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Abstract

This paper introduces a model of innovation contests where agents can pro-

duce the same innovation via distinct research approaches. Approaches differ

in their overall viability based on their costs and success probabilities, and in

the timing of costs and possible successes. There are two reasons why inef-

ficient equilibrium behavior may arise when rewards are paid independent of

the used approach: over-investment in approaches where successes are corre-

lated; and research efforts on fast approaches crowding out efforts on slower

but more effective approaches. Further, it is shown that a greedy algorithm

determines the first best if costs are equal between all approaches. In a static

setting, approach-specific rewards can uniquely implement the social optimum

and extract the entire surplus. In a dynamic setting, approach-specific rewards

can be augmented with an “efficient-stopping condition” to achieve the same

result, provided the benefit of a successful innovation and the number of agents

are both large enough.
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1 Introduction

In March 2020, when the World Health Organization declared COVID-19 to be a global

pandemic, the race for a safe and effective vaccine against the novel Corona-virus was al-

ready well underway. After the genetic sequence of SARS-CoV-2 was published on January

11th 2020, multiple vaccine prototypes were developed within a short period of time. In

addition to established approaches to vaccine development, such as using an inactivated or

live-attenuated version of the virus itself, there were novel approaches, such as the mRNA

technology used by BioNTec/Pfizer and Moderna, and the viral-vector technology used by

AstraZeneca, that were considered very promising.1 Perhaps most importantly, these novel

approaches promised fast development: the genetic code of Moderna’s mRNA vaccine was

designed within a single day, and Phase 3 clinical trials were successfully completed by

both BioNTech/Pfizer and Moderna in November 2020, before the fastest live attenuated

COVID vaccine could even start Phase 1 clinical trials in December 2020.2

Vaccine development is not the only environment where there are distinct approaches

to creating a specific innovation. Another important setting with clearly distinguishable

approaches is the development of carbon capture technologies: Pires et al. (2011) assert

that “CO2 capture can be performed following three different technological concepts: post-

combustion capture systems, pre-combustion capture systems, and oxy-fuel capture sys-

tems.”

Even if the potential end product of all approaches has (approximately) the same func-

tionality, there are (at least) three other dimensions in which approaches may be different

from one another: viability, correlation, and timing. First, some approaches may be more

viable than others overall, because they have a higher probability of success, or because they

have lower costs. Second, the correlation of successes within an approach can be different

between approaches. For example, approaches that depend on applying novel technologies

may have a higher idiosyncratic risk of failure than those that make use of long-established

methods. Third, there can be differences in the distribution of possible successes and costs

across time.

In the wake of the COVID-19 pandemic, there were multiple calls for a large cash prize

for the company that is the first to develop a safe and effective vaccine.3 Such an approach-

independent contest would have stood in the tradition of famous innovation contests like the

British Longitude Act of 1714, the Netflix Prize, or the Google Lunar X-Prize. However, in

1 Le et al. (2020) categorize the COVID-19 vaccines that were in development in April 2020 into
a total of nine different approaches.

2 Polack et al. 2020; Baden et al. 2021; Wang et al. 2021.
3 For example by Hemel and Ouellette (2020), and Callaghan (2020).
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a setting where agents must choose between distinct research approaches, it is questionable

whether such an approach-independent contest is the ideal method. This paper identifies

potential inefficiencies induced by such approach-independent contests.

Moreover, this paper addresses the portfolio choice problem of efficiently allocating

research efforts to different approaches depending on the aforementioned three aspects of

viability, correlation, and timing. Finally, I study how a principal can utilize innovation

contests to steer the behavior of a set of agents who choose between different research

approaches.

In the model, following Halac, Kartik, and Liu (2017), a principal and a set of identical

agents are uncertain about the true state of the world, and the principal has a fixed valuation

for obtaining the innovation, but there is no additional benefit if the innovation is produced

more than once. There are two periods4 and in each period the agents can choose whether

to exert costly effort to produce the innovation with a probability that depends on the state

of the world. The novel feature of my model is that agents do not just choose whether to

exert effort, they also chose from a set of approaches where to spend their effort. The costs

of effort and the probability of success can vary both between approaches and between

periods. In particular, some research approaches may be faster than others, in the sense

that both costs and instantaneous probability of success are higher in the first period. It is

assumed that all actions and successes are publicly observed.

In this setting, a contest is defined to be a reward rule that only rewards agents if they

succeed in producing the innovation, and that does not discriminate against agents based

on their identity. Nevertheless, a contest may discriminate between agents based on the

approach that leads them to success.

This paper identifies two separate reasons why approach-independent contests may

induce inefficient equilibrium behavior. The first reason is that too many agents may choose

to follow approaches with high overall viability. If successes within these approaches are

sufficiently correlated, efficiency would require agents to spread out across more approaches

instead, even if some of them are less attractive. The second reason is due to differences

in the timing of successes. If some approaches are inherently faster than other approaches,

then agents following those fast approaches may crowd out agents on slower approaches.

This can happen even if the slower approaches are much more efficient. In some instances,

due to this “crowding-out effect”, increasing the total prize of an approach-independent

contest even induces a decrease in the total probability of obtaining a success.

To find the socially optimal allocation, a simple greedy algorithm—resembling the

4 In Halac, Kartik, and Liu (2017) The motivating example works with two periods, whereas the
main model is formulated in continuous time.
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marginal improvement algorithm as introduced by Chade and Smith (2006)—can be used

to identify the socially optimal allocation of agents to approaches under some additional

assumptions on the nature of approaches. The greedy algorithm sequentially assigns agents

to the approach where their marginal contribution to the expected social surplus is the

largest, given the behavior of the already assigned agents. It stops when it is no longer

possible to assign an agent with a positive marginal contribution, or all agents are assigned.

In the static case where there is only a single period, a sufficient condition for the greedy

algorithm to work is that all approaches have the same costs. This condition would, for

example, be fulfilled if costs are caused by a standardized testing procedure, like clinical

trials for a vaccine. In the case with two periods, in addition to an equal costs assumption,

an additional assumption that allows splitting the set of approaches into “fast” and “slow”

approaches is sufficient to show that an iterated version of the greedy algorithm can identify

the social optimum.

I show that in a static setting, the principal can implement any desired equilibrium

behavior as the unique Nash equilibrium and extract almost the entire social surplus at

the same time. To achieve this, the principal can use an approach-specific contest: Agents

that follow the same approach compete for a fixed reward, but no agent is affected by the

actions and successes of other agents that follow different approaches. Because the marginal

contribution of every additional agent following the same approach is diminishing in the

number of agents, any fixed prize always corresponds to a certain number of agents following

an approach. If less than this number of agents follow the approach, it is profitable for an

additional agent to join, and if more agents were to follow the approach, their expected

payoff would be negative.

With multiple periods, early successes may lead to efficiency gains because they allow

all agents to stop incurring costs. But simply augmenting an approach-specific contest with

an “efficient-stopping condition”, which eliminates rewards for successes that occur after

the first success, does in general not allow the principal to harvest these gains in efficiency.

The reason is that such a condition makes the expected payoffs of agents following different

approaches interdependent. However, if the principal’s valuation and the number of agents

are both large, an approach-specific contest with efficient-stopping condition can implement

the social optimum and extract the full surplus.

The rest of this paper is structured as follows. In Section 2, I introduce the baseline

model and briefly discuss the most important assumptions. Section 3 analyzes the static

case where there is only a single relevant period, whereas Section 4 analyzes the dynamic

aspects of the model. Both sections follow approximately the same structure: First, I

illustrate inefficiencies caused by approach-independent contests, then I show how a greedy
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algorithm can be used to identify the social optimum under certain conditions, and then I

address the question of implementation. Finally, Section 5 concludes.

Related Literature

There is a vast theoretical literature on contest design; Fu and Wu (2019) provide a good

overview. Part of this literature analyzes research contests. In a research contest, agents

compete in terms of the quality of the innovation they produce, and the contest designer

aims to obtain a high quality. Taylor (1995), and Che and Gale (2003) are exemplary for

this branch of literature.

This paper falls into the closely related branch of literature that studies innovation

contests. These are contests where agents compete to achieve a pre-specified quality before

their competitors do. Often, innovation contests are studied in a dynamic setting where

agents learn about an underlying state of the world. For example, Choi (1991), and Malueg

and Tsutsui (1997) study R&D races where agents learn about the “hazard rate” that

governs the arrival of innovations. Halac, Kartik, and Liu (2017) expand on the literature

on innovation contests with learning, by studying contest design where the principal can

jointly vary the prize-sharing scheme and information-disclosure policy.

The environment of this paper has been inspired by Halac, Kartik, and Liu (2017).

Therefore, there are many similarities. Most notably, there is an underlying state of the

world, unknown to the principal and the agents, that determines whether innovation is

feasible. In contrast to Halac, Kartik, and Liu (2017), I assume that all actions and successes

are publicly observable. Hence the principal cannot make use of different information-

disclosure policies.

Instead, I introduce distinct approaches and endow the principal with the ability to dis-

criminate between agents based on the approach they use. There are several other papers

where agents may choose between different research projects or approaches. Acemoglu,

Bimpikis, and Ozdaglar (2011) study a setting where firms choose between implementing

one of multiple uncertain research projects. Alternatively, firms can wait and copy the inno-

vation of other firms that have successfully completed a research project. Even though the

environment is quite similar to the one I study, their findings are mainly about (preventing)

free-riding due to firms being able to copy the innovation produced by others.

Akcigit and Liu (2016) study the case where firms may switch between safe and risky

research projects. In their model actions and outcomes are private information, and firms

may gain an advantage by hiding information about dead-ends they discover. Letina and

Schmutzler (2019) study a setting with a continuum of research approaches, where the

optimal approach is ex-ante unknown. After uncertainty dissolves, the quality of an ap-
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proach depends on the distance to the optimal approach. In their setup, the principal

tries to induce variety in the approaches that agents choose because it generates an option

value. Also, Letina (2016) studies a related setting, where firms simultaneously choose a

set of research projects from a continuum and there is only a single approach that leads to

innovation.

2 Model

2.1 Model

There is a principal who wants to obtain a specific innovation. In addition, there are n ∈ N
identical, risk-neutral agents, with N := {1, ..., n} denoting the set of all agents. Only the

agents can produce the innovation by following one of K ∈ N distinct approaches a1, ..., aK ,

with A := {a1, ..., aK} denoting the set of all approaches.

A persistent, unobservable state of the world (θa1 , ..., θak) ∈ {G,B}K determines the

feasibility of each approach.5 If θa = G, approach a ∈ A is feasible, else approach a is not

feasible. The variables θa1 , ..., θak are independently distributed with

Pa := P(θa = G) ∈ (0, 1] ∀a ∈ A.

There are two time periods, t = 1 and t = 2. An approach a ∈ A is characterized by

its prior probability of being feasible, Pa, together with two ordered pairs

[(λa,1, ca,1), (λa,2, ca,2)],

which specify how the costs of following approach a, and the probability of successfully

producing the innovation when following approach a are distributed across the two periods.

More specifically, in each period t = 1, 2 in which an agent follows a, this agent incurs cost

ca,t ∈ R+, and conditional on θa = G succeeds with probability λa,t ∈ [0, 1]. If θa = B, the

conditional probability of success of all agents following a is 0 in both periods. Moreover,

conditional on the state of the world, successes are independent across agents.

The action of an agent i in period t = 1, 2 is denoted by αi,t. In period 1, each agent

i may choose to either follow one approach a ∈ A, denoted by αi,1 = a, or to abstain, in

which case αi,1 = αi,2 := ∅. In period 2, each agent i that followed an approach in the first

period may choose to continue following αi,1, in which case αi,2 = αi,1, or to quit in which

5 Here G stands for good and B stands for bad.
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case αi,2 = ∅. Abstaining and quitting are costless actions. Agents cannot switch between

approaches or re-enter after abstaining in the first period.

An action profile at time t = 1, 2, denoted by αt, is a list of all actions at t, i.e.,

αt = (α1,t, ..., αn,t).

Whether an agent successfully produced an innovation in period t = 1, 2 is encoded by

st = (s1,t, ..., sn,t), where si,t = 1 means that agent i succeeded and si,t = 0 means that

she did not. All actions and all successes are publicly observable. In the first period, the

principal and the agents share a common prior belief P = (Pa1 , ..., PaK ) about the state of

the world. In the second period, they share a public belief µ = (µa1 , ..., µaK ).6

Success is only possible when an approach is feasible. Thus, whenever a success on

approach a is observed, it holds that µa = 1. In the absence of any successes on approach

a in the first period, Bayesian updating demands that

µa =
Pa(1− λa,1)na

Pa(1− λa,1)na(1) + 1− Pa
,

where na is the number of agents that followed approach a in period 1.

Agents do not directly benefit from successes. For a given terminal history hT =

(α1, s1, α1, s2), the payoff of an agent i is equal to the reward wi(h
T ) that she receives from

the principal, minus the costs she incurred. The principal receives a payoff of v ∈ R+ if at

least one agent succeeds, minus the sum of the rewards paid to the agents. The principal

is not budget constrained.

Denote the set of terminal histories by HT . Attention is restricted to reward functions

(wi : HT → R+)i∈N called contests. A contest has two properties: it is anonymous,

and it only rewards agents that actually succeed. Formally, a contest must fulfill: (i)

wi(h
T ) = wj(τij(h

T )) ∀i, j ∈ N , where τij : HT → HT is the permutation that switches αi,t

with αj,t and si,t with sj,t for t = 1, 2; and (ii) si,t = 0 ∀t =⇒ wi(h
T ) = 0.

The solution concept is Nash equilibrium and the analysis focuses on equilibria in pure

strategies.

2.2 Discussion of Assumptions

The presence of multiple approaches is the defining feature of this model. By allowing

the costs and conditional probabilities of success to vary over time, it becomes possible to

6 Since successes are independent conditional on the state of the world, the public belief can be
written as a list of beliefs about the state of the world for every approach.
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study the effects of their timing being different for different approaches. For example, it is

interesting to compare “fast” and “slow” approaches.

The assumption that agents cannot switch between approaches and that abstaining

and quitting are irreversible helps limit the action space in the second period. This allows

focusing the attention on the coordination in the first period. Moreover, since agents

cannot switch between approaches, the success probabilities and costs for period 2 can

be interpreted as depending on the cumulative effort that agents exert. Similarly, the

assumption that every action and success is observable by all agents and the principal

ensures that there is a public belief that all share. Taken together, these assumptions give

the principal a lot of power.

The limitations to the principal’s power are built into the definition of a contest. The

principal is unable to discriminate against agents based on their identity. Additionally, the

principal can only reward agents that are successful, which means that the principal cannot

directly compensate agents for their efforts. This indirectly captures the moral-hazard

problem the principal would face if effort were not observable.

3 Static Case: One Period

In this section, the model from Section 2 is restricted to a static setting, by considering

the case where the idiosyncratic chance of success λa,2 equals 0 for all approaches a. Since

there is only a single relevant period, the timing of costs and possible successes does not

come into play. The central aspect is the correlation between successes of agents following

the same approach.

Recall that an approach a is characterized by its probability of being feasible Pa, its

cost ca,1, and the probability of success conditional on being feasible λa,1. Since there is

only one relevant period, in this section the index referring to the period is omitted. That

means ca is used instead of ca,1, and λa instead of λa,1. Also the action of an agent i is

simply denoted by αi, an action profile by α = (α1, ..., αn), and the successes and failures

of the agents are described by s = (s1, ..., sn).

Since every agent acts only once, simultaneously with all other agents, a pure strategy

of an agent i is simply the action αi which i chooses.

3.1 Correlation Representation

Instead of describing the distribution of successes by Pa and λa, it can be equally well

described by a pair (φa, ρa), where φa := Paλa is the unconditional probability of success,
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and ρa is the correlation coefficient between the successes of any two agents following a.

Suppose two agents follow approach a, with 0 < Paλa < 1, then the correlation coefficient

of their successes is

ρa =
Paλ

2
a − (Paλa)

2

Paλa(1− Paλa)
=
λa − Paλa
1− Paλa

.

Hence, except for the cases of certain success (Paλa = 1) or certain failure (Paλa = 0),

where the correlation coefficient is not defined because the variance is 0, the parameters

φa and ρa are uniquely defined for any pair Pa and λa.
7 It follows that the model allows

for all levels of positive correlation between successes on a given approach, no matter the

unconditional probability of success. The extreme case of perfect correlation occurs if

λa = 1, and successes are uncorrelated if Pa = 1.

3.2 Approach-Independent Contests: Inefficiencies

There are two reasons why it is interesting to study contests with rewards that are in-

dependent of the approach used by a successful agent. First, they are the simplest and

most common way of designing an actual innovation contest. Second, they can be thought

of as representing market incentives. Since all successful innovations have the same func-

tionality, it seems plausible that each successful agent can capture an equal share of the

market, independently of the approach that they used. The following example illustrates

how inefficiencies may arise when there are multiple approaches. Such inefficiencies only

arise when the correlation of successes of agents following the same approach is relatively

high.

Example 1. There are two agents, 1 and 2, and two approaches, A and B. Both approaches

have the same costs c = cA = cB, but A has a higher unconditional probability of success,

that is, PAλA > PBλB. There is a fixed reward w̄, with 2c
PBλB

< w̄ < v8, that is shared

equally between all successful agents, irrespective of the approach that leads them to success.

In this setting, a single agent would always prefer to follow A. Consider the case where

agent 1 follows A, what is agent 2’s best reply? Intuitively that depends on two things:

first, on how much larger PAλA is compared to PBλB; second, if the difference between

PAλA and PBλB is not too large, on the level of correlation between successes on A.

7 Conversely, given any φa > 0 and ρa, it holds that λa = 1− (1− ρa)(1− φa) = φa + ρa(1− φa),
and Pa = φa

λa
= φa

φa+ρa(1−φa) are uniquely determined.
8 This condition simply ensures that agents always prefer following an approach to abstaining

from the contest and that this is also in the interest of the principal.

9



If agent 2 succeeds with either approach, she is certain to receive at least half of the

reward w̄. In addition, if agent 1 fails, she receives the entire reward. If agent 2 follows A

and succeeds, the probability that she is the only one to succeed is

1− λA = (1− PAλA)(1− ρA).

In contrast, conditional on succeeding on approach B, the probability that agent 2 is the

only one to succeed is 1−PAλA. For PA < 1, the probability of receiving the entire reward

is larger when succeeding with approach B because successes on A are correlated, while

between the two different approaches they are independent.

If there is no correlation on A, then clearly agent 2’s best reply is to also follow A.

This is not an inefficiency. If successes on the most promising approach are uncorrelated,

then it is in the interest of efficiency that all agents that follow an approach take the most

promising one. In contrast even if successes on A are perfectly correlated, agent 2 will still

strictly prefer α2 = A as long as

PAλA
2

>
PBλB

1 + PBλB
.

This is a clear inefficiency. If successes on an approach are perfectly correlated, at most one

agent should follow it because the marginal social benefit (MSB) of an additional agent is

0. Solving for ρA yields that agent 2 strictly prefers A to B if and only if

ρA <
PAλA − PBλB

PAλA
· 2− PAλA

1− PAλA
.

From the perspective of a social planner, given that α1 = A, the aim is to assign that

approach to agent 2 which provides the highest MSB. Since there is no benefit from having

more than one success, agent 2 only contributes to the social surplus in the event that agent

1 does not succeed on approach A. Conditional on this event, it is less likely that approach

A is feasible. Let

µA,1 = P(A is feasible|one failed attempt on A) =
PA(1− λA)

PA(1− λA) + 1− PA
.

Then the MSB of agent 2 also following A can be written as

µA,1λA(1− PAλA)v − c,
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whereas the MSB of agent 2 following B is

PBλB(1− PAλA)v − c.

Hence α2 = A is efficient if and only if µA,1λA > PBλB. This is equivalent to

ρA <
PAλA − PBλB

PAλA
.

Consequently, whenever PAλA−PBλB
PAλA

< ρA < PAλA−PBλB
PAλA

· 2−PAλA
1−PAλA , both agents will follow

approach A in equilibrium, even though it is socially optimal that they pursue different

approaches. Put differently, there is over-investment in the most viable approach A because

equilibrium behavior is determined by the average profit of all agents following A, instead

of the MSB.

3.3 First Best: Greedy Algorithm

For the analysis of the social planner’s problem, some additional notation is useful. For a

given action profile α = (α1, ..., αn), denote the number of agents following approach a by

na(α). Moreover, denote by π(α) the probability that there is at least one success. Finally,

let the belief that approach a is feasible conditional on i failures on a be denoted by µa,i,

that is,

µa,i =
Pa(1− λa)i

Pa(1− λa)i + 1− Pa
.

Notice that the probability that α does not lead to a success can be written as

1− π(α) =
∏
a∈A

na(α)−1∏
i=0

(1− µa,iλa) .

The social planner’s problem is simply

max
α

π(α)v −
∑
i∈N

cαi .

For a given action profile α, the marginal social benefit of an additional agent following

approach a, denoted MSBa(α), is the probability that only the additional agent succeeds

multiplied with the principal’s valuation v, minus the cost of following a, that is,

MSBa(α) = µa,na(α)λa(1− π(α))v − ca.
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The composition of α affects MSBa(α) through two separate channels. One channel is

that the more attempts on the same approach na(α) there are, the lower the belief µa,na(α)

will be. This means that conditional on all other attempts failing, the probability that an

additional attempt on a succeeds decreases in na(α). The other channel is that the larger

the probability that α already leads to a success, the smaller will be the “residual value”

of a success (1− π(α))v.9

To separate these two channels, it is helpful to consider the hypothetical MSB of an

additional attempt on a, given i failures, which is the function MSBa,i : [0, 1] → R given

by

MSBa,i(π) = µa,iλaπ − ca.

Figure 1 plots the hypothetical MSB for the first, second and third attempt on some

approach a.

π

MSBa,i(π)

0
1

Paλav − ca

µa,1λav − ca

µa,2λav − ca

−ca

MSBa,0

MSBa,1

MSBa,2

Figure 1: Hypothetical marginal social benefit (MSB) of the first, second, and third
attempt on approach a for varying success probability π.

At first sight, a greedy algorithm that sequentially assigns agents to the approach where

their MSB is the greatest seems appealing. Such an algorithm would run until there is no

approach left where an agent would have a positive MSB, or there is no agent left to assign.10

9 This second channel would disappear if attempts were made sequentially.
10 Chade and Smith (2006) show that in a similar setting a greedy algorithm, which they call

marginal improvement algorithm, identifies the social optimum. In their setting, each option can
be used at most once. Here, in contrast, multiple agents can follow the same approach and their
successes are correlated. Therefore, an approach cannot just be replaced by n identical copies.
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Definition 1 (Greedy algorithm). Start with an action profile α0 = (∅, ..., ∅) where no

agent follows an approach, and i = 1.

Step 1 Choose any α∗i ∈ arg maxaMSBa(α
i−1).

Step 2 If MSBα∗i (α
i−1) ≤ 0, then set α∗ = αi−1 and stop.

Step 3 Set αi = (α∗1, ..., α
∗
i , ∅, ..., ∅).

Step 4 If i < n, increase i by 1 and go to Step 1, else set α∗ = αn and stop.

However, a simple example shows that it is not generally possible to attain the social

optimum by applying the greedy algorithm.

Example 2. There are two agents, 1 and 2, and two approaches, A and B. Both approaches

are feasible, that is, PA = PB = 1. The approaches differ regarding the (conditional)

probabilities of successes, with λA = 1 and λB = 0.8. Also, the approaches differ regarding

their costs, with cA = 1 and cB = ε > 0. The principal has a valuation of v = 10.

In this example, the marginal social benefit of the first agent that is assigned to an

approach will be v − cA = 9 if the agent is assigned to A, and only 0.8v − cB = 8 − ε if

the agent is assigned to B. Thus the greedy algorithm would assign the first agent to A.

Moreover once an agent is assigned to A, success is already certain and the algorithm would

stop.

However, if both agents follow approach B instead, the social surplus will be

(1− (1− λB)2)v − 2cB = 9.6− 2ε.

Hence for ε < 0.3, the greedy algorithm fails to identify the first best.

Figure 2 plots the hypothetical MSB of both approaches in Example 2 for varying levels

of π(α). Since PA = PB = 1, the MSB of an additional attempt does not depend on the

number of attempts on the same approach in α, but only on π(α). The important thing

to notice is the order reversal of the MSB of both approaches. For low values of π(α),

approach A provides a higher MSB, but for π(α) > 1+ε
2 the MSB of B is larger.
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π(α)

MSBa

10

9

8− ε

−1
−ε

1+ε
2

MSBA

MSBB

Figure 2: Hypothetical marginal social benefit (MSB) of additional attempts on
approaches A and B from Example 2 for varying success probability π(α).

Example 2 already suggests that the greedy algorithm fails because the two approaches

have significantly different costs. Indeed, the following result shows that when the costs of

all approaches are identical, the greedy algorithm always identifies the first best.

Proposition 1. If all approaches have equal costs c > 0, then the greedy algorithm always

attains a socially optimal action profile α∗.

Proof. See Appendix.

An obvious shortcoming of Proposition 1 is that it only applies when costs are iden-

tical for all approaches. However in applications where the greatest part of the research

costs actually stems from standardized testing procedures, like clinical trials for a vaccine,

assuming equal costs is not too far-fetched.

The logic behind Proposition 1 is that when costs are identical for all approaches, the

ordering of the MSB of additional attempts is unaffected by π(α). Hence a socially optimal

action profile can never contain an attempt that has a lower MSB than another that is not

contained. Such an action profile could always be improved by removing the former and

including the latter attempt since the ordering of the MSB is the same everywhere. Figure

3 illustrates this graphically.
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π(α)

MSBa,i(π(α))

0
1

Paλav − c

µa,1λav − c

µa,2λav − c

−c

Figure 3: Illustration of Proposition 1 in a scenario with three different approaches
(color coded as blue, red, and purple). The ordering of the hypothetical marginal
social benefit (MSB) is unaffected by π(α). Hence the greedy algorithm attains the
first best.

3.4 Implementation: Approach-Specific Rewards

The next result shows that any desired action profile can be implemented as a unique11 Nash

equilibrium, through a suitable approach-specific contest. A contest is approach-specific if

for all approaches a there is a reward w̄a ∈ R+ which is shared equally among all agents

that succeed by following approach a.

Proposition 2. Consider an arbitrary action profile α. If ca > 0 and Paλa > 0 for all

approaches a12, then there exists γ > 0 such that for all ε ∈ (0, γ), α and every permutation

of α constitute Nash equilibria of an approach-specific contest with rewards

w̄a :=


na(α)(ca+ε)

1−
∏na(α)−1
i=0 (1−µa,iλa)

if na(α) > 0,

0 if na(α) = 0,

Furthermore, there are no Nash equilibria that are not permutations of α.

Proof. See Appendix.

11 Excluding permutations of the action profile.
12 These mild assumptions are necessary since agents cannot be induced to follow an approach

that is guaranteed to fail, or dissuaded from following a costless approach.
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Proposition 2 does not only show that any action profile is implementable as a unique

equilibrium, but it also shows that the principal can extract (almost) the entire social

surplus at the same time. This is the case since the expected payoff of every agent following

an approach a is

1

na(α)

1−
na(α)−1∏
i=0

(1− µa,iλa)


︸ ︷︷ ︸

=P(One of the na(α) attempts on a succeeds)

w̄a = ε

The symmetry of all agents following the same approach implies that they all receive an

equal share of the expected reward that is paid out for successes on their approach. However,

research efforts on the same approach are strategic substitutes, that is, the expected reward

of an agent following some approach a is decreasing in na(α). By selecting a reward that

is slightly above the break-even point when na(α) agents follow a, the principal uses the

forces of competition in her favor. If fewer than na(α) agents were to follow a, it would be

profitable for another agent to join. Conversely, in equilibrium no more than na(α) agents

can follow a because every agent’s expected profit would be negative.

What is special about approach-specific contests is neither that they can implement

any desired behavior as a Nash equilibrium, nor that they allow extracting the full social

surplus. Both could be done more simply by setting

wi(α, s) =

 ca
Paλa

if αi = a and si = 1,

0 else.

But with such a reward scheme, any action profile would be a Nash equilibrium. It is spe-

cial that approach-specific contests can use the competition within approaches to uniquely

implement the desired equilibrium behavior.

Since Proposition 2 shows that the principal can uniquely implement any desired be-

havior and extract almost the full social surplus at the same time, the following corollary

follows almost immediately.

Corollary 1. It is optimal for the principal to implement the first best.

Proof. See Appendix.
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4 Dynamic Aspects: Two Periods

When there is more than one period, it matters how the costs and possible successes of

approaches are distributed across time. If one approach is inherently “faster” than other

approaches, this has two dissimilar effects. On the one hand, an early success can decrease

the total costs incurred by all agents. These savings can be enforced by never rewarding

agents for a success that occurs after the period of the first success.

On the other hand, when there are agents following fast approaches, this competition

may discourage others from following slower approaches. In the case where a slow approach

has a comparatively higher total probability of success, this crowding-out effect can lead to

inefficient equilibrium behavior.

4.1 Approach-Independent Contests: Crowding-Out Effect

Consider a fixed reward w̄ that is awarded to the first successful agent, irrespective of the

approach, and shared equally if multiple agents succeed first in the same period. This

can be thought of as representing a market structure where the first agents that succeed

can capture the entire market. Economic intuition suggests that increasing the reward w̄

increases agents’ incentives to participate in the contest and should therefore always at least

weakly increase the probability of obtaining a success. The following example illustrates

that, in fact, increasing the reward can sometimes even decrease the total probability of

success.

Example 3. There are two agents, 1 and 2, and two approaches, A and B. Both approaches

are feasible, that is, PA = PB = 1. Both approaches also have the same costs, and all costs

are incurred in the first period. approach B’s probability of success is 2
3 . This is higher

than the probability of success on approach A, which is 1
2 . However, approach A is “faster”:

successes on approach A always occur in period 1, while successes on approach B always

occur in period 2. In summary,

[(λA,1, cA,1), (λA,2, cA,2)] = [(
1

2
, c), (0, 0)], and

[(λB,1, cB,1), (λB,2, cB,2)] = [(0, c), (
2

3
, 0)].

For w̄ < c
λB,2

= 3
2c, it is a dominant strategy for both agents to abstain.

For 3
2c < w̄ < 2c, approach B is profitable, while A is not. Thus in any equilibrium,

one of the agents follows B while the other abstains. Both agents following B cannot be an
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equilibrium because
1−(1−λB,2)2

2 w̄ = 4
9 w̄ < c. Hence the probability of a success is λB,2 = 2

3 .

For w̄ > 2c, approach A becomes profitable, at least for a single agent. However for

w̄ < 3c, if one agent follows approach A, it is no longer profitable for the other to follow

B because w̄λB,2(1 − λA,1) = w̄
3 < c. Additionally for w̄ < 8

3c, both agents following A

cannot be an equilibrium because
1−(1−λA,1)2

2 w̄ = 3
8 w̄ < c. Thus for w̄ ∈ (2c, 8

3), in any

equilibrium one agent follows A while the other abstains. Hence the probability of success

is only λA,1 = 1
2 .

Therefore, by increasing the reward w̄ from somewhere in the interval
(

3
2c, 2c

)
to a

reward in
(
2c, 8

3c
)
, the principal actually decreases the probability of a success. For a

valuation v > 8
3c, this implies that both the principal’s expected payoff and total welfare

decrease as well.

Recall that in the static case an approach-independent contest only induced inefficient

equilibrium behavior when successes within approaches were sufficiently correlated. In

Example 3, for w̄ ∈ (2c, 8
3), equilibrium behavior is clearly inefficient, even though the suc-

cesses within approaches are uncorrelated. This is due to the different timing of successes.

Agents following the faster but less promising approach A crowd out their competition on

the more effective approach B.

To analyze this crowding-out effect more generally, the next example considers a similar,

but more general setup than Example 3.

Example 4. Modifying the model slightly, suppose there is an infinite number of agents.

There are two approaches A and B, that are both feasible (PA = PB = 1). Costs are

identical for both approaches, and A is faster than B, while B is more effective:

[(λA,1, cA,1), (λA,2, cA,2)] = [(φA, c), (0, 0)],

[(λB,1, cB,1), (λB,2, cB,2)] = [(0, c), (φB, 0)],

with φB > φA > 0, and c > 0.

For w̄ > c
φA

, approach A is profitable. Agents following A are not affected by those

following B because they always succeed first. Hence in any equilibrium, the number of

agents following A, denoted nA, must fulfill

w̄

nA
(1− (1− φA)nA) ≥ c ≥ w̄

nA + 1

[
1− (1− φA)nA+1

]
. (1)

Since 1−(1−φA)nA

nA
is decreasing in nA, the number of agents following A is weakly increasing

in w̄. This reflects the intuition that a larger reward will make it profitable for more agents

to participate in the contest.
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Given nA, the number of agents following B must then satisfy

(1− φA)nAw̄

nB
(1− (1− φB)nB ) ≥ c ≥ (1− φA)nAw̄

nB + 1

(
1− (1− φB)nB+1

)
.

Here, (1 − φA)nAw̄ can be viewed as the “effective reward” for a success on approach B,

because agents following B are only rewarded if all agents on A fail.

How does the effective reward (1−φA)nAw̄ behave as w̄ increases? Since nA depends on

w̄, this is non-trivial. Clearly, it is increasing on every interval where increasing w̄ does not

increase nA. Also, there is a discontinuous drop whenever nA increases by one. Ultimately,

though, the increase in nA dominates, and the effective reward tends to zero, which implies

the following remark.

Remark 1. In the setting of Example 4, for w̄ → ∞, the number of agents following

approach B goes to zero.

Proof. See Appendix.

The intuition is that the crowding-out effect of agents following approach B builds up

exponentially, while the reward w̄ grows linearly. It may be that at first the increase in

w̄ outweighs the effects of increased competition from agents on the faster approach A.

Consider a prize w̄ and the corresponding number nA of agents following A that fulfills (1).

Increasing w̄ with the factor nA+1
nA

must always increase the number of agents following A

by at least one. Thus, this increase in w̄ changes the effective reward for approach B by

the factor nA+1
nA

(1− φA). For nA large enough, this factor is smaller than 1. Hence after a

certain point, the effective reward for approach B grows smaller with every increase in nA.

4.2 First Best: Iterative Greedy Algorithm

In a dynamic setting, early successes can reduce the total costs incurred by all agents. Since

only one success is socially beneficial, efficiency demands that all agents stop following their

approach in the period after the first success occurs.

To be able to provide a (polynomial time) algorithm that determines the first best in

the two-period model, I make the following two assumptions.

Assumption 1 (Fast and slow approaches). All approaches a ∈ A, are either fast, which

means λa,2 = 0, or slow, which means λa,1 = 0.

This means that fast approaches can only lead to success in period 1, and slow ap-

proaches can only lead to success in period 2.13 Denote the set of all fast approaches by

13 If an approach never leads to success, it can be both fast and slow, but it is also useless.
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AF ⊂ A, and the set of all slow approaches by AS ⊂ A.

Assumption 2 (Equal costs). There exist cF , cS,1, cS,2 > 0 such that caF ,1 = cF
14 for all

aF ∈ AF , and caS ,1 = cS,1 and caS ,2 = cS,2 for all aS ∈ AS.

Assumption 1 makes it possible to split the set of agents into two groups, those that

follow slow approaches and those that follow fast approaches. Furthermore, keeping the

behavior of one of the groups fixed, it is possible to analyze the behavior of the other group

in isolation.

Consider a fixed set of agents NS ⊂ N that follow slow approaches. Conditional on

no other agent succeeding in period 1, efficiency requires that all agents in NS continue

on their approach in period 2. Otherwise, the costs cS,1 they incur in period 1 would be

wasted. Denote by πS the probability that one of the agents in NS succeeds if all of them

follow their approach for both periods. Also, denote by nS the number of agents in NS .

Taking PS and nS as given, the expected benefit of a success in period 1 is

vF = (1− πS)v + nScS,2.

The early success allows all agents on a slow approach to quit and save the costs cS,2.

However, the early success does not generate the full value v, because with probability πS

an agent on a slow approach would still succeed.

Thus for a given behavior of agents following slow approaches, the greedy algorithm

from the static case, with vF instead of v and cF instead of c, can be used to determine

the corresponding optimal behavior of the remaining agents when they may only use fast

approaches.

Conversely, consider a fixed set of agents NF ⊂ N that follow fast approaches. Denote

by πF the probability that one of the agents in NF succeeds and by nF the number of

agents in NF . Taking πF and nF as given, the (unconditional) expected benefit of a success

in period 2 is

vS = (1− πF )v.

However, the expected total cost of following a slow approach is only cS,1 + (1 − πF )cS,2

because with probability πF an agent following a fast approach will succeed in period 1,

and then agents on slow approaches can quit in period 2 and save cS,2.

Thus for a given behavior of agents following fast approaches, the greedy algorithm can

be used to determine the corresponding optimal behavior of the remaining agents if they

14 The costs in period 2, caF ,2, are irrelevant because λaF ,2 = 0 for fast approaches.
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are restricted to slow approaches. In this case, vS takes the role of v and cS,1 + (1−πF )cS,2

the role of c.

It remains to find the optimal combination of the number of agents following slow and

fast approaches. This can be addressed by iteratively considering all candidate solutions.

A candidate solution is one where nF ∈ {0, ..., n} agents are assigned optimally to fast

approaches only, and the remaining nS := n − nF are then assigned to slow approaches

only, in optimal fashion given the probability PF that one of the nF agents assigned to fast

approaches succeeds. The following paragraph introduces notation to formally describe this

iterative procedure.

For all aF ∈ AF , let λaF = λaF ,1, and for all aS ∈ AS , let λaS = λaS ,2. Moreover, for

all a ∈ A, and all i ∈ {1, ..., n}, let

µa,i =
Pa(1− λa)i

Pa(1− λa)i + 1− Pa
.

Denote by σi = ∅ the strategy where agent i abstains in period 1. Denote by σi =

aF ∈ AF the strategy where i follows aF in period 1 and then quits in period 2. Denote by

σi = aS ∈ AS the strategy where i follows aS in period 1 and then continues in period 2 if

and only if no agent succeeds in period 1. To determine the social optimum, it is without

loss to focus only on these three types of strategy.

The expected marginal social benefit of an additional agent using strategy σi = a ∈ A,

denoted by MSBa(σ), is

MSBa(σ) =

µa,naλa(1− πF ) [(1− πS)v + nScS,2]− cF if a ∈ AF ,

µa,na(1− πF )(1− πS)v − cS,1 − (1− πF )cS,2 if a ∈ AS .

Finally, the expected social surplus is

W (σ) = [1− (1− πF )(1− πS)] v − nF cF − nS(cS,1 + (1− PF )cS,2).

Definition 2 (Iterative greedy algorithm). Start with strategy profile σ0 = (∅, ..., ∅), i = 0,

and W ∗ = 0.

Step 1: Start with j = i+ 1 and σi,j = σi = (σ1, ..., σi, ∅, ..., ∅).
(a) Choose any σj ∈ arg maxa∈AS MSBa(σ

i,j).

(b) If MBσj (σ
i,j) ≤ 0, then set σi,∗ = σi,j and go to Step 2.

(c) Set σi,j+1 = (σ1, ..., σj , ∅, ..., ∅).
(d) If j < n, increase j by 1 and go to (a), else set σi,∗ = σn,∗ and go to Step 2.

Step 2: If W (σi,∗) > W ∗, set W ∗ = W (σi,∗) and σ∗ = σi,∗.
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Step 3: Choose any σi+1 ∈ arg maxa∈AF MSBa(σ
i).

Step 4: Set σi+1 = (σ1, ..., σi+1, ∅, ..., ∅).
Step 5: If i+ 1 < n, increase i by 1 and go to Step 1.

Step 6: If W (σn) > W ∗, set W ∗ = W (σn), and σ∗ = σn.

Proposition 3. If Assumptions 1 and 2 are fulfilled, then the iterative greedy algorithm

identifies a socially optimal strategy profile σ∗.

Proof. See Appendix.

4.3 Implementation: Efficient-Stopping Condition

Efficiency demands that agents only continue following their approach in period 2 if no one

succeeded in period 1. It seems reasonable that the principal should attempt to harvest

these efficiency gains, by selecting a contest that never rewards agents for a success in period

2 if there has already been a success in period 1. In contrast to the approach-specific contests

from the static case, such reward schemes create inter-dependencies between the actions

and expected rewards of agents following different approaches.

A natural extension of approach-specific contests from the static case to two periods

is a contest that consists of within-period approach-specific contests with efficient-stopping

condition, that is, a reward scheme with prizes w̄a,1 and w̄a,2 for each approach a such that

for a terminal history hT = (α1, s1, α2, s2),

wi(h
T ) =



1∑
j∈N 1{αj,1=αi,1 and sj,1=1}

w̄αi,1,1 if si,1 = 1,

1∑
j∈N 1{αj,2=αi,2 and sj,2=1}

w̄αi,2,2 if s1,1 = ... = sn,1 = 0 and si,2 = 1,

0 if si,1 = si,2 = 0,

0 if si,1 = 0, and there exists j 6= i s.t. sj,1 = 1.

Such a reward scheme gives the principal a lot of flexibility to tailor agents’ incen-

tives. The principal can set different rewards for different approaches, and also set different

rewards for the same approach in different periods.

To fix ideas, consider the minimal case with one agent and a single approach a with

Pa ∈ (0, 1), and λa,1, λa,2 > 0, and v sufficiently large. If the principal sets prizes

wa,1 =
ca,1
Paλa,1
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and

wa,2 =
ca,2 + ε

µa,1λa,2

with µa,1 =
Pa(1−λa,1)

Pa(1−λa,1)+1−Pa , and ε > 0, it is optimal for the agent to follow a in period 1,

and continue in period 2 if and only if she did not succeed in period 1. The expected payoff

from following this strategy is (1− Paλa)ε > 0.

For ε sufficiently small, ca,1 = ca,2 and λa,1 = λa,2, the above prizes satisfy wa,1 < wa,2,

which means that the principal increases the reward over time to compensate the agent

for a lower belief. This allows the principal to extract (almost) the entire social surplus.

In effect, the principal exploits the observability of successes and the agent’s inability of

waiting in period 1 and postponing effort to period 2.

Interestingly, with multiple agents and approaches, it is in general not possible to im-

plement the first best with within-period approach-specific contests with efficient-stopping

condition, as the following example shows.

Example 5. There are 3 agents, 1, 2 and 3, and two approaches, A and B. approach A

is fast and approach B is slow, and successes on both approaches are fully correlated. More

specifically, PA = 3
4 and PB = 1

2 , and

[(λA,1, cA,1), (λA,2, cA,2)] = [(1, c), (0, c)],

[(λA,1, cA,1), (λA,2, cA,2)] = [(0,
3

2
c), (1,

1

2
c)],

with c > 0 and v = 100c.

In this setting, efficiency requires that one agent follows A in period 1 and then quits

in period 2, and a second agent follows B in period 1 and continues in period 2 if and only

if the agent following A did not succeed in period 1. Because successes are fully correlated

within approaches, the third agent has to abstain in period 1.

If the principal wants to implement the first best with within-period approach-specific

contests with efficient-stopping condition, she has to set wA,1 ≥ 4
3c so that it is profitable

for one agent to follow A.

Given that one agent follows A, the principal has to select

wB,2 ≥
cB,1 + (1− PAλA,1)cB,2

(1− PAλA,1)PBλB,2
= 13c

so as to induce at least one agent to follow B in period 1.

Suppose the principal exactly selects wA,1 = 4
3c, and wB,2 = 13c. In this case, the

efficient behavior is not a Nash equilibrium. There is no profitable deviation for the agent

23



that abstains or for the agent on the slow approach B. However, there is a profitable

deviation for the agent that follows the fast approach A. By not following A, this agent

increases the probability that wB,2 is paid out. If the agent deviates to instead following

approach B for both periods, her expected payoff is

wB,2
2

PBλB,2 − cB,1 − cB,2 =
13c

2
· 1

2
− 2c =

5

4
c > 0.

It stands to reason that by increasing wA,1 the principal could dissuade the agent from

switching from A to B. But to achieve this, it is necessary that 3
4wA,1 − c ≥

5
4c, which

is equivalent to wA,1 ≥ 3c. When w̄A,1 is this high, it is no longer optimal for the third

agent to abstain. If the third agent deviates to following A in period 1, she has an expected

payoff of 3
4 ·

w̄A,1
2 − c ≥ 1

8c > 0.

Example 5 shows that it is in general not possible to implement the first best by using

within-period approach-specific contests with efficient-stopping condition. This failure is

caused by the fact that agents that follow a fast approach can increase the effective reward

of slower approaches by deviating to those slower approaches.

Such deviations are relatively more profitable if there are only a few agents following

the slow approach because the deviating agent receives a larger share of the increase in the

effective reward. The following result shows that for this reason, if the principal’s valuation

v and the number of agents are both large enough, the social optimum can always be

implemented through within-period approach specific contests with an efficient-stopping

condition.

Proposition 4. Suppose Assumption 1 is fulfilled and let ca,1, ca,2 > 0, as well as Pa, λa,1, λa,2 <

1 for all a ∈ A. Then there exist v̂ and n̂ such that for all valuations v > v̂, and all n > n̂,

there exists γ > 0 such that for all ε ∈ (0, γ), the principal can implement the socially op-

timal strategy profile σ∗, via an approach-specific contest with efficient-stopping condition,

featuring

wa =
n∗a(ca,1 + ε)

Pa (1− (1− λa,1)n∗a)
for all a ∈ AF and

wa =
n∗a(ca,1 + (1− π∗F )ca,2 + ε)

(1− π∗F )Pa (1− (1− λa,2)n∗a)
for all a ∈ AS .

Here, n∗a denotes the socially optimal number of agents following approach a in period 1

for a ∈ AF , while for a ∈ AS it denotes the socially optimal number of agents that follow

a in period 1, and continue in period 2 if and only if no success occurred in period 1. π∗F
denotes the probability that one of the agents following fast approaches succeeds.
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Proof. See Appendix.

5 Conclusion

I have studied the design of innovation contests in the presence of distinct approaches. It

turned out that approach-independent contests may induce inefficient equilibrium behavior

for two different reasons. When some approaches are more promising than others, but

successes on these approaches are correlated, there may be over-investment in these ap-

proaches. In addition, when some approaches are faster than others, agents following the

faster approaches may crowd out agents on slower, more effective approaches.

Furthermore, I found that in a static setting a greedy algorithm can be used to determine

the socially optimal behavior if all approaches have the same costs. In a two-period setting,

in addition to the equal-cost assumption, the assumption that all approaches are either fast

or slow was sufficient to show that an iterated version of the greedy algorithm can be used

to determine the social optimum.

In the static case, approach-specific contests turned out to be a powerful tool for the

principal to uniquely implement any desired behavior and extract the social surplus at

the same time. In the dynamic model, augmenting approach-specific contests with an

efficient-stopping condition may fail to implement the desired behavior because it creates

inter-dependencies between the payoffs of agents following different approaches. However,

when the principal’s valuation and the number of agents are both large enough, the socially

optimal behavior can be implemented in this way, and hence the principal can extract the

full social surplus.
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Appendix

Proof of Proposition 1

Step 1: (Defining a relaxed optimization problem.)

Recall that

µa,i :=
Pa(1− λa)i

Pa(1− λa)i + 1− Pa
,

and that

π(α) = 1−
∏
a∈A

na(α)−1∏
i=0

(1− µa,iλa) .

An optimal action profile must solve

max
α

π(α)v − c
∑
a∈A

na(α).

Define ψa,i := λaµa,i−1, and let Ψ := {ψa,i|a ∈ A, i ∈ N}, and consider a solution Σ∗ to

a relaxed optimization problem:

Σ∗ ∈ arg max
Σ⊂Ψ

1−
∏
ψ∈Σ

(1− ψ)

 v − |Σ|c s.t. |Σ| ≤ n.

It is a relaxed problem because for every action profile α, there is a corresponding set

Σα = {ψa,i : a ∈ A, i ≤ na(α)} ⊂ Ψ that yields the same value in the relaxed problem, as

α in the original problem.

Step 2: (Solution to the relaxed problem must be an interval.)

However it must be that for all ψ,ψ′ ∈ Ψ, if ψ > ψ′ and ψ′ ∈ Σ∗ hold, then also ψ ∈ Σ∗.

Otherwise one could improve on Σ∗ by removing ψ′ and adding ψ. This means that every

solution Σ∗ is an interval, that is,

for all ψ∗ ∈ Σ∗ and all ψ ∈ Ψ\Σ∗, it holds that ψ∗ ≥ ψ.

This ensures that there always exists a solution to the relaxed problem that corresponds

to an action profile because for all a ∈ A and i ∈ N , it is true that ψa,i ≥ ψa,i+1.15

15 At this point one could theoretically stop, observe that the payoff function
(

1−
∏
ψ∈Σ(1− ψ)

)
v

is (downward) recursive, and invoke the result about the marginal improvement algorithm of Chade
and Smith (2006) except for the possibility of multiple elements in Ψ taking the same value which
they exclude.
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Step 3: (The greedy algorithm produces an interval in the relaxed problem.)

The marginal social benefit of an additional agent following approach a given some

action profile α is

MBa(α) =

ψa,na(α)+1

∏
a∈A

na(α)∏
i=1

(1− ψa,i)

 v − c,

which is maximized when selecting a such that ψa,na(α)+1 is maximal. Hence the greedy

algorithm will always produce an action profile α∗ such that, for some η ≤ n the corre-

sponding set Σα∗ contains the largest η elements of Ψ.

Step 4: (No interval improves on the one the greedy algorithm produces.)

When the algorithm stops at α∗, it holds that for all a ∈ A with na(α
∗) > 0

c <

 ψa,na(α∗)

1− ψa,na(α∗)

∏
ã∈A

nã(α∗)∏
i=1

(1− ψã,i)

 v,

and additionally either η = n, or for all a ∈ A,ψa,na(α∗)+1

∏
ã∈A

nã(α∗)∏
i=1

(1− ψã,i)

 v ≤ c.

This means that all assigned agents have a positive marginal social benefit, while it is

not possible to assign another agent with a positive marginal social benefit. Since for all

a ∈ A and i ∈ N , it holds that ψa,i ≥ ψa,i+1, this implies that for all ψ′ ∈ Ψ\Σα∗ and all

ψ∗ ∈ Σα∗ , ψ′ ∏
ψ∈Σα∗

(1− ψ)

 v ≤ c <

ψ∗ ∏
ψ∈Σα∗\{ψ∗}

(1− ψ)

 v.

Combining this with the observation that adding additional elements to Σα∗ will only de-

crease
(
ψ′
∏
ψ∈Σα∗ (1− ψ)

)
v, while removing elements from Σα∗ will only increase

(
ψ∗
∏
ψ∈Σ∗\{ψ∗}(1− ψ)

)
v,

there can be no interval Σ with |Σ| ≤ n that improves on Σα∗ .

Thus the greedy algorithm produces an action profile that corresponds to a solution to

the relaxed problem. Therefore, the action profile itself must solve the original optimization

problem of the social planner. �

Proof of Proposition 2
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Step 1: (The action profile α is a Nash equilibrium.)

Consider an arbitrary agent i ∈ N .

If αi = ∅, then i’s expected payoff is zero. If αi = a ∈ A, then the symmetry of all

agents following a implies that i’s expected payoff is

E [wi(α, s)− ca] =
w̄a

na(α)
P [∃j ∈ N , s.t. sj = 1 and αj = a]− ca

= ε > 0.

Hence, α̂i = ∅, or α̂ = a with na(α) = 0 is never a profitable deviation.

Denote the action profile if all other agents play according to α, and agent i deviates to

α̂i by α̂ := (α1, ..., αi−1, α̂i, αi+1, ..., αN ). The expected payoff from deviating to α̂i = a ∈ A
with na(α) > 0 is, again by symmetry among the then na(α) + 1 agents following a,

E [wi(α̂, s)− ca] =
w̄a

na(α) + 1
P [∃j ∈ N , s.t. sj = 1 and αj = a]− ca

=
w̄a

na(α) + 1

1−
na(α)+1∏
i=1

(1− ψa,i)

− ca
=

na(α)

na(α) + 1
·

1−
∏na(α)+1
i=1 (1− ψa,i)

1−
∏na(α)
i=1 (1− ψa,i)

(ca + ε)− ca

=
na(α)

na(α) + 1
·
ψa,1 +

∑na(α)+1
i=2

[∏i−1
j=1(1− ψa,j)

]
ψa,i

ψa,1 +
∑na(α)

i=2

[∏i−1
j=1(1− ψa,j)

]
ψa,i︸ ︷︷ ︸

:=γa

(ca + ε)− ca.

Recall that ψa,i = λaµa,i−1. It holds that ψa,1 = Paλa > 0, and ψa,i ≥ ψa,i+1 for all

a ∈ A and all i < n. This implies that

ψa,1 > (1− ψa,1)ψa,2 ≥
2∏
j=1

(1− ψa,j)ψa,3 ≥ ... ≥
na(α)∏
j=1

(1− ψa,j)ψa,na(α)+1.

Thus it follows that

ψa,1 +
∑na(α)

i=2

[∏i−1
j=1(1− ψa,j)

]
ψa,i

na(α)
>
ψa,1 +

∑na+1
i=2

[∏i−1
j=1(1− ψa,j)

]
ψa,i

na(α) + 1
,

and hence γa < 1.
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Thus for all a ∈ A with na > 0, and all ε < 1−γa
γa

ca,

E [wi(α̂, s)− ca] = (γa − 1)ca + γaε < 0.

Therefore, for ε < mina{1−γa
γa

ca}, there is no profitable deviation for any agent and α

is a Nash-equilibrium.

Step 2: (There may be no other Nash equilibrium)

Assume ε < mina
1−γa
γa

ca. Then for all a ∈ A, there exists no Nash equilibrium where

more than na agents follow a. Suppose to the contrary that there is a Nash equilibrium

where z > na agents follow a. If na = 0, then wa = 0, and the payoff of all z agents is

−ca < 0 for certain. Thus they have a profitable deviation to abstaining from the contest.

If na > 0, then the expected payoff of all z agents following a is

na
z
·
ψa,1 +

∑na
i=2

[∏i−1
j=1(1− ψa,j)

]
ψa,i

ψa,1 +
∑z

i=2

[∏i−1
j=1(1− ψa,j)

]
ψa,i︸ ︷︷ ︸

:=γza

(ca + ε)− ca

Again, it holds that ψa,1 = φa > 0, and ψa,i ≥ ψa,i+1 for all a ∈ A and all i < n, which

implies that

ψa,1 > (1− ψa,1)ψa,2 ≥
2∏
j=1

(1− ψa,j)ψa,3 ≥ ... ≥
z∏
j=1

(1− ψa,j)ψa,z.

This implies that γza ≤ γa. Thus the expected payoff of all agents following a is

γza(ca − ε)− ca ≤ γa(ca − ε)− ca < 0.

So each of the z agents following a has a profitable deviation of abstaining. Thus there

exists no Nash equilibrium where more than na agents follow a.

Similarly, for all a ∈ A there exists no Nash equilibrium where less than na agents

follow a. Suppose to the contrary that there is a Nash equilibrium where x < na agents

follow a. Since there exists no Nash equilibrium where more agents than under α follow

any approach, there must be at least one agent that abstains.

The expected payoff from following a is
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na
x
·
ψa,1 +

∑na
i=2

[∏i−1
j=1(1− ψa,j)

]
ψa,i

ψa,1 +
∑x

i=2

[∏i−1
j=1(1− ψa,j)

]
ψa,i︸ ︷︷ ︸

:=γxa

(ca + ε)− ca.

By the same logic as above, it holds that γxa ≥ 1. Hence all agents that abstain have a

profitable deviation of following a. Thus there exists no Nash equilibrium where less than

na agents follow a.

Therefore, all Nash equilibria have the same number na on every approach a and are

thus permutations of α. �

Proof of Corollary 1 Suppose by contradiction that there exists an action profile α∗ that

the principal can implement and that makes the principal better off than implementing

a socially optimal action profile. Denote by WFB the social surplus if the first best is

implemented and by W ∗ the social surplus when α∗ is implemented. It must be that

WFB > W ∗. The principal cannot implement an action profile where an agent has a

negative expected payoff because every agent can guarantee a payoff of zero by abstaining.

So the expected payoff of the principal cannot be greater than W ∗ when implementing α∗.

By Proposition 2 the principal can set up an approach-specific contest with ε < WFB−W ∗
n

such that the first best is implemented, and in equilibrium the expected payoff of an agent

following approach a is

P [∃j ∈ N , s.t. sj = 1 and αj = a]

na
w̄a = ε <

WFB −W ∗

n
.

In addition, agents that abstain receive a payoff of zero. Hence the sum of the expected

payoffs of all n agents is strictly less than WFB −W ∗. It follows that the principal’s pay-

off when implementing the first best is strictly greater than W ∗, which is a contradiction. �

Proof of Remark 1

By (1), for w̄ →∞ it must be that nA →∞. Suppose not, then there exists M ∈ R+,

so that for all w̄, it holds that w̄
M (1 − (1 − φA)M ) ≤ c. For w̄ > M

1−(1−φA)M
, this is a

contradiction.

Rewriting (1) yields

c

1− (1− φA)nA
≤ w̄

nA
≤ nA + 1

nA

c

1− (1− φA)nA+1
.

For w̄ →∞, both the left-hand and the right-hand side go to c, hence also w̄
nA

goes to c.
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Let ε > 0, then there exists x > 0 such that for all w̄ > x, it holds that nA
w̄ > 1

c+ε . This

implies that for all w̄ > x,

0 ≤ (1− φA)nAw̄ ≤ (1− φA)w̄/(c+ε)w̄.

For w̄ →∞, the right-hand side converges to zero. It follows that (1− φA)nAw̄ → 0. Thus

for w̄ large enough it holds that (1−φA)nAw̄ < c
φB

. Therefore for w̄ large enough, no agent

will follow approach B in equilibrium. �

Proof of Proposition 3

Step 1: (Eliminating inefficient strategies.)

Consider an arbitrary strategy profile σ = (σ1, ..., σn) and an arbitrary agent i. If

σi(h
0) ∈ AF , then i’s probability of success in period 2 is always zero, hence i quitting in

period 2 is socially optimal. If σi(h
0) ∈ AS , then, for any observable history h1 ∈ H1, if h1

contains a success in period 1, it is socially optimal for i to quit. Consider the case where

h1 is the observable history that realizes when agents act according to σ in period 1 and

that does not contain a success in period 1. Then if σi(h
1) = ∅, replacing σi(h

0) = aS ∈ AS
with σi(h

0) = ∅ increases the social surplus by cS,1.

Thus for every agent i, attention can be restricted to three types of strategies. First, the

strategy where agent i already abstains in period 1, denoted by σi = ∅. Second, the strategy

where i follows aF ∈ AF in period 1 and then quits in period 2, denoted by σi = aF . Third,

the strategy where i follows aS ∈ AS in period 1 and then continues in period 2 if and only

if no agent succeeds in period 1, denoted by σi = aS .

Step 2: (Defining a relaxed optimization problem.)

Because successes are independent between different approaches, the social optimum

can be written as

max
(σ1,...,σn)

(
1−

∏
a∈A

na∏
i=1

(1− ψa,i)

)
v − cF · nF − (cS,1 + (1− PF )cS,2)nS .

Let ΨF := {ψaF ,i : aF ∈ AF , i ∈ N} and ΨS := {ψaS ,i : aS ∈ AS , i ∈ N}, and consider

a solution (Σ∗F ,Σ
∗
S) to a relaxed optimization problem:

(Σ∗F ,Σ
∗
S) ∈ arg max

(ΣF ,ΣS)⊂ΨF×ΨS

1−
∏

ψ∈ΣF∪ΣS

(1− ψ)

 v − |ΣF |cF − |ΣS |(cS,1 +

 ∏
ψ∈ΣF

(1− ψ)

 cS,2)

s.t. |ΣF |+ |ΣS | ≤ n.
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It is a relaxed problem because for every strategy profile σ = (σ1, ..., σn), there is a

corresponding pair of sets

(Σσ
F ,Σ

σ
S) = ({ψaF ,i : aF ∈ AF , i ≤ naF }, {ψaS ,i : aS ∈ AS , i ≤ naS}) ⊂ ΨF ×ΨS ,

that yields the same value in the relaxed problem, as σ in the original problem.

Step 3: (Solution to the relaxed problem must be a pair of intervals.)

However it must be that for all ψF , ψ
′
F ∈ ΨF , if ψF > ψ′F and ψ′F ∈ Σ∗F hold, then also

ψF ∈ Σ∗F . Otherwise one could improve on (Σ∗F ,Σ
∗
S) by removing ψ′F from Σ∗F and adding

ψF instead. In the same way, it must be that for all ψS , ψ
′
S ∈ ΨS , if ψS > ψ′S and ψ′S ∈ Σ∗S

hold, then also ψS ∈ Σ∗S . Otherwise one could improve on (Σ∗F ,Σ
∗
S) by removing ψ′S from

Σ∗S and adding ψS instead.

This means that every solution (Σ∗F ,Σ
∗
S) is a pair of intervals, that is,

for all ψ∗F ∈ Σ∗F and all ψF ∈ ΨF \Σ∗F , it holds that ψ∗F ≥ ψF , and

for all ψ∗S ∈ Σ∗S and all ψS ∈ ΨS\Σ∗S , it holds that ψ∗S ≥ ψS .

Step 4: (The iterative greedy algorithm produces a pair of intervals in the relaxed problem.)

The expected net marginal social benefit of an additional agent using strategy a ∈ A
given some strategy profile σ is

MBa(σ) =

ψa,na+1(1− PF )(1− PS)v − cF + ψa,na+1(1− PF )nS · cS,2 if a ∈ AF ,

ψa,na+1(1− PF )(1− PS)v − cS,1 − (1− PF )cS,2 if a ∈ AS ,

which is maximized when selecting a such that ψa,na+1 is maximal. Hence the iterative

greedy algorithm will always produce a strategy profile σ∗ such that, for some η, κ ∈ N,

with η + κ ≤ n, the corresponding pair of sets (Σσ∗
F ,Σ

σ∗
S ) are such that Σσ∗

F contains the

largest η elements of ΨF , and Σσ∗
S contains the largest κ elements of ΨS .

Step 5: (No pair of intervals improves on the one the iterative greedy algorithm produces.)

For i = 0, ..., n−1, in Step 2 of the algorithm, it iteratively considers strategy profiles σi,∗

with corresponding pairs of sets (Σi
F ,Σ

i
S), where the sets Σ0

F , ...,Σ
n−1
F ⊂ ΨF are intervals

that contain zero to n− 1 elements respectively. Before, for every i and the corresponding

Σi
F , in Step 1 (a) to (d), the greedy algorithm is used to select σi∗, so that according to
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Proposition 1, for Σi
S it holds that

Σi
S ∈ arg max

ΣS⊂ΨS

1− (1− P iF )
∏

ψS∈ΣS

(1− ψS)

 v − |ΣS |(cS,1 + (1− P iF )cS,2) s.t. |ΣS | ≤ n− i.

Moreover, in Step 3 of the iterative greedy algorithm, for i ∈ {0, ..., n − 1}, it selects

as σ∗ the strategy profile that corresponds to the pair (Σ∗S ,Σ
∗
F ) ∈ {(Σ0

S ,Σ
0
F ), ..., (Σi

S ,Σ
i
F )}

that yields the highest value in the relaxed problem. Finally, for n − 1, Step 6 is reached,

where also the case where Σn
F is an interval that contains n elements and Σn

S is the empty

set is considered. At this point, the iterative greedy algorithm selects σ∗ so that the

corresponding pair (Σ∗S ,Σ
∗
F ) maximizes the value of the relaxed problem for all pairs of

intervals in {(Σ0
S ,Σ

0
F ), ..., (Σn

S ,Σ
n
F )}, and hence for all pairs of intervals (ΣF ,ΣS) with

|ΣF |+ |ΣS | ≤ n.

Because the solution to the relaxed problem must be a pair of intervals, the pair of in-

tervals (Σ∗S ,Σ
∗
F ) that corresponds to the strategy profile σ∗ selected by the iterated greedy

algorithm is a solution to the relaxed problem. Therefore, σ∗ itself must solve the original

optimization problem of the social planner. �

Proof of Proposition 4

Denote the probability that some approach other than a is feasible by

P−a := 1−
∏
a′ 6=a

(1− Pa′).

Since Pa < 1 for all a ∈ A, it holds that P−a > 0. Clearly, (1−P−a) constitutes a lower

bound for the probability that no success is obtained on any other approach than a.

Step 1: (Never a profitable deviation to a = ∅ for any v)

Consider an arbitrary agent i ∈ N .

If σi = ∅, then i’s expected payoff is zero. If σ∗i = a ∈ AF , then the symmetry of all

agents following a implies that i’s expected payoff is

w̄a
Pa
(
1− (1− λa,1)n

∗
a
)

n∗a
− ca = ε > 0.

Likewise, if σ∗i = a ∈ AS , the symmetry of all agents following a implies that i’s
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expected payoff is

w̄a
(1− π∗F )Pa

(
1− (1− λa,2)n

∗
a
)

n∗a
− ca,1 − (1− π∗F )ca,2 = ε > 0.

Hence, σi = ∅ is never a profitable deviation.

Step 2: (Never a profitable deviation to a ∈ AF for any v)

This Step is practically identical to Step 1 in the proof of Proposition 2.

Recall that ψa,n∗a = λa
Pa(1−λa)na−1

Pa(1−λa)na−1+1−Pa , where λa = λa,1 if a ∈ aF , and λa = λa,2 if

a ∈ aS .

The expected payoff of an agent from deviating to σi = a ∈ AF is, again by symmetry

among the then na + 1 agents following a,

E [wi − ca,1] = w̄a
Pa
(
1− (1− λa,1)n

∗
a + λa,1(1− λa,1)n

∗
a
)

n∗a + 1
− ca,1

=
w̄a

n∗a + 1
P [∃j ∈ N , s.t. sj = 1 and αj = a]− ca,1

=
w̄a

n∗a + 1

1−
n∗a+1∏
i=1

(1− ψa,i)

− ca,1
=

n∗a
n∗a + 1

·
1−

∏n∗a+1
i=1 (1− ψa,i)

1−
∏n∗a
i=1(1− ψa,i)

(ca,1 + ε)− ca,1

=
n∗a

n∗a + 1
·
ψa,1 +

∑n∗a+1
i=2

[∏i−1
j=1(1− ψa,j)

]
ψa,i

ψa,1 +
∑n∗a

i=2

[∏i−1
j=1(1− ψa,j)

]
ψa,i︸ ︷︷ ︸

:=γa

(ca,1 + ε)− ca,1.

It holds that ψa,1 = φa > 0, and ψa,i ≥ ψa,i+1 for all a ∈ A and all i < n. This implies

that

ψa,1 > (1− ψa,1)ψa,2 ≥
2∏
j=1

(1− ψa,j)ψa,3 ≥ ... ≥
n∗a∏
j=1

(1− ψa,j)ψa,n∗a+1.

Thus it follows that

ψa,1 +
∑n∗a

i=2

[∏i−1
j=1(1− ψa,j)

]
ψa,i

n∗a
>
ψa,1 +

∑n∗a+1
i=2

[∏i−1
j=1(1− ψa,j)

]
ψa,i

n∗a + 1
,

and hence γa < 1.
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Thus for all a ∈ AF , and all ε < 1−γa
γa

ca,1,

E [wi − ca,1] = (γa − 1)ca,1 + γaε < 0.

Hence, for ε < γF := mina∈AF {
1−γa
γa

ca,1}, σi = a ∈ AF is not a profitable deviation.

Step 3: (No profitable deviation to a ∈ AS, for v large enough)

The expected payoff from deviating to a ∈ AS is maximal for an agent following the

approach â = arg maxa∈AF ψa,n∗a . Consider an agent i with σ∗i = â. The payoff from

deviating to σi = a ∈ AS is, by symmetry among the then n∗a + 1 agents following a,

E [wi]− ca,1 −
1− π∗F

1− ψâ,nâ∗
ca,2 =

1− π∗F
1− ψâ,nâ∗

· w̄a
n∗a + 1

1−
n∗
a+1∏
i=1

(1− ψa,i)

− ca,1 − 1− π∗F
1− ψâ,nâ∗

ca,2

=
1

1− ψâ,nâ∗
· n∗a
n∗a + 1

·
1−

∏n∗
a
i=1(1− ψa,i) + ψa,n∗

a+1

∏n∗
a
i=1(1− ψa,i)

1−
∏n∗

a
i=1(1− ψa,i)

(ca,1 + (1− π∗F )ca,2 + ε)− ca,1 −
1− π∗F

1− ψâ,nâ∗
ca,2

Since ψaF ,naF (1− λaF ) < ψaF ,naF +1, and for all aF ∈ AF , and

(1− P−aF )(1− PaF + PaF (1− λaF )n
∗
aF )ψaF ,n∗aF +1 · v ≤ caF ,1,

For all aF ∈ AF , it also holds that

ψaF ,n∗aF v <
caF ,1

(1− λaF )(1− PaF )(1− P−aF )
.

Define

kF := max
aF∈AF

caF ,1
(1− λaF )(1− PaF )(1− P−aF )

,

then clearly for v > kF ,
1

1− ψâ,n∗â
<

v

v − kF
.

Similarly for all aS ∈ AS, it holds that ψaS ,n∗aS v <
caS,1+caS,2

(1−λaS )(1−PaS )(1−P−aS )
. Define

kaS := max
aS∈AS

caS ,1 + caS ,2
(1− λaS)(1− PaS)(1− P−aS)

.

It follows that

1−
∏n∗a

i=1(1− ψa,i) + ψa,n∗a+1

∏n∗a
i=1(1− ψa,i)

1−
∏n∗a

i=1(1− ψa,i)
<
v + ka

1−Pa
v

.
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Moreover, to derive an upper bound on n∗aS , consider the following inequality

which must be fulfilled if n∗aS > 0:

PaSλaS(1− λaS)n
∗
aS
−1 · v ≥ caS ,1

⇐⇒ n∗aS ≤
log
(

(1−λaS )caS,1
PaSλaS ·v

)
log(1− λaS)

=
log
(

(1−λaS )caS,1
PaSλaS

)
− log v

log(1− λaS)
.

Combining the above observations, the following upper bound for the expected
payoff of deviating to a holds:

E [wi]−ca,1 −
1− π∗F

1− ψâ,nâ∗
ca,2

<
v

v − kF
·

log v − log
(

(1−λa)ca,1

Paλa

)
log v − log

(
(1−λa)2ca,1

Paλa

) · v + ka
1−Pa

v
(ca,1 + (1− π∗F )ca,2 + ε)− ca,1 −

1− π∗F
1− ψâ,nâ∗

ca,2

=
v + ka

1−Pa

v − kF
·

log v − log
(

(1−λa)ca,1

Paλa

)
log v − log

(
(1−λa)2ca,1

Paλa

)
︸ ︷︷ ︸

:=γa

(ca,1 + (1− π∗F )ca,2 + ε)− ca,1 −
1− π∗F

1− ψâ,nâ∗
ca,2.

For v sufficiently large, it holds that
v+ ka

1−Pa
v−kF

·
log v−log

(
(1−λa)ca,1

Paλa

)
log v−log

(
(1−λa)2ca,1

Paλa

) < 1.

Take v̂ such that the above inequality is satisfied, and define n̂ :=
∑

a∈A

log

(
(1−λa)ca,1
Paλa·v̂

)
log(1−λa)

.

Thus, for all a ∈ AS and all ε < 1−γa
γa

ca,1,

E [wi]− ca,1 −
1− π∗F

1− ψâ,nâ∗
ca,2 < (γa − 1)ca,1 + γaε < 0.

Hence, for ε < γF := mina∈AS{
1−γa
γa

ca,1}, σi = a ∈ AS is not a profitable deviation.

In Conclusion, for all v > v̂, and n > n̂, there exists γ := min{γF , γS}, such that

for ε < γ there is no profitable deviation, and hence σ∗ is a Nash equilibrium. �
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