds rate.

The persistence of the individual labor productivity shock ρs and the individual borrowing

limit B follows Fernández-Villaverde et al. (2021). The standard deviation of the individual

shock targets a 30% share of borrowers to be around 30% in line with Kaplan et al. (2018).

Government debt D is set to 0.25. The remaining parameter are standard.

4.3 Estimation

We estimate the nonlinear HANK model with our newly developed neural network based

Bayesian methods. In particular, we use our extended neural network to obtain the policy
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functions and the neural network based particle filter. To provide a controlled environment,

the calibrated model is used as the true-data generating process.

Estimated Parameters and Priors The estimation includes 12 structural parameters,

which can be roughly separated as parameters related to idiosyncratic risk and aggregate

risk. The parameters related to the idiosyncratic risk are the borrowing limit of individual

households B and the parameters of the stochastic process of the labor productivity ρs and

σs. The remaining parameters are habit h, Rotemberg pricing φ, the persistence of the

Taylor ρr, the monetary policy response to inflation θΠ and output θY , the persistence of the

preference shock and the standard deviations of the three shocks σζ , σg and σmp. The prior

densities are truncated normals for all parameters. The prior mean corresponds to the true

value, while the standard deviation is rather loose to avoid that the results are driven by the

prior. As before, the truncation ensures that the drawn parameters lie inside the parameter

space of the extended neural network.

Measurement Equation We base the analysis on the quartlery output growth rate, an-

nualized quarterly inflation rate and nominal interest rate. The sample is generated with the

calibrated model and covers a period of 500 periods. The measurement equation is given as:Output Growth

Inflation

Interest Rate

 =


100 ln

(
Yt

Yt−1/gt

)
400 ln (Πt)

400 ln (Rt)

+ ut, (59)

where the measurement error follows a Gaussian distribution ut ∼ N (0,Σu). The variance

of the measurement error for each time series is the fraction mE = 0.1 of its own variance.

Neural Networks Based Estimation Approach The neural network based estimation

approach consists of three steps: i) Train the extended neural network to get the policy

functions over the parameter space, ii) Train the neural network based particle filter to get a

direct mapping for the likelihood, iii) Run the Metropolis Hastings algorithm.

We use two neural networks to train the policy function over the parameter space. The

first neural network provides the individual policy functions of labor and the multiplier on the

borrowing constraint. This neural network is conditioned on the agent’s individual states, the

entire state vector, which includes all agents individual states and in the aggregate states,

and the estimated parameters. The second neural network provides the aggregate policy

functions, namely inflation and the wage, and is conditioned on the state vector and the

estimated parameters. These neural networks are jointly trained to minimize the residual

error in the individual agents’ equations and in aggregate equations. In particular, the loss

function includes the Euler equation and a condition if the borrowing limit is binding for

each single agent. The aggregate conditions are the New Keynesian Phillips Curve, bond

market clearing and product market clearing.31 We set the amount of agents L to 100. This

31An advantage of neural network is that we can include more equations than policy functions in the Euler
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implies, we have together 205 state and 12 pseudo state variables and 206 equations, where

we minimize the residual error. We use 200,000 iterations to simultaneously train these two

extended neural network.32 After each iteration, the economy is simulated for 20 periods.

The batch size is set to 100 and we evaluate the Monte Carlo expectation using 100 draws.

Appendix F shows how this model can be expressed in the general form that is outlined in

Section 2.

For the second step, we generate 15,000 likelihoods with the particle filter. For this, we

randomly draw from the parameter space and then run the particle filter, where we use the

extended neural networks as crucial input. We then use these 15,000 data points to train

the surrogate neural network that captures the outcome of the particle filter. Specifically,

we use 75% of the sample to train the neural network and the remaining fraction for the

validation of the neural network.33 We train this neural network related to the likelihood

over 10,000 iterations with a batch size of 100. Once, we have obtained the the neural network

based particle filter, we have a direct mapping from the parameter values to the likelihood.

Importantly, this mapping is computationally very fast because our approach front-loads the

computational costs. Thus, the costs to evaluate a single parameters draw is at this stage

now very fast despite estimating a nonlinear HANK model.

Equipped with these objects, we can now move to the Random Walk Metropolis Hastings

(RWMH) algorithm. We set the amount of draw to 1 million (after a burn-in) to obtain the

posterior distribution. It takes us less than 2 days with a modern day desktop computer

to run the described estimation procedure, which consists of training the extended policy

functions, the neural network based particle filter and the RWMH algorithm.

4.4 Results

We estimate 12 parameters of the nonlinear HANK model with our neural networks approach.

The results are summarized in the lower panel of Table 3. The results show that the posterior

median is very close to the true value. In particular, the true value is contained in the 90%

credible interval for all parameters. This demonstrates that our method is well suited to

estimate complex nonlinear models.

Our neural networks approach has two advantages over more conventional estimation

procedures of HANK models. The first advantage is that we can estimate HANK models in

its fully nonlinear specification. As a consequence, our method accounts fully for the impact

of the zero lower bound (and also the agents’ borrowing limit). Other approach usually

either restrict the aggregate dynamics (by relying on linearisation or perfect foresight) or the

heterogeneous setup (by using RANK or TANK models). To the best of our knowledge, this

is the first estimation of a nonlinear HANK model.

equation method. In particular, we have added three aggregate conditions, while conventional methods would
only include two conditions.

32The neural networks contains 5 hidden layers with 128 neurons each. The activation function for the hidden
layers are Mish, which is self-regularized non-monotonic function and defined as f(x) = x tanh(softplus(x)).

33The neural network features 128 nodes and four hidden layers. We use SiLU (Sigmoid Linear Unit) as
activation function.
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Calibration for the data-generating process

Parameters Value Parameters Value

β Discount factor 0.995 θΠ MP inflation response 2
σ Relative risk aversion 1 θY MP output response 0.25
η Inverse Frisch elasticity 1 D Government debt 0.25
ϵ Price elasticity demand 11 B Individual borrowing limit −0.15
χ Disutility labor 0.91 ρs Persistence labor productivity 0.8
g Average growth rate 1.00 σs Std. dev. labor productivity 2.0%
h Consumption habit 0.1 ρζ Persistence preference shock 0.7
φ Rotemberg pricing 1000 σζ Std. dev. preference shock 2.8%
Π Inflation target 1.005 σg Std. dev. growth rate shock 0.9%
Y Output target 1 σmp Std. dev. MP Shock 0.3%
ρr Persistence MP rule 0.25

Estimation

Par. Prior Neural Network

Type Mean Std
Lower Upper Posterior
Bound Bound Median 5% 95%

Parameters related to idiosyncratic risk

B Trc.N −0.15 0.05 −0.5 0.0 −0.15 −0.07 −0.23
ρs Trc.N 0.8 0.01 0.7 0.9 0.80 0.78 0.81
σs Trc.N 2.0% 0.5% 0.01% 3.0% 1.88% 1.70% 2.05%

Parameters related to aggregate risk

h Trc.N 0.5 0.01 0.0 0.7 0.50 0.48 0.51
φ Trc.N 1000 25 700 1300 1000 962 1038
ρr Trc.N 0.5 0.01 0.0 0.7 0.50 0.49 0.52
θΠ Trc.N 2.0 0.025 1.5 2.5 2.00 1.96 2.04
θY Trc.N 0.25 0.025 0.125 0.5 0.26 0.23 0.29
ρζ Trc.N 0.7 0.025 0.6 0.8 0.71 0.69 0.73
σζ Trc.N 2.8% 0.25% 0.1% 4.0% 2.77% 2.61% 2.93%
σg Trc.N 0.9% 0.1% 0.01% 1.5% 0.91% 0.83% 1.00%
σmp Trc.N 0.3% 0.1% 0.01% 0.6% 0.32% 0.29% 0.35%

Table 3: The upper panel shows the calibration for the nonlinear HANK model with the ZLB and borrowing
limit, which is used as data-generating process. The lower panel shows the prior and compares the
posterior for the neural network based estimation with a conventional approach. The prior type
indicate the prior density function, where Trc.N stands for a truncated normal distribution.

The second advantage is that our method does not restrict the choice of parameters

that we can include in the estimation. As the model solves simultaneously for the (stochas-

tic) steady state and the aggregate dynamics, we can include parameters that affect the

(stochastic). To highlight this feature, we have included the following parameters related to

the idiosyncratic risk: borrowing limit B, individual labor productivity’s persistence ρs and

standard deviation σs. Therefore, our results can show how much aggregate data can help to

identify these parameters. The first row of Figure 6 shows the posterior for these parameters.

The posterior is rather flat in this area. This indicates that standard aggregate data used for

macroeconomic models does not contain too much information for estimating the parameters

related to the degree of heterogeneity or inequality. Including distributional data is probably

necessary to better pin down such values. At the same time, our results also suggests that

an estimation of a HANK model that uses standard aggregate data can rely on a carefully
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Figure 6: Posterior of the nonlinear HANK model estimated with the developed neural network estimation
procedure. Each parameter is varied, while the other parameters are fixed at the posterior median.
The posterior median is the green dashed line, while the true value from the data-generating process
is the red dotted line.

calibrated version for such parameters.

We also assess the posterior of the remaining 9 parameters, which can be loosely attributed

to the aggregate dynamics. We find that the posterior is in most cases rather informative.

This is particularly the case for the preference shock, which is our main exogenous driver.

We also observe a strong curvature of the posterior for habit and the persistence. Comparing

the posterior median to the true value, Figure 6 also highlights that our approach can recover
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the true-data generating process.

5 Conclusion

In this paper, we develop a novel estimation procedure using machine learning techniques. We

exploit the advantages of neural networks to estimate complex models, which are probably

out of reach otherwise. Our strategy rests on two key steps. First, we adapt the training of

the neural network to treat the parameters, which are estimated, as pseudo state variables.

Second, we train a neural network as a surrogate model to approximate the likelihood in an

computational efficient manner.

Our method applies to a large class of economic models such as heterogeneous agents

models, large representative agent models, sovereign default and endogenous bank run models

or multi-country (county) models. Our approach has three major advantages: i) it can

account for many state variables, ii) it can capture nonlinear dynamics such as the zero lower

bound or borrowing limits, iii) it does not impose any restrictions on the set of parameters

to be estimated in a heterogeneous agents setup.

We apply our techniques to estimate a nonlinear HANK model, which features idiosyn-

cratic and aggregate nonlinearities simultaneously. Using a laboratory setup, we show that

our method can recover the true data generating process. We also provide two proofs of

concept for our approach by comparing the neural networks method to an analytical solution

and an conventional estimation approach.

The proposed neural network based estimation method opens up new and exciting av-

enues for future research on the interaction between idiosyncratic and aggregate risk. For

instance, the impact of aggregate nonlinearities on inequality can be evaluated with empiri-

cally estimated structural models.
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A Deep Learning and Neural Networks

Deep learning is a class of machine learning techniques with (deep) neural networks as fun-

damental building block.34 In this paper, we outline a neural network based solution and

estimation approach. This strategy can be applied to complex and large macroeconomic

models that would have been considered to be out of reach previously. To achieve this task,

our approach utilizes two remarkable features of neural networks. The first feature is that

neural networks can approximate any continuous function as long as the neural network is

sufficient large. This is the so-called universal approximation theorem. The theorem ensures

that it is in theory possible to approximate (large) macroeconomic models with neural net-

works. The second feature is that the neural network can handle large amount of inputs.

Specifically, a neural network based solution method is very scalable because additional in-

puts can be added at rather low computational costs. As a consequence, neural networks

can tackle the curse-of-dimensionality so that large models can be captured. However, there

is more to the universal approximation theorem and the scalability of neural networks. We

demonstrate how to exploit these features of neural neural networks to establish a novel path

to the estimation of macroeconomic models.

Before outlining our approach in the next sections, we provide a short-primer on the

design and training of neural networks. Afterwards, we discuss the universal approximation

theorem and the scalability in more detail.

A.1 Deep Neural Networks

Neural networks are a mathematical function that maps some inputs S into outputs Y :

Y = ψNN (S|W ) (60)

where ψNN (·) is the neural network and W are the parameters of the neural network.

The neural network consists of several layers, which can be divided in the input layer,

hidden layer(s) and the output layer. The first layer is the input layer, which is visible.

Then, the neural network features a number of hidden layers. The final layer is the output

layer. Each hidden layer consists of several neurons, which can be seen as nodes in the neural

network and are explained in detail in the next paragraph. The amount of neurons determines

the width of the layer. The amount of layers determines the depth of the neural network. A

neural network with more than 3 layers in total is classified as deep. Figure 7 provides an

example of a deep neural network with three inputs, 2 hidden layers with 6 neurons each,

and 4 outputs. The displayed layers are dense as each layer is fully connected to each input

from the previous layer.

The neural network composes mathematical functions that are performed at the sin-

gle neurons in the network. A single neuron assigns its inputs s1, s2, . . . sS some weights

34Goodfellow et al. (2016) is a very good overview for artificial intelligence and in particular deep learning.
Fernández-Villaverde et al. (2020) or Maliar et al. (2021) also discuss machine learning in the context of
macroeconomic modeling.
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Figure 7: Example of a deep neural network.

w1, w2, . . . , wS and takes it sum (adjusted by a bias/constant w0).
35 This value is then taken

to a nonlinear activation function h(·),such as ReLU (rectified linear unit) or hyperbolic

tangent function, which then results a single output ỹ

ỹ = h(w0 +

S∑
i=1

wisi) (61)

The activation function h(·) helps the neural network to approximate nonlinearities in

the data. The choice of the activation function for the hidden layers affects how well the

neural network can learn the underlying features from the data. The activation function

for the output layer also directly determines the possible outcomes of the neural network.

For instance, a sigmoid function at the output layer would restrict the potential values to

lie between 0 and 1. As shown in Figure 7, these neurons are stacked to form the neural

network. The entire neural network can then be summarized as all the parameters at each

single neuron, which is the parameter vector W .

Loss Function and Training The next step is to train the parameter vector W . We are

interested in minimizing the loss between the actual data and the prediction of the neural

network. A popular criteria for continuous variables is for instance the mean squared error

loss ΦL:

ΦL(W ) = 1/B

B∑
i=1

(Yi − ψNN (Si|W ))2 (62)

where Yi is one data point, ψNN (S|W ) is the prediction of the neural network, which depends

on the parameter vector W , and Si is the input from the data.36 This loss is evaluated using

a total batch B of data points.

35Depending on the position of the neuron in network, the input is either directly from the inputs or from
the outcome of the previous layer.

36There are alternative specifications for a loss function. The mean squared error loss is used as example
here because macroeconomic models can be expressed with such a loss function as shown later.
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The next step is to optimize the parameters W to minimize the mean squared error loss:

W = argmin
W

ΦL(W ) (63)

The optimization relies on a iterative stochastic gradient descent method. This updates the

parameter vectorW until the code converges to a local minima. An important step in finding

these weights is backpropagation. This allows to compute how a change in the weights affect

the final loss. The step size in updating the weights depends on the learning rate. The

setting of the learning rate is important to avoid local minima (sufficient large rate) but also

to ensure convergence (sufficient small rate).

One problem with neural networks is overfitting. To avoid this problem, the data is

separated usually in a training and test data. It should be emphasized that this is not a

problem for macroeconomic models as we can always generate new data with the model

to avoid overfitting. In that regard, macroeconomic models provide us with a big data

environment, which is very helpful for the use of deep learning techniques.

The training of such a neural network is usually based on graphics processing units (GPUs)

as these can be used to parallelize many but rather simple activities. PyTorch and TensorFlow

are popular open source machine learning librarys that can be used to build and train neural

networks.

A.2 Universal Approximation Theorem

An important argument for the usage of neural networks is the universal approximation theo-

rem, which states that a feedforward network with at least one hidden layer can approximate

any continuous function in a finite-dimensional space with any desired non zero error given

a sufficient width (Hornik et al., 1989; Cybenko, 1989; Bach, 2017).37 Importantly, macroe-

conomic models can be casted in such a finite-dimensional space. As a consequence, neural

networks can in theory be applied to solve macroeconomic models.

A.3 Scalability

A particular problem in solving models with global methods is the well-known curse-of-

dimensionality. Extending the complexity of the model (by raising the number of state

variables) results in an exponential increase of the computational problem. As a consequence,

it is infeasible to solve large and complex models with such classical solution techniques.

However, neural networks allow to break the curse-of-dimensionality as they can handle

high dimensional problems much better than classical function approximators (Barron, 1993;

Bach, 2017). The reason is that the number of neurons grows linearly with the number of

the dimensions of problem, while in the case of traditional function approximators the size

37The theorem relies on some conditions for the activation functions that are used in the hidden layer. It
holds for instance for ReLU or the sigmoid function. The neural networks that have been discussed can be
classified as feedforward. This implies that there are no loops or cycles in the neural network so that the
information only moves forward.
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of the problem grows exponentially (Fernández-Villaverde et al., 2020). This scalability of

neural networks allows to handle models with a large number of states and tackle the curse-

of-dimensionality. As a consequence, neural networks can also in practice be applied to solve

complex macroeconomic models.

But, there is more to it than this. We explore how to use the scalibility of neural networks

to estimate macroeconomic models. The key trick is to treat the parts (parameters) of the

model that we want to estimate as inputs for the neural network. The neural network can

then be trained simultaneously not only for one economy but for all possible economies that

should be estimated. Importantly, the universal approximation theorem also provides the

theoretical groundwork for this approach as we only need a neural network with a sufficient

width to include this additional inputs. Exploiting these two features, we are able to outline

a general neural network based solution and estimation method.

B Residual Error Neural Network

An important step is to check if the model was solved with a sufficient precision over the

parameter space. This is important as there does not necessarily exist a solution at each con-

sidered parameter combinations. While in linearized models the Blanchard Kahn conditions

directly can control for this, this is not the case in a nonlinear model. As this is a general

problem for global solution methods, it also directly affects our method.

To evaluate the solution, we suggest to analyse the residual error in the equations that the

neural networks minimize. Importantly, the neural network may not be able to find a solution

because there does actually not exist an equilibrium. In such a case, the neural network may

find some (incorrect) solution, but the residual error is larger than in other correctly solved

parts. It should be noted that global solution method often encounter numerical issues when

they cannot find a solution. This makes it easy to spot a problem. Our experience is that

the neural network is much less likely to encounter numerical problems, which result in a

breakdown of the algorithm. Instead the neural network provides a solution with a large

residual error.

Our strategy will be to evaluate the average residual error after we have solved for the

extended neural network. The residual error is the weighted mean residual error when simu-

lating the model for a sufficient large amount of time.38 The residual error depends directly

on the parameter: R(Θ̃). In particular, we are interested in finding a function that directly

maps the parameter combination to the residual function:

R(Θ̃) = ΩRE(Θ̃) (64)

where ΩRE is an unknown function.

38To obtain the mean residual error in practice, we simulate the model for a number of periods and calculate
in each period the residual error, where the expectations are approximated with a large amount of draws for
the Monte Carlo integeration of expectations, and average then over the periods. We weight the different
residual errors of the considered equations along with the weights in the loss function.
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Figure 8: Residual error and surrogate neural network. The orange dots represent the data sample, where
the residual error has been calculated. The blue line is the neural network, which was trained with
these data points from the residual error. The red dashed lines indicates the cut-off value and
parameter values, for which the error is sufficiently small.

The usual approach to evaluate this function would be to evaluate the residual error at

each single draw. However, this is time wise a very costly approach and, therefore, not suited

for large models such as nonlinear HANK. To overcome this bottleneck, we propose to train

a neural network model that provides the outcome of the residual error. Specifically, we train

a neural network that provides the output of the function:

R(Θ̃) = ΩRE
NN (Θ̃) (65)

where ΩRE
NN is the neural network associated with the residual error. This type of neural

network is also denoted as surrogate neural network as it allows to calculate the outcome in

an efficient manner.

To train this separate neural network, we create a dataset of parameter values and corre-

sponding mean residual errors.39 The sample is divided in a training and validation sample.

We train the neural network with the training sample and avoid overfitting with the valida-

tion sample. After we have trained ΩRE
NN (Θ̃), the residual error of the model can be evaluated

at a specific draw for negligible costs. While we calculate the residual errors at only several

thousand parameter points, we use the neural network to learn the connection between these

points. This allows us then to evaluate the likelihood at points that we did not assess ini-

tially. As a consequence, we can speed up the algorithm considerably. Even though, we have

focused on residual errors here, other measures to validate the precision of the solution can

be applied in a similar way.

A graphical characterization of the residual error can be seen in Figure 8. The orange dots

represent the data sample, where the residual error has been calculated using the extended

39The extended neural network of the model is used in the simulation to obtain the residual error.
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neural network in a simulation. We use these points to train a neural network that directly

maps the parameter values into a log likelihood value. The graph shows that there is a strong

uptick in the residual error if the parameter is further increased. The increase in the mean

error is the result that the neural network cannot find an admissible solution. We set a cut-off

point, marked as the red line, to decide if a solution is feasible. If the value is below the point,

the solution is admitted. Otherwise, we disregard this parameter combination.

C Neural Network-Based Solution Algorithm for HANK

The algorithm uses a neural network approach to approximate policy functions based

onMaliar et al. (2021).40 We are going to use two separate neural networks for the indi-

vidual and aggregate policy functions. Our neural network

1. Set up the neural network to approximate the policy functions and guess the initial

values for the neural network to initialize the algorithm

(a) The neural network ψI
NN

(
Sit,St, Θ̃|Θ̄

)
for the individual policy functions({

N i
t

}L
i=1{

λit
}L
i=1

)
=
{
ψI
NN

(
Sit, St, Θ̃|Θ̄

)}L

i=1
(66)

(b) The neural network ψA
NN

(
St, Θ̃|Θ̄

)
for the aggregate policy functions(

Πt

W̃t

)
= ψA

NN

(
St, Θ̃|Θ̄

)
(67)

2. Solve for all time t variables for a given state vector of batch b. From the neural network,

we have a current guess for the policy functions, so that we start with

{N i
t}Li=1, {λit}Li=1,Πt, W̃t (68)

The next step is to calculate the following (aggregate) variables:

T̃t =

(
1

L

L∑
i=1

Bi
t−1Rt−1

)
1

Πtgt
(69)

Nt =

(
1

L

L∑
i=1

N i
ts

i
t

)
(70)

Ỹt = Nt (71)

ψ̃t = W̃t (72)

D̃ivt = Ỹt − W̃tNt (73)

40Maliar et al. (2021) use this approach to solve a consumption saving problem and Krusell-Smith economy
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As a next step, we can calculate the nominal interest rate, where we impose the zero

lower bound

RN
t =

(
RN

t−1

)ρRR(Πt

Π

)θΠ
(
Ỹt

Ỹ

)θY
1−ρR

, (74)

Rt = max
[
1, RN

t

]
(75)

We pursue with calculating for each household individual variables:C̃i
t =

[
sitW̃t

χ(H i
t)

η

] 1
σ


L

i=1

(76)

{
ωi
t = W̃ts

i
tN

i
t +

Bi
t−1Rt−1

Πt
− T̃t + D̃ivt

}L

i=1

(77){
Bi

t = ωi
t − Ci

t

}L
i=1

(78)

Aggregate consumption is given as

Ct =
1

L

L∑
i=1

Ci
t (79)

Update the part to Monte Carlo Integration We use the all-in-one expectation

method of Maliar et al. (2021), which uses two randomly drawn shocks for each AR(1)

process to evaluate the expectations:

Random Draws 1:
{
ϵζ,1t

}L

i=1
, ϵζ,1t (80)

Random Draws 2:
{
ϵζ,2t

}L

i=1
, ϵζ,2t (81)

We first proceed with random draw 1 to calculate the next period values of the stochastic

state variables, that is:

ln(ζ1t+1) = ρζ ln(ζt) + ϵζ,1t+1 (82)

ln(s1t+1) = ρs ln(st) + ϵs,1t+1 (83)

where the superscript indicates to which shock draw the next period value is associated.

We can now calculate the individual control variables for the next period:(
{N i,1

t+1}Li=1

{λi,1t }Li=1

)
= ψ1

(
S1t+1; Θ

)
, (84)

and similarly for the aggregate control variables:(
Π1

t

W̃ 1
t

)
= ψ2

(
S1t+1; Θ

)
(85)
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We can now calculate the aggregate variables again

T 1
t+1 =

(
1

L

L∑
i=1

Bi
tRt

)
1

Π1
t+1

(86)

N1
t+1 =

(
1

L

L∑
i=1

N i,1
t+1s

i,1
t+1

)
(87)

Y 1
t+1 = AN1

t+1 (88)

Div1t+1 = Y 1
t+1 −W 1

t+1N
1
t+1 (89)

We pursue with calculating for each household individual variables:Ci
t =

[
si,1t+1W

1
t+1

χ(H i,1
t+1)

η

] 1
σ


L

i=1

(90)

{
ωi,1
t+1 =W 1

t+1s
i,1
t+1N

i,1
t+1 +

Bi
tRt

Πt+11
− T 1

t+1 +Div1t+1

}L

i=1

(91){
Bi,1

t+1 = ωi,1
t+1 − Ci,1

t+1

}L

i=1
(92)

Aggregate consumption is given as

C1
t+1 =

1

L

L∑
i=1

Ci,1
t+1. (93)

We now calculate the Euler error for the Euler equations, that households satisfy the

borrowing limit, the New Keynesian Philipps Curve, the resource constraint in period

t and t+ 1, and market clearing for the bond in period t and t+ 1.{
Ri,1

1 = βRt

[(
ζ1t+1

ζt

)(
Ci
t

Ci,1
t+1

)σ
1

Π1
t+1

]
− λit

}L

i=1

(94)

{
Ri,1

2 = ΨFB
(
Bi

t +B, 1− λit
)}L

i=1
(95)

R1
N =

[
φ

(
Πt

Π
− 1

)
Πt

Π

]
− (1− ϵ)− ϵMCt − φ

Π1
t+1

Rt

[(
Π1

t+1

Π
− 1

)
Π1

t+1

Π

Y 1
t+1

Yt

]
(96)

R1
M = D − 1

L

L∑
i=1

Bi
t (97)

R1
MN = D − 1

L

L∑
i=1

Bi,1
t+1 (98)

R1
R = Ỹt − Ct (99)

R1
RN = Y 1

t+1 − Ct+1 (100)

where the function ΨFB is the Fischer-Burmeister, which can be used to represent
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Kuhn-Tucker conditons. We will discuss the Fischer-Burmeister Condition below. Re-

peat the same steps as before, but now use the second random draw of the shocks. This

allows to calculate the following objects{
Ri,2

1

}L

i=1
,
{
Ri,2

2

}L

i=1
, R2

N , R
2
M , R

2
MN , R

2
R, R

2
RN (101)

3. Define the loss function:

R2 =

L∑
i=1

αi
1R

i,1
1 Ri,2

1 +

L∑
i=1

αi
2R

i,1
2 Ri,2

2 + αNR
1
NR

2
N + αMR

1
MR

2
M+ (102)

αMNR
1
MNR

2
MN + αRR

1
RR

2
R + αRNR

1
RNR

2
RN (103)

where
{
αi
1

}L
i=1

,
{
αi
2

}L
i=1

, αN , αM , αMP , αR, αRP determine the weights for the different

equations

4. Optimize the parameters of the neural networks ψ1 and ψ2 to minimize the loss function

with a stochastic gradient optimizer

5. Repeat steps 2 - 4for each batch (B times)

6. Simulate each batch economy b for T sim periods using randomly drawn shocks. This

creates then the state vector for the next iteration of the optimizer

7. Repeat steps 2 - 6 N iter times

Fischer-Burmeister Function The Fischer-Burmeister function can be used to capture

computationally the complementary slackness conditions of the Karush-Kuhn-Tucker condi-

tions. The complementary slackness conditions can be written for instance as:

e ≥ 0, f ≥ 0, e× f = 0 (104)

The Fischer-Burmeister function is defined as

ΨFB (e, f) = e+ f −
√
e2 + f2 (105)

If ΨFB (e, f) = 0, then the complementary slackness conditions are satisfied.

We are interested using this to ensure that the borrowing constraint Bi
t ≥ B is satisfied

(see also equation (40)). In the algorithm, we used λit, which is defined as follows:

λit = 1− µit (106)

The complementary slackness conditions can be written as

1− λit ≥ 0 (107)
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(
Bi

t −B
)
≥ 0 (108)(

1− λit
)
×
(
Bi

t −B
)
= 0 (109)

and we minimize the Fischer-Burmeister condition to ensure that these conditions are hold

ΨFB
(
1− λit, B

i
t −B

)
(110)

D Neural Network-Based Bayesian Estimation Algorithm

The following algorithm can be used to run a Neural Network-Based Bayesian Estimation

1. Train the model with the extended neural network approach to solve the model for the

entire parameter space

2. Train a new neural network to save the result of the particle filter

3. Calculate the likelihood at chosen points (e.g. with Random Walk Metropolis Hastings

Algorithm)

D.1 Neural Network-Based Particle Filter

1. Set up a neural network to approximate the likelihood function and intialize the net-

work. The neural network ΩPF maps the structural parameter values into a likelihood

value:

L = ΩPF

(
Θ̃|Data

)
(111)

2. Use the particle filter to solve for the economy and calculate the likelihood value

Lv(what we do at the moment)

3. Define the loss function

R2 = (L− Lv)2 (112)

4. Optimize the parameters of the neural networks ΩPF

(
Θ̃|Data

)
to minimize the loss

function

5. Repeat steps 2 to 4 B times

D.2 Estimation based on classical solution approach

We also use a Metropolis Hastings algorithm to estimate the parameters Θ̃, when we solve the

model with classical global solution methods. Our design of the algorithm follows Atkinson

et al. (2020).41. We initially draw randomly from the prior distribution to get a proposal den-

sity for the Metropolis Hastings algorithm. We then run a burn-in period with the Metropolis

41See also Herbst and Schorfheide (2015) for useful
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Hastings algorithm to get an updated proposal density. This proposal density is then used to

start the final run of the Metropolis Hastings algorithm. The detailed approach is as follows:

1. Obtain a first candidate density for the Metropolis Hastings algorithm from, which the

parameters Θ̃ are drawn, as follows

(a) Draw from the prior distirbution a candidate vector Θ̃New

(b) Solve the model for the draw with a classical global solution method (e.g. with

a time algorithm that uses piecewise linear policy function and approximates ex-

pectations with Gauss-Hermiture quadrature)

(c) Use a particle filter to calculate the likelihood of the model lnL(Θ̃New|Data) and

combine it with the prior to obtain the log posterior ln g(Θ̃New|Data)

(d) Repeat these steps N init times and collect all draws as Θinit

(e) Approximate the covariance matrix with these draws

i. Choose all draws where the likelihood is above the 90% quantile, which is

denoted as Θ̂

ii. Calculate the deviations of each draw from the mean: Θ̃ = Θ̂− Θ̂

iii. Calculate the covariance matrix: Σ = (Θ̃′Θ̃)/(0.1N init)

iv. Define the mode, that is the draw associated with highest likelihood, as Θ̃

2. Draw a new parameter vector Θ̃New from the candidate density to evaluate the log

posterior. The candidate density is a multivariate normal distribution with mean vector

Θ̃ and covariance matrix cΣ, where the parameter is set to have an acceptance ratio

between 20 and 40%.

(a) Solve the model for the draw with a classical global solution method (e.g. with

a time algorithm that uses piecewise linear policy function and approximates ex-

pectations with Gauss-Hermiture quadrature)

(b) Use a particle filter to calculate the likelihood of the model lnL(Θ̃New|Data)

(c) Combine the likelihood with the prior to evaluate the log posterior ln g(Θ̃New|Data)

(d) Accept the draw if exp(ln g(Θ̃New|Data) − ln g(Θ̃|Data)) is larger than the draw

from a standard uniform distribution. If the draw is accepted, the candidate

density is updated to Θ̃ = Θ̃New

3. Repeat the previous step NBurn times.

4. Use these Nnurn draws to get an updated candidate density. W

(a) Keep only the last 75% of draws, which are denoted as Θ̂b

(b) Calculate the deviations of each draw from the mean: Θ̃b = Θ̂b − Θ̂b

(c) Calculate the covariance matrix: Σ = (Θ̃b′Θ̃b)/(0.75N burn)
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(d) Define the mode, that is the draw associated with highest likelihood, as Θ̃

5. Use the proposal density defined in the previous step and repeat step 2a Nfinal times

To be continued ...

D.2.1 Details on the Solution and Estimation Algorithm

To be continued ...

E Equilibrium Conditions

E.1 Linearized 3 equation NK model

X̂ = EtX̂t+1 − σ−1
(
ϕΠΠ̂t + ϕY X̂t − EtΠ̂t+1 − R̂F

t

)
(113)

Π̂t = κX̂t + βEtΠ̂t+1 (114)

R̂F
t = ρAR̂

F
t−1 + σ(ρA − 1)ωσAϵ

A
t (115)

E.2 RANK model with ZLB

Add the equilibrium conditions of the RANK model

E.3 HANK model with ZLB

To have stationarity, we need to define the variables as follows X̃t = Xt
Zt
. The relevant

conditions can then be written as:

C̃i
t + B̃i

t =Wts
i
tH̃

i
t +

Rt−1

Πtgt
B̃i

t−1 − T̃ i
t + D̃iv

i
t, (116)

λ̃t = C̃t − h
C̃t−1

gt
(117)

1 = βRtEt

[(
ζt+1

ζt

)(
λ̃it

λ̃it+1

)σ
1

Πt+1gσt+1

]
+ µit, (118)

χ(H i
t)

η = (λ̃it)
−σ
(
sitW̃t

)
(119)

Ỹ j
t = N j

t , (120)

W̃t =MCt (121)

D̃ivt = Ỹt −WtỸt (122)[
φR

(
Πt

Π
− 1

)
Πt

Π

]
= (1− ϵ) + ϵMCt + φREt

Πt+1

Rt

[(
Πt+1

Π
− 1

)
Πt+1g

σ−1
t

Π

Ỹt+1

Ỹt

]
,

(123)

Rn
t = (RN

t−1)ρR

R(Πt

Π

)θΠ
(
Ỹt

Ỹ

)θY
1−ρR

, (124)
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Rt =
[
1, RN

t

]
(125)

D̃t =
Rt−1

Πtgt
D̃t−1 − T̃t (126)

F Mapping the Model in the General Framework

F.1 Linearized 3 equation NK model

We can map the linearized NK model in the general form of the outlined estimation procedure.

The state variable and structural shock are:

St =
{
R̂f

t

}
, and νt =

{
ϵAt
}
. (127)

The control variables of the model are:

ψt =
{
X̂t, Π̂

}
. (128)

The parameters of the model are divided in calibrated (θ̄) and estimated ones (θ̃):

Θ̄ = {} , (129)

Θ̃ = {β, σ, η, ϕ, θΠ, θY , ρA, σA} . (130)

where we choose to vary all parameters so that the set for the calibrated parameters is empty.

The neural network ψNN is trained to determine the output gap and inflation:(
X̂t

Π̂t

)
= ψNN

(
St, Θ̃|Θ̄

)
. (131)

F.2 RANK model with ZLB

We can map the RANK model in the general form of the outlined estimation procedure. The

state variable and structural shock are:

St = {ζt} , and νt =
{
ϵζt

}
. (132)

The control variables of the model are:

ψt = {Ct, Nt, Tt, Yt, Divt,MCt} . (133)

The parameters of the model are divided in calibrated (θ̄) and estimated ones (θ̃):

Θ̄ = {β, σ, η, ϵ, χ,Π, Y } , (134)

Θ̃ = {θΠ, θY , φ, ρζ , σζ} . (135)
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The neural network is trained to determine wage and inflation, which is sufficient to determine

the other variables:(
Πt

W̃t

)
= ψA

NN

(
St, Θ̃|Θ̄

)
. (136)

F.3 HANK model with ZLB

We recast the model to take out the stochastic trend in GDP growth, where we define variables

as follows. X̃t =
Xt
Zt
. The detrended equilibrium conditions can be found in Appendix A.

We can map the HANK model in the general form of the outlined estimation procedure:

St =
{{

B̃i
t−1

}L

i=1
,
{
sit
}L
i=1

, RN
t−1, C̃t−1, ζt, gt,mpt

}
(137)

νt =

{{
ϵs,it

}L

i=1
, ϵζt , ϵ

g
t , ϵ

mp
t

}
(138)

As we approximate the distribution using 100 agents (L = 100), this which corresponds to

205 state variables S and 105 structural shocks.

The control variables of the model are

ψt =

{{
C̃i
t

}L

i=1
,
{
N i

t

}L
i=1

,
{
B̃t

}L

i=1
, {µt}Li=1 , T̃t, Ỹt, D̃ivt,MCt

}
(139)

The parameters of the model are divided in calibrated (θ̄) and estimated ones (θ̃):

Θ̄ =
{
β, σ, χ, h, φ,B,D, ϵ, φR, g,Π, Y, ρr, κΠ, κY , ρs, ρzeta

}
(140)

Θ̃ = {σs, σζ , σg, σmp} (141)

We use two neural networks to separate between individual and aggregate policy functions.

The individual neural network solves for labor supply and the multiplier on the borrowing

constraint:({
N i

t

}L
i=1{

µit
}L
i=1

)
=
{
ψI
NN

(
Sit, St, Θ̃|Θ̄

)}L

i=1
, (142)

where Sit =
{
B̃i

t−1, s
i
t

}
. The neural network for the aggregate control variables determines

the wage and inflation:(
Πt

W̃t

)
= ψA

NN

(
St, Θ̃|Θ̄

)
(143)

G Additional Results

G.1 Linearized 3 equation NK model

Figure 9 shows the policy function for inflation for variations of the parameters.
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Figure 9: Comparison between the neural network based solution and the true analytical solution. The
plot shows how variations in the structural parameter affect the policy function for inflation Π̂t.
The policy function is evaluated at the one standard deviation of the ergodic distribution and the
unvaried parameters are fixed at their mean.
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Figure 10: Surrogate neural network model that contains the residual error. It shows the trained neural
network and contrasts it to the data that are used for training. The red line corresponds to a
cut-off value at a residual error at .25e-5.

G.2 RANK model with ZLB

The surrogate neural network model that contains the residual error is shown in 10. While

the neural network is trained for all parameters, the figure shows the change in the residual

error for the standard deviation of the shock. Figure 11 shows how the combination of

parameters affect the residual error. The contour plot shows that the persistence and the

standard deviation have the most impact on the residual error.
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Figure 11: Surrogate neural network that contains the residual error is presented as contour plot. A dark
value is associated with a low residual error, while a light value is associated with a high value.
The red line is set at a cut-off value at 0.5e-5.
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