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Abstract

Variety-seeking behavior refers to the tendency to alternate between different products to expe-

rience diversity or variety in consumption over time. It is a prominent and well-documented driver

of individual decision-making and has attracted much attention in the marketing, psychology, and

economics literature. In spite of that, the vast majority of intertemporal choice models assume some

form of time-separability, implying consumption independence and therefore making them unable

to account for variety-seeking behavior. This paper addresses this issue by presenting, studying,

and axiomatically characterizing a new discrete choice model of time-risk preferences consistent

with variety-seeking behavior. I refer to this model as the history-discounted utility (HDU) model.

In the HDU model, consumption independence is relaxed by allowing for a history-dependent utility

function. The biological/psychological driver of variety-seeking behavior is a satiation and recovery

process in which product enjoyability decreases with consumption and recovers back to its intrinsic

level otherwise. The main advantage of the axiomatic characterization presented in this paper is

that simple and intuitive axioms allow disentangling the effects from time discounting from history

dependence, providing a new framework to axiomatize time-nonseparable preferences. I demon-

strate the broad scope of applicability of the HDU model by analyzing two different applications.

In the first application, I study a multiproduct monopolist’s optimal dynamic pricing strategies in

intertemporal discrete choice settings facing variety-seeking consumers. In the second application,

I show how the tools provided by the HDU model can help tackle one of the most urgent threats

to public health, antibiotic resistance. In particular, I show how the HDU model can be used to

design antibiotic treatment plans to fight bacterial infections more effectively while minimizing the

threat of developing antibiotic resistance.
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1 Introduction

Variety-seeking behavior refers to the tendency to alternate between different products in or-

der to experience diversity or variety in consumption over time. It is a prominent and well-

documented driver of individual decision-making that has attracted much attention in the

marketing, psychology, and economics literature.1 It arises due to the satiation effect individ-

uals experience after consuming a product.2 The satiation effect increases with consumption

frequency (or quantity) and decreases otherwise.

Despite the prominence of variety-seeking behavior in intertemporal choice contexts, neither

the leading rational paradigm to study intertemporal choice in economics, the exponentially

discounted utility (EDU) model, nor behavioral intertemporal choice models like the quasi-

hyperbolic discounting model can accommodate such behavior. These models assume some

form of time separability, implying consumption independence. Consumption independence

means that the utility generated by current consumption does not depend on past or future

consumption streams. For example, it implies that a person’s preferences between an Italian

and Japanese restaurant tonight do not depend on whether she ate Japanese food last night

or expects to have it tomorrow. Therefore, time-separable models are unable to account for

variety-seeking behavior.

This paper addresses this issue by presenting, studying, and axiomatically characterizing a

new discrete intertemporal choice model of time-risk preferences consistent with variety-seeking

behavior. I will refer to this model as the history-discounted utility (HDU) model. To the best

of my knowledge, this paper is the first to provide an entirely founded intertemporal choice

model consistent with variety-seeking behavior in a discrete choice setting. The HDU model is

a simple, intuitive, and flexible model that possesses several desirable properties:

1. It can be estimated empirically with the data typically observed in intertemporal discrete

choice settings: the set of available products alongside the chosen product and its price

in each period.

1See, for example, Ratner et al. (1999), Adamowicz (1994), McAlister (1982), and Ratner et al. (1999) for
seminal papers documenting variety-seeking behavior in humans. It has also been reported in animals like
in Addessi (2008) and Addessi et al. (2010), highlighting the fundamental nature and ubiquitousness of such
behavior. The prominence of such behavior suggests that preferences for variety result from an evolutionary
process since it facilitates species’ survival in two different but interrelated ways. First, populations that rely on
a unique food source are more likely to die of starvation in case of natural occurrences that severely decrease the
amount of food availability. Second, populations that rely on a unique food source are less likely to ingest all the
nutrients needed to prosper. This evolutionary hypothesis might explain the ubiquitous nature of variety-seeking
behavior in humans and non-human animals. See also Zhang (2022) for a recent literature review and Table 1
from Cosguner et al. (2018) for an account of categories of products in which variety-seeking behavior has been
empirically demonstrated.

2A prominent alternative explanation presented in the psychology literature is that variety-seeking behavior
arises due to a psychological need for stimulation. However, both explanations of variety-seeking behavior are
entirely consistent with the model I will present in this paper. It just changes the interpretation of the parameters.
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2. The HDU model has a wide range of applicability, as I show with two very different

but illustrative applications. The first application studies monopolists’ optimal dynamic

pricing strategies when facing variety-seeking consumers. The second application shows

how the HDU model can be used to design optimal antibiotic treatment plans.

3. The model is easily extended to fit different applications, settings, and needs, as I show

with three behaviourally founded extensions. In the first extension, I revisit the model

by considering agents with limited foresight. In the second extension, I allow desirable

goods to become economic bads after a sufficiently long history of past consumption. In

the last extension, I consider infinite consumption streams.

The axiomatic characterization of the HDU model allows us to evaluate the logical and math-

ematical appeal of the model by testing its (falsifiable) axioms and hence assess and interpret

its precise predictions. The main advantage of the axiomatic characterization presented in this

paper is that simple and intuitive axioms allow disentangling the effects from time discounting

from history dependence, providing a new framework to axiomatize time-nonseparable prefer-

ences. The key idea of the model is that the biological/psychological driver of variety-seeking

behavior is a satiation and recovery process in which product enjoyability decreases with con-

sumption and recovers back to its intrinsic level otherwise.

The HDU model considers a decision maker (DM) with preferences over consumption

streams which are sequences of ordered pairs. Each ordered pair consists of a simple lot-

tery over a discrete set of alternatives and a sure monetary amount that the DM chooses at

each time point.3 The DM has additively separable preferences over such ordered pairs. The

EDU arises naturally as a particular case of the HDU whenever the DM does not experience

any satiation.

Let us describe the HDU model’s simplest riskless version to fix ideas. The dynamic nature

of the HDU model representation is captured by three key parameters, the time discount rate

δ ∈ (0, 1), the satiation parameter λ ∈ (0, 1], and the recovery parameter β ∈ (0, 1], and is based

on the following simple idea: Every time an alternative is consumed, its utility is discounted by

the satiation parameter. Otherwise, its utility might recover up to its intrinsic value at a rate

specified by the recovery parameter. On the other hand, monetary amounts do not experience

satiation and hence are represented by a static utility function. In sum, a fully forward-looking

variety-seeking DM with preferences consistent with the HDUmodel maximizes the sum of time-

discounted and history-discounted utilities where the history-dependent utility representation

over the finite set of alternatives follows the aforementioned simple law of motion.

In Section 3, I present the paper’s main result, the axiomatic characterization of the HDU

model for finite horizon consumption streams. I use a novel axiomatization strategy that

3Monetary amounts could be interpreted as prices in some applications, and we can also re-interpret monetary
amounts as any other continuous attribute like quality or nutritional levels.
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allows isolating the effects of time from pure history dependence. Section 4 presents a simple

procedure, based on some results and ideas from Section 3, to uniquely elicitate the parameters

and the utility functions of the HDU model with arbitrary precision. This simple procedure

can be implemented with easily accessible experimental data. It can also serve as a starting

point for developing an empirical strategy to estimate the model with observational data such

as consumer supermarket data.

In Section 5, I demonstrate the broad scope of applicability of the HDU model by analyzing

two different applications. In the first application, I study a multiproduct monopolist’s opti-

mal dynamic pricing strategies in intertemporal discrete choice settings facing variety-seeking

consumers with different degrees of foresight. I characterize the monopolist’s optimal pricing

strategy and show that with such a strategy, the monopolist can impose any consumption

path on all consumers, regardless of their degree of foresight. Hence, the monopolist’s profit

maximization problem is reduced to choosing the optimal consumption path that maximizes

total surplus. Therefore, the monopolist can extract all surplus and increase the total surplus

in society by inducing myopic consumers and k-period forward-looking agents to behave as a

fully-forward agents as patient as the monopolist. This result implies that if the monopolist

ignores the variety-seeking nature of the consumer, it will implement a sub-optimal pricing

strategy leading to a substantial reduction in profits and total surplus. This application ex-

emplifies how standard economic theory results should be revisited in light of the HDU model

whenever variety-seeking behavior occurs. In the second application, I show how the modeling

tools provided by the HDU model can help tackle one of the most urgent threats to public

health, antibiotic resistance. The HDU model can be used to design antibiotic treatment plans

to fight bacterial infections more effectively while minimizing the threat of developing antibi-

otic resistance. With a simple reinterpretation of the HDU model’s main parameters, the HDU

model provides an adequate theoretical framework to address this issue.

Finally, in Section 6, I present and axiomatically characterize three extensions of the HDU

model. In the first extension, I revisit the HDU model by considering agents with limited

foresight. In particular, I characterize the choice behavior of a k-period forward-looking agent.

Two special cases of k-period forward-looking agents are worth mentioning. First, the standard

fully-forward-looking agent that we have considered up until now corresponds to k ≥ T where

T is the length of the consumption stream. Second, the myopic agent, which corresponds to

k = 0, always chooses what he likes the most at each period, ignoring the effects of that choice

on future choices. In the second extension, I consider goods that might become bads after a

sufficiently long past of consumption history. In the third extension, I illustrate the flexibility of

the axiomatization strategy by characterizing the HDU model for infinite consumption plans.

This exercise is simplified dramatically since the axiomatization strategy presented in this

paper allows disentangling the effects of time from history dependence. Therefore, it reduces
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to replacing the subset of time discount axioms with appropriate ones to accommodate infinite

consumption plans (or any other desired set of time discount axioms like quasi-hyperbolic

discounting if we suspect that present bias might interact with variety-seeking). Section 7

concludes this paper.

Related Literature

The study of variety-seeking behavior can be traced back to early experiments in brand

loyalty such as McConnell (1968) and Tucker (1964). These studies report switching behavior

after controlling for determinant marketing variables such as prices, promotions, or product

design.4 Participants were instructed to make repeated choices among unfamiliar products, and

two switching behavior stages were identified. Initially, participants explored all items. Later in

the experiment, participants tended to alternate among a subset of preferred products. The first

stage is distinguishable from the second because of the information acquisition motive. In the

first stage, participants aim to elicit their preferences. In the second stage, once the preferences

are known, participants alternate among products to experience variety in consumption over

time. The literature refers to such behavior as variety-seeking behavior. This paper fits into

the growing literature that deals with switching, as in the second stage, and contributes to the

literature in various aspects.

First, numerous papers have studied variety-seeking behavior and have developed models to

rationalize such behavior. Seminal contributions in this literature are Dixit and Stiglitz (1977),

McAlister (1982), Adamowicz (1994), and Baucells and Sarin (2007, 2010). However, in all these

papers, explicitly or implicitly, the satiation and recovery rates are arbitrarily linked, either by

definition or by mathematical convenience (in most papers, the satiation and the recovery rates

are equal). In principle, however, there is no reason why these two key elements of the dynamic

process should be linked. It is easy to imagine products where satiation occurs relatively faster

than recovery or vice-versa.5 Ultimately, whether the satiation and recovery rates are linked in

some specific way is an empirical question that should be addressed, and any model attempting

to rationalize variety-seeking behavior should not put any artificial restriction on it. This paper

fills this gap by providing, to the best of my knowledge, the first entirely founded intertemporal

choice model consistent with variety-seeking behavior where the satiation and recovery rates

are not linked in any specific way and, as a result, can accommodate richer and more realistic

consumption patterns.

4As pointed out by Ratner et al. (1999), previous research has identified several factors accounting for switch-
ing behavior. The most prominent factors are i) intrapersonal factors, such as the satiation effect individuals
experience after consuming a product and/or a psychological need for stimulation, ii) external factors, such as
promotions, price changes, or marketing campaigns; and iii) uncertainty about future preferences. However,
the only category of factors that can account for variety-seeking behavior in sequential choice contexts among
unchanging options is the first one.

5For example, a DM might satiate relatively fast from eating oysters and recover its taste back slowly while
simultaneously satiate relatively slowly from eating chocolate and recovering faster.
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Furthermore, these papers developed quantity-oriented variety-seeking models.6 Thus, these

models are designed to explain how much of the good the variety-seeking DM will consume at

each time but are ill-equipped to describe variety-seeking behavior in discrete choice environ-

ments such as restaurants, products, or recreational activities choices. The HDU model provides

a suitable discrete choice framework to study applications such as the ones presented in this

paper.

Second, although some quantity-oriented variety-seeking models have been axiomatically

founded like Kaiser and Schwabe (2012), He et al. (2013), Rustichini and Siconolfi (2014), and

Baucells and Zhao (2020), the setting presented in this paper requires the development of a com-

pletely different technical approach. In addition, this new characterization strategy offers simple

and intuitive axioms that easily allow isolating the effects of time from history-dependence. To

achieve this, I propose a set of standard axioms that, in conjunction, will enable me to show

that for each lottery (alternative) in the choice set, there exists a unique history-dependent

compensation that the DM will require to give up that lottery. With this result in hand and

an additional simple axiom, I show that there exists a unique stream of appropriate monetary

compensations for every consumption stream that makes the DM indifferent. Moreover, this

later axiom creates a one-to-one mapping over consumption plans and streams of appropriate

monetary compensations, allowing us to rank any pair of consumption plans by ranking the

corresponding streams of appropriate monetary compensations. As a result, the central axioms

of the HDU model, the satiation and recovery axioms, which capture the history dependence,

are entirely independent of the time discount axioms. Therefore, this paper also provides a

theoretical framework in which we can independently replace each set of axioms to accommo-

date different history or time dependencies. For example, if we believe that variety-seeking

and present bias interact, we can replace the set of exponential discounting axioms used in this

paper with an appropriate set of quasi-hyperbolic discounting axioms.

In sum, this paper presents the first behaviorally founded intertemporal choice model con-

sistent with variety-seeking, where no artificial constraints are put on the satiation and recovery

processes and is suitable to analyze discrete choice environments.

2 The History-Discounted Utility Model (HDU model)

In this section, I present the history-discounted utility model (HDU model). The HDU is

a history-dependent model of time-risk preferences over intertemporal streams of probability

distributions over outcomes. As we will see later, special cases of the HDU model are the EDU

model and the expected utility (EU) model. The EDU model states that for any two arbitrary

6Except for the Dixit-Stiglitz model, these models can be considered different variants of the inverse models of
the intrinsic linear habit formation model prevalent in the macro literature and elegantly axiomatized by Rozen
(2010).
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sequences of choices over time, x ≡ (x0, x1, · · · , xT ) and y ≡ (y0, y1, · · · , yT ), there exist a

discount factor δ ∈ (0, 1) and a utility function (mapping the set of alternatives into the real

numbers) u : X → R such that:

x ≿ y iff
T∑
t=0

δtu(xt) ≥
T∑
t=0

δtu(yt)

Importantly, the HDU model generalizes the EDU model by relaxing the assumption of

consumption independence over time and hence allowing for history dependence.

2.1 Notation

Let T ≡ {0, 1, 2, . . . , T}, where T ≤ ∞, denotes time. Let A be a finite set of alternatives

with |A| = N . I assume that the alternatives are familiar and frequently consumed by the

DM, hence learning place no role in our analysis. Typical elements of A are a1, a2 and a3.

In addition, we denote by ⋄ ∈ A the neutral alternative, that is to say, the option of not

consuming anything. Let ∆(A) be the set of all probability distributions on A, that is the set

of all functions p : A → [0, 1] such that
∑

a∈A p(a) = 1. Elements of ∆(A) are called lotteries

and are denoted by x, y and z. For any lottery x ∈ ∆(A), px(ai) denotes the probability that

lottery x assigns to alternative ai. With a slight abuse of notation, ai for i ∈ {1, . . . , N−1} and ⋄
will also be used to denote degenerate lotteries that assign probability one to alternative ai and

to the neutral alternative respectively. Hence, A is also interpreted as the set of all degenerate

lotteries. I will interpret the set of real numbers R as money amounts, typical elements of

this set will be denoted by m,m′ and m′′. Let x =
(
(x0,m0), (x1,m1), . . . , (xT ,mT )

)
and

y =
(
(y0,m

′
0), (y1,m

′
1), . . . , (yT ,m

′
T )
)
both in

(
∆(A) × R

)T+1
denote arbitrary consumption

streams, where (xt,mt) ∈ ∆(A) × R denotes DM’s choice at time t, that is, the ordered pair,

consisting of a lottery and a monetary amount, that the DM chooses at time t. Preferences

over consumption streams are denoted by ≿. As usual, ∼ and ≻ denote the symmetric and the

asymmetric part of ≿.

I endow the sets ∆(A) × R and
(
∆(A) × R

)T+1
with the product topology. A history of

length t > 0 is a sequence ht ≡
(
(r0,m0), (r1,m1), . . . , (rt−1,mt−1)

)
∈ (A×R)t of ordered pairs

consisting of the realization of the lottery and the money amount chosen by the DM from time

0 up to time t − 1. I denote the empty sequence by h0 = ∅, i.e., the sequence containing no

terms. The set of all possible histories of length t > 0 is denoted by Ht = (A×R)t. The set of

all histories is H =
⋃T

t=1Ht. In general, I will refer to any distinct histories of the same length

as ht,h
′
t ∈ H. Through the paper, whenever we encounter ht and ht−1, we will assume that

ht = (ht−1, (rt−1,mt−1)), that is to say, all elements of the vectors ht and ht−1 are equal up to

time t− 2, but ht also includes the realization of the choice made at t− 1.
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2.2 Dynamics of the Utility Process

Before I present the full HDU model let me first introduce one of its key elements, the utility

process. In order to do so, let’s assume for now that the DM is restricted to choose among

degenerate lotteries over a finite set of alternatives.7 The utility process is captured by the sum

of a von Neumann-Morgenstern history-dependent utility function uht(xt) and a static utility

function for money v(mt). I will interpret uht(xt) as the utility derived from lottery xt after a

history of past consumption ht. Moreover, uht(xt) is the product of an intrinsic utility function

u0(xt), which represents the utility derived when the consumer is not satiated at all, and a

history discount function ψt(xt|xt−1), that discounts intrinsic utility given the history of past

consumption as follows:

For any (xt,mt) ∈ A× R and given any history of past consumption ht ∈ Ht:

Uht(xt,mt) = uht(xt) + v(mt) (1)

Moreover,

uht(xt) = ψt(xt|xt−1)u0(xt) (2)

where for all xt ∈ A
ψ0(xt|h0) = 1 (3)

and for all t > 0

ψt(xt|xt−1) =

{
λxt · ψt−1(xt|xt−2) if xt = xt−1

min
{
1, 1

βxt
· ψt−1(xt|xt−2)

}
if xt ̸= xt−1

(4)

λxt ∈ (0, 1] and βxt ∈ (0, 1]

As mentioned, u0(xt) is interpreted as the intrinsic utility of alternative xt. This is the

maximal utility that the agent may enjoy from consuming xt at any point in time. Thus, it

can be seen as the utility that the DM would derive if her taste for xt has not satiated at

all. The parameter λxt represents the satiation rate, that is the rate at which the intrinsic

utility of the alternative xt is discounted each time xt is consumed. Similarly, 1
βxt

represents

the recovery rate, that is the rate at which the intrinsic utility of the alternative xt recovers

from non-consumption. The history discount function ψt(xt|xt−1) captures the effects of the

satiation-recovery process. Every time an alternative is consumed its utility gets discounted

by λxt , capturing the satiation effect, and every time an alternative is not consumed its utility

recovers at a rate 1
βxt

capturing the recovery effect. However, notice that the recovery is bounded

above by the intrinsic utility and the satiation is bounded below by zero.

7I will present the general case in the next subsection with the HDU representation.
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The history discount function is individualistic and alternative-specific. That means that

each decision maker may have a different history discount function and each alternative in the

choice set may be history-discounted differently.

Let me now present a simple example to illustrate this utility process.

Example 1. Given A = {a1, a2, ⋄}, u0(a1) = 10, u0(a2) = 6, u0(⋄) = 0, λa1 = λa2 = λ = 0.8,

βa1 = βa2 = β = 0.8, and h4 = (a1, a1, ⋄, a2), we can compute uh4(a1) and uh4(a2) recursively

as follows.

Let’s first compute uh0(a1), given that at the beginning of time there is not satiation, equa-

tions (2) and (3) imply that uh0(a1) = ψ0(xt|h0)u0(a1) = 1 · u0(a1) = 10. Next, since a1

is chosen at time t = 0, equations (2) and (4) imply that uh1(a1) = λu0(a1) = 8. This

means that at time t = 1 given that a1 was chosen in the previous period (t = 0) the util-

ity of a1 is discounted by the factor λ, which is precisely the satiation rate. Similarly at

t = 2, given that a1 was chosen again at time t = 1, the utility of a1 is discounted once

more and we get, uh2(a1) = λ2u0(a1) = 6.4. Let’s now move to t = 3, notice that given

that ⋄ was chosen at the previous period, the utility of a1 will now recover, the speed of

recovery is precisely 1
β which is the recovery rate. Hence, according to equations (2) and

(4) we get that uh3(a1) = min{1, λ2

β }u0(a1) = 0.8u0(a1) = 8. Finally, we can now com-

pute uh4(a1), notice that a1 was not chosen at the previous period either, hence the util-

ity of a1 will recover again. Given that λ = β = 0.8, equations (2) and (4) imply that

uh4(a1) = min
{
1, 1β min{1, λ2

β }
}
u0(a1) = min{1, λ2

β2 }u0(a1) = 10.8 Following the same logic

we can compute uh4(a2), the results are reported in the following table:

t ct ht uht
(a1) uht

(a2)

0 a1 h0 = ∅ uh0
(a1) = u0(a1) = 10 uh0

(a2) = u0(a2) = 6
1 a1 h1 = (a1) uh1

(a1) = λu0(a1) = 8 uh1
(a2) = u0(a2) = 6

2 ⋄ h2 = (a1, a1) uh2(a1) = λ2u0(a1) = 6.4 uh2(a2) = u0(a2) = 6

3 a2 h3 = (a1, a1, ⋄) uh3(a1) = min{1, λ2

β }u0(a1) = 8 uh3(a2) = u0(a2) = 6

4 h4 = (a1, a1, ⋄, a2) uh4
(a1) = min{1, λ2

β2 }u0(a1) = 10 uh4
(a2) = λu0(a2) = 4.8

This example has illustrated how the history-dependent utility of each alternative evolve

endogenously depending on the history of past consumption. Moreover, it has shown how the

satiation-recovery process governs the dynamics of this history-dependent utility process.

2.3 The HDU Model Representation

For the sake of simplicity, in the previous section I have illustrated the utility process when the

DM is restricted to choose among degenerate lotteries. Now, I will present the general model in

8It is important to notice that even though it is not the case in this example, the min operator is there to
prevent the recovery process to exceed the intrinsic value.
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which the DM can choose any lottery in the simplex. We say that a decision maker’s time-risk

preferences are consistent with the HDU model if they admit the following representation:

Definition 2.1 (HDU Representation). Time-risk preferences are consistent with the history-

discounted utility model if they can be represented by: an intrinsic utility function u0 : ∆(A) →
R+, a continuous and increasing utility function for money v : R → R, a time discount parame-

ter δ ∈ (0, 1), an alternative-specific satiation parameter λai ∈ (0, 1], and an alternative-specific

recovery parameter βai ∈ (0, 1] such that:

x ≿ y ⇔
T∑
t=0

δt
[
ûht(xt) + v(mt)

]
≥

T∑
t=0

δt
[
ûht(yt) + v(m′

t)
]

where for all zt ∈ ∆(A) and all t > 0, if ai ∈ A was the realization of the lottery chosen by the

decision maker at t− 1, that is rt−1 = ai, then:

N∑
i=1

pzt(ai)uht(ai)︸ ︷︷ ︸
ûht

(zt)

= pzt(ai)(λai − 1)uht−1(ai)︸ ︷︷ ︸
Satiation≤0

+

∑
aj∈A\{ai}

p(aj)

[
min

{
u0(aj),

uht−1(aj)

βaj

}
− uht−1(aj)

]
︸ ︷︷ ︸

Recovery≥0

+

N∑
i=1

pzt(ai)uht−1(ai)︸ ︷︷ ︸
ûht−1

(zt)

From the above definition, we can clearly see that our DM is fully forward-looking since she

maximizes the sum of time-discounted and history-discounted utilities and hence, fully internal-

izing the satiation and recovery effects. Moreover, for any lottery zt, its history-dependent utility

ûht(zt) follows a very simple law of motion: ûht(zt) is equal to its previous value, ûht−1(zt),

minus the (potential) negative effect due to satiation and plus the (potential) positive effect due

to the recovery process. Only the utility of the alternative ai ∈ supp(zt) that is the realization

of the previous period lottery will experience the satiation effect, all the other alternatives in

the support will experience the recovery process.9

Finally, notice that if we we restrict our DM to choose only among degenerate lotteries the

previous representation can be rewritten more simple as follows:

Definition 2.2 (HDU Representation for Degenerate Lotteries). If the decision maker can only

choose from the set of degenerate lotteries A, we can rewrite the previous representation more

simply as follows, for any x,y ∈ (A× R)T+1:

x ≿ y ⇔
T∑
t=0

δt
[
ψt(xt|xt−1)u0(xt) + v(mt)

]
≥

T∑
t=0

δt
[
ψt(yt|yt−1)u0(yt) + v(m′

t)
]

9The support of a simple lottery zt ∈ ∆(A) is defined as: supp(zt) ≡ {ai ∈ A | pzt(ai) > 0}.
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where for all zt ∈ A, and for all t > 0:

ψt(zt|zt−1) =

{
λzt · ψt−1(zt|zt−2) if zt = zt−1

min
{
1, 1

βzt
· ψt−1(zt|zt−2)

}
if zt ̸= zt−1

ψ0(zt|h0) = 1, λxt ∈ (0, 1], and βxt ∈ (0, 1]

In words, the HDU model allow us to rank any pair of consumption streams by the sum of

their time-discounted and history-discounted utilities. Moreover, whenever the DM is restricted

to choose among degenerate lotteries, the utility process that captures the history-dependence

in definition 2.2 is precisely the one I presented in the previous section. Observe also that from

definition 2.1, 2.2 and the recursive nature of the history discounting, it quickly became evident

that in direct analogy to first-order markov chains, we could label the history discount function

as “Markovian” type function because although the history discount function depends on the

whole history of past consumption, it does so only via the previous period consumption.

Notice also that the EDU model can be seen as a particular case of the HDU model in which

the history discount function equals one for all t ∈ T , for all ht ∈ H and, for all zt ∈ ∆(A).

Therefore, the EDU model is nested within the HDU model. Moreover, one implication of the

EDU model in this setting is that the decision maker always chooses the same most preferred

option in the choice set. However, the HDU model can rationalize sequences of alternating

choices over time since the preference ordering changes endogenously depending on the history

of past consumption. Therefore, the HDU model is consistent with variety-seeking behavior.

I next present another simple example in which the DMmust choose a sequence of degenerate

lotteries to illustrate: (i) how a fully forward-looking DM internalizes the satiation-recovery

process and (ii) the dynamics of the HDU model.

Example 2. Let A = {a, b, c, ⋄}, u0(a) = 5, u0(b) = 4, u0(c) = 3, u0(⋄) = 0, λa = λb =

λc = λ = 0.42, βa = βb = βc = β = 0.75, δ = 0.95 and T = 8. Given this setting the DM

must choose the consumption stream that maximizes the sum of time-discounted and history-

discounted utilities as prescribed in definition 2.2. The solution to this maximization exercise

is c∗ = (a, b, c, ⋄, a, b, c, b, a). Let me now intuitively explain why is c∗ the optimal consumption

stream. As it can be seen in the following figure, at t = 0 the DM must choose alternative

a because there is no gain in choosing a less preferred option since alternative a is already at

its intrinsic (highest) level and hence, there are no potential gains from recovery. By the same

logic, at t = 1 and t = 2 the DM must choose b and c respectively since both are maximal at each

point in time and their utilities were at their intrinsic level and hence, there are no potential

gains from recovery. At time t = 3 however, the DM is patient enough to internalize the effects

of satiation and recovery and optimally chooses ⋄. Choosing diamond allows the utilities of the

rest of the alternatives to recover and in periods 4, 5 and 6 the DM optimally repeats the same
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a, b, c pattern shown in periods 0,1,2.10 At t = 7 however, we encounter what we could refer to

an end-life effect, the DM does not choose ⋄ as we would have expected since the end of her life

is too close that the benefits of not choosing anything in order to profit from the recovery process

do not outweigh the cost of giving up choosing an alternative that provides positive utility. In

fact, at t = 7 the DM chooses the current second most preferred alternative, which is b in order

to profit from the recovery process that a will experience at t = 8 when a will be finally chosen.

Figure 1: Dynamics of the HDU Model (Example 2).
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From this example we can learn some important implications of the HDU model. First, the

HDU model can rationalize alternating sequence of choices and hence, variety seeking behavior.

However, not all sequences of choices can be rationalized by the HDU model, for example we

have learned that it will never be rational not to choose a maximal alternative that it is already

at its intrinsic value. Second, the willingness to pay for each alternative is endogenously evolving

and it depends on the history of past consumption. For example, the willingness to pay for

alternative a at t=0 is much higher than what will be at t=1 due to the satiation process.

Third, if the satiation rate is fast enough in comparison to the recovery rate the DM would

be willing to endogenously expand the choice set. For example, at t=3, the DM would have

been happier choosing any alternative not in the original choice set (even if she has never tried

before), as long as she expects that alternative to provide positive utility, instead of choosing ⋄.
10Given this parameter specification of the HDU model, if T = ∞ we would have observed this

(a, b, c, ⋄, a, b, c, ⋄, . . . ) pattern repeating forever.
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The DM has chosen ⋄ because is patient enough and anticipates that if it just keeps alternating

between a, b and c the utilities of these alternatives will converge to zero in the long run.

In order to fully understand the implications of the HDU model on choice behavior and

better understand which consumption streams are consistent with it, I next provide a full

axiomatic characterization of the HDU model.

3 Axiomatic Characterization of the HDU Model

In the following axiomatic exercise, I use a novel methodological strategy in order to isolate the

effects of time from history dependence in a simple way. I start by laying out three standard

axioms in the intertemporal choice literature, namely that the binary relation ≿ on the con-

sumption streams space (∆(A)×R)T+1 is a continuous and monotonic weak order. Given these

axioms I then induce a history-dependent preference relation ≿ht defined on ∆(A) × R. The

binary relation ≿ht represents DM’s preferences after a history of past consumption ht. Since

≿ht is induced from ≿, imposing axioms on ≿ht is effectively the same as imposing axioms on

≿ defined on a very specific subset of consumption streams.

I then proceed to impose two sets of axioms on this history-dependent preference relation.

The first set of axioms, the static axioms, consisting of the Boundedness, Separability and

Independence axioms are mainly technical in nature and impose the desired necessary structure

to ≿ht . With this structure, I am able to show that there exist a unique history-dependent

monetary compensation cht(x,m) ∈ R+, such that (⋄,m + cht(x,m)) ∼ht (x,m). In other

words, cht(x,m) is the monetary amount that compensates the DM exactly enough to make

her indifferent between getting the lottery x and m units of money or getting the degenerate

lottery ⋄ and m+ cht(x,m) units of money instead.

The second set of axioms, the dynamic axioms, are the two fundamental axioms of this

characterization. Those axioms are the Satiation and Recovery axioms that basically impose

some structure on how ≿ht−1 and ≿ht are related through the consumption occurred in t− 1.

The Satiation axiom states that if alternative ai was consumed at t−1, then at time t, the DM

will require a smaller (or equal) compensation for not getting the degenerate lottery ai. This

axiom captures the fact that, due to satiation, after consuming an alternative the DM might

value the alternative less. Similarly, the Recovery axiom states that if alternative ai was not

consumed at t − 1, then at time t, the DM requires a greater (or equal) compensation for not

getting the degenerate lottery ai. This axiom allows the valuation of an alternative to recover

after a period of non-consumption.

Then I turn my attention back to the consumption stream space (∆(A) × R)T+1 and I

proceed to formally define for any consumption stream x ∈ (∆(A) × R)T+1 its associated

stream of appropriate monetary compensations ♢(x) ∈ ({⋄} × R)T+1. ♢(x) is the stream of

13



monetary compensations that compensates the DM just enough to make her indifferent, at each

point in time, between getting the lottery prescribed by x, or getting the degenerate lottery ⋄
instead.

Finally, I impose the last two axioms of this characterization, the time preference axioms.

The first is the Indifference axiom which is a fundamental axiom of this exercise. The Indiffer-

ence axiom simply states that the DM is always indifferent between any consumption stream

x and its associated stream of appropriate monetary compensations ♢(x). The contribution of

this axiom to this exercise is twofold. First, it allows us to rank any pair of consumption plans

x,y ∈ (∆(A)×R)T+1 by using the ranking between ♢(x) and ♢(y). Moreover, since there is no

history-dependence in the space ({⋄}×R)T+1 this effectively allows us to separate the effects of

time from pure history dependence. Therefore, this axiom can be considered a weaker version

of a time separability axiom appropriate for history-dependent preferences. Second, notice also

that the space {⋄}×R is isometric, and hence also homeomorphic, to R. Therefore, this axiom
also allows me to make use of all the structure and results derived from standard time-discount

axiomatizations. At this point we can easily make use of the results of any standard time pref-

erence representations, including exponential, hyperbolic, and quasi-hyperbolic discounting. In

this paper, in order to be as close as possible to the most widely used model of intertemporal

choice, the EDU model, I impose the Exponential Discounting axiom on the preference relation

≿∗ defined on RT+1, which is the last axiom of this characterization.

3.1 Basic Axioms

I start by laying out three very basic axioms in the intertemporal choice literature.

Axiom 1 (Weak Order): The binary relation ≿ on (∆(A)× R)T+1 is:

i) Complete: for all x,y ∈ (∆(A)× R)T+1, either x ≿ y or y ≿ x.

ii) Transitive: for all x,y, z ∈ (∆(A)× R)T+1, if x ≿ y and y ≿ z, then x ≿ z.

Axiom 2 (Continuity): For all x ∈ (∆(A)× R)T+1, the following sets are closed:

B(x) = {y ∈ (∆(A)× R)T+1 : y ≿ x}

W (x) = {y ∈ (∆(A)× R)T+1 : x ≿ y}

Axiom 3 (Money Monotonicity): For all x =
(
(x0,m0), . . . , (xt,mt), . . . , (xT ,mT )

)
∈ (∆(A)×

R)T+1 and all t ∈ T ,

(
(x0,m0), . . . , (xt,mt), . . . , (xT ,mT )

)
≻

(
(x0,m0), . . . , (xt,m

′
t), . . . , (xT ,mT )

)
14



if and only if mt > m′
t.

Axioms 1 and 2 are standard axioms in the intertemporal choice literature and do not need

additional explanation. Axiom 3 is also quite standard and it just means that more money is

better than less. Given these three axioms we can now induce a history-dependent preference

relation ≿ht as follows:

Definition 1: We define DM’s preferences, given a history of past consumption ht, by:

(xt,mt) ≿ht (yt,m
′
t)

whenever for any m′′
t+i ∈ R, i ∈ {1, · · · , T − t}

x = (ht, (xt,mt), (⋄,m′′
t+1), . . . , (⋄,m′′

T )) ≿ (ht, (yt,m
′
t), (⋄,m′′

t+1), . . . , (⋄,m′′
T )) = y

This definition states that from the point of view of the DM, given a history of past con-

sumption ht, time t ordered pair (xt,mt) is at least as good as time t ordered pair (yt,m
′
t),

if there exist two consumption streams x,y ∈ (∆(A) × R)T+1, such that x ≿ y and with the

following characteristics:

• x and y share a common history ht of realizations from time 0 up to time t− 1.

• (xt,mt) and (yt,m
′
t) are the choices prescribed, at time t, by x and y respectively.

• x and y prescribe a common sequence of future choices from time t+ 1 up to time T , in

which, in every period of time the degenerate lottery ⋄ is always chosen in conjunction

with a common, but arbitrary and potentially time-varying, amounts of money m′′
i ∈ R

for all i ∈ {t+ 1, · · · , T}.

Notice that ≿ht is a well defined object since A1 in conjunction with A3 prevent any possible

inconsistencies. That is to say, if the conditions in the above definition hold for a sequence of

monetary amounts {m′′
t+i}

T−t
i=1 , then they will also hold for any other sequence {m′′′

t+i}
T−t
i=1 .

Notice also that in this definition it is embedded that DM’s preferences over outcomes can

potentially depend on the history of past consumption. In particular, given two distinct histories

of past choices h,h′ ∈ H, it is possible for the same DM to rank (xt,mt) ≻h (yt,m
′
t) but

(yt,m
′
t) ≻h′ (xt,mt). Given this definition it is almost direct to see that ≿ht is a continuous

and monotonic weak order (see Lemma A1, A2 and A3 in the appendix). Moreover, the

following useful and intuitive lemma will allow me to easily define some objects of interest later

on.
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Lemma 1 (Money Solvability): Suppose Axioms A1, A2, and A3 are satisfied, if (x,m) ≿ht

(y,m′) and (y,m′) ≿ht (x,m
′′), then there exists a unique m∗, with m′′ ≤ m∗ ≤ m, such that

(x,m∗) ∼ht (y,m
′).11

Money solvability establishes that, given any history of past consumption ht ∈ H, whenever

an ordered pair (x,m) is preferred to a given ordered pair (y,m′) for certain amounts of money

but not for smaller amounts, then there exists a unique intermediate amount of money m∗,

such that (x,m∗) is exactly indifferent to (y,m′).

3.2 Static Axioms

I now proceed to impose the first set of axioms on the induced history-dependent binary relation

≿ht . This first set of axioms are technical in nature and are meant to impose the desired

necessary structure to ≿ht .

Axiom 4 (Boundedness): For all ht ∈ H, and for all (x,m) ∈ ∆(A)× R:

i) Bounded below : If x ̸= ⋄, then (x,m) ≻ht (⋄,m).

ii) Bounded above: There exists c ∈ R++, such that (⋄,m+ c) ≻ht (x,m).

Axiom 4 implies that no matter the history of past consumption any lottery will be preferred

to the degenerate lottery that assigns probability one to ⋄. This means that no matter the

history of past consumption, all lotteries remain goods and never become bads.12 The second

part of axiom 4 implies that there is always a monetary compensation that makes the DM better

off by giving up the consumption of any lottery. Moreover, I show in the following lemma that

there exist a unique compensation that makes the DM exactly indifferent.

Lemma 2: If axioms A1-A4 are satisfied, then for all ht ∈ H, and for all (x,m) ∈ ∆(A)× R,
there exist a unique compensation cht(x,m) ∈ R+, such that (⋄,m + cht(x,m)) ∼ht (x,m).

Moreover, cht(⋄,m) = 0 for all ht ∈ H, and for all m ∈ R.

Lemma 2 ensures that, after any history of past consumption, there exists a unique amount

of money that compensates the DM just enough to make her indifferent to get the lottery or

alternatively, receiving an appropriate monetary compensation for not getting it. Notice that

in the same way that expected utility theory provides commensurability between outcomes

and probability, Lemma 2 establishes commensurability between lotteries and money. Notice

also that the choice of notation makes clear that for any history of past consumption, and

any choice (x,m), the appropriate compensation cht(x,m) depends (obviously) on the lottery

11All the proofs are contained in Appendix.
12In one of the extensions of the HDU model that I will present later this assumption is easily relaxed and a

good might become a bad depending of the history of past consumption.
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being considered x, but also might depend on the amount of money m, and the history of past

consumption ht.

Axiom 5 (Separability):

i) Coordinate Independence: For all ht ∈ H, (x,m) ≿ht (y,m), if and only if, (x,m′) ≿ht

(y,m′).

ii) Thomsen Condition: For all ht ∈ H, if (x,m) ∼ht (y,m′) and (y,m′′) ∼ht (z,m), then

(x,m′′) ∼ht (z,m
′).

Note that coordinate independence for money, (x,m) ≿ht (x,m
′) if and only if (y,m) ≿ht

(y,m′), is already implied by money monotonicity. Given the topological properties of the

choice space ∆(A)×R, Coordinate independence and Thomsen condition, in conjunction with

the previous axioms, will suffice to ensure the existence of an additive separable representation

of ≿ht .

Axiom 6 (Independence): For all ht ∈ H, and for all (x,m), (y,m) ∈ ∆(A) × R, z ∈ ∆(A),

and θ ∈ (0, 1]:

(x,m) ≿ht (y,m) ⇔
(
θx+ (1− θ)z,m

)
≿ht

(
θy + (1− θ)z,m

)
Axiom 6 is just the standard expected utility independence axiom but imposed only to the

first coordinate of the ordered pair, that is the lotteries coordinate.

3.3 Dynamic Axioms

Now, I present the two key axioms of this axiomatization, the satiation and recovery axioms.

In order to state the following two axioms in a simpler way, we will make use of the notation

introduced in Lemma 2. Recall that cht(x,m) ∈ R+ is the unique compensation such that

(⋄,m + cht(x,m)) ∼ht (x,m). Moreover, through this paper, whenever we encounter ht and

ht−1, we will assume that ht = (ht−1, (rt−1,mt−1)), that is, all elements of the vectors ht

and ht−1 are equal up to time t − 2 but ht also includes the realization of the lottery chosen

at t − 1. Therefore, we will interpret cht−1(x,m) and cht(x,m) as the appropriate monetary

compensations that the DM requires for giving up the lottery x after history ht−1 and ht

respectively, taking into account that both histories agree up to t− 2 but ht also includes the

realization of the lottery chosen at t− 1. Similarly, ch0(x,m) is the compensation that the DM

requires when there is no history of past consumption.

Axiom 7 (Satiation): For every t, t′ ∈ T and every (ai,m) ∈ A× R:
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i) If (rt−1,mt−1) = (ai,m), then
(
⋄,m+ cht−1(ai,m)

)
≿ht

(
⋄,m+ cht(ai,m)

)
.

ii) If (rt−1,mt−1) = (rt′−1,mt′−1) = (ai,m) and
(
kai+(1−k)⋄,m

)
∼ht−1

(
⋄,m+cht′−1

(ai,m)
)

for k ∈ [0, 1], then
(
kai + (1− k)⋄,m

)
∼ht

(
⋄,m+ cht′ (ai,m)

)
.

Part i) of the Satiation axiom states that if ai was consumed at t−1, then at time t, the DM

will require a smaller (or equal) compensation for not getting the degenerate lottery ai. This

captures the key ingredient of the model, the satiation process, and hence it justifies the name

the axiom. Part ii) of the Satiation axiom basically states that if at two different moments t

and t′ the realization of the lottery was the same and the corresponding unique compensations

were proportional (in terms of k), then they remain proportional after the consumption of the

realization of the lottery. This implies that the satiation process can be described by a constant

satiation rate. However, notice that this axiom does not preclude alternative-specific satiation

rates.

Axiom 8 (Recovery): For every t, t′ ∈ T and every (ai,m) ∈ A× R:

i) If (rt−1,mt−1) ̸= (ai,m), then
(
⋄,m + ch0(ai,m)

)
≿ht

(
⋄,m + cht(ai,m)

)
≿ht

(
⋄,m +

cht−1(ai,m)
)
.

ii) If (rt−1,mt−1) ̸= (ai,m), (rt′−1,mt′−1) ̸= (ai,m),
(
⋄,m+ch0(ai,m)

)
≻ht

(
⋄,m+cht(ai,m)

)
and

(
kai + (1 − k)⋄,m

)
∼ht−1

(
⋄,m + cht′−1

(ai,m)
)
for k ∈ (0, 1], then

(
kai + (1 −

k)⋄,m
)
∼ht

(
⋄,m+ cht′ (ai,m)

)
.

Part i) of the Recovery axiom states that if ai was not consumed at t − 1, then at time

t, the DM requires a greater (or equal) compensation for not getting the degenerate lottery

ai. This captures another key ingredient of the model, the recovery process. In the same

way the Satiation axiom captures the fact that after consuming an alternative the DM might

value the alternative less, the Recovery axiom allows the valuation of an alternative to recover

after a period of non-consumption. Notice also that part i) implies that this recovery process

has an upper bound. In words, it implies that the valuation of any degenerate lottery ai will

never exceed the valuation of that lottery when there was no history of past consumption. We

refer to this maximal valuation of a lottery as its intrinsic valuation. Part ii) of the Recovery

axiom states that whenever at two different moments t and t′ there is recovery (but not full

recovery) and the corresponding unique compensations were proportional (in terms of k), then

they remain proportional after the recovery process. Likewise, this implies that the recovery

process can be described by a constant recovery rate. Again, notice that this axiom does not

preclude alternative-specific recovery rates.
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3.4 Time Preference Axioms

Before I introduce the last two axioms of this exercise, the time preferences axioms, let me

formally define for any consumption stream x ∈ (∆(A)×R)T+1 its associated stream of appro-

priate monetary compensations ♢(x) ∈ ({⋄} × R)T+1.

Definition 2: For any sequence of choices x =
(
(x0,m0), (x1,m1), . . . , (xT ,mT )

)
∈ (∆(A) ×

R)T+1 define ♢(x) as,

♢(x) ≡
((

⋄,m0 + ch0(x0,m0)
)
,
(
⋄,m1 + ch1(x1,m1)

)
, . . . ,

(
⋄,mT + chT

(xT ,mT )
))

where ht is the history generated by x and cht(xt,mt) are the unique compensations such that

(xt,mt) ∼ht (⋄,mt + cht(xt,mt)), for every t ∈ T .

Notice that, as a consequence of Lemma 2, for any given x ∈ (∆(A) × R)T+1, the vector

♢(x) ∈ ({⋄} × R)T+1 is uniquely defined.

I am now prepared to state the following fundamental axiom:

Axiom 9 (Indifference): For any consumption plan x ∈ (∆(A)× R)T+1, x ∼ ♢(x).

In words, this axiom says that given any consumption stream x, if a DM is indifferent at each

point in time between getting the lottery prescribed by x, or getting an appropriate monetary

compensation for getting the degenerate lottery ⋄ instead, then she must be indifferent between

the consumption plan specified by x and the appropriate stream of monetary compensations

specified by ♢(x). The Indifference axiom extends the commensurability established in Lemma

2, between lotteries and money in the choice space, to the consumption streams space. This

axiom is very similar in spirit to “Monotonicity in Prizes” axiom from Anscombe and Aumann

(1963), and even more similar to the the “Substitutibility” axiom from Luce and Raiffa (1957).

Moreover, this axiom creates a one to one mapping over consumption plans and streams of

appropriate monetary compensations hence, allowing us to rank any pair of consumption plans

x,y ∈ (∆(A)×R)T+1 by using the ranking between ♢(x) and ♢(y). Since there is no history-

dependence in the space ({⋄} × R)T+1 this allow us to separate the effects of time from pure

history dependence (Axiom 7 and 8). Therefore, this axiom can also be considered a weaker

version of a time separability axiom appropriate for history-dependent preferences.

Finally, notice also that the space {⋄}×R is isometric, and hence also homeomorphic, to R.
Therefore, it suffices to impose the standard time-discount axioms on the preference relation

≿∗ defined on RT+1, to get the desired time preference representation, either exponential,

quasi-hyperbolic, or any other. In order to be as close as possible to the standard model of

19



intertemporal choice, the EDU model, we present next the last axiom needed to ensure the

existence of an exponential discounting representation of ≿∗ and hence of ≿.13

Axiom 10 (Exponential Discounting):

i) (Separability): All E ⊆ T are separable.

ii) (Impatience): For all a, b ∈ R if a ≻∗ b, then for all x ∈ RT+1, (a, b, x2, x3, . . . , xT ) ≻∗

(b, a, x2, x3, . . . , xT ).

iii) (Stationarity): For all d ∈ R and x,y ∈ RT+1 we have (d, x0, · · · , xT−1) ≿∗ (d, y0, · · · , yT−1),

if and only if, (x0, · · · , xT−1, d) ≿∗ (y0, · · · , yT−1, d).

Part iii) of the previous axiom, which is an appropriate finite horizon version of the Sta-

tionarity postulated in Koopmans (1960), is the key condition to ensure the existence of an

additive separable representation of ≿∗. It amounts to say that if we take two sequences that

are shortened by one period it does not matter whether we place d at the beginning or at the

end.

3.5 Representation Theorem

We are now ready to present the main result of this paper, the HDU model representation

theorem.

Theorem 1. A binary relation ≿ on (∆(A) × R)T+1 satisfies Axioms (1-10) if and only if it

has a HDU representation given in definition (2.1).

Furthermore, if the decision maker can only choose from the set of degenerate lotteries A,

we obtain the following corollary:

Corollary 1.1. A binary relation ≿ on (A × R)T+1 satisfies Axioms (1-10) if and only if it

has a HDU representation given in definition (2.2).

4 Eliciting the Preference Parameters

In this section I investigate how to elicit the preferences parameters of the model, that is how

to elicit v(·), δ, and u0(ai), λai , βai for all ai ∈ A. To that purpose, I present a choice-based

elicitation procedure that allows me to elicit the aforementioned key parameters in a very simple

way. The methodology I propose is based on the axiomatic characterization presented in the

previous section.

13See the appendix for additional definitions and results from the exponential discounting literature.
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The strategy is the following, recall that due to the Separability axiom, DM’s preferences

for money are independent of her preferences over the alternatives, therefore v(·) and u0(ai)

can be elicited independently. I will start by making use of the standard gamble approach and

linear interpolation to non-parametrically elicit v(·). Then, with v(·) known, I show how we

can easily recover the rest of the parameters. The main advantages of this approach is twofold.

First, by making use of the results of the axiomatic characterization, this strategy is able to

isolate the effect of time from history dependence and hence, it allows us to independently elicit

the time preference parameter δ and the history-dependent parameters λai and βai . Second, as

lemma 3 will show, v(·) can be elicited with arbitrary precision, and since all other parameters

are identified once v(·) is known, the same is true for the rest of the parameters.

4.1 Eliciting v(·)

Without loss of generality I will elicit v(·) defined over a bounded domain. In particular I

will assume that v : [0,M ] → R where M can be arbitrarily large and context dependent.14 I

start by creating a partition P of [0,M ] in K equally-spaced subintervals [mi,mi+1] such that

0 = m0 < m1 < m2 < · · · < mK = M . By expected utility theory we know that for any mi

with i ∈ {1, . . . ,K − 1} there exist a unique α(mi) such that:

mi ∼ α(mi)M +
(
1− α(mi)

)
0

By using the expected utility representation this means

v(mi) = α(mi)v(M) +
(
1− α(mi)

)
v(0)

As it is standard in this approach, I normalize the utility of the best outcome to 1 and the

utility of the worse outcome to 0, hence substituting in the above equation v(M) = 1 and

v(0) = 0 we find that

v(mi) = α(mi) (5)

We can use the staircase method to find such α(mi) and linear interpolation to fill the gaps

between v(mi) and v(mi+1).
15 With this procedure we end up with a non-parametric elicitation

14By context dependent I mean that M might depend on the set of alternatives A. For example if A is a set
of different types of candies, M can be relatively small but if A is a set of luxury cars, M must be much larger.

15The staircase method consists of a sequence of choices designed to find a preference indifference. In this
specific context, in the first choice situation the DM must chose between a sure payment of mi units of money
or a lottery that assigns probability α to M and probability 1 − α to 0. If the sure payment is chosen, in
the following choice situation α is increased. Otherwise, in the following choice situation α is decreased. This
procedure repeats until an indifference with arbitrary precision is found. An example of such a method can be
found in Falk, Becker, Dohmen, Enke, Huffman, and Sunde (2017). Linear interpolation consists of using the
line segment joining v(mi) and v(mi+1) as an approximation of v in the interval [mi,mi+1].
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of v : [0,M ] → R. Notice that the finer the partition the higher the precision with which we

elicit v(·). The following lemma formalizes this idea and implies that using this method we can

approximate v(·) with arbitrary precision by using an increasingly finer partition.

Lemma 3 (Total Interpolation error): An upper bound for the total interpolation error when

using linear interpolation and K equally-spaced subintervals is:

SK =

K−1∑
i=0

(mi+1 −mi)(v(mi+1)− v(mi))

2

Furthermore, SK+1 < SK and limK→∞ SK = 0.

This lemma provides an upper bound for the interpolation error and shows that it decreases

the finer the partition is. Therefore, it implies that the finer the partition the lowest the

interpolation error, and hence that v can be estimated with arbitrary precision.

4.2 Eliciting δ

The simplest way to elicit δ is to pick an arbitrary and small enough m ∈ [0,M ] for which there

exists a unique m′ ∈ [0,M ] such that

(
(⋄,m), (⋄, 0), . . . , (⋄, 0)

)
∼

(
(⋄, 0), (⋄,m′), (⋄, 0), . . . , (⋄, 0)

)
By using the HDU representation this translates to,

uh0(⋄)+v(m)+

T∑
t=1

δt
[
uht(⋄)+v(0)

]
= uh0(⋄)+v(0)+δ

[
uh1(⋄)+v(m′)

]
+

T∑
t=2

δt
[
uht(⋄)+v(0)

]
Notice that as shown in step 1 of the proof of the representation theorem, uht(⋄) = 0 for

all ht ∈ H. Also by the previous normalization of v(0) = 0, the previous equation simplifies to

v(m) = δv(m′), hence

δ =
v(m)

v(m′)
(6)

In order to find such a m′ we can also use the staircase method. Notice that with this

method, the precision with which we elicit δ depends on the precision of the estimation of v.

4.3 Eliciting u0(ai)

Again we can use the staircase method to find ch0(ai,m) ≥ 0 such that(
(ai,m), (⋄,m), . . . , (⋄,m)

)
∼

(
(⋄,m+ ch0(ai,m)), (⋄,m), . . . , (⋄,m)

)
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Using the HDU representation and the fact that uht(⋄) = 0 for all ht ∈ H we get that

u0(ai) = uh0(ai) = v(m+ ch0(ai,m))− v(m) (7)

4.4 Eliciting λai

Similarly to the previous subsection we find ch1(ai,m) ≥ 0 such that(
(ai,m), (ai,m), (⋄,m) . . . , (⋄,m)

)
∼

(
(ai,m), (⋄,m+ ch1(ai,m)), (⋄,m), . . . , (⋄,m)

)
and we arrive to the conclusion that

uh1(ai) = v(m+ ch1(ai,m))− v(m)

As shown in step 3 of the representation theorem,

λai =
uh1(ai)

uh0(ai)

Using this relationship and the previous results we finally get

λai =
v(m+ ch1(ai,m))− v(m)

v(m+ ch0(ai,m))− v(m)
(8)

4.5 Eliciting βai

Suppose that for a particular history ht,
(
⋄,m + ch0(ai,m)

)
≻ht

(
⋄,m + cht(ai,m)

)
and

(rt−1,mt−1) ̸= (ai,m), then as shown in in step 4 of the representation theorem,

1

βai
=

uht(ai)

uht−1(ai)

then similarly to the previous subsection we elicit βai as follows

βai =
v(m+ cht−1(ai,m))− v(m)

v(m+ cht(ai,m))− v(m)
(9)

Equations (5) to (9) fully determine the parameters of the model.

5 Applications of the HDU Model

This section aims to demonstrate the broad scope of applicability of the HDU model. I con-

sider two very different but illustrative applications. The first application lies in the realm of

theoretical industrial organization. Specifically, I study monopolist’s optimal dynamic pricing
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strategies in intertemporal discrete choice settings facing variety-seeking consumers. This ap-

plication exemplifies how standard economic theory results should be revisited in light of the

HDU model whenever variety-seeking behavior occurs.

In the second application, I show how the modeling tools provided by the HDU model can

help tackle one of the most urgent threats to public health, the antibiotic resistance threat.

In particular, I show how the results presented in Sections 3 and 4 might be used to design

antibiotic treatment plans, to fight bacterial infections more effectively while minimizing the

threat of developing antibiotic resistance. Finding such treatment plans is crucial for society

since the implacable advance of antibiotic resistance makes treating common infectious diseases

increasingly complicated and sometimes even impossible. Moreover, antibiotic resistance has

been predicted to cause 10 million deaths per year by 2050 and to have a cumulative cost of

100 trillion USD (O’Neill (2016)).

5.1 IO application: Monopolist’s Optimal Dynamic Pricing Strategies Fac-

ing Variety-seeking Consumers

Optimal pricing is one of the most fundamental questions any profit-maximizing firm should

address. Static pricing strategies that ignore the repeated interaction nature of most customer-

seller relationships are often inefficient. In contrast, dynamic pricing strategies have proven

effective tools to increase revenue in such environments (see Sweeting (2012)). Moreover, in

recent years, dynamic pricing strategies have been widely adopted due to i) increased availability

of demand data, ii) the introduction of new technologies that allow sellers to change prices

quickly, and iii) the availability of decision-theoretic models that allow firms to analyze demand

data better, and set up educated dynamic pricing policies (Elmaghraby and Keskinocak (2003)).

However, most of the dynamic pricing literature does not account for variety-seeking be-

havior so far. Variety-seeking behavior has been documented to be an essential factor in un-

derstanding consumer demand. Variety-seeking behavior has been empirically confirmed in a

wide array of product categories. Those categories include hedonistic consumption products

like soft drinks, beers, songs, ice creams, fruits, candy, hotels, restaurants, and holiday activities

but also utilitarian consumption products like toothpaste, headache remedies, paper towels, or

shampoo16.

In the HDU model, variety-seeking behavior arises primarily due to the satiation effect that

consumers experience after consuming a product. This preference-based explanation to variety-

seeking behavior implies that current consumption choices affect future choices. Therefore, it

is vital to analyze the implications of variety-seeking behavior for the pricing strategies of firms

within a dynamic framework.

16See Table 1 from Cosguner et al. (2018) for an account of categories of products in which variety-seeking
behavior has been empirically demonstrated.
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5.1.1 Optimal Pricing Strategy

First, I analyze monopolist’s optimal dynamic pricing behavior in intertemporal discrete choice

settings facing variety-seeking consumers. With this framework in mind, I will show that instead

of taking the traditional but more cumbersome route of defining consumer’s dynamic strategic

demand and then finding monopolist’s profit-maximizing pricing strategy, we can take a different

approach circumventing the challenging task of defining consumer’s dynamic strategic demand.

Consider a game G in which a standard profit-maximizing monopolist and a variety-seeking

consumer whose preferences are consistent with the HDU model meet in the market for in-

finitely many periods, each consisting of two phases. At the beginning of a given period t, the

monopolist will list the vector of prices for the Nm available commodities. Then, the consumer

will purchase her preferred alternative within the set of products offered by the monopolist

ANm , at its respective price.17 The following figure shows the timeline of the game.

M: p0 chosen

Period 0.1

C: c0 chosen

Period 0.2

M: pt chosen

Period t.1

C: ct chosen

Period t.2 −→ ∞

Figure 2: Timeline of G.

I assume that consumer’s preferences are consistent with the HDU model representation

given in Definition 2.2, the satiation and recovery parameters are the same for all alternatives,

and the (dis)utility of prices enter linearly. Consumer’s budget for a given period mt will exceed

the intrinsic valuation of the most preferred alternative, so all alternatives are affordable at any

time. Furthermore, the consumer cannot make intertemporal transfers of money. Hence, any

money not spent in a given period cannot be used in the following period(s). Finally, I assume

there are no restrictions on the prices that the monopolist can set on each period and that the

marginal cost of producing any units of the available Nm varieties is zero.

Let me now formulate the payoff function for the monopolist in game G. Let pt ∈ RNm
+ be

the vector of prices for the Nm alternatives at period t and let ct ∈ ANm be the consumer’s

chosen alternative at period t. The monopolist’s payoff (profit) function therefore takes the

following form:

πm ≡
∞∑
t=0

∑
aj∈ANm

δtmp
aj
t 1(ct=aj) (10)

where δm denotes the monopolist’s time-discounting factor. Now, consider a particular con-

sumption stream c = (c1, c2, . . .) and the following strategy σm(c) for the monopolist: at phase

17Formally, I assume that the consumer has well-defined variety-seeking preferences, consistent with the HDU
model, over the set (ANm × R)∞.
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1 of each period t, set price vector pt such that

pait = uht(ai) + ϵ for all ai ̸= ct

pctt = uht(ct)− ϵ if ct ̸= ⋄, (11)

for an arbitrarily small ϵ > 0.

Result 1. Suppose the monopolist follows strategy σm(c) for some consumption stream c. Then,

choosing ct at period t for all t ∈ N is a best response for the consumer. Moreover, σm(c) is

the profit-maximizing (cheapest) way to induce c. 18

Result 1 has two significant implications. Firstly, if the monopolist follows strategy σm(c), it

can induce any given consumption path c for any consumer, regardless of her time-discounting

parameter δc. On the other hand, the monopolist can extract (almost) all surplus at every

point in time. This result follows from the fact that the monopolist may alter prices freely

every period. Thus, the consumer understands that there is no gain in choosing an alternative

different to ct in any given period. In other words, she knows that, by purchasing ct, she will

gain a surplus of ϵ in period t. In turn, by deviating, she will get an instantaneous payoff of

at most zero. Moreover, this deviation does not imply any greater gain in the future than she

would get if they follow their original strategy. This is so because the monopolist will react by

modifying prices, absorbing all potential gains from the consumer’s deviation.

Thus, the monopolist’s payoff associated to σm(c) for some consumption stream c can be

written as follows:

πm(c) =
∞∑
t=0

δtm(uht(ct)− ϵ). (12)

Hence, the monopolist will optimally choose the consumption stream c∗ ∈ (ANm)
∞ that

maximizes πm(·) from (12). It is trivial to see that this is equivalent to solving the following

problem:

max
c∈(ANm )∞

∞∑
t=0

δtmuht(ct). (13)

Result 2. The monopolist’s problem is equivalent to that of a fully forward-looking consumer

with utility parameters (λ, β, δm) who chooses her preferred consumption stream over the set of

alternatives ANm.

Result 2 has several implications that I must highlight. First of all, it tells us that the

monopolist should optimally mimic the behavior of a fictional fully forward-looking consumer

18This result, as well as all the results that are derived from this one, hold regardless of consumer’s degree
of foresight. In particular, they are true for fully forward-looking, k-periods forward-looking, and completely
myopic agents.
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with parameters (λ, β, δm). That is, the monopolist should first solve the utility maximization

problem of a hypothetical consumer that has the same satiation and recovery parameters as

the consumer he is facing but with monopolist’s time discount parameter and then use strategy

σm(c∗) to induce such a profit-maximizing plan. This is a consequence of the fact that strategy

σm(c) allows the monopolist to extract all surplus generated by consumption stream c. Hence,

he must choose the stream that maximizes total surplus. This is done by internalizing the effect

that satiation and recovery cause on consumer’s utility, i.e., by maximizing the discounted sum

of history-dependent utilities. Moreover, the resulting allocation is Pareto-efficient.19

5.1.2 Optimal Number of Varieties

Finally, I present an extended version of the game that will be referred to as Ge, in which we

introduce a new period that precedes our original game. In this initial period, the monopolist

endogenously determines the optimal number of varieties he should produce, given the fixed

cost of producing a variety.

I assume that the consumer has well-defined variety-seeking preferences, consistent with

the HDU model, over the set (AN × R)∞, where AN = {a1, a2, . . . , aN−1, ⋄}. For simplicity,

consider the intrinsic ranking of preferences over the alternatives is such that a1 ≿0 a2 ≿0 · · · ≿0

aN−1 ≻0 ⋄, and the satiation and recovery parameters are the same for all alternatives. The

monopolist’s problem is, therefore, to choose the number of varieties Nm ≤ N to produce.20

Just like before, I also assume that, once Nm is fixed, the monopolist can freely produce any

number of units of each of the Nm varieties. However, he must pay a cost for offering a different

variety. Let ζ(Nm) be the cost of producing Nm varieties for the monopolist and assume ζ(·)
is a strictly increasing function.

In this setting, I show how to find the optimal number of varieties the monopolist should

produce facing a variety-seeking consumer with any combination of satiation, recovery, and

time preferences parameters.

Let c∗Nm
≡ argmax

c∈(ANm )∞

∞∑
t=0

δtmuht(ct| Nm) and let V ∗(Nm) = U(c∗Nm
) =

∞∑
t=0

δtmuht(c
∗
t | Nm).

Note that V ∗(Nm) denotes the monopolist’s (maximum) revenues associated to offering Nm

19A more rigorous treatment and more results can be found in the companion paper (Puig-Pomés and Sanchez-
Moscona 2021). In the aforementioned companion paper, among other results, we show how key properties of
the HDU model can be used to find the consumer’s optimal consumption path given her satiation, recovery, and
time discount parameters. Moreover, given Results 1 and 2 presented in this section, how to find the solution to
monopolist’s maximization problem.

20We can also allow the monopolist to choose Nm > N , that is to allow the monopolist to introduce new
varieties in the market. In this case, the monopolist must form beliefs about the consumer’s intrinsic valuation
of each new variety and their associated satiation and recovery parameters. Notice that whenever a variety-
seeking consumer chooses a new variety, she will start experimenting for some time until she finds out her
intrinsic valuation of this variety and its associated satiation and recovery parameters. After that window of
experimentation, she will behave as predicted by the HDU model.
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varieties. Hence, in Period 0, the monopolist must choose the number of varieties N∗
m that

yields maximum profits.

Result 3. In equilibrium, the monopolist chooses the number of varieties N∗
m in Period 0 that

satisfies

N∗
m = argmax

Nm∈{1,...,N}
V ∗(Nm)− ζ(Nm). (14)

Thus, in the subgame-perfect equilibrium of Ge, the monopolist chooses N∗
m according to

(14) in period 0, and then both players behave according to the strategies discussed in G.
Result 3 completely characterizes how the monopolist should optimally choose the number of

varieties to produce. Notice that the more impatience the monopolist is, the faster the recovery

compared to the satiation parameter, and the higher the fixed cost of producing a new variety,

the fewer varieties the monopolist should optimally produce.

5.2 Health Application: Describing the Optimal Sequence of Antibiotics to

Maximize Effectiveness and Avoid Resistance

Infections by drug-resistance pathogens constitute a significant threat to society today and will

be even more so in the decades to come. Antibiotic resistance has been predicted to cause

10 million deaths per year by 2050 and to have a cumulative cost of 100 trillion USD (O’Neill

(2016)). Antibiotic resistance can arise naturally but has also been linked to overuse and misuse

of antibiotics (Ventola (2015)). Therefore, it is crucial to optimally design effective treatment

plans that minimize the possibility of treatment resistance. One such plan is the so-called

alternating-drug therapy in which a set of antibiotics are sequentially alternated each round

of treatment. This strategy has been proven effective in order to reduce the possibility of

treatment resistance while avoiding the toxicity associated with more traditional combination-

drug therapy, in which a cocktail of antibiotics is administered at each treatment round. In

Kim et al. (2014), the authors show that alternating-drug therapy slows the rate of increase

in resistance compared with single-drug treatments. Moreover, in another study by Fuentes-

Hernandez et al. (2015), it is shown that by using alternating-drug therapy, the elimination of

the bacterial infection can be achieved at antibiotic dosages so low that the equivalent two-

drug combination treatments are ineffective. Hence, the critical question we should address is:

Which alternating sequence of antibiotics should be prescribed to a patient to achieve bacterium

clearance while minimizing antibiotic resistance?

In this subsection, I will show how we can exploit the modeling tools provided by the

HDU model, in particular the results presented in Sections 3 and 4, to answer this ques-

tion. Recall that the key elements of the HDU model are: the set of intrinsic utilities

{u0(a1), u0(a2), · · · , u0(aN−1), u0(⋄)}, the utility function for money v : R → R, the time dis-

count rate δ, the satiation rate λ, and the recovery rate 1
β . In order to apply the HDU model
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to shed light on this important public health problem, we should reinterpret some of those key

elements. In this setting, I interpret A as the set of available (appropriate) antibiotics to treat

the bacterial infection. The intrinsic utility u0(ai) is the pretreatment measure of bacteria’s

sensitivity (susceptibility) to antibiotic ai. v(p
ai
t ) as the dis-utility generated by paying the price

pait for antibiotic ai. λai as the resistance rate of antibiotic ai, the rate at which sensitivity of

bacteria to antibiotic ai decreases. In accordance, I will interpret 1
βai

as the recovery rate, the

rate at which sensitivity of bacteria to antibiotic ai is regained. It turns out that the answer to

our question of interest is the solution to the following maximization problem:

max
{xt}T0

T∑
t=0

δt
[
ψt(xt|xt−1)u0(xt)− v(pxt

t )
]

where for all zt ∈ A, and for all t > 0

ψt(zt|zt−1) =

{
λzt · ψt−1(zt|zt−2) if zt = zt−1

min
{
1, 1

βzt
· ψt−1(zt|zt−2)

}
if zt ̸= zt−1

ψ0(zt|h0) = 1, λxt ∈ (0, 1], and βxt ∈ (0, 1]

which is precisely the same problem our fully forward-looking consumer would solve. The

following example illustrates this point:

Example 3. Let A = {a, b, c, ⋄}, u0(a) = 10, u0(b) = 8, u0(c) = 6, u0(⋄) = 0, λa = λb = λc =

λ = 0.55, βa = βb = βc = β = 0.85, δ = 0.95, T = 10 and pait = 0 for all ai ∈ A . Given

this parameter specification, the solution to the above maximization problem is the following

treatment plan x∗ = (a, b, c, c, a, b, c, b, a, a). Figure 3 shows the optimal sequence of antibiotic

prescription x∗.

As the previous example shows, once the model’s parameters have been identified, the

optimal prescription plan of antibiotics that maximizes efficacy while minimizing antibiotic

resistance arises naturally as the solution to a simple maximization problem. Therefore, it

is crucial to identify the parameters of the model correctly. Now, building on the results

of Section 4, I explain how a medical researcher can identify the model’s parameters in this

specific application. Note that in this application, the medical researcher acts as a social

planner, and hence the utility function for money v and the time discount parameter δ can be

elicited in the same way described in section 4. By using quantitative antibiotic susceptibility

testing methods (AST), the set of pretreatment measures of the sensitivity (susceptibility)

of bacteria to each antibiotic {u0(a1), u0(a2), · · · , u0(aN−1), u0(⋄)} can be estimated. AST

methods are usually used to determine the most effective antibiotic treatment for a bacterial

infection and determine if a particular strain of bacteria is becoming drug-resistant (Heller
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Figure 3: Optimal treatment plan.
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and Spence (2019)). Quantitative AST methods estimate the minimal concentration of a drug

that inhibits visible growth of bacteria, this concentration is usually referred to as minimum

inhibitory concentration (MIC). Antibiotics with lower MIC values are more effective than those

with higher values. Thus, for each ai, we can set u0(ai) equal to the negative of its MIC value.

Moreover, those methods can also be used to elicit the resistance λai and recovery 1
βai

rate to

antibiotic ai. To elicit λai , we perform AST before and after the exposure of a particular strain

of bacteria to antibiotic ai. The resistance rate λai is then simply equal to the ratio between

the post-exposure measure of susceptibility uht(ai) and the pre-exposure measure uht−1(ai),

λai =
uht

(ai)

uht−1
(ai)

.21 In a similar fashion, once the bacteria has been exposed to antibiotic ai,

the recovery rate 1
βai

can be elicit as the ratio between the susceptibility measure after a

period of non-exposure and the susceptibility measure right after the exposure to antibiotic ai,
1

βai
=

uht
(ai)

uht−1
(ai)

.22

21Without loss of generality in this expression it has been implicitly assumed that the exposure to antibiotic
ai occurred at t− 1.

22Again without loss of generality it has been implicitly assumed that the period of exposure to antibiotic ai

was t− 2 and the period of non-exposure was t− 1. Also notice that to ensure a unique identification of 1
βai

, it

must be the case that uh0(ai) > uht(ai).
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6 Extension of the HDU Model

6.1 Different Degrees of Foresight

Up until now, the HDU model has been presented and axiomatically characterized for a stan-

dard, fully forward-looking agent. Fully forward-looking agents display infinite foresight, mean-

ing that they anticipate the impact of their current choice on all future decisions. Hence, they

choose a consumption path to maximize the sum of time-discounted and history-discounted

utilities. However, in some applications, it might be worthwhile to revisit the HDU model by

considering agents with limited foresight. Consider a DM choosing restaurants to dine in each

Saturday for the rest of his life. Due to the high cognitive cost of such an evaluation, the DM

could use the following effort-reduction heuristic: He might recursively choose the sequence

of restaurants that maximize the sum of time-discounted and history-discounted utilities of

today’s choice and the subsequent k periods. Agents using such a heuristic will be referred

to as k-periods forward-looking agents. Two special cases of k-periods forward-looking agents

are worth mentioning. First, our standard fully-forward looking agent corresponds to k ≥ T .

Second, the myopic agent, which corresponds to k = 0 and always chooses what he likes the

most at each period, totally ignoring the effects of that choice on future choices.

From now on, in order to avoid any confusion t = 0 will represent the present moment.

Let’s consider the same exact framework as in Section 3 and that Axioms 1 and 2 hold. The

following condition called Future Insensitivity allow us to generalize the HDU model in order

to accommodate the choice behavior of any given k-periods forward-looking agent, including as

special cases, the fully forward-looking and the myopic agents.

Axiom I (Future Insensitivity ): For any t ∈ T such that k < t ≤ T , for all x ∈ (∆(A)×R)T+1

and any (xt,mt), (x
′
t,m

′
t) ∈ ∆(A)× R,(

(x0,m0), . . . , (xk,mk), . . . , (xt,mt), . . . (xT ,mT )
)
∼(

(x0,m0), . . . , (xk,mk), . . . , (x
′
t,m

′
t), . . . , (xT ,mT )

)
This condition states that the DM is insensitive to consumption allocated further away

than k periods from the present (t = 0). Hence, the DM will sequentially re-optimize for the

subsequent k periods, given that he cannot change his past decisions. With this condition, I

obtain the following results:

Theorem 2. A binary relation ≿ on (∆(A) × R)T+1 satisfies Axioms (1-10), and Axiom I if

and only if it has an HDU representation given in definition (2.1) where the DM sequentially

re-optimize for the subsequent k periods completely ignoring the rest of the future.

Furthermore, if the decision maker can only choose from the set of degenerate lotteries A,

we obtain the following corollary:
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Corollary 2.1. A binary relation ≿ on (A × R)T+1 satisfies Axioms (1-10), and Axiom I if

and only if it has an HDU representation given in definition (2.2) where the DM sequentially

re-optimize for the subsequent k periods completely ignoring the rest of the future..

6.2 Goods Becoming Bads

So far, I have assumed that no matter the history of past consumption, any lottery would always

be preferred to the degenerate lottery that assigns probability one to the neutral alternative ⋄.
This effectively means that regardless of past consumption history, no good will ever become

a bad.23 However, in some applications, it might be interesting to consider goods that might

become bads after a sufficiently long history of repeated consumption. For example, think

about a long sequence of repeated consumption, let us say of chocolate. It might be the case

that the DM might suffer a stomachache if she eats chocolate once again. Hence, in such a case,

the DM would prefer to abstain from consumption.

Notice that given the multiplicative structure of the HDU representation, all utilities are

greater or equal than zero. Hence, we will use the following intuitive definition of a bad: a bad is

an alternative that provides a lower utility than not consuming anything (choosing the neutral

alternative). In what follows, I will present an extension of the HDU model in which goods

might become bads.24 I will spell out the (minor) changes to the axiomatic characterization

presented in Section 3 needed to accommodate this extension. I will also discuss what those

changes mean for the interpretation of the HDU axioms. Finally, I will show how this modified

set of axioms leads to a revised representation of the HDU model.

I start by extending the original choice set by adding a new alternative ρ ∈ A∗ ≡ A∪{ρ}, ρ
will be interpreted as the worse possible bad from DM’s point of view. Again, with a slight abuse

of notation ρ will also be used to denote the degenerate lottery that assigns probability one to

the this new alternative ρ. Consequently, the definitions of ∆(A), ∆(A)× R,
(
∆(A)× R

)T+1
,

and H are appropriately adjusted to this extended domain, and denoted respectively by ∆(A∗),

∆(A∗)×R,
(
∆(A∗)×R

)T+1
, andH∗. To fix ideas, ρ can be thought of as some sort of non-lethal

poison hence, from now on, I will frequently refer to it as poison.

6.2.1 Revised Axioms

Axioms 1-3 remain the same as in section 3, except they now apply to the extended spaces. I

impose the following modified version of Axiom 4:25

Axiom 4* (Boundedness): For all ht ∈ H∗, and for all (x,m) ∈ ∆(A∗)× R:
23This is an implication that follows directly from Axiom 4.
24I thank Debraj Ray for suggesting me this extension.
25In red, I will highlight the changes to the axioms in comparison to those presented in section 3.
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i) Bounded below : If x ̸= ρ, then (x,m) ≻ht (ρ,m).

ii) Bounded above: There exists c ∈ R++, such that (ρ,m+ c) ≻ht (x,m).

In a similar spirit to the original Axiom 4, part i) of Axiom 4* states that no matter past

consumption history, any lottery x will always be preferred to the degenerate lottery that assigns

probability one to poison. In particular, notice that this implies that ⋄ will always be preferred

to ρ, which justifies our interpretation of ρ as a bad. More specifically, it implies that regardless

of past consumption history, ρ is always the worst bad in the choice set. Part ii) states that for

any history of past consumption, there exist a positive amount of money c, that will induce the

DM to prefer ρ instead of her original lottery x but receiving this extra amount of money c.26

Following Axiom 4*, I state a new Lemma 2 that changes our previous definition of appro-

priate compensations. In a nutshell, in this extension of the HDU model, we compensate the

DM for consuming poison instead of her original lottery (and not for consuming the neutral

alternative as was the case in the original formulation of the HDU model).

Lemma 2*: If A1-A3 and A4* are satisfied, then for all ht ∈ H∗, and for all (x,m) ∈ ∆(A∗)×R,
there exist a unique compensation cht(x,m) ∈ R+, such that (ρ,m + cht(x,m)) ∼ht (x,m).

Moreover, cht(⋄,m) > 0 and cht(ρ,m) = 0, for all ht ∈ H∗, and for all m ∈ R.

This lemma implies that there exists a unique compensation that makes the DM exactly

indifferent between any pair (x,m) and (ρ,m+cht(x,m)). From now on, I will refer to cht(x,m)

as the appropriate compensation. The main difference concerning the original Lemma 2 is that

the proper compensations are now with respect to poison instead of the neutral alternative.

Moreover, notice that in this extension, the neutral alternative serves two purposes. Firstly, as

in the original formulation of the HDU model, it allows the consumer to choose not to consume

anything in the choice set. Secondly, in this extension, the neutral alternative also serves as a

benchmark. After a given history of past consumption, any alternative with lower utility than

the neutral alternative is considered a bad.

Again, Axioms 5 and 6 remain unchanged (keeping in mind that they now apply to the

extended spaces). While Axiom 7 needs to be reformulated as follows:

Axiom 7* (Satiation): For every t, t′ ∈ T , and every (ai,m) ∈ A∗ × R:

i) If (rt−1,mt−1) = (ai,m), ai ̸= ⋄, then
(
ρ,m + cht−1(ai,m)

)
≿ht

(
ρ,m + cht(ai,m)

)
. If

(rt−1,mt−1) = (⋄,m), then
(
ρ,m+ cht−1(ai,m)

)
∼ht

(
ρ,m+ cht(ai,m)

)
.

ii) If (rt−1,mt−1) = (rt′−1,mt′−1) = (ai,m) and
(
kai + (1 − k)ρ,m

)
∼ht−1

(
ρ,m +

cht′−1
(ai,m)

)
for k ∈ [0, 1], then

(
kai + (1− k)ρ,m

)
∼ht

(
ρ,m+ cht′ (ai,m)

)
.

26It is essential to recall that ρ is thought of as a non-lethal poison. If it was lethal, it might well be the case
that no amount of money will induce the DM to prefer ρ instead of her original lottery x.
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Likewise as in Axiom 7, the first condition in part i) alongside with money monotonicity,

implies that after an additional consumption of the alternative ai (at t − 1), the appropriate

monetary compensation cht(ai,m) will be lower or equal to cht−1(ai,m), capturing the satiation

effect. However, the main difference concerning Axiom 7 is that now ρ has the same role that ⋄
played in the original formulation. Moreover, the new second statement of i) explicitly asserts

that ⋄ does not experience satiation. Finally, as in Axiom 7, part ii) implies that the satiation

rate is constant.

As probably already anticipated, in the following revised version of Axiom 8, ρ plays the

role that ⋄ had in the original formulation. Furthermore, since the neutral alternative does not

experience satiation, it will not experience recovery either, and hence no further changes are

required.

Axiom 8* (Recovery): For every t, t′ ∈ T , and every (ai,m) ∈ A∗ × R:

i) If (rt−1,mt−1) ̸= (ai,m), then
(
ρ,m + ch0(ai,m)

)
≿ht

(
ρ,m + cht(ai,m)

)
≿ht

(
ρ,m +

cht−1(ai,m)
)
.

ii) If (rt−1,mt−1) ̸= (ai,m), (rt′−1,mt′−1) ̸= (ai,m),
(
ρ,m + ch0(ai,m)

)
≻ht

(
ρ,m +

cht(ai,m)
)
and

(
kai + (1 − k)ρ,m

)
∼ht−1

(
ρ,m + cht′−1

(ai,m)
)
for k ∈ (0, 1], then(

kai + (1− k)ρ,m
)
∼ht

(
ρ,m+ cht′ (ai,m)

)
.

The implications of Axiom 8* are mainly analogous to those of Axiom 8. In brief, money

monotonicity alongside part i) implies that after a period of non-consumption, the appropriate

compensation would be higher or equal than the one demanded before that resting period. Part

ii) implies that whenever the recovery is partial, the recovery rate is constant.

Finally, Axioms 9 and 10 remain unchanged with the caveat that, as previously explained,

DM’s appropriate compensations are now for consuming ρ instead of her original lottery (not

for consuming ⋄ as it was the case in the original characterization). With this new set of axioms,

I obtain the following results.

6.2.2 Revised Representation Theorem

Theorem 3. A binary relation ≿ on (∆(A∗)×R)T+1 satisfies A1-A3, A4*, A5, A6, A7*, A8*,

A9, and A10 if and only if it has a HDU representation given in definition (2.1) where for all

t ∈ T , uht+1(⋄) = uht(⋄) = u(⋄) > 0, λ⋄ = 1, and uht+1(ρ) = uht(ρ) = u(ρ) = 0.

Furthermore, if the decision-maker can only choose from the set of degenerate lotteries A∗,

we obtain the following corollary:

Corollary 3.1. A binary relation ≿ on (A∗×R)T+1 satisfies A1-A3, A4*, A5, A6, A7*, A8*,

A9, and A10 if and only if it has a HDU representation given in definition (2.2) where for all

t ∈ T , uht+1(⋄) = uht(⋄) = u(⋄) > 0, λ⋄ = 1, and uht+1(ρ) = uht(ρ) = u(ρ) = 0.
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Notice that in the original formulation of the HDU model, the only reason a fully forward-

looking DM might choose not to consume anything at a given point in time is exclusively an

intertemporal optimization reason.27 However, in this extension of the HDU model, I have

added a new reason for choosing ⋄. This new reason is precisely the primary motivation of this

extension. I allow a good to become a bad. Specifically, I allow its history-dependent utility to

fall below the threshold of the neutral alternative’s utility.28

I close this section by presenting a simple example that illustrates how this new extension

of the HDU model can accommodate that, for some histories of past consumption, some goods

become bads.

Example 4. Given A = {a, ⋄, ρ}, u0(a) = 10, u0(⋄) = 4, u0(ρ) = 0, λa = βa = 0.5. Consider

also the following two different histories of past consumption, h2 = (a, a), and h̃2 = (a, ⋄).
Simple calculations show that uh2(a) = 2.5 < 4 = u0(⋄), hence after h2, a becomes a bad.

However, uh̃2
(a) = 10 > 4 = u0(⋄), hence after h̃2, a remains a good.

6.3 Axiomatic characterization of the HDU model when T = ∞

In the following lines, I will revise the axiomatic characterization of the HDU model, presented

in Section 3, to accommodate infinite horizon consumption plans. The purpose of this exercise

is twofold. First, it serves an obvious completeness purpose. The HDU model should also

be able to represent variety-seeking preferences over infinite horizon consumption plans. Sec-

ondly and more importantly, this exercise will demonstrate another desirable consequence of

the axiomatization strategy presented in Section 3. As previously discussed, one of the main

methodological advantages of the axiomatization strategy is that it completely separates the

effects of time preferences from the effects of pure history dependence. Therefore, time prefer-

ences axioms are entirely independent of the rest of the axioms. This axiomatization’s feature

allows us to easily replace the set of time preferences axioms, which characterizes finite horizon

exponential discounting, with any other set that characterizes a different time discounting, e.g.,

hyperbolic, quasi-hyperbolic, or infinite horizon exponential discounting.29

The original axiomatization of infinite horizon exponential discounting is due to Koopmans

(1960). Koopmans’ axiomatization is probably among the most appealing and intuitive charac-

terizations in the intertemporal choice literature. However, his results suffer from several prob-

lems and inaccuracies (Bleichrodt et al. (2008)). One problem is that he assumes the existence

27The DM optimally internalizes the satiation and recovery process and hence, might choose ⋄ at some periods,
provided that this strategy maximizes her overall discounted utility.

28Therefore, within this new framework, even a myopic DM might choose ⋄ at some periods. Recall that in
the original formulation of the HDU model, a myopic DM would never choose ⋄.

29Recall that as seen in Section 4, another desirable consequence of the axiomatization strategy is that the
time preference parameter could be independently elicited from the satiation and recovery parameters.
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of a utility function (from the set of infinite horizon consumption streams to the reals) represent-

ing the preference relationship that possesses strong continuity properties. Another problem is

that you either have to assume bounded utility or restrict the domain of consumption streams

into consideration to those for which discounted utility (DU) is well-defined (Bleichrodt et al.

(2008) and Strzalecki (2017)). However, knowing in advance for which consumption streams

DU is finite and well-defined is complex, and finding conditions stated entirely in terms of

observables (preferences) that characterize that subset of consumption streams is even more

challenging. Bleichrodt et al. (2008) present a simplification and generalization of Koopman’s

axiomatization of DU that deals nicely and elegantly with both problems while avoiding com-

plex topological considerations inherent to infinite-dimensional spaces. Therefore, from now on,

I will follow their approach.

Preliminaries

Let T ≡ {0, 1, 2, . . . } be the set of time periods. Consumption streams are elements of

RT . For any c ∈ R, and x ∈ RT , let cx = (c, x0, x1, . . . ). Similarly, for any c, d ∈ R, and
x ∈ RT , let cdx = (c, d, x0, x1, . . . ). An ultimately constant stream is a stream of the form

xT c = (x0, x1, . . . , xT , c, c, . . . ) for some T ∈ T , and some c ∈ R. For any T , let XT ≡ {xT c |
x ∈ RT , c ∈ R} be the set of all ultimately constant streams. Finally, let ≿∗ be a weak order

defined on a subset F of RT that contains all ultimately constant streams.

Revised Time Preference Axiom

As previously discussed, one of the main advantages of the characterization strategy pre-

sented in Section 3, is that it ensures that the time preferences axiom is completely independent

from the rest of the axioms. Therefore, we just need to replace our original Axiom 10 by the

following revised formulation.

Axiom 10* (Exponential Discounting Infinite Horizon):

i) (Stationarity): For all c ∈ R and x,y ∈ F we have cx ≿∗ cy if and only if x ≿∗ y.

ii) (Ultimate-continuity): ≿∗ is continuous on each set XT .

iii) (Constant-equivalence): For all x ∈ F there exists c ∈ R such that x ∼∗ (c, c, . . . ).

iv) (Tail-robustness): For any c ∈ R and any x ∈ F if x ≻∗ (c, c, . . . ) ((c, c, . . . ) ≻∗ x) then

there exists a t such that xT c ≻∗ (c, c, . . . ) ((c, c, . . . ) ≻∗ xT c) for all T ≥ t.

Revised Representation Theorem

Theorem 4. A binary relation ≿ on (∆(A)×R)T+1 satisfies Axioms (1-9) and Axiom 10* if

and only if it has a HDU representation given in definition (2.1) where T = ∞.
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Furthermore, if the decision maker can only choose from the set of degenerate lotteries A,

we obtain the following corollary:

Corollary 4.1. A binary relation ≿ on (A × R)T+1 satisfies Axioms (1-9) and Axiom 10* if

and only if it has a HDU representation given in definition (2.2) where T = ∞.

7 Concluding Remarks

This paper has proposed, and axiomatically characterized a new discrete intertemporal choice

model consistent with variety-seeking behavior, the HDU model. The axioms presented in this

paper are intuitive, as is the representation obtained.

Moreover, the proposed characterization strategy allows us to easily isolate the effects of

time from history dependence. The three extensions presented in this paper illustrate the

importance of this property.

Finally, the HDU model has a wide range of applicability, as I show with two illustrative

applications. In the firs application, I analyze where I demonstrate how the HDU model can

be used to design optimal antibiotic treatment plans.
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A Additional Results, Definitions, and Mathematical Proofs

Lemma A1 (Weak Order): For all ht ∈ H, the binary relation ≿ht on ∆(A)× R is :

i) Complete: for all (x,m), (y,m′) ∈ ∆(A) × R, either (x,m) ≿ht (y,m′) or (y,m′) ≿ht

(x,m).

ii) Transitive: for all (x,m), (y,m′), (z,m′′) ∈ ∆(A)×R, if (x,m) ≿ht (y,m
′) and (y,m′) ≿ht

(z,m′′), then (x,m) ≿ht (z,m
′′).

Proof of Lemma A1: Let x = (ht, (x,m), (⋄, 0), · · · , (⋄, 0)), y = (ht, (y,m
′), (⋄, 0), · · · , (⋄, 0))

and z = (ht, (z,m
′′), (⋄, 0), · · · , (⋄, 0)), be consumption streams for an arbitrary ht ∈ H.

i) Completeness: By Axiom 1 we know that either x ≿ y or y ≿ x, hence by the definition

of ≿ht , it follows that either (x,m) ≿ht (y,m
′) or (y,m′) ≿ht (x,m)

ii) Transitivity: By Axiom 1 we know that if x ≿ y and y ≿ z, then x ≿ z, again by

the definition of ≿ht , it follows that if (x,m) ≿ht (y,m′) and (y,m′) ≿ht (z,m′′), then

(x,m) ≿ht (z,m
′′).

Lemma A2 (Continuity): For all ht ∈ H and for all (x,m) ∈ ∆(A)×R, the following sets are

closed:

B
(
(x,m)

)
= {(y,m′) ∈ ∆(A)× R : (y,m′) ≿ht (x,m)}

W
(
(x,m)

)
= {(y,m′) ∈ ∆(A)× R : (x,m) ≿ht (y,m

′)}

Proof of Lemma A2: Let {xk}∞k=1 = {(ht, (xk,mk), (⋄, 0), · · · , (⋄, 0))}∞k=1 and {yk}∞k=1 =

{(ht, (yk,m
′
k), (⋄, 0), · · · , (⋄, 0))}∞k=1 be a pair of arbitrary vector sequences such that xk ≿ yk

for all k ∈ N, and (xk,mk) → (x,m), (yk,m
′
k) → (y,m′) as k → ∞. Then, by the

definition of ≿ht , it follows that (xk,mk) ≿ht (yk,m
′
k) for all k ∈ N. Moreover, xk →

(ht, (x,m), (⋄, 0), · · · , (⋄, 0)) and yk → (ht, (y,m
′), (⋄, 0), · · · , (⋄, 0)) as k → ∞. Hence, by

Axiom 2, we must have (ht, (x,m), (⋄, 0), · · · , (⋄, 0)) ≿ (ht, (y,m
′), (⋄, 0), · · · , (⋄, 0)), which im-

plies (x,m) ≿ht (y,m
′). This shows that the setW

(
(x,m)

)
is closed. The proof that B

(
(x,m)

)
is also closed is analogous and hence omitted.

Lemma A3 (Money Monotonicity): For all ht ∈ H, (x,m) ≻ht (x,m
′) if and only if m > m′.

Proof of Lemma A3: A3 trivially implies:

(
ht, (x,m), (⋄,m′′

t+1), · · · , (⋄,m′′
T )
)
≻

(
ht, (x,m

′), (⋄,m′′
t+1), · · · , (⋄,m′′

T )
)
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if and only if m > m′. Hence, it follows from definition 1 that, (x,m) ≻ht (x,m′) if and

only if m > m′.

Proof of Lemma 1: By lemma 2 we know that ≿ht on ∆(A)×R is continuous, and suppose

that (x,m) ≿ht (y,m
′) and (y,m′) ≿ht (x,m

′′). We want to show that there exist a unique m∗,

with m′′ ≤ m∗ ≤ m, such that (x,m∗) ∼ht (y,m′). Let B = {m′′′ ∈ R : (x,m′′′) ≿ht (y,m′)} ⊂
R, and define m∗ ≡ inf(B). By assumption m ∈ B, so we are not taking the infimum of an

empty set and hence, m∗ is well defined. Since m∗ is the infimum of B there exist a sequence

{mk}∞k=1 ∈ B such that mk → m∗ as k → ∞ and (x,mk) ≿ht (y,m′). By continuity, we get

that (x,m∗) ≿ht (y,m
′). Since m∗ is the greatest lower bound of B, for any m ∈ B such that

m < m∗ completeness will imply that (y,m′) ≻ht (x,m). Let {mk}∞k=1 ≡ m∗ − 1
k , clearly,

mk < m∗ for all k ∈ N, hence (y,m′) ≿ht (x,mk) but mk → m∗ as k → ∞, therefore by

continuity we get that (y,m′) ≿ht (x,m
∗). Since we have shown that (x,m∗) ≿ht (y,m

′) and

(y,m′) ≿ht (x,m∗) we must conclude that (x,m∗) ∼ht (y,m′). To prove uniqueness, suppose

there exists another m∗∗ such that (x,m∗∗) ∼ht (y,m
′), then by money monotonicity we have

that m∗∗ = m∗.

Proof of Lemma 2: Suppose x ̸= ⋄, then by transitivity and axiom 4 (Boundedness), we

know that there exist c ∈ R++ such that (⋄,m+ c) ≻ht (x,m) ≻ht (⋄,m). Therefore, by lemma

3 (Money Solvability), we know that there exists cht(x,m) ∈ R, with 0 < cht(x,m) < c, such

that (x,m) ∼ht (⋄,m + cht(x,m)). Finally suppose that x = ⋄, applying part ii) of axiom S4

and reflexivity we have, (⋄,m + c) ≻ht (⋄,m) ∼ht (⋄,m). Again, by lemma 3 we know that

there exists cht(⋄,m) ∈ R with 0 ≤ cht(⋄,m) < c such that (⋄,m) ∼ht (⋄,m+ cht(⋄,m)). But

then, by S3 (Money Monotonicity), we must conclude that cht(⋄,m) = 0 for all ht ∈ H, and

for all m ∈ R.

Lemma A4 (Weak Order∗): The binary relation ≿∗ on RT+1 is complete and transitive.

Proof of Lemma A4: It is implied by A1-A8 and the fact that the space {⋄}×R is isometric,

and hence also homeomorphic, to R.

Lemma A5 (Continuity∗): ≿∗ is continuous in the product topology on RT+1.

Proof of Lemma A5: It is implied by A1-A8 and the fact that the space {⋄}×R is isometric,

and hence also homeomorphic, to R.

Definition A1: For any set E ⊆ T and any x,y ∈ RT+1 define xEy ∈ RT+1 as follows

(xEy)t =

{
xt if t ∈ E

yt if t /∈ E

If E = {t} is a singleton, then we abuse notation slightly and write xty instead of x{t}y.
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Example: Suppose x = (x0, x1, · · · , xT ), y = (y0, y1, . . . , yT ) both in RT+1, and assume that

E = {t ∈ T | t is odd} then, xEy = (y0, x1, y2, x3, . . . ).

Definition A2 (Null index): A time index t ∈ T is null if and only if for any x,y, z ∈ RT+1,

xtz ∼∗ ytz.

In words we say that an index is null if no matter what we give the DM on that index, she

does not care. The next lemma establish that our DM cares about the outcomes that she will

receive at all points in time. Sometimes non-null indexes are also called essential indexes.

Lemma A6 (Sensitivity): Each of the indexes t ∈ T is non-null.

Proof of Lemma A6: It is implied by A1-A8 and the fact that the space {⋄}×R is isometric,

and hence also homeomorphic, to R.

Definition A3 (Separable Set): A set E ⊆ T is separable, if and only if, for all x,y, z, z′ ∈
RT+1, xEz ≿∗ yEz, if and only if, xEz

′ ≿∗ yEz
′.

When E = {t} in the above definition, we refer to it as Separable index. In general, given

the previous axioms, singleton separability (all indexes t ∈ T are separable) suffices to ensure

the existence of an ordinally separable representation of ≿∗, however its too weak to ensure the

existence of an additive separable representation. To that purpose, we need assume not only

that all singletons {t} are separable, but all subsets of T are separable.

Proof of Lemma 3:

For any m ∈ [mi,mi+1] let’s define:

ṽi+1(m) = v(mi)−
v(mi+1)− v(mi)

mi+1 −mi
mi +

v(mi+1)− v(mi)

mi+1 −mi
m

By construction, ṽi+1(mi) = v(mi) and ṽi+1(mi+1) = v(mi+1).

The interpolation error in the interval [mi,mi+1] is:

IEi+1 =

∫ mi+1

mi

|ṽi+1(m)− v(m)|dm

The total interpolation error for the K equally-spaced partition of [0,M ] is therefore:

TIEK =

K−1∑
i=0

∫ mi+1

mi

|ṽi+1(m)− v(m)|dm

But since v(·) is increasing and continuous and ṽi+1(·) is linear we have that
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IEi+1 =

∫ mi+1

mi

|ṽi+1(m)− v(m)|dm ≤ (mi+1 −mi)(v(mi+1)− v(mi))

2

Hence,

TIEK =
K−1∑
i=0

∫ mi+1

mi

|ṽi+1(m)− v(m)|dm ≤
K−1∑
i=0

(mi+1 −mi)(v(mi+1)− v(mi))

2
= SK

Thus, SK is an upper bound for TIEK . Notice also that SK+1 < SK and hence TIEK+1 <

TIEK which means that the finer the partition the lowest the interpolation error.

B Proof of the Representation Theorems

Proof of Theorems 1 and Corollaries 1.1:

Step 1: We show that there exist an additive separable representation of the binary relation

≿ht on ∆(A)× R:
I make use of the following theorem due to Wakker (1988), which is already a refinement of

the main result Debreu (1959).

Theorem 4.4 (Wakker 1988): Let C1, C2 be two connected topological spaces; let C1 × C2 be

endowed with the product topology. Let ≿ be a binary relation on C1×C2, with both coordinates

essential. Then the following three statements are equivalent:

i) There exists a continuous additive representation for ≿.

ii) The binary relation ≿ is a continuous coordinate independent weak order that satisfies

the Thomsen condition.

iii) The binary relation ≿ is a continuous weak order that satisfies triple cancellation.

Given A1-A5 and the topological properties of ∆(A) × R, ≿ht satisfies all the premises of

the above theorem. In particular, notice that the sets ∆(A) and R are both connected. The set

∆(A)×R is endowed with the product topology. Boundedness and Money Monotonicity ensure

that both coordinates are essential. Lemma 1, Lemma 2, Money Monotonicity and Separability

ensure that the binary relation ≿ht is a continuous coordinate indepedent weak order that

satisfies the Thomsen condition, hence we must conclude that for all (x,m), (y,m′) ∈ ∆(A)×R
and for all ht ∈ H:

(x,m) ≿ht (y,m
′) ⇔ uht(x) + v(m) ≥ uht(y) + v(m′)
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Further notice that uht(⋄) = 0, for all ht ∈ H. To see this suppose by way of contradiction that

uht(⋄) > 0, recall that Boundedness imply that if x ̸= ⋄, then (x,m) ≻ht (⋄,m) which implies,

in particular, that uht(ai) > uht(⋄) for all ht ∈ H and for all ai ∈ A. But Satiation ensures that

there always exists a combination of a satiation rate and a history of repeated consumption of

ai such that uht(⋄) > uht(ai) > 0 which contradicts Boundedness. Similarly, we can show that

uht(⋄) < 0 is also not possible.

Step 2 (Expected Utility Representation): We are going to show that uht(x) has an expected

utility representation, uht(x) =
∑N

i=1 px(ai)uht(ai). To this end we start by inducing a prefer-

ence relation in the first coordinate using Coordinate Independence:

x ≿1
ht
y ⇔ (x,m) ≿ht (y,m)

It is trivial to see that given the definition of ≿1
ht
, Lemma 1, Lemma 2 and Independence

ensure that ≿1
ht

is a continuous weak order that satisfies the standard independence axiom

from expected utility theory. Therefore, by standard results of expected utility theory we must

conclude that for all x, y ∈ ∆(A) and for all ht ∈ H:

x ≿1
ht
y ⇔

N∑
i=1

px(ai)uht(ai) ≥
N∑
i=1

py(ai)uht(ai)

or equivalently,

x ≿1
ht
y ⇔ αx

ht
≥ αy

ht
(15)

where αx
ht

and αy
ht

are the unique numbers such that:

x ∼1
ht
αx
ht
bht + (1− αx

ht
)⋄

y ∼1
ht
αy
ht
bht + (1− αy

ht
)⋄

and bht and ⋄ are the degenerate lotteries that assign probability one to the best and

the worse alternative in A given history ht. Now recall that from step 1 we got that for all

(x,m), (y,m) ∈ ∆(A)× R and for all ht ∈ H:

(x,m) ≿ht (y,m
′) ⇔ uht(x) + v(m) ≥ uht(y) + v(m)

which by the definition of ≿1
ht

it implies that

x ≿1
ht
y ⇔ uht(x) ≥ uht(y)
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Now we can define:

0 < max{uht(z)|z ∈ ∆(A)} <∞

We have used Boundedness to bound it away from zero, and the following facts: (i) ∆(A)

is compact (ii) and from Wakker 4.4 we know that uht() is continuous, so by the extreme value

theorem we know the maximum exists. Therefore, we have that:

x ≿1
ht
y ⇔ uht(x)

max{uht(z)|z ∈ ∆(A)}
≥ uht(y)

max{uht(z)|z ∈ ∆(A)}
(16)

Equations (1) and (2) give us two expected utility representations of ≿1
ht

hence by the

uniqueness result of expected utility representation we know that there exist η > 0 and γ ∈ R,
such that

αx
ht

= η
uht(x)

max{uht(z)|z ∈ ∆(A)}
+ γ

but by construction, we have that α⋄
ht

= 0 and
uht(⋄)

max{uht(z)|z ∈ ∆(A)}
= 0 which implies

that γ = 0. Moreover, αbest
ht

= 1 and
uht(best)

max{uht(z)|z ∈ ∆(A)}
= 1 which implies that η = 1. In

conclusion,

uht(x)

max{uht(z)|z ∈ ∆(A)}
= αx

ht
(17)

Again by step 1 we have that for all (x,m), (y,m′) ∈ ∆(A)× R and for all ht ∈ H:

(x,m) ≿ht (y,m
′) ⇔ uht(x) + v(m) ≥ uht(y) + v(m′)

Also,

(x,m) ≿ht (y,m
′) ⇔ uht(x) + v(m)

max{uht(z)|z ∈ ∆(A)}
≥ uht(y) + v(m′)

max{uht(z)|z ∈ ∆(A)}

(x,m) ≿ht (y,m
′) ⇔ uht(x)

max{uht(z)|z ∈ ∆(A)}
+ v̂(m) ≥ uht(y)

max{uht(z)|z ∈ ∆(A)}
+ v̂(m′)

where v̂(m) = v(m)
max{uht

(z)|z∈∆(A)} . Thus, by equation (3):

(x,m) ≿ht (y,m
′) ⇔ αx

ht
+ v̂(m) ≥ αy

ht
+ v̂(m′)

or equivalently,

(x,m) ≿ht (y,m
′) ⇔

N∑
i=1

px(ai)uht(ai) + v̂(m) ≥
N∑
i=1

py(ai)uht(ai) + v̂(m′)
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This shows that uht(x) has an expected utility representation.

Step 3 (Satiation): We show that if (rt−1,mt−1) = (ai,m), then uht(ai) = λaiuht−1(ai), where

λai ∈ (0, 1]:

By Lemma 5 and step 1 we know that:

(ai,m) ∼ht

(
⋄,m+ cht(ai,m)

)
⇔ uht(ai) + v(m) = v

(
m+ cht(ai,m)

)
and

(ai,m) ∼ht−1

(
⋄,m+ cht−1(ai,m)

)
⇔ uht−1(ai) + v(m) = v

(
m+ cht−1(ai,m)

)
Part i) of Satiation implies that, v

(
cht(ai,m)

)
≤ v

(
cht−1(ai,m)

)
therefore,

uht(ai) + v(m) ≤ uht−1(ai) + v(m) ⇔ uht(ai) ≤ uht−1(ai)

Boundedness implies that 0 < uht(x) ≤ uht−1(x) <∞, hence

0 <
uht(ai)

uht−1(ai)
≤ 1

Now we are going to show that Part ii) of the satiation axiom implies that for all t, t′ for

which the premises of the axiom hold we have:

0 <
uht(ai)

uht−1(ai)
=

uh′
t
(ai)

uht′−1
(ai)

= λai ≤ 1

First notice that as a result of the independence axiom we have that for any κ ∈ (0, 1]

uht−1

(
κai + (1− κ) ⋄

)
= κuht−1(ai)

hence by part ii) of Satiation:

v
(
m+ cht′−1

(ai,m)
)
= κuht−1(ai) + v(m) (18)

Also

v
(
m+ cht′−1

(ai,m)
)
= uht′−1

(ai) + v(m) (19)

From equation (4) and (5) we must conclude that

uht′−1
(ai) = κuht−1(ai)

By similar arguments we find that
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uht′ (ai) = κuht(ai)

Hence, we have that

0 <
uht(ai)

uht−1(ai)
=

κuht(ai)

κuht−1(ai)
=

uh′
t
(ai)

uht′−1
(ai)

= λai ≤ 1

From which we get the desired result,

uht(ai) = λaiuht−1(ai) where λ ∈ (0, 1]

Step 4 (Recovery): Similar to satiation.

By Recovery part i) and following similar steps as we did in step 3 we get that:

1 ≤ uht(ai)

uht−1(ai)
<∞

Suppose now that
(
⋄,m + ch0(ai,m)

)
≻ht

(
⋄,m + cht(ai,m)

)
, by similar arguments as in

step 3 we arrive to the conclusion that:

1 ≤ uht(ai)

uht−1(ai)
=

κuht(ai)

κuht−1(ai)
=

uh′
t
(ai)

uht′−1
(ai)

=
1

βai
<∞

Now suppose that
(
⋄,m+ ch0(ai,m)

)
∼ht

(
⋄,m+ cht(ai,m)

)
, then by step 1 and Lemma 5

v
(
m+ ch0(ai,m)

)
= v

(
m+ cht(ai,m)

)
⇔ uh0(ai)+v(m) = uht(ai)+v(m) ⇔ uh0(ai) = uht(ai)

Therefore, taking into account both cases we must conclude that:

uht(ai) = min
{
uh0(ai),

uht−1(ai)

βai

}
Step 5: We show that the binary relation ≿∗ on RT+1 has an exponential discounting repre-

sentation:

To that purpose we make use of the following theorem:

Theorem 4.6 (Strzalecki 2017): A weak order ≿ on RT+1 satisfies Continuity, Sensitivity, Sep-

arablility and Stationarity, if and only if there exists a unique number δ > 0, and a function

v : R → R nonconstant, continuous, and unique up to a positive affine transformation such that

for any x,y ∈ RT+1:

x ≿ y ⇔
T∑
t=0

δtv(xt) ≥
T∑
t=0

δtv(yt)

45



Notice that given A1-A9 and the topological properties of RT+1 , ≿∗ satisfies all the premises

of the above theorem, hence we must conclude that for all x,y ∈ RT+1:

x ≿∗ y ⇔
T∑
t=0

δtv(xt) ≥
T∑
t=0

δtv(yt)

Moreover, since Impatience hold, if a ≻∗ b, then

(a, b, x2, x3, . . . , xT ) ≻∗ (b, a, x2, x3, . . . , xT )

From the representation it follows that:

v(a) + δv(b) > v(b) + δv(a)

Or equivalently,

(1− δ)(v(a)− v(b)) > 0

Since v(a) > v(b) if follows that δ < 1. Furthermore, from the previous theorem we also know

that δ > 0, thus we must conclude that δ ∈ (0, 1).

Step 6: We show that for any ♢(x),♢(y) ∈ ({⋄} × R)T+1

♢(x) ≿ ♢(y) ⇔
T∑
t=0

δtv
(
mt + cht(xt,mt)

)
≥

T∑
t=0

δtv
(
m′

t + cht(yt,m
′
t)
)

This follows immediately from the result in Step 5 and the fact that the space {⋄} × R is

isometric, and hence also homeomorphic, to R.

Step 7: We show that for any x,y ∈ (∆(A)× R)T+1:

x ≿ y ⇔ ♢(x) ≿ ♢(y)

This follows trivially from the Indifference axiom and the transitivity of ≿.

Step 8: Finally, notice that for all t ∈ T , uht(xt) + v(mt) = v
(
mt + cht(xt,mt)

)
, hence we

must conclude that for any x,y ∈ (∆(A)× R)T+1:

x ≿ y ⇔
T∑
t=0

δt
[
uht(xt) + v(mt)

]
≥

T∑
t=0

δt
[
uht(yt) + v(m′

t)
]

where for all zt ∈ ∆(A) and all t > 0 if ai ∈ A was the realization of the lottery chosen by

the decision maker at t− 1, that is rt−1 = ai, then:
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N∑
i=1

pzt(ai)uht(ai)︸ ︷︷ ︸
uht

(zt)

= pzt(ai)(λai − 1)uht−1(ai)︸ ︷︷ ︸
Satiation≤0

+

∑
aj∈A−{ai}

p(aj)

[
min

{
u0(aj),

uht−1(aj)

βaj

}
− uht−1(aj)

]
︸ ︷︷ ︸

Recovery≥0

+
N∑
i=1

pzt(ai)uht−1(ai)︸ ︷︷ ︸
uht−1

(zt)

Furthermore, if the decision maker can only choose from the set of degenerate lotteries A,

we can rewrite the previous result more simply as follows, for any x,y ∈ (A× R)T+1:

x ≿ y ⇔
T∑
t=0

δt
[
ψt(xt|xt−1)u0(xt) + v(mt)

]
≥

T∑
t=0

δt
[
ψt(yt|yt−1)u0(yt) + v(m′

t)
]

where for all zt ∈ A
ψ0(zt|h0) = 1

and for all t > 0

ψt(zt|zt−1) =

{
λzt · ψt−1(zt|zt−2) if zt = zt−1

min
{
1, 1

βzt
· ψt−1(zt|zt−2)

}
if zt ̸= zt−1

The result for the set of degenerate lotteries follow immediately from the previous steps.

From this result it follows trivially the result for the set all probability distributions by using

the expected utility representation of uht .

Proof of Theorems 2, 3, 4 and Corollaries 2.1, 3.1, 4.1:

These proofs follow the same steps that the proof of Theorem 2.1 and Corollary 2.1, hence

are omitted.

C Rationalizable Sequences

At this point we might be wondering which types of sequences this model can accommodate.

Despite the fact that in the next section I will provide a complete axiomatic characterization of

the HDU model that will allow us to fully discriminate between sequences that are consistent

with our set of axioms and those who are not (and hence, cannot be rationalized by the model),

in this section I will describe the types of sequences that can be rationalized by the HDU model

in its simplest specification: a myopic DM facing alternative-independent satiation and recovery

rates. To do so, we will identify some fundamental properties of the sequences generated by

this specification of the HDU model.
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The purpose of this exercise is twofold. First, it will help the reader to easily grasp the

intuition behind the dynamics of the model. Second, it will clearly illustrate the fact that

despite the flexibility of the HDU model, only certain types of sequences can be explained by

it, therefore, the model is also easily refutable by just cheeking some basic properties of the

sequence of choices made by the DM.

Keeping the intrinsic ranking fixed we will examine all possible combinations of the satiation

and recovery rates in the admissible range of the parameters, λ ∈ (0, 1] and β ∈ (0, 1]. To

further clarify the dynamics of the model we will rewrite β ∈ (0, 1] as β = λn where n ∈ [0,∞).

Moreover, without lost of generality, we will assume that the choice set is X = {a, b, c, d}
whose elements are evaluated initially, by the DM, according to the following intrinsic ranking:

a ≻h0 b ≻h0 c ≻h0 d, represented by u0(a) = 5 > u0(b) = 4 > u0(c) = 3 > u0(d) = 2. All

results that follow are general and do not depend on the specific intrinsic ranking taken into

consideration nor on the cardinality of the choice set30. Even though the ranking of alternatives

will evolve endogenously, we will keep referring to a as the best alternative, b as the second best

and so on.

Case 1 (No satiation): λ = 1, β ∈ (0, 1]. In this trivial case, there is no satiation thus DM’s

preferences are static and only the best alternative in the choice set is chosen. Therefore, only

the following sequence can be rationalized:

xt = (a, a, a, · · · )

For a graphical illustration see figure Figure 4 in the appendix.

Case 2 (Satiation rate = Recovery rate): λ = β ∈ (0, 1). With this parameter configura-

tion only a certain type of sequences can be generated: The best alternative in the choice set

is chosen N times, with N =
⌊
ln

(
u0(b)
u0(a)

)
∗ 1

ln(λ) + 1
⌋
< ∞,31 until the second best alternative

is chosen for the first time, from that moment on, the DM alternates between both alterna-

tives. The other alternatives in the choice set are never chosen. As an example of this type of

sequences we set λ = β = 0.9 and we generate the following sequence:

xt = (a, a, a︸ ︷︷ ︸
N=3

, b, a, b, a, · · · )

For a graphical illustration see figure Figure 5 in the appendix.

Case 3 (Satiation rate < Recovery rate): λ ∈ (0, 1), β = λn, n ∈ (1,∞). Three prototyp-

ical cases arise:
30Some deviations from the patterns presented here might arise if the DM is ever indifferent between two or

more top alternatives. In this case recall that the DM chooses randomly between top indifferent alternatives.
31We denote by ⌊x⌋ the floor function, ⌊x⌋ = max{m ∈ Z | m ≤ x}.

48



(i) If n ∈ N∩(1,∞) and n < N =
⌊
ln

(
u0(b)
u0(a)

)
∗ 1

ln(λ) + 1
⌋
: The best alternative in the choice

set is chosen N times until the second best alternative is chosen for the first time, from that

moment on, the DM repeatedly chooses the best alternative n times followed by the second best

alternative once. Again, the other alternatives in the choice set are never chosen. For example,

with λ = 0.96, β = λ3 (n = 3 < N = 6), we obtain:

xt = (a, a, a, a, a, a︸ ︷︷ ︸
N=6

, b, a, a, a︸ ︷︷ ︸
n=3

, b, a, a, a︸ ︷︷ ︸
n=3

, · · · )

See figure Figure 6 in the appendix.

(ii) If n ∈ (1,∞) and n ≥ N =
⌊
ln

(
u0(b)
u0(a)

)
∗ 1

ln(λ) + 1
⌋
: The DM repeatedly chooses the

best alternative N times followed by the second best alternative once. As an example, we set

λ = 0.96, β = λ8 (n = 8 > N = 6) and we obtain:

xt = (a, a, a, a, a, a︸ ︷︷ ︸
N=6

, b, a, a, a, a, a, a︸ ︷︷ ︸
N=6

, b, · · · )

See figure Figure 7 in the appendix.

(iii) If n ∈ N∁ ∩ (1,∞) and n < N =
⌊
ln

(
u0(b)
u0(a)

)
∗ 1

ln(λ) + 1
⌋
: Again the DM repeatedly

chooses the best alternative N times followed by the second alternative once. Then, the DM

keeps alternating forever between choosing the first alternative either ⌊n⌋ or ⌊n+ 1⌋ times

followed by the second best alternative once. The intuition behind this result is simple, this

case is just similar to (i) but up to an integer problem. For example, if we set λ = 0.9, β = λ2.5,

(⌊n⌋ = 2 < n = 2.5 < ⌊n+ 1⌋ = 3 ≤ N = 3) we obtain:

xt = (a, a, a︸ ︷︷ ︸
N=3

, b, a, a︸︷︷︸
⌊n⌋=2

, b, a, a, a︸ ︷︷ ︸
⌊n+1⌋=3

, b, a, a︸︷︷︸
⌊n⌋=2

, b, a, a, a︸ ︷︷ ︸
⌊n+1⌋=3

, b, · · · )

See figure Figure 8 in the appendix.

As a second example, if λ = 0.9, β = λ2.3, (⌊n⌋ = 2 < n = 2.3 < ⌊n+ 1⌋ = 3 ≤ N = 3) we

obtain the following sequence with a richer pattern:

xt = (a, a, a︸ ︷︷ ︸
N=3

, b, a, a︸︷︷︸
⌊n⌋=2

, b, a, a︸︷︷︸
⌊n⌋=2︸ ︷︷ ︸

2 times

, b, a, a, a︸ ︷︷ ︸
⌊n+1⌋=3

, b, a, a︸︷︷︸
⌊n⌋=2

, b, a, a︸︷︷︸
⌊n⌋=2

, b, a, a︸︷︷︸
⌊n⌋=2︸ ︷︷ ︸

3 times

, b, a, a, a︸ ︷︷ ︸
⌊n+1⌋=3

, b, a, a︸︷︷︸
⌊n⌋=2

, b, a, a︸︷︷︸
⌊n⌋=2︸ ︷︷ ︸

2 times

, b, · · · )

See figure Figure 9 in the appendix.

Case 4 (Satiation rate > Recovery rate): λ ∈ (0, 1), β = λn, n ∈ [0, 1).
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With this parameter configuration there are two important facts worth to highlight. First,

it is the only configuration in which the DM will ever choose the third or the fourth best

alternatives. Second, once the DM starts alternating no alternative will be ever chosen twice

consecutive.

(i) If n ∈
[
1
2 , 1

)
: With this parameter configuration only the three best alternatives can be

chosen.

If n = 1
2 : The best alternative in the choice set is chosen N times until the second best

alternative is chosen for the first time. From that moment on, no alternative is ever chosen

twice, and the DM alternates between the first two alternatives until the third one is chosen

for the first time. Once the third alternative is chosen for the the first time, the same repeating

sub-sequence of length three is repeated forever. As an example, we set λ = 0.9, β = λn,

n = 0.5, and we obtain:

xt = (a, a, a︸ ︷︷ ︸
N=3

, b, a︸︷︷︸, b, a︸︷︷︸, b, a︸︷︷︸, b, a︸︷︷︸, b, a︸︷︷︸, b, c︸︷︷︸, a, b, c︸ ︷︷ ︸, a, b, c︸ ︷︷ ︸, · · · )
See figure Figure 10 in the appendix.

If n ∈
(
1
2 , 1

)
: Similar to the previous case but up to an integer problem. Here we are

recovering a bit more than needed to keep the clean pattern outlined in the previous case.

Because of this excess recovery we can generate richer patterns. As an example, we set λ = 0.9,

β = λn, n = 0.6, and we obtain:

xt = (a, a, a︸ ︷︷ ︸
N=3

, b, a︸︷︷︸, · · · , b, a︸︷︷︸, c, b, a︸ ︷︷ ︸, b, c, a︸ ︷︷ ︸, b, a, c︸ ︷︷ ︸, b, a, b︸ ︷︷ ︸, c, a, b︸ ︷︷ ︸, a, c, b︸ ︷︷ ︸, a, b, c︸ ︷︷ ︸, a, b, a︸ ︷︷ ︸︸ ︷︷ ︸
Repeating sub-sequence

, · · · )

See figure Figure 11 in the appendix.

(ii) If n ∈
[
1
3 ,

1
2

)
The four alternatives of the choice set are chosen in the long run but

history-dependent utilities do not tend to zero when t→ ∞.

If n = 1
3 : The best alternative in the choice set is chosen N times until the second best

alternative is chosen for the first time. From that moment on, no alternative is ever chosen

twice, and the DM alternates between the first two alternatives until the third one is chosen

for the first time. Once the third alternative is chosen for the the first time, the same repeating

sub-sequence of length three is repeated until the fourth best alternative is chosen. Once the

fourth alternative is chosen, the same repeating sub-sequence of length four is repeated forever.

As an example, we set λ = 0.82, β = λn, n = 1/3, and we obtain:
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xt = (a, a︸︷︷︸
N=2

, b, a︸︷︷︸, b, a︸︷︷︸, b, c︸︷︷︸, a, b, c︸ ︷︷ ︸, a, b, c︸ ︷︷ ︸, a, b, c︸ ︷︷ ︸, a, b, c︸ ︷︷ ︸, a, b, c︸ ︷︷ ︸, a, b, c, d︸ ︷︷ ︸, a, b, c, d︸ ︷︷ ︸, · · · )
See figure Figure 12 in the appendix.

If n ∈
(
1
3 ,

1
2

)
: Similar to the previous case but up to an integer problem. Here we are

recovering a bit more than needed to keep the clean pattern outlined in the previous case.

Because of this excess recovery we can generate richer patterns. As an example, we set λ = 0.7,

β = λn, n = 0.4, and we obtain:

xt = ( a,︸︷︷︸
N=1

b, a︸︷︷︸, b, a︸︷︷︸, c, b, a︸ ︷︷ ︸, c, b, a︸ ︷︷ ︸, c, b, a︸ ︷︷ ︸, c, b, a︸ ︷︷ ︸, c, b, a︸ ︷︷ ︸, c, b, a, d,︸ ︷︷ ︸︸ ︷︷ ︸
Repeating sub-sequence

· · · )

See figure Figure 13 in the appendix.

(iii) If n ∈
[
0, 13

)
The four alternatives of the choice are chosen in the long run, moreover

history-dependent utilities do tend to zero when t→ ∞.

The best alternative in the choice set is chosen N times until the second best alternative is

chosen for the first time. From that moment on, no alternative is ever chosen twice, and the

DM alternates between the first two alternatives until the third one is chosen for the first time.

Once the third alternative is chosen for the the first time, the same repeating sub-sequence of

length three is repeated until the fourth best alternative is chosen. Once the fourth alternative

is chosen, the same repeating sub-sequence of length four is repeated forever. As an example,

we set λ = 0.9, β = λn, n = 0.1, and we obtain:

xt = (a, a, a︸ ︷︷ ︸
N=3

, b, a︸︷︷︸, b, a︸︷︷︸, b, a︸︷︷︸, b, c︸︷︷︸, a, b, c︸ ︷︷ ︸, a, b, c︸ ︷︷ ︸, a, b, c︸ ︷︷ ︸, a, b, c, d︸ ︷︷ ︸, a, b, c, d︸ ︷︷ ︸, · · · )
See figure Figure 14 in the appendix.
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D Figures

Figure 4: λ = 1, β ∈ (0, 1].
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Figure 5: λ = β = 0.9.
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Figure 6: λ = 0.96, β = λn, n = 3 < N = 6.
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Figure 7: λ = 0.96, β = λn, n = 8 > N = 6.
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Figure 8: λ = 0.9, β = λn, n = 2.5 < N = 3.
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Figure 9: λ = 0.9, β = λn, n = 2.3 < N = 3.
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Figure 10: λ = 0.9, β = λn, n = 0.5.
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Figure 11: λ = 0.9, β = λn, n = 0.6.
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Figure 12: λ = 0.82, β = λn, n = 1/3.

0 5 10 15 20 25 30 35 40

1.5

2

2.5

3

3.5

4

4.5

5

a b c d

Figure 13: λ = 0.7, β = λn, n = 0.4.
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Figure 14: λ = 0.9, β = λn, n = 0.1.
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