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Abstract

We introduce a Generalized Nested Logit model of demand for bundles that
can be estimated sequentially and virtually eliminates any challenge of di-
mensionality related to large choice sets. We use it to investigate quantity
discounts for carbonated soft drinks by simulating a counterfactual with
linear pricing. The prices of quantities up to 1L decrease by −31.6% while
those of larger quantities increase by +14.9%. Purchased quantities decrease
by −20.7% and industry profit by −19.74%. Consumer surplus however re-
duces only moderately, suggesting that a ban on quantity discounts for sug-
ary drinks may be a simple and effective policy to limit added sugar intake.
Our calculations confirm that such a ban would indeed be as effective as a
sugar tax of 1 cent per ounce of added sugar and reduce added sugar intake
by −22.1%.

Keywords: Quantity Discounts, Large Choice Sets, Purchase of Multiple
Units, Generalized Nested Logit, Carbonated Soft Drinks, Sugar Taxes.
JEL Codes: C55, C63, L4, L13, L66.

∗University of Bristol and CEPR, alessandro.iaria@bristol.ac.uk and University of Warwick,
ao.wang@warwick.ac.uk. We thank for the very insightful comments and discussions Simon
Anderson, Gaurab Aryal, Steve Berry, Federico Ciliberto, Valentina Corradi, Cristina Gualdani,
Phil Haile, Jean-Francois Houde, Joshua Lanier, Jeremy Large, Lorenzo Magnolfi, John Quah,
Alan Sorensen, Otto Toivanen, and the participants to seminars and workshops at Asia Meeting of
the Econometric Society 2022, Boston University, BSE Summer Forum 2022 (Applied IO), China
Meetings of the Econometric Society 2021, Colombia Central Bank, EARIE 2021, IAAE 2022,
MaCCI Summer Institute 2021, National University of Singapore, NBER Summer Institute (IO),
OCEA Webinar at the Competition and Markets Authority, Queen Mary University of London,
Scottish Economic Society 2022, Southern Economic Association 2021, Singapore Management
University, University of Glasgow, University of Surrey, University of Virginia, University of
Wisconsin-Madison, and Yale University. We would like to thank IRI for making the data used
in this paper available. All estimates and analyses in this paper, based on data provided by IRI,
are by the authors and not by IRI.

1



1 Introduction
In many important markets, firms offer non-linear prices that vary with product
size or quality.1 Quantity discounts are a common form of non-linear pricing,
where firms offer lower unit-prices for larger quantities. They enable firms to in-
crease profits by screening between high-quantity and low-quantity consumers but
can be detrimental for some consumers (Crawford and Shum, 2007; Maskin and
Riley, 1984; McManus, 2007; Mussa and Rosen, 1978). Despite their diffusion in
everyday life (e.g., packaged goods, telecom, public transport) and a vast theoret-
ical literature, there are relatively few empirical studies of quantity discounts.2

This is partly motivated by the practical complexity of demand estimation in
the context of bundles or multiple units, which usually involves large choice sets.
As is well known, the estimation of demand for bundles is subject to a challenge of
dimensionality: the number of ways in which consumers can combine products into
bundles grows steeply in the number of products and the number of parameters
capturing unobserved synergies among products can quickly become too large to be
handled numerically (Berry et al., 2014). As a result, empirical papers estimating
demand for bundles typically focus on applications with restricted choice sets, e.g.
three products in Gentzkow (2007), or make restrictive assumptions on the form of
unobserved preference heterogeneity, e.g. a multinomial logit in Ruiz et al. (2020).

We tackle this challenge by proposing a novel method to estimate demand for
bundles in the presence of large choice sets, which we then apply to investigate
quantity discounts in the market for carbonated soft drinks. We propose a Gener-
alized Nested Logit model, called Product-Overlap Nested Logit (PONL), that has
as many overlapping nests as products and where each bundle belongs to all nests
corresponding to its product components. Because of the overlapping nests, the
PONL model can handle realistic forms of unobserved heterogeneity but cannot
however be estimated on the basis of Berry (1994) and, because of the large choice
sets, GMM procedures as in Berry et al. (1995) may be impractical. We instead
devise an optimization- and derivative-free Gauss-Siedel iterative procedure that
can be parallelized over both bundles and markets, virtually eliminating any chal-

1In contrast, several US retail chains do not take full advantage of other forms of price dis-
crimination and charge uniform prices for given quantity of a product/service across locations
(Adams and Williams, 2019; Cho and Rust, 2010; DellaVigna and Gentzkow, 2019).

2See Anderson and Renault (2011) and Armstrong (2016) for a summary of the theoretical
literature and below for an overview of the empirical studies.
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lenge of dimensionality due to large choice sets.3 In an extension, we also show
that the PONL model can include a random coefficient on an observable attribute
such as price or bundle size, while preserving its practical estimation convenience.

An essential factor behind the practical advantages of the proposed estimator is
the use of individual-level purchases in the aggregate form of bundle-level purchase
probabilities.4 As shown by Berry (1994), working with purchase probabilities
sometimes allows one to re-write complex non-linear demand models as linear
regressions that are easier to estimate. Because of the overlapping nests, Berry
(1994)’s classic 2SLS regression does not apply to the PONL model.5 We however
show that the PONL model can be estimated by augmenting the classic 2SLS
linear system with non-linear equations that account for the overlapping nests.
Implementation requires that at least some of the products can be purchased in
isolation and not only as part of bundles (pure bundling can be handled for some
but not all products). The proposed estimator is robust to price endogeneity and
is easy to implement with large choice sets. Differently, likelihood-type estimators
based on the direct use individual-level purchases would not be convenient with
large choice sets, mainly because of the large number of fixed effects required to
control for price endogeneity (Grieco et al., 2022; Iaria and Wang, 2019).6

As part of a broader anti-obesity strategy, on 6 April 2022 the UK government
proposed to ban quantity discounts on unhealthy foods and drinks from supermar-
kets. The proposed ban was received with strong opposition by packaged food and
drinks giants such as Kellogg’s, which promptly launched a legal action against
the regulation. While on 4 July 2022 Kellogg’s court challenge failed, the UK
government announced the intention to delay the implementation of the ban to
help alleviate the recent cost of living crisis. To inform this ongoing policy debate,
we employ our method and investigate the likely welfare consequences of a ban on
quantity discounts in the market for carbonated soft drinks (CSDs).

3The proposed iterative procedure allows for a complete parallelization across bundles and
markets. In this sense, its numerical convenience increases in the number of CPU cores, and is
expected to improve over time as these become more cheaply available.

4By “bundle-level” purchase probability we mean the joint probability that a bundle made of
one or more units of the same or of different products is purchased. For example, the probability
that two units of product j and one unit of product k are jointly purchased.

5The presence of overlapping nests implies a lack of observability of the within-nest purchase
probabilities, which are typically used as explanatory variables in Berry (1994)’s regression.

6In our application, in order to include a fixed effect for each bundle-market combination
(as we do with our estimator), one would have to numerically minimize a non-linear likelihood
function with more than 176, 700 parameters, which is currently not viable. One could simplify
implementation by imposing strong restrictions on these fixed effects, but as we illustrate in our
application, sensible restrictions are hard to specify a priori.
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Using household-level purchase data by IRI for the period 2008-2011 in the
USA, we document that households commonly purchase multiple units of CSDs
on any shopping trip (6.6L on average) (Chan, 2006; Dubé, 2004; Ershov et al.,
2021) and that quantity discounts are pervasive (e.g., the average unit-price of a
Diet Coke is higher for a 12oz can than for a 2L bottle). According to intuition,
larger households purchase larger quantities of CSDs, both of the same and of dif-
ferent products. Despite being unable to price discriminate directly on the basis
of household size, firms may rely on quantity discounts as a screening device to
induce households of different sizes to self-select alternative prices (Maskin and
Riley, 1984; Mussa and Rosen, 1978). Because also single-person households pur-
chase multiple units of CSDs, quantity discounts however only achieve imperfect
screening. In this complex situation of imperfect screening in an oligopolistic mar-
ket with differentiated products, the welfare effects of a ban on quantity discounts
are ambiguous (Anderson and Leruth, 1993; Armstrong, 2013; Varian, 1989).

We estimate a flexible PONL model with around 16, 900 bundles of CSDs and
176, 700 demand parameters and empirically assess the welfare effects of a ban on
(observed) quantity discounts by simulating a counterfactual with linear pricing
(forcing constant unit-prices for all products). Our counterfactual simulations
suggest that linear pricing would lead to a reduction of −31.6% in the average
price of small quantities (up to one liter) and to an increase of +14.9% in the
average price of larger quantities (more than one liter), making purchases of smaller
quantities relatively more attractive for all households. While such drastic price
changes would have important consequences on quantity purchased and industry
profit, they would have less of an impact on consumer surplus.

Total quantity purchased would decrease by −20.7% and, as a consequence,
industry profit would shrink by −19.7%. Despite the substantial reduction in
quantity purchased, consumer surplus would however not reduce too sharply, with
a compensating variation of +3.7$ per household-year (amounting to 2.8% of total
expenditure on CSDs). This is the result of two intuitive countervailing forces: on
the one hand, consumer surplus would decrease because of the contraction in pur-
chases of larger quantities at relatively higher prices; on the other, consumer surplus
would increase because of the more frequent purchases of single units at relatively
lower prices. While the negative effect would slightly dominate the positive for
all households, there would still be some heterogeneity: multi-person households
would substitute less away from the more expensive larger quantities toward the
cheaper small quantities, facing larger losses in consumer surplus (a compensating
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variation of +4.1$ as opposed to +1.8$).
These results suggest that a ban on quantity discounts could be a practically

simple and effective policy to limit the consumption of CSDs and the intake of
added sugar (Allcott et al., 2019; Bollinger et al., 2011; Dubois et al., 2020;
O’Connell and Smith, 2020; Wang, 2015). Ricciuto et al. (2021) report that in
the USA, in the period 2011-2012, 42.4% of the added sugar intake came from
CSDs. Linear prices would lead households to drastically reduce the purchased
quantities of CSDs while only marginally reducing consumer surplus, potentially
causing large reductions in added sugar intake at the expense of a contraction in
industry profit but none of the extra information (e.g., quantifying the marginal
externality of added sugar) required to implement effective sugar taxes (Allcott
et al., 2019; O’Connell and Smith, 2020). Our calculations confirm that a ban on
quantity discounts for sugary CSDs would be as effective as a sugar tax of 1 cent
per ounce of added sugar and reduce added sugar intake by −22.1%.7

There is a large empirical literature leveraging the estimation of demand for
bundles.8 Part of this literature investigates quantity discounts, as for example:
Allenby et al. (2004); Aryal and Gabrielli (2020); Crawford and Shum (2007); Ivaldi
and Martimort (1994); Leslie (2004); Levitt et al. (2016); Liu et al. (2010); Luo
(2018); McManus (2007); McManus et al. (2020); Shiller and Waldfogel (2011).
Because of the challenge of dimensionality in the number of products, papers in
this empirical literature either focus on applications with restricted choice sets
or limited forms of unobserved heterogeneity. Our methods enable empirical re-
searchers to scale up the number of bundles considered while allowing for realistic
forms of unobserved heterogeneity, facilitating the investigation of demand across
multiple product categories, like grocery or online shopping (Reimers and Waldfo-
gel, 2021; Thomassen et al., 2017), mergers in markets with both substitutes and
complements (Cournot, 1838; Ershov et al., 2021), mixed bundling pricing strate-
gies (Adams and Yellen, 1976; Chu et al., 2011), spillovers of taxes from a product

7O’Connell and Smith (2020) find that an optimal sugar tax in the UK would result in a
decrease of −28.4% in the purchased quantities of added sugar from soft drinks. Similarly,
Dubois et al. (2020) find that a sugar tax of the form and size typically implemented in the UK
and many US locations would lead to a reduction of around −21% in the purchased quantities of
added sugar from soft drinks on-the-go. Seiler et al. (2021) document that a sugar tax introduced
in Philadelphia led to a decrease of −16% in the purchased quantities of added sugar from soft
drinks. There are also studies that do not find significant effects of sugar taxes in the USA on the
reduction of purchased quantities of added sugar from soft drinks, such as Bollinger and Sexton
(2018); Rojas and Wang (2017); Wang (2015).

8Some examples are: Crawford and Yurukoglu (2012); Dubé (2004); Florez-Acosta and
Herrera-Araujo (2020); Fosgerau et al. (2021); Gentzkow (2007); Hendel (1999); Ho et al. (2012);
Manski and Sherman (1980); Ruiz et al. (2020); Thomassen et al. (2017).
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category to others (Allcott et al., 2019; Dubois et al., 2020), portfolio choice models
of asset pricing (Koijen and Yogo, 2019), and many more.

Three novel approaches to addressing large choice sets in the estimation of
demand for bundles were recently proposed by Ershov et al. (2021), Lewbel and
Nesheim (2019), and Lanier et al. (2022). Ershov et al. (2021) allow for a very
large number of products, but restrict the way they can be combined into bundles
(at most two different products, one unit each) and the number of parameters
capturing unobserved synergies among products (one per market, the same across
all bundles). While this approach is appealing in applications with “many but
small” bundles, ours is better suited to handle larger bundles involving multiple
units of the same or of different products, such as in the case of quantity discounts.

Lewbel and Nesheim (2019) depart from discrete choice models and specify a
more general discrete-continuous choice model as in Dubin and McFadden (1984).
They address large choice sets with sparsity, by assuming that each consumer
purchases positive quantities of only a few products. While allowing for more
flexible unobserved heterogeneity than the PONL model, Lewbel and Nesheim
(2019) assume prices to be exogenous. Our approach complements the one by
Lewbel and Nesheim (2019) and is more suitable to applications in which consumers
purchase larger varieties of products and/or price endogeneity is a concern.

Lanier et al. (2022) build on the long-panel framework by Dubois et al. (2020)
and propose to estimate individual-specific multinomial logit models of demand
for bundles on choice subsets as in McFadden (1978). They allow for more flexible
unobserved heterogeneity than the PONL model, but pose more restrictions on the
demand synergies among products and do not allow for price endogeneity.

Our empirical analysis contributes to the literature on CSDs. Some of the
papers in this literature estimate demands for multiple units (Chan, 2006; Dubé,
2004; Hendel and Nevo, 2013; Wang, 2015), while others focus on different aspects
of the industry, such as vertical relations or sugar taxes (Allcott et al., 2019; Bon-
net and Dubois, 2010; Dubois et al., 2020; Huang and Liu, 2017; Molina, 2020;
O’Connell and Smith, 2020). To the best of our knowledge, we are the first to
investigate the welfare effects of quantity discounts in this industry.9

9Bonnet and Dubois (2010) do not study non-linear pricing with respect to “final” consumers
(as we do in this paper), but rather two-part tariff contracts between manufacturers and retailers.
While close in spirit, Hendel and Nevo (2013) study the welfare effects of intertemporal price
discrimination (i.e., temporary price reductions) rather than quantity discounts.
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2 The Product-Overlap Nested Logit (PONL)
Let there be T independent markets indexed by t ∈ T and J products indexed
by j ∈ J that can be purchased in isolation or in combination in each market. A
bundle is any combination of products and number of units of each product (e.g.,
three units of j, one unit of k, and two units of r). Denote the set of single units
of any product and multi-unit bundles by C1 and its size by |C1| = C1, the full
choice set by C = C1 ∪ {0} and its size by |C| = C, where 0 is the outside option
of not purchasing anything. Denote the set of multi-unit bundles by C2 = C1 \ J
and its size by |C2| = C2 = C1 − J . Each element of this set is a bundle made of
multiple units of one or of different products.

As first argued by Gentzkow (2007), accounting for correlation in the unob-
served preferences of different products is crucial for the identification of demand
for bundles (Allen and Rehbeck, 2019; Fox and Lazzati, 2017; Iaria and Wang,
2021; Wang, 2019). Each b ∈ C1 is a combination of products, and any pair of
bundles will have a certain degree of overlap in terms of product components. It
is then important to account for the potential correlation patterns this may imply
among the unobserved preferences of different bundles. For example, the unob-
served preferences of bundle (j, k) may differentially correlate to those of any other
that includes only j (correlation only via j), only k (correlation only via k), both
(correlation via both channels), or neither (lack of correlation).

On the one hand, simple models like the Multinomial Logit (MNL) or the
Nested Logit (NL), which can be easily estimated with large choice sets (Craw-
ford et al., 2021), cannot appropriately capture these intuitive patterns of corre-
lation.10 On the other hand, more appropriate non-parametric (Compiani, 2019)
or even mixed logit models can be unfeasible in applications with large choice sets
(Gentzkow, 2007; Iaria and Wang, 2019; Liu et al., 2010). As a solution, we propose
a special case of Generalized Nested Logit (GNL) model (Abbe et al., 2007; Bier-
laire, 2006; Wen and Koppelman, 2001) that specifically accounts for the product
overlap in the unobserved preferences of different bundles and is practically conve-
nient with large choice sets. We call it the Product-Overlap Nested Logit (PONL)
model. In an extension, we also consider the inclusion of a random coefficient on
an observable attribute such as bundle size or price and show that, despite the ad-

10The MNL implies that the unobserved preferences of any two bundles are independent. The
NL instead requires every bundle to belong uniquely to one nest, so that either all bundles have
equally correlated preferences (only one nest) or some of the bundles with overlapping components
end up with uncorrelated preferences (more than one nest, Song et al., 2017). We return to this
point below.
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ditional complexity, the PONL model is still practically convenient in applications
with large choice sets.

2.1 Correlation of Unobserved Preferences Across Bundles
In the PONL model, each nest Nj is defined as the set of bundles that in-
clude at least one unit of product j, for j = 1, ..., J : Nj = {b ∈ C1 :
b includes at least one unit of j}, while the outside option belongs to its own sin-
gleton nest N0. By construction, Nj and Nj′ are overlapping as long as there
exists a bundle b that includes at least one unit of j and one of j′. Denote by Uitb
the indirect utility of household i from purchasing bundle b in market t:

Uitb = δtb + εitb, (1)

where δtb is the average utility of b among the households in market t and εitb

is an unobserved component of utility specific to household i. The PONL model
is obtained as a special case of the GNL model (Wen and Koppelman, 2001) by
assuming that εitb is distributed according to a Generalized Extreme Value (GEV)
with generating function (McFadden, 1978):

G (exp(δtb),b ∈ C) =
J∑
j=1

 ∑
b′∈Nj

(ωb′j exp(δtb′))1/λj

λj

, (2)

where ωbj is a weight, called allocation parameter, that determines to which extent
b belongs to nest Nj on the basis of its observed product components and λj ∈
(0, 1] is a nesting parameter that determines the strength of the correlation among
the bundles in Nj.11 In particular, the PONL model is obtained by defining the
allocation parameter ωbj as “the proportion of units of product j included in bundle
b.” Each ωbj equals zero if b /∈ Nj (b does not include any unit of j) or, if b ∈ Nj,
it is the proportion of units of j in b. For example, bundle (1, 1, 2) has ωb1 = 2/3,
ωb2 = 1/3, and ωbj′ = 0 for any j′ ̸= 1, 2, and is proportionally allocated to nests

11The allocation parameters are “weights” in the sense that 0 ≤ ωbj ≤ 1 for each (b, j) and∑J
j=1 ωbj = 1 for each b. Bierlaire (2006) shows that any GNL model, and hence the PONL

model, is consistent with random utility maximization when λj ∈ (0, 1], j = 1, ..., J .
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N1 (two out of three units) and N2 (one out of three units).12

The PONL model implies a correlation structure among the unobserved prefer-
ences of different bundles that can be intuitively approximated as (Papola, 2004):13

Corr(Uitb, Uitb′) ≈
J∑
j=1

ω
1/2
bj ω

1/2
b′j

(
1 − λ2

j

)
, (3)

which highlights how the PONL model generalizes the NL model.14 Starting from
the PONL model, the NL model can be obtained by setting, for each b ∈ C, ωbj = 1
for any one nest j and ωbj′ = 0 for every other nest j′ ̸= j. Suppose that bundle b
belongs to nest j. As in the NL model (3) then implies that Corr(Uitb, Uitb′) = 1−λ2

j

if also b′ belongs to nest j, or zero otherwise. Differently, in the PONL model,
Corr(Uitb, Uitb′) will be a function of all nesting parameters proportionally to the
overlap in product composition between bundles b and b′.

Example 1. The possibility of any bundle to belong to multiple nests plays a
conceptual role in empirical models of demand for bundles: for each bundle is a
combination of products, any product will be part of several bundles. Without
overlapping nests, the unobserved preferences of any two bundles from different
nests will be uncorrelated. To see why this can be unrealistic, suppose there are
three products 1, 2, and 3 and that households can buy them in isolation or can
jointly buy one unit of 1 and of 2, so that C1 = {1, 2, 3, (1, 1), (2, 2), (1, 2)}.

The NL model would require to uniquely and arbitrarily allocate each element
of C1 to a nest. For example, one could specify three nests: Ni = {1, (1, 1), (1, 2)},
Nii = {2, (2, 2)}, and Niii = {3}. While it is true that the alternatives within
each nest share some common feature, i.e. product 1 in Ni, product 2 in Nii, and

12The estimation of GNL models requires the ex-ante specification of the allocation parameters
(Bierlaire, 2006), which are too many to be separately identified along the structural parameters.
This plays a similar role as the ex-ante specification of the nesting structure in NL models. Our
definition of ωbj specializes the GNL model to the PONL model and gives rise to the desirable
computational advantages described in the paper. For robustness, in the empirical application
we experimented with alternative specifications of ωbj that preserve the PONL structure, such
as ωbj = 1b∈Nj

× (
∑J

j′=1 1b∈Nj′ )−1, and obtained very similar results.
13An exact closed-form expression for Corr(Uitb, Uitb′) has not yet been derived for the GNL

model. The approximation in (3) was conjectured by Papola (2004) and, to the best of our
knowledge, it is still the most used closed-form approximation put forward in the literature. In
simulation studies, Abbe et al. (2007); Marzano and Papola (2008) note that Papola (2004)’s
approximation tends to overestimate the true correlation of the GNL model. Marzano et al.
(2013) propose a more sophisticated numerical approximation to this correlation, which however
is not in closed-form and does not provide intuition on the underlying correlation structure of
the PONL model and its relationship with the NL model.

14In the NL model, the correlation between any two bundles b and b′ is 1 − λ2
j if both belong

to nest j, while it is 0 if the two bundles belong to different nests.
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Figure 1: Nesting Structures of NL and PONL

Nested Logit (NL)

Ni Nii NiiiN0

1 (1, 1) (1, 2) 2 (2, 2) 30

Product-Overlap Nested Logit (PONL)

N1 N2 N3N0

1 (1, 1) (1, 2) 2 (2, 2) 30

product 3 in Niii, it would be desirable that also bundle (1, 2) shared common
features with the elements of both Ni and Nii. In general, the NL model cannot
accommodate this intuitive requirement for all products and bundles: because
bundle (1, 2) can only be allocated to either Ni or Nii, its unobserved preferences
will either have correlation 1 − λ2

i with those of {1, (1, 1)} or 1 − λ2
ii with those

of {2, (2, 2)}, but will not correlate with both.15 Any nesting structure in the NL
must partition C, ruling out correlation among at least some of the bundles with
overlapping components (Song et al., 2017).

The PONL model addresses this limitation in a convenient way. Each product
and bundle is automatically allocated to one or more of J = 3 nests: N1 =
{1, (1, 1), (1, 2)}, N2 = {2, (2, 2), (1, 2)}, and N3 = {3}. Any b that uniquely
belongs to nest Nj has allocation parameters ωbj = 1 and ωbj′ = 0 for j′ ̸= j, so
that: ω11 = ω(1,1)1 = ω22 = ω(2,2)2 = ω3 = 1 and ω12 = ω13 = ω21 = ω23 = ω31 =
ω32 = ω(1,1)2 = ω(1,1)3 = ω(2,2)1 = ω(2,2)3 = 0. Moreover, (1, 2), which belongs to
two nests, has allocation parameters: ω(1,2)1 = ω(1,2)2 = 0.5 and ω(1,2)3 = 0. Figure
1 visualizes the nesting structures of the NL and the PONL. In the PONL model,
the unobserved preferences of bundle (1, 2) will be allowed to correlate both with
those of the bundles in N1 (that include at least one unit of product 1) and with
those of bundles in N2 (that include at least one unit of product 2), and potentially
to different degrees on the basis of λ1 and λ2. ■

15Specifying instead C1 as a unique nest would rule out the possibility of 1 being more closely
related to (1, 1) and (1, 2) than to 3, and similarly for 2.
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Example 2. To better understand how the allocation parameters proportionally
allocate bundles to nests, and the implication of this proportional allocation on
the correlation among unobserved preferences, consider an example with four bun-
dles. Bundle b that only includes units of product j with ωbj = 1, b′ that only
includes units of product j′ with ωb′j′ = 1, and two other b′′ and b′′′ that in-
clude different combinations of units of both products j and j′ with, respectively,
(ωb′′j = 0.36, ωb′′j′ = 0.64) and (ωb′′′j = 0.64, ωb′′′j′ = 0.36). Then, bundle b will
be more correlated with b′′′ than with b′′, i.e. 0.8(1 − λ2

j) > 0.6(1 − λ2
j), given

that b′′′ includes a larger proportion of units of product j than b′′. Symmetrically,
bundle b′ will be more correlated with b′′ than with b′′′, given that b′′ includes a
larger proportion of units of product j′ than b′′′. Moreover, because both bundles
b′′ and b′′′ include units of products j and j′, Corr(Uitb′′ , Uitb′′′) will depend on
both λj and λj′ : 0.48(1 − λ2

j) + 0.48(1 − λ2
j′). The PONL model naturally accom-

modates correlation in the unobserved preferences among bundles on the basis of
their degree of overlap in the composition of products. ■

2.1.1 Extension: A Random Coefficient on an Observable Attribute

The PONL model can be extended to allow for additional sources of correlation
in unobserved preferences on the basis of observable attributes other than prod-
uct components. For example, households may have idiosyncratic preferences for
observable attributes such as bundle size (e.g., larger households may need to pur-
chase larger quantities) or the price of a bundle (e.g., heterogeneous marginal utility
of income). We consider an extension of (1) that includes a random coefficient νi
on an observable attribute such as the price of a bundle, ptb:

Uitb(σ) = δitb + εitb

= δtb − σνiptb + εitb,
(4)

so that the covariance among the unobserved preferences of any two bundles b and
b′,16 Cov(Uitb(σ), Uitb′(σ)) = σ2 ptb ptb′ +Cov(Uitb(0), Uitb′(0)) with Uitb(0) denot-
ing Uitb(σ) evaluated at σ = 0, also depends on prices, through σ2 ptb ptb′ , in ad-
dition to the overlap in product components, through Cov(Uitb(0), Uitb′(0)) (which
does not depend on prices). Unobserved heterogeneity in price sensitivity, i.e.
σ > 0, implies Cov(Uitb(σ), Uitb′(σ)) > Cov(Uitb(0), Uitb′(0)) due to σ2 ptb ptb′ > 0,
while larger values of σ lead to a more prominent role played by prices relative to
product overlap in determining Cov(Uitb(σ), Uitb′(σ)). In the interest of space, in

16Assuming that νi is independent of the unobserved GEV term εitb.
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what follows we focus on the identification and estimation of PONL model (1) and
its novel features, while in Appendix E we sketch the extensions of our arguments
to the inclusion of a random coefficient νi as in (4).

2.2 Average Utilities and Demand Synergies
With some abuse of notation, we refer to the components of a bundle b simply
as “products” and denote them by j ∈ b. Despite this shortcut, we stress that
bundles can contain multiple units of a single product. In addition, we assume that
for any bundle b ∈ C2, a single unit of each product j ∈ b can also be purchased in
isolation. This rules out the complication that some product can only be purchased
through bundles.17 We denote by δtj the market t-specific average utility of a single
unit of product j and, as is common in applied work, we assume it to be linear:

δtj = δj + xtjβ − αptj + ξtj, (5)

where δj is an intercept, xtj is a K-dimensional vector of characteristics, ptj is the
price of a single unit of product j in market t, (β, α) are preference parameters,
and ξtj is a residual observed by all economic agents (e.g., households and firms)
but unobserved by the econometrician. We assume that the K × J characteristics
are exogenous in each market t:

E
[
(ξtj)Jj=1

∣∣∣(xtj)Jj=1

]
= 0. (6)

Differently, the prices (ptj)Jj=1 could be set by firms on the basis of (ξtj)Jj=1 and
therefore correlate with these unobservables. Following Gentzkow (2007), we de-
note by δtb = ∑

j∈b δtj + Γtb the market t-specific average utility of bundle b ∈ C2.
For example, if b = (j, j, k), i.e. two units of product j and one of product k,
then δt(j,j,k) = 2δtj + δtk + Γt(j,j,k). We refer to Γtb as the demand synergy pa-
rameter, which captures the extra average utility from purchasing the products in
bundle b jointly rather than separately. In Gentzkow (2007)’s demand for on-line
and printed newspapers, Γtb represents synergies in the consumption of different
news outlets. However, demand synergies can also arise for other reasons, such as
shopping costs (Florez-Acosta and Herrera-Araujo, 2020; Pozzi, 2012; Thomassen

17In Appendix G, we discuss a simple procedure to extend the use of our estimator to ap-
plications in which some product can only be purchased through bundles. We implement this
procedure in the empirical analysis in section 5.
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et al., 2017) or aggregation across multiple choices (Dubé, 2004; Hendel, 1999).18

In the context of quantity discounts, for example, even excluding any other
source of synergy, Γtb = −α(ptb −∑

j∈b ptj) > 0 whenever it is cheaper to purchase
the products in bundle b jointly rather than separately and ptb − ∑

j∈b ptj < 0.
In this case, a random coefficient on price as in (4) would introduce household-
level unobserved heterogeneity in the demand synergies: δitb = ∑

j∈b δitj + Γitb =∑
j∈b δtj−σνi

∑
j∈b ptj+Γitb, with Γitb = −(α+σνi)(ptb−∑j∈b ptj), allowing for the

possibility that more price sensitive households find quantity discounts relatively
more attractive, i.e. Γitb > Γtb.

Throughout the presentation of the model and estimator, we remain agnostic
about the market t-specific demand synergies Γt = (Γtb)b∈C2 , and treat them as
parameters to be estimated. In applications with observable bundle-level char-
acteristics, one can however project these parameters onto observables and learn
more about their nature (as we do in our application with quantity discounts).

2.3 Purchase Probabilities
Denote by stb, st(b|j), sjt , and st0 the t-specific purchase probabilities of, respec-
tively: b, b conditional on nest Nj, any bundle in nest Nj, and the outside option.
Similar to the NL model, also in the PONL model any b that uniquely belongs
to nest j has purchase probability stb = st(b|j)s

j
t . Any b that instead belongs to

multiple nests has stb given by the sum of the joint purchase probabilities st(b|j)s
j
t

over the J + 1 nests, where st(b|k) = 0 for any k such that b /∈ Nk.
Given (1) and generating function (2), the PONL purchase probability of b ∈

C1 in market t is (McFadden, 1978; Wen and Koppelman, 2001):

stb =
J∑
j=0

(ωbj exp(δtb))1/λj∑
b′∈Nj

(ωb′j exp(δtb′))1/λj︸ ︷︷ ︸
st(b|j)

(∑
b′∈Nj

(ωb′j exp(δtb′))1/λj

)λj

∑J
ℓ=0

(∑
b′∈Nℓ

(ωb′ℓ exp(δtb′))1/λℓ

)λℓ︸ ︷︷ ︸
s

j
t

. (7)

Because the outside option belongs to its own singleton nest N0, by further assum-
18If households face shopping costs every time they visit a store, they may prefer to purchase all

their products at once rather than over several trips (one-stop shoppers). Moreover, if households
delegate grocery shopping to one person, the need to accommodate different requests may lead
to the purchase of multiple units of the same or of different products on any shopping trip.
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ing δt0 = 0 we obtain:19

st0 = 1∑J
ℓ=0

(∑
b′∈Nℓ

(ωb′ℓ exp(δtb′))1/λℓ

)λℓ
. (8)

2.4 Demand Inverse
Similar to the NL studied by Berry (1994), also the PONL purchase probabilities
(7) and (8) can be conveniently “inverted” with respect to the average utilities of
any bundle b ∈ C2:

ln stb − ln st0 = ln

 J∑
j=0

(ωbj exp(δtb))1/λj

 ∑
b′∈Nj

(ωb′j exp(δtb′))1/λj

λj−1


=
∑
j∈b

δtj + Γtb + ln
∑
j∈b

ωbj
(
st(b|j)

)1−λj

 .
(9)

Different from a NL model, however, the possibility of overlapping nests leads λj,
j ∈ b, to be non-linear in (9). In the GNL model, analogous non-linearities appear
also in the equations corresponding to a single unit of any product. However, in
the special case of the PONL model, any single unit of product j has allocation
parameters ωjj = 1 and ωjj′ = 0 for j′ ̸= j, so that:

ln stj − ln st0 = δtj + (1 − λj) ln(st(j|j)). (10)

Plugging (5) into (10) and, respectively, into (9), we obtain:

ln stj − ln st0 = δj + xtjβ − αptj + (1 − λj) ln(st(j|j)) + ξtj. (11)

Γtb = ln(stb)− ln(st0)−
∑
j∈b

(δj+xtjβ−αptj+ξtj)− ln
∑
j∈b

ωbj
(
st(b|j)

)1−λj

 . (12)

3 Identification
A distinctive feature of our approach is the use of different parts of system (9)
to identify different parameters of the PONL model. We restrict attention to the
T × J linear equations in (11), corresponding to the purchases of single units, for
the identification of (δ, β, α, λ), and then rely on the remaining T × C2 non-linear

19In the context of demand for bundles, this otherwise standard normalization has important
repercussions for the identification of the demand synergy parameters. We discuss this in detail
in the empirical application.
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equations in (12), corresponding to the purchases of multiple units, for the identifi-
cation of the demand synergies (Γtb)b∈C2 , t ∈ T. Alternatively, one could identify
the entire PONL model simultaneously from the T × C1 non-linear equations in
(9). While both approaches are possible, we pursue the former because the latter
leads to a more complex problem of endogeneity (see next section) and practically
less convenient estimators, especially with large choice sets (see section 4).

3.1 Endogeneity in System (9)
By relying sequentially on (11) and (12) for the identification and estimation of
the PONL model, we face a simpler problem of endogeneity than by relying simul-
taneously on system (9). Intuitively, our approach only uses the T × J equations
for single units in (11) as a linear regression to learn about (δ, β, α, λ) and then
uses the remaining T ×C2 equations for multiple units in (12) as a plug-in to learn
about the demand synergies. This way, the problem of endogeneity is limited to
the linear regression in (11), i.e. the correlation of (ptj, st(j|j)) with ξtj, and can be
addressed by instruments that satisfy moment conditions at the level of the single
unit j.20 Differently, the simultaneous use of all the equations in (9) would lead
to a more complex problem of endogeneity that can only be addressed by moment
conditions both at the single unit j and at the bundle b level.

To illustrate this, suppose to observe prices and characteristics both of single
units (ptj, xtj)Jj=1 and of bundles (ptb, xtb)b∈C2 .21 Then the t-specific average utility
of b is δtb = ∑

j∈b(δj + xtjβ − αptj + ξtj) + Γtb, with demand synergy:

Γtb =
δb −

∑
j∈b

δj

+
xtb −

∑
j∈b

xtj

 β − α

ptb −
∑
j∈b

ptj

+
ξtb −

∑
j∈b

ξtj

 ,
where ξtb is an unobserved residual. Given these, system (9) can be re-written as:

ln(stb) − ln(st0) = δb + xtbβ − αptb + ln
∑
j∈b

ωbj
(
st(b|j)

)1−λj

+ ξtb. (13)

The term ξtb is a bundle-specific unobserved residual analogous to ξtj in (11). If
one relied on (13) to simultaneously identify and estimate all parameters, moment
conditions (6) would not be sufficient for the bundle-level characteristics (xtb)b∈C1

20Price endogeneity arises because the vector (ξtj)J
j=1 is observed by all price-setting firms but

unobserved to the econometrician, while the dependence of ln (stj/st0) on st(j|j) is typical of NL
models (independently of price endogeneity), see Berry (1994).

21If (ptb, xtb)b∈C2 were unobserved, the endogenity problem discussed here would be even more
severe, while the approach described in the next section would be unaffected.
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to be exogeneous in each market t. Such bundle-level exogeneity would require:

E
[
(ξtj)Jj=1

∣∣∣(xtj)Jj=1, (xtb)b∈C2

]
= 0

E
[
(ξtb)b∈C2

∣∣∣(xtj)Jj=1, (xtb)b∈C2

]
= 0,

(14)

where the first set of moment conditions in (14) already implies (6). Importantly,
when moment conditions (14) do not hold, all the K + J + 1 regressors in (13)—
excluding the intercepts—will be endogenous, substantially complicating the task
of finding a sufficient number of valid instruments. Differently, as we discuss next,
none of the additional moment conditions in (14) is required for the exogeneity of
(xjt)Jj=1 in (11), so that the weaker (6) plus availability of J + 1 valid instruments
will suffice to address the endogeneity of ptj and st(j|j) with respect to ξjt.

3.2 Identification from (11) and (12)
We now discuss the identification of (δ, β, α, λ), with δ = (δj)Jj=1 and λ = (λj)Jj=1,
and of Γt = (Γtb)b∈C2 in (11) and (12) from data on bundle-level purchase proba-
bilities (stb)b∈C1 and characteristics of single units (xtj, ptj)Jj=1 across T markets,
with T → ∞.22 Note that, if the within-nest purchase probabilities (st(b|j))b∈C1,j∈J

were observed, then identification would immediately follow from a sequential ver-
sion of the classic instrumental variables argument by Berry (1994). One could first
identify (δ, β, α, λ) from linear regression (11) by instrumental variables (for the
endogenous ptj and st(j|j)) and then Γt from non-linear system (12) by a plug-in.
However, the overlapping nesting structure of the PONL model prevents the ob-
servability of the within-nest purchase probabilities (st(b|j))b∈C1,j∈J, which in turn
requires a different identification and estimation strategy.

Example 3. We illustrate the lack of observability due to the overlapping nests
by slightly modifying Example 1 and adding bundle (1, 3) to the choice set C1.
The NL model would require to uniquely allocate each element of C1 to a nest.
Suppose that we specified three nests: Ni = {1, (1, 1), (1, 2)}, Nii = {2, (2, 2)}, and
Niii = {3, (1, 3)}. Then, given (stb)b∈C1 , one could directly obtain each within-nest
purchase probability as st(b|g) = stb/(

∑
b′∈Ng

stb′), g = i, ii, iii. Differently, because
in the PONL model some b belongs to multiple nests, one cannot determine the

22Sher and Kim (2014), Allen and Rehbeck (2019), and Wang (2019) study a different iden-
tification problem, where only the product-level purchase probabilities (marginals over bundles)
are observed, rather than the bundle-level purchase probabilities.

16



within-nest purchase probabilities from the observed (stb)b∈C1 .23 In the current
example, we would have three overlapping nests: N1 = {1, (1, 1), (1, 2), (1, 3)},
N2 = {2, (2, 2), (1, 2)}, and N3 = {3, (1, 3)}. This leads to a system with 8 observed
purchase probabilities and 9 unknowns:

stk =st(k|k)s
k
t k = 1, 2, 3

st(j,j) =st(j,j|j)s
j
t j = 1, 2

st(1,2) =st(1,2|1)s
1
t + (1 − st(2|2) − st(2,2|2))s2

t

st(1,3) =(1 − st(1|1) − st(1,1|1) − st(1,2|1))s1
t + (1 − st(3|3))s3

t

st0 =1 −
3∑

k=1
skt ,

(15)

preventing the determination of the within-nest purchase probabilities. ■

In this context, identification can be achieved following Berry and Haile (2014)
given the availability of valid instruments for ptj and st(j|j). While this is standard,
the associated derivations are useful to understand how to select valid instruments
in practice (see next section) and how to obtain a computationally convenient
estimator (see section 4). We start by defining

πtj = s
j
t /st0 =

 ∑
b′∈Nj

(ωb′j exp(δtb′))1/λj

λj

and by plugging δtj = λj ln[stj/st0] + (1 − λj) ln πtj in (12), so to obtain:

Γtb = Γb(Γtb; πt, λ, st)

= ln[stb/st0] −
∑
j∈b

(λj ln[stj/st0] + (1 − λj) ln πtj)

− ln
 J∑
j=1

exp
(

Γtb(1 − λj)
λj

)
(ωbj)

1
λj π

1− 1
λj

tj

∏
r∈b

[str/st0]
λr(1−λj )

λj π

(1−λr)(1−λj )
λj

tr

 ,
(16)

where πt = (πtj)Jj=1. Then, using δtb′ = ∑
j∈b′ δtj+Γtb′ , we plug δtj = λj ln[stj/st0]+

23Obviously, if there is no b that belongs to at least two nests (i.e., each b = (j, ..., j) only
contains multiple units of a same product j), the PONL model simplifies to a standard NL whose
nests partition C1.
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(1 − λj) ln πtj in the definition of πtj and obtain:

πtj = ϕj(πt; Γt, λ, st)

=
 ∑

b′∈Nj

ω
1/λj

b′j exp (Γtb′/λj)
∏
r∈b′

[
str

st0

]λr/λj

π
(1−λr)/λj

tr

λj

.
(17)

Given λ and st, (16) and (17) define a system of C1 equations in C1 unknowns
(Γt and πt) for each t. Because each within-nest purchase probability st(b|j) is a
function of Γt and πt (see the last equality in (7)), one can address the lack of
observability of (st(b|j))b∈C1,j∈J by expressing Γt and πt in terms of λ and st. To
summarize, PONL model (11) and (12) implies:

ln stj − ln st0 = δj + xtjβ − αptj + (1 − λj) ln
(
stj/st0
πtj

)
+ ξtj

Γt = (Γb(Γtb;λ, πt, st))b∈C2
from (16)

πt = (ϕj(πt;λ,Γt, st))j∈J from (17).

(18)

While the presence of (16) and (17) complicates estimation, it basically does not
affect identification. The first equation in (18), which is the one we rely on for the
identification of of (δ, β, α, λ), is subject to the same endogeneity concerns as (11):
both ptj and stj/st0

πtj
are functions of the unobserved residuals ξt = (ξtj)Jj=1. Suppose

that a vector of Q instruments ztj with Q ≥ J + 1 were available, and that they
satisfied the following moment conditions:

E [ξtj|ztj = z] = 0, for all j ∈ J and z ∈ Dz, (19)

where Dz is the support of z. The next result confirms that the PONL model is
identified on the basis of (18), the exogeneity of (xtj)Jj=1, and the availability of
instruments ztj that satisfy (19).24

Proposition 1 (Identification). Suppose that Assumption 1 in Appendix A.1 holds.
Then (δ, β, α, λ), Γt, and πt are identified for all t ∈ T.

Proof. See Appendix A.1.

This shows that standard instrumental variables ztj that satisfy (19) are sufficient
not only to identify (δ, β, α, λ), but also (Γt, πt) for t = 1, ..., T with T → ∞.

24Formally, following Berry and Haile (2014), Proposition 1 relies on the completeness condition
embedded in Assumption 1 (as detailed in Appendix A.1) rather than on condition (19). More
practically, however, its essence can be summarized by the availability of at least J + 1 valid
instruments, as in (19).
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One can prevent incidental parameters problems by relying on (16) and (17) to
concentrate out (Γt, πt) given (λ, st) for each t. As a result, identification of the
entire PONL model (including every Γt, πt) boils down to the unique determination
of (δ, β, α, λ) by instrumental variables from a non-linear system. This is important
because the estimation of price elasticities and marginal costs, and the simulation
of counterfactuals (e.g., alternative pricing strategies and mergers) usually require
knowledge of the entire model. The concentration of (Γt, πt) for each t motivates
the name of the estimator we propose in section 4, the Concentrated 2SLS.

In Appendix E, we discuss how Proposition 1 can be extended to the inclusion
of a random coefficient on price as in (4). The main complication of this extension
is the presence of an additional non-linear function of σ in the right-hand side of
the first equation in (18).25 However, σ can be treated similarly to λ and, following
Berry and Haile (2014), identification can be obtained given the availability of valid
instruments for ptj, st(j|j), and the additional non-linear function of σ.

3.3 Choice of Instruments
In this section, we provide some practical guidance on the selection of valid in-
struments. Different categories of instruments were proposed in the literature to
address, respectively, the endogeneity of ptj and that of stj/st0

πtj
in (18) (Berry and

Haile, 2016; Gandhi and Houde, 2019). Classical instruments for ptj are excluded
cost-shifters (e.g., input prices) or, when these are not available, some proxies for
these or for marginal costs (Hausman, 1996; Nevo, 2001). Other classic instru-
ments for ptj are the exogenous characteristics xtk for any product k ̸= j, with the
idea that more or less substitutability in characteristic space should lead to more
or less price competition among products (Berry et al., 1995).

Despite the lack of observability of πtj, appropriate instruments for stj/st0
πtj

can
be selected on the basis of their correlation with st(j|j). To see this, denote by
πt = (πj(λ; st))j∈J a solution to (16) and (17) for given λ and st.26 By a first-
order Taylor approximation of ln(πtj) = ln(πj(λ; st)) in (18) around its true value
ln(π0

tj) = ln(πj(λ0; st)), we obtain:

ln stj − ln st0 = δj + xtjβ − αptj + (1 − λj)
[
ln st(j|j) − 1

s
j
t

∂πj(λ0; st)
∂λ

(λ− λ0)
]

+ ξtj, (20)

25Namely, the Taylor expansion of ln(stj/st0) with respect to σ around σ = 0.
26By substituting (16) into (17), for given λ and st, πt is the only argument of the resulting

system. As a consequence, we can express πt in terms of λ and st. See Assumption 2 in Appendix
B for more details.
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where the leading term of the first-order Taylor expansion is ln st(j|j).27 Similar to
a scenario in which πtj were observed, a valid instrument is then “something” that
shifts st(j|j) independently of ξtj (Berry, 1994). From (7), we also note that:

st(j|j) = exp(δtj)1/λj∑
b′∈Nj

(ωb′j exp(δtb′ ))1/λj
= 1

1+
∑

b′∈Nj ,b′ ̸=j
(ωb′j exp(δtb′ −δtj))1/λj

. (21)

Given the last two equations, δtb = ∑
j∈b δtj + Γtb, moment conditions (6), and

the overlapping nesting structure of the PONL model, we can see that appropriate
instruments for stj/st0

πtj
may be obtained relying both on product-level and bundle-

level exogenous characteristics. For instance, the characteristics of product k, xtk
with k ̸= j, will be valid product-level instruments for stj/st0

πtj
as long as nests j and

k are overlapping, Nj ∩ Nk ̸= ∅ (there are bundles including both units of j and
of k). Moreover, if one observes bundle-level characteristics xtb ̸= ∑

k∈b xtk and is
willing to additionally assume the first set of moment conditions in (14), then (21)
implies that xtb′ − xtj is a valid bundle-level instrument given its correlation with
st(j|j) through δtb′ −δtj (Gandhi and Houde, 2019). Note that, in applications with
xtb = ∑

k∈b xtk, such as the one we study in this paper, moment conditions (6) are
sufficient also for the validity of these bundle-level instruments.

Through a similar mechanism, also instruments for excluded prices (i.e., all but
ptj) can be valid for stj/st0

πtj
: for example, any excluded cost-shifter for product k ̸= j

such that Nj ∩ Nk ̸= ∅ would affect st(j|j) through ptk independently of ξtj.28 In
Appendix E, we illustrate that similar ideas hold in a PONL model that includes
a random coefficient on price and discuss how to select valid instruments for the
identification of both λj and σ.

4 Estimation
Given data on bundle-level purchase probabilities (stb)b∈C1 , a natural approach
to estimating (δ, β, α, λ) and (Γtb)t∈T,b∈C2 is the Generalized Method of Moments
(GMM) estimator proposed by Berry et al. (1995).29 This could be obtained on
the basis of purchase probabilities (7)-(8) and moment conditions (14), and relying
either on the fixed point approach (Berry et al., 1995) or on the MPEC approach

27Note that the second term inside the square brackets is proportional to λ−λ0. Its contribution
to pin down λj will then vanish when λ gets close to λ0, i.e. when the estimator of λ0 is consistent.
Then, in practice, the main channel to identify λj will be the leading term ln st(j|j).

28The validity of the instruments for price to addressing also endogeneity of the within-nest
purchase probability is specific to the exclusion restrictions embedded in (20) and (21).

29Given the lack of observability of the within-nest purchase probabilities (st(b|j))b∈C1,j∈J, one
cannot directly construct an estimator on the basis of (9) as for NL models with non-overlapping
nests (Berry, 1994), but must rely on the more general approach by Berry et al. (1995).
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(Dubé et al., 2012) for implementation. Unfortunately, this GMM estimator would
be impractical with large choice sets, mainly because of the large dimensionality
T × C1 of the demand system. The fixed point implementation would require
the computation of T demand inverses with C1 equations each (and no available
contraction mapping results), while the MPEC implementation would require the
computation of up to T × C1 non-linear constraints and their derivatives.

To overcome this challenge, we follow our identification strategy and propose
a Concentrated Two Stage Least Square (C2SLS) estimator on the basis of (18).
The proposed C2SLS estimator is a natural extension of the Two Stage Least
Square (2SLS) estimator by Berry (1994) to the case of unobserved within-nest
purchase probabilities (arising from the overlapping nests). The C2SLS can be
implemented by a convenient Gauss-Siedel iterative procedure that is optimization-
and derivative-free, and parallelizable over both bundles and markets, virtually
eliminating any challenge of dimensionality due to large choice sets. We show that
the C2SLS estimator has desirable asymptotic properties and that, upon numerical
convergence, the proposed iterative procedure always implements it.

4.1 A Concentrated Two Stage Least Square (C2SLS)
Our identification strategy leads to a simple estimator based on (18) and moment

conditions (19). Define Z = (Zt)Tt=1, X =
(

(ej)Jj=1, xt,−pt,
(
ln
(
stj/st0
πtj

))J
j=1

)T
t=1

,
where ej is a vector of zeros with a 1 in the jth position, and Y =(
(ln stj − ln st0)Jj=1

)T
t=1

. Given (πt)Tt=1, we rely on the first equation of (18) to
construct the finite-sample counterpart of the moment conditions implied by (19):

m(δ, β, α, λ) = ZT
(
Y −X (δ, β, α, 1 − λ)T

)
,

and obtain estimates of (δ, β, α, 1 − λ) by minimizing ∥m(δ, β, α, λ)∥2. From the
first-order conditions of this minimization, we obtain

(
δ̂, β̂, α̂, 1 − λ̂

)T
=
(
XT(ZZT)X

)−1 (
XT(ZZT)Y

)
,

which is the 2SLS estimator of (δ, β, α, 1 − λ) on the basis of instruments Z.30

Because (πt)Tt=1 in X is unknown, we augment this 2SLS by the second and the
third equations in (18) and obtain the proposed estimator, the Concentrated 2SLS

30One could also use criterion functions other than the square of the Euclidean norm of m(·)
and obtain different estimators of (δ, β, α, 1 − λ). We rely on this specific estimator because of
its practical convenience in implementation.
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(C2SLS), as a solution to the following non-linear system:31


(δ, β, α, 1 − λ)T =

(
XT(ZZT)X

)−1 (
XT(ZZT)Y

)
non-linear equations (16): Γt = (Γb(Γtb;λ, πt, st))b∈C2

non-linear equations (17): πt = (ϕj(πt;λ,Γt, st))j∈J.

(22)

We denote by (δ0, β0, α0, λ0) and (π0
t ,Γ0

t )Tt=1 the true parameter values. The C2SLS
in (22) is a natural extension of the 2SLS proposed by Berry (1994). To see this,
suppose that the within-nest purchase probabilities (st(b|j))b∈C1,j∈J were observed,
as in the classic NL. Then one could, first, estimate (δ, β, α, λ) by 2SLS as a solution
to the linear equations in (22) and, second, estimate Γt from non-linear system (12)
by a plug-in. Differently, with overlapping nests (st(b|j))b∈C1,j∈J are unobserved but
must satisfy both the linear and the non-linear equations in (22).

Proposition 2 (Asymptotic Properties). Suppose Assumptions 2 and 3 in Ap-
pendix B hold.

• A solution to (22) in a neighbourhood of (δ0, β0, α0, λ0) and (π0
t ,Γ0

t )Tt=1, de-
noted by (δ̂, β̂, α̂, λ̂) and (π̂t, Γ̂t)Tt=1, exists with probability one as T → ∞.

• (δ̂, β̂, α̂, λ̂) and (π̂t, Γ̂t)Tt=1 is consistent and asymptotically normal.

Proof. See Appendix B.

The first result of Proposition 2 confirms that the C2SLS estimator is well defined
and always exists in large samples, while the second guarantees that it has desir-
able asymptotic properties. In Appendix B.1, we derive the asymptotic variance-
covariance matrix and a simple plug-in procedure to compute it. Even though well
behaved in theory, the C2SLS estimator can be challenging to implement, especially
with large choice sets. While the 2SLS by Berry (1994) only solves the linear equa-
tions in (22), the C2SLS requires the solution of the entire non-linear system (22).
With large C, the non-linear part of system (22) introduces practical complexi-
ties not present in the 2SLS: in addition to (δ, β, α, λ), one also needs to compute
T × J values of (πt)Tt=1 and T × C2 values of (Γt)Tt=1 that simultaneously satisfy
(16) and (17). We circumvent this challenge by proposing an iterative procedure
that does not directly solve non-linear system (22), but only executes a sequence
of 2SLS estimators and parallelizable plug-in operations. Together, these simple

31The “concentrated” in the name of the estimator refers to concentrating (Γt, πt)T
t=1 out on

the basis of (16) and (17) for any given (δ, β, α, 1 −λ), along the lines of the classic concentrated
MLE routinely used in the estimation of panel data models with fixed effects.
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steps largely reduce the computational time and memory requirements needed to
implement the C2SLS estimator.

4.2 A Convenient Iterative Procedure
Denote the algorithm’s iterations by k = 1, ..., K̄ and the parameter values obtained
at iteration k by superscript (k). Given starting values

(
δ(0), β(0), α(0), λ(0)

)
and(

π
(0)
t ,Γ(0)

t

)
t∈T

, at each iteration k execute the following steps:32

Step 1. Given π(k−1)
t , λ(k−1), and Γ(k−1)

t , for each (t, j) compute π(k)
tj as a plug-in from

the right-hand side of (17).

Step 2. Given π
(k)
t , compute

(
δ(k), β(k), α(k), λ(k)

)
by 2SLS from the linear equations

in (22), i.e. ignoring non-linear equations (16) and (17).

Step 3. Given π(k)
t , λ(k), and Γ(k−1)

t , for each (t,b)—independently of any other mar-
ket and bundle—compute Γ(k)

tb as a one-step Newton-Raphson approximation
to the unique solution of (16).33

Step 4. If k < K̄, move on to iteration k + 1. If instead k = K̄, exit the algorithm.

Step 2 of the algorithm leverages on the observation that, for any given πt, the
linear equations in (22) are the 2SLS by Berry (1994). Then, steps 1 and 3 update
the values of (Γtb)b∈C2 and πt instead of solving non-linear equations (16) and (17).
Step 2 only requires the estimation of a 2SLS, while steps 1 and 3 a parallelizable
sequence of plug-ins (not involving numerical optimizations or derivatives).34

The proposed algorithm mimics the classic Gauss-Seidel method for solving
systems of equations (Hallett, 1982). While similar algorithms were shown to
practically facilitate the implementation of linear (Guimaraes and Portugal, 2010)
and non-linear fixed effects estimators (Hospido, 2012; Mugnier and Wang, 2022),
little is known about their numerical convergence.35 We next establish that when-
ever our sequence of regressions and plug-ins numerically converges, it will attain
the C2SLS estimator.

32While here we only sketch the main features of the proposed iterative procedure, in Appendix
C we discuss several implementation details: from the choice of starting values (parameter values
at iteration 0) and stopping criteria (K̄), to the updating in steps 1 and 3.

33Importantly, as shown in Lemma 1, Appendix A.1, (16) has a unique solution Γtb which is
independent of any other market and bundle other than (t,b).

34As discussed in Appendix C, the updating in step 3, despite being a one-step Newton-
Raphson approximation, does not require any numerical differentiation: the derivatives of (16)
have a simple analytical form.

35One of the very few exceptions is Mugnier and Wang (2022), who provide numerical conver-
gence results for two-way fixed effects non-linear panel models.
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Proposition 3 (Numerical Convergence). Suppose that for all t = 1, ..., T and
b ∈ C2, as K̄ → ∞, π(K̄)

t → π∗
t and Γ(K̄)

tb → Γ∗
tb for some π∗

t ∈ RJ and Γ∗
tb ∈ R.

Then,
(
δ(K̄), β(K̄), α(K̄), λ(K̄)

)
and

(
π

(K̄)
t ,Γ(K̄)

t

)T
t=1

converge to the C2SLS.

Proof. See Appendix D.

This guarantees that the convergence of each π(K̄)
t and Γ(K̄)

tb can only happen to the
C2SLS estimator. To test if the algorithm has implemented the C2SLS estimator, it
suffices to verify whether the iterative procedure has numerically converged.36 Even
though Proposition 3 does not guarantee the numerical convergence of the proposed
algorithm, and thus its ability to produce the C2SLS estimates, reassuringly, in the
large number of estimates we performed between the Monte Carlo simulations and
the empirical application, we never experienced any lack of numerical convergence.
In the hypothetical case of lack of numerical convergence, we suggest to re-launch
the algorithm from different starting values (as typically done for validation in
analogous numerical procedures).

In Appendix F, we investigate by simulation the finite sample performance
of the C2SLS estimator as a function of the choice set size C and the number
of iterations K̄ in the proposed algorithm. Our results highlight that as few as
five iterations can be sufficient for the proposed algorithm to numerically converge
and deliver precise estimates. Importantly, the convergence of the algorithm holds
irrespective of C, confirming that a few iterations may be enough to implement
the C2SLS estimator also in empirical applications with large choice sets.

4.3 Discussion
An essential feature behind the practical advantages of the proposed C2SLS es-
timator is the use of individual-level purchases in the aggregate form of bundle-
level purchase probabilities. Bundle-level purchase probabilities are not typically
directly observed (with the exception of a few industries, see Crawford and Yu-
rukoglu, 2012; Song et al., 2017) but rather computed from samples of individual-
level purchases (Ershov et al., 2021) and thus subject to sampling error. When
the number of bundles is large relative to the sample of individual-level purchases,

36In practice, numerical convergence is usually defined by a stopping criterion, such as that the
distance in the parameter values between two consecutive iterations is smaller than a threshold.
For instance, in our simulations and empirical application, we consider the algorithm to have
converged when the absolute values of Γ(k)

tb − Γ(k−1)
tb , π(k)

tj − π
(k−1)
tj , and

(
δ(k), β(k), α(k), λ(k)) −(

δ(k−1), β(k−1), α(k−1), λ(k−1)) are small enough for all t and b. As shown in Appendix F, our
Monte Carlo simulations suggest that 5 iterations can already be sufficient to achieve this form
of numerical convergence.
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sampling error in the bundle-level purchase probabilities can be pronounced and
lead to estimation bias (Gentzkow et al., 2019), for example because of the large
number of observed “zeros” (Gandhi et al., 2020). Even though, in the interest
of space, we do not address this complication here, the C2SLS estimator can be
extended to control for sampling error in the bundle-level purchase probabilities
by building on the de-biasing technique proposed by Freyberger (2015).

Following a different route, one could opt for more traditional likelihood-type es-
timators based on the direct use of individual-level purchases (Aryal and Gabrielli,
2020; Gentzkow, 2007; Grzybowski and Verboven, 2016; Iaria and Wang, 2019;
Ruiz et al., 2020). However, this approach would not be computationally conve-
nient with large choice sets, mainly because of the large number of fixed effects
required to control for price endogeneity (Grieco et al., 2022; Iaria and Wang,
2019). The inclusion of a fixed effect for each bundle-market combination (as in
the C2SLS estimator) would require to numerically minimize a non-linear likeli-
hood function with more than T × C1 parameters. One could of course impose
strong restrictions on the demand synergies to drastically reduce their number, but
sensible restrictions on these parameters are hard to specify a priori.

For example, in our application around 90% of purchases involve multiple units
of the same product j, so that around 90% of the demand synergy parameters
are of the type Γtb = Γt(j,...,j). One may then suppose that the indirect utility of
multiple units of j is simply linear in the number units, δt(j,...,j) = |(j, ..., j)| × δtj,
so that Γt(j,...,j) = 0 (no demand synergies, linear marginal utility in quantity), or
concave in the number of units, δt(j,...,j) = δtj × |(j, ..., j)|ρ with ρ ∈ (0, 1), so that
Γt(j,...,j) < 0 (negative demand synergies, decreasing marginal utility in quantity).37

This would drastically reduce the number of fixed effects to T × J (only product-
market specific fixed effects), and in some cases (with small T and/or J) allow
estimation by maximum likelihood. However, as we illustrate below, the estimated
Γt(j,...,j) are largely different from zero and heterogeneous across t and j, following
patterns hard to encapsulate in sensible a priori restrictions.

In Appendix E, we discuss how to extend the above C2SLS estimator and
iterative procedure to cases in which the PONL model includes a random coeffi-
cient νi as in (4). The presence of νi introduces a non-linearity with respect to
σ on the right-hand side of the first equation in (18). As a result, the update
of
(
δ(k), β(k), α(k), λ(k)

)
and of σ(k) in step 2 of the iterative procedure must rely

37This is the route followed by models of demand for multiple units as Dubé (2004); Hendel
(1999), where consumers can purchase multiple units of the same product with a utility function
concave in the number of units that implies negative demand synergies decreasing in quantity.
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on GMM rather than on 2SLS. Importantly, despite this additional non-linearity,
the implementation of steps 1 and 3 will retain its independence across (t,b) and
overall numerical convenience.

5 Quantity Discounts and CSDs
We implement our method to investigate quantity discounts in the market for
carbonated soft drinks (CSDs) in the USA. Relying on household-level purchase
data from the period 2008-2011 and the PONL model, we assess the welfare effects
of a ban on quantity discounts by simulating a counterfactual with linear pricing.

5.1 Data, Definitions, and Descriptive Statistics
We use household-level and store-level IRI data on CSDs for the cities of Pittsfield
and Eau Claire (USA) in the period 2008-2011. We refer the reader to Bronnenberg
et al. (2008) for a detailed description of these data. We focus on the I = 6, 155
households observed to purchase CSDs at least once between 2008 and 2011. For
these, we observe household size and 1, 736, 012 household-level shopping trips
to 22 different grocery stores over 208 weeks. A shopping trip is a household’s
purchase occasion to a grocery store in a given day: during 23.71% of these, CSDs
are observed to be purchased. We consider a household to choose the outside
option whenever no CSD is purchased during a shopping trip.

We observe households to purchase CSDs on average every 2.22 weeks, sug-
gesting that, on average, they deplete their stocks of CSDs in approximately two
weeks. We then define a market t = 1, ..., 1197 as a (four weeks × store) combina-
tion to ensure that observed purchases correspond to consumption within the same
interval of time. This mitigates concerns about stockpiling, where households buy
more “now” for “later” (Hendel and Nevo, 2013; Wang, 2015).

Households are observed to purchase 1, 683 different UPCs of CSDs mainly by
three large producers, Coca-Cola, PepsiCo, and Dr. Pepper, plus some smaller
ones we collectively label “Others.” From these UPCs, we define products on
the basis of the “brand” variable L5 in the IRI data (e.g., Coke Classic or Diet
Pepsi), considering all the UPCs by Others as a single product. This results in 128
products. The top two panels of Table 1 summarize this information.

We discretize quantities in units of one liter (L): purchases up to 1L as one unit,
between 1L and 2L as two units, and so on until 154 units, the largest purchased
quantity of a single CSD product during a shopping trip observed in the data. We
denote a bundle b as any combination of units of the same and of different CSDs
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Table 1: Descriptive Statistics
Product Definition

Brand variable “L5” in IRI
Producer Coca-Cola, PepsiCo, Dr. Pepper, Others

Sample Characteristics
Num. of UPCs 1, 683

Num. of products 128
Num. of weeks 208

Num. of households 6, 155
% single-person households 24.55%

Num. of shopping trips 1, 736, 012
% shopping trips with purchase 23.71%

Shopping frequency, any purchase 1.36 times per week
Shopping freq., with CSDs purchase every 2.22 weeks

Num. of markets (four weeks × store) 1, 197
Average num. shop. trips per market 1, 450.30
Purchased Quantities (in units)

Average per household-year 117.24
Single-person households, average per year 66.02
Multi-person households, average per year 133.91

Average bundle size (units per shopping trip) 6.99
Num. of bundles 16, 873

Average num. of bundles per market 123.80
% shop. trips with multi. units (A+B) 93.24%

(A) multi. units same prod. 90.15%
(B) multi. units diff. prod. 9.85%

we observe to be purchased during any one shopping trip.38 We refer to “units” or
“liters” interchangeably and call “bundles” also the purchases of single units. On
average, we observe households to purchase 117.24 units of CSDs per year.39

As summarized in the bottom panel of Table 1, we observe 16, 873 different
bundles to be purchased during any shopping trip in any market, with an average
of 123.8 different bundles within a market. As is well known (Chan, 2006; Dubé,
2004; Ershov et al., 2021), the purchase of multiple units (6.99 on average) is
common in the market for CSDs, which we observe in 93.24% of the shopping trips
with any purchase of CSDs. In 9.85% of these, households purchase multiple units
of different CSD products. We divide households into two groups: single-person or

38In some markets, some of the CSD products are only observed to be purchased through
bundles and never in isolation as single units. Without further assumptions, the C2SLS estimator
cannot pin down the demand synergy Γtb of bundles that include these products in such markets.
In Appendix G, we however discuss a simple procedure to extend the use of the C2SLS estimator
to cases like this where some product is only observed to be purchased through bundles.

39The observed average purchased quantity of 117.24 units per year is smaller than the 156L
reported by Allcott et al. (2019) on the basis of the Nielsen data (for the period 2007-2016).
There are at least two possible explanations. First, the Nielsen household-level scanner data may
cover a larger number of retailers than IRI, so that a larger share of purchases of CSDs is not
recorded in our data. Second, the composition of demographics sampled by Nielsen and IRI may
differ, so that Nielsen’s households purchase larger quantities of CSDs.
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multi-person, hs ∈ {single, multi}. Figure 2 shows that multi-person households
tend to purchase bundles of larger sizes than single-person households. Because of
this, we allow for the possibility that households of different sizes react differently
to quantity discounts: we compute purchase probabilities shstb conditional on hs

and allow different household sizes to have different demand parameters.40

Figure 2: Number of Purchased Units, Single- and Multi-Person Households

(a) Multiple units of same product
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We compute each bundle-level price ptb as the average observed price (in $)
across all shopping trips in t corresponding to purchases of b. Note that third-
degree price discrimination cannot be implemented in this context and, within each
market, households of different sizes face the same prices. Because IRI records the
average store-week price of each UPC separately, we do not observe non-linear
prices across UPCs of different products (e.g., joint purchase of 2L Coke Classic
and 2L Sprite) and focus on quantity discounts across UPCs involving different
volumes of the same product (e.g., 1L Coke Classic versus 2L Coke Classic).

Table 2 provides descriptive evidence on quantity discounts, both at the disag-
gregate UPC level (first two columns) and at the product level (last two columns).
We regress the unit-price (price per liter) of each UPC/product in a specific store-
week on the volume in liters of the UPC/product and fixed effects.41 Purchases of
larger quantities of CSDs are associated to lower prices per unit. For example, a 2L
UPC has, on average, a price per liter of −0.267$ lower than a 1L UPC. Different
producers appear to offer comparable quantity discounts.

40We compute each shs
tb as the proportion of shopping trips in t corresponding to purchases of

b by households of size hs.
41Each UPC or product corresponds to a specific volume of carbonated soft drink, e.g. 0.33L

or 1.5L. We then compute the unit-price of each UPC by dividing its price by its specific volume.
For the the product level regressions, we average the unit-prices of the UPCs within each product.
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Table 2: Descriptive Evidence on Quantity Discounts
Price per unit ($ per liter) UPC level Product level

Volume in Liters
Overall −0.267

(0.001)
−0.235
(0.002)

Coca-Cola −0.246
(0.001)

−0.205
(0.002)

PepsiCo −0.302
(0.001)

−0.273
(0.002)

Dr. Pepper −0.277
(0.001)

−0.231
(0.002)

Others −0.245
(0.001)

−0.243
(0.003)

Product fixed effects yes yes yes yes
Store fixed effects yes yes yes yes
Time fixed effects yes yes yes yes

Package type fixed effects yes yes yes yes
Num. of Obs. 872, 532 872, 532 206, 728 206, 728

R2 0.650 0.652 0.880 0.880
Notes: The first two columns report evidence of quantity discounts at the UPC
and store-week level for all UPCs from the store-level IRI data on CSDs for the
cities of Pittsfield and Eau Claire in the period 2008-2011. The last two columns
repeat the analysis at the product level, defined according to the “brand” variable
L5 in the IRI data. All regressions control for package type indicators (plastic or
glass bottle, aluminium can, etc.). In the last two columns, these indicators are
averaged among the UPCs belonging to each product within a specific store-week.

5.2 Model Specification
In this section, we specify our PONL model of demand for multiple units of CSDs.
The average utility of a household of size hs ∈ {single, multi} in market t from
purchasing a single unit of product j is:

δhstj = δhsj − αhsptj + δstore(t) + δtime(t) + ξhstj , (23)

where δhsj is a household size and product-specific intercept, αhs is a household
size-specific price coefficient, δstore(t) is a store fixed effect, δtime(t) is a time (four
weeks) fixed effect, and ξhstj is a residual observed by all economic agents (house-
holds and producers) but unobserved by the researcher. The household size-
specific nesting parameter for nest j is λhsj = λhsProducer(j), where Producer(j) ∈
{Coca-Cola/PepsiCo,Dr.Pepper/Others} depending on product j’s producer.

We use Hausman-type instruments (Hausman, 1996; Nevo, 2001) for the en-
dogenous price ptj and within-nest market share shst(j|j). Our markets are located in
two cities, Pittsfield and Eau Claire. For the markets located in Pittsfield, we use
the price of the same product j in the same retailer and four-week period time(t)
but as observed in Boston, the prices of products r ̸= j sold by the same retailer
of j in the same time(t) but in Boston, the prices of products k ̸= j by the same
producer of j as observed in the same time(t) but in Boston, and interactions of
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these. For the markets located in Eau Claire, we use the same instruments as for
Pittsfield but on the basis of the observed prices from Milwaukee.42

As mentioned in section 2.2, the demand synergy parameter Γhstb captures—
among other things—any indirect utility deviation due to non-linear price ptb rel-
ative to linear price ∑j∈b ptj. To capture this, we decompose Γhstb as:

Γhstb = −αhs
ptb −

∑
j∈b

ptj

+ γhstb , (24)

where −αhs
(
ptb −∑

j∈b ptj
)

isolates the part due to quantity discounts while γhstb
captures every other potential source of synergy among the products in b (e.g.,
preference for variety or transportation costs). As we illustrate next, interpreting
the estimated demand synergies requires some care due to the normalization of the
indirect utility of the outside option.

Normalization and Interpretation of Demand Synergy Parameters. De-
note by δhst0 the indirect utility of households size hs from choosing the outside
option in market t. The normalization δhst0 = 0 consists in subtracting δhst0 from
each δhstb , b ∈ C1. As a result, the identified indirect utility of household size
hs from purchasing b corresponds to δ̃hstb = δhstb − δhst0 and, in turn, the identified
demand synergies to (where |b| denotes the number of units in b):

Γ̃hstb = δ̃hstb −
∑
j∈b

δ̃hstj = −αhs
ptb −

∑
j∈b

ptj

+ γhstb + (|b| − 1)δhst0

= −αhs
ptb −

∑
j∈b

ptj

+ γ̃hstb .

(25)

One can then identify γ̃hstb , but cannot separately identify γhstb and δhst0 without
further assumptions. While this may complicate the interpretation of the estimated
demand synergies, in that they will be “shifted” by (|b| − 1)δhst0 , all the objects of
interest (e.g., demand elasticities, marginal costs, consumer surplus, etc.) necessary
to perform our counterfactual simulations are only functions of γ̃hstb —rather than
of its individual components—and thus identified.

42Some retailers from Eau Claire are not present in Milwaukee. In these cases, we use the price
of j, the prices of k ̸= j, and the prices of r ̸= j by the same producer of j (and their interactions)
as observed in Milwaukee.
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Table 3: Demand Estimates, Price Coefficients and Nesting Parameters
(i): λhs

j = λ (ii): λhs
j = λhs (iii): λhs

j = λhs
Producer(j)

Price coefficients
αsingle 0.7455

(0.1061)
0.7415
(0.1061)

0.7448
(0.1073)

αmulti 1.0096
(0.0972)

1.0134
(0.0975)

1.0262
(0.0990)

Nesting parameters
λ 0.8849

(0.0242)
λsingle 0.8726

(0.0283)
λmulti 0.8900

(0.0255)

λsingle
Coca-Cola/PepsiCo 0.8566

(0.0301)

λsingle
Dr.Pepper/Others 0.9027

(0.0453)
λmulti

Coca-Cola/PepsiCo 0.9045
(0.0270)

λmulti
Dr.Pepper/Others 0.8527

(0.0379)
Control for δhs

j yes yes yes
Store fixed effects yes yes yes
Time fixed effects yes yes yes

Num. of Obs. 12, 433 12, 433 12, 433
Notes: The Table reports C2SLS estimates of (23) and λhs

j from the iterative procedure
described in section 4. Standard errors are computed using the asymptotic formula detailed
in Appendix B.1.

5.3 Estimation Results
Table 3 reports the C2SLS estimates of (23) and λhsj from our iterative procedure,
which (on our standard desktops) achieves numerical convergence in less than two
minutes with 16, 874 bundles (with an average of 123.8 bundles per market) and a
total of 176, 700 parameters.43 The three columns of Table 3 summarize estimation
results for three specifications of λhsj . In column (i) we assume a common nesting
parameter across products and household sizes λhsj = λ, in column (ii) we allow for
two nesting parameters λhsj = λhs, while in column (iii) for four λhsj = λhsProducer(j).
Standard errors are computed using the asymptotic formula in Appendix B.1.

Table 3 suggests that single-person households are less price sensitive than
multi-person households (αsingle < αmulti) but also that the nesting parameters
are almost the same across household sizes and close to one, suggesting that—
after controlling for all the fixed effects and demand synergies—the within-nest
correlation in unobserved preferences is not very large (i.e., (1−λhsj ) ≈ 0.1/0.15).44

Following the procedure in Appendix E, we also estimate a specification as in
column (iii) but with a random coefficient on price αhsi = αhs + σhsνi, where νi is

43Using the criterion from footnote 36, we achieve numerical convergence in 25 iterations.
44Despite the unconstrained estimation, all nesting parameters lie between 0 and 1, as required

by consistency with utility maximizing behavior (Bierlaire, 2006).
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distributed standard normal and σhs captures the standard deviation of αhsi among
households of size hs. We obtain similar parameter estimates as in column (iii) and
variances (σ̂single)2 = 0.05 and (σ̂multi)2 = 0.08, which do not lead to qualitative
changes in our counterfactual simulations. We then rely on the estimates from
column (iii), Table 3, as our preferred specification.45

Figure 3 plots the estimated demand synergies net of quantity discounts γ̃hstb =
Γ̃hstb + αhs

(
ptb −∑

j∈b ptj
)
, where both Γ̃hstb and αhs are replaced by the C2SLS

estimates of the specification from column (iii), Table 3. All panels show (left
y-axis) the distribution of the estimated γ̃hstb for bundles of two, six, and twelve
units and (right y-axis) the average of the estimated γ̃hstb as a function of |b|,
the number of units in b. Despite our inability to directly interpret γ̃hstb due to
the normalization in (25), Figure 3 suggests that quantity discounts do not fully
explain demand synergies and the purchase of multiple units of CSDs.46 Figure 3
also highlights that, in line with Figure 2, multi-person households have larger γ̃hstb ,
suggesting stronger preferences (or needs) for larger quantities of CSDs.47 Finally,
Figure 3 clarifies the complexity of specifying a priori restrictions on the demand
synergies: even those corresponding to bundles with the same number of units of
the same product are largely heterogeneous across markets and products.

To explore the determinants of demand synergies beyond quantity discounts,
in Appendix Table 9 we report second-step OLS estimates of γ̃hstb = Γ̃hstb +
αhs

(
ptb −∑

j∈b ptj
)

on observed bundle-level characteristics and fixed effects.48

Net of quantity discounts, households appear to enjoy purchases of wider vari-
eties of CSDs but also to dislike mixing products by different producers. Beyond
quantity discounts, households like to purchase different CSDs (e.g., 1L of Coke
and 1L of Sprite better than 2L of Sprite) but within the variety offered by the
same producer (e.g., Coke and Sprite better than Coke and 7Up). Moreover, a
comparison between household sizes illustrates that single-person households have

45Relying instead on those from the other two columns of Table 3 leads to the same conclusions.
46Because of the normalization in (25), the fact that γ̃hs

tb is on average large and that it increases
almost linearly in |b| is consistent with the large observed share of shopping trips with no purchase
of CSDs (76.29%, Table 1) and hence a large value of δhs

t0 .
47Multi-person households have a smaller observed share of shopping trips with no purchase

of CSDs than single person households (74.46% versus 82.71%), suggesting that δmulti
t0 < δsingle

t0 .
This in turn suggests that the estimated γ̃multi

tb > γ̃single
tb should reflect γmulti

tb > γsingle
tb .

48As discussed in footnote 38, the C2SLS estimator cannot pin down the demand synergy Γtb
of bundles that include products that are never observed to be purchased in isolation as single
units in market t. In our PONL model, we have 81, 215 of these demand synergies. Because these
cannot be part of the second-step OLS regression, the estimation sample used in Table 9 only
includes 82, 808 of the 164, 023 total demand synergies. As detailed in Appendix G, even though
we cannot pin down these 81, 215 demand synergies, we still account for them when estimating
price elasticities and marginal costs, and when simulating counterfactuals.
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Figure 3: Demand Synergies γ̃hstb for bundles of 2, 6, and 12 Units
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(b) Single-person households, different products
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(c) Multi-person households, same product
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(d) Multi-person households, different products
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stronger preferences for this type of within-producer variety.

5.4 Estimated Elasticities
Our main objective is to evaluate the welfare effects of the observed quantity dis-
counts by simulating a counterfactual with linear pricing (i.e., a constant unit-price
for each product). As a way to summarize our estimation results and provide intu-
ition for this counterfactual simulation, Table 4 reports price elasticities of demand
computed on the basis of the C2SLS estimates from column (iii), Table 3. These
capture percentage changes in demand for a collection of bundles (Table rows:
all single units ∑j∈J s

hs
tj and all multiple units ∑b∈C2 |b| × shstb , where |b| is the

number of units (liters) in bundle b) with respect to a 1% increase in a group of
prices (Table columns: all prices of single units (ptj)j∈J and all prices of multiple
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Table 4: Price Elasticities, by Household Size
Single-person households Multi-person households
(ptj)j∈J (ptb)b∈C2 (ptj)j∈J (ptb)b∈C2

Single units,
∑

j∈J s
single
tj −1.0543

(0.1439)
1.1892
(0.1759)

−1.5223
(0.1567)

3.1967
(0.4489)

Multiple units,
∑

b∈C2
|b|ssingle

tb 0.0197
(0.0031)

−5.0360
(0.6736)

0.0200
(0.0017)

−7.0651
(0.5849)

Notes: The Table reports the median of each price elasticity across those markets in which the two
collections of bundles are observed to be purchased by both household sizes. We derive the expressions
used to compute these price elasticities in Appendix H.1. Standard errors are computed using the
parametric bootstrap procedure described in Appendix B.1 with 200 repetitions.

units (ptb)b∈C2).49 We derive the expressions of these price elasticities in Appendix
H.1, while Table 4 reports the median of each across those markets in which the
two collections of bundles are observed to be purchased by both household sizes.
Standard errors are computed using the parametric bootstrap procedure described
in Appendix B.1 with 200 repetitions.

Table 4 focuses on price elasticities with respect to all prices of single units (first
and third columns) and all prices of multiple units (second and fourth columns),
as we expect these to be the most relevant when comparing quantity discounts to
linear pricing. With quantity discounts, the producer of each product j sets all
quantity-specific prices of j: price ptj for a single unit of j, pt(j,j) for two units of
j, and so on. Then, the price of any bundle b ̸= (j, ..., j) that combines different
products other than j, ptb, is given by the sum of the quantity-specific prices
of each product in b. In the counterfactual scenario of linear pricing, instead,
the producer of each product j sets only price ptj, the unit-price of j, while the
price of any bundle b is given by the sum of the unit-prices of its components
ptb = ∑

j∈b ptj. With linear pricing, producers lose the ability to set any element
of (ptb)b∈C2 separately from (ptj)j∈J and can instead only choose (ptj)j∈J.

Remember from Table 3 that single-person households are less price sensitive
than multi-person households (αsingle < αmulti). This implies the main patterns
reported in Table 4: multi-person households appear to be at least as price elastic
as single-person households given the observed quantity discounts, both in terms
of own-price and of cross-price effects. For example, a +1% increase in (ptb)b∈C2

would lead to a decrease of −7.06% in the purchases of multiple units by multi-
person households, but only of −5.04% in those by single-person households. Sym-
metrically, this same +1% increase in (ptb)b∈C2 would also lead to a +3.2% increase
in the purchases of single units by multi-person households, but only of +1.19%

49We measure demand in liters of CSDs weighing each bundle b by the number of units (liters),
|b|, it includes. In the context of demand for bundles, where each b corresponds to different
quantities, we find this more interpretable than the unweighted purchase probabilities.
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by single-person households.

5.5 Counterfactual Simulation: Linear Pricing
To evaluate the welfare consequences of quantity discounts, we first rely on the
PONL estimates from column (iii), Table 3, and calculate producers’ marginal
costs. We allow marginal costs to differ both across products and across numbers
of units for each product, e.g. two units of j may have a different marginal cost
than twice the marginal cost of one unit of j. As detailed in Appendix H.2, we
do this under the assumption that the observed prices were generated according
to an oligopolistic Bertrand-Nash price-setting game of complete information that
allows each product to have quantity-specific prices. Importantly, we do not assume
producers to offer quantity discounts, but rather allow them to do so (along with
the possibility of offering linear or even convex prices).

Table 5 summarizes our marginal cost estimates among bundles of a single
or multiple units of the same product, b = (j, ..., j), and across markets. We
regress the estimated marginal costs per unit on the number of units in the bundle
and various fixed effects.50 On average, estimated marginal costs per unit increase
with quantity: selling multiple units of CSDs jointly is, if anything, more costly for
producers than selling them separately.51 This and Figure 3 suggest that producers’
incentives to offer quantity discounts are mainly driven by demand synergies rather
than by cost savings.

Assuming that producers’ marginal costs are invariant to the pricing strategy,
we compute a vector of counterfactual linear prices for each market (independently
across markets) following the procedure described in Appendix H.3. Finally, given
the observed prices under quantity discounts and the simulated linear prices, we
compute the implied changes in purchased quantities, profits, and compensating
variations following the steps detailed in Appendix H.4. Tables 6 and 7 summarize
these results in terms of median changes across the same set of markets used in
Table 4. As for the price elasticities, standard errors are computed using the
parametric bootstrap procedure described in Appendix B.1 with 200 repetitions.

The top panel of Table 6 shows that, in general, linear pricing would lead to
a decrease in the prices of single units (up to one liter) of −43.8 cents and to a

50The regression includes the marginal costs estimated to be between the 1th-99th percentiles.
The results are robust to including the estimated marginal costs between the 3th-97th or between
the 5th-95th percentiles.

51Our estimates include all variable costs incurred to sell CSDs to households, including both
the costs of production and those of retailing. In this sense, handling larger volumes of CSDs
may lead to larger transportation costs, stocking costs, and opportunity costs of shelf space at
the point of sale in retailers.
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Table 5: Summary of Estimated Marginal Costs
Marginal Cost per Unit ($ per liter)

Number of Units
Overall 0.066

(0.003)
Coca-Cola 0.059

(0.004)
PepsiCo 0.102

(0.008)
Dr. Pepper 0.043

(0.003)
Others 0.026

(0.009)
Product fixed effects yes yes

Store fixed effects yes yes
Time fixed effects yes yes

Num. of Obs. 118, 357 118, 357
R2 0.092 0.092

Table 6: Counterfactual Linear Pricing: Changes in Price and Quantity
Average Single-person households Multi-person households

Price Change ($)
∆ptj −0.438

(0.0162)
∆ptb +0.894

(0.0703)
Quantity Change (L per household-year) −32.136

(2.027)
−12.766

(0.696)
−35.303

(2.120)
Single units +0.473

(0.021)
+0.268
(0.027)

+0.517
(0.023)

Multiple units −32.624
(2.056)

−13.163
(0.712)

−35.594
(2.200)

Quantity Change (%) −20.66%
(1.51%)

−18.99%
(1.41%)

−21.26%
(1.60%)

Conditional on purchase −11.94%
(0.85%)

−9.52%
(1.07%)

−12.02%
(1.03%)

∆Prob. of purchasing −8.73%
(0.78%)

−8.19%
(0.81%)

−9.14%
(0.78%)

Notes: We report all the computational details of the above entries in Appendices H.2 (marginal costs), H.3
(counterfactual simulation), and H.4 (price and quantity changes). All entries are computed as medians over
the same set of markets used in Table 4 to compute price elasticities. Standard errors are obtained using the
parametric bootstrap procedure described in Appendix B.1 with 200 repetitions.

simultaneous increase in the prices of multiple units of +89.4 cents. With respect
to observed quantity discounts, these price changes are substantial and correspond
to a decrease of −31.62% and to an increase of +14.91%, respectively. Intuitively,
these price changes are expected to make purchases of smaller quantities rela-
tively more convenient for both household sizes, as confirmed by the middle panel
of Table 6: yearly purchased quantities per household would decrease by −32.14
liters, obtained as the difference between a small increase in purchases of single
units (+0.47 liters) and a large reduction in purchases of multiple units (−32.62
liters).52 The bottom panel of Table 6 shows that these large reductions in pur-
chased quantities (−20.66%) are motivated by both a substitution from purchases

52To avoid problems with outliers, each entry of Tables 6 and 7 is computed as a median across
markets, so that the various decompositions of changes in quantities, profits, and compensating
variations do not exactly add up to their totals. See Appendix H.4 for details.
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Table 7: Counterfactual Linear Pricing: Changes in Profit and Compensating Variation
Average Single-person households Multi-person households

Profit Change ($ per household-year) −7.466
(0.955)

−3.510
(0.551)

−8.390
(0.969)

Single units +0.028
(0.017)

−0.051
(0.018)

+0.058
(0.021)

Multiple units −7.622
(0.953)

−3.510
(0.549)

−8.580
(0.964)

CV ($ per household-year) +3.698
(0.203)

+1.752
(0.227)

+4.119
(0.247)

Single units −0.403
(0.075)

−0.364
(0.067)

−0.394
(0.086)

Multiple units +4.242
(0.179)

+2.256
(0.195)

+4.592
(0.209)

CV/Expenditure (% per household-year) +2.82%
(0.13%)

+3.11%
(0.30%)

+2.68%
(0.14%)

Notes: CV denotes compensating variation. We report all the computational details of the above entries
in Appendices H.2 (marginal costs), H.3 (counterfactual simulation), and H.4 (profit changes, CV, and
CV/expenditure). All entries are computed as medians over the same set of markets used in Table 4 to
compute price elasticities. Standard errors are obtained using the parametric bootstrap procedure described in
Appendix B.1 with 200 repetitions.

of larger quantities toward purchases of smaller quantities (−11.94%) and by a
decrease in the probability of purchasing CSDs altogether (−8.73%).

Despite the generalized reduction in purchased quantities, as expected, linear
pricing would induce heterogeneous responses in households of different sizes. To
interpret these, one should bear in mind the purchasing patterns under quantity
discounts documented in Figure 2 and the price elasticities in Table 4. While in
relative terms multi-person households would reduce their purchased quantities
only around 2.3 percentage points more than single-person households (−21.26%
versus −18.99%, bottom panel, Table 6), the reductions in liters of CSDs purchased
per year would look very different between household sizes (middle panel, Table
6): multi-person households would decrease their purchases by −35.3 liters per
year, almost three times more than single-person households (−12.77 liters per
year). The vast majority of this difference stems from the larger reduction in
purchases of multiple units by multi-person relative to single-person households
(−35.59 versus −13.16 liters per year). This can be explained by noting that
multi-person households both have higher price elasticity of demand for multiple
units (−7.06% versus −5.03%, Table 4) and purchase multiple units in greater
amounts under quantity discounts (Figure 2).

The top panel of Table 7 illustrates that this striking reduction in purchased
quantities of −20.66% would cause a decrease in yearly profit per household of
−7.47$ (−19.74%), obtained as the difference between a very small per household-
year profit increase from purchases of single units (+2.8 cents) and a very large
per household-year profit reduction from purchases of multiple units (−7.62$). In
line with the heterogeneous quantity changes reported in Table 6, producers would
lose more than double yearly profit on multi-person households than on single-
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person households (−8.39$, or −21.02%, versus −3.51$, or −15.53%), losing more
on those households whose purchased quantities would drop more sharply.

The middle and bottom panels of Table 7 show that a compensation of +3.7$
per household-year would be necessary for households to remain indifferent between
quantity discounts and linear pricing, corresponding to 2.82% of their yearly expen-
diture on CSDs with quantity discounts. In line with the results from Table 6 and
economic intuition, the compensating variation associated to linear pricing would
vary between household sizes: while being generally small relative to yearly expen-
diture for all households, multi-person households would require more than double
the compensation of single-person households: +4.12$ per household-year (2.68%
of expenditure) as opposed to +1.75$ (+3.11% of expenditure). As discussed in
Appendix H.5, these can intuitively be understood in terms of the relative weights
that households of different sizes place on the price changes. Because multi-person
households care relatively more about larger quantities and these would become
more expensive, they would lose more by linear pricing.

6 Reduction in Added Sugar Intake
From the above counterfactual simulations, we can draw some conclusions about a
ban on quantity discounts. First, quantity discounts seem profitable for producers
of CSDs in the USA and this is not motivated by cost savings but rather by
the demand synergies associated to purchases of larger quantities. Despite the
imperfect screening and the multi-product oligopolistic nature of the industry, this
is in line with the standard textbook single-product monopoly model of quantity
discounts with two types of consumers (Varian, 1992, pp. 244-248).

Second, despite the substantial reduction in quantity purchased (−20.66%),
consumer surplus would not reduce too sharply, with a compensating variation
of +3.7$ per household-year (amounting to 2.82% of total expenditure on CSDs).
This is the result of two countervailing forces: on the one hand, consumer surplus
would decrease because of the contraction in purchases of larger quantities at rel-
atively higher prices; on the other, however, it would increase because of the more
frequent purchases of single units at relatively lower prices.

These observations suggest that a ban on quantity discounts as the one pro-
posed on 6 April 2022 by the UK government (see Introduction) could serve as a
practically simple and effective policy to limiting the consumption of CSDs and
the intake of added sugar (Allcott et al., 2019; Bollinger et al., 2011; Dubois et al.,
2020; O’Connell and Smith, 2020; Wang, 2015). Ricciuto et al. (2021) report that
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in the USA, in the period 2011-2012, 42.44% of the added sugar intake came from
CSDs. A ban on quantity discounts would lead households to drastically reduce the
purchases of CSDs while only marginally reducing consumer surplus, potentially
inducing large reductions in added sugar intake at the expense of a contraction in
industry profit but none of the extra information (e.g., quantifying the marginal
externality of added sugar) typically required to implement effective sugar taxes
(Allcott et al., 2019; O’Connell and Smith, 2020).

Relying on additional nutrition label data, we investigate this possibility and
simulate the reduction in added sugar intake from CSDs implied by (i) a total
ban on quantity discounts on all CSDs (as in section 5.5) and (ii) a partial ban
on quantity discounts only on the CSDs with added sugar. To put these results
in perspective, we also calibrate (iii) the amount of sugar tax per ounce of added
sugar that would generate similar reductions in added sugar intake as (ii).53 We
collect information on the amount of added sugar per liter for each of the 128
products included in our analysis from producers’ and nutrition websites:54 50%
of the CSDs in our analysis have added sugar (sugary CSDs), while the remaining
50% do not (non-sugary CSDs). Households are observed to purchase an average
of 60L a year of sugary and 57.24L of non-sugary CSDs.

The first and second columns of Table 8 summarize counterfactual results for
(i) and (ii) (see details in Appendix H.4). With linear pricing, households would
reduce their yearly purchased quantities of added sugar from CSDs by −22.93%, a
similar reduction as that implied by a ban on quantity discount for sugary CSDs
(−22.08%). However, while linear pricing would lead to a large reduction in the
purchased quantities of all CSDs (−20.66%), the ban on quantity discounts for
sugary CSDs would instead lead to a large reduction in the purchased quantities
of sugary CSDs (around −21.89%) with some substitution to non-sugary CSDs
(around +1.71%). These different purchase patterns would give rise to different
welfare implications, with the partial ban on quantity discounts leading to remark-
ably smaller profit losses (around −9.46% instead of −19.74%) and compensating
variations (around +1.77$ instead of +3.7$), suggesting that, in terms of reducing
added sugar intake, a targeted ban on quantity discounts for sugary CSDs may be
more efficient than linear pricing for all CSDs.

The third column of Table 8 reports our calibration results for (iii), a sugar
tax that would approximately generate similar reductions in added sugar intake

53Importantly, the cities of Pittsfield and Eau Claire were not subject to a sugar tax on CSDs
in the period 2008-2011.

54These additional data on added sugar content are available from the authors on request.
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Table 8: Counterfactual Linear Pricing: Changes in Added Sugar
Ban on quantity discounts Sugar tax

on all CSDs only on sugary CSDs 1¢/oz of added sugar
Predicted added sugar change −22.93% −22.08% −22.90%

Quantity change −20.66% −8.93% −10.35%
Sugary CSDs −23.95% −21.89% −21.98%

Non-Sugary CSDs −17.83% +1.71% +2.14%
Profit change −19.74% −9.46% −7.01%

CV (per household-year) +3.70$ +1.77$ +2.35$
CV/Expenditure +2.82% +1.29% +1.61%

Notes: The first column reports the changes due to a ban on quantity discounts on all CSDs (as in Tables 6 and
7), the second due to a ban on quantity discounts only on the sugary CSDs, while the third due to a sugar tax of
1¢/oz of added sugar. The above changes are obtained in a similar manner to the counterfactual quantity changes
in Tables 6 and 7, see computational details in Appendix H.4. All entries are computed as medians over the same
set of markets used in Table 4 to compute price elasticities. Standard errors are obtained using the parametric
bootstrap procedure described in Appendix B.1 with 200 repetitions.

as (ii) (see details in Appendix H.4). These results suggests that—also in terms of
changes in purchase patterns, reductions in profits, and compensating variations—
a ban on quantity discounts for sugary CSDs can be thought of as a sugar tax of
1 cent per ounce of added sugar. Beyond these calibrations, the existing literature
also confirms that the reduction in intake of added sugar from CSDs we find in our
simulations is of a similar order as that obtained by typical sugar taxes.55

Further research should investigate the many important dimensions of compar-
ison with sugar taxes we did not discuss, such as potential regressivity, internalities
and externalities of sugar intake, and redistribution of tax revenue. However, our
results suggest that a ban on quantity discounts could be an effective and easily
implementable policy to limit the intake of added sugar from CSDs. While a ban
on quantity discounts can be implemented by enforcing linear pricing on all or
only some CSDs, the effective design and implementation of sugar taxes rely on
information not always available, such as measures of the externalities and the
internalities of sugar intake (Allcott et al., 2019; O’Connell and Smith, 2020), and
on a more involved participation of the government to the market, especially for
the collection and redistribution of tax revenue.
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Appendix

A Proofs

A.1 Proof of Proposition 1
Without loss of generality, suppose that Nj includes at least another bundle in
addition to a single unit of j for j = 1, ..., J .56

Assumption 1.

(i) The support of (pt, Xt, (stj)Jj=1) contains an open subset, where pt = (ptj)Jj=1

and Xt = (xtj)Jj=1. Moreover, the support of st = (stb)b∈C1 is {(stb)b∈C1 :∑
b∈C1 stb < 1, stb > 0,b ∈ C1}.

(ii) (pt, Xt, st) are complete for Zt.

Assumption 1(i) requires a local support condition on (pt, Xt, (stj)Jj=1) and a stan-
dard large support condition on st. Assumption 1(ii) is a standard completeness
condition in the literature on identification of demand using instrumental variables
(Berry and Haile, 2014).

Lemma 1 (Uniqueness of Demand Synergies). Given (st, λ, πt), Γtb is uniquely
determined by (16).

Proof. The left-hand side of (16) is increasing in Γtb while the right-hand side is
decreasing in Γtb. As Γtb increases from −∞ to ∞, the left- and the right-hand
sides will cross only once and (16) will have a unique solution.

1University of Bristol and CEPR (alessandro.iaria@bristol.ac.uk) and University of Warwick
(ao.wang@warwick.ac.uk).

56Otherwise, purchase probabilities (7) would not depend on λj .
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Due to Lemma 1, denote the unique solution of (16) by Γtb = Γb(λ, πt; st). For
any given λ and each t ∈ T, (17) defines a system of J equations in πt ∈ RJ

+:

πtj =
[∑

b′∈Nj
ω

1/λj

b′j exp (Γb′(λ, πt; st)/λj)
∏
r∈b′

[
str

st0

]λr/λj

π
(1−λr)/λj

tr

]λj

, j = 1, ..., J . (26)

Denote the true values of (α, β, δ, λ) by (α0, β0, δ0, λ0). Then, the true value πt = π0
t

is a solution of (26) when λ = λ0. Denote π0
t = π0(λ0; st). Then, at (α0, β0, δ0, λ0),

for j = 1, ..., J ,

ln stj − ln st0 = δ0
j + xtjβ

0 − α0ptj + (1 − λ0
j) ln

(
stj/st0
π0
tj

)
+ ξtj,

E
[
g0
j (st, ptj, xtj;α0, β0, δ0, λ0)|Zt = Z

]
= 0,

(27)

where

g0
j (st, ptj, xtj;α, β, δ, λ) = ln stj−ln st0−

(
δj + xtjβ − αptj + (1 − λj) ln

(
stj/st0
π0
j (λ; st)

))
.

Using Assumption 1(ii), we identify g0
j = g0

j (st, ptj, xtj;α0, β0, δ0, λ0) as a function
of (st, ptj, xtj) for each j = 1, ..., J . Then, due to Assumption 1(i), we can use the
derivatives of g0

j with respect to ptj and xtj to identify α0 and β0. Moreover, for j =
1, ..., J , by focusing on any market t such that stj → 1 and therefore ln

(
stj/st0
π0

j (λ0;st)

)
=

ln
(
stj/s

j
t

)
→ 0, we identify δ0

j . As a result, we identify the quantities A0
tj =

(1−λ0
j) ln

(
stj/st0
π0

j (λ0;st)

)
= (1−λ0

j) ln
(
stj/s

j
t

)
for t ∈ T and j ∈ J. Using∑J

j=1 π
0
tj+1 =

1/st0, we obtain that for each t ∈ T, λ = λ0 satisfies:

J∑
j=1

stj

1 − st0
exp

(
−A0

tj

1 − λj

)
= 1 (28)

or equivalently
J∑
j=1

1
1 − st0

(
s
j
t

) 1−λ0
j

1−λj s

λ0
j

−λj

1−λj

tj = 1. (29)

We now show that λ0 is the only λ ∈ RJ that satisfies (29) and therefore identified.

Because of Assumption 1(ii), for each j = 1, ..., J , we can keep all stb, b ∈ Nj and

b ̸= j constant and positive, while let stj → 0. Note that 1
1−st0

(
s
j
t

) 1−λ0
j

1−λj is always
bounded away from zero and bounded from above for all j = 1, ..., J ; in contrast,
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s

λ0
j

−λj

1−λj

tj tends to +∞ if λ0
j < λj. Then, for (29) to hold, λ0

j ≥ λj for j = 1, ..., J .
Also note that given st and {A0

tj}Jj=1, the left-hand side of (28) is strictly increasing
with respect to λj for j = 1, ..., J . Then, the only feasible λ satisfying λ0

j ≥ λj and
(28) is λ = λ0. Finally, using Lemma 1, we then identify all Γtb’s.

B Proof of Proposition 2
Throughout the proof, we use | · | to refer to the Euclidean norm. According to
Lemma 1, given st, λ, and πt, Γt = Γ(λ, πt; st) is uniquely determined. Plugging
Γt = Γ(λ, πt; st) in (17), we obtain, for j = 1, ..., J :

πtj = ϕj(πt;λ, st) =
[∑

b′∈Nj
ω

1/λj

b′j exp (Γb′(λ, πt; st)/λj)
∏
r∈b′

[
str

st0

]λr/λj

π
(1−λr)/λj

tr

]λj

. (30)

Define Φ(πt;λ, st) = (πtj − ϕj(πt;λ, st))Jj=1.

Assumption 2. There exist a, b, η,M > 0 such that

inf
t∈T,|λ−λ0|≤a,|πt−π0

t |≤b

∣∣∣∣∣Det
(
∂Φ(πt;λ, st)

∂π

)∣∣∣∣∣ > η, (31)

and
sup

t∈T,|λ−λ0|≤a,|πt−π0
t |≤b

∣∣∣∣∣Det
(
∂Φ(πt;λ, st)

∂λ

)∣∣∣∣∣ ≤ M, (32)

where λ0 and π0
t are the true values of λ and πt, respectively. Moreover, ∂Φ(πt;λ,st)

∂π

is continuous at (π0
t , λ

0), uniformly for t ∈ T.

Assumption 2 summarizes the regularity conditions needed for Proposition 2. Con-
dition (31) is a rank condition of non-linear system (30) with respect to πt, uni-
formly for all t ∈ T. It guarantees that each πt can be expressed as a function of
λ given st in a neighborhood of λ0. Condition (32) requires that the Jacobian of
this function from λ to πt is uniformly bounded in a neighborhood of λ0 uniformly
for t ∈ T. We prove Proposition 2 in three steps.

Step 1: Uniqueness of πt and Γt. Note that at λ = λ0 and πt = π0
t ,

Φ(π0
t ;λ0, st) = 0 for all t ∈ T. Then, using Assumption 2 and applying the implicit

function theorem, we can find 0 < d < a such that for any λ with |λ − λ0| < d,
there exists a unique πt satisfying |πt − π0

t | < b and Φ(πt;λ, st) = 0 for all t ∈ T.57

Consequently, we can write πt = π(λ; st) for λ with |λ − λ0| < d and all t ∈ T.
Then, Γt is also uniquely determined by λ and st: Γt = Γ(λ, π(λ; st); st).

57Because ∂Φ(πt;λ,st)
∂π is continuous at (π0

t , λ
0) uniformly for t ∈ T and because of the uniform

lower bound η and upper bound M in Assumption 2, d does not depend on t ∈ T.
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Given the uniqueness of πt = π(λ; st), we can then re-write (22) as:

θ = (δ, β, α, 1 − λ)T = ψT (θ)

=
(
XT(θ)(ZZT)X(θ)

)−1
XT(θ)(ZZT)Y

(33)

where

X(θ) = (xtk(θ))t=1,...,T ;k=1,...,2J+K+1 =
(ej)Jj=1, xt,−pt,

(
ln
(

stj/st0
πj(λ; st)

))J
j=1

T
t=1

,

Y = (yt)t=1,...,T = (ln (st1/st0, ..., stJ/st0))t=1,...,T ∈ RJT×1.

Step 2: (Finite sample) Existence of a solution to (33). We now prove that
when T is large enough, (33) has a solution in a fixed neighborhood of θ0 (i.e., the
neighborhood does not depend on T ). Define

GXZ(θ) = (E [xtk(θ)ztk′ ])k=1,...,2J+K+1,k′=1,...,P ∈ R(2J+K+1)×P ,

GY Z = (E [ytztk′ ])Pk′=1 ∈ RP×1,

ψ(θ) =
(
GXZ(θ)GT

XZ(θ)
)−1

GXZ(θ)GY Z .

For a vector-value function, we use superscript l to refer to its lth component.

Assumption 3.

(i) There exists r > 0 and d0 ∈ (0, 1/2) such that for all |θ − θ0| ≤ d0, and
v ∈ R2J+K+1, l = 1, ..., 2J +K + 1,

r|v| ≤
∣∣∣∣∣
(
ψ(θ)
∂θ

− I
)
v

∣∣∣∣∣ ≤ 1
r

|v|,
∣∣∣∣∣∂2ψ(l)(θ)

∂θ2 v

∣∣∣∣∣ ≤ 1
r

|v|

(ii) Det(GXZ(θ)GXZ(θ)T) > 0 uniformly on |θ − θ0| ≤ d0.

(iii) For l = 1, ..., 2J +K + 1,

sup
|θ−θ0|≤d0



∣∣∣∣∣∣ 1T ∂

k(XT(θ))(l)Z

∂θk
− ∂kG

(l)
XZ(θ)
∂θk

∣∣∣∣∣∣

k=0,1,2

,

∣∣∣∣∣Y TZ

T
−GY Z

∣∣∣∣∣
 p→ 0.

Because of Assumptions 3(ii) and (iii), ∂kψT (θ)
∂θk converges uniformly to ∂kψ(θ)

∂θk in
|θ− θ0| ≤ d0 with probability one. Then, combining this with Assumption 3(i), we
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obtain that there exists M1 >
2J+K+1

r
> 0 such that

∣∣∣∣∣∣
(
ψT (θ)
∂θ

− I
)−1

v

∣∣∣∣∣∣ ≤ M1|v|,

∣∣∣∣∣∣∂
2ψ

(l)
T (θ)
∂θ2 v

∣∣∣∣∣∣ ≤ M1|v| (34)

uniformly for l = 1, ..., 2J+K+1, v ∈ R2J+K+1, and |θ−θ0| ≤ d0 with probability
one as T → ∞. Now consider the following Newton-Raphson procedure:

θ0 = θ0,

θk+1 = −
[
∂ψT (θk)
∂θ

− I
]−1

(ψT (θk) − θk) + θk.
(35)

Note that when θ = θ0, we have πt = π0
t . Consequently, ψT (θ0) = ψT (θ0) coincides

with the (infeasible) 2SLS estimator obtained if we could observe st(j|j), which we
denote by θ2SLS

T . Note that ψT (θ0) = θ2SLS
T

p→ θ0 as T → ∞.

Lemma 2. Suppose that Assumptions 2-3 hold. In addition, |θ2SLS
T −θ0| ≤ ϵ, where

ϵ > 0 and ϵ×M1 < d0/2, with M1 being defined in (34) and d0 ∈ (0, 1). Then, for
any k > 0, we have |θk − θk−1| ≤

(
d0
2

)k
and |ψT (θk) − θk| ≤ ϵ

(
d0
2

)k
.

Proof. We prove Lemma 2 by induction. First, using Assumption 3, we have

|θ1 − θ0| ≤ M1 × |ψT (θ0) − θ0| = M1 ×
∣∣∣θ2SLS
T − θ0

∣∣∣ ≤ 1
2d0.

Then, a second-order Taylor expansion of ψT ((1 − r)θ0 + rθ1) − ((1 − r)θ0 + rθ1)
around r = 0, the updating rule in (35), and Assumption 3 imply:

|ψT (θ1) − θ1| =
∣∣∣∣∣ψT (θ0) − θ0 +

[
∂ψT (θ0)
∂θ

− I
]

(θ1 − θ0) + r2(θ1 − θ0)
∣∣∣∣∣

≤ M1 |ψT (θ0) − θ0|2

≤ M1ϵ
2

≤ d0ϵ

2 ,

where r2(θ1 − θ0) =
(
(θ1 − θ0)T ∂2ψ(l)(θ̃(l))

∂θ2 (θ1 − θ0)
)2J+K+1

l=1
with θ̃(l) between θ1 and

θ0. Suppose that the conclusions hold for k. We now prove that they hold for
k + 1. First, note that |θk − θ0| < d0. Then, using Assumption 3 and (35):

|θk+1 − θk| ≤ M1 × |ψT (θk) − θk| = M1 × ϵ

(
d0

2

)k
≤
(
d0

2

)k+1

.
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Then, |θk+1 − θ0| ≤ |θk+1 − θk| + |θk − θ0| ≤ ∑k+1
r=1

(
d0
2

)r
≤ d0. Using again As-

sumption 3, we obtain:

|ψT (θk+1) − θk+1| =
∣∣∣∣∣ψT (θk) − θk +

[
∂ψT (θk)
∂θ

− I
]

(θk+1 − θk) + r2(θk+1 − θk)
∣∣∣∣∣

≤ M1 |ψT (θk) − θk|2

≤ M1ϵ
2
(
d0

2

)2k

≤ ϵ

(
d0

2

)2k+1

≤ ϵ

(
d0

2

)k+1

.

The proof is complete.

Note that the event that (34) and |θ2SLS
T − θ0| ≤ ϵ jointly hold occurs with prob-

ability one as T → ∞. Because d0 ∈ (0, 1), then Lemma 2 implies that with
probability one: (1) θk converges to some θ∗ such that |θ∗ − θ0| ≤ d0 and (2)
ψT (θ∗) = θ∗, i.e. the existence of a solution to (33). Without loss of generality,
define θ̂ = (δ̂, β̂, α̂, 1 − λ̂) = θ∗.

Step 3: Asymptotic properties of θ̂ and (π̂t, Γ̂t). Because of the existence of
a solution to (33), we can re-formulate θ̂ as an extremum estimator:

θ̂ = argmin
θ:|θ−θ0|≤d0

QT (θ),

QT (θ) = |θ −
(
XT(θ)(ZZT)X(θ)

)−1
XT(θ)(ZZT)Y |2.

(36)

We rely on Theorem 2.1 of Newey and McFadden (1994) and verify the required
conditions to show consistency. Define

Q(θ) =
∣∣∣∣θ −

(
GXZ(θ)GT

XZ(θ)
)−1

GXZ(θ)GY Z

∣∣∣∣2 .
Note that the true θ0 satisfies θ0 = ψ(θ0). Then, combining the implicit function
theorem and Assumption (3)(i), we obtain the identification of θ0 in a neighborhood
of θ0. This implies that θ = θ0 is the unique minimizer of Q(θ) = 0 in the compact
set {θ : |θ−θ0| ≤ d0}. Moreover, due to the definition of xtk(θ) and Assumption 3,
Q(θ) is continuous. Finally, because of Assumption 3(iii), XT(θ)Z/T p→ GXZ(θ)
uniformly for θ in |θ−θ0| ≤ d0. Then, QT (θ) p→ Q(θ) uniformly for θ in |θ−θ0| ≤ d0.
The conditions of Theorem 2.1 by Newey and McFadden (1994) are verified and θ̂

6



is consistent.
To show the asymptotic normality of θ̂, we develop the first-order Taylor ex-

pansion of (33) at θ = θ̂ around θ = θ0:

0 = θ̂ − ψT (θ̂) = θ0 − ψT (θ0) +
[
I − ∂ψT (θ̃)

∂θ

] (
θ̂ − θ0

)
= θ0 − θ2SLS

T +
[
I − ∂ψT (θ̃)

∂θ

] (
θ̂ − θ0

)
,

where θ̃ is a convex combination of θ0 and θ̂. Then,

√
T
(
θ̂ − θ0

)
=
[
I − ∂ψT (θ̃)

∂θ

]−1 √
T
(
θ2SLS
T − θ0

)
d→ N(0,ΣV 2SLSΣT), (37)

where V 2SLS is the asymptotic variance-covariance matrix of θ2SLS
T and

Σ =

I −
∂
[(
GXZ(θ0)GT

XZ(θ0)
)−1

GXZ(θ0)GY Z

]
∂θ


−1

. (38)

The asymptotic normality of π̂t and Γ̂t follow from the uniqueness of πt and Γt (as
a function of θ̂ given st) and the asymptotic normality of θ̂.

B.1 Inference
Here we describe how to conduct inference on θ and Γt, t ∈ T, and on objects that
we derive from these parameters in our counterfactuals.

Inference on θ. We provide consistent estimators of V 2SLS and Σ in (37). Given
the consistency of θ̂, a plug-in estimator of V 2SLS is:

V̂ 2SLS =
(
ĜXZ(θ̂)ĜT

XZ(θ̂)
)−1

ĜXZ(θ̂)Z
TΩ̂Z
T

ĜT
XZ(θ̂)

(
ĜXZ(θ̂)ĜT

XZ(θ̂)
)−1

,

where ĜXZ(θ̂) =
(∑T

t=1 xtk(θ̂)ztk′

T

)
k=1,...,2J+K+1,k′=1,...,P

∈ R(2J+K+1)×P and Ω̂ is a
consistent estimator of the variance-covariance matrix of ξt. Because of the defini-
tion of xtk(θ̂), one can simply plug in π̂t, t = 1, ..., T .

Similarly, we can compute a plug-in estimator of Σ, denoted by Σ̂. For this, it
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is sufficient to further compute ∂GXZ(θ)
∂θ

and GY Z :

∂
[(
GXZG

T
XZ

)−1
GXZGY Z

]
∂θ

=

∂
[(
GXZG

T
XZ

)−1
]

∂θ
GXZ +

(
GXZG

T
XZ

)−1 ∂GXZ

∂θ

GY Z

=
(
GXZG

T
XZ

)−1
[
∂GXZ

∂θ
− ∂GXZ

∂θ
GT
XZ(GXZG

T
XZ)−1GXZ −GXZ

∂GT
XZ

∂θ
(GXZG

T
XZ)−1GXZ

]
GY Z .

(39)

Then, we replace GXZ , ∂GXZ(θ)
∂θ

, and GY Z by their finite-sample counterparts and

θ = θ̂ in (39) to obtain a consistent estimator of
∂

[
(GXZG

T
XZ)−1

GXZGY Z

]
∂θ

. Finally, we
plug this consistent estimator in (38) to obtain Σ̂. When computing the empirical
counterpart of ∂GXZ

∂θ
, we need to compute the derivative of πt with respect to λ.

To this end, we obtain its explicit formula from (30).
Obtaining an explicit formula for Σ̂ could be laborious in practice. We recom-

mend instead a numerical alternative. The key is to compute the derivative ∂ψT (θ̂)
∂θ

,
where ψT (θ̂) is defined as the 2SLS solution given πt = π(λ̂; st). Then, one can
compute this derivative by the following central finite-difference formula:

∂ψT (θ̂)
∂θ

= ψT (θ̂ + h/2) − ψT (θ̂ − h/2)
h

,

where h is small enough. Both ψT (θ̂+h/2) and ψT (θ̂−h/2) can be easily obtained
using our proposed iterative procedure (see Appendix C for details). In practice,
we iterate steps 1 and 3 at each iteration of the procedure (i.e., θ̂ is fixed). At the
end of the procedure, we implement step 2 once more to obtain ψT (θ̂ + h/2) and
ψT (θ̂ − h/2). We recommend this central finite-difference rather than forward (or
backward) formulae because it is more robust to numerical errors caused by the
iterative procedure.58 In our empirical application, we use h = 10−6.

Inference on Γt. We recommend a parametric bootstrap method to conduct infer-
ence on Γt. For each b = 1, ..., B, we re-sample θb from the asymptotic distribution
of θ̂ in (37). Then, for each θb, we use the proposed iterative procedure to compute
the corresponding Γbt and construct its confidence interval using quantiles of the
sample {Γbt}Bb=1. In the empirical application, we set B = 200.

58The iterative procedure stops when the non-linear system is approximately solved, giving
rise to a very small numerical error. Intuitively, this numerical error is however orthogonal to the
statistical error of the model. Moreover, it exists in both ψT (θ̂+h/2) and ψT (θ̂−h/2) computed
using the iterative procedure. The proposed central finite-difference formula differences out this
numerical error, achieving higher precision.
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Counterfactual Objects. Objects in the counterfactual are often functions of θ
and Γt, t ∈ T. We rely on the same parametric bootstrap method described above
also to conduct inference on these.

C Details on the Iterative Estimation Procedure

C.1 Iteration 0: Choice of Starting Values
As intuition suggests, in extensive Monte Carlo simulations we noticed that the
proposed iterative estimation procedure performs better (e.g., faster convergence
and higher precision) when the starting values are closer to the true but unknown
values of the parameters. The following three steps generate the starting values
we found to perform best:

Step 0.1 For each (t, j) set π(0)
tj =

∑
b∈Nj

ωbjstb

st0
, replacing each unobserved within-nest

market share st(b|j) by its corresponding allocation parameter ωbj.

Step 0.2. Given π
(0)
t , compute

(
δ(0), λ(0), β(0), α(0)

)
by 2SLS from the linear equations

in (22), i.e. ignoring non-linear equations (16) and (17).

Step 0.3. Given π(0)
t and λ(0), for each (t,b) independently compute Γ(0)

tb by numerically
solving constraint (16). This step can be executed in parallel for each (t,b).

C.2 More Precise Formulation of the Algorithm
We provide some further mathematical detail on the formulae used in each step of
the iterative estimation procedure. Given starting values

(
δ(0), β(0), α(0), λ(0)

)
and(

π
(0)
t ,Γ(0)

t

)T
t=1

, at each iteration k execute the following steps:

Step 1. (Direct update of πtj) Given π(k−1)
t , λ(k−1), and Γ(k−1)

t , for each (t, j) compute
π

(k)
tj as a plug-in from the right-hand side of (17):

π
(k)
tj =

∑b′∈Nj
ω

1/λ(k−1)
j

b′j exp
(

Γ(k−1)
tb′

λ
(k−1)
j

)∏
r∈b′

[
str

st0

]λ(k−1)
r /λ

(k−1)
j

(
π

(k−1)
tr

)(1−λ(k−1)
r

)
/λ

(k−1)
j

λ
(k−1)
j

.

This step can be executed in parallel for each (t, j).

Step 2. Given π
(k)
t , compute

(
δ(k), β(k), α(k), λ(k)

)
by 2SLS as in Berry (1994) from

the linear equations in (22), i.e. ignoring non-linear equations (16) and (17).
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Step 3. (Newton-Raphson update of Γtb) Given (π(k)
t , λ(k),Γ(k−1)

t ), compute

G
(k−1)
tb = exp

Γ(k−1)
tb

(
1−λ(k)

j

)
λ

(k)
j

 (ωbj)
1

λ
(k)
j

(
π

(k)
tj

)1− 1
λ

(k)
j
∏
r∈b [str/st0]

λ
(k)
r (1−λ

(k)
j )

λ
(k)
j

(
π

(k)
tr

)(1−λ
(k)
r )(1−λ

(k)
j )

λ
(k)
j (40)

for each (t,b), and then Γ(k)
tb as the following plug-in:

Γ(k)
tb = Γ(k−1)

tb −

Γ(k−1)
tb −

ln
(
stb

st0

)
−
∑
j∈b

(
λ

(k)
j ln

(
stj

st0

)
+
(
1 − λ

(k)
j

)
ln π(k)

tj

)+ ln
J∑
j=1

G
(k−1)
tb

×
∑J
j=1 G

(k−1)
tb∑J

j=1 G
(k−1)
tb /λ

(k)
j

.

This step can be executed in parallel for each (t,b).

Step 4. If k < K̄, move on to the next iteration k + 1. If k = K̄, exit the algorithm.

As mentioned in footnote 36, we define numerical convergence—and hence the
choice of K̄—on the basis of a stopping criterion, such as that the distance in the
parameter values between two consecutive iterations is smaller than a threshold.
For instance, in our simulations and empirical application, we consider the algo-
rithm to have converged when the absolute values of Γ(k)

tb − Γ(k−1)
tb , π(k)

tj − π
(k−1)
tj ,

and
(
δ(k), β(k), α(k), λ(k)

)
−
(
δ(k−1), β(k−1), α(k−1), λ(k−1)

)
are small enough for all t

and b. As shown in Appendix F, our Monte Carlo simulations suggest that K̄ = 5
iterations can already be sufficient to achieve this form of numerical convergence.

D Proof of Proposition 3
Our iterative estimation procedure is:

X(k) =

(ej)Jj=1, xt,−pt,

ln
stj/st0

π
(k)
tj

J
j=1


T

t=1

,

(α(k+1), β(k+1), δ(k+1), 1 − λ(k+1))T =
(
X(k)T(ZZT)X(k)

)−1 (
X(k)T(ZZT)Y

)
,

Γ(k+1)
tb = Γ(k)

tb −

Γ(k)
tb −

ln[stb/st0] −
∑
j∈b

(
λ

(k+1)
j ln[stj/st0] +

(
1 − λ

(k+1)
j

)
ln π(k)

tj

)+ ln
J∑
j=1

G
(k)
tb


×

∑J
j=1 G

(k)
tb∑J

j=1 G
(k)
tb /λ

(k+1)
j

π
(k+1)
tj =

 ∑
b′∈Nj

ω
1/λ(k+1)

j

b′j exp
(
Γ(k+1)

b′ /λ
(k+1)
j

) ∏
r∈b′

[
str

st0

]λ(k+1)
r /λ

(k+1)
j [

π
(k)
tr

](1−λ(k+1)
r )/λ(k+1)

j

λ
(k+1)
j

,

where G
(k)
tb is defined in (40). Because π

(k)
t → π∗

t for all t ∈ T, then X(k)

and (α(k), β(k), δ(k), 1 − λ(k)) converge. Denote by (α∗, β∗, δ∗, 1 − λ∗) the limit of
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(α(k), β(k), δ(k), 1 − λ(k)). Because Γ(k)
tb → Γ∗

tb, then we obtain:

Γ∗
tb = ln[stb/st0] −

∑
j∈b

(
λ∗
j ln[stj/st0] +

(
1 − λ∗

j

)
ln π∗

tj

)

− ln
 J∑
j=1

exp
(

Γ∗
tb(1 − λ∗

j)
λ∗
j

)
(ωbj)

1
λ∗

j (π∗
tj)

1− 1
λ∗

j

∏
r∈b

[str/st0]
λ∗

r (1−λ∗
j

)
λ∗

j (π∗
tr)

(1−λ∗
r )(1−λ∗

j
)

λ∗
j

 .
Consequently, at (α∗, β∗, δ∗, 1−λ∗), Γ∗

tb, and π∗
t , equations (16) are satisfied. Simi-

larly, equations (17) are satisfied. Therefore, (δ∗, β∗, α∗, λ∗) and (π∗
t ,Γ∗

t )t∈T satisfy
(22).

E Extension: Adding a Random Coefficient
We consider a PONL with a centered and normalized random coefficient νi, dis-
tributed according to F , that multiplies price ptb:59

Uitb(σ) = σνiptb + δtb + εitb. (41)

Suppose that νi is independent of (εitb)b∈C1∪{0}. Then, the purchase probability
of bundle b is:

stb = sb(δt;σ) =
∫
sb(σvipt + δt; 0)dF (vi), (42)

where sb(·; 0) refers to the purchase probability of b in PONL model (7).

Sketch of Identification, Estimation, and Implementation. System
(sb(δt; 0))b∈C1 is a PONL model without random coefficients satisfying:

ln sj(δt; 0)
s0(δt; 0) = δj + xtjβ − αptj + (1 − λj) ln

(
sj(δt; 0)/s0(δt; 0)

πtj

)
+ ξtj

Γt = (Γb(Γtb;λ, πt, s(δt; 0)/s0(δt; 0)))b∈C2
from (16)

πt = (ϕj(πt;λ,Γt, s(δt; 0)/s0(δt; 0)))j∈J from (17).

(43)

If we knew (sb(δt; 0))b∈C1 (and therefore s0(δt; 0)), we could then identify and
estimate all the parameters except σ as in the standard PONL model (7). Iden-
tification and estimation in the presence of random coefficients consists in first
recovering (sb(δt; 0))b∈C1 from the observed purchase probabilities and then σ.

To this aim, we rely on the Taylor expansion of ln stb
st0

= ln stb(σ)
st0(σ) with respect

59Similarly, we could also incorporate random coefficients that capture unobserved heterogene-
ity in other dimensions, such as bundle size.
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to σ around σ = 0 for each b ∈ C1:

ln stb

st0
= ln sb(δt; 0)

s0(δt; 0) +
∞∑
k=1

1
k!

∂k

(∂σ)k

(
ln sb(δt; 0)
s0(δt; 0)

)
σkmk, (44)

where mk = E[vki ] is known.60 Note that 1
k!

∂k

(∂σ)k

(
ln sb(δt;0)

s0(δt;0)

)
is a known function of

(δtj)j∈J, (Γtb)b∈C2 , and (λj)j∈J. Recall that for j = 1, ..., J ,

πtj =
 ∑

b′∈Nj

(ωb′j exp(δtb′))1/λj

λj

. (45)

Then, given (Γtb)b∈C2 and suitable regularity conditions, one can uniquely (and
locally) back out (δtj)Jj=1 from (πtj)Jj=1:61

δtj = δj(πt1, ..., πtJ ; (Γtb)b∈C2). (46)

Then, 1
k!

∂k

(∂σ)k

(
ln sb(δt;0)

s0(δt;0)

)
is a known function of (πtj)j∈J, (Γtb)b∈C2 , and (λj)j∈J

and we can recover ln sb(δt;0)
s0(δt;0) using (44) for given σ:

ln sb(δt; 0)
s0(δt; 0) = ln stb

st0
−

∞∑
k=1

1
k!

∂k

(∂σ)k

(
ln sb(δt; 0)
s0(δt; 0)

)
σkmk. (47)

Moreover, (44) implies that for j = 1, ..., J ,

ln stj

st0
= δj + xtjβ − αptj + (1 − λj) ln

(
sj(δt;0)/s0(δt;0)

πtj

)
+∑∞

k=1
1
k!

∂k

(∂σ)k

(
ln sj(δt;0)

s0(δt;0)

)
σkmk + ξtj. (48)

In addition to the same linear terms in the C2SLS, the random coefficient also
implies non-linear term ∑∞

k=1
1
k!

∂k

(∂σ)k

(
ln sj(δt;0)

s0(δt;0)

)
σkmk in (48) where σ is unknown.

Then, given sj(δt;0)
s0(δt;0) and πtj for j = 1, ..., J and all t, (δ1, ..., δJ , α, β, λ1, ..., λJ)

and σ can be pinned down by applying the generalized method of moments to
(48). As in the standard C2SLS, the resulting solutions should satisfy the sec-
ond and third equations in (43). Additionally, they should also satisfy (47):

60The equality in (44) can be obtained by relying on the real analyticity of PONL model
(7) with respect to δt around δt = 0 and assuming that νi has bounded support (or unbounded
support with thin tails). Similar real analyticity arguments are derived for mixed logit and probit
models in Iaria and Wang (2022).

61In practice, the most essential regularity condition is that ∂(πtj)J
j=1

∂(δtj)J
j=1

is of full rank at the true
values of (δtj)J

j=1, given the true values of (Γtb)b∈C2 and of (λj)j∈J.
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(δ1, ..., δJ , α, β, λ1, ..., λJ , σ) are such that

ln stj

st0
= δj + xtjβ − αptj + (1 − λj) ln

(
sj(δt; 0)/s0(δt; 0)

πtj

)
+

∞∑
k=1

1
k!

∂k

(∂σ)k

(
ln sj(δt; 0)
s0(δt; 0)

)
σkmk + ξtj,

ln sb(δt; 0)
s0(δt; 0) = ln stb

st0
−

∞∑
k=1

1
k!

∂k

(∂σ)k

(
ln sb(δt; 0)
s0(δt; 0)

)
σkmk, b ∈ C1,

Γt = (Γb(Γtb;λ, πt, s(δt; 0)/s0(δt; 0)))b∈C2
from (16)

πt = (ϕj(πt;λ,Γt, s(δt; 0)/s0(δt; 0)))j∈J from (17).

(49)

To identify (δ1, ..., δJ , α, β, λ1, ..., λJ , σ) on the basis of (49), one can use similar
arguments to those used for the standard PONL model. In estimation, one needs
to replace the infinity in the sum of the non-linear term by a finite number K. To
guarantee the desired asymptotic properties (at least consistency), similar to the
sieve approach, K must increase in T (the number of markets) asymptotically.

Before proposing a convenient iterative estimation procedure based on (49), we
illustrate how, similar to the standard PONL model, excluded cost shifters and
exogenous product characteristics are appropriate instruments in the presence of
random coefficients, particularly for the identification of σ. In practice, we suggest
the use of higher-order terms of such instruments (e.g., their polynomials) that can
provide additional power with respect to their linear combinations.

Example. As argued above, the last three equations in (49) imply that πtj (and
therefore ln πtj) is a function of λ and σ: ln πtj = ln πj(λ, σ; st). Then, by relying
on the first-order Taylor expansion of ln πtj around ln π0

tj = ln πj(λ0, σ0; st), and
the fact that νi is centered (m1 = 0), we can re-write the first equation in (49) as:

ln stj

st0
= δj + xtjβ − αptj + (1 − λj) ln s(j|j)(δt; 0) +

∞∑
k=2

1
k!

∂k

(∂σ)k

(
ln sj(δt; 0)
s0(δt; 0)

)
σkmk + ξtj

− (1 − λj)
[
s0(δt; 0)
sj(δt; 0)

∂πj(λ0, σ0; st)
∂λ

(λ− λ0) + ∂πj(λ0, σ0; st)
∂σ

(σ − σ0)
]
,

(50)

where (1−λj) ln s(j|j)(δt; 0) and ∑∞
k=2

1
k!

∂k

(∂σ)k

(
ln sj(δt;0)

s0(δt;0)

)
σkmk are the leading terms.

Similar to the standard PONL model, the identification of λj can be achieved by
exogenous variables (e.g., cost shifters, exogenous product characteristics) that
shift ln s(j|j)(δt; 0). Analogously, to identify σ, one needs instruments that shift
∂k

(∂σ)k

(
ln sj(δt;0)

s0(δt;0)

)
. Routinely used instruments are valid for this purpose. Let’s take

k = 2 for example: using m1 = 0 and therefore ∂sj(δt;0)
∂σ

= 0, we obtain:

∂2

(∂σ)2

(
ln stj(0)
st0(0)

)
= ∂2 ln stj(0)

(∂σ)2 − ∂2 ln st0(0)
(∂σ)2 = m2

∑
b,b′∈C1

ptbptb′

(
1

stj(0)
∂2stj(0)
∂δtb∂δtb′

− 1
st0(0)

∂2st0(0)
∂δtb∂δtb′

)
.
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In general, ∂2

(∂σ)2

(
ln sj(δt;0)

s0(δt;0)

)
is not a constant function of ptj (which enters through

ptbptb′) and xtj (which enters through 1
sj(δt;0)

∂2sj(δt;0)
∂δtb∂δtb′

− 1
s0(δt;0)

∂2s0(δt;0)
∂δtb∂δtb′

when j ∈ b
or j ∈ b′). As a result, excluded cost shifters for product j and exogenous product
characteristics can shift ∂2

(∂σ)2

(
ln sj(δt;0)

s0(δt;0)

)
, providing identification power for σ.

Remark 1. Salanié and Wolak (2019) propose a similar approach to ours and
rely on a second-order Taylor expansion to approximately estimate σ2 in a classic
BLP model with random coefficients. While both methods can be used to investigate
whether σ is close to 0 (as we do in our empirical application),62 our approach is
theoretically exact—rather than approximative—thanks to the real analytic property
of the PONL model (see footnote 60). Differently, Salanié and Wolak (2019) work
with second-order Taylor expansions of the inverse demand functions (eq. 5, page
13), whose real analytic properties with respect to σ are harder to establish.

Remark 2 (Multiple random coefficients). In this case, the expansion in (49)
can be derived with respect to each σℓ with ℓ = 1, ..., L, and their cross terms, where
L is the number of random coefficients {νiℓ}Lℓ=1 and σℓ is the parameter correspond-
ing to νiℓ. If one, as commonly done in applied work, assumes independence among
the random coefficients {νiℓ}Lℓ=1, then the Taylor expansion will not include cross
terms, greatly simplifying estimation.

Remark 3 (Nonparametric F ). When F is unknown and to be identi-
fied/estimated, we can normalize σ = 1. One can treat each moment mk in (49)
as a parameter and identify F from its moments.63 Interestingly, in such case the
first equation in (49) becomes linear in mk and estimation simplifies.

Formulation (49) implies an iterative estimation procedure very similar to that
for the standard PONL model without any random coefficient. To illustrate this,
consider only the first two terms of the Taylor expansion. Because m1 = 0 and
m2 = 1, we then obtain the following iterative estimation procedure:

Step 1. Set r = 0 and (σ2)(r) = 0. Initialize
(
α(r), β(r), δ

(r)
1 , ..., δ

(r)
J , λ

(r)
1 , ..., λ

(r)
J

)
and(

Γ(r)
tb

)
b,t

to be the solutions of the PONL model without random coefficients

and compute
(
π

(r)
tj

)
t,j

.

Step 2. Compute h(r)
tb = 1

2
∂

(∂σ)2

(
ln sb(δt;0)

s0(δt;0)

)
using (λ(r)

1 , ..., λ
(r)
J ),

(
Γ(r)
tb

)
b,t

, and (π(r)
tj )t,j.

Compute ln
(
s

(r)
b (δt;0)
s

(r)
0 (δt;0)

)
= ln stb

st0
− h

(r)
tb × (σ2)(r).

62See also Chesher and Santos Silva (2002), who also use a second-order Taylor expansion to
test for the importance of taste variation in a mixed logit model (Heterogeneity Adjusted Logit).

63To identify F from its moments (i.e., determinacy of the moment problem), one can for
example rely on Carleman’s condition.
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Step 3. Obtain
(
α(r+1), β(r+1), δ

(r+1)
1 , ..., δ

(r+1)
J , λ

(r+1)
1 , ..., λ

(r+1)
J , (σ2)(r+1)

)
from the

following 2SLS regression:

ln stj

st0
= δj + xtjβ − αptj + (1 − λj) ln

s(r)
j (δt; 0)/s(r)

0 (δt; 0)
π

(r)
tj

+ h
(r)
tj σ

2 + ξtj.

Step 4. Compute
(
Γ(r+1)
tb

)
b,t

and
(
π

(r+1)
tj

)
t,j

using s
(r)
b (δt;0)
s

(r)
0 (δt;0)

and
(
λ

(r+1)
1 , ..., λ

(r+1)
J

)
from

the standard PONL model without random coefficients.

Step 5. Set r = r + 1 and go back to Step 2.

F Monte Carlo Simulations
We investigate by simulation the finite sample performance of the C2SLS with
respect to choice set size C and number of iterations of iterative procedure K̄.

F.1 Data Generating Process
We generate data from a PONL model with J = 10 products and bundles that
combine multiple units of these. Across experiments, we vary the maximum “di-
mension” of the bundles included in the choice set: the maximum number of units
that can be jointly purchased as a bundle, and consequently the size of the choice
set. For example, with bundles of dimension up to two, individuals can choose
among 66 bundles of the kind (j1, j2), with jk ∈ {0} ∪ J, k = 1, 2; while with bun-
dles of dimension up to three, individuals can instead choose among 286 bundles
of the type (j1, j2, j3) with jk ∈ {0} ∪ J, k = 1, 2, 3.64 We consider choice sets
with C ∈ {66, 286, 1001, 3003, 8008, 19448}, where 66 is the number of bundles
of dimension up to two, 286 the number of bundles of dimension up to three, and
so on until 19448, the number of bundles of dimension up to seven.

We specify ((δj = 1, λj = 0.4)10
j=1, β = 2, α = 2), Γtb ∼ N(0, 0.1), ξtj ∼

N(0, 0.2), log(xtj) ∼ N(1, 0.1) (we set K = 1 for simplicity), and the product-
specific marginal cost as log(ztj) ∼ N(1, 0.1). We assume that in each market t, a
monopolist sets the unit-prices of the 10 products (independently across markets),
(ptj)10

j=1, and linear pricing ptb = ∑
j∈b ptj. The monopolist faces no technological

advantage or disadvantage in selling bundles: the marginal cost of any bundle b is
the sum of the marginal costs of the units it includes, ztb = ∑

j∈b ztj.
64For example, the 66 bundles in the case of bundles of dimension up to two are: the choice of

not purchasing any product (0, 0), the 10 single units of the products in J, and the 55 bundles
of dimension two in C2 = J × J. Note that we allow for the purchase of bundles that include
multiple units of the same product.
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Despite assuming δj = δk and λj = λk for any j ̸= k in the data generating
process, we do not impose such constraint in estimation and allow for different δj
and λj for each j. We use two types of instruments. First, we instrument price
ptj by polynomials of the exogenous characteristic xtj and of the marginal cost ztj.
Second, we instrument stj/st0

πtj
by weighted averages of xtb = ∑

j∈b xtj and of ztb
among the bundles that belong to Nj \ {j}.65

F.2 Simulation Results
We compare the finite sample performance of the proposed iterative procedure
for the C2SLS estimator in (22) with respect to the infeasible two-step procedure
that relies on the observability of the within-nest purchase probabilities, i.e. first
estimating the 2J + K + 1 = 22 parameters in (11) by 2SLS and then each of
the C2 × T demand synergies by an independent plug-in as in (12). In terms of
performance, the infeasible two-step procedure is an upper bound for the C2SLS,
which estimates the same parameters but without relying on the observability of
the within-nest purchase probabilities.

Figure 4: Median of RMSEs of C2SLS Estimator

(a) Parameters (δ, β, α, λ), T = 200 markets
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(b) Choice Set Size C = 286

0
.1

.2
.3

M
ed

ia
n 

of
 R

M
SE

s

200 500 1000
Number of markets

(δ, β, α, λ) Demand Synergy Parameters

Figure 4 summarizes our simulation results. Figure 4(a) illustrates results for
the estimation of (δ, β, α, λ) in different scenarios with choice set size C ∈ {66,
286, 1001, 3003, 8008, 19448}. For each C, we simulate 100 datasets with T = 200
markets and then average estimates across these. We summarize the finite sample
performance of each estimator in terms of its median Root Mean Square Error

65More precisely, we use the following list of instru-
ments: Ztj =

(
eT

j , xtj , x
2
tj , x

3
tj , ztj , z

2
tj , z

3
tj , xtjztj , x

2
tjztj , xtjz

2
tj ,(∑

b∈Nj\{j} ωbjxtb

)
eT

j ,
(∑

b∈Nj\{j} ωbjztb

)
eT

j

)T
, where ej is a vector of zeros with jth

element equal to 1.
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(RMSE).66 The solid line represents the median RMSE of the infeasible 2SLS,
while the others plot the median RMSE of the proposed algorithm after iteration
0 (see Appendix C for details), iteration 1, and iteration 5.

Figure 4(a) shows how, in practice, the proposed iterative procedure converges
very fast to the infeasible 2SLS estimator, the theoretical upper bound for the
C2SLS estimator. After only five iterations, the median RMSE of the proposed
algorithm is almost indistinguishable from that of the infeasible 2SLS estimator.
Importantly, the fast convergence holds irrespectively of the choice set size C, con-
firming that a few iterations may be sufficient to implement the C2SLS estimator
(Proposition 3) also in empirical applications with large choice sets.

Figure 4(b) illustrates the estimation of all parameters in various scenarios with
a constant choice set size C = 286 (i.e., all bundles of size 3) but an increasing
number of markets T ∈ {200, 500, 1000}. For each T , we simulate 100 datasets
and plot the median RMSE of the proposed algorithm after five iterations. The
dashed line plots the median RMSE of (δ, β, α, λ), while the solid line represents
the median RMSE of the demand synergy parameters. While for any T the demand
synergy parameters are less precisely estimated than (δ, β, α, λ), a larger T—in line
with Proposition 2—corresponds to a better performance of the C2SLS estimator.

G Dealing with Products with Undefined stj

Without further assumptions, the C2SLS estimator cannot pin down the demand
synergy Γtb of a bundle that includes products not observed to be purchased as
single units in market t. This can be seen in (16): if product j′ is not observed
to be purchased as a single unit in market t, then stj′ is not defined and any Γtb
corresponding to a b that includes j′ will not be defined in market t. Whenever the
incidence of bundles of this type is not prominent, one can simply exclude them
from the analysis. However, when there are many of these bundles, excluding
them may correspond to dropping a large share of purchases. In this Appendix,
we provide a practical solution to this problem that does not involve excluding
bundles from the analysis or any modification of the C2SLS estimator.

The main idea of the proposed approach consists of three steps. In the first
step, we “separate away” from bundles any sub-bundle collecting products whose
purchase probability of a single unit stj is defined. In the second step, we implement

66For given C and estimator of θ, we compute the parameter-specific RMSE for each pa-
rameter d = 1, ..., D in θ̂r = (θ̂1r, ..., θ̂Dr) across r = 1, ..., 100 repetitions: RMSE(θ̂d, θd) =√

1
100
∑100

r=1(θ̂dr − θd)2. We then plot the median of the parameter-specific RMSE(θ̂d, θd) across
the D parameters in θ.
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the C2SLS estimator only on the products observed to be purchased as single units
(i.e., with defined stj) and the corresponding bundles and sub-bundles obtained
in the first step. In the third step, we rely on the C2SLS estimates and the
observed purchase probabilities to recover the average utility δtb of those sub-
bundles not used in the C2SLS estimation, i.e. those made of products whose
purchase probability of a single unit stj is not defined.

Suppose the J ′ products in J′, indexed by j′ = 1, ..., J ′, are only observed to
be purchased as part of bundles, but not as single units. These products have
undefined stj′ . In the first step, we partition any bundle b that includes at least
one unit of any product in J′ in at most J ′ + 1 sub-bundles of the form b =(
(bj′)J ′

j′=1,b−J′

)
, where each bj′ = (j′, ..., j′) collects all units of product j′ in b

and b−J′ is the complement of (bj′)J ′
j′=1.67 To save on notation, we use the symbol

b−J′ also to refer to the original bundles b that do not include any purchase of
products in J′. In the second step, we implement the C2SLS estimator on the
J/J′ products and the bundles and sub-bundles denoted by b−J′ . Finally, in the
third step, given the C2SLS estimates and the observed purchase probabilities, we
recover the remaining average utilities δtbj′ , j′ ∈ J′. By re-writing the average
utility of bj′ as in equation (13), δtbj′ = δbj′ + xtbj′β − αptbj′ + ξtbj′ , we can back
out its remaining unknown component simply as:

δbj′ + ξtbj′ = ln(stbj′ ) − ln(st0) − xtbj′β + αptbj′ − (1 − λj) ln
(
st(bj′ |j′)

)
, (51)

where st(bj′ |j′) is known because of the way we partitioned bundles in the first step:
(i) bj′ = (j′, ..., j′) only belongs to nest Nj′ and (ii) nest Nj′ only includes bundles
made of a single or multiple units of j′.

After having recovered δbj′ + ξtbj′ from (51) for all “problematic” sub-bundles
bj′ , j′ = 1, ..., J ′, we can proceed without further complications to computing price
elasticities, marginal costs, and counterfactual simulations as detailed in Appendix
H. The results presented in the empirical application in section 5 rely on this
procedure. However, in unreported robustness checks, we repeated the empirical
analysis by excluding all bundles that include at least one unit of any product
j′ ∈ J′ and—despite the smaller sample used—our estimates and counterfactual
simulation results remain qualitatively unchanged.

67For each bundle b and product j′ ∈ J′, bj′ could be empty if b does not include any unit
of j′, bj′ = j′ if b includes one unit of j′, bj′ = (j′, j′) if b includes two units of j′, and so on.
Because each of the J ′ sub-bundles bj′ can be empty, b will be partitioned in “up to” J ′ + 1
non-empty sub-bundles.
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H Empirical Application

H.1 Elasticities in Table 4
To simplify exposition, we drop the indexes of household size hs and of market t.
Here we derive the demand elasticities we report in Table 4: the percentage changes
in the collective number of units purchased in terms of single-unit products in J
and of multi-unit bundles in C2 due to a 1% increase in all prices of the single-unit
products in J and that due to a 1% increase in all prices of multi-unit bundles in
C2. We denote these elasticities by EAB for A,B ∈ {J,C2}.

EAB =
∑

b∈A |b| ×∑
b′∈B

∂sb
∂pb′

pb′∑
b∈A |b| × sb

=
∑

b∈A |b| × sb
∑

b′∈B ϵbb′∑
b∈A |b| × sb

where |b| is the number of units (liters) in bundle b and ϵbb′ is the cross-price
elasticity of b with respect to pb′ :

ϵbb′ = −αpb′

sb

 J∑
j=1

[(
1 − 1

λj

)
sb|j × sb′|j × sj + 1b=b′

1
λj

sj × sb|j

]
− sb′sb

 .

H.2 Computation of Marginal Costs
In the observed scenario, producers set single-unit prices for their products, e.g.
pj, as well as for bundles of multiple units of the same product, e.g. p(j,...,j). Denote
by J1 the set of single-unit products (where J1 = J) and by J2 the set of bundles
of multiple units of the same products, e.g. (j, j), (k, k), or (k, k, k). We rely
on vector mb ∈ {0, 1}(|J1|+|J2|), with mbℓ ∈ {0, 1} corresponding to element ℓ in
J1 ∪J2, to describe the composition of bundle b in terms of elements of J1 ∪J2. For
example, if b = (1, 2, 3, 3, 3), J1 = {1, 2, 3}, and J2 = {(1, 1), (2, 2), (3, 3, 3)}, then
mb = (1, 1, 0, 0, 0, 1), with second element mb2 = 1 and fifth element mb(2,2) = 0.

We assume that the observed prices in the data were generated by an oligopolis-
tic Bertrand-Nash price-setting game of complete information that allows each
product to have quantity-specific prices. We allow the marginal costs to be spe-
cific to any product-quantity combination (e.g., could be cheaper to produce larger
quantities) but assume that they are not affected by the pricing scheme (will hold
them constant in the counterfactual linear pricing). Denote by O the owner-
ship matrix in the observed scenario in the data. This matrix is of dimension
(|J1| + |J2|) × (|J1| + |J2|), and the element at position (k, ℓ), ok,ℓ = 1 if k and ℓ

in ∈ J1 ∪ J2 are sold by the same producer, or 0 otherwise. For example, o1,2 = 1
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if products 1 and 2 are sold by the same producer. Moreover, o1,(1,1) = 1 because
multiple units of the same product are sold by the same producer.

Define M = (mb)b∈C1 ∈ RC1×(|J1|+|J2|). Then, the first-order conditions (FOCs)
of the oligopolistic Bertrand-Nash price-setting game in the observed scenario with
quantity discounts can be written as:

F (pJ1∪J2) =
[
O ◦

(
MT∂sC1

∂pC1

M
)]

(pJ1∪J2 − cJ1∪J2) + OTsC1 = 0(|J1|+|J|2)×1, (52)

where sC1 and pC1 are the vectors of purchase probabilities and prices of all bundles
in C1, and pJ1∪J2 and cJ1∪J2 are the vectors of prices and marginal costs of the
single and multiple units of all products in J1 ∪ J2. Importantly, the FOCs in
(52) do not assume producers to offer quantity discounts, but rather allow for the
possibility that they choose to do so (along with the possibility of offering linear
or even prices increasing with quantity). Note that each sb in sC1 is a weighted
sum of the household size-specific purchase probabilities of b:

sb =
∑
hs

whss
hs
b ,

and therefore,
∂sC1

∂pC1

= −
∑
hs

whsα
hs∂s

hs
C1

∂δhsC1

,

where whs is the weight of household size hs in the population and δhsC1 is the vector
of the average utilities of the bundles in C1 among the households of size hs. Then,
we can back out the vector of marginal costs cJ1∪J2 from FOCs (52):

cJ1∪J2 = pJ1∪J2 −
[
O ◦

(
MT

( 2∑
hs=1

whsα
hs∂s

hs
C1

∂δhsC1

)
M
)]−1 (

OTsC1

)
.

H.3 Counterfactual Simulation: Linear Pricing
To simulate the counterfactual scenario with linear pricing, we start from the
setting in Appendix H.2 and rule out quantity-specific prices for every product j:
p(j,...,j) for any (j, ..., j) ∈ J2 equals |(j, ..., j)| times pj, j ∈ J1. In practice, we do
this by setting the term capturing quantity discount −αhs

(
pb −∑

j∈b pj
)

= 0 in
the estimated demand synergy (25), so that Γ̃hsb = γ̃hsb for hs ∈ {single,multi} and
b ∈ C2, and by letting producers re-optimize with respect to pJ1 = (pj)j∈J1 .

Define a matrix of dimension (|J1| + |J2|) × |J1|, M12, whose (ℓ, k) element is
equal to the number of units of product k ∈ J1 in ℓ ∈ J1 ∪ J2. For example, if
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ℓ = 1 and k = 1, then the corresponding element in M12 is 1. If ℓ = (1, 1) and
k = 1, then the corresponding element in M12 is 2. If ℓ = (2, 2) and k = 1, then
the corresponding element in M12 is 0. Define M∗

12 = (M12 > 0), i.e., an element
in M∗

12 is equal to 1 if the corresponding element in M12 is equal or greater than 1,
or 0 otherwise. Then, the equilibrium linear prices p∗

J1 in the counterfactual must
satisfy the following FOCs:

M∗T
12 F (M12p

∗
J1) = 0|J1|×1, (53)

where F (·) is defined in (52) and cJ1∪J2 is the vector of marginal costs obtained
in Appendix H.2 (we assume that marginal costs are not affected by the pricing
scheme). We consider any solution to the non-linear system of FOCs (53) as the
equilibrium counterfactual vector of linear prices p∗

J1 . To implement this solution
in practice, one can rely on any standard algorithm (e.g., fsolve in MATLAB) using
as initial guess of p∗

J1 the observed single-unit prices pJ1 . Even though possible, in
extensive attempts using multiple initial guesses, we never found more than one
solution to FOCs (53) in each market.

H.4 Computation of Tables 6, 7, and 8
In this section, we detail the computation of the entries of Tables 6, 7, and 8. Here
we only discuss the computation of absolute changes (in $, liters (L), or oz), but
relative changes (in %) are obtained analogously. We measure absolute changes
per household during a year: e.g., change in liters of CSDs purchased in a year by a
typical household of size hs. To this purpose, we first predict the absolute changes
at the same level of aggregation used in estimation, the shopping trip level by
household size, and then multiply these by the average yearly number of shopping
trips specific to the household size (single, multi, or average). In the data, the
average number of shopping trips in a year is 63.9 for a single-person household,
72.9 for a multi-person household, and 70.7 for an average household.

Price change. We define the changes in prices ∆ptj and ∆ptb as follows:

∆ptj = Median
{∑

j∈J p
linear
tj −∑

j∈J p
observed
tj

|J|
, t ∈ T0

}
,

∆ptb = Median
{∑

ℓ∈C2 p
linear
tℓ −∑

ℓ∈C2 p
observed
tℓ

|C2|
, t ∈ T0

}
,

where T0 is the set of markets in which the three collections of bundles from Table
4 are observed to be purchased by both household sizes, and superscripts “linear”
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and “observed” refer to the scenarios of counterfactual linear pricing and observed
quantity discounts, respectively.

Quantity change. The quantity of CSDs from a collection of bundles B ∈ {J,C2}
by households of size hs in market t is:

Qhs(B) =
∑
b∈B

|b| × shstb ,

where |b| is the number of units (liters) in bundle b. Then, the quantity change
for households of size hs in Table 6 is:

∆Qhs(B) = Median
∑

b∈B
|b| × s

hs,linear
tb −

∑
b∈B

|b| × s
hs,observed
tb , t ∈ T0

 .
The relative quantity change conditional on purchase for households of size hs is:

∆Qhs
cond = Median


∑

b∈C1 |b| × s
hs,linear
tb∑

b∈C1 s
hs,linear
tb

/∑
b∈C1 |b| × s

hs,observed
tb∑

b∈C1 s
hs,observed
tb

− 1, t ∈ T0


and the relative change in the probability of purchase for households of size hs is:

∆Prob. of Purchasehs = Median
{ ∑

b∈C1 s
hs,linear
tb∑

b∈C1 s
hs,observed
tb

− 1, t ∈ T0

}
.

To compute the quantity change of (non-)sugary CSDs, denote by |b|s the number
of sugary CSD units (liters) in bundle b. Then, the quantity change of sugary
CSDs in Table 8 is:

∆Qsugary = Median
 ∑

b∈C1

|b|s × slinear
tb −

∑
b∈C1

|b|s × sobserved
tb , t ∈ T0

 ,
and that of non-sugary CSDs is:

∆Qnon-sugary = Median
 ∑

b∈C1

(|b| − |b|s) × slinear
tb −

∑
b∈C1

(|b| − |b|s) × sobserved
tb , t ∈ T0

 .
Profit change. The profit change generated by households of size hs is:

∆πhs(B) = Median
∑

b∈B
(plinear
tb − ctb)shs,linear

tb −
∑
b∈B

(pobserved
tb − ctb)shs,observed

tb , t ∈ T0

 ,
where ctb is the marginal cost of bundle b in market t (see Appendix H.2).
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Compensating variation. In the setting of PONL model (1), income effects
enter linearly into the indirect utilities Uitb for all b ∈ C. As a consequence, for
households of size hs ∈ {single,multi}, the compensating variation is:

CVhs
t = CShs,observed

t − CShs,linear
t

αhs
, (54)

where CShs,observed
t and CShs,linear

t are defined as:

CShs,dt = ln

 J∑
ℓ=0

 ∑
b′∈Nℓ

(ωb′ℓ exp(δhs,dtb′ ))1/λhs
ℓ

λhs
ℓ

 (55)

with d ∈ {observed, linear}. The average compensating variation across hs’s is:

CVt =
∑
hswhsα

hsCVhs
t∑

hswhsαhs
. (56)

Finally,
CV = Median {CVt, t ∈ T0} .

Denote by “single unit” the scenario in which only (pobserved
tj )j∈J change to (plinear

tj )j∈J

in (δhs,observed
tj )j∈J, while (δhs,observed

tb )b∈C2 is unchanged. Then, for households of size
hs, the compensating variation due to the changes in (ptj)j∈J is:

CVhs,single unit
t = CShs,observed

t − CShs,single unit
t

αhs
,

while that due to the changes in (ptb)b∈C2 is CVhs
t − CVhs,single unit

t . Their average
across household sizes is then defined as in (56).

Compensating Variation/Expenditure. The expenditure on CSDs for house-
holds of size hs in market t in the observed scenario of quantity discounts is:

Expenditurehst =
∑

b∈C1

ptbs
hs,observed
tb .

Then, the median of the ratio CV/Expenditure for households of size hs is:

CV/Expenditurehs = Median
{

CVhs
t

Expenditurehst
, t ∈ T0

}
,
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while that across hs’s is:

CV/Expenditure = Median
{

CVt∑
hswhsExpenditurehst

, t ∈ T0

}
.

Predicted added sugar change. Denote by τj the added sugar content (oz) in
one unit (liter) of CSD j. The added sugar amount (oz) in bundle b is τb = ∑

j∈b τj.
Then, the predicted sugar change in Table 8 is:

∆Qadded sugar = Median
 ∑

b∈C1

τb × sobserved
tb −

∑
b∈C1

τb × slinear
tb , t ∈ T0

 .
Simulation of sugar tax. Suppose that the sugar tax is t dollars per ounce of
added sugar. Then, the sugar tax for n units (liters) of CSD j with τj ounces of
added sugar is tτjn. Denote by t the vector of sugar taxes corresponding to the
single and multiple units of all products in J1 ∪J2. Then, similar to (52), the FOCs
in the presence of the sugar tax are:
[
O ◦

(
MT∂sC1(p∗

J1∪J2 + t)
∂pC1

M
)] (

p∗
J1∪J2 − cJ1∪J2

)
+OTsC1(p∗

J1∪J2+t) = 0(|J1|+|J|2)×1,

where p∗
J1∪J2 are the new equilibrium prices (net of the sugar tax) to solve for.

H.5 Understanding Compensating Variations in Table 7
Here we discuss a simple example useful to get some insight about the compensating
variations reported in Table 7. Consider a setting with J = {1} and C2 = {(1, 1)}.
From (55), the consumer surplus for households of size hs = {single,multi} at
prices (p1, p(1,1)) is:

CShs(p1, p(1,1)) = ln
1 +

(
exp

{
δhs1 − αhsp1

λhs

}
+ exp

{
2δhs1 − αhsp(1,1) + Γhs

λhs

})λhs .
By a first-order Taylor expansion of (54), the compensating variation of a change
in prices from (p1, p(1,1)) to (p1 + ∆1, p(1,1) + ∆(1,1)) is approximated as:

CVhs(∆1,∆(1,1)) = CShs(p1, p(1,1)) − CShs(p1 + ∆1, p(1,1) + ∆(1,1))
αhs

≈ − 1
αhs

[
∂CShs(p1, p(1,1))

∂p1
∆1 + ∂CShs(p1, p(1,1))

∂p(1,1)
∆(1,1)

]
= shs1 ∆1 + shs(1,1)∆(1,1).
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This shows that the compensating variation due to ∆(1,1) (or ∆1) is approximately
proportional to hs’s probability to purchase (1, 1) (or 1) at (p1, p(1,1)). As docu-
mented in Figure 2, in the observed scenario with quantity discounts, multi-person
households are far more likely than single-person households to purchase multiple
units of CSDs, so that smulti

(1,1) > s
single
(1,1) and smulti

1 < s
single
1 . In addition, our simu-

lated counterfactual suggests that going from quantity discounts to linear pricing
would result in ∆1 < 0 and ∆(1,1) > 0 (Table 6). Combining these observations
clarifies the patterns reported in Table 7. In particular, using the simpler notation
from the current example: CVmulti(∆1,∆(1,1)) > CVsingle(∆1,∆(1,1)) because of the
larger weight ssingle

1 single-person households place on ∆1 < 0 and the larger weight
smulti

(1,1) multi-person households instead place on ∆(1,1) > 0.

H.6 Additional Tables

Table 9: Demand Estimates: Demand Synergy Parameters
hs = single hs = multi

Average (std. dev.) γ̃hs
tb 36.457

(39.595)
56.723
(55.926)

OLS Estimation Results
# different producers in b = 2 −2.426

(0.526)
−1.131
(0.109)

# different producers in b = 3 −4.778
(2.135)

−1.286
(0.299)

# different producers in b = 4 −8.127
(9.823)

−4.311
(1.575)

# different products in b = 2 1.969
(0.426)

−0.484
(0.098)

# different products in b = 3 6.690
(1.151)

1.291
(0.166)

# different products in b = 4 7.914
(3.375)

2.815
(0.320)

# different products in b = 5 8.607
(9.476)

6.804
(0.665)

# different products in b = 6 − 5.584
(1.085)

# different products in b = 7 − 12.845
(1.850)

# different products in b = 8 − 20.536
(3.785)

# different products in b = 9 − 47.184
(5.378)

|b| fixed effects yes
Store fixed effects yes
Time fixed effects yes

Num. of Obs. 82,808
R2 0.972

Notes: The Table reports results for the OLS regression of the de-
mand synergy parameters as obtained from the C2SLS estimates
from column (iii), Table 3. “−” denotes that bundles with the cor-
responding characteristics for the given household size are not ob-
served in the data and thus not included in the regression. Standard
errors are computed using the basic OLS asymptotic formula.
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