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Abstract

I extend the Bayesian Factor-Augmented Vector Autoregressive model (FAVAR)

to incorporate an identification scheme based on an external instrument approach.

A Gibbs sampling algorithm is provided to estimate the posterior distributions of

the model parameters. I use this novel modeling framework to estimate the effects

of a monetary policy shock in the United States, and I compare the obtained results

with those from a smaller-scale model and different identifying instruments. Results

confirm that a tightening monetary policy shock has contractionary effects on the

real and financial sides of the economy. Furthermore, the paper suggests that tak-

ing into account a large information set helps to mitigate price and real economic

puzzles as well as discrepancies across estimates obtained using different monetary

policy instruments.
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Non-technical summary

Understanding the impact of a change in monetary policy on an economy of interest is a

key question for policymakers and researchers. To answer this question, economists can

rely on an increasingly large number of data potentially containing useful information

on current and past conditions of the economy of interest. Including a large set of infor-

mative data in the analysis is useful for various reasons. First, it can help the economist

or the policy maker to better understand the propagation mechanisms of the monetary

policy shock across the various sides of the economy considered; second, a more accurate

representation of economic concepts that would be otherwise summarised in aggregate

figures can be captured in the model; third, large datasets can help in capturing more

accurately the driving forces of the underlying economy of interest. However, models

which are typically used to study the impact of a certain shock suffer from the so-called

”curse of dimensionality” issue, meaning that they do not allow for the inclusion of a

large number of variables due to the fast-increasing number of coefficients.

Another issue often faced when studying the effect of an unexpected change in mon-

etary policy is how to identify the shock of interest. Economic systems are complex by

nature and hit by many interconnected shocks at the same time. Hence, disentangling

the effect of each shock is not a trivial task. Identifying the effect of an unexpected mon-

etary policy change becomes even more challenging if the interest lies in the response of

fast-moving variables such as asset prices. Asset prices react swiftly to news concern-

ing monetary policy. It follows that their observed response is particularly sensitive to

whether the shock is exogenous to the economy.

This paper proposes a modeling framework to overcome the abovementioned issues.

The proposed model can encompass a large set of informative variables by including

unobserved factors, which can summarise the information contained in many individual

series. This dimensionality-reduction technique is combined with a shock identification



scheme which allows for the identification of the shock of interest without imposing re-

strictions on the model that can be difficult to justify from an economic point of view.

Finally, the model can be easily extended to the case of time variation in parameters,

which allows studying how the policy impact differs across different periods.

The model presented in this paper is employed to study the effects of an unexpected

increase in the monetary policy rate in the United States over the period 1991-2015, using

a large set of macroeconomic and financial variables. It finds that an increase in the

policy rate has contractionary effects on both the real and financial side of the economy

as well as on prices. Results also suggest that including a large set of information in the

model helps draw conclusions that are consistent with economic theory and robust to

different instruments used for identification.

1 Introduction and review of the relevant literature

Vector Autoregressive models (VARs) are broadly used to study the effects of a shock

on an economy of interest. This is done mainly through the use of impulse response

functions, which allow to observe estimated dynamic responses of a variable over time

given the occurrence of a certain structural shock. To correctly conclude the impact of

a given shock on one or more variables, VARs should hold two key desirable properties:

i) a strong model specification that can properly represent the dynamics of the econ-

omy of interest, and ii) a credible identification scheme. A VAR that correctly captures

the original data-generating process ensures that the reduced form coefficients are un-

biased and that the transmission of the shock is correctly traced. At the same time,

a credible identification scheme is needed to recover the structural shocks from the re-

duced form residuals without making assumptions that are economically not meaningful.

A well-known criticism of VARs relates to the small amount of information they can

take into account due to the fast-increasing number of parameters. If the model omits in-



formation that is relevant to explaining the dynamics of the economy of interest then the

estimated dynamic responses will be biased and will potentially lead to wrong economic

conclusions. Stock & Watson (2018) suggests overcoming this issue by augmenting VARs

with latent factors able to summarise a large amount of information (FAVAR). FAVAR

models, originally introduced in the macroeconomic literature by Bernanke et al. (2005),

represent a popular solution to effectively expand the information set taken into account

in VAR models.

In the context of shock identification, a growing strand of literature uses external in-

struments as a proxy for the shock of interest. To be a valid proxy, an instrument

should be correlated only with the structural shock of interest and not with the other

shocks. Stock (2008) firstly introduced the idea of using these instruments for identifi-

cation in SVAR; subsequently, this idea has been used in a growing number of works,

most notably in Stock & Watson (2012) Mertens & Ravn (2013) and Gertler & Karadi

(2015) (Proxy SVARs). Since these seminal papers, the external instrument approach

has become very popular in the literature because, contrarily to widely used recursive

identification schemes, it allows to map reduced form residuals into structural shocks

without relying on restrictions which tend to be hard to defend.

The external instrument approach has been applied in several works to study the effects

of monetary (Caldara & Herbst (2016), which proposes a Bayesian framework for the

Proxy SVAR; Jarociński & Karadi (2020)) or fiscal (Mertens & Ravn (2014)) policies.

More recently, Plagborg-Møller & Wolf (2021) and Paul (2020) have proposed alterna-

tive strategies to use narrative instruments to identify structural shocks in VARs. In

the former case (SVAR-IV), the authors include the instrument as an extra endogenous

variable ordered first and use recursive identification to recover the structural shocks.

In the latter case (VARX), the instrument enters the model as an exogenous variable 1.

These two methodologies differ from those previously proposed in the way in which the

proxy enters into the model. While in Mertens & Ravn (2014), Stock & Watson (2012)

1Bagliano & Favero (1999) has similarly used a VARX but did not show that this approach consistently
identifies the true (relative) impulse responses, as Paul (2020) does.



and in Caldara & Herbst (2016) the proxy enters the model through an extra equation

(two-steps approach), in Paul (2020) and Plagborg-Møller & Wolf (2021) it is added

directly to the reduced-form specification (one-step approach). It is worth noting that,

as mentioned in Paul (2020), the SVAR-IV coincides with the VARX if the instrument

is uncorrelated with the regressors in the VAR, including lags of the instrument itself.

A growing number of works have developed instruments to proxy a monetary policy

shock in the US, which will be the shock of interest in this paper. A prominent exam-

ple is the highly-cited narrative measure by Romer & Romer (2004). After the Great

Financial Crisis, monetary policy has become more and more of a multi-dimensional

phenomenon. The Fed can rely on various instruments to affect the economy, both con-

ventional and unconventional, such as changes in the target policy rate, large-scale asset

programs, and forward guidance (Jarociński & Karadi (2020) and Jarociński (2021)).

The literature on this topic presents instruments that characterize the Fed policy with

one compounded instrument as well as instruments that distinguish between these pol-

icy tools. A non-exhaustive list of works that propose instruments to proxy a monetary

policy shock in the U.S. is Gürkaynak et al. (2005), Bu et al. (2021) Gertler & Karadi

(2015) and Miranda-Agrippino & Ricco (2021).

This paper aims to contribute to the literature which offers solutions to encompass

a large set of information in VAR models while relying on a narrative identification

scheme. It does so by proposing an algorithm that incorporates the exogenous variable

identification approach à la Paul (2020) within the modeling framework of a FAVAR. The

algorithm presented here can be seen as a valid alternative to the Proxy FAVAR models

already existing in the literature (Miescu & Mumtaz (2019); Bruns (2021); Kerssenfischer

(2019)). I employ the FAVAR with the exogenous instrument to revisit the transmis-

sion of monetary policy in the U.S. Moreover, to study the importance of including a

large set of information in the model, I compare the results obtained with a FAVAR

with an exogenous variable with those obtained with the smaller-scale VARX by Paul



(2020). Furthermore, I estimate the FAVAR with exogenous proxy using different iden-

tifying instruments, to understand whether using a data-rich model can mitigate the

discrepancies in the impulse responses observed in the literature. The remainder of the

paper is the following: section 2 presents the modeling framework; section 3 describes

the Gibbs sampling algorithm used to estimate the model; section 4 presents the Monte

Carlo experiment; section 5 shows the empirical applications and section 6 concludes.

2 A FAVAR model with exogenous variable

In this section, I present the FAVAR model with an identification scheme through an ex-

ogenous proxy; section 2.1 presents the FAVAR model as originally proposed in Bernanke

et al. (2005), while in section 2.2 I show how this is extended to allow for identification

through an exogenous instrument. More details on the model’s state-space representa-

tion can be found in Appendix A.

2.1 The FAVAR model à la Bernanke et al. (2005)

The observation equation

Let us suppose to observe a large number of macroeconomic and financial variables

containing useful information on the current and past conditions of an economy of in-

terest. I assume that this large number of variables can be summarised by a relatively

small number of latent and observable factors, according to the following observation

equation:

Xt = ΛfFt + ΛyYt + vt (1)

vt ∼ N(0, R) (2)

Where Xt is a Mx1 vector collecting the set of M ’informational’ series2. The K

latent factors are denoted by Ft and Yt contains N observable variables.

2Note that M is ”large” and can be potentially larger than the number of periods T



The informational variables are related to the contemporaneous values of the latent

factors via the M ×K matrix of factor loading Λf and to the contemporaneous values of

the observable factors contained in Yt by Λy 3. Typically, in the literature on monetary

policy shocks, Yt includes only the policy rate. In general, Yt never includes variables

contained in Xt.

Finally, vt contains the error terms, which are assumed to be zero mean, normally

distributed, and with a variance-covariance matrix equal to:

V AR(vi,t) = R =


R1 0 . . . 0

0
. . . 0 0

... . . . RM
...

0 . . . 0 0

 (3)

The transition equation

The unobserved factors are then modeled jointly with the observed variables in a VAR.

The idea is that thanks to the inclusion of unobserved factors summarising a large

amount of information in a VAR, one can capture that additional information not fully

captured by the limited number of variables typically included in the VAR. The dynamics

of the unobserved factors Ft and the observed variables in Yt are assumed to evolve

according to the following VAR process:

Zt = c+

p∑
j=1

BjZt−j + ut (4)

ut ∼ N(0, Q) (5)

Where Z = {F1,t, ...FK,t, Y1,t, ...YN,t}.
3In the original specification of the FAVAR proposed in Bernanke et al. (2005) the elements of Λy are

non-zero for those variables in Xt that are assumed to react quickly to monetary policy interventions
(”fast-moving variables”). Given the different strategies used to identify the structural shock of interest,
the model presented here does not include this distinction, and the vector Λy is zero regardless of the
nature of the variable in Xt.



Equation (4) is a VAR in Ft and Yt and can be interpreted as a reduced-form model

involving both observable and unobservable components. If the true data generating

process is given by a FAVAR, omitting the introduction of the unobserved factors in

the model will lead to a biased estimate of the VAR coefficients and related impulse

responses. The error term ut is mean zero and with a variance-covariance matrix Q.

2.2 The identification problem and the exogenous variable approach

Equation (4) can be seen as a reduced-form VAR of order p in Zt. The object of

interest here is in understanding the structure of the economy by uncovering the causal

relationship among variables in the model; in particular, by exploiting the advantages of

the FAVAR, I want to observe the effect of a given shock of interest on the large variables

set contained in Xt.

This cannot be done with the reduced-form representation because the error terms ut

are correlated with each other and hence I can not distinguish the impact of the shock

on one variable from all the others. In other words, they can not be interpreted as

structural shocks. The corresponding structural form of equation (4) is given by:

A0Zt = µ+
P∑

j=1

ΓjZt−j + et (6)

Where A0 collects the contemporaneous relationships among the endogenous vari-

ables. The following relationships between (4) and (6) hold: c = A−1
0 µ, Bj = A−1

0 Γj

and

ut = Set (7)

where

S = A−1
0 (8)

and

SS′ = Ω (9)



where the θ×θ matrix S contains the contemporaneous effect of the structural shocks

on the dependent variables, or the impulse response vector of the shock.

Note that the relationship described in (9) produces a system of θ(θ+1)
2 equations

with θ2 unknown parameters. Since θ2 > θ(θ+1)
2 we are not able to exactly identify this

system of equation; to do so, we would need to impose θ(θ−1)
2 restrictions.

In summary, the econometric problem with identifying the true impulse responses is

that the structural shocks are not observed, hence from the data we can not estimate

the parameters in the matrix S. In addition, the covariance matrix of the reduced-form

innovations does not provide enough identifying restrictions to obtain at least one of the

columns in S.

The identification strategy consists of finding a way to estimate the elements in S in an

economically meaningful way.

I assume that a proxy for the shock of interest exists and that it satisfies the two follow-

ing conditions:

E(mte1,t) = ϕ (10)

E(mte2,t) = 0 (11)

Where mt is the proxy for the shock of interest, e1,t is the shock of interest and e2,t

contains all the other shocks. Equation (10) captures the so-called relevance condition:

the instrument has to be correlated with the shock of interest. The covariance between

proxy and shock is ϕ ̸= 0. Equation (11) describes the exogeneity condition, namely

that the proxy has to be uncorrelated with all the other shocks; mt is assumed to have

zero mean for simplicity 4.

I include the instrument in the transition equation described in (4), which becomes:

4I assume that mt is not serially correlated.



Zt = c̃+

P∑
j=1

B̃jZ̃t−j +Amt + ũt (12)

Where the instrument mt enters the transition equation as an extra exogenous vari-

able and A contains the contemporaneous relations between the instrument and the

endogenous variables. The model in (12) is a FAVAR with an exogenous instrument

(henceforth, FAVARX). Hence, the contemporaneous impulse responses become equal

to the elements of A which link the instrument and the contemporaneous values of the

endogenous variables. It follows that the contemporaneous relative impulse responses5

are given by:

r∗ij =
ai
aj

(13)

Where ai and aj are elements of A associated to the endogenous variables i and j (with

i ̸= j). The impulse responses for the subsequent periods are obtained by tracing the

initial impulse through the model described in (12) via the lagged endogenous variables.

It can be shown analytically that this approach to identification delivers consistent es-

timates of the true relative impulse responses, both contemporaneous and subsequent

(see Paul (2020)).

2.3 Comparison between FAVARX and proxy FAVAR

The modeling approach proposed in this paper represents an alternative option to the

Bayesian Proxy FAVAR (Miescu & Mumtaz (2019); Bruns (2021)). The Proxy FAVAR

and the FAVAR with the exogenous variable share the main advantages of the FAVAR

model and the identification through the narrative approach. The main difference be-

tween the two approaches lies in the way in which the instrument is used to achieve the

5Relative impulse responses normalized the contemporaneous responses of one of the endogenous
variables to a given value.



identification. In the case of the Bayesian Proxy FAVAR the instrument is used in a

two-step framework: in the first step, the coefficients of the reduced-form innovations

are estimated using least squares, while in the second step, the estimated innovations

are regressed against the instrument. By contrast, the Bayesian FAVARX is estimated

by simply including the instrument as an exogenous variable in the transition equation,

as shown in section 2.

Paul (2020) shows that both techniques always deliver the same contemporaneous rela-

tive impulse responses, also in small samples, and that if the sample is large enough, the

obtained contemporaneous responses converge to the ratio of the true contemporaneous

impulse responses. Given that the FAVAR can be seen as a standard VAR where the

controls are the latent factors, the same conclusions hold for both models.

Regarding the subsequent values of the relative impulse responses, they can differ across

the two methodologies in small samples. In the case of large samples, however, differ-

ences can arise only if the instrument is correlated with the other regressors and not

because of measurement errors due to the instrument.

More details on the equivalence of the contemporaneous and subsequent relative impulse

responses between a Proxy VAR and a VAR with an exogenous variable can be found

in Paul (2020).

2.4 Advantages of the methodology

The methodology proposed in this paper is useful to perform structural analysis involv-

ing large information and, at the same time, relies on a credible identification strategy.

On one hand, the ability to encompass a large amount of information in the model im-

plies many advantages. First, biases stemming from misspecification and information

insufficiency can be mitigated. In this context, Stock & Watson (2018) notes that using

an external instrument for identification enables, if the instrument meets certain valid-

ity requirements, the model to estimate dynamic causal effects without assuming the

invertibility of the VAR. While this argument is of extreme relevance for this discussion,

it is also worth stressing that in the VARX the subsequent values of the relative impulse



response functions (IRFs) are traced using the coefficients of the reduced-form model.

Hence, if the econometrician erroneously omits relevant information in the model, this

will be absorbed in the reduced-form residuals and the estimated values of the coeffi-

cients needed to estimate the IRFs will be distorted. This in turn will result in biased

values of subsequent relative impulse responses. A second remark is that the condition

for the validity of the instrument mentioned in Stock & Watson (2018) includes a strong

lead-lag exogeneity requirement that the instrument is uncorrelated with past and future

shocks, which is hard to meet. A second advantage related to the inclusion of a rich

information set is the possibility to have a more accurate representation of economic

concepts that would be otherwise summarised in aggregate figures can be captured in

the model and hence measurement errors can be mitigated. For instance, the concept

of ”economic activity” can be represented by a larger number of series rather than only

industrial production. Third, impulse responses can be observed for a large number of

variables, which can help to uncover the transmission of the shock through the economy.

On the other hand, the reliance on external information has the important advantage to

decrease the number of restrictions required to identify the contemporaneous responses,

which can be potentially controversial or hard to defend.

Finally, as previously pointed out, the one-step procedure allows for an easy extension

to the case of time-varying parameters.

3 Estimation

The parameters of the observation and transition equations are estimated with a Gibbs

sampling algorithm, while the factors are retrieved using a Kalman filter and Carter and

Kohn algorithm (1994).

To start the algorithm, let us imagine observing the latent factors Ft. Given the fac-

tors, the observation equation in (1) can be seen as M linear regressions of the form

Xt = ΛfFt + ΛyYt + vt where the elements in Λf , Λy and R can be drawn from their

conditional distributions. Similarly, given the factors, the transition equation is a VAR



model where the elements in B, u, and Q can be drawn from their conditional distri-

butions. Given a draw for Λf , Λy, R, B, u and Q the model is cast into a state-space

form as in equations (1) and (12) and the Carter and Kohn algorithm can be used to

draw Ft from its conditional distribution. A more detailed description of the steps for

the estimation is shown in Appendix B.

4 Monte Carlo Experiment

To test the performance of the algorithm presented above, I run the latter by using

artificial data obtained from a FAVAR as a data-generating process. In particular,

artificial data is generated from a factor model with 5 unobserved factors and 1 observed

factor, described by the following equations:

Xi,t = biFt + ΓiYt + vt (14)

Ft = c+BFt−1 +Amt + ut (15)

ϵt = A−1
0 ut (16)

Where the B parameters are calibrated to estimate a VAR with 1 lag and containing

5 factors extracted from the FRED-MD database and the 1-year government bond rate

for the US. I generate 500 data sets and discard the first 100 to remove the influence of

initial conditions. The estimation of the model with simulated data involves 5000 Gibbs

iterations with a burn-in of 1000 iterations. I then compared the responses obtained

by estimating the model with artificial data against the true impulse responses. Figure

1 shows the impulse responses of selected variables to a 100 basis point shock on the

interest rate at horizons 0 to 40. The paths of the responses along the horizon taken into

account are very similar, which suggests that the algorithm performs well at tracking



the true responses.

5 Empirical application

In the following subsections, I use the framework described in section 2 to study the effect

and transmission of a monetary policy shock in the U.S. Moreover, I compare the results

obtained with the FAVAR with exogenous variable to those obtained with a smaller-scale

model but with the same identification approach, to shed light on the role played by the

inclusion of larger information set on the estimated impulse responses. Furthermore, I

compare the estimated impulse responses obtained using different instruments available

in the literature to proxy a monetary shock to observe whether the use of a large set

of data can help mitigate some of the discrepancies across estimated impulse responses

observed in the literature.

5.1 Data and the choice of the proxy for a monetary policy shock

The set of informational series used to extract the factors is sourced from the FRED-

MD monthly dataset by St.Louis Fed6 and it contains 128 macroeconomic and financial

series at a monthly frequency. This dataset is augmented with four extra series, i.e.

the Excess Bond Premia and credit spread by Gilchrist & Zakraǰsek (2012), the 30-

year mortgage rate, and Shiller’s real dividends. The series taken from FRED-MD

is transformed following McCracken & Ng (2015) 7, the Excess Bond Premia, credit

spread, and mortgage rate enter into levels while the real dividends are transformed

into log-difference. I use the one-year government bond rate as the relevant monetary

policy indicator, as in Gertler & Karadi (2015). The latter suggests that using a rate

with a longer maturity than the Federal Fund Rate allows considering shocks to forward

guidance in the overall measure of policy shocks. Regarding the choice of the instrument

6Data set available at research.stlouisfed.orgeconmccrackefred − databases. The vintage used is
2020-06

7see https : s3.amazonaws.comfiles.fred.stlouisfed.orgfred−mdAppendixT ablesUpdate.pdf . The
series transformed into second difference or log second difference have been transformed into first differ-
ence and log difference respectively.



to proxy a monetary policy shock, several options are available in the literature. I

compare three instruments by looking at measures of their association to the structural

shock of interest, as shown in Table 1. 8

Reliability measure and F-statistics of the monetary policy instruments
Instrument MPI FF4GK MP1

F-statistics 12.48 [6.96 14.92] 39.77 [18.65 48.67] 23.4 [10.83 30.5]

Reliability 0.21 [0.15 0.23] 0.41 [0.29 0.43] 0.56 [0.37 0.57]

Table 1: Relevance of monetary policy instruments. The first line shows the F-statistics of the first-stage regression of the reduced-
form innovations of the proxy SVAR on the instrument. The second line shows the reliability measure proposed by Mertens &
Ravn (2013). Monetary Policy Instrument (MPI) by Miranda-Agrippino & Ricco (2021); high-frequency instrument (FF4) by
Gertler & Karadi (2015); monetary surprise (MP1) by Gürkaynak et al. (2005). VAR specification includes industrial production,
unemployment rate, consumer price index, commodity price index, excess bond premium, and one-year rate. Sample: 1978M1 -
2019M12.

The Monetary Surprise (MP1) by Gürkaynak et al. (2005) displays the highest level

of reliability across the instruments taken into account. However, the Monetary Policy

Instrument (MPI) proposed by Miranda-Agrippino & Ricco (2021) hhas the advantage

to account for the presence of information friction. This is achieved by constructing

the instrument by projecting the market-based monetary surprises on their lags and

the Central Bank’s information set, as summarised by the Greenbook forecast. For this

reason, I will use the MPI (plotted in Figure 2) for the benchmark specification. The

MPI spans from January 1991 to December 2015, which will be the sample used for the

benchmark estimates.

5.2 Model specification and the choice of the number of factors

The benchmark model includes 10 factors and the one-year rate with 13 lags, as is com-

mon in the literature. The choice of the number of factors is found to be a key element in

the overall model specification and for the reliability of the estimated impulse responses.

Jushan Bai (2002) provides a criterion to determine the number of factors present in

8The structural shocks have been extracted by using the Bayesian Proxy SVAR à la Caldara &
Herbst (2016). The reason for this is that the Bayesian VAR with exogenous instrument does not allow
to recover the series of the structural shock of interest as the impact matrix is only partially identified
and hence can not be inverted.



the data. However, as noted in Bernanke et al. (2005), this does not necessarily address

the question of how many factors should be included in the VAR. To have a better un-

derstanding of the optimal number of factors to include in the FAVAR, I perform the

”structuralness” test for the shock of interest as proposed by Forni & Gambetti (2014).

The structuralness test aims to check whether a model contains sufficient information to

correctly retrieve the structural shock of interest. The test is based upon the idea that,

under suitable conditions, if a shock recovered from a certain specification is orthogonal

to the lags of all the variables included in the model, then it is a linear combination

of the structural shocks. Based on the latter statement, the test suggests checking for

information sufficiency by looking at the orthogonality of the structural shock of interest

with respect to the lags of principal components. In practice, orthogonality is tested by

regressing the structural shock onto the past values of a number of principal components

9. I implement the test following a similar procedure as in Forni & Gambetti (2014).

First, a model with a low number of principal components is considered and the struc-

tural shock of interest is initially extracted from this model specification and regressed

against all the other principal components taken once at a time. If orthogonality is re-

jected, then the past values of the principal components considered are likely to contain

information useful to predict the shock, hence these will be included in the model. The

model augmented with the principal components which are found to have explanatory

power for the shock of interest will be used in the subsequent step and the procedure

will be repeated until no further principal components are found to be informative. Fol-

lowing this procedure, the test suggests including 10 principal components (1 to 4, 10,

12, 16, and 18 to 20). This specification will be used in the benchmark exercise shown

in the following section. The results of the test are displayed in Table 2.

9It is worth noting that, also in this case, the monetary policy shock has been extracted by using the
frequentist Proxy FAVAR à la Mertens & Ravn (2013), as for the computation of the reliability measure.
Moreover, the principal components are used as proxy for the factors



Specification P=5 P=6 P=7 P=8 P=9 P=10 P=11 P=12 P=13 P=14 P=15 P=16 P17 P=18 P=19 P=20

1-4 ω4
t 0.60 0.35 0.61 0.95 0.70 0.52 0.32 0.81 0.96 0.28 0.71 0.00 0.20 0.10 0.29 0.68

16 ω5
t 0.88 0.58 0.32 0.88 0.95 0.46 0.71 0.72 0.84 0.53 0.80 - 0.47 0.12 0.22 0.13

18,20 ω6
t 0.48 0.71 0.41 0.47 0.45 0.10 0.53 0.18 0.77 0.96 0.87 - 0.25 - 0.28 -

10 ω7
t 0.67 0.78 0.46 0.84 0.39 - 0.75 0.40 0.24 0.83 0.86 - 0.80 - 0.12 -

19 ω8
t 0.52 0.75 0.74 0.21 0.62 - 0.49 0.04 0.65 0.75 0.97 - 0.72 - - -

12 ω9
t 0.52 0.56 0.49 0.44 0.53 - 0.89 - 0.34 0.80 0.18 - 0.95 - - -

Table 2: p-values of the orthogonality test. F-test for the estimated monetary policy shock. The rows correspond to different

specifications ωi
t where i is the number of principal components included. P refers to the number of principal components used in

the test. Structural shocks are extracted from a proxy FAVAR with 13 lags, the proxy for the monetary policy shock is the MPI
by Miranda-Agrippino & Ricco (2021) and the base rate is given by the one-year rate.

5.3 Transmission of a monetary policy shock in the U.S.

Figure 3 shows the results for a one-standard-deviation monetary policy shock nor-

malized to give an increase of 100 basis points to the one-year government bond rate.

Overall, I find that a tighter monetary policy surprise has contractionary effects on both

the demand and supply side of the economy, as well as on prices. In terms of financial

variables, financing conditions tighten, leading to a decline in credit and asset prices.

As it can be seen from the top-row panels in Figure 3, industrial production declines

across the time horizon observed. The decline in the overall figure reflects a decline in

both durable and nondurable goods, with the latter reacting more strongly. Consistently,

sales contract across various market segments (in the figure it can be seen the path for

manufacturing and trade sales). As firms contract their production and sales decline,

business inventories also contract as well as new orders. The response of the ratio of

business inventories over sales in the manufacturing market remains marginally positive

over the whole horizon, signaling that sales contracts are stronger than inventories. As a

result, capacity utilization in the economy declined. A drop on impact in housing starts

signals lower levels of investments in the housing market.

Looking at the panels in the third and fourth rows, it can be seen as the labor market is

also negatively affected. The unemployment rate increases and the number of employed

people go down. The impact on employment is uneven, with employees in manufactur-

ing being more impacted than employees in the public sector. The average number of

hours worked also goes up, suggesting that firms are cutting their costs for personnel.

The average earnings diminish as expected in a labor market where employees lose their

bargaining power due to the higher unemployment rate. Real personal income declines



persistently over the horizon as a consequence of lower earnings. Consistently, personal

consumption decreases.

Panels in the fifth and sixth rows show the reaction of various measures of prices. As the

economy contracts and production and sales decline, prices also adapt by declining, as

one would expect, with some adjusting faster than others. Strong uncertainty surrounds

the estimated responses of prices, but they are consistent with what theory suggests and

overall are not suggestive of the presence of a price puzzle.

Finally, the bottom-row panel shows the responses of credit and financial market vari-

ables. Both short-term and long-term costs of credit increase, as suggested by the

increase in the short-term rate and the excess bond premium respectively. As a con-

sequence, both consumer and mortgage financing decline with the latter leading to de-

clining property investments (housing starts). It is worth noting that both tightening

financing conditions and weakened demand factors negatively weigh on lending dynam-

ics, which might explain the magnitude of the observed decrease. Consistently, asset

prices also decline, as reflected in the response of the stock market and house prices,

and the increase in the trade-weighted dollar exchange rate. Declining asset prices are,

in turn, consistent with a deterioration in households and firms’ wealth levels, which

corroborates the insights suggested by the responses of real economic variables in the

top panels.

5.4 The role of information sufficiency (I): comparison between FAVAR

with exogenous instrument and VARX

In this section, I study the importance of taking into account large information sets in

the estimation of the dynamic responses to a shock of interest. I do so by comparing

the results obtained with the small-scale VARX as proposed in Paul (2020) and the

FAVARX. To observe solely the effect played by the information contained, I keep fixed

the instrument, the data sample, the number of lags, and the priors across the two mod-

els. As shown in Figure 4, the two models deliver standard responses for macroeconomic



and financial variables. A contractionary monetary policy shock leads to a decline in

asset prices and dividend yields as well as a decrease in industrial production. However,

the response of consumer prices in the case of the small-scale VARX is positive on im-

pact and along the horizon considered. The price response estimated with the data-rich

models is very similar on impact, but it declines within the first three months and stays

negative throughout the estimation horizon, which seems more consistent with standard

economic theory. One possible interpretation of these results is that data-rich models,

by ensuring a correct retrievement of the original data-generating process and hence of

the reduced-form coefficients, can help avoid misleading or counter-intuitive estimations

of dynamic responses of the endogenous variables to the structural shock one wants to

study (see also section 2.4). As a further illustration of this, Figure 5 shows the re-

sponses of CPI and industrial production estimated with a FAVAR model including a

lower number of factors than those suggested by the structuralness test, and how these

responses change as relevant factors are added to the model. The more relevant factors

are added, the more puzzles are solved.

5.5 The role of information sufficiency (II): using different identifying

instruments in a data-rich model

While in the previous subsection I explored the importance of having a data-rich model

for the estimation of dynamic responses, here I consider this aspect in conjunction with

the choice of the instrument used. As documented in Coibion (2012) and Ramey (2016),

dynamic responses to monetary policy shocks can vary depending on the information

contained in the instrument used as well as on the sample and the model specification.

In this section, I explore the performance of different instruments available in the liter-

ature when used within a data-rich model and how these compare when used within a

standard VAR, to shed light on the potential role of data-rich models in mitigating the

discrepancies observed across the dynamic responses estimated when using different in-

struments available in the literature. Figure 6 shows the responses obtained using three



different instruments, both in a FAVARX (left-hand side panels) and an in a VARX

(right-hand side panels) model.

Overall, the responses obtained with the three instruments are in line with what the eco-

nomic theory would suggest. However, the responses obtained with the FAVAR model

seem to lead to fewer contradictions. For example, responses of CPI estimated with

the VAR suggest the presence of a positive long-run impact on consumer prices if I

identify the shock with one instrument, as opposed to what is observed in the case of

the other two proxies. These discrepancies vanish in the responses obtained with the

FAVAR, which point to a negative long-run impact regardless of the instrument that is

employed to proxy the monetary policy shock. Similarly, the response of house price

shows opposite paths depending on the instrument used for identification.

6 Conclusions

The main goal of this paper is to propose an algorithm to integrate an identification

scheme based on an exogenous instrument approach within a FAVAR model. The

FAVARX can be seen as a valid alternative to the Proxy FAVAR model existent in

the literature. The main advantage of the proposed methodology with respect to the

Proxy FAVAR lies in its computational simplicity and the easy extension to time vari-

ation in parameters. The FAVAR with exogenous variable is employed to revisit the

transmission of a monetary policy shock in the U.S. The obtained dynamic responses

seem consistent with the economic theory, as they suggest that a tightening monetary

policy has contractionary effects on real economic variables, causes a decline in vari-

ous measures of prices, and it tightens financial conditions. Furthermore, the proposed

modeling framework is used to study the importance of including sufficient information

in the model. Results suggest that including rich information sets plays an important

role in mitigating price and real economic puzzles in the estimated impulse responses as

well as the discrepancies among the impulse responses obtained with different monetary

policy instruments.
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Gilchrist, Simon, & Zakraǰsek, Egon. 2012. Credit Spreads and Business Cycle Fluctu-

ations. American Economic Review, 102(4), 1692–1720.



Gürkaynak, Refet S., Sack, Brian, & Swanson, Eric. 2005. The Sensitivity of Long-

Term Interest Rates to Economic News: Evidence and Implications for Macroeconomic

Models. American Economic Review, 95(1), 425–436.
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Appendix

A State-space form representation of FAVAR with exoge-

nous variable

Let’s rewrite the observation equation in (1) as:


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...
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... 0
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+
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vt

(17)

The left-hand side of the equation contains the panel of informational variables Xi, t

and the vector of observable variables Yt (hence, Xi,t = {Xi,t, Yt}). Note that the set of

observable variables in Yt is assumed to include only one variable as this is typically the

case in the literature on monetary shocks. The K latent factors are denoted by Fi,t with

i = 1...K and they summarise the information in Xi,t.

The structure of this observation equation implies that the informational variables are

related to the contemporaneous values of the latent factors via the MxK matrix of the

factor loading, given by the elements λf
ij in matrix H (with i = 1...M and j = 1...K);

moreover, these informational series are related to the contemporaneous values of the

observable variables contained in Yt by the elements λy
i (where, again, i = 1...M) in the

H matrix.

In the original specification of the FAVAR proposed in Bernanke et al. (2005) the



elements of the λy
i are non-zero for those variables in Xi,t that are assumed to react

quickly to monetary policy interventions (”fast-moving variables”). The identification

through exogenous proxy allows for a non-zero contemporaneous impact on all the en-

dogenous variables, hence the model presented here does not include this distinction,

and the vector λy
i is zero regardless of the nature of the variable in Xi,t.

The remaining (M + N) ∗ p elements of the matrix H beyond λf
ij and λy

i are equal to

zero; this implies that all the elements in Xi,t only depend on the current and not on the

lagged values of the factors, contained in the β vector (or the state vector). The reason

why the lags of the state variables are still included in the state vector is that we want

these lags to enter the VAR that forms the transition equation, described below. It is

worth noting that assuming that the elements in Xi,t depend only on contemporaneous

values of the latent factors is not restrictive as the FAVAR framework allows for dynamic

relationships between the informational variables in Xi,t and the latent factors. If Xi,t

is assumed to depend on an arbitrary number of lags of the factor, then we would have

a dynamic factor model (Stock & Watson, 1998). Regarding the observable in Yt, it

is simply described as an identity, as indicated by the zeros in the last rows of the H

matrix and the 1 placed below the λy
i vector.

The unobserved factors are then modeled jointly with the observed variables in the

VAR. The idea is that thanks to the inclusion of unobserved factors summarising a large

amount of information in the VAR one can capture that additional information not

fully captured by the limited number of variables typically included in the VAR. The

dynamics of the unobserved factors Ft and the observed variables in Yt are assumed to

evolve according to the following VAR process:
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Where:

V AR(ut) = Q =



Q1,1 Q1,2 . . . Q1,θ 0 . . . 0

Q1,2
. . . . . . Q2,θ 0 . . . 0

...
...

. . .
...

...
...

Q1,θ . . . . . . Qθ,θ 0 . . . 0

0 . . . . . . 0 0 . . . 0

0 . . .
. . . 0 0 . . . 0

0 . . . . . . 0 0 . . . 0


(19)

where θ = K + N . The zeros result from the fact that the last θ equations in

the transition equation describe identities. The Carter and Kohn algorithm will be

generalised to take the singularity of the matrix Q into account.

Equation (18) is a VAR in Ft and Yt, that can be interpreted as a reduced-form

model involving both observable and unobservable components, written in first-order

companion form. It is worth noting that this model is reduced to a standard form VAR



if the coefficients that relate Yt to past values of F are zero. If those elements are different

from zero, then we have a FAVAR. As noted in Bernanke et al. (2005), if the true system

is given by a FAVAR, omitting the introduction of the unobserved factors in the model

will lead to a biased estimate of the VAR coefficients and related impulse responses.

B Estimation via Gibbs sampling algorithm

B.1 Setting priors and starting values

The observation equation: the prior for the factor loadings is normal. Let’s define

H = {Λf
i ,Λ

y
i } then p(H) ∼ (H0,ΣH). The diagonal elements of the variance-covariance

matrix of the error terms Ri are drawn from an Inverse Gamma p(Ri) ∼ IG(Rii0, VR0).

As starting values, the elements of R are arbitrarily set equal to one and ΣH = I.

The transition equation: I introduce a natural conjugate prior for the VAR parame-

ters à la Sims & Zha (1998) as in Bańbura et al. (2010), slightly modified to accommodate

the presence of the extra exogenous variable.

YD,1 =
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XD,1 =


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τ 0θp×ex
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. . .
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 (21)

Where γ1 and γθ denote the prior mean for the coefficients of the first lag, τ is the

tightness of the prior of the VAR coefficients, ex is the number of exogenous variables

in the VAR and c is a (1 + ex) × (1 + ex) matrix for the tightness of the constant and

the proxy. Following Alessandri & Mumtaz (2017), the prior means are chosen as the

OLS estimates of the coefficients of an AR(1) regression estimated for each endogenous

variable. Similarly to Mumtaz & Theophilopoulou (2020), I use the principal components

estimates of the factors Ft for this purpose. As is standard for U.S. data, τ is set equal to

0.1. The scaling factors σi are set using the standard deviation of the error terms from

the AR(1) regressions. The values in c are set equal to 1/1000. Additionally, for those

variables that have a unit root, I impose a sum of coefficients prior. This incorporates

the belief that coefficients on lags of the dependent variable sum to 1. This prior can be

implemented in the transition equation in (4) via the following dummy observations.

YD,2 =
(
diag(γ1µ1...γθµθ)

λ

)
(22)

XD,2 =
(
(11×p)⊗diag(γ1µ1...γθµθ)

λ 0×(1+ex)

)
(23)

Where µi denotes the sample means of the endogenous variables. As in Bańbura et al.

(2010), the tightness of this sum of coefficients prior is set as λ = 10τ . The variance-

covariance of the error terms is drawn from an Inverse Wishart p(Bi) ∼ IW (B0,ΣB)

and p(ri) ∼ IG(Rii0, VR0).



Finally, the Kalman filter requires the initial value of the state vector; for this pur-

pose, the principal components extracted from the set of informational variables are used

as a first estimate of the factors to set the initial values of the state vector in the Kalman

filter.

B.2 Steps of the Gibbs sampling algorithm

Step 1 - Sample the matrix of factor loadings

Conditional on the (starting values) of the factors F and on Rii, sample the factor

loading from their conditional posterior. For each variable in the informational set Xt

the factor loadings have normal conditional posteriors H(Hi|Ft, Rii) ∼ N(Hi, H
∗
i , V

∗
i ),

where:

H∗
i = (Σ−1

Hi
+

1

Rii
Z ′
tZt)

−1(Σ−1
Hi

Hi0 +
1

Rii
Z ′
tXt) (24)

V ∗
i = (Σ−1

Hi
+

1

Rii
Z ′
tZt)

−1 (25)

Where Zt = {F1, . . . , FK} .It is worth noting that in the original FAVAR specification

outlined in Bernanke et al. (2005), Zt = {F1, . . . , FK , FEDFUND} if a data series is

fast-moving, it has a contemporaneous relationship with the policy rate. On the contrary,

for those series considered slow-moving, Zt = {F1, . . . , FK}. In the FAVAR with an

exogenous variable, this distinction is not needed as the exogenous variable approach

allows for the shock to impact all the variables contemporaneously.

Also, note that as the factors and Hi are both estimated, the model is unidentified.

Following Bernanke et al. (2005), the topK×K block of bij is fixed to an identity matrix.

Step 2 - Variance of the errors of the observational equation



Conditional on the factors Ft and the factor loadings Hi = {λf
ij , λ

y
i }, sample the variance

of the error terms of the observation equation Rii from the inverse Gamma distribution

with scale parameter (XijZtHi)
′(XijZtHi)+Rii with degrees of freedom T +VR0 where

T is the length of the estimation sample. Prior degrees of freedom and the prior scale

matrix are set to 0 (hence I use information from the data only).

Step 3 - Coefficients of the transition equation

Conditional on the factors Ft and the error covariance matrix Ω, the posterior for the

coefficients of the transition equation B is normal and given by H(B|Ft,Ω) ∼ N(B∗, D∗)

where:

B∗ = vec((X̄ ′
tX̄

′
t)
−1(X̄ ′

tȲt)) (26)

D∗ = (Ω⊗ X̄ ′
tX̄

′
t)
−1 (27)

Where

X̄ =


X

XD,1

XD,2

 (28)

Ȳ =


Y

YD,1

YD,2

 (29)

Step 4. Error covariance of the transition equation

Conditional on the factors F and the VAR coefficients B, the error covariance Ω has



a inverse Wishart posterior with scale matrix (Yt− (̂X)B)′(Yt− (̂X)B)+Ω0 and degrees

of freedom T + V0.

Step 5 - Backward recursion to obtain the factors

Given H,R,B and Ω the model can be cast into state-space form, and then the

factors Ft are sampled via the Carter and Kohn algorithm. In the Carter and Kohn

algorithm, I have to take into account the fact that the matrix Q is singular in the

FAVAR model. This implies that the recursion has to be generalized slightly to take this

singularity into account. This modification implies that I use µ∗, F ∗, Q∗ and β∗
t+1, where

µ∗, F ∗, Q∗ and β∗
t+1 denote the first jv rows of µ, F , Q and βt+1 and jv is the number of

factors plus the number of observable variables in the model, which corresponds to the

size of the non-zero elements in matrix Q. It is worth noting that while in the FAVAR

with a Cholesky identification as originally proposed in Bernanke et al. (2005) the µ

vector is fixed as it contains the coefficients associated with the constant, in the FAVAR

proposed here, the µ also contains the coefficients associated with the exogenous proxy

for the structural shock of interest; hence, the µ vector will change in every time period

through the Kalman filter and the backward recursion.

Repeat steps 1 to 5 as many times as needed to reach convergence.

C Convergence of the Gibbs sampler

I assess the convergence of the Gibbs sampling algorithm by looking at the efficiency

factors for the estimated coefficients of the observation equation. The inefficiency factor

is defined as the ratio of the numerical variance of the sample posterior mean to the vari-

ance of the sample mean from the hypothetical uncorrelated draw (see Chib, 2001). The

ineffciency factors for the estimated coefficients range between 2.7 and 10.8, suggesting

good mixing properties of the Gibbs sampler (see Figure 7).



D Comparison between exogenous instrument approach

and Cholesky

Figure 8 compares the responses of a number of selected variables obtained with the

FAVAR with the exogenous variable against the ones obtained with a standard FAVAR

with shock identified via Cholesky decomposition, as originally proposed in Bernanke

et al. (2005). The two sets of responses look substantially different. In general, responses

obtained through the exogenous variable approach are greater in magnitude than the

ones obtained when the shock is identified through zero restrictions. Moreover, the latter

present a price puzzle in the response of CPI and a real economy puzzle in the responses

of personal consumption and unemployment.

The impact on industrial production is substantially stronger in the case of the exogenous

variable than with Cholesky, but both lie in negative territory over the whole horizon.

Inflation responds positively in the short-term in the case of Cholesky, indicating the

presence of a prize puzzle, which disappears with the exogenous variable approach. The

impact on consumption diverges in the two cases; it increases in the case of Cholesky,

contrarily to what theory would suggest. The unemployment rate reacts with delay in

the case of Cholesky, while it increases on impact and over the rest of the sample in

the case of the exogenous variable approach. Finally, the impact on the equity market

is visibly different. When the shock is identified with zero restrictions, the impact is

marginally positive but close to zero, while with FAVAR with exogenous variable it

declines sharply in the short-term before rebounding.



E Figures

Figure 1: Monte Carlo Simulation
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Figure 1: Comparison between impulse responses estimated with a FAVAR with exogenous instrument and the true impulse
responses. Dashed lines represent the true IRFs; the blue lines reproduce the median and 68 bands.



Figure 2: Monetary Policy Instrument (MPI)
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Figure 2: Monetary Policy Instrument by Miranda-Agrippino & Ricco (2021). Sample: 1991M1-2015M12.



Figure 3: Benchmark results - transmission of a monetary policy shock
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Figure 3: Transmission of a Monetary Policy shock in the US. Impulse responses to a contractionary monetary policy shock,
normalized to give an initial increase in the federal funds rate of 100 basis points. Blue solid lines and shaded gray areas correspond
to the median responses obtained with FAVAR with exogenous proxy and 68 percent confidence bands. The FAVAR includes 10
factors extracted from the FRED dataset augmented with extra variables and the Federal Fund Rate. The instrument used to proxy
the policy shock is the Monetary Policy Instrument (MPI) by Miranda-Agrippino & Ricco (2021). Sample: 1991M1-2015M12.



Figure 4: Small-scale VARX and FAVAR with exogenous proxy
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Figure 4: Impulse responses to a contractionary monetary policy shock, normalized to give an initial increase in the one-year
government bond rate of 100 basis points. Dashed-lines indicate the median response obtained with the small-scale VARX along
with 68 percent confidence intervals. Red solid lines and shaded areas correspond to the responses obtained with FAVAR with
exogenous proxy and 68 percent confidence bands. The small-scale VARX includes stock prices, dividends, house prices, excess
bond premium, CPI, industrial production, and the rate. The FAVAR includes 13 factors extracted from the FRED dataset
augmented with extra variables and the rate. The instrument used to proxy the policy shock is the monetary surprise (MP1) by
Gürkaynak et al. (2005). Sample: 1988M11-2017M9.



Figure 5: Information sufficiency, price and real activity puzzles
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Figure 5: Price and Industrial Production puzzles with different numbers of factors. Impulse responses to a contractionary
monetary policy shock, normalized to give an initial increase in the one-year government bond rate of 100 basis points. The
instrument used to proxy the Monetary Policy Instrument (MPI) by Gürkaynak et al. (2005). Sample: 1988M11-2017M9. Top-
panel: CPI responses obtained with different number of factors. Blue line with markers: 8 factors; blue line: 9 factors; red line: 10
factors. Bottom-panel : IP responses obtained with different number of factors. Blue line with markers line: 5 factors; blue line:
6 factors; red line: 7 factors.



Figure 6: Different identifying instruments and information sufficiency
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Figure 6: Monetary policy instruments comparisons - Impulse responses to a one-standard-deviation shock normalized to have
an increase of 100 basis points in the one-year government bond rate estimated with FAVARX (left-hand side panels) and VARX
(right-hand side panels). Solid blue lines indicate impulse responses resulting from a shock identified with the MPI by Miranda-
Agrippino & Ricco (2021); blue lines with markers indicate the impulse response resulting from a shock identified using the MP1
by Gürkaynak et al. (2005). Gray lines represent responses to a shock using the MPI by FF4 by Gertler & Karadi (2015). Model
specifications: FAVAR with MPI and GK include 10 factors as in the benchmark specification; FAVAR with MP1 includes 13
factors; VARX includes stock prices, dividends, house prices, excess bond premium, CPI, industrial production, and the Federal
Fund Rate. For each instrument, all the available sample is used.



Figure 7: Inefficiency Factors
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Figure 7: Inefficiency factors for the parameters of the transition equation, obtained from a 100000 iteration of the Gibbs sampler,
50000 burns and retaining every 10th iteration. Lags for the autocorrelation=20.



Figure 8: Comparison between the exogenous instrument approach and Cholesky
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Figure 8: FAVAR including 10 factors plus the one-year rate. Impulse responses to a one-standard-deviation shock normalized to
have an increase of 100 basis points in the one-year government bond rate. The gray-dashed lines indicate the impulse response
resulting from a shock identified with Cholesky scheme. Blue lines represent responses to a shock with the exogenous variable
approach. The instrument used is the MPI narrative instrument by Miranda-Agrippino & Ricco (2021). Sample 1991-2015.


