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Abstract

We analyze persistence in marijuana consumption utilizing data from the
1997 cohort of the National Longitudinal Survey of Youth (NLSY97). We
allow for three sources of persistence: pure state dependence, time invari-
ant unobserved heterogeneity and persistence in idiosyncratic, time-varying
shocks. We also consider intensity of consumption based on days of use per
month and estimate a dynamic ordered Probit model using simulated Max-
imum Likelihood. We consider a Polya model that generalizes the more
commonly used Markov models. The results show that there is a causal
effect of previous use. However, ignoring unobserved heterogeneity and se-
rially correlated shocks significantly exaggerates the state dependence.
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1 Introduction

The legal status of recreational marijuana in the US has changed significantly since

2012 when Colorado and Washington became the first states to legalize cannabis for

adult use. Currently, recreational use is legal in as many as 18 states plus the District of

Columbia. These changes have occurred despite evidence pointing to negative impacts

from marijuana use (especially at young ages) on different outcomes, such as educational

attainment (Davalloo and Hansen, 2022), school to work transitions (Williams and van

Ours, 2020), financial and relational difficulties in adulthood (Chan et al., 2021; Cerda

et al, 2016), health (Hall and Degenhardt, 2009; Lev-Ran et al., 2014), and welfare

use and unemployment (Fergusson and Boden, 2008; Schmidt et al., 1998). Marijuana

consumption has also been shown to increase the risk of consuming hard drags (see

Deza, 2015).

It is however possible that the nature of marijuana consumption, and its associated

risks, is heterogeneous in the population. For many, consumption is modest, occasional

and highly transitory while others use marijuana on a regular and persistent basis, and

the existence and magnitude of any negative impacts of marijuana use is likely to vary

with consumption patterns. However, if there is a causal, addictive effect of marijuana

use over time, any initiation is associated with a risk of continued, persistent use. In this

case, policies that make marijuana consumption more accessible and socially acceptable

may therefore increase the risk of marijuana dependence. On the other hand, if there is

no causal effect of past marijuana use on current consumption, this risk is eliminated.

It is therefore important to understand the dynamics of marijuana consumption and

how it varies, at an individual level, over time.

In this paper we analyze transitions into and out-of marijuana consumption. Data

from the 1997 cohort of National Longitudinal Survey of Youth (NLSY97) show that

the probability of using marijuana in a given year is almost two times higher for those

2



who used it the year before compared to those who did not use it. However, this

data pattern is uninformative about the nature of marijuana persistence. Does past

consumption cause current use (perhaps by changing preferences for the drug)? Or

is the data simply reflecting different innate propensities to use marijuana over time

where some youth receive substantial utility from marijuana consumption and therefore

continuously use it while others receive a negative utility and never use it. A third

possibility for the observed time dependence is persistence in random shocks to the

utility of consumption. For example, an event in school or within the family may alter

the perceived the utility and induce consumption in a given year. This effect may then

persist over time. Our aim in this paper is to estimate the sources for persistence in

marijuana consumption and evaluate their relative importance for overall persistence.

Our empirical framework builds on the influential work by Heckman (1981) and

others who have developed models designed to separate true state dependence from

spurious dependence (due to persistent unobserved heterogeneity). These models have

been estimated for a number of different outcomes, such as welfare (Card and Hys-

lop, 2005; Hansen and Lofstrom, 2009), labor supply (Hyslop, 1999), unemployment

(Hansen and Lofstrom, 2009) and health (Carro and Traferri 2014). A particularly

relevant study for this paper is Deza (2015) who use a dynamic discrete choice model

to analyze persistence in illicit drug use. Using data from the 1997 cohort of the NLSY,

she estimates a general model of alcohol, marijuana and hard drug use and separate the

contributions from state dependence and unobserved heterogeneity, both within drugs

but also between drugs. Her results show the existence of significant “stepping-stone”

effects into hard drugs, where current alcohol and marijuana use significantly increase

the probability of hard drug use in the future.

Our paper addresses some important shortcomings in the previous literature. We

first analyze the probability of marijuana use among American youth from ages 13 to
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26, paying particular attention to its persistence. Apart from Deza (2015), there are few

studies that have analyzed time dependence or persistence in marijuana consumption.

While Deza (2015) estimates a general, dynamic model of consumption of alcohol and

hard drugs, in addition to marijuana, the focus is on structural state dependence and

transitions from alcohol and marijuana into hard drugs (that is, if softer drugs serve as

“stepping-stones” into hard drugs). Our model specification, while limited to marijuana

consumption only, allows for more general forms of dynamics as well as serially corre-

lated utility shocks. We also estimate different persistence probabilities conditional on

the amount consumed, allowing for the separation of occasional or experimental use

from continuous, intensive use. We show that these additional dimensions are impor-

tant and that moderate consumption of marijuana may serve as a “stepping-stone” into

heavy use.1

The results indicate that serial correlation in the time-varying utility shocks con-

tributes substantially to overall, observed persistence. If ignored, the estimate for

structural state dependence and the estimated variance of persistent unobserved het-

erogeneity are exaggerated, leading to incorrect inference about sources of persistence.

Further, separating moderate use from intense use is important.

Focusing first on the estimated average partial effects, which are designed to show

the causal effect of past consumption on current consumption, our results for the most

general specification of the binary case suggest that consumption of marijuana in the

previous period increases the probability of current consumption by 0.129.2 Given an

unconditional consumption rate of 15-20 percent (depending on age), this effect is very
1We define moderate use as consumption less than 9 times per month and heavy use as 10 days

or more of consumption. The data show that persistence is concentrated among heavy users while
moderate use is more transitory. Specifically, the average probability of heavy marijuana use is 0.164,
conditional on moderate consumption in the previous time period. This should be compared to a
probability of 0.021 among those who did not use marijuana in the previous period.

2The average partial effect is estimated as P̂ r (yi,t = 1|yi,t−1 = 1)− P̂ r (yi,t = 1|yi,t−1 = 0), which
is averaged across individuals and time periods.

4



large. However, it is still significantly smaller than the corresponding effect obtained

from a one-period lagged Markov model (where the effect is 0.192).

For the ordered model, we estimate two average partial effects for each intensity

level. For moderate consumption levels, the first effect is the difference in conditional

probabilities of moderate consumption when we condition on moderate versus no con-

sumption in the previous time period while the second effect conditions on moderate

and heavy use instead. The former effect (moderate versus no consumption) is 0.046

while the second effect is -0.051. That is, the probability of consuming moderate levels

of marijuana in year t is 4.6 percentage points higher if the person consumed the same

level of marijuana in year t-1, relative to not using any marijuana in year t-1. While

the magnitude of this effect is smaller than the one obtained in the binary case, it

constitutes a relative effect that is close to 50 percent, given the observed proportions

of moderate consumption that are observed in the data. The negative effect for mod-

erate versus heavy usage suggests a higher probability of moderate use in year t for

those with a heavy consumption in the previous year compared to those with moderate

consumption.

For heavy consumption levels, the first effect is the difference in conditional prob-

abilities of heavy consumption when we condition on heavy versus no consumption in

the previous time period while the second effect conditions on heavy and moderate use

instead. The former effect equals 0.043 and is similar to the one estimated for moderate

use. The second effect is smaller, 0.027. That is, the probability of consuming heavy

levels of marijuana in year t is 4.3 percentage points higher if the person consumed

the same level of marijuana in year t-1, relative to not using any marijuana in year

t-1. Again, while the magnitude of this effect is smaller than the one obtained in the

binary case, it constitutes a relative effect that is close to 50 percent, given the observed

moderate consumption rates observed in the data.
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Finally, our analysis of the sources for persistence in marijuana consumption reveals

some interesting patterns. In the binary case, 52 percent of the persistence is causal

(true state dependence). The remaining sources for the time dependence in marijuana

consumption are: i) persistence in time-varying utility shocks (18 percent); ii) persis-

tent, observed individual characteristics, such as race, gender and family background

(16 percent); and lastly iii) persistent, unobserved heterogeneity (14 percent).

The estimated persistence probabilities for the ordered model suggest that time-

invariant, unobserved heterogeneity plays a larger role for persistence of intense mari-

juana consumption (40 percent of overall persistence is due to unobserved heterogeneity)

and less so for moderate use (32 percent). Persistence in time-varying utility shocks

and persistence due to time-invariant observed individual characteristics play a similar

role to that obtained in the binary mode. Moreover, for moderate use, true or causal

state dependence accounts for 47 percent of total persistence while it is less important

for heavy consumption levels (33 percent). That is, most of the overall persistence in

moderate consumption is due to structural state dependence (this result also applies

when we consider consumption as a binary outcome) while for heavy consumption, most

of the persistence is due to individual heterogeneity.

The rest of the paper is organized as follows. In the next section, we describe the

data and in Section 3 we present the econometric model and its results when we consider

marijuana consumption as a binary outcome. Section 4 is structured similarly but for

the generalized model with ordered outcomes. Section 5 concludes the paper with a

brief summary.

2 Data

In this paper, we utilize data from the 1997 cohort of the National Longitudinal
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Survey of Youth (NLSY97), which is a nationally representative sample of five cohorts

of males and females who were born between 1980 and 1984. The initial interview took

place in 1997 and follow-up interviews were conducted annually until 2011 after which

it became a biannual survey. NLSY97 gathers information in an event history format,

in which dates are collected for the beginning and end of significant life events. In

addition, there are detailed information on family background and income as well as

on individual scholastic ability.

In our analysis, we remove individuals who were not part of the representative cross-

sectional sample in 1997 (this removes oversamples of Blacks and Hispanics). In order

to reduce potential initial conditions concerns, we also exclude all respondents who were

born before 1983. Most of those born in 1983 were 13 years old at the time of the first

survey while most of those born in 1984 were 12 years old at that interview. We are

then left with 1,589 individuals. Of these, 55 reported having used Marijuana before

the age of 13 and to avoid left censoring, these were removed.

We also excluded individuals who did not provide valid information on the following:

family income (at any point between 1997 and 2001), mother’s age at birth, family

situation at the time of the survey (divorced parents or not), area of residence, number

of siblings, mother’s education and Armed Forces Qualification Test (AFQT) scores.3

We exclude those with missing information on any of these variables since they are

included as covariates in all model specifications.4 Finally, we remove respondents who

did not provide any answers on questions related to marijuana use and those who we
3AFQT scores consists of four components of the Armed Forces Vocational Aptitude Battery

(ASVAB): Arithmetic Reasoning (AR), Mathematics Knowledge (MK), Word Knowledge (WK), and
Paragraph Comprehension (PC). These scores have been used extensively in research on education
using NLSY data. In this paper, we follow Belzil and Hansen (2020) and regress the scores on age and
education, in order to adjust for age and educational differences at the time of the test, and use the
standardized residual from that regression as the measure of cognitive ability.

4These variables are commonly included in empirical analysis of substance use. We decided not
to include father’s education in the list mainly because of the large number of missing values for this
variable and the skewness in responses to questions about this across the sample (there is a higher
fraction of missing among non-white respondents).
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only observed once. After these selections, the sample consists of 1,204 individuals.

We use information on family income for each individual at ages 16 and 17, if

available, and construct an average income measure. If income is only available for one

of the years, the average income is replaced by that income. If no income information

is available for these ages, we consider income at earlier ages if available in order to

minimize the number of individuals dropped because of missing income. We express

income in year 2000 dollars using the CPI for all urban consumers.

To derive measures of marijuana use, we compile information from questions like:

1) have you ever used marijuana?; 2) when did you start using marijuana?; 3) did you

use marijuana during the year before the interview? and 4) On how many days have

you used marijuana in the last 30 days? From the responses to these questions, we

create individual annual indicators of marijuana use (and non-use) as well as indicators

for intensity of use, conditional on use (less than 10 days last month versus 10 days

or more). Responses to the first three questions are used to validate consistency in

responses while our outcome variables are derived from answers to the fourth question.

In Table 1 below, we present the proportions of the sample that used marijuana at

a given age. At age 13, 3.7 percent of the respondents used marijuana at least once.

Three years later, at age 16, this had increased almost fivefold to 18.3 percent. After

16, the proportion of users increase until age 18 when it peaks and then declines to

around 16 percent when respondents are in their 20s.

The entries in Table 1 do not reveal how respondents move in and out of mari-

juana use. In order to infer the degree of time persistence and the transitory nature

of marijuana use, we show average (across individuals and time periods) conditional

probabilities in Table 2. The entries show row percentages of the probability of using

marijuana in year t, conditional on marijuana use in year t-1. The top row entries

show that 91.5 percent of those who did not use marijuana in year t-1 continued to be
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non-users in year t, while 8.5 percent started using marijuana. Similarly, among those

who used marijuana in year t-1, 63 percent continued using it in year t while 37 percent

stopped.5

While the entries in Table 1 show how usage vary with age, the entries in Table 2

show the anatomy of usage in any year. That is, how many start using it and how many

stop. The focus of this paper is to analyze the persistence over time in marijuana use

and estimate to what extent it is causal (or due to addiction) as opposed to persistence

in observed and unobserved characteristics.

In Table 3, we show average characteristics separately for individuals who never

used marijuana and for those who used it at least once over the sample period. Overall,

males and Hispanics are somewhat overrepresented among users. The proportion living

with both biological parents at the interview date is higher among the never-users (0.66)

than among the users (0.57). For other background variables - family income, mother’s

education, AFQT scores, mother’s age at birth, urban residence and number of siblings

- there are no major differences in sample means between the two groups. Lastly, half

of our sample have used marijuana at least once. This is somewhat lower than the

57-58 percent reported in Deza (2015).

Similar to earlier studies on substance use that utilize retrospective information, our

measures of marijuana are subject to potential measurement error problems, specifically

recall errors. However, unlike most of them (see for instance Van Ours and Williams

(2009) whose sample consists of respondents aged 25-50), the respondents in our sample

were first asked about their marijuana use at a young age (age 12 or 13). We therefore

believe the issue of recall errors is less serious in this paper than in many of the previous

studies on this topic.
5Deza (2015) reports similar proportions (an entry probability of 9.2 percent and a persistence

probability of 67 percent (Table 2, panel B)) using NLSY97, despite different sample selections. She
limited her sample to respondents with a valid state of residence at each wave between 1997 and 2007,
i.e. a balanced panel. She also included the oversample of minorities available in NLSY97.
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3 Binary outcomes

3.1 Estimation

In this paper we explore the persistence in marijuana use and its sources. Exploiting

the longitudinal nature of the NLSY97 data, we analyze the dynamics of marijuana use

(and non-use). Our empirical models are inspired by Heckman (1981) who derived a

general framework for the analysis of discrete choices in discrete time. He showed that

observed choices can be derived from latent variables, which in turn can be thought

of as describing utility differences across alternatives. Hence, observed choices are

outcomes of utility maximization. We follow Lee (1997) and Liu et al (2012) who offers

a description and assessment of generalized versions of Heckman’s original framework.

Specifically, let y∗it denote latent, unobserved utility differences, for individual i in

period t, between using and not using marijuana

y∗i,t = Ψi,t + γyi,t−1 + σµi + εi,t (1)

for i = 1, ..., n; t = 1, ..., Ti and where Ψi,t = Xiβ + κ1 (t− t0) + κ2 (t− t0)2. If

the utility difference is positive, individual i consumes marijuana in period t and the

observed outcome is

yi,t =


1 if y∗i,t > 0

0 if y∗i,t ≤ 0

In our case, yi,0 = 0 as we start observing and modeling marijuana use at age 13.

We include a fairly rich set of observable characteristics in X and assume that the error

terms (µi) and (εi,t) are independent of X and across individuals. While µi is fixed
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over time, εi,t is time-varying and possibly correlated over time. There are four possible

sources of time persistence in marijuana use in equation (1): i) time-invariant observed

characteristics (Xi); ii) true state dependence (γ > 0); iii) time-invariant unobserved

characteristics (µi); and iv) persistence in time-varying shocks (εi,t).

In equation (1), it is assumed that the dynamics of marijuana use can be fully

captured by lagged choices (yi,t−1). Alternatively, we can imagine that there is some

memory in the process and that usage in previous periods may also have a direct or

causal impact on current use. To allow for this, we consider a more general dynamic

representation, described as the Polya model in Lee (1997), where the latent variable

y∗i,t is expressed as:

y∗i,t = Ψi,t + γ
t∑

j=1

δj−1yi,t−j + σµi + εi,t (2)

for i = 1, ..., n; t = 1, ..., Ti and where δ, [0, 1] can be thought of as a discount factor.

When δ = 0, past choices beyond t-1 do not matter for the utility in period t whereas

when δ = 1, the impact of past choices do not fade with time.

We assume that εi,t = ρεi,t−1 + νi,t, where νit are i.i.d N (0, 1), and consequently

the choice probabilities involve multiple integrals. Following Lee (1997), we adopt the

Geweke-Hajivassiliou-Keane (GHK) simulator and estimate the parameters in equations

(1) and (2) using Maximum Simulated Likelihood. The joint probability for observed

choices yi,1, ..., yi,T , conditional on Xi and µi is

Pr (yi,1, ., yi,T |Xi, µi) =
∫ U1

L1
.
∫ UT

LT
f (εi,T |εi,T−1, ., εi,1) f (εi,T−1|εi,T−2, ., εi,1) ...f (εi,1) dεT .dε1(3)

where f (εi,t|εi,t−1, .., εi,1) is the density of εi,t conditional on past realizations of ε

and the integral limits are
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Lt =


−
(
Ψi,t + γ

∑t
j=1 δ

j−1yi,t−j + σµi

)
if yi,t = 1

−∞ if yi,t = 0

and

Ut =


∞ if yi,t = 1

−
(
Ψi,t + γ

∑t
j=1 δ

j−1yi,t−j + σµi

)
if yi,t = 0

Lee (1997) shows how the joint probability in (3) can be expressed using standard

normal density and distribution functions and simulated using the GHK simulator. The

sample likelihood then becomes

L =
∑n

i=1 ln
{

1
m

∑m
j=1

∏Ti

t=1 Φ
(
Di,t

(
Ψi,t + γ

∑t
j=1 δ

j−1yi,t−j + σµj
i + ρεji,t−1

))}
(4)

where Di,t = 2yi,t − 1. The random disturbances εi,t are recursively generated as

described in Lee (1997).6 The µ′s are generated from N (0, 1) random draws while the

ε′s are generated from functions of U [0, 1] draws. Lee (1997) provides Monte Carlo

results for this and other dynamic specifications and concludes that this estimator

generally performs well. Since we use an unbalanced panel, Ti varies between 2 and 14.

We set m = 100.
6We provide a description of the generation of truncated random draws needed for the likelihood

function in the Appendix.
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3.2 Empirical results

In this section, we present both parameter estimates and average partial effects of

selected variables. We use a parametric bootstrap to estimate the standard errors of the

average partial effects. Specifically, for each model we draw 100 vectors of parameter

values from the estimated variance-covariance matrix. For each vector and variable of

interest, we calculate a partial effect. The reported effects below are the average effects

across the 100 draws and the standard errors of the effects are estimated using the

standard deviation of the simulated effects.

3.2.1 Estimates and average partial effects

Estimates from three alternative Probit specifications are presented in Table 4. This

will allow us to analyze how the average partial effects depend on stochastic assumptions

and specifications of the dynamic relationship of marijuana consumption.

The entries in column one refer to a specification where dynamics in marijuana use

is represented by a first-order Markov but with no time-invariant unobserved hetero-

geneity and no persistence in the time-varying shocks. In column two, we retain the

assumption of a first-order Markov but allow for both unobserved heterogeneity and

serial correlation in the time-varying shocks. Finally, in column three we generalize

dynamics of marijuana use by incorporating marijuana use from periods before last

year (see equation 2 above). We set δ to 0.7.

There is evidence of significant time dependence in marijuana use. The estimate in

column one for marijuana use in the previous period (γ) is 1.691 and it is statistically

significant. However, as discussed above, in this simplified model, all persistence in

marijuana is captured by this parameter and it is therefore unlikely to represent the true

(or causal) effect of past use on current use. Maintaining the same dynamic structure

but allowing for another source of persistence has a dramatic (and expected) effect.
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The estimate in column two is 0.976, suggesting that the causal effect of past usage is

seriously exaggerated in the naive specification in column one. Instead, a significant

part of the observed persistence is due to time-invariant, unobserved heterogeneity with

σ̂ equal to 0.851.

The corresponding estimates reported in column three suggest important roles for

all three sources of time dependence. The estimate of previous use (γ) is further reduced

to 0.732 while σ̂ equals 0.414. Further, ρ̂ is significant and equals 0.220. At the bottom

of Table 4, we report the Akaike Information Criteria (AIC) for each model specification

and these favor the most general model presented in column three.

Regarding observable characteristics, the entries in Table 4 suggest that gender,

family stability and size, cognitive skills and peer effects matter for marijuana use. The

estimates associated with these variables are significant and generally similar across all

three specifications while the estimates of the other included variables (shown in Table

A1) are not.

In Table 5 we show the average partial effects for selected variables. The average

partial effects are estimated as P̂ r (yi,t = 1|yi,t−1 = 1)−P̂ r (yi,t = 1|yi,t−1 = 0), and they

are averaged across individuals and time periods. The first row shows the predicted

difference in the probability of using marijuana between users and non-users in the

previous period. According to these estimated effects - for the restrictive model with

a first-order Markov dynamics, no unobserved heterogeneity and no serial persistence

in the error terms - the probability of marijuana use in any given year is 47 percentage

points higher if the person used marijuana the year before. This is a very large effect

considering that the proportion of the sample that use marijuana at any given age very

between 15 and 20 percent (after age 14, see Table 1). However, as we generalize the

models, this conditional probability is reduced. In column two, the difference is 19.2
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percentage points while in column three it has been reduced to 12.9 percentage points.7

The remaining entries in Table 5 show estimated marginal effects of the variables

whose parameter estimates are statistically significant. Overall, and unlike the effect

of past use, the magnitudes are similar across the different model specifications. For

instance, the predicted probability of using marijuana is around two percentage points

higher for males than for females while it is around two percentage points lower for

students living with both biological parents at the time of the interview. Students with

higher cognitive test scores (AFQT) have higher predicted probabilities of marijuana

use although the differences are small (a one standard deviation increase in test scores

raise the probability with less than one percentage point). Finally, the effect of peers

is just over one percentage point across all specifications suggesting that students with

favorable peers are less likely to use marijuana.

3.2.2 Model fit

We assess the model’s ability to generate outcomes that match those observed in the

data by predicting transition probabilities. In Table 6, we show the predicted transition

matrix for marijuana use obtained by simulating outcomes generated by the estimates

from the general Polya model (Model 3 in Table 4). The predicted conditional probabil-

ities, which are averaged over individuals and time, match those in the data (presented

in table 2) well. For example, the probability of using marijuana in year t, conditional

on using marijuana in year t-1, is 0.63 in the data and the predicted probability is

0.66. Moreover, the probability of using marijuana in year t, conditional on not using

marijuana in year t-1 is 0.085 in the data while the predicted probability is 0.099.

7The average partial effect for Model 2 is a bit lower than the corresponding effect (25.1 percentage
points) reported in Deza (2015). Her model, like the one in Model 2, ignores serial persistence in utility
shocks and assume that a first-order Markov structure accurately captures dynamics in marijuana
consumption.
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3.2.3 Sources of persistence

In Table 7 we explore the anatomy of persistent marijuana use. The entries are ob-

tained using estimates from the Polya model and in the first row, we replicate the the

probability of using marijuana in year t, conditional on using marijuana in year t-1,

from Table 6. This is the predicted persistence. In the second row, we remove the

role of time-invariant unobserved heterogeneity by setting σ = 0 and the predicted

probability drops from 0.661 to 0.567. Thus, removing time-invariant unobserved het-

erogeneity reduce persistence with 14 percent. In row three, we remove persistence in

the time-varying utility shocks by setting ρ = 0 (in addition to setting σ = 0). The

predicted persistence further drops to 0.449 indicating that this source of persistence

contributes about 20 percent to the overall persistence.

Finally, in the last row, we also remove the effect of time-invariant observed charac-

teristics and the time trend by setting β = κ1 = κ2 = 0 (in addition to fixing σ = ρ = 0).

This further reduce the persistence from 0.449 to 0.345. The remaining persistence (52

percent of the total) is due to a causal or addictive effect of using marijuana in the

previous period. Thus, a majority of the observed state dependence in marijuana con-

sumption is causal although a large portion is due to persistence in utility shocks and

heterogeneity. A similar finding is reported in Deza (2015).

4 Ordered outcomes

The results so far are based on the dichotomy of marijuana use with no separation

between occasional or moderate consumption and more intense, regular use. This is

arguably restrictive and to allow for different effects depending on the intensity of

consumption, we generalize the model described above to include multiple, ordered
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outcomes.8

4.1 Estimation

Specifically, let c∗i,t denote latent, unobserved utility of marijuana consumption for in-

dividual i in period t

c∗i,t = Ψi,t + γ1

t∑
j=1

δj−11 (ci,t−1 = 1) + γ2

t∑
j=1

δj−11 (ci,t−1 = 2) + σµi + εi,t (5)

for i = 1, ..., n; t = 1, ..., Ti and where Ψi,t = Xiβ + κ1 (t− t0) + κ2 (t− t0)2. 1 (.)

is an indictor function that equals one if the argument is true and zero otherwise. If

utility is below a certain level (θ1), the individual is not consuming marijuana in period

t. If utility exceeds (θ1) but is below (θ2), the individual consumes a moderate amount

of marijuana in period t and finally, if utility exceeds (θ2), the individual is a heavy

user. Thus, the observed outcome (ci,t) is

ci,t =


0 if c∗i,t ≤ θ1

1 if θ1 < c∗i,t ≤ θ2

2 if c∗i,t > θ2

As mentioned above in the binary case, ci,0 = 0 since we start observing and mod-

eling marijuana use at age 13. We maintain the assumptions that the error terms (µi)

and (εit) are independent of X and across individuals, µi is i.i.d. N (0, 1) and fixed
8Honore et al (2021) derive a generalized method of moments estimator for a dynamic ordered Logit

model with fixed effects, assuming time independence of the utility shocks. We argue that since we
observe the initial conditions, the argument for using a fixed effects estimator instead of a random
effects estimator (like we do) is weaker.
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over time while εi,t = ρεi,t−1 + νi,t, where νi,t are i.i.d N (0, 1). We define ci,t = 0 if

the person did not use marijuana in period t, ci,t = 1 if the person used marijuana less

than 10 times per month in period t (moderate use) and ci,t = 2 if the person used

marijuana 10 times or more per month in period t (heavy use).

Given the stochastic assumptions and the assignment rule above, the probabilities

of observed outcomes are then

Pr (ci,t = 0|ci,t−1) = Φ (θ1 − λi,t) = Λ0

Pr (ci,t = 1|ci,t−1) = Φ (θ2 − λi,t)− Φ (θ1 − λi,t)= Λ1

Pr (ci,t = 2|ci,t−1) = 1− Φ (θ2 − λi,t) = Λ2

where

λi,t = Ψi,t + γ1

t∑
j=1

δj−11 (ci,t−1 = 1) + γ2

t∑
j=1

δj−11 (ci,t−1 = 2) + σµi + ρεi,t−1

We again adopt the Geweke-Hajivassiliou-Keane (GHK) simulator and estimate

the parameters in equation (5) using Maximum Simulated Likelihood. The sample

likelihood is an adjusted version of the one presented in equation (4) above

L =
n∑

i=1

ln
{

1
m

∑m
j=1

∏Ti

t=1 Λ0
I(cit=0)Λ

I(cit=1)
1 Λ

I(cit=2)
2

}
(6)

The random disturbances εi,t are generated recursively, similar to the binary case,

and the µ′s are generated from N (0, 1) random draws while the ε′s are generated from
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functions of U [0, 1] draws.9 We set m = 100.

4.2 Empirical results

4.2.1 Descriptive statistics

The proportions of the sample that used marijuana at a given age, by intensity level,

are presented in Table 8. At age 13, of the 3.7 percent of the respondents who used

marijuana at least once, a majority (73 percent) used it occasionally (less than 10

days during the 30 days preceding the survey date). Three years later, at age 16,

the proportion of intense users, among all users, increase to 33 percent. In fact, the

proportion of intense users, among all users, increase with age and reach over 60 percent

at age 26. This suggests a higher degree of persistence among the intense users.

The entries in Table 9 show the degree of time persistence and the transitory nature

of marijuana use, conditional on intensity of consumption. Like before, we show aver-

age (across individuals and time periods) conditional probabilities and the entries show

row percentages of the probability of consuming a certain level of marijuana in year t,

conditional on marijuana use in year t-1. The top row entries show, like before, that

91.5 percent of those who did not use marijuana in year t-1 continued to be non-users

in year t. Among the remaining non-users, 6.4 percent started consuming marijuana

at a moderate intensity level while 2.1 percent (a quarter of those who started using

marijuana) used marijuana intensively (used it at least 10 days or more during the

30 days preceding the survey date). Among those who used marijuana moderately in

year t-1, almost half stopped consuming it in year t while 16 percent increased their

consumption the following year. Only 34 percent continued with moderate use, sug-

gesting a transitory nature among occasional or moderate users. The entries in the last

row show that 20 percent of the intense users in period t-1 stopped using marijuana in
9See the Appendix for details.
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period t while 16.6 percent reduced their consumption (but kept consuming). However,

the majority (63.5 percent) continued their intense level of consumption the following

year (in year t).

4.2.2 Estimates and average partial effects

Estimates from the ordered Probit Polya model (the likelihood presented in equation

6) are shown in Table 10. Similar to the binary case, we set δ to 0.7. The model

includes the same set of observed characteristics as the ones for the binary case but we

report only a subset of the associated estimates in Table 10 (those that are statistically

significant). The full set of estimates are provided in Table A2 in Appendix.

The estimates in the first two rows suggest existence of true or causal time depen-

dence in outcomes and this dependence is stronger for intense marijuana use. The

estimates are 0.432 and 0.786 for moderate and heavy use, respectively. We will illus-

trate how these estimates translate into average partial effects and predicted transition

probabilities below. The estimates for male, intact family and peers are similar in mag-

nitude (and statistical significance) to those obtained in the binary case (see column 3

of Table 4). The standard deviation of the persistent unobserved heterogeneity term,

σ̂, is 0.569, again similar to the estimate in the binary model. Finally, there is evidence

of serial persistence in the error terms (εit) as ρ̂ is significant and equals 0.300.

In Table 11 we show the average partial effects for selected variables. The first two

rows show the predicted difference in the probability of using marijuana at a moderate

level when we condition on different consumption levels in the previous time period.

The first effect is the difference in conditional probabilities of moderate consumption

when we condition on moderate versus no consumption in the previous time period

while the second effect conditions on moderate and heavy use instead. The former

effect (moderate versus no consumption) is 0.046 while the second effect is -0.051.
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That is, the probability of consuming moderate levels of marijuana in year t is 4.6

percentage points higher if the person consumed the same level of marijuana in year

t-1, relative to not using any marijuana in year t-1. While the magnitude of this effect

is smaller than the one obtained in the binary case, it constitutes a relative effect that

is close to 50 percent, given the observed moderate consumption rates observed in the

data. The negative effect for moderate versus heavy usage suggests a higher probability

of moderate use in year t for those with a heavy consumption in the previous year

compared to those with moderate consumption.

In rows three and four we present the corresponding probability differences for heavy

consumption levels. The first effect is the difference in conditional probabilities of heavy

consumption when we condition on heavy versus no consumption in the previous time

period while the second effect conditions on heavy and moderate use instead. The

former effect equals 0.043 and is similar to the one estimated for moderate use. The

second effect is smaller, 0.027. That is, the probability of consuming heavy levels of

marijuana in year t is 4.3 percentage points higher if the person consumed the same

level of marijuana in year t-1, relative to not using any marijuana in year t-1. Again,

while the magnitude of this effect is smaller than the one obtained in the binary case,

it constitutes a relative effect that is close to 50 percent, given the observed moderate

consumption rates observed in the data.

The remaining entries in Table 11 show estimated marginal effects of the variables

whose parameter estimates are statistically significant. For all four variables (male,

intact family, afqt and peers), the average partial effects are larger in absolute value

for moderate use than for heavy use. For example, the predicted probability of using a

moderate level of marijuana is 1.3 percentage points higher for males than for females

while it is only 0.4 percentage points higher in the heavy consumption case. A similar

difference applies to the impact of living with both biological parents at the time of the
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interview. While youth in intact families are less likely to use any level of marijuana,

the strength of the effect is weaker for heavy use (-0.005 versus -0.016 for moderate

use).

4.2.3 Model fit

Similar to the binary case presented above, we assess the model’s ability to generate

outcomes that match those observed in the data by predicting transition probabilities.

In Table 12, we show the predicted transition matrix for marijuana use obtained by

simulating outcomes generated by the estimates from the ordered Polya model. The

predicted conditional probabilities, which are averaged over individuals and time, match

those in the data (presented in Table 9) reasonably well. For example, the probability

of not using marijuana in year t, conditional on not using marijuana in year t-1 is 0.915

in the data and the predicted probability is 0.92. The predicted entry probabilities,

going from non-use to moderate or intense use, also match those in the data well.

The second row entries show probabilities of various use conditional on moderate

use in period t-1. The predicted exit (or stopping) probability is 0.551 compared to

0.497 in the data. However, the model underestimates the probability of remaining a

moderate user somewhat (0.254 versus 0.339) and slightly exaggerates the transition

from moderate to intense use (0.195 versus 0.164). Conditional on heavy use, the

predicted probabilities are similar to those in the data, especially the probability of

remaining an intense user (0.598 versus 0.635 in the data). Overall, the model generates

predicted transition matrix entries that match those in the data well.
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4.2.4 Sources of persistence

In Table 13 we replicate the analysis on the anatomy of persistent marijuana use but

generalize it to allow differential impacts on moderate and heavy use. The entries in

column one refers to moderate use, P̂ r
(
ymi,t = 1|ymi,t−1 = 1

)
, while those in column two

refer to heavy use, P̂ r
(
yhi,t = 1|yhi,t−1 = 1

)
. They are obtained using estimates from

the ordered Polya model and in the first row, we replicate the the probabilities of

marijuana consumption in year t, conditional on the same intensity level of marijuana

consumption in year t-1, from Table 12. In the second row, we remove the role of

time-invariant unobserved heterogeneity by setting σ = 0. The predicted probability

drops marginally from 0.254 to 0.173 in the moderate case and from 0.598 to 0.355 in

the heavy case. Thus, persistent unobserved heterogeneity contributes significantly to

time dependence in both types of marijuana consumption, by 32 percent for moderate

consumption levels and by just over 40 percent for heavy use.

In row three, we remove persistence in the time-varying utility shocks by setting ρ =

0 (in addition to setting σ = 0). The predicted persistence further drops to 0.156 for the

moderate case and to 0.255 for the intense case. This source of persistence contributes

about 7 percent to the overall persistence for both moderate levels of marijuana use

and 17 percent for heavy levels. Finally, in the last row, we also remove the effect of

time-invariant observed characteristics and the time trend by setting β = κ1 = κ2 = 0.

This further reduce the persistence from 0.156 to 0.118 in the moderate case and from

0.255 to 0.196 in the intense case. The remaining persistence (47 percent of the total for

moderate use and 33 percent of the total for intense use) is due to a causal or addictive

effect of using marijuana in the previous period.

That is, most of the overall persistence in moderate consumption is due to structural

state dependence (this result also applies when we consider consumption as a binary

outcome) while for heavy consumption, most of the persistence is due to individual
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heterogeneity.

5 Conclusions

In this paper we provide new evidence on the persistence of marijuana use among Amer-

ican youth. This topic is important for many reason, one being the fact that marijuana

consumption among teenagers is inversely related to many successful future labor mar-

ket outcomes. It is perhaps more important than ever given the recent legalization of

recreational marijuana use in many jurisdictions. Moreover, according to 2018 results

on monitoring the future from the National Institute on Drug Abuse, marijuana use

were at historic highs in 2018, both among college and non-college peers.

The previous literature on persistence of marijuana consumption is limited. A no-

table exception is Deza (2015) who estimate a dynamic discrete choice model of alcohol,

marijuana and hard drugs use and focus on the state dependence in these, as well as

dependence across different drugs. While our paper share many features with Deza

(2015), there are also important differences. Unlike her, we allow for persistence in

the utility shocks, in addition to persistence generated from time-invariant unobserved

heterogeneity and pure or causal state dependence. Further, we specify the dynamics in

marijuana use in a more flexible way and do not limit it to the inclusion of a one-period

lag. Perhaps most importantly, in the second part of the paper, we distinguish between

different intensity levels of marijuana consumption. Instead of using a binary outcome

(used or not), we code moderate use (consumption during 1-10 days last month) sepa-

rately from heavy use (consumption during 10 days or more last month). We show that

moderate consumption is transitory and less persistent than heavy use. A significant

fraction in the data (16.4 percent) of moderate users transit to heavy use in the next

period while an even larger share (49.7 percent) stop using marijuana next period.
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The estimated average partial effects show that previous consumption significantly

increase the probability of current consumption. We show that these effects exist for

all consumption levels but are severely exaggerated in models that ignores persistence

in utility shocks and restricts the form of dynamics. However, even in the most gen-

eral model specifications, the partial effects suggest that the probability of consuming

marijuana now increase by a factor of 1.5 when we change the status of previous con-

sumption from none to moderate or heavy. This finding is robust towards aggregation

of marijuana consumption.

We also disaggregate overall persistence into four components and show the relative

contribution of each. The results show that persistent unobserved heterogeneity plays

a large role in persistence of heavy marijuana consumption (40 percent of overall per-

sistence is due to unobserved heterogeneity) and less so for moderate use (32 percent

is due to unobserved heterogeneity). Persistence in time-varying random shocks also

play a significant role and its importance is similar that observed for persistent ob-

served individual characteristics. Finally, true or causal state dependence is important

for both intensity levels, but more so for moderate consumption (47 and 33 percent,

respectively).

The results for moderate use are similar to those obtained in the binary case where

there is no distinction between occasional and intense consumption. These results

are also similar to those found in Deza (2015). However, by ignoring the possibility

that structural persistence is a function of the level of consumption, the role of causal

state dependence may be exaggerated. This in turn may lead to misguided policy

recommendations as the risk of addictive behavior may be overstated.

We believe the framework and results provided in this paper will serve as a catalyst

for further work in this important area of economics and health. For example, we have

restricted the state dependence to be constant across individuals. It would be interesting
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to investigate if there are differences in persistence between males and females as well

as across racial groups. Moreover, we have not considered the consumption of alcohol

and cigarettes in this paper but this could be an interesting avenue for future research,

building also on the work of Deza (2015). In a companion paper where we estimate

the effect of marijuana use on educational attainment, Davalloo and Hansen (2022), we

find that age of marijuana initiation is and important determinant of the effect. It may

also impact the persistence of marijuana use. These are all topics for extensions of this

paper that we plan to pursue in the near future.
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Table 1: Proportion of respondents using marijuana, by age.

Number of
Age Used

marijuana
individuals

13 0.037 1,204

14 0.091 1,204

15 0.154 1,176

16 0.183 1,142

17 0.204 1,103

18 0.218 1,064

19 0.196 1,024

20 0.200 977

21 0.180 937

22 0.186 916

23 0.160 883

24 0.161 859

25 0.165 843

26 0.162 832
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Table 2: Transition matrix

Used marijuana in year t
Used marijuana in year t-1 Yes No

Yes 0.630 0.370

No 0.085 0.915

Note: Row percentages.
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Table 3: Sample means, by marijuana use

Never used Used at least
once

Male 0.49 0.55

Black 0.14 0.13

Hispanic 0.11 0.13

Intact family 0.66 0.57

Family income $66,191 $65,429

Mother - high school graduate 0.33 0.34

Mother - attend college 0.53 0.53

AFQT 170.9 172.0

Mother’s age at birth 26.4 26.2

Urban 0.71 0.75

Number of siblings 2.5 2.4

Peers 0.08 -0.08

Number of individuals 598 606

Note: Family income is expressed in year 2000 dollars.
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Table 4: Selected estimates from binary Probits.

Model 1 Model 2 Model 3

Used marijuana in (t-1) 1.691 0.976 0.732
(0.032) (0.045) (0.053)

σ - 0.851 0.414
(0.040) (0.032)

ρ - - 0.220
(0.083)

Male 0.113 0.157 0.133
(0.028) (0.063) (0.050)

Intact family -0.113 -0.244 -0.148
(0.024) (0.068) (0.058)

AFQT 0.047 0.074 0.062
(0.015) (0.035) (0.033)

Peers -0.071 -0.115 -0.076
(0.011) (0.034) (0.025)

AIC 9,422 8,887 8,771
LogL -4,695 -4,427 -4,368

Note: Standard errors in parentheses. AIC is the Akaike Information Criteria. The dynamics of
marijuana use in Models 1 and 2 are assumed to follow a first-order Markov structure. In Model 3,
the dynamics is generalized to incorporate use prior to last year. Models 2 and 3 were estimated using
simulated Maximum Likelihood with 100 simulation draws.
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Table 5: Average partial effects from binary Probits.

Model 1 Model 2 Model 3

Used marijuana in (t-1) 0.473 0.192 0.129
(0.009) (0.013) (0.014)

Male 0.019 0.021 0.017
(0.005) (0.008) (0.006)

Intact family -0.018 -0.032 -0.018
(0.004) (0.009) (0.008)

AFQT 0.008 0.010 0.007
(0.002) (0.005) (0.004)

Peers -0.012 -0.016 -0.010
(0.002) (0.004) (0.003)

Note: Standard errors in parentheses. AIC is the Akaike Information Criteria. The dynamics of
marijuana use in Models 1 and 2 are assumed to follow a first-order Markov structure. In Model 3,
the dynamics is generalized to incorporate use prior to last year. Models 2 and 3 were estimated using
simulated Maximum Likelihood with 100 simulation draws. A parametric bootstrap with 100 draws
was used to estimate the standard errors.
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Table 6: Predicted transition matrices

Used marijuana in year t
Used marijuana in year t-1 Yes No

Yes 0.661 0.339
(0.159) (0.159)

No 0.099 0.901
(0.054) (0.054)

Note: Average transition probabilities from simulation of outcomes using estimates from Model 3 in
Table 4 (the Polya model). Standard errors in parentheses. A parametric bootstrap with 100 draws
was used to estimate the standard errors.
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Table 7: Sources of persistence

Polya

(1) Predicted persistence 0.661

(2) Removing time-invariant unobserved heterogeneity 0.567
Proportion of total persistene - (2)/(1) 0.857

(3) Removing time-varying unobserved characteristics and (2) 0.449
Proportion of total persistene - (3)/(1) 0.679

(4) Removing observed characteristics, time trend and (3) 0.345
Proportion of total persistene - (4)/(1) 0.522

Note: The entries are derived using estimates fromModel 3 in Table 4 and show Pr (yi,t = 1|yi,t−1 = 1).
In (2), we set σu = 0 and in (3), we set σu = 0; ρ = 0. Finally, in (4), we set σu = 0; ρ = 0;β = 0;κ1 =
0;κ2 = 0.
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Table 8: Proportion of respondents using marijuana, by age.

Used marijuana Number of
Age Did not use marijuana less than 10 days 10 days or more individuals

13 0.963 0.027 0.010 1,204

14 0.909 0.073 0.018 1,204

15 0.846 0.107 0.047 1,176

16 0.817 0.122 0.061 1,142

17 0.796 0.119 0.085 1,103

18 0.782 0.116 0.102 1,064

19 0.804 0.104 0.093 1,024

20 0.800 0.107 0.092 977

21 0.820 0.099 0.081 937

22 0.814 0.094 0.092 916

23 0.840 0.079 0.080 883

24 0.839 0.079 0.081 859

25 0.835 0.077 0.088 843

26 0.838 0.064 0.099 832
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Table 9: Transition matrix

Days of marijuana use last month in year t
0 1-9 10 or more

Days of marijuana use last month in year t-1
0 0.915 0.064 0.021

1-9 0.497 0.339 0.164

10 or more 0.198 0.166 0.635

Note: Row percentages.

38



Table 10: Selected estimates from an ordered Probit polya model

Standard
Estimate error

Marijuana, 1-9 days (t-1) 0.432 0.047

Marijuana, 10+ days (t-1) 0.786 0.051

Male 0.143 0.047

Intact family -0.183 0.054

AFQT 0.056 0.031

Peers -0.088 0.026

σ 0.569 0.060

ρ 0.300 0.025

θ1 1.735 0.182

θ2 2.556 0.186

LogL -5,623

Note: The specification included additional observed characteristics (the same list as in Table 4). The
remaining parameter estimates and standard errors are presented in Table A2 in Appendix.
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Table 11: Average partial effects from selected variables on the probability of moderate
and heavy marijuana consumption.

Moderate Heavy

Pr
(
ymi,t = 1|ymi,t−1 = 1

)
− Pr

(
ymi,t = 1|yni,t−1 = 1

)
0.046 -
(0.001)

Pr
(
ymi,t = 1|ymi,t−1 = 1

)
− Pr

(
ymi,t = 1|yhi,t−1 = 1

)
-0.051 -
(0.001)

Pr
(
yhi,t = 1|yhi,t−1 = 1

)
− Pr

(
yhi,t = 1|yni,t−1 = 1

)
- 0.043

(0.001)

Pr
(
yhi,t = 1|yhi,t−1 = 1

)
− Pr

(
yhi,t = 1|ymi,t−1 = 1

)
- 0.027

(0.001)

Male 0.013 0.004
(0.001) (0.001)

Intact family -0.016 -0.005
(0.001) (0.001)

AFQT 0.003 0.001
(0.001) (0.001)

Peers -0.005 -0.001
(0.001) (0.001)

Note: A parametric bootstrap with 100 draws was used to estimate the standard errors of the average
partial effects.
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Table 12: Model fit: Transition matrix

Days of marijuana use last month in year t
0 1-9 10 or more

Days of marijuana use last month in year t-1
0 0.923 0.060 0.017

(0.003) (0.002) (0.001)

1-9 0.551 0.254 0.195
(0.002) (0.003) (0.003)

10 or more 0.183 0.219 0.598
(0.004) (0.003) (0.006)

Note: Row percentages.

41



Table 13: Sources of persistence

Persistence
Moderate Heavy

(1) Predicted persistence 0.254 0.598

(2) Removing time-invariant unobserved heterogeneity 0.173 0.355
Proportion of total persistene - (2)/(1) 0.680 0.594

(3) Removing time-varying unobserved characteristics and (2) 0.156 0.255
Proportion of total persistene - (3)/(1) 0.615 0.427

(4) Removing observed characteristics, time trend and (3) 0.118 0.196
Proportion of total persistene - (4)/(1) 0.467 0.328

Note: The entries are derived using estimates from the model presented in Table 10 and show
Pr
(
yji,t = 1|yji,t−1 = 1

)
, j = Moderate,Heavy. A parametric bootstrap with 100 draws was used

to estimate the standard errors. In (2), we set σu = 0 and in (3), we set σu = 0; ρ = 0. Finally, in (4),
we set σu = 0; ρ = 0;β = 0;κ1 = 0;κ2 = 0.
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Appendix

Table A1: Estimates from binary Probits.

Model 1 Model 2 Model 3

Black -0.079 -0.153 -0.054
(0.064) (0.103) (0.074)

Hispanic 0.004 0.046 0.029
(0.066) (0.071) (0.079)

Family income 0.001 0.004 0.002
(0.003) (0.006) (0.005)

Mother High School 0.049 0.026 0.033
(0.049) (0.092) (0.076)

Mother College 0.015 -0.015 -0.005
(0.052) (0.092) (0.099)

Mother’s age -0.001 0.0003 -0.001
(0.003) (0.007) (0.005)

Urban 0.037 0.095 0.053
(0.037) (0.029) (0.049)

Siblings -0.049 -0.078 -0.052
(0.021) (0.031) (0.029)

(t− t0) 0.077 0.180 0.088
(0.017) (0.019) (0.029)

(t− t0)2 -0.005 -0.011 -0.008
(0.001) (0.001) (0.002)

Constant -1.508 -1.970 -1.571
(0.159) (0.235) (0.198)

Note: Standard errors in parentheses. The remaining parameters and model descriptions are available
in Table 4 together with likelihood values and AIC.
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Table A2: Estimates from an ordered Probit polya model

Standard
Estimate error

Black -0.056 0.082

Hispanic 0.047 0.075

Family income 0.001 0.005

Mother High School 0.031 0.060

Monther College -0.006 0.056

Mother’s age at birth -0.0002 0.005

Urban 0.082 0.054

Siblings -0.050 0.026

(t− t0) 0.124 0.023

(t− t0)2 -0.010 0.001

Note: The remaining parameters and model descriptions are available in Table 10 together with
likelihood values and AIC.
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Generation of truncated random variables for the sim-

ulated likelihood function

Binary outcomes

In order to derive the likelihood function in equation (4), we need to generate random

variables (ei,t) from truncated standard normal distributions on [Li,t, Ui,t]. This can

be done by transformations of uniformly distributed random variables, ui,t ∼ U [0, 1].

Specifically, for each independent simulation run (j), ei,t can be recursively generated

as follows (see also Lee (1997)).

1. Draw µi from a standard normal distribution.

2. For the first period,

(a) Calculate di,1 = Ψi,1 + σµi (assuming the following initial conditions εi,0 = 0

and yi,0 = 0 for all individuals)

(b) Calculate ai,1 = Φ (di,1) ∗ I (yi,1 = 1) + Φ (−di,1) ∗ I (yi,1 = 0)

(c) Calculate b0i,1 = ui,1 ∗ Φ (−di,1)

(d) Calculate b1i,1 = Φ (−di,1) + ui,1 ∗ Φ (di,1)

(e) Calculate ei,1 = Φ−1
(
b0i,1
)
∗ I (yi,1 = 0) + Φ−1

(
b1i,1
)
∗ I (yi,1 = 1)

(f) Obtain εi,1 = ei,1

3. For t > 1,

(a) Calculate di,t = Ψi,t + γ
∑t

j=1 δ
j−1yi,t−j + σµi + ρεi,t−1 + νi,t , where νi,t is

drawn from a standard normal distribution

(b) Calculate ai,t = Φ (di,t) ∗ I (yi,t = 1) + Φ (−di,t) ∗ I (yi,t = 0)
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(c) Calculate b0i,t = ui,t ∗ Φ (−di,t)

(d) Calculate b1i,t = Φ (−di,t) + ui,t ∗ Φ (di,t)

(e) Calculate ei,t = Φ−1
(
b0i,t
)
∗ I (yi,t = 1) + Φ−1

(
b1i,t
)
∗ I (yi,t = 0)

(f) Obtain εi,t = ei,t + ρεi,t−1

This is done m times. The simulated likelihood is then

L =
∑n

i=1 ln
{

1
m

∑m
j=1

∏Ti

t=1 ai,t

}
Asymptotic properties of this estimator are discussed in Lee (1997) as well as in the

references in that paper.

Ordered outcomes

The simulated likelihood function for the dynamic ordered Probit proceeds in a similar

fashion but modified to accomodate the ternary nature of our outcomes. Specifically,

for each independent simulation run (j), ei,t can be recursively generated as follows:

1. Draw µi from a standard normal distribution.

2. For the first period,

(a) Calculate di,1 = Ψi,1 + σµi (assuming the following initial conditions εi,0 = 0

and ci,0 = 0 for all individuals)

(b) Calculate ai,1 = Φ (θ1 − di,1) ∗ I (ci,1 = 0) + [Φ (θ2 − di,1)− Φ (θ1 − di,1)] ∗

I (ci,1 = 1) + [1− Φ (θ2 − di,1)] ∗ I (ci,1 = 2)

(c) Calculate b0i,1 = ui,1 ∗ Φ (θ1 − di,1)

(d) Calculate b1i,1 = Φ (θ1 − di,1) + ui,1 ∗ [Φ (θ2 − di,1)− Φ (θ1 − di,1)]

(e) Calculate b2i,1 = Φ (θ2 − di,1) + ui,1 ∗ [1− Φ (θ2 − di,1)]
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(f) Calculate ei,1 = Φ−1
(
b0i,1
)
∗ I (ci,1 = 0) + Φ−1

(
b1i,1
)
∗ I (ci,1 = 1) + Φ−1

(
b2i,1
)
∗

I (ci,1 = 2)

(g) Obtain εi,1 = ei,1

3. For t > 1,

(a) Calculate di,t = Ψi,t +γ1
∑t

j=1 δ
j−11 (ci,t−1 = 1) +γ2

∑t
j=1 δ

j−11 (ci,t−1 = 2) +

σµi + ρεi,t−1 + νi,t , where νi,t is drawn from a standard normal distribution

(b) Calculate ai,t = Φ (θ1 − di,t) ∗ I (ci,t = 0) + [Φ (θ2 − di,t)− Φ (θ1 − di,t)] ∗

I (ci,t = 1) + [1− Φ (θ2 − di,t)] ∗ I (ci,t = 2)

(c) Calculate b0i,t = ui,t ∗ Φ (θ1 − di,t)

(d) Calculate b1i,t = Φ (θ1 − di,t) + ui,t ∗ [Φ (θ2 − di,t)− Φ (θ1 − di,t)]

(e) Calculate b2i,t = Φ (θ2 − di,t) + ui,t ∗ [1− Φ (θ2 − di,t)]

(f) Calculate ei,t = Φ−1
(
b0i,t
)
∗ I (ci,t = 0) + Φ−1

(
b1i,t
)
∗ I (ci,t = 1) + Φ−1

(
b2i,t
)
∗

I (ci,t = 2)

(g) Obtain εi,t = ei,t + ρεi,t−1

Similar to the binary case, this is done m times and the simulated likelihood is

L =
∑n

i=1 ln
{

1
m

∑m
j=1

∏Ti

t=1 ai,t

}
Asymptotic properties of this estimator are discussed in Lee (1997) as well as in the

references in that paper.
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