Endogenous Production Networks and Non-Linear Monetary Transmission

Mishel Ghassibe

CREi, UPF & BSE

CEBRA Annual Meeting New York City, July 7th 2023

Motivation: non-linear monetary transmission to GDP

Motivation: non-linear monetary transmission to GDP

Jordà et al. (2019)

• Tightening in a fully non-linear medium-scale New Keynesian model:

Tenreyro and Thwaites (2016)

Ascari and Haber (2021)

• A novel tractable framework for rationalizing a range of non-linearities in monetary transmission, with the key mechanism supported by new empirical evidence

- A novel tractable framework for rationalizing a range of non-linearities in monetary transmission, with the key mechanism supported by new empirical evidence
- 1 Develop a sticky-price model with input-output linkages that are formed endogenously

- A novel tractable framework for rationalizing a range of non-linearities in monetary transmission, with the key mechanism supported by new empirical evidence
- 1 Develop a sticky-price model with input-output linkages that are formed endogenously

- A novel tractable framework for rationalizing a range of non-linearities in monetary transmission, with the key mechanism supported by new empirical evidence
- 1 Develop a sticky-price model with input-output linkages that are formed endogenously

Key novel mechanism: states of the world with more linkages feature stronger pricing complementarities and stronger real effects of monetary policy

(Productivity \uparrow , desired markups \downarrow , money supply \uparrow) \longrightarrow Linkages \uparrow

- A novel tractable framework for rationalizing a range of non-linearities in monetary transmission, with the key mechanism supported by new empirical evidence
- 1 Develop a sticky-price model with input-output linkages that are formed endogenously

Key novel mechanism: states of the world with more linkages feature stronger pricing complementarities and stronger real effects of monetary policy

```
(Productivity \uparrow, desired markups \downarrow, money supply \uparrow) \longrightarrow Linkages \uparrow
```

2 Jointly rationalize empirically established monetary non-linearities:

- A novel tractable framework for rationalizing a range of non-linearities in monetary transmission, with the key mechanism supported by new empirical evidence
- 1 Develop a sticky-price model with input-output linkages that are formed endogenously

```
(Productivity \uparrow, desired markups \downarrow, money supply \uparrow) \longrightarrow Linkages \uparrow
```

- 2 Jointly rationalize empirically established monetary non-linearities:
 - Cycle dependence: monetary policy's effect on GDP is procyclical

- A novel tractable framework for rationalizing a range of non-linearities in monetary transmission, with the key mechanism supported by new empirical evidence
- 1 Develop a sticky-price model with input-output linkages that are formed endogenously

```
(Productivity \uparrow, desired markups \downarrow, money supply \uparrow) \longrightarrow Linkages \uparrow
```

- 2 Jointly rationalize empirically established monetary non-linearities:
 - Cycle dependence: monetary policy's effect on GDP is procyclical
 - ▶ Path dependence: monetary policy's effect on GDP is stronger following past loose policy

- A novel tractable framework for rationalizing a range of non-linearities in monetary transmission, with the key mechanism supported by new empirical evidence
- 1 Develop a sticky-price model with input-output linkages that are formed endogenously

```
(Productivity \uparrow, desired markups \downarrow, money supply \uparrow) \longrightarrow Linkages \uparrow
```

- 2 Jointly rationalize empirically established monetary non-linearities:
 - Cycle dependence: monetary policy's effect on GDP is procyclical
 - ▶ Path dependence: monetary policy's effect on GDP is stronger following past loose policy
 - ▶ Size dependence: large monetary shocks have a disproportionate effect on GDP

- A novel tractable framework for rationalizing a range of non-linearities in monetary transmission, with the key mechanism supported by new empirical evidence
- 1 Develop a sticky-price model with input-output linkages that are formed endogenously

```
(Productivity \uparrow, desired markups \downarrow, money supply \uparrow) \longrightarrow Linkages \uparrow
```

- 2 Jointly rationalize empirically established monetary non-linearities:
 - Cycle dependence: monetary policy's effect on GDP is procyclical
 - ▶ Path dependence: monetary policy's effect on GDP is stronger following past loose policy
 - ▶ Size dependence: large monetary shocks have a disproportionate effect on GDP
- 3 Novel model-free empirical evidence on network responses to shocks

A TWO-PERIOD SETTING

Overview

• K sectors, continuum of firms Φ_k in each sector

- K sectors, continuum of firms Φ_k in each sector
- Roundabout Production (for firm j in sector k):

$$Y_k(j) = \psi(S,\Omega) \mathcal{A}_k(S_k) N_k(j)^{1-\sum_{r \in S_k} \omega_{kr}} \prod_{r \in S_k} Z_{kr}(j)^{\omega_{kr}}, \quad \forall k, \forall j \in \Phi_k$$

where $S_k \subseteq \{1, 2, ..., K\}$ is sector k's choice of suppliers, $\mathcal{A}_k(.)$ is the technology mapping, $\omega_{kr} = [\Omega]_{kr}$ are input-output weights, $N_k(j)$ is labor, $Z_{kr}(j)$ is intermediates

- K sectors, continuum of firms Φ_k in each sector
- Roundabout Production (for firm j in sector k):

$$Y_k(j) = \psi(S,\Omega) \mathcal{A}_k(S_k) N_k(j)^{1-\sum_{r \in S_k} \omega_{kr}} \prod_{r \in S_k} Z_{kr}(j)^{\omega_{kr}}, \quad \forall k, \forall j \in \Phi_k$$

where $S_k \subseteq \{1, 2, ..., K\}$ is sector k's choice of suppliers, $\mathcal{A}_k(.)$ is the technology mapping, $\omega_{kr} = [\Omega]_{kr}$ are input-output weights, $N_k(j)$ is labor, $Z_{kr}(j)$ is intermediates

• Marginal Cost (conditional on supplier choice):

$$MC_k = \frac{1}{\mathcal{A}_k(S_k)} W^{1 - \sum_{r \in S_k} \omega_{kr}} \prod_{r \in S_k} P_r^{\omega_{kr}}, \quad \forall k, \forall j \in \Phi_k$$

- K sectors, continuum of firms Φ_k in each sector
- Roundabout Production (for firm j in sector k):

$$Y_k(j) = \psi(S,\Omega) \mathcal{A}_k(S_k) N_k(j)^{1-\sum_{r \in S_k} \omega_{kr}} \prod_{r \in S_k} Z_{kr}(j)^{\omega_{kr}}, \quad \forall k, \forall j \in \Phi_k$$

where $S_k \subseteq \{1, 2, ..., K\}$ is sector k's choice of suppliers, $\mathcal{A}_k(.)$ is the technology mapping, $\omega_{kr} = [\Omega]_{kr}$ are input-output weights, $N_k(j)$ is labor, $Z_{kr}(j)$ is intermediates

Marginal Cost (conditional on supplier choice):

$$MC_k = \frac{1}{\mathcal{A}_k(S_k)} W^{1 - \sum_{r \in S_k} \omega_{kr}} \prod_{r \in S_k} P_r^{\omega_{kr}}, \quad \forall k, \forall j \in \Phi_k$$

Optimal Network:

$$S_k^* \in \arg\min_{S_k} MC_k(S, P), \quad \forall k$$

where $S = [S_1, S_2, ..., S_K]'$ and $P = [P_1, P_2, ..., P_K]'$

• Optimal reset price:

$$\overline{P}_k = (1 + \mu_k) M C_k, \quad (1 + \mu_k) = (1 + \tau_k) \frac{\theta}{\theta - 1}$$

where τ_k is tax, θ is within-sector elasticity of substitution

• Optimal reset price:

$$\overline{P}_k = (1 + \mu_k) M C_k, \quad (1 + \mu_k) = (1 + \tau_k) \frac{\theta}{\theta - 1}$$

where τ_k is tax, θ is within-sector elasticity of substitution

• Nominal rigidity: randomly selected fraction α_k in sector k sets exogenous $P_{k,0}$

• Optimal reset price:

$$\overline{P}_k = (1 + \mu_k) M C_k, \quad (1 + \mu_k) = (1 + \tau_k) \frac{\theta}{\theta - 1}$$

where τ_k is tax, θ is within-sector elasticity of substitution

- Nominal rigidity: randomly selected fraction α_k in sector k sets exogenous $P_{k,0}$
- Flow Utility:

$$\mathcal{U} = \ln C - N, \quad C \equiv \prod_{k=1}^K C_k^{\omega_{ck}}.$$

• Optimal reset price:

$$\overline{P}_k = (1 + \mu_k) M C_k, \quad (1 + \mu_k) = (1 + \tau_k) \frac{\theta}{\theta - 1}$$

where τ_k is tax, θ is within-sector elasticity of substitution

- Nominal rigidity: randomly selected fraction α_k in sector k sets exogenous $P_{k,0}$
- Flow Utility: $\mathcal{U} = \ln C N, \quad C \equiv \prod_{k=1}^{K} C_k^{\omega_{ck}}.$
- Cash-in-Advance Constraint: $P^cC = \mathcal{M}$

• Optimal reset price:

$$\overline{P}_k = (1 + \mu_k) M C_k, \quad (1 + \mu_k) = (1 + \tau_k) \frac{\theta}{\theta - 1}$$

where τ_k is tax, θ is within-sector elasticity of substitution

- Nominal rigidity: randomly selected fraction α_k in sector k sets exogenous $P_{k,0}$
- Flow Utility: $\mathcal{U} = \ln C N, \quad C \equiv \prod_{k=1}^{K} C_k^{\omega_{ck}}.$
- Cash-in-Advance Constraint: $P^cC = \mathcal{M}$

• Money supply rule: $\mathcal{M} = \mathcal{M}_0 \exp(\varepsilon^m)$

BASELINE (
$$\varepsilon^m = 0$$
)

Consider variations in the baseline pair $(\mathcal{A},\mathcal{M}_0)$

 $\bullet \ \ \text{Two sectors:} \ \omega_{kk}=0, \quad \ \tau_k=-\tfrac{1}{\theta}, \quad \ \theta \to 1^+, \quad \ P_{k,0}=1, \quad \ \forall k=1,2$

 $\bullet \ \ \text{Two sectors:} \ \omega_{kk}=0, \quad \ \tau_k=-\tfrac{1}{\theta}, \quad \ \theta \to 1^+, \quad \ P_{k,0}=1, \quad \ \forall k=1,2$

	Sector 1	Sector 2
a(.)	$a_1(\varnothing)=1, a_1(\{2\})=\overline{a}$	$a_2(\varnothing) = 1, a_2(\{1\}) = \overline{a}$
Ω	$\omega_{12}=\omega_{c1}=0.5$	$\omega_{21}=\omega_{c1}=0.5$
α	$lpha_1=0$	$\alpha_2 = 0.5$

 $\bullet \ \ \text{Two sectors:} \ \omega_{kk} = 0, \quad \ \tau_k = -\tfrac{1}{\theta}, \quad \ \theta \to 1^+, \quad \ P_{k,0} = 1, \quad \ \forall k = 1,2$

	Sector 1	Sector 2
a(.)	$a_1(\varnothing)=1, a_1(\{2\})=\overline{a}$	$a_2(\varnothing)=1, a_2(\{1\})=\overline{a}$
Ω	$\omega_{12}=\omega_{c1}=0.5$	$\omega_{21}=\omega_{c1}=0.5$
α	$\alpha_1 = 0$	$\alpha_2 = 0.5$

• Marginal costs: $mc_{k,0} = -a_k(S_{k,0}) + m_0 + \mathbf{1}_{-k \in S_{k,0}} \frac{1}{2} (p_{-k,0} - m_0)$

• Two sectors: $\omega_{kk}=0, \quad \tau_k=-\frac{1}{\theta}, \quad \theta \to 1^+, \quad P_{k,0}=1, \quad \forall k=1,2$

	Sector 1	Sector 2
a(.)	$a_1(\varnothing)=1, a_1(\{2\})=\overline{a}$	$a_2(\varnothing) = 1, a_2(\{1\}) = \overline{a}$
Ω	$\omega_{12}=\omega_{c1}=0.5$	$\omega_{21} = \omega_{c1} = 0.5$
α	$lpha_1=0$	$\alpha_2 = 0.5$

- Marginal costs: $mc_{k,0} = -a_k(S_{k,0}) + m_0 + \mathbf{1}_{-k \in S_{k,0}} \frac{1}{2} (p_{-k,0} m_0)$
- Optimal network choice over marginal costs:

Recession vs Expansion (varying \overline{a})

Recession:
$$\overline{a} = 0$$

Normal:
$$\overline{a} = 0.65$$

Expansion:
$$\overline{a} = 0.8$$

$$\bigcup_{\alpha_1=0}$$

$$\bigcap_{\alpha_1 = 0} \longrightarrow \bigcap_{\alpha_2 = 0.5}$$

Tight vs Loose initial money (varying m_0)

Tight money:
$$m_0 = 0$$

Normal money: $m_0 = 4$

Loose money: $m_0 = 8$

$$\bigcap_{\alpha_1 = 0} \longrightarrow \bigcap_{\alpha_2 = 0.5}$$

Baseline: density of the network

Lemma (Baseline supplier choices)

Suppose the marginal cost is quasi-submodular in $(S_k, \mathcal{A}_k(S_k))$, $\forall k$. Consider any two baseline pairs $(\underline{\mathcal{A}}, \underline{\mathcal{M}}_0)$, $(\overline{\mathcal{A}}, \overline{\mathcal{M}}_0)$ such that either $\overline{\mathcal{A}} \geq \underline{\mathcal{A}}, \overline{\mathcal{M}}_0 = \underline{\mathcal{M}}_0$ or $\overline{\mathcal{A}} = \underline{\mathcal{A}}, \overline{\mathcal{M}}_0 \geq \underline{\mathcal{M}}_0$, then:

$$S_k(\overline{\mathcal{A}}, \overline{\mathcal{M}}_0) \supseteq S_k(\underline{\mathcal{A}}, \underline{\mathcal{M}}_0)$$

for all k = 1, 2, ..., K.

MONETARY SHOCKS

Small Monetary Shocks Endogenous Production Networks and Non-Linear Monetary Transmission

IRFs to a small monetary expansion across the cycle \bar{a}

IRFs to a small monetary expansion across the cycle \bar{a}

Proposition (Cycle dependence)

For two otherwise identical baselines with $\overline{A} \geq \underline{A}$, following a monetary shock ε^m that is small with respect to both baselines: $c_k(\varepsilon^m; \overline{A}) \geq c_k(\varepsilon^m; \underline{A})$, $\forall k$.

IRFs to a small monetary expansion across initial m_0

$$\bigcap_{\alpha_1=0}$$

IRFs to a small monetary expansion across initial m_0

Proposition (Path dependence)

For two otherwise identical baselines with $\overline{\mathcal{M}}_0 \geq \underline{\mathcal{M}}_0$, following a monetary shock ε^m that is small with respect to both baselines: $c_k(\varepsilon^m; \overline{\mathcal{M}}_0) > c_k(\varepsilon^m; \overline{\mathcal{M}}_0)$, $\forall k$.

Large Monetary Shocks

Large monetary expansions

Large monetary expansions

Large monetary expansions

Proposition (Size dependence)

Starting from network S_0 , a large monetary expansion E^+ has a more than proportional effect on GDP than a small monetary expansion ε^+ : $C(E^+)/C(\varepsilon^+) \ge C(E^+;S_0)/C(\varepsilon^+;S_0)$.

Large monetary contractions

Large monetary contractions

Proposition (Size dependence)

Starting from network S_0 , a large monetary contraction E^- has a less than proportional effect on GDP than a small monetary contraction ε^- : $C(E^-)/C(\varepsilon^-) \le C(E^-; S_0)/C(\varepsilon^-; S_0)$.

EMPIRICAL EVIDENCE

Sectoral Data

Cost share of intermediate inputs (BEA, US)

 Use BEA annual sectoral accounts (KLEMS) to construct sectoral measures of intermediates intensity between 1987-2017 for 65 sectors (Summary level):

$$\delta_{kt} = \frac{\text{Expenditure on Intermediates}_{kt}}{\text{Expenditure on Intermediates}_{kt} + \text{Compensation of Employees}_{kt}}$$

which exactly matches to $\sum_{r \in S_{kr}} \omega_{kr}, \forall k$, in our theoretical framework

 Use BEA annual sectoral accounts (KLEMS) to construct sectoral measures of intermediates intensity between 1987-2017 for 65 sectors (Summary level):

$$\delta_{kt} = \frac{\text{Expenditure on Intermediates}_{kt}}{\text{Expenditure on Intermediates}_{kt} + \text{Compensation of Employees}_{kt}}$$

which exactly matches to $\sum_{r \in S_{kt}} \omega_{kr}, \forall k$, in our theoretical framework

• Linear local projection:

$$\delta_{k,t+H} = \alpha_{k,H} + \beta_H s_t + \gamma_H x_{k,t-1} + \varepsilon_{k,t+H}$$

 Use BEA annual sectoral accounts (KLEMS) to construct sectoral measures of intermediates intensity between 1987-2017 for 65 sectors (Summary level):

$$\delta_{kt} = \frac{\text{Expenditure on Intermediates}_{kt}}{\text{Expenditure on Intermediates}_{kt} + \text{Compensation of Employees}_{kt}}$$

which exactly matches to $\sum_{r \in S_{kt}} \omega_{kr}, \forall k$, in our theoretical framework

Linear local projection:

$$\delta_{k,t+H} = \alpha_{k,H} + \beta_H s_t + \gamma_H x_{k,t-1} + \varepsilon_{k,t+H}$$

Non-linear local projection:

$$\delta_{k,t+H} = \alpha_{k,H} + \beta_H^{lin} s_t + \beta_H^{sign} s_t \times \mathbf{1}\{s_t > 0\} + \beta_H^{size} s_t \times |s_t| + \gamma_H x_{k,t-1} + \varepsilon_{k,t+H},$$

Use Fernald's TFP shocks and Romer-Romer monetary shocks

Intermediates intensity response: linear local projection

 Use BEA annual sectoral accounts (KLEMS) to construct sectoral measures of intermediates intensity between 1987-2017 for 65 sectors (Summary level):

$$\delta_{kt} = \frac{\text{Expenditure on Intermediates}_{kt}}{\text{Expenditure on Intermediates}_{kt} + \text{Compensation of Employees}_{kt}}$$

which exactly matches to $\sum_{r \in S_{kr}} \omega_{kr}, \forall k$, in our theoretical framework

Linear local projection:

$$\delta_{k,t+H} = \alpha_{k,H} + \beta_H s_t + \gamma_H x_{k,t-1} + \varepsilon_{k,t+H}$$

Non-linear local projection:

$$\delta_{k,t+H} = \alpha_{k,H} + \beta_H^{lin} s_t + \beta_H^{sign} s_t \times \mathbf{1}\{s_t > 0\} + \beta_H^{size} s_t \times |s_t| + \gamma_H x_{k,t-1} + \varepsilon_{k,t+H},$$

• Use Fernald's TFP shocks and Romer-Romer monetary shocks

Productivity shocks: non-linear local projection

Horizon (years)

(b) Productivity contractions

(c) p-values for non-linearities

-02

Monetary shocks: non-linear local projection

Horizon (years)

(b) Monetary contractions

(c) p-values for non-linearities

Conclusion

- Develop a sticky-price New Keynesian model with endogenous input-output linkages across sectors, which delivers empirically realistic cyclical variation in production networks
- Results rationalize observed non-linearities associated with monetary transmission: cycle dependence, path dependence and size dependence
- Novel empirical evidence in support of the mechanism

Conclusion

- Develop a sticky-price New Keynesian model with endogenous input-output linkages across sectors, which delivers empirically realistic cyclical variation in production networks
- Results rationalize observed non-linearities associated with monetary transmission: cycle dependence, path dependence and size dependence
- · Novel empirical evidence in support of the mechanism
- Future work to develop and enhance the research agenda
 - Formation of input-output linkages across countries, with implications for monetary policy
 - ▶ Impact of uncertainty on linkage formation under forward-looking behaviour
 - Misallocation and inefficient production networks: cross-country differences
 - Government policies to address inefficient networks in a decentralized equilibrium

APPENDIX

Firms: pricing under nominal rigidities

Profit maximization:

$$\max_{P_k^*(j)} \Pi_k(j) = [P_k^*(j)Y_k(j) - (1 + \tau_k)MC_kY_k(j)] \quad \text{s.t.} \quad Y_k(j) = \left(\frac{P_k(j)}{P_k}\right)^{-\theta} Y_k$$

• Optimal reset price:

$$\overline{P}_k = (1 + \mu_k) MC_k, \qquad (1 + \mu_k) = (1 + \tau_k) \frac{\theta}{\theta - 1}, \qquad \forall k, \forall j \in \Phi_k$$

• Calvo lotteries (probability of non-adjustment α_k):

$$P_k = \left[\alpha_k P_{k,0}^{1-\theta} + (1-\alpha_k) \left\{ \frac{1+\mu_k}{\mathcal{A}_k(S_k)} W \prod_{r \in S_k} \left(\frac{P_r}{W}\right)^{\omega_{kr}} \right\}^{1-\theta} \right]^{\frac{1}{1-\theta}}, \ \forall k$$

▶ Back

Equilibrium

• Flow Utility: $\mathcal{U} = \log C - N, \quad C \equiv \prod_{k=1}^{K} C_k^{\omega_{ck}}.$

• Cash-in-Advance Constraint: $P^cC = \mathcal{M}$

• Money supply rule: $\mathcal{M} = \mathcal{M}_0 \exp(\varepsilon^m)$

• Equilibrium fixed point problem:

$$P_{k} = \left[\alpha_{k} P_{k,0}^{1-\theta} + (1-\alpha_{k}) \left\{ \min_{S_{k}} \frac{1+\mu_{k}}{\mathcal{A}_{k}(S_{k})} \mathcal{M} \prod_{r \in S_{k}} \left(\frac{P_{r}}{\mathcal{M}} \right)^{\omega_{kr}} \right\}^{1-\theta} \right]^{\frac{1}{1-\theta}}, \ \forall k$$

Proposition (Equilibrium)

Equilibrium in my economy: (i) exists; (ii) sectoral prices and final consumptions are unique; (iii) supplier choices and remaining quantities are generically unique.

₩ Back

Small shock $\varepsilon^m \neq 0$ across baselines

Proposition

Let $c_k(A, \mathcal{M}_0) \equiv \ln C_k(A, \mathcal{M}) - \ln C_k(A, \mathcal{M}_0), \forall k$. Consider any two baseline pairs $(\underline{A}, \underline{\mathcal{M}}_0), (\overline{A}, \overline{\mathcal{M}}_0)$, and $\varepsilon^m > 0$ which is small, and $P_{k,0} = (1 + \mu_k)g(\mathcal{M}_0)MC_k(A, \mathcal{M}_0)$:

$$\mathbb{C}(\overline{\mathcal{A}},\overline{\mathcal{M}}_0) - \mathbb{C}(\underline{\mathcal{A}},\underline{\mathcal{M}}_0) = \left[\mathcal{L}(\overline{\mathcal{A}},\overline{\mathcal{M}}_0) - \mathcal{L}(\underline{\mathcal{A}},\underline{\mathcal{M}}_0)\right]\mathcal{E}^m$$

where ${\tt c}=[c_1,c_2,...,c_K]'$, ${\cal E}^m=[{\it e}^m,{\it e}^m,...,{\it e}^m]'$ and ${\cal L}$ is a Leontief inverse given by:

$$\mathcal{L}(\mathcal{A}, \mathcal{M}_0) = [I - (I - A)\Gamma(\mathcal{M}_0)\Omega(\mathcal{A}, \mathcal{M}_0)]^{-1}[I - (I - A)\Gamma(\mathcal{M}_0)]$$

where
$$A = diag(\alpha_1, ..., \alpha_K)$$
, $\Gamma(\mathcal{M}_0) = diag(\gamma_1(\mathcal{M}_0), ..., \gamma_K(\mathcal{M}_0))$, $\gamma_k = \frac{1}{\alpha_k (g(\mathcal{M}_0))^{1-\theta} + 1 - \alpha_k}$ and $[\Omega(\mathcal{A}, \mathcal{M}_0)]_{kr} = \omega_{kr}$ if $r \in S_k$ and 0 otherwise.

INFINITE-HORIZON MODEL

Pricing in the infinite-horizon model

• Assume "finite-horizon" Calvo (1983) pricing

Assumption (Nominal rigidities)

There exists a finite, deterministic cut-off time period T>1, such that for $1 \le t \le (T-1)$ each firm has a sector-specific probability of price adjustment $\alpha_k \in (0,1)$ and prices are fully flexible for $t \ge T$

Pricing in the infinite-horizon model

• Assume "finite-horizon" Calvo (1983) pricing

Assumption (Nominal rigidities)

There exists a finite, deterministic cut-off time period T>1, such that for $1 \le t \le (T-1)$ each firm has a sector-specific probability of price adjustment $\alpha_k \in (0,1)$ and prices are fully flexible for $t \ge T$

• Two-period model mimicked by T=2

Pricing in the infinite-horizon model

• Assume "finite-horizon" Calvo (1983) pricing

Assumption (Nominal rigidities)

There exists a finite, deterministic cut-off time period T>1, such that for $1 \le t \le (T-1)$ each firm has a sector-specific probability of price adjustment $\alpha_k \in (0,1)$ and prices are fully flexible for $t \ge T$

- Two-period model mimicked by T=2
- Conditional on the path of supplier choices, sector-level solutions can be obtained by backward induction

Optimal networks in the infinite-horizon model • Firms can re-optimize their supplier choices in every time period

Optimal networks in the infinite-horizon model

- Firms can re-optimize their supplier choices in every time period
- Consider productivity mapping from Acemoglu and Azar (2020), augmented with an aggregate productivity term

Assumption (Productivity mapping)

For every sector k = 1, 2, ..., K the productivity mapping $A_{kt}(S_{kt})$ takes the following form:

$$\mathcal{A}_{kt}(S_{kt}) = \mathcal{Z}_t B_0 \prod_{r \in S_{kt}} B_{kr},$$

where \mathcal{Z}_t is agg. productivity which follows an AR(1) process in logs: $\ln \mathcal{Z}_t = \rho_z \ln \mathcal{Z}_{t-1} + \zeta_t$, and B_0 , $\{B_{kr}\}_{kr}$ are parameters.

Optimal networks in the infinite-horizon model

- Firms can re-optimize their supplier choices in every time period
- Consider productivity mapping from Acemoglu and Azar (2020), augmented with an aggregate productivity term

Assumption (Productivity mapping)

For every sector k = 1, 2, ..., K the productivity mapping $A_{kt}(S_{kt})$ takes the following form:

$$\mathcal{A}_{kt}(S_{kt}) = \mathcal{Z}_t B_0 \prod_{r \in S_{kt}} B_{kr},$$

where \mathcal{Z}_t is agg. productivity which follows an AR(1) process in logs: $\ln \mathcal{Z}_t = \rho_z \ln \mathcal{Z}_{t-1} + \zeta_t$, and B_0 , $\{B_{kr}\}_{kr}$ are parameters.

• Delivers marginal cost cost function in logs: $-z_t - b_0 + w_t + \sum_{r \in S_{tr}} [\omega_{kr}(p_{rt} - w_t) - b_{kr}]$

Optimal networks in the infinite-horizon model

- Firms can re-optimize their supplier choices in every time period
- Consider productivity mapping from Acemoglu and Azar (2020), augmented with an aggregate productivity term

Assumption (Productivity mapping)

For every sector k = 1, 2, ..., K the productivity mapping $A_{kt}(S_{kt})$ takes the following form:

$$\mathcal{A}_{kt}(S_{kt}) = \mathcal{Z}_t B_0 \prod_{r \in S_{kt}} B_{kr},$$

where \mathcal{Z}_t is agg. productivity which follows an AR(1) process in logs: $\ln \mathcal{Z}_t = \rho_z \ln \mathcal{Z}_{t-1} + \zeta_t$, and B_0 , $\{B_{kr}\}_{kr}$ are parameters.

- Delivers marginal cost cost function in logs: $-z_t b_0 + w_t + \sum_{r \in S_{t+}} [\omega_{kr}(p_{rt} w_t) b_{kr}]$
- Simple rule for choosing supplier: sector *k* should be from sector *r* if and only if:

$$\omega_{kr}(p_{rt} - w_t) < b_{kr}$$

• Start from a guess for sectoral prices, supplier choices and allocations; let \mathcal{X}_t^- , \mathcal{X}_t and \mathcal{X}_t^+ be, respectively, the full set of past, present and future variables at t

- Start from a guess for sectoral prices, supplier choices and allocations; let \mathcal{X}_t^- , \mathcal{X}_t and \mathcal{X}_t^+ be, respectively, the full set of past, present and future variables at t
- Follow the steps below, starting from t = T 1

- Start from a guess for sectoral prices, supplier choices and allocations; let \mathcal{X}_t^- , \mathcal{X}_t and \mathcal{X}_t^+ be, respectively, the full set of past, present and future variables at t
- Follow the steps below, starting from t = T 1
 - (i) Taking as given sectoral supplier choices, as well as past and future variables \mathcal{X}_t^- , \mathcal{X}_t^+ , solve for prices $\{P_{kt}\}_{k=1}^K$;

- Start from a guess for sectoral prices, supplier choices and allocations; let \mathcal{X}_t^- , \mathcal{X}_t and \mathcal{X}_t^+ be, respectively, the full set of past, present and future variables at t
- Follow the steps below, starting from t = T 1
 - (i) Taking as given sectoral supplier choices, as well as past and future variables \mathcal{X}_t^- , \mathcal{X}_t^+ , solve for prices $\{P_{kt}\}_{k=1}^K$;
 - (ii) Given prices $\{P_{kt}\}_{k=1}^K$, update supplier choices according to the following rule: sector k should only buy inputs from sector r if $\omega_{kr}(p_{rt}-m_t) < b_{kr}$

- Start from a guess for sectoral prices, supplier choices and allocations; let \mathcal{X}_t^- , \mathcal{X}_t and \mathcal{X}_t^+ be, respectively, the full set of past, present and future variables at t
- Follow the steps below, starting from t = T 1
 - (i) Taking as given sectoral supplier choices, as well as past and future variables $\mathcal{X}_t^-, \mathcal{X}_t^+$, solve for prices $\{P_{kt}\}_{k=1}^K$;
 - (ii) Given prices $\{P_{kt}\}_{k=1}^K$, update supplier choices according to the following rule: sector k should only buy inputs from sector r if $\omega_{kr}(p_{rt}-m_t) < b_{kr}$
 - (iii) Taking as given \mathcal{X}_t^- , \mathcal{X}_t^+ and $\{S_{kt}\}_{k=1}^K$, update \mathcal{X}_t ;

Numerical Algorithm: NK model with endogenous networks

- Start from a guess for sectoral prices, supplier choices and allocations; let \mathcal{X}_t^- , \mathcal{X}_t and \mathcal{X}_t^+ be, respectively, the full set of past, present and future variables at t
- Follow the steps below, starting from t = T 1
 - (i) Taking as given sectoral supplier choices, as well as past and future variables X_t⁻, X_t⁺, solve for prices {P_k1_k^K_{k=1};
 - (ii) Given prices $\{P_{kt}\}_{k=1}^K$, update supplier choices according to the following rule: sector k should only buy inputs from sector r if $\omega_{kr}(p_{rt}-m_t) < b_{kr}$
 - (iii) Taking as given \mathcal{X}_t^- , \mathcal{X}_t^+ and $\{S_{kt}\}_{k=1}^K$, update \mathcal{X}_t ;
 - (iv) Repeat (i)-(iii) until convergence within the time period;

Numerical Algorithm: NK model with endogenous networks

- Start from a guess for sectoral prices, supplier choices and allocations; let \mathcal{X}_t^- , \mathcal{X}_t and \mathcal{X}_t^+ be, respectively, the full set of past, present and future variables at t
- Follow the steps below, starting from t = T 1
 - (i) Taking as given sectoral supplier choices, as well as past and future variables X_t⁻, X_t⁺, solve for prices {P_k}_{k=1}^K;
 - (ii) Given prices $\{P_{kt}\}_{k=1}^K$, update supplier choices according to the following rule: sector k should only buy inputs from sector r if $\omega_{kr}(p_{rt}-m_t) < b_{kr}$
 - (iii) Taking as given \mathcal{X}_{t}^{-} , \mathcal{X}_{t}^{+} and $\{S_{kt}\}_{k=1}^{K}$, update \mathcal{X}_{t} ;
 - (iv) Repeat (i)-(iii) until convergence within the time period;
 - (v) If t > 1, decrease t by one and go back to (i). Otherwise, compare $\{\{P_{kt}^0\}_{k=1}^K\}_{t=1}^{T-1}$ with $\{\{P_{kt}\}_{k=1}^K\}_{t=1}^{T-1}$; if they are equal, stop the algorithm; if they are not equal, set $P_{kt} = P_{kt}^0, \forall k, 1 \le t \le T-1$, set t = T-1 and return to (i).

• Need to make an assumption about the path of money supply:

Assumption (Money supply)

For a given initial money supply \mathcal{M}_0 , the money supply in $t \geq 1$ takes the following form:

$$\Delta \ln \mathcal{M}_t = \rho_m \Delta \ln \mathcal{M}_{t-1} + \varepsilon_t^m.$$

• Need to make an assumption about the path of money supply:

Assumption (Money supply)

For a given initial money supply \mathcal{M}_0 , the money supply in $t \geq 1$ takes the following form:

$$\Delta \ln \mathcal{M}_t = \rho_m \Delta \ln \mathcal{M}_{t-1} + \varepsilon_t^m.$$

• Calibrate for K = 389 sectors of the US economy at annual frequencies

• Need to make an assumption about the path of money supply:

Assumption (Money supply)

For a given initial money supply \mathcal{M}_0 , the money supply in $t \geq 1$ takes the following form:

$$\Delta \ln \mathcal{M}_t = \rho_m \Delta \ln \mathcal{M}_{t-1} + \varepsilon_t^m.$$

- Calibrate for K = 389 sectors of the US economy at annual frequencies
 - Aggregate parameters: $\beta=0.99, \theta=6, \rho_a=0.86, \rho_m=0.80, T=50$ and $\mathcal{Z}_0=1$

Need to make an assumption about the path of money supply:

Assumption (Money supply)

For a given initial money supply \mathcal{M}_0 , the money supply in $t \geq 1$ takes the following form:

$$\Delta \ln \mathcal{M}_t = \rho_m \Delta \ln \mathcal{M}_{t-1} + \varepsilon_t^m.$$

- Calibrate for K = 389 sectors of the US economy at annual frequencies
 - Aggregate parameters: $\beta=0.99, \theta=6, \rho_a=0.86, \rho_m=0.80, T=50$ and $\mathcal{Z}_0=1$
 - ightharpoonup Sector-specific Calvo parameters (α_k): one minus frequency of price adjustment from Pasten et al. (2020)
 - Sector-specific taxes (τ_k) : match sectoral markups from De Loecker et al. (2020)
 - Input-output shares (ω_{kr}): take observed shares from the 2007 BEA Input-Output tables, impute unobserved ones following Acemoglu and Azar (2020)
 - Productivity mapping parameters (B_0 , B_{kr}): estimated to ensure the steady-state of my model under $\overline{\mathcal{M}_t = \mathcal{Z}_t = 1}$, $\forall t$, simultaneously matches observed input-output linkages an real GDP in 2007

Baselines with Different Productivity Paths and Money Supplies

Baselines with different aggregate productivity paths

(a) Average number of suppliers

(b) Average intermediates intensity

▶ Back

Baselines with different initial money supplies

(a) Average number of suppliers

(b) Average intermediates intensity

→ Back

Small Monetary Shocks Endogenous Production Networks and Non-Linear Monetary Transmission

Small monetary expansions across productivity baselines

(a) IRFs of GDP under expansion and recession

(b) Peaks of IRFs across productivities

Small monetary expansions across initial money supply

(a) IRFs of GDP under tight and loose money

(b) Peaks of IRFs across money supplies

Large Monetary Shocks

Large monetary expansions and contractions

(b) Large monetary contractions

Firm-level Data

Cyclical fluctuations in the number of suppliers

- Measure the number of suppliers at firm level, using data on "in-degree" computed by Atalay et al.
 (2011) for US publicly listed firms available in Compustat
- Linear local projection:

$$indeg_{k,t+H} = \alpha_{k,H} + \beta_H s_t + \gamma_H x_{k,t-1} + \varepsilon_{k,t+H}$$

• Non-linear local projection:

$$\textit{indeg}_{j,t+H} = \alpha_{j,H} + \beta_H^{\textit{lin}} s_t + \beta_H^{\textit{sign}} s_t \times \mathbf{1} \{ s_t > 0 \} + \beta_H^{\textit{size}} s_t \times |s_t| + \gamma_H x_{j,t-1} + \varepsilon_{j,t+H},$$

• Use Fernald's TFP shocks and Romer-Romer monetary shocks

Number of suppliers response: linear local projection

Productivity shocks: non-linear local projection

(b) Productivity contractions

(c) p-values for non-linearities

Monetary shocks: non-linear local projection

(b) Monetary contractions

(c) p-values for non-linearities

Firm-level Data

Cyclical fluctuations in the number of suppliers

- Measure the number of suppliers at firm level, using data on "in-degree" computed by Atalay et al.
 (2011) for US publicly listed firms available in Compustat
- Linear local projection:

$$indeg_{k,t+H} = \alpha_{k,H} + \beta_H s_t + \gamma_H x_{k,t-1} + \varepsilon_{k,t+H}$$

• Non-linear local projection:

$$\textit{indeg}_{j,t+H} = \alpha_{j,H} + \beta_H^{\textit{lin}} s_t + \beta_H^{\textit{sign}} s_t \times \mathbf{1} \{ s_t > 0 \} + \beta_H^{\textit{size}} s_t \times |s_t| + \gamma_H x_{j,t-1} + \varepsilon_{j,t+H},$$

• Use Fernald's TFP shocks and Romer-Romer monetary shocks

Number of suppliers response: linear local projection

Productivity shocks: non-linear local projection

Horizon (years)

(b) Productivity contractions

(c) p-values for non-linearities

4

Monetary shocks: non-linear local projection

(b) Monetary contractions

(c) p-values for non-linearities

