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Abstract

I study a dynamic cash flow diversion model between a risk neutral lender and a risk
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but the cross-sectional variance increases without bound. These results contrast equiv-
alent models with risk neutrality, where firm size tends to increase over time, and the
entrepreneur is compensated once the optimal size is reached. I use numerical simula-
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which should decrease over time if shocks are persistent. The implementation provides
an intuitive explanation for the opposite firm size dynamics.
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1 Introduction

Financing constraints slow down firms’ growth over their lifecycle. Dynamic contracting
models have proved useful in understanding the underlying agency frictions that generate
financing constraints and prevent, particularly young firms, from operating at their optimal
size. The canonical setting in this literature is the cash flow diversion model: at each period,
an entrepreneur needs funds from a lender to operate a project, but only the entrepreneur
observes the project’s cash flows and can secretly divert them for consumption. A regular
outcome of this class of models is that, in the optimal contract, the firm size drifts upwards,
and the entrepreneur is compensated once the undistorted first best size is reached (Clementi
and Hopenhayn (2006))1.

The literature has typically assumed that the entrepreneur is risk neutral and that the
shocks to the firm’s cash flows are i.i.d2 (Clementi and Hopenhayn (2006), DeMarzo and
Sannikov (2006), DeMarzo and Fishman (2007a), Biais et al. (2007)). However, by making
these two assumptions, these models may abstract from first-order concerns for designing
financial contracts. First, with risk neutrality, there is no need to smooth the entrepreneur’s
consumption, so the compensation can be backloaded at little (or no) cost. Second, the
i.i.d assumption restricts the extent to which the entrepreneur may have more information
about the firm’s future profitability. Thus limiting the potential gains of misreporting and
the extent to which the entrepreneur’s preferences for future contract arrangements depend
on the current productivity.

In this paper, I study a dynamic contracting problem between a risk neutral lender and a risk
averse entrepreneur that has persistent private information about the firm’s productivity.
I solve for the optimal contract and analyze the implied firm size and compensation dy-
namics. Together, risk aversion and persistence lead to remarkably different dynamics than
models previously studied. Firm size (i.e. working capital invested) drifts downwards. The
entrepreneur’s compensation is smoothed, but the variance of consumption is permanently
increasing (as in Thomas and Worrall (1990)). Moreover, compared to the risk neutral case,
where compensation and firm size are linked one to one (Clementi and Hopenhayn (2006)),
with risk aversion, there is an almost complete separation between these two variables. For

1Empirically, it is not obvious that the firms’ financing constraints are eventually relaxed as they age.
For instance, in developing economies, where financing constraints are more stringent, we observe that old
firms are relatively smaller than in developed economies (Hsieh and Klenow (2014)).

2A notable exception is Fu and Krishna (2019), who study a similar cash-flow diversion model with risk
neutrality but with persistent shocks. However, as I will show, the role of persistence on firm dynamics
crucially depends on the entrepreneur’s risk aversion.
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instance, after several periods, the size of the firm can be distorted downwards, but the
entrepreneur receives a high compensation. These dynamics are shown theoretically but also
illustrated with numerical simulations.

With private information, the firm dynamics can be characterized with return-dependent
investment wedges, which lower the implicit expected marginal product of capital. The
size of the investment wedges depends on three terms: (i) the elasticity of the marginal
product of capital with respect to productivity, intuitively, lending is more costly when it
benefits relative more the productive entrepreneurs (it increases relatively more their ability
to divert funds); (ii) the upper Pareto tail of the distribution of productivity shocks; and
(iii) a normalized shadow cost of insurance which captures the amount of insurance that
the lender wants (or has promised) to provide to the entrepreneur. With risk aversion and
persistent private information, the lender gains by promising to provide more insurance in
future periods as it helps screen types3. Consequently, the investment wedges tend to increase
over time, and firm size tends to decrease4. However, with i.i.d productivity shocks, there is
no gain of promising higher future insurance, so wedges and firm size are stationary.

The entrepreneur’s consumption process satisfies a Generalized Inverse Euler Equation (GIEE)
similar to Hellwig (2021). As expected, with risk aversion, the lender smooths the en-
trepreneur’s compensation. In the GIEE, a savings wedge captures the incentive costs of
savings at period t. Higher savings lower information rents at t+1, and the pass-through as
an incentive cost at t is increasing on the persistence of the process. Hence, higher persistence
lowers the savings wedge, so savings are less discouraged on the margin. The cross-sectional
variance of the entrepreneur’s consumption grows over time without bound. After a history
of high (low) productivity shocks, the entrepreneur is rewarded with high (low) consump-
tion. However, the numerical simulations show that this dispersion in compensation does not
translate to firm size distortions. The investment wedges are essentially uncorrelated with
compensation. Basically, the entrepreneur is compensated with higher future consumption,
not with low future firm size distortions. Firm size distortions are instead driven by the
gains of promising high future insurance. This finding also contrasts the model with risk

3More concretely, with risk aversion and persistent private information, different types θt have different
preferences for the expected variation in utilities (i.e. the insurance) of contracts offered at t+1. In particular,
types θ′ > θt prefer contracts where there is less insurance at period t+ 1 than θt. Therefore, the principal
can commit to increase the insurance provided at t + 1 to reduce the cost of screening types at t. This is
the same reason why the labor wedges tend to increase over time in dynamic Mirrlees models (see Farhi and
Werning (2013) and Makris and Pavan (2020)).

4Interestingly, Clementi et al. (2010) also find that the optimal contract implies that firm size tends to
decrease over time. But the setting and rationale for firm decline are different. I discuss in more detail the
differences between the two models in the literature review section.
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neutrality, where, with i.i.d types, there is a one-to-one mapping between promised utility
and firm size distortions (Clementi and Hopenhayn (2006)).

To further understand the compensation dynamics, I use numerical simulations and analyze
a (quasi-)implementation with simpler contracts. The implementation is also useful for
understanding the drivers of the different firm size dynamics with risk neutrality and risk
aversion. With i.i.d shocks, the following simple contract gets very close to the optimal
allocation5. The lender gives the entrepreneur a constant equity share on the firm’s reported
cash flows. Then the entrepreneur can pledge her shares as collateral and borrow to smooth
consumption given his implied wealth. Pledging shares is a common practice (Fabisik (2019));
this implementation shows how it can be rationalized as part of a nearly optimal contract6.

With persistent private information, the principal’s problem contains an extra state variable
that captures the insurance promised to the agent. This state variable naturally maps to the
equity share given to the entrepreneur. Intuitively, types θ′′ > θ′ know they are expected to
obtain higher cash flows at t + 1 than θ′, so it is less attractive for them to give up equity.
Therefore, when the lender buys equity at t+1 to some type θ′, it discourages the diversion
of funds for types θ′′ > θ′. That is, the lender optimal lowers the equity share at period t+1

(to an inefficient level once at t + 1) because it helps screen types at t. In any case, in the
numerical simulations, the contract with a constant equity share, augmented to account for
capital gains, still delivers small losses to the lender compared to the optimal allocation.

The implementation clarifies the discrepancy of the firm size dynamics with risk neutrality
and risk aversion. With risk neutrality, it is optimal to reward the entrepreneur solely through
a higher stake in the project to minimize diversion incentives. Therefore, the promised util-
ity can be mapped to the entrepreneur’s equity (Clementi and Hopenhayn (2006)). This
is no longer the case with risk aversion. As I show, promised utility better maps to the
entrepreneur’s wealth, and the promised insurance maps to the entrepreneur’s equity share.
Consequently, both models obtain a positive relation between equity and firm size. Intu-
itively, regardless of the entrepreneur’s preferences, a high equity share disincentivizes the
diversion of funds, so the lender is willing to provide more capital. However, with risk
neutrality, the equity share drifts upwards, but with risk aversion and persistence, it drifts

5More concretely, for every draw of a montecarlo simulation, I compute the distance between the induced
consumption allocation under the optimal contract and the implementation at all periods.

6Pledging shares aligns the entrepreneur’s consumption with the firm’s value, but without having to sell
shares and independently of dividend payout policies. In this model selling shares may not be optimal,
as lowering the entrepreneur’s stake on the firms increases his incentives to divert funds. This rationale is
consistent with the primary motive for pledging shares estimated in Fabisik (2019): obtain liquidity while
maintaining ownership.
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downwards7. The equity share dynamics of the risk neutral model may be at odds with
what we observe in the data. For example, in the venture capital industry, the founder’s
equity share gets diluted over the financing rounds as the firm grows (Azevedo et al. (2023)).
Therefore, it may be challenging for this class of models to generate realistic firm size and
equity dynamics simultaneously.

I explore three extensions to the main model: (i) limited commitment of the entrepreneur as
in (Albuquerque and Hopenhayn (2004)), (ii) a model where the entrepreneur can choose the
fraction of funds invested and diverted, and (iii) allowing the lender to terminate the contract.
Although termination may be optimal, it does not affect the equations characterizing the
optimal contract presented throughout the paper. Moreover, I also discuss that, contrary to
the model with risk neutrality (Clementi and Hopenhayn (2006)), termination probabilities
should tend to increase over time. In a simplified version of the model, I show that if
termination is optimal, termination probabilities increase with the persistence of the process;
the intuition is similar to that of the equity purchases.

I use two tools from the dynamic public finance literature to solve and characterize the
optimal allocation. The first is the first-order approach (FOA) as in Kapička (2013), Farhi
and Werning (2013), Pavan, Segal and Toikka (2014) and Golosov et al. (2016a). It consists
of solving a relaxed problem with the local incentive compatibility constraints. The FOA is
popular in dynamic public finance, but it is also used more broadly in dynamic mechanism
design. The FOA allows solving the model with persistent private information. A priori,
global incentive compatibility constraints may bind. Following the procedure in Kapička
(2013) and Farhi and Werning (2013), I verify ex-post that this is not the case in all the
numerical simulations.

The second tool allows for deriving analytical characterizations of the optimal allocation
with risk aversion. This is the change of measure used in Hellwig (2021) for a Mirrlees tax-
ation problem with non-separable preferences between consumption, leisure and type. The
challenge is that, with risk aversion, the marginal information rents depend on consumption.
So if the lender redistributes consumption around some type θ, the slope of the profile of
information rents for types θ′ > θ changes. Following Hellwig (2021), incentive-adjusted

7Another interesting implication concerns the role of capital structure on the firm’s value (i.e. the
Modigliani-Miller theorem). With risk neutrality, the firm’s value does depend on the promised utility
given to the entrepreneur (Clementi and Hopenhayn (2006)). Instead, with risk aversion, firm size, and
so firm value, is approximately independent of promised utility, but they are decreasing on the amount of
insurance promised. This observation corroborates the idea that, with risk aversion, promised utility maps
to the entrepreneur’s private wealth and is unrelated to the firm’s capital structure.
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measures can be employed to reweight the density of types such that the lender’s evalua-
tion of allocations accounts for the changes in information rents, and therefore, incentive
compatibility is preserved.

Related literature: This paper contributes to the dynamic financial contracting litera-
ture. Important early work on this class of models includes Clementi and Hopenhayn (2006),
Albuquerque and Hopenhayn (2004), Biais et al. (2007), Biais et al. (2010), DeMarzo and
Sannikov (2006), DeMarzo and Fishman (2007a), DeMarzo and Fishman (2007b) and De-
Marzo et al. (2012). In particular, I contribute to the literature by studying a workhorse
dynamic cash flow diversion model with risk aversion and persistent private information.

That firm size decreasing over time can be the outcome of an optimal contract has also been
shown in Clementi et al. (2010). They study a dynamic moral hazard model where the firm’s
productivity distribution depends on the entrepreneur’s costly effort exerted. In their model,
the entrepreneur becomes wealthier over time which lowers the effort and, consequently, firm
size. Thus, these dynamics are driven by a wealth effect on incentives, which is different
from the increase in insurance resulting from the persistent private information.

Models with persistence have been recently analyzed in DeMarzo and Sannikov (2016), Fu
and Krishna (2019) and Krasikov and Lamba (2021), but all these papers assume a risk
neutral entrepreneur. To my knowledge, this is the first paper in the dynamic financial
contracting literature with both persistent private information and risk aversion. As I will
show, some key effects of persistence on the optimal allocation, especially the downwards
drift in firm size, are only present with risk aversion. Fu and Krishna (2019) and Krasikov
and Lamba (2021) show some interesting role of persistence on the dynamics of distortions.
However, as in the i.i.d risk neutral models, they still find that distortions eventually disap-
pear8. Models with risk aversion have been studied in He (2012) and Di Tella and Sannikov
(2021). Both papers study a hidden savings problem, so the entrepreneur has persistent pri-
vate information about his savings. I do not allow for hidden savings but allow for persistent
private information about the firm’s productivity.

Throughout the paper, I use tools and insights from the dynamic Mirrlees literature9. As
discussed, I use the FOA and set up the principal’s problem recursively as in Kapička (2013),

8As shown in Makris and Pavan (2020), with risk neutrality wedge dynamics only depend on the impulse
response of the initial period, and so wedges converge to zero.

9For a review of the literature see Stantcheva (2020). In some aspects, the model also resembles the
setting of the dynamic taxation problems in Stantcheva (2017) and Brendon (2022).
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Farhi and Werning (2013) or Golosov et al. (2016a). I also use incentive-adjusted probability
measures as in Hellwig (2021) to derive analytical characterizations of the optimal contract.
The finding that firm size drifts downwards follows from the insight of the Dynamic Mirrlees
literature that labor wedges tend to increase over time (Farhi and Werning (2013), Makris
and Pavan (2020)).

Finally, this paper is also related to the literature on insurance with persistent private infor-
mation (Williams (2011), Bloedel et al. (2018) and Bloedel et al. (2020)). With fixed capital,
the cash flow diversion model studied in this paper is equivalent to the hidden endowment
model used in this literature. Their focus is on the role of persistent private information
for the long-run distribution of consumption and whether or not it features immiseration
(Thomas and Worrall (1990) and Atkeson and Lucas (1992)). In the paper, I present some
results and discussion on the long-run consumption dynamics. Nevertheless, numerical sim-
ulations show that in this model, immiseration is a very long-run phenomenon so that it
may be irrelevant for the usual lifespan of a firm.

Outline: The rest of the paper is organized as follows. Section 2 describes the model, sets
up the relaxed planning problem, and presents the first best allocation. Section 3 presents the
main results on the firm size and consumption dynamics, and section 4 illustrates them with
numerical simulations. Section 5 studies the quasi-implementation. Section 6 discusses the
differences in models with risk neutrality and risk aversion and their implications. Finally,
section 7 briefly summarizes the extensions to the main model, and section 8 concludes.

2 Model

Time is discrete and indexed by t = 0, 1, ...,∞. Every period an entrepreneur (the agent,
“he”) needs funds kt from a lender (the principal, “she”) to operate a project. Both the
entrepreneur and the lender are long-lived. At period t, the project generates a cash flow
f(kt, θt), where θt ∈ [θ,θ] is the entrepreneur’s productivity type. The agent’s type history
is denoted by θt = {θ0, ..., θt} and is the agent’s private information. θt follows a Markov
process with conditional density φt(θt|θt−1).

The lender cannot observe the returns and instead relies on the entrepreneur’s report.The
entrepreneur can misreport and divert a fraction of the cash flow for his consumption. There
is a deadweight loss (1 − ι) ∈ [0, 1) on diverted funds. That is, for every dollar of funds
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diverted, the entrepreneur only gets to consume a fraction (1 − ι). After the entrepreneur
reports returns f(kt, θ̃t), the lender asks for a repayment bt(θ̃t) and advances funds kt+1(θ̃t)

for the next period. The entrepreneur cannot privately save10, so the entrepreneur’s period
t consumption if the true cash flow is f(kt, θt) but he reports f(kt, θ̃t) is

ct = f(kt, θt)− (1− ι)
(
f(kt, θt)− f(kt, θ̃t)

)
− bt(θ̃t) (1)

In particular, if the entrepreneur does not misreport returns he consumes ct = f(kt, θt) −
bt(θt). As is common, I further assume that the agent cannot overreport his returns. That is,
reports are restricted to θ̃t ≤ θt. This assumption is motivated by the restriction that the en-
trepreneur cannot save outside the contract with the lender. The entrepreneur is risk averse,
derives utility u(ct) from consumption, and discounts the future at rate β. Throughout the
paper, I will use the following notation for the derivatives of the production function

fk(kt, θt) ≡
∂f(kt, θt)

∂kt
fθ(kt, θt) ≡

∂f(kt, θt)

∂θt
fθk(kt, θt) ≡

∂2f(kt, θt)

∂θt∂kt

Below I summarize all the assumptions on the productivity process and the functions f and
u.

Assumptions

A1: The conditional density φt(θt|θt−1) is differentiable with respect to the second argument
and persistent, i.e.

E(θt, θt−1) ≡
∂φt(θt|θt−1)

∂θt−1

φt(θt|θt−1)

is non-decreasing in θt.

A2: The production function is twice differentiable and satisfies fkk < 0 < fk, fθ > 0, the
Inada conditions limk→0 fk(k, θ) = ∞ and limk→∞ fk(k, θ) = 0, and fθk > 0

A3: The utility function satisfies u′′ < 0 < u′, and the Inada conditions limc→0 u
′(c) = ∞

and limc→∞ u′(c) = 0

10If the agent’s savings are observable, it is without loss to have the lender do all the savings for the
entrepreneur. In this case, allowing the agent to also save by himself is straightforward. Let dt be dividend
payments, wt the agent’s net worth and Bt the funds advanced by the principal. Then we would have
ct = dt, a LOM for the entrepreneur’s net worth wt+1 = f(kt, θt) − bt − dt + wt and investment equal to
kt+1 = wt+1 +Bt+1.
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The first assumption (A1) requires that type process has either positive persistence or is
independent over time, in which case ∂φt(θt|θt−1)

∂θt−1
= 0. The process is allowed to be time-

dependent. Differentiability will be needed to use the envelope condition for the local incen-
tive constraint. For future use, it is useful to define:

ρt(θ
t) ≡ 1− Φt(θt|θt−1)

φt(θt|θt−1)
E
[
E(θ′, θt−1)|θ′ ≥ θt, θ

t−1
]
=

∂
∂θt−1

(1− Φ(θt|θt−1))

φt(θt|θt−1)
(2)

This is the impulse response of θt to θt−1 as defined in Pavan, Segal and Toikka (2014).
It is a measure of the persistence of the process. If the type process follows an AR(1)
with autoregressive parameter ρ, then E(θt, θt−1) = −ρ∂φt(θt|θt−1)

∂θt
/φt(θt|θt−1) and ρt(θt) = ρ.

Assumption A2 states that there is decreasing marginal product of investment, higher types
obtain higher returns and have a higher marginal product. This last assumption (fθk > 0)
is key as it will imply that higher capital increases information rents.

2.1 Lender’s problem

The lender is risk neutral and discounts the future at rate q. By the revelation principle, it is
without loss to focus on direct mechanisms. At any history, the entrepreneur sends a report
r ∈ [θ,θt] about θt to the lender. Define a reporting strategy by σ = {σt(θt)}, it implies a
history of reports σt(θt) = {σ1(θ0), ..., σt(θt)}. Let Σ = {σ|σt(θt) ≤ θt ∀θt ∈ [θ, θ]t} be the
set of feasible reporting strategies. The entrepeneur’s continuation utility with truth-telling
can be written recursively as

wt(θ
t) = u(c(θt)) + β

∫
wt+1(θ

t, θt+1)φt+1(θt+1|θt)dθt+1 (3)

where c(θt) = f(kt(θ
t−1), θt) − bt(θ

t). The continuation utility of type θt with reporting
strategy σ is

wσ
t (θ

t) = u(c(θt, σ
t(θt))) + β

∫
wσ

t+1(θ
t, θt+1)φt+1(θt+1|θt)dθt+1 (4)

where

c(θt, σ
t(θt)) = ιf(kt(σ

t−1(θt−1)), θt) + (1− ι)f(kt(σ
t−1(θt−1)), σt(θt))− bt(σ

t(θt)) (5)
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The lender problem consists of choosing an allocation {kt+1(θt),bt(θt)} to minimize the cost
of providing expected utility v011 subject to the incentive compatibility constraints:

K(v0) = min
{kt+1(θt),bt(θt)}

E0

[
∞∑
t=1

qt
(
kt+1(θ

t)− bt(θ
t)
)]

(6)

s.t E0

[
w1(θ

1)
]
≥ v0 (PK)

wt(θ
t) ≥ wσ

t (θ
t) ∀θt ∈ [θ, θ]t and σ ∈ Σ (IC)

2.2 Relaxed problem

With Markov shocks, it is sufficient to consider only the temporary incencentive compatibility
constraint (Fernandes and Phelan (2000), Kapička (2013))

wt(θ
t) = max

r∈[θ,θt]
u(c(θt, r)) + β

∫
wt+1(θ

t−1, r, θt+1)φt+1(θt+1|θt)dθt+1 (7)

where type’s θt consumption if he reports r, c(θt, r), is given by equation (5). This allows us
to solve a recursive problem. Write entrepreneur’s continuation utility under truth-telling as

wt(θ
t) = u(c(θt)) + βvt(θ

t) (8)

vt(θ
t) =

∫
wt+1(θ

t+1)φt+1(θt+1|θt)dθt+1 (9)

Following Kapička (2013), Farhi and Werning (2013) and Pavan, Segal and Toikka (2014), I
use the first-order approach. That is, I solve a relaxed problem with the local IC constraint12.
The envelope condition of the temporary IC (7) gives

∂

∂θt
wt(θ

t) = u′(c(θt))ιfθ(kt(θ
t−1), θt)︸ ︷︷ ︸

Static marginal info rent

+ β∆t(θ
t)︸ ︷︷ ︸

Markov marginal info rent

(10)

∆t(θ
t) =

∫
wt+1(θ

t+1)
∂φt+1(θt+1|θt)

∂θt
dθt+1 (11)

With persistent private information, the marginal information rents depend on two terms.
11The constant v0 may correspond to the entrepreneur’s outside option, or it can be pinned down by the

lender’s break-even condition, i.e. K(v0) = 0.
12Following Kapička (2013) and Farhi and Werning (2013), I verify numerically that the global IC con-

straints do not bind. More details can be found in section 4 and Appendix E.
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The static component captures how much the agent can gain by marginally misreporting
returns in the current period. The Markov information rent, which can be rewritten as
∆t(θ

t) = E
[
ρ(θt+1)∂w(θt+1)

∂θt+1
|θt
]
, captures the information rent that the agent obtains by

having more information about future types than the principal. If types are i.i.d we have
∆t(θ

t) = 0.

If the entrepreneur is risk averse the static marginal information rent (u′(c(θt))ιfθ(kt(θt−1), θt))
depends on the entrepreneur’s consumption. Intuitively, if the entrepreneur’s productivity
increases by dθt, he generates an extra return of fθ(kt(θt−1), θt)dθt. The entrepreneur can
then decide to mimick the returns of the type right below him and divert the extra funds, he
can then obtain ιfθ(kt(θt−1), θt)dθt extra consumption units. This extra information rent has
to be transformed into utils by multiplying by u′(c(θt)). The fact that information rents de-
pend on the entrepreneur’s consumption poses a challenge for characterizing the solution to
this problem. If the principal increases consumption of type θt, then this type’s information
marginal rent changes. But then the information rents of all types θ′ > θt must be adjusted
non-linearly in order to preserve incentive compatibility. In section 3.1, I will discuss how
the incentive-adjusted probability measures developed in Hellwig (2021) can be used to take
into account these changes in information rents.

The principal solves a dynamic optimization program where within every period, there is an
optimal control problem. The relaxed problem is

Kt(vt−1,∆t−1, θt−1, kt) = min

∫ (
kt+1(θ

t)− bt(θ
t) + qKt+1(vt(θ

t),∆t(θ
t), θt, kt+1(θ

t))
)
φt(θt|θt−1)dθt

s.t (PK) wt(θ
t) = u(c(θt)) + βvt(θ

t) [φt(θt|θt−1)ξt(θ
t)]

vt−1 =

∫
wt(θ

t)φt(θt|θt−1)dθt [φt(θt|θt−1)λt] (12)

(IC) ẇt(θ) = u′(c(θt))ιfθ(kt, θt) + β∆t(θ
t) [µt(θ

t)]

∆t−1 =

∫
wt(θ

t)
∂φt(θt|θt−1)

∂θt−1
dθt [φt(θt|θt−1)γt]

(Feasibility) c(θt) = f(kt, θt)− bt(θ
t)

Along with the promised utility, vt−1, the previous period’s type, θt−1, and the funds advanced
at t− 1, kt, the past Markov information rents, ∆t−1, become an extra state variable of the
problem. Intuitively, the principal can lower Markov information rents by promising to
reduce information rents in future periods. That is, she promises she will increase insurance
(or equivalently distortions) in the future to lower current Markov information rents. Because
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the past promises must be satisfied, ∆t−1 has to be added as an extra state variable of the
problem. Throughout the paper, I will directly refer to this state variable as the promised
insurance.

The co-state variable of the within period Hamiltonian is µt(θ
t). This co-state variable will

become key for the dynamics later one. We will refer to it as the shadow cost of insurance.
Intuitively, µt(θ

t) captures the resource gain from redistributing consumption around θt,
while preserving incentive compatibility, promised expected utility (vt−1) and prior promised
insurance (∆t−1). Note that I write inside square brackets the multipliers associated with
each constraint. The Hamiltonian of this problem and the derivation of the optimality
conditions can be found in Appendix B. To economize notation, I will often write directly
u(θt) and f(θt) instead of u(c(θt)) and f(kt(θ

t−1), θt). The sequential problem (6) can be
recovered by treating ∆0 and k1 as free variables, K(v0) = min∆0,k1 K(v0,∆0, θ0, k1).

2.3 First Best

To gain intuition on the model, it is useful to first look at the first best allocation, i.e. with
no private information. The results are summarized in the following proposition

Proposition 1. In the First Best, at any history θt, there is

1. No diversion of funds
f(kt, θ̃t) = f(kt, θt) (13)

2. No distortion of the firm’s size

1

q
= E

[
fk(kt+1(θ

t), θt+1)|θt
]

(14)

3. Full insurance and intertemporal consumption smoothing

u′(c(θt)) =
β

q
u′(c(θt+1)) (15)

Because diverting funds is inefficient and by the revelation principle, in the second best,
there will also be no diversion of funds. However, points 2. and 3. of the proposition do
not hold in the second best allocation. In particular, firm size is distorted downwards, and
the entrepreneur is exposed to risk. In the following section, we will study how with private
information, the firm size and compensation dynamics differ from the first best benchmark.
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3 Optimal allocation

In this section, I present the two main results on the dynamics of the optimal allocation. I
start with the firm size dynamics (section (3.1)). First, I show that they are driven by the
dynamics of the normalized shadow cost of insurance (µ̃t). Second, I introduce the incentive-
adjusted probability measures as in Hellwig (2021) to characterize µ̃t and discuss why it tends
to increase over time with persistent private information. Then, I turn to the compensa-
tion dynamics (section (3.2)). I again use incentive-adjusted measures to characterize the
entrepreneur’s consumption process and discuss the implications.

The approach to characterizing the dynamics is different from the risk neutral case. With risk
neutrality, there is a one-to-one relation between promised utility (compensation) and firm
size (Clementi and Hopenhayn (2006)). Risk aversion breaks this tight relation. Although
there can be some interactions, the firm size and compensation dynamics are character-
ized independently. This separation will also be illustrated with the numerical simulations
(section 4).

3.1 Firm size dynamics

The firm dynamics implied by this cash flow diversion model with risk neutrality are well
understood. On average, firm size tends to increase over time until it converges to the first
best (Clementi and Hopenhayn (2006)). This is true regardless of whether the shocks are
i.i.d or persistent (Fu and Krishna (2019)). However, as I will show in this section, the firm
dynamics are remarkably different when we allow the entrepreneur to be risk averse. With
both risk aversion and persistent private information, the firm’s size tends to decrease over
time.

Following the Public Finance tradition, it is helpful to describe the optimal allocation in
terms of implicit wedges, i.e. distortions in the second best allocation relative to the first
best. We define the investment wedges as the type-dependent distortion in the marginal
product of capital faced by the lender

1

q
= E

[
fk(kt+1(θ

t), θt+1)(1− τ k(θt+1))|θt
]

(16)

Besides the direct effect of the productivity process {θt}, now the dynamics of the firm’s size
(kt+1(θ

t)) also depend on the dynamics of the investment wedge. Therefore, to characterize
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the firm size dynamics in the second best, it is sufficient to focus on the dynamics of the
investment wedge. The following proposition shows that the investment wedge satisfies an
ABC-type formula (Diamond (1998)).

Proposition 2. At any history θt+1, the investment wedge τ k(θt+1) satisfies

τ k(θt+1) ≡ ιEf (θt+1)× µ̃t+1(θ
t+1)×Ψ(θt+1) ≥ 0

where
Ef (θt+1) =

θt+1fθk(θ
t+1)

fk(θt+1)
> 0

µ̃t+1(θ
t+1) =

µt+1(θ
t+1)

1− Φt+1(θt+1|θt)
u′(θt+1) ≥ 0

Ψ(θt+1) =
1− Φt(θt+1|θt)
θt+1φt+1(θt+1|θt)

≥ 0

Because τ k(θt+1) ≥ 0, the investment wedges lower the implicit marginal product of capital,
and so kSBt+1(θ

t) ≤ kFB
t+1(θ

t). The first term equals the elasticity of the marginal product of
capital with respect to productivity, Ef (θt+1), times the ability to consume diverted funds, ι.
Intuitively, because fθk > 0, increasing capital increases relatively more the returns of higher
types. Therefore, their ability to divert funds increases, i.e. the higher types’ information
rents (in consumption units) increase by more, which is costly for the lender. This cost
is proportional to the normalized shadow cost of insurance µ̃(θt+1). This term increases
when the lender wants (or has promised) to provide more insurance to the entrepreneur.
So when µ̃(θt+1) is high, an increase in information rents is more costly. The last term,
Ψ(θt+1), measures the thickness of the right tail of the distribution of productivity shocks.
The wedges increase in Ψ(θt+1) because the cost of increasing information rents is higher
when there is a higher mass of types above θt+1.

For production functions of the form f(kt+1, θt) = θt+1f(kt+1), the elasticity simplifies to
Ef (θt+1) = 1, and for log-additive functions (i.e. f(kt+1, θt) = g(θt+1)f(kt+1)) Ef (θt+1) is
only a function of θt+1. Consequently, the terms ιEf (θt+1) and Ψ(θt+1) usually depend only
on exogenous variables, and they are stationary as long as the type process is also stationary.
Therefore, the normalized shadow cost of insurance (µ̃(θt+1)) typically drives all the wedge
dynamics.

It has been shown in dynamic screening models that with risk aversion and persistent private
information, the shadow costs of insurance (and so wedges) tend to increase over time (Farhi
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and Werning (2013), Makris and Pavan (2020)13). This is also true in this model, which
implies that if types are persistent, firm size will tend to decrease over time. In what follows,
we first characterize the shadow costs and then show they tend to increase over time.

Characterization of µ̃t+1: As discussed, the main challenge for characterizing the optimal
allocation in this problem is that the static marginal information rents, u′(c(θt))ιfθ(k(θt), θt),
depend on consumption. The literature on dynamic mechanism design with risk aversion
typically analyses models with separable preferences of the form

U(θ, y, c) = u(c)− ψ(y, θ) (17)

where y can represent the agent’s income or effort. As discussed in Makris and Pavan (2020),
this includes dynamic public finance models with separable preferences but also models of
managerial compensation, among others. In these settings, the static marginal information
rents are ψθ(y, θ), which do not depend on consumption. Therefore, there is a complete
separation between insurance (or redistribution) and marginal information rents. Imagine
that at history θt−1 the principal redistributes consumption from types all types θ′t < θt

to all θ′′t > θt. It is well known that in settings as (17), it is sufficient to increase utility
uniformly to all types θ′′t > θt to preserve incentive compatibility, so consumption has to
be redistributed in proportion to 1

u′(θ′′)
. In our setting, this perturbation in consumption

changes marginal information rents (u′(c(θt))ιfθ(k(θt), θt)). Incentive compatibility now re-

quires redistributing consumption according to M(θt) = 1
u′(θt)

e
−

∫ θ
θt

u′′(θt−1,θ′)ιfθ(θ
t−1,θ′)

u′(θt−1,θ′)
dθ′ . This

is the same challenge one encounters in models with arbitrary non-separable preferences
U(θ, y, c) (see Hellwig (2021), Hellwig and Werquin (2022)). Following Hellwig (2021), the
factor m(θt) = u(θt)M(θt) can be interpreted as a reweighting of the type distribution (or
pareto weights). Accordingly, we define the incentive-adjusted probability measures as

φ̂t(θt|θt−1) ≡ φt(θt|θt−1)m(θt)

E[φt(θt|θt−1)m(θt)|θt−1]
(18)

13The early papers attributed these wedge dynamics to the variance of the types increasing over time,
which is the case if the type process follows a random walk. However, Makris and Pavan (2020) have
clarified why this intuition is incomplete, as wedges can increase even if the variance of the types decreases
over time.
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Figure 1: Incentive-adjusted probability measure

Note: The plot is computed with the same calibration as the main simulations in section 4 for i.i.d types.
Observe that m is monotonically decreasing, and the incentive-adjusted measure φ̂ puts more weight on

the lower type realizations.

Therefore, the new measure φ̂ reweights the density of types such that these perturbations in
consumption preserve incentive compatibility. Because m′(θt)

m(θt)
= u′′(θt)ιfθ(θ

t)
u′(θt)

< 0, the function

m(θt) = e
−

∫ θ
θt

u′′(θ′,θt−1)ιfθ(θ
′,θt−1)

u′(θ′,θt−1)
dθ′ is decreasing in θt. So, Φt(·|θt−1) first-order stochastically

dominates Φ̂t(·|θt−1). That is, incentive compatibility requires evaluating allocations as if the
principal puts more weight on lower types, see Figure 1. Intuitively, lower types have lower
returns, so they collect lower information rents in consumption units. Hence, their marginal
utility is higher. When the principal redistributes consumption, information rents change
more for types with high marginal utility. Therefore, the incentive-adjusted measure that
guarantees incentive compatibility has to put more weight on lower types. The following
proposition uses the incentive-adjusted measure to characterize µ̃t.

Proposition 3. (Hellwig (2021)) The normalized shadow cost of insurance µ̃t+1(θ
t+1) sat-

isfies

µ̃t+1(θ
t+1) = M̂B(θt+1) + ρ̂(θt+1)

β

q
Ψ(θt)

θt
u′(θt)

µ̃t(θ
t) (19)

With

M̂B(θt+1) =
E (m(θt, θ′)|θ′ ≥ θt+1, θ

t)

M(θt+1)

{
Ê
[

1

u′ (θ′, θt)
| θ′ ≥ θt+1, θ

t

]
− Ê

[
1

u′ (θt+1)
|θt
]}
(20)

ρ̂(θt+1) ≡ E (m(θt, θ′)|θ′ ≥ θt+1, θ
t)

M(θt+1)

{
Ê
[
E(θ′, θt) | θ′ ≥ θt+1, θ

t
]
− Ê

[
E(θt+1, θ

t)|θt
]}

(21)
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Note that the operator Ê denotes expectations under the measure φ̂. The proposition shows
that the normalized shadow cost of insurance is a function of two terms. The first, M̂B(θt+1),
is a static marginal benefit of redistributing consumption from types θ′ > θt+1 to θ′′ < θt+1.
The second is a backward-looking term that accounts for past insurance promises. With
utility functions as in (17), one can derive the same characterization but under the original
measure φ and with m(θt) = 1 (Makris and Pavan (2020), Brendon (2013), Hellwig (2021)).

The normalized shadow costs µ̃ (and so investment wedges τ k) increase over
time: Proposition 3 shows that the shadow costs µ̃t+1 are persistent. Iterating backward
on equation (19) we get

µ̃t+1(θ
t+1) =

t∑
τ=0

(
β

q

)τ τ−1∏
s=0

(
ρ̂t+1−s(θ

t+1−s)Ψ(θt−s)
θt−s

u′(θt−s)

)
M̂Bt−τ (θ

t+1−τ ) (22)

The formula shows that the current shadow costs of insurance are a function of current
and past marginal benefits of insurance M̂Bt−τ (θ

t+1−τ ). Notice that at the initial period
µ̃1(θ

1) = M̂B1(θ
1), and the passthrough of past M̂Bt−τ (θ

t+1−τ ) to µ̃t+1(θ
t+1) is always

positive. Therefore, µ̃t+1(θ
t+1) and τ k(θt+1) will tend to grow with the distance from the

starting period. That is, it is optimal for the principal to increase the insurance provided
to the agent over time. The intuition is the following. With persistent private information,
different types θt have different preferences for period t + 1 contracts. In particular, higher
types value relatively less contracts with high insurance at t + 1, as they know they are
expected to be more productive then. The principal can use this to lower the resource cost
of screening types at every period. More concretely, if the principal promises to provide more
insurance to type (θt−1, θ′) (i.e lowers ∆t(θ

t−1, θ′)) this relaxes the incentive constraints of
types (θt−1, θ′) with θ′′ > θ′. Because every period the principal can gain by promising to
provide more insurance in the future, the shadow costs µ̃t will tend to increase over time.
However, as will be shown in the numerical simulations, the wedges may, over time, converge
to a stationary distribution. I use this intuition to explain why the lender may want to use
equity purchases in the implementation (see section 5.2)14.

14Alternatively, imagine the principal increases consumption of all types (θt−1, θ̃t) with θ̃t > θt . To
preserve incentive compatibility, the principal needs to adjust the information rent of all types (θt−2, θ

′

t−1)

with θ
′

t−1 > θt−1. Because if types are persistent (i.e ρt(θ
t) > 0), types θ

′

t−1 > θt−1 have a higher probability
of being type θ̃t at period t. This adjustment has to be done for all types (θτ−1, θ

′

τ−1) with θ
′

τ−1 > θτ−1 at
all periods τ < t. Therefore, these costs will tend to increase over time if types are persistent. For a clearer
and more detailed intuition on this, see Makris and Pavan (2020).
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It is important to stress that for every type θt firm size (kt+1(θt)) is never larger than in the
initial period. The reason is that the principal initializes the contract by setting ∆0 freely.
So ∆0 is set to not have any “extra” promised insurance. Consequently, for every θt ∈ [θ, θ],
the wedges will not be smaller than in the initial period.

Moreover, both risk aversion and persistence are necessary to have investment wedges in-
creasing over time. If the agent is risk neutral we have M̂Bt+1(θ

t+1) = 0, which implies
µ̃t+1(θ

t+1) = 0. If the type process is not persistent we have ρ̂t(θt) = ρt(θ
t) = 0 and

µ̃t+1(θ
t+1) = M̂Bt+1(θ

t+1) (23)

so past marginal benefits of insurance do not affect the current shadow costs. As I will show
in the numerical simulations, wedges are stationary with i.i.d types.

In a separable model with utility as in (17), one also obtains the same formula as (22) but
with ρ, i.e. with impulse responses under the original type measure. The change of measure
can amplify or dampen the persistence of the wedges. The (unormalized) persistence is
u′θt)φ(θt|θt−1)
1−Φ(θt|θt−1)

ρ̂t(θ
t) ⋛ ρt(θ

t) if ρt(θ, θt−1)u
′′(θ,θt−1)fθ(θ,θ

t−1)
u′(θ,θt−1)

is increasing/constant/decreasing in
θ (see proposition 3 in Hellwig (2021)). If the type process is (log) AR(1) with autoregressive
parameter ρ (i.e ∂φt(θt|θt−1)

∂θt−1 = −ρ∂φt(θt|θt−1)
∂θt

and ρt(θ
t) = ρ) and the production function is

linear in the type (i.e fθθ = 0), then we have ρ̂t(θt) = ρ if the agent has CARA utility.
However, if the utility features decreasing absolute risk aversion (DARA)15, the persistence
of the wedges is amplified, i.e. ρ̂t(θt) > ρ.

In the data, we consistently observe a strong lifecycle component in firm dynamics (Evans
(1987)). Young firms are usually small and face strong financing constraints. Over time,
the firm size tends to increase and financing constraints are relaxed. A cash flow diversion
with a risk neutral agent and limited liability (Clementi and Hopenhayn (2006), Fu and
Krishna (2019)) can qualitatively replicate the dynamics observed in the data. However,
this is no longer the case once we introduce risk aversion and persistent private information.
The opposite dynamics emerge, the firm size tends to decrease over time, and the first best
size is never reached.

In Appendix C.1, I study a model where the entrepreneur has limited commitment. The
firm dynamics induced by this type of model do not change in any meaningful way once
risk aversion and persistent private information are introduced. So this type of friction can

15Note CRRA utility functions belong to the DARA class.
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still generate dynamics where firm size increases over time (as found in Albuquerque and
Hopenhayn (2004)16). In section 6, I discuss in more detail why models with risk neutrality
generate different firm dynamics and their implications.

More generally, the firm lifecycle dynamics are driven by many different frictions. This model
could generate more consistent firm dynamics in a straightforward manner by allowing for
a drift in the productivity process {θt}. Then, this type of friction may act as a constraint
on the size that firms can eventually reach rather than on the growth of young firms. This
may then help explain other empirical facts. For instance, we often observe fewer large firms
(Hsieh and Klenow (2014)) in developing economies, where financing frictions are more
stringent.

3.2 Compensation dynamics

We now turn to the compensation dynamics. As in all dynamic insurance models, at the
optimum, the principal equalizes the cost of increasing the agent’s utility at periods t and
t+ 1 in an incentive-compatible manner, i.e.

λt+1(θ
t) =

β

q
ξ(θt)

where λt+1(θ
t) is the multiplier on the period t+1 promise keeping constraint and ξ(θt) is the

multiplier on the type’s θt period t continuation utility constraint. With separable preferences
as in (17), this leads to the well know Inverse Euler Equation 1

u′(c(θt))
= β

q
E
[

1
u′(c(θt+1))

|θt
]
.

One cannot derive this tight characterization in all other settings studied in the literature:
this includes models with taste shocks (as in Atkeson and Lucas (1992)), hidden endowment
(as in Thomas and Worrall (1990)), Mirrlees with non-separable preferences and also this
model. For this reason, results on the agent’s consumption process are usually derived from
the principal’s marginal cost martingale (see Golosov et al. (2016b)).

The challenge is the same we encountered for characterizing µ̃t. When the principal promises
to increase utilities at period t + 1, this changes all marginal information rents (as they
depend on consumption). So utility has to be distributed non-linearly to preserve incentive
compatibility. Hellwig (2021) shows how incentive-adjusted measures can be used to derive

16Unfortunately, the limited commitment friction alone also does not generate firm dynamics consistent
with the data. The issue is that, with i.i.d shocks, firm size is always weakly increasing, so the firm cannot
be downsized.
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a Generalized Inverse Euler Equation (GIEE). Not surprisingly, we can derive a similar
characterization in this model. The GIEE gives an intuitive representation that clarifies
what effects drive consumption dynamics and allows to perform direct comparative statics.

Proposition 4. In the optimal allocation, the following Generalized Inverse Euler Equation
holds at any history θt

q

β
Ê
[

1

u′(θt+1)
|θt
]
=

1

u′(θt)
(1 + s(θt)) (24)

where

s(θt) =

(
u′′(θt)ιfθ(θ

t)

u′(θt)
− Ê

[
ρt+1(θ

t+1)
u′′(θt+1)ιf(θt+1)

u′(θt+1)
|θt
])

θt
Ef (θt)

τ k(θt) (25)

As in the standard Inverse Euler Equation, the principal arbitrages between the costs of
increasing utility at period t and t+1, which are proportional to 1

u′(θt)
and 1

u′(θt+1)
. However,

expectations are taken with respect to the incentive-adjusted probability measure because
utility at t + 1 has to be redistributed non-uniformly to preserve incentive compatibility.
Moreover, an extra wedge emerges that captures how savings decisions affect marginal in-
formation rents at periods t and t + 1 . Changes in marginal information rents at t + 1 are
passed as a cost at period t at rate ρt+1(θ

t+1). Therefore, the size and sign of the savings
wedge depends on the persistence of the process. Intuitively, when the persistence is higher,
increasing consumption at t + 1 lowers the cost of incentive provision at t by more, and so
the principal wants relatively higher savings. In general, if persistence (i.e. ρt+1(θ

t+1)) is not
too high, we will have s(θt) < 0, and so savings are on the margin discouraged. The savings
wedge is then scaled by the cost of insurance provision at period t.

The savings wedge takes a particularly simple form with CARA utility u(c) = −e−σc with
σ > 0. Assume also an autoregressive process ρt(θt) = ρ and f(k, θ) = θf(k), then

s(θt) = −σιθt × τ k(θt)×
(
f(kt)− ρf(kt+1(θ

t))
)

= −σι× τ k(θt)×
(
f(kt, θt)− E

[
f(kt+1(θ

t), θt+1)|θt
])

Because −σιθt × τ k(θt) ≤ 0, we have s(θt) ≤ 0 if ρ ≤ f(kt)
f(kt+1(θt))

. Moreover, savings are, on
the margin, more discouraged when the agent is more risk-averse (higher σ), the costs of
diverting funds are small (high ι), and the costs of incentive provision are high (high τ k(θt)).
With fixed capital (kt = k) and ι = 1, this model nests a hidden endowment model17. In

17With CARA utility, it is also equivalent to a taste shocks model as in Atkeson and Lucas (1992).
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this case, s(θt) = 0 and we can use the following result.

Proposition 5. Assume q
β
≤ 1, if s(θt) ≥ 0 marginal utility follows a super-martingale

u′(θt) ≥ E
[
u′(θt+1)|θt

]
Moreover, if s(θt) ≥ 0 for all θt, u′ → 0 almost surely.

The proposition shows that when s(θt) ≥ 0 the marginal utility dynamics are preserved
under the original measure. Therefore, in a hidden endowment model with a unit root
process (ρ = 1) there is no immiseration (Thomas and Worrall (1990) and Atkeson and
Lucas (1992)), and the contract send the agent to bliss, which is consistent with the results
in Bloedel et al. (2018) and Bloedel et al. (2020)18. When s(θt) < 0, we do not have
direct implications for the dynamics under the original measure. The numerical simulations
indicate, as expected, that consumption converges to zero, and so there is immiseration.
However, the convergence is very slow, hence these results may be irrelevant for the usual
lifespan of a firm.

Compared to a hidden endowment model, time-varying capital generates an extra motive to
increase the variance in compensation over time. For the parametric specification above, as
long as f(kt)

f(kt+1(θt))
is decreasing in θt

19, given some high enough ρ, there can exist a θ̃t such
that s(θt) < 0 if θt ≤ θ̃t and s(θt) ≥ 0 otherwise. Intuitively, because fθk > 0, higher capital
increases information rents. If lower types will have less capital at t + 1, their incentive
constraints will be less tight. Hence, the benefit of increasing consumption at t+ 1 to lower
information rents is smaller for lower types.

In sum, the lender minimizes the cost of compensating the agent across periods in an
incentive-compatible manner. For this reason, it is optimal to smooth the entrepreneur’s
compensation over time. Moreover, because the entrepreneur always needs to be compen-
sated for reporting a high cash flow, the variance of consumption will grow without bound.

18Bloedel et al. (2018) and Bloedel et al. (2020) have corrected the findings in Williams (2011) and shown
(with more general utility functions and processes) that there is immiseration whenever there is some mean-
reversion in the type process.

19This would not be the case, if for some types θ′t > θ′′t , the effect of higher wedges at t + 1 for type θ′t
is stronger than from the higher expected productivity. The numerical simulations verify that kt+1(θ

t) is
indeed increasing in θt, see Figure 6 in Appendix A.
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4 Numerical simulations

In this section, I numerically solve and simulate the model. This will help us better un-
derstand the results in the previous section and allow us to quantify the effect of persistent
private information on firm size and compensation dynamics. The numerical simulations
will also be used to guide the implementation in section 5. I assume the agent has CRRA
utility

u(c) =
c1−σ

1− σ

and the production function is given by

f(k, θ) = zθkα

where α ∈ (0, 1) and z is a positive constant used to scale up the problem. The agent’s
productivity follows a geometric AR(1) process

θt = θρt−1εt

where log(εt) ∼ N(µ, σ2
ε) . I set α = 3/4, 1 − ι = 0.05, σ = 2 and assume the lender and

the entrepreneur have the same discount rate β = q = 0.95. For the productivity process,
I set µ = 1 and σ2

ε = 0.01. The comparative statics of this section focus on the effect of
the persistence ρ, the model is solved with ρ = 0 (i.i.d types) and ρ = 0.7. I also solve
the model with different parametrizations of the utility function (log utility (σ = 1) and
CARA), qualitatively, the results are the same (see Appendix A). Details on the solution
method, algorithm and the procedure to check global incentive compatibility can be found
in Appendix E. After solving for the value functions (K, v and ∆), the policy functions (ct,
λt+1, γt+1 and kt+1) and the costate (µt), I run a Monte Carlo simulation with 106 draws
over 25 periods each.

Figure 2 illustrates the evolution of the mean and standard deviation of consumption along
the cross-section over time with ρ = 0 and ρ = 0.7. As expected, the variance of consumption
is permanently increasing in both cases. With i.i.d types, average consumption is approxi-
mately constant. With persistence, there is also a slight increase in average consumption in
the initial periods. Since the savings wedge s(θt) is proportional to the investment wedge
τ k(θt), this is consistent with the initial increase in the investment wedge that we will observe
(see Figure 4). Moreover, because the agent is risk averse, average marginal utility tends to
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increase over time.

To visualize the immiseration dynamics, in Figure 5 in Appendix A I plot the median and
quantiles of the distribution of consumption over a long time horizon. The median consump-
tion monotonically decreases, indicating that consumption will converge to its lower bound.
However, the decrease is very slow, so it may be irrelevant for the usual lifespan of a firm.

Figure 2: Consumption dynamics

(a) i.i.d (ρ = 0) (b) Persistence (ρ = 0.7)

Note: For both panels, I initialize the simulation by setting λ0 = 15.9. The initial types, θ1, are drawn
from the ergodic distribution of each process. For each period, the blue line is the mean consumption along

the cross-section, and the shaded blue area is one standard deviation.

As discussed, with risk aversion there is a separation between consumption and firm size
(or wedge) dynamics. The large differences in consumption resulting from the immiseration
dynamics do not translate into differences in firm size distortions. This separation can be
illustrated very clearly with the numerical simulations. Figure 3 shows the relation between
the promised utility and the investment wedge at age 20. There appears to be some positive
association between the two variables, but they are not linked one to one20. We can observe
that there is some probability that at age 20, the entrepreneur receives a high compensation
(high vt) but that the firm is financially constrained (high τ k). The converse is also possible,
the compensation is low, but the constraints are also low. This is not the case in a model
with risk neutrality (Clementi and Hopenhayn (2006)), where the promised utility is linked
one-to-one with the distortions on firm size.

20This is also the case with i.i.d shocks (trivially because wedges are stationary) and with the other
parametrizations of the utility function
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Figure 3: Investment wedge and promised utility at t = 20 (ρ = 0.7)

Note: Each dot is a random realization of the investment wedge and promised utility at period 20. The red
line is a linear regression line on the 500 draws ploted.

Figure 4 shows the firm size and investment wedge dynamics. In both cases, the firm size
closely follows the dynamics of the investment wedge. With i.i.d shocks, the wedges are
stationary, so firm size is constant (Panels 4a and 4c). So the firm size dynamics are essen-
tially independent of the consumption dynamics. This is because the lender compensates
the entrepreneur by permanently increasing his consumption, not by lending more capital
to the firm21. The firm’s size instead depends on how costly it is to increase information
rents. Because the investment wedge is proportional to µ̃(θt) = µ(θt)

1−Φt(θt|θt−1)
u′(θt), a priori,

the marginal utility process could have some effects on wedge dynamics. However, I find
that these effects, if any, are negligible. This is also the case with the other parametrizations
of the utility function22. Moreover, the wedges are small, so firm size is also very close to
the first best level.

For the persistent case, at the first best, all variation is driven only by differences in expected
returns. Moreover, because the type process is mean-reverting, firm size is stationary. At
the second best, on average, the wedges tend to increase over time and firm size tends to
decrease (Panels 4b and 4d). However, the wedges do not increase indefinitely. Over time
it appears they converge to a stationary distribution, and so does firm size. With log utility
(lower risk aversion), the wedges and the decrease in firm size are smaller (see Figure 10 in

21This observation also helps explain why, in the implementation, promised utility is linked to the en-
trepreneur’s wealth and unrelated to the firm’s capital structure.

22This finding also motivates using the normalized shadow cost of insurance (µ̃) as the relevant object for
the characterization of the wedge dynamics in section 3.1
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Appendix A). Overall the decrease in firm size will be larger the higher the risk aversion and
persistence.

Figure 4: Firm size and investment wedge dynamics

(a) Size (k) i.i.d (ρ = 0) (b) Size (k) with persistence (ρ = 0.7)

(c) Investment wedge (τk) i.i.d (ρ = 0) (d) Investment wedge (τk) with persistence (ρ = 0.7)

Note: Panel (a): The red line is the size at the first best (constant). The blue line is the average size at the
second best; it is the same for almost all realizations as expected wedges are approximately constant.

Panel (b): The red (blue) line is the average size in the first (second) best. The dashed green lines are the
average size in the first period.

Panels (c) and (d): The blue lines are the average investment wedges, and the shaded blue areas are one
standard deviation.

5 Quasi-implementation

The optimal contract studied thus far may a priori be complex, which limits the insights we
can derive from the problem. Therefore, it is helpful to study implementations of the optimal
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contract. The implementation will also provide intuitions on what drives the different firm
size dynamics in models with risk neutrality and risk aversion. A full implementation of the
optimal contract is challenging and left for future work. For this reason, I analyze two simpler
problems. In this section, I use numerical simulations to study a quasi-implementation with
simpler contracts. Then, in Appendix D, I study a full implementation in a simplified two-
period version of the model.

The two implementations are also different in the sense that they are based on two different
margins of distortion for the lender. In particular, we consider two ways in which the prin-
ciple can lower Markov information rents to better screen types. In the first one, the lender
dynamically distorts the entrepreneur’s compensation. Given the distortions to compensa-
tion, she may then optimally increase or decrease the firm size (kt+1)23. In the second, the
lender directly distorts firm size by discouraging the entrepreneur from reinvesting profits.

The approach to deriving the quasi-implementation with the numerical simulations will be
the following. First, I use regressions with the model simulated data to better understand
the compensation dynamics. Then, I propose a simple contract and use the simulated data
and regression estimates to calibrate the parameters of the contract. Finally, I solve the
entrepreneur’s problem under the simple contract and compare the induced consumption
dynamics with the optimal contract. With i.i.d types, firm size is constant, so I also fix
capital to be constant in the implementation. For simplicity, I will also keep capital fixed
for the persistent case. Therefore, we will focus solely on the compensation dynamics.

5.1 i.i.d types

I use the simulated data from section 4 to run regressions of consumption on returns and
promised utility. The regression results are in Table 1; we make three observations:

1. Variation in returns at any period t − k has the same effect as returns at t on con-
sumption at t (column 2). Relatedly, consumption follows a random walk (column 5).
Suggests that compensation is perfectly smoothed across periods.

2. The sensitivity of compensation to returns does not depend on current promised utility.
Note the interaction returnst × vt−1 is close to 0 in column 3.

23In this sense, the cash flow diversion model is equivalent to a hidden endowment model (as in Thomas
and Worrall (1990)) where the principal has some control over the agent’s income process.
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3. The sensitivity of compensation to returns is close to linear. Note in column returns2t
is close to 0 in column 4.

Table 1: Regressions with i.i.d type process

(1) (2) (3) (4) (5)
ct ct ct ct ct

returnst 0.0489∗∗∗ 0.0511∗∗∗ 0.0508∗∗∗ 0.0704∗∗∗
(10558.17) (399.15) (108.58) (926.10)

vt−1 0.792∗∗∗ 0.790∗∗∗ 0.792∗∗∗
(14968.42) (1459.73) (15010.68)

returnst−5 0.0490∗∗∗
(382.92)

returnst ∗ vt−1 0.000386∗∗∗
(4.13)

returns2t -0.00185∗∗∗
(-283.17)

ct−1 0.998∗∗∗
(5300.13)

N 2400000 1900000 2400000 2400000 2300000
R2 0.999 0.139 0.999 0.999 0.924
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Points 2. and 3. suggest that a constant equity share can be a good approximation. If the
promised utility (vt−1) were related to the equity share, we would observe that it affects the
sensitivity of consumption to returns, even if the entrepreneur is smoothing consumption24.
Point 1. indicates that in the implementation, the entrepreneur’s implicit wealth can be used
to perfectly smooth consumption intertemporally. As is known, the promised utility can be
naturally mapped to the agent’s wealth (Atkeson and Lucas (1992), Brendon (2022)). Let
Wt denote the agent’s wealth and χ the (inside) equity share, i.e. the portion of cash flows
accruing to the entrepreneur. Let f(kt) = E [f(kt, θt)] denote the expected returns if capital
is kt. I fix capital to the optimum in the second best kSB. The entrepreneur also receives

24This observation is key to understanding the differences with risk neutrality, where the promised utility
maps to the value of equity (Clementi and Hopenhayn (2006)). I discuss this distinction in more detail in
section 6.
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initial cash W0
25. Therefore, at period 1, the entrepreneur’s wealth is

W1 = W0 +
χf(kSB)

1− q

At every period, after returns realized, if the entrepreneur does not misreport, his wealth
changes by χ

(
f(kSB, θt)− f(kSB)

)
. So the LOM of the entrepreneur’s wealth follows

ct +Wt+1 =
1

q
Wt + χ

(
f(kSB, θt)− f(kSB)

)
≡ C(Wt, θt) (26)

Given the entrepreneur’s wealth, savings can be chosen to smooth consumption. Therefore,
this contract is equivalent to allowing the entrepreneur to pledge his shares as collateral and
borrow to consume. This practice is prevalent; Fabisik (2019) reports that between 2007 and
2016, 7.6% of CEOs of US public companies had pledged shares. Moreover, she estimates
that 90.5% of CEOs use it to obtain liquidity while maintaining ownership. This motive is
consistent with this implementation. Pledging shares aligns the entrepreneur’s consumption
with the firm’s value but without having to sell shares, which is costly as it reduces the
entrepreneur’s incentives. Moreover, the implementation is independent of dividend payout
policies. Notice that it is equivalent if the extra returns

(
f(kSB, θt)− f(kSB)

)
are paid as

dividends or are kept as savings inside the firm, and the entrepreneur and the firm face the
same interest rate q.

The next step for the numerical implementation is to obtain a value for χ. I back out this
value from the regressions on model simulated data. For an entrepreneur that does not
misreport and is allowed to save by himself, to a first order approximation, we have

dct
df(kt, θt)

≈ (1− q)χ

So χ can be identified from the regressions as χ̂ = βreturns

(1−q)
= 0.0488

0.05
≈ ι, where βreturns is the

regression coefficient on returns in column (1) of Table 1. So I set directly χ̂ = ι26. Then,
25This is just a free variable used to match the chosen initial promised utility in the second best, so we

may have also have W0 < 0 if the entrepreneur initially transfers funds to the lender.
26It is a regular result in cash flow diversion models (especially in static versions) that the equity share is

linked to the deadweight loss of diverting funds.
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given χ̂, the entrepreneur recursive problem with wealth Wt and productivity θt is

W(Wt, θt) = max
θ̃≤θ

u(c̃t) + βV(Wt+1)

s.t Wt+1 = qC(Wt, θ̃t) (27)

ct = (1− q)C(Wt, θ̃t)

c̃t =ct + ι(f(kSB, θ)− f(kSB, θ̃))

Where V(Wt+1) = E [W(Wt+1, θt+1)], C(Wt, θt) = 1
q
Wt + χ̂

(
f(kSB, θ̃t)− f(kSB)

)
and W0

is chosen such that V(W1) = v1, i.e. the promised utility under the direct mechanism.
Throughout the paper, I have assumed that the entrepreneur cannot secretly save. So in the
implementation, there is a double deviation problem if the entrepreneur is allowed to save
freely. That is, the entrepreneur deviates by misreporting funds and saving more. For this
reason, I assume that the lender directly assigns a consumption/savings level given the en-
trepreneur’s report and wealth (Wt, θ̃t)

27. Equivalently, we can imagine that the entrepreneur
is penalized if the lender observes that his savings choices are not optimal given the reported
type and wealth.

I solve numerically for the policy functions θ̃(Wt, θt) in the entrepreneur’s problem (27).
Then, I run the same Monte Carlo simulation as for the optimal allocation and compare
the results28. Figure 9 in Appendix A shows that the consumption paths are very close
to the optimal allocation and that this contract induces minimal diversion of funds. Not
surprisingly, this simple contract also reaps most of the benefits of the optimal allocation
(see Table 2). Given a fixed initial promised utility (v0), we can decompose the lender’s loss

27I assign the consumption to be ct = (1 − q)C(Wt, θ̃t) because I observe that average consumption
is approximately constant in the numerical simulations. But this is not the optimal savings level of the
entrepreneur, as he would save more for precautionary motives. To relax this restriction, we could introduce
an extra wedge (or tax) on the entrepreneur’s returns on savings to exactly counteract the precautionary
motive.

28To have accurate comparisons, in the Monte Carlo simulation, for each realization of the shock process
{εt}25t=1 I compute consumption for both the optimal allocation and the implementation. Then for each
realization and period, I compute the distance and average across all draws. That is, I compute for every

period cdistt =
∑

i

√(
cSB
t ({εi.τ}tτ=1)− cIt ({εi.τ}tτ=1)

)2, where cSB is the consumption under the optimal
allocation and cI under the implementation.
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Table 2: Welfare comparisons i.i.d

Total Welfare Deadweight loss
diversion of funds

Risk premium
(relative to SB)

Optimal contract (SB) -55.88 0 0
Quasi-Implementation (χ = 0.95) -56.11 (-0.4% loss) 5.7e-8 0.22

from using the simple contract

KI(v0, θ0)−KSB(v0, θ0) =

(1− ι)E

[
∞∑
t=0

qt
(
f(kSB, θ

t)− f(kSB, θ̃t(θ
t))
)
|θ0

]
︸ ︷︷ ︸

≥0,Deadweight loss diversion of funds

+ E

[
∞∑
t=0

qt
(
cI(θt)− cSB(θt)

)
|θ0

]
︸ ︷︷ ︸

Risk premium,>0 if less risk in SB

(28)

where the superscript I is used to denoting allocations under the implementation. As shown
in Table 2, most of the losses from the simple contract result from exposing the entrepreneur
to more risk, but the differences are negligible. The implementation performs even better
with log utility, see Figure 9 in Appendix A29.

5.2 Persistent types

With persistent private information, there is an extra state variable in the recursive planning
problem (12), ∆t−1. Intuitively, this state variable captures how much insurance (or incen-
tives) the principal has promised to provide to the agent, as equation (11) can be written
as

∆t−1 = E
[
ρ(θt)

∂w(θt)

∂θt
|θt−1

]
(29)

For a given level of persistence, a lower ∆t−1 implies more insurance is provided to the agent.
We can also verify this in the regressions with model simulated data, where we obtain

ct = −0.2∗∗∗θt − 3.327∗∗∗∆t−1 + 1.011∗∗∗θt ×∆t−1 + 0.652∗∗∗θt−1 + 0.382∗∗∗vt

The coefficient on the interaction term ∆t−1×θt is positive. So when the lender has promised
high insurance (i.e low ∆t−1), the entrepreneur’s compensation is less sensitive to the type

29With log utility average consumption in the optimal contract is exactly constant, so the savings choices
imposed in the implementation give a better approximation.
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realization. In this implementation, the level of insurance provided to the entrepreneur is
controlled by the equity share. To see this, notice that for the i.i.d case (problem (27)), if it
is optimal for the entrepreneur to not divert funds, we have

∂W(Wt, θt)

∂θt
= χ× u′(ct)fθ(kSB, θt)

Thus, a full implementation of the optimal contract would need to allow for a time-varying
equity share. In general, lowering the entrepreneur’s equity is beneficial as it increases insur-
ance, but it also comes at the cost of increasing the entrepreneur’s incentives to misreport
funds. If types are persistent, there is an extra gain of lowering the equity share at period
t+ 1 because it helps screen types.

Why does buying equity help screen types? Imagine that, at period t, the lender offers
to buy some equity from type (θt−1, θ′). Assume also that the lender offers to pay him a
price P∆χ((θ

t−1, θ′)) such that he is indifferent between accepting the offer or rejecting it. If
returns are persistent, types (θt−1, θ′′) with θ′′ > θ′ have higher expected returns at period
t + 1. So it is not attractive for them to sell equity at price P∆χ((θ

t−1, θ′)). Therefore, the
lender can use equity purchases, which inefficiently lower the equity share, to better screen
types.

More formally, this intuition is related to the Atkinson and Stiglitz (1976) result for com-
modity taxation. With i.i.d shocks, less productive entrepreneurs are also more willing to
sell equity as they have higher marginal utility. But in this case, the willingness to sell eq-
uity does not reveal any information to the lender that is not already contained in reported
returns. With persistence, lower types would be more willing to sell equity even if they had
the same marginal utility as higher types30. So the lender optimally distorts the equity share
as it directly reveals information about the entrepreneur’s productivity.

An implementation with a time-varying equity share is substantially more challening31. How-
ever, I find that the contract with a constant equity share still delivers small welfare losses
relative to the optimal contract32. Compared to the i.i.d case, we now only have to make

30With risk neutrality, there is no insurance motive in the contract. Because there is no cost of exposing
the agent to more risk, the entrepreneur’s future compensation is provided only through equity. So the
equity share is only constrained by the current promised utility Clementi et al. (2010).

31Now it is more challenging to infer the equity share from the regressions directly. Moreover, it may
follow a complicated stochastic process. As it would be persistent but also because there is no distortion at
the top (θ) and bottom (θ) in the promised insurance.

32I have experimented with contracts where the equity share is uniformly decreased over time for all types.
The idea is that when the agent underreports at t, he experiences a capital loss but expects to recover it at
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one modification. Notice that when the entrepreneur’s period t returns increase, the net
present value of the firm’s cash flows also increases. So the firm’s value increases and the
entrepreneur experiences a capital gain. Define the value of the firm by

f t+1(kSB, θt) ≡ E

[
∞∑
τ=1

qτ−1f(kSB, θt+τ )|θt

]

Recall capital is fixed to the same level kSB as in the i.i.d case. Then, the entrepreneur’s
cash on hand at period t if he reports type θ̃t and his past type report was θ̃t−1 is

C(Wt, θ̃t, θ̃t−1) =
1

q
Wt + χ

(
f(kSB, θ̃t) + qf t+1(kSB, θ̃t)− ft(kSB, θ̃t−1)

)
(30)

=
1

q
Wt + χ

f(kSB, θ̃t)− E
[
f(kSB, θ̃t)|θ̃t−1

]
︸ ︷︷ ︸

Innovation returns

+ q
(
f t+1(kSB, θ̃t)− ft+1(kSB, θ̃t−1)

)
︸ ︷︷ ︸

Capital gain


The entrepreneur’s problem is the same as in (27) but with the cash on hand given (30).
Because the entrepreneur can borrow using his shares as collateral, the capital gains also
increase the entrepreneur’s consumption. Moreover, we also need to keep track of the past
report θ̃t−1 as an extra state variable because it affects the expected returns. Table 3 contains
the welfare comparison and decompositions with the optimal contract. The risk premium is
higher than for the i.i.d case, but the welfare losses from the simple contract continue to be
small33.

Fu and Krishna (2019) study a similar model with persistent private information and a
risk neutral entrepreneur. They show that as persistence increases, the convexity of the
entrepreneur’s compensation also increases. In their implementation, this implies that the
entrepreneur is compensated more with stock options and less with equity. A priori, a full
implementation of the optimal contract could require the use of stock options. But only with

t + 1 with returns that are higher than expected. However, if his equity share is lower at t + 1, he cannot
fully recover the capital loss. However, I have not found any gains from this type of contracts.

33In general, the optimal contract studied is not renegotiation-proof. When the principal lowers ∆t at
period t, this is inefficient from the period t + 1 perspective. Because these effects are not present with
i.i.d types, the optimal contracts are renegotiation-proof. I conjecture that this quasi-implementation with
constant equity could be a good approximation to the optimal renegotiation-proof contract with persistent
private information. The constant equity implies constant sensitivity as the optimal renegotiation proof
contracts in Strulovici (2022). Moreover, as in Strulovici (2022) the sensitivity is increasing in the level
of persistence because capital gains are larger. Because the constant equity contract delivers small welfare
losses compared to the optimal, I further conjecture that, at least for the calibration used, the losses from
restricting to renegotiation-proof contracts may be small.
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Table 3: Welfare comparison with persistence

Total Welfare Deadweight loss
diversion of funds

Risk premium
(relative to SB)

Optimal contract (SB) -58.49 0 0
Quasi-Implementation (χ = 0.95) -59.12 (-1.07% loss) 3e-3 0.572

equity the entrepreneur’s compensation is already convexified. Because the entrepreneur
experiences a capital gain and can borrow using his shares as collateral, his compensation
increases more than linearly in returns. I conjecture that accounting for capital gains could
be sufficient to generate the sensitivity of consumption to returns required to implement the
optimal allocation. In fact, by expanding the dynamic (or Markov) information rent term
(equation (29)), we can write

∆t = ι× E

[
∞∑
j=1

I t+j
t (θt+j)βj−1u′(c(θt+j))fθ(ksb, θt+j)|θt

]

where I t+j
t (θt+j) ≡ ρ(θt) × ... × ρ(θt+j) are the impulse response functions as defined in

Pavan et al. (2014). With χ = ι and fixed capital, this is actually the capital gain of the
entrepreneur from an increase in productivity dθt if the firm is priced with the entrepreneur’s
stochastic discount factor.

6 Comparison with risk neutral and equity dynamics

The quasi-implementation helps understand the different firm size dynamics with risk neu-
trality and risk aversion. With risk neutrality, as long as the limited liability constraint
is satisfied, increasing the agent’s exposure to risk bears no cost. After high returns, it is
optimal to compensate the entrepreneur with a higher stake in the project, i.e. by increasing
his equity share. Therefore, with risk neutrality, the entrepreneur’s promised utility maps
to the value of equity, as shown in Clementi and Hopenhayn (2006).

If the entrepreneur is risk averse, increasing his exposure to risk through a higher equity
share is costly. In the numerical simulations, we have seen that the entrepreneur’s exposure
to returns is independent of his promised utility. So with i.i.d types, a constant equity
share and mapping the entrepreneur’s promised utility to his private wealth gives a good
approximation to the optimal allocation. With persistent types, the equity share should
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also be time-varying as in the risk neutral model, but the driving forces are different. With
persistence, the lender has an incentive to lower equity below the efficient level at t+1 as it
helps screen types at period t. Hence, over time, the equity share of the entrepreneur tends
to decrease. Then, when the equity share is low, the entrepreneur has more incentives to
divert funds, so the lender is less willing to advance capital.

Consequently, both models obtain a positive relation between equity and firm size. Lower
equity always increases the implicit lending costs because the incentives to divert funds are
higher. However, equity drifts in opposite directions. With risk neutrality, equity drifts up-
wards, but with risk aversion and persistence, equity drifts downwards. With risk neutrality
and i.i.d types, firm size converges to the first best level only because the entrepreneur’s
equity share goes to one (Clementi and Hopenhayn (2006)). That is, he becomes the sole
owner of the firm, and the value of debt and outside equity go to zero. With persistent types
and risk neutrality, the equity share does not necessarily have to converge to one for the
firm’s size to reach the first best (Fu and Krishna (2019)). However, the equity share still
grows over time as the firm size grows. These equity dynamics may be inconsistent with
what is observed in the data. For example, in the venture capital industry, the founder’s
ownership is typically diluted over time as the firm’s capital grows through multiple financing
rounds (Azevedo et al. (2023)). Accordingly, to simultaneously explain firm size and equity
dynamics, it may be necessary to break the tight link between equity and firm size that these
models generate.

Modigliani-Miller and promised utility: The distinction between wealth and equity
also helps understand other differences with the risk neutral case. One of them concerns
how the firm’s value depends on the capital structure. With risk neutrality, the firm’s value
depends on the value of equity (or promised utility), so the Modigliani-Miller theorem does
not hold (Clementi and Hopenhayn (2006)). Interestingly, we have found in the numerical
simulations that, with risk aversion, the lending policy functions kt+1 are approximately
independent of vt. Therefore, the firm’s value is approximately independent of the initial
promised utility given to the entrepreneur. So in this sense, Modigliani-Miller does hold
“over” promised utility. However, because lending depends on promised insurance, the firm’s
value will vary with promised insurance. This observation corroborates the idea of the
implementation with risk aversion presented in the previous section. The promised utility
does not map properly to the entrepreneur’s equity; instead, it maps to the entrepreneur’s
private wealth. Moreover, it is promised insurance what maps to the entrepreneur’s equity
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share and so what affects the firm’s capital structure.

7 Extensions

The problem studied throughout the paper is the simplest version of a cash flow diversion
model with persistent private information and risk aversion. To focus on the role of per-
sistence and risk aversion, I have imposed some assumptions and abstracted from other
interesting margins. I explore three extensions in Appendix C.

Limited commitment: In Appendix C.1, I relax the assumption of full commitment of
the entrepreneur. At every period, the entrepreneur can steal all the capital advanced by the
lender and leave the contract. This friction also lowers firm size but adds an incentive to have
promised utilities increase over time. So when the limited commitment is binding, it can
generate dynamics where firm size increases over time, as in Albuquerque and Hopenhayn
(2004), even with risk aversion and persistence.

Endogenous termination: I have assumed that the lender does not have the option
to terminate the project. I discuss endogenous termination in Appendix C.2. Although
termination may sometimes be optimal, I show that it does not affect any of the results
presented. I also discuss what inefficiencies may cause termination with risk aversion and
persistence: too high promised insurance or a combination of private information and limited
commitment, similar to Dovis (2019). In both cases, the termination probabilities should
tend to increase over time. This is the opposite of the model with risk neutrality, where the
exit rates tend to decrease over time.

Moreover, if at some point terminating with some probability αt(θ
t) ∈ (0, 1) is optimal, αt(θ

t)

should increase with the persistence of the shocks. I show this in a simplified two-period and
two-type version of the model. The intuition is similar to the equity purchases. Imagine that
the principal increases the termination probability of type θt while increasing his payment
after termination such that his ex-ante utility is held constant. With persistence, types
(θt−1, θ′) with θ′ > θt know they have higher expected returns at t + 1 than θt, so a higher
termination probability is relatively less attractive for them. Hence, a higher termination
probability can discourage misreporting for types θ′ > θt, and so it lowers the cost of screening
types.
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Divert funds before investing (screening): Finally, in Appendix C.3, I study a model
where instead of diverting cash flows, the entrepreneur can choose the fraction of available
funds invested in the firm and divert the rest. Then the lender can observe the project
returns but not invested funds. The investment wedge can now be defined as the distortion
to invested and diverted funds relative to the first best. Moreover, this model yields the same
characterizations of the shadow cost of insurance, the GIEE, and the firm size dynamics.

8 Conclusion

This paper studied a dynamic cash flow diversion model with a risk averse entrepreneur
that has persistent private information about the firm’s productivity. The firm size and
compensation dynamics differ significantly from models with risk neutrality. Most notably,
firm size tends to decrease over time. The implementation helps understand the opposite size
dynamics. Regardless of the entrepreneur’s preferences, capital is increasing in the equity
share. However, equity drifts upwards with risk neutrality and downwards with risk aversion
and persistence. These findings suggest that it may be challenging for these type of models
to generate realistic firm size and equity dynamics. With risk neutrality and i.i.d types
(Clementi and Hopenhayn (2006)), firm size converges to the first best only because the
entrepreneur’s equity share goes to one. As discussed, these dynamics may be at odds with
what we observe empirically (Azevedo et al. (2023)).
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Appendix

A Additional tables and figures

Figure 5: Immiseration in the long run

(a) Marginal utility i.i.d (ρ = 0) (b) Marginal utility with persistence (ρ = 0.7)

Note: The figures show the median, 10%, and 90% quantiles of the distribution of consumption at every
period. For reference, the red line displays the median at period t = 0. The median monotonically

decreases and the growth of the 90% quantile decreases over time. This implies that consumption will
converge to its’ lower bound. However, we also observe that this convergence is very slow.

Figure 6: Relation kt+1(θt) and θt

Note: For a random subsample of 1000 realizations, the plot shows the policy functions of kt+1 as a
function of θt. The blue dots are policies at period t = 2, and the red dots at t = 15.
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Figure 7: Shadow cost insurance µ at different γ

Note: For a fixed (λ−, k, θ−), the figure shows the shadow cost of insurance µ as a function of the shock ε
for different γ−. The promised insurance ∆− is increasing in γ−. So when the agent is promised more

insurance (low ∆− and γ−), the shadow costs µ are higher. The increase is more pronounced for the types
in the middle.

Figure 8: Simulations implementation i.i.d

(a) Average distance consumption SB and implemen-
tation

(b) Average fraction of diverted funds

Note: The left figure shows, for every period, the average distance between consumption in the optimal
contract (cSB) and the implementation (cI), i.e. cdistt = 1

N

∑
i

√
(cSB

t ({εi,τ}tτ=1)− cIt ({εi,τ}tτ=1))
2.

The right figure shows the average of the diverted funds as a fraction of total returns, i.e.
divt =

1
N

∑
i
f(kSB ,θt

i)−f(kSB ,θ̃t(θ
t
i))

f(kSB ,θt
i)
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Figure 9: Simulations implementation i.i.d with log utility (σ = 1)

(a) Average distance consumption SB and implemen-
tation

(b) Average fraction of diverted funds
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Figure 10: Log utility (σ = 1)

(a) Consumption i.i.d (ρ = 0) (b) Consumption with persistence (ρ = 0.7)

(c) Firm size i.i.d (ρ = 0) (d) Firm size with persistence (ρ = 0.7)

(e) Investment wedge i.i.d (ρ = 0) (f) Investment wedge with persistence (ρ = 0.7)
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Figure 11: CARA utility

(a) Consumption i.i.d (ρ = 0) (b) Firm size i.i.d (ρ = 0)

B Derivations and proofs

The Hamiltonian of the recursive principal’s problem is

H =
[
kt+1(θ

t)− bt(θ
t) + qKt+1(vt(θ

t),∆t(θ
t), θt, kt+1(θ

t))
]
φt(θt|θt−1)

−λtφt(θt|θt−1)
[
wt(θ

t)− vt−1

]
− γtφt(θt|θt−1)

[
wt(θ

t)E(θt, θt−1)−∆t−1

]
+µt(θ

t)
[
u′(f(kt, θt)− bt(θ

t))ιfθ(kt, θt) + β∆t(θ
t)
]

+ξt(θ
t)φt(θt|θt−1)

[
wt(θ

t)− u(f(kt, θt)− bt(θ
t))− βvt(θ

t)
]

The optimality conditions are

bt(θ
t) :

ξt(θ
t) =

1

u′(θt)

[
1 +

µt(θ
t)

φt(θt|θt−1)
ιfθ(θ

t)u′′(θt)

]
(31)

The envelope conditions are
∂Kt+1

∂vt(θt)
= λt+1(θ

t) (32)

∂Kt+1

∂∆t(θt)
= γt(θ

t) (33)
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∂Kt+1

∂kt+1(θt)
= E

[
−ξt+1(θ

t+1)u′(θt+1)fk(θ
t+1)|θt

]
+ (34)

E
[
µt+1(θ

t+1)

φt+1(θt+1|θt)
(
u′′(θt+1)ιfθ(θ

t+1)fk(θ
t+1) + u′(θt+1)ιfθk(θ

t+1)
)
|θt
]

Using the envelope conditions (32) and (33) we get

vt(θ
t) :

λt+1(θ
t) =

β

q
ξt(θ

t) (35)

∆t(θ
t) :

γt+1(θ
t) = −β

q

µt(θ
t)

φt(θt|θt−1)
(36)

Substituting (31) and (34) into the FOC for kt+1(θ
t) we get

1

q
= E

[
fk(θ

t+1)− µt+1(θ
t+1)

φt+1(θt+1|θt)
u′(θt+1)ιfθk(θ

t+1)|θt
]

(37)

Finally the law of motion for the co-state is

µ̇t(θ
t) = −

[
ξt(θ

t)− λt − γtE(θt, θt−1)
]
φt(θt|θt−1) (38)

Proof Proposition 1 Set µt(θ
t) = 0 for all θt, then from equation (37) we obtain point

3. For point 2, note that with µt(θ
t) = 0, equation (38) becomes

ξt(θ
t) = λt

From equation (31),
1

u′(θt)
= ξt(θ

t)

and using (35) gives point 2. Point 1 holds in the first best and second best allocations.

Proof Proposition 2 From the FOC for kt+1(θ
t) (equation (37)), multiplying the second

term inside the expectation by fk(θ
t+1)

fk(θt+1)
and using the definition of the investment wedge, we
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get

τ k(θt+1) =
µt+1(θ

t+1)

φt+1(θt+1|θt)
u′(θt+1)ι

fθk(θ
t+1)

fk(θt+1)

Multiplying by θt+1

θt+1
and 1−Φt+1(θt+1|θt)

1−Φt+1(θt+1|θt) and rearranging terms

τ k(θt+1) = ι
θt+1fθk(θ

t+1)

fk(θt+1)
× µt+1(θ

t+1)

1− Φt+1(θt+1|θt)
u′(θt+1)× 1− Φt+1(θt+1|θt)

θt+1φt+1(θt+1|θt)

Proof Proposition 3 These are the same steps as proposition 1 in Hellwig (2021). Sub-
stitue ξt(θt) in the LOM of the co-state (38):

µ̇t(θ
t) + µt(θ

t)
u′′(θt)ιfθ(θ

t)

u′(θt)
= −

[
1

u′(θt)
− λt − γtE(θt, θt−1)

]
φt(θt|θt−1)

substitute m′(θt)
m(θt)

= u′′(θt)ιfθ(θ
t)

u′(θt)
, using the boundary conditions µt(θ) = 0 and µt(θ) = 0 and

integrating upwards

µt(θ
t)m(θt) =

∫ θ

θt

[
λt + γtE(θ′, θt−1)− 1

u′(θ′, θt−1)

]
φt(θ

′|θt−1)m(θt)dθ′

Using the definition of the incentive-adjusted measure

µt(θ
t)

φt(θt|θt−1)
=

1− Φ̂t(θt|θt−1)

φ̂t(θt|θt−1)

{
Ê
[

1

u′ (θ′, θt−1)
| θ′ ≥ θt, θ

t−1

]
− γtÊ

[
E(θ′, θt−1) | θ′ ≥ θt, θ

t−1
]
− λt

}
(39)

To get λt, note that using the boundary conditions we have

0 =

∫ θ

θ

[
λt + γtE(θ′, θt−1)− 1

u′(θ′, θt−1)

]
φt(θt|θt−1)m(θt)dθ′

Or
λt = Ê

[
1

u′ (θt)
| θt−1

]
− γtÊ

[
E(θt, θt−1) | θt−1

]
Substiuting back λt into equation (39) and using the definition of ρ̂(θt) (equation (21)) we
get the solution.
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Proof Proposition 4 This proof also follows similar steps to Theorem 1 in Hellwig (2021).
Using the characterization of λt in Proposition 3 and substitute the multipliers λt+1(θ

t) and
γt+1(θ

t) from the optimality conditions (35) and (36), and using equation (31) to substitute
for ξt:

1

u′(θt)
+

µt(θ
t)

φt(θt|θt−1)

u′′(θt)ιfθ(θ
t)

u′(θt)
=
q

β
Ê
[

1

u′(θt+1)
|θt
]
+

µ(θt)

φt(θt|θt−1)
Ê
(
E(θt+1, θ

t)|θt
)

(40)

where we can rewrite

Ê
[
E(θt+1|θt)|θt

]
= Ê

[
ρ(θt+1)

u′′(θt+1)ιfθ(θ
t+1)

u′(θt+1)
|θt
]

To show this, note that

Ê
[
E(θt+1, θ

t)|θt
]
=

∫ θ

θ

E(θt+1, θ
t)
φ(θt+1|θt)m(θt+1)

E [m(θt+1)|θt]
dθt+1

=
1

E [m(θt+1)|θt]

∫ θ

θ

(
−
∫ θ

θt+1

E(θ′, θt)φ(θ′|θt)dθ′
)′

m(θt+1)dθt+1

Integrate by parts and use E [E(θt+1, θ
t)|θt] =

∫ θ

θ
∂φ(θt+1|θt)

∂θt
dθt+1 = 0. Then using the defini-

tion of ρ(θt+1) and m′(θt)
m(θt)

= u′′(θt)ιfθ(θ
t)

u′(θt)

Ê
[
E(θt+1, θ

t)|θt
]
=

∫ θ

θ

∫ θ

θt+1

E(θt+1, θ
t)φt+1(θ

′|θt)dθ′ m′(θt+1)

E [m(θt+1)|θt]
dθt+1

=

∫ θ

θ

1

φt+1(θt+1|θt)

∫ θ

θt+1

E(θ′, θt)φt+1(θ
′|θt)dθ′m

′(θt+1)

m(θt+1)

m(θt+1)

E [m(θt+1)|θt]
φt+1(θt+1|θt)dθt+1

=

∫ θ

θ

ρ(θt+1)
u′′(θt)ιfθ(θ

t)

u′(θt)
φ̂t+1(θt+1|θt)dθt+1

Substitute back and use the definition of the investment wedge to substitute µt(θt)
φ(θt|θt−1)

1

u′(θt)
+
fk(θ

t)

fθk(θt)

τ k(θt)

u′(θt)

u′′(θt)ιfθ(θ
t)

u′(θt)
=
q

β
Ê
[

1

u′(θt+1)
|θt
]
+
fk(θ

t)

fθk(θt)

τ k(θt)

u′(θt)
Ê
[
ρ(θt+1)

u′′(θt+1)ιfθ(θ
t+1)

u′(θt+1)
|θt
]

1

u′(θt)
+

θt
Ef (θt)

τ k(θt)

u′(θt)

u′′(θt)ιfθ(θ
t)

u′(θt)
− θt
Ef (θt)

τ k(θt)

u′(θt)
Ê
[
ρ(θt+1)

u′′(θt+1)ιfθ(θ
t+1)

u′(θt+1)
|θt
]
=
q

β
Ê
[

1

u′(θt+1)
|θt
]
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Rearranging we get

q

β
Ê
[

1

u′(θt+1)
|θt
]
=

1 +

[
u′′(θt)ιfθ(θ

t)

u′(θt)
− Ê

[
ρ(θt+1)

u′′(θt+1)ιfθ(θ
t+1)

u′(θt+1)
|θt
]]

θt
Ef (θt)

τ k(θt)︸ ︷︷ ︸
≡s(θt)


1

u′(θt)

Proof Proposition 5 If s(θt) ≥ 0,

1

u′(θt)
≤ Ê

[
1

u′(θt+1)
|θt
]
=

E [M(θt+1)|θt]
E [u′(θt+1)M(θt+1)|θt]

where M(θt+1) = m(θt+1)
u′(θt+1)

, rearranging

E [u′(θt+1)M(θt+1)|θt]
E [M(θt+1)|θt]

≤ u′(θt)

Because u′(θt+1) is decreasing, to show E [u′(θt+1)|θt] ≤ u′(θt) we only need to show that
M(θt+1) is weakly decreasing. Differentiating

d

dθt+1

(
M(θt+1)

)
=M(θt+1)

u′′(θt+1)

u′(θt+1)︸ ︷︷ ︸
≤0

(
ιfθ(θ

t+1)− c′(θt+1)
)

from the the local IC constraint dw(θt+1)
dθt+1

= ∂w(θt+1)
∂θt+1

we have c′(θt+1) + β
E
(

dw(θt+2)
dθt+1

|θt+1

)
u′(θt+1)

=

ιfθ(θ
t+1). Incentive compatibility requires that E

(
dw(θt+2)
dθt+1

|θt+1

)
≥ 0, which implies ιfθ(θt+1)−

c′(θt+1) ≥ 0, and so M(θt+1) is weakly decreasing. For the second part, assume s(θt) ≥ 0

for all θt, then u′ follows a non-negative super-martingale. By Doob’s super-martingale con-
vergence theorem u′ converges almost surely to a finite limit. By contradiction, assume u′

converges to a positive limit u′ > 0. Then, almost sure convergence implies that for some τ
we have u′(θτ ) = u′(θτ , θτ+1) = ... = u′, which would violate incentive compatibility. Hence
we must have u′ → 0 almost surely.
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C Extensions

C.1 Limited commitment

In this section, I relax the assumption of full commitment of the entrepreneur. Limited
commitment leads to very different firm size and compensation dynamics than the private
information friction. The limited commitment works as follows. At every period, before
knowing the realization of his productivity, the entrepreneur can divert and consume all
the funds advanced by the lender and terminate the project. In this case, I assume the
entrepreneur would obtain utility h(kt+1(θ

t))34, where h is increasing and concave. Therefore,
the agent will not terminate the project at period t+ 1 if h(kt+1(θ

t)) ≤ vt(θ
t). This limited

commitment constraint can be added directly to the planning problem (12). Because the
limited commitment constraint does not affect the within-period insurance and incentives
trade-off, the characterization of the shadow cost of insurance (Proposition 3) is not affected
by the limited commitment assumption.

However, the limited commitment constraint does modify the consumption and firm size
dynamics. Let ηt(θt) be the multiplier on the limited commitment constraint. Then the
GIEE is given by

q

β
Ê
[

1

u′(θt+1)
|θt
]
=

1

u′(θt)
(1 + s(θt)) +

ηt(θ
t)

β

Because ηt(θ
t) ≥ 0, the limited commitment gives a force to have a downward drift in

marginal utilities. As is well known, in models with only limited commitment, the agent’s
consumption is backloaded, and consumption follows a sub-martingale. Therefore, the pri-
vate information and limited commitment frictions will generally have opposite effects on
consumption dynamics.

The investment wedge is now given by

τ k,LC(θt+1) = τ k(θt) + ηt(θ
t)

h′(kt+1(θ
t))

fk(kt+1(θt), θt)
≥ 0

where τ k(θt) is the wedge from the private information friction in proposition 2. Because
ηt(θ

t)h′(kt+1(θ
t)) ≥ 0, the limited commitment friction also lowers firm size relative to the

first. However, if promised utility increases over time, the limited commitment constraint

34A natural specification of the function h is u((1−ι)(1−q)kt+1)
1−β , this is the value that the agent would obtain

if he could keep a fraction (1− ι) of the capital and then save outside the contract at rate 1
q .
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will eventually not bind (ηt(θt) = 0). Therefore, this friction still gives an incentive to have
firm size increasing over time.

C.2 Endogenous termination

In this section, I show how the model can be extended to allow for endogenous termination of
the contract. As is well known, in regions of the state space where the contract becomes very
inefficient, the principal may be better of terminating the project or randomizing between
terminating and continuing the contract at an efficient point. I assume that after termination,
the lender receives a scrap value S. At period t, based on θt, the lender can choose a
probability αt+1(θ

t) of termination at t + 1. In that event, the principal can also give the
entrepreneur a compensation of Qt+1(θ

t). In case of no termination at period t the objective
of the principal is∫ [

−b(θt) + αt+1(θ
t)q
(
S −Qt+1(θ

t)
)
+
(
1− αt+1(θ

t)
) (

kt+1(θ
t) + qKt+1(vt(θ

t),∆t(θ
t), θt, kt+1(θ

t))
)]

φt(θt|θt−1)dθt

I assume that after terminating the contract, the entrepreneur can freely save Qt+1(θ
t)

and obtains a per period gross return 1
q
. Then, his value after terminating the contract is

u((1−q)Qt+1(θt))
(1−q)

. The continuation utility now becomes

wt(θ
t) = u(c(θt)) + β

[
αt+1(θ

t)
u ((1− q)Qt+1(θ

t))

(1− q)
+ (1− αt+1(θ

t))vt(θ
t)

]

And the local IC

ẇt(θ
t) = u′(c(θt))ιfθ(kt, θt) + β(1− αt+1(θ

t))∆t(θ
t)

It is then easy to see that the optimality condtions for b(θt), kt+1(θ
t),vt(θt), ∆t(θ

t) and wt(θ
t)

are the same as in the main model. Therefore, although it may be optimal to terminate the
contract, the characterizations of the optimal allocation presented in the paper do not rely
on the assumption of no termination.

It is interesting to understand when and where (in the state space) termination may occur
in this model and how it compares with the risk neutral case. With risk neutrality (Clementi
et al. (2010)) the Pareto frontier is increasing in the promised utility. Consequently, termi-
nation occurs when the promised utility is low. Moreover, because utilities drift upward, the
termination probability tends to decrease over time. With risk aversion, the Pareto frontier
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is decreasing in promised utility (see figure 12a). So the motives for termination differ from
the risk neutral case.

Two other sources of inefficiencies could motivate the termination of the firm. First, high
promised insurance (i.e. low ∆0) is inefficient. Panel 12b shows that the Pareto frontier
is increasing in ∆0. Over time, if the lender has promised too much insurance to the en-
trepreneur, termination could potentially become optimal. Second, introducing a limited
commitment constraint as in C.1 could also generate endogenous termination. If vt(θt) de-
creases sufficiently, the limited commitment constraint may require that kt+1(θ

t) → 0. Then,
as shown in Dovis (2019), the Inada condition limk→0 fk(k, θ) = ∞ implies that in this region,
the Pareto frontier is increasing in v. When the frontier is increasing, there may be a range
of scrap values S where it is optimal for the lender to randomize between termination and
continuing at a higher v. Because both insurance and the variance of promised utility tend to
increase, both inefficiencies should imply that the termination probabilities tend to increase
over time. Again, these are the opposite dynamics of what is found with risk neutrality.

Figure 12: Pareto frontier

(a) As a function of promised utility v0 (b) As a function of promised insurance ∆0

Note: For Panel (a), the promised insurance is set at the optimal level at t = 0, i.e. I set γ0 = 0. For Panel
(b), λ0 is adjusted for every value of ∆0 so that v0 is kept fixed.

Persistent shocks and optimal termination probabilities: Another interesting ob-
servation is that whenever termination is optimal, the lender may have more incentives to
increase the termination probabilities when the persistence of the shocks is higher. The
reason is that a higher termination probability decreases the Markov information rents. The
intuition is similar to the equity purchases and the distortions in firm size. Imagine that,
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at history θt−1, the lender increases the termination probability of type θt and compensates
him by increasing Q(θt) such that his ex-ante continuation utility is kept constant. Types
θ′ > θt know they are expected to obtain higher returns at t + 1, so they have a relatively
higher preference for continuing to operate the firm. Therefore, the increase in α(θt) makes
deviations less attractive for θ′ > θt, and so it lowers the cost of screening types.

I show this intuition more formally in a simplified two-period and two-type version of the
model. Assume the entrepreneur’s productivity can take values {θH , θL} with θH > θL. In
the first period, P (θ1 = θH) = p1, and in the second one, P (θ2 = θH |θ1 = θH) = pH and
P (θ2 = θH |θ1 = θL) = pL. Let ρ = pH − pL ≥ 0, if ρ > 0 we say types are persistent. We
assume the production function is of the form f(θ, k) = θ, so we can abstract away from
the choice of firm size. In the second (and last) period, we assume that the entrepreneur
consumes all its endowment, so there is no repayment. The principal’s objective is

K(v) = p1
[
−bH + qαH(S −QH)

]
+ (1− p1)

[
−bL + qαL(S −QL)

]
The values of the high and low types are

wH = u(θH − bH) + β
[
αHu(QH) + (1− αH)EH (u(θ2))

]
wL = u(θL − bL) + β

[
αLu(QL) + (1− αL)EL (u(θ2))

]
where for j ∈ {H,L}, Ej (u(θ2)) = pju(θH) + (1− pj)u(θL). The participation constraint is

p1wH + (1− p1)wL = v

and the IC constraint can be written as

wH = wL + u(θH − bL)− u(θL − bL)︸ ︷︷ ︸
static info rent

+(1− αL)βρ(u(θH)− u(θL))︸ ︷︷ ︸
Markov info rent

Notice that the Markov information rent is increasing in ρ and decreasing in αL. I directly
assume that the parameters are such that αL ∈ (0, 1) is optimal and show that the principal
increases the termination probability when the persistence increases.

Proposition 6. If αL ∈ (0, 1) is optimal, the optimal contract is such that ∂αL

∂ρ
> 0 .

Proof. The proof is as follows. Starting from the optimal contract, we consider a perturbation
where we increase αL while preserving the IC and PK constraints and show that the resource
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gains are increasing in ρ . To this end, let ∆αL = ε > 0, for ε small. We perturb the allocation
along the low type’s indifference curve, so to keep wL constant, we increase QL by

QL =

[
u(QL)− EL (u(θ2))

]
αLu′(QL)

εL

The perturbation lowers the Markov information rents, so it relaxes the IC constraint. This
allows us to lower the high type’s period one utility by

∆uH = −βρ(u(θH)− u(θL))ε

Because wL is kept fixed, this changes the ex-ante utility by p1∆uH . Then, to satisfy the
PK constraint, we increase the period one utility of both types in an incentive-compatible
manner. Because information rents depend on consumption, increasing utilities uniformly
would not be incentive compatible. If we increase the low type’s utility by ∆uL, the IC
constraint requires increasing the utility of the high type by

∆uH,IC =
u′(θH − bL)

u′(θL − bL)
∆uL

The ex-ante utility is kept fixed if

p1
u′(θH − bL)

u′(θL − bL)
∆uL + (1− p1)∆uL = −p1∆uH

which implies

∆uL = − p1u′(θL − bL)

p1u′(θH − bL) + (1− p1)u′(θL − bL)
∆uH

Therefore, the total change in the high type utility is

∆uH,TOT = ∆uH +∆uH,IC

= (1− p1)
u′(θL − bL)

p1u′(θH − bL) + (1− p1)u′(θL − bL)
∆uH

Finally, he resource gain from this pertubation is

∆K

ε
≈ p1

[
1

u′(θH − bH)
∆uH,TOT

]
+ (1− p1)

[
1

u′(θL − bL)
∆uL

]
+Ω

≈
[

1

u′(θL − bL)
− 1

u′(θH − bH)

]
u′(θL − bL)

p1u′(θH − bL) + (1− p1)u′(θL − bL)
(1− p1)p1βρ(u(θH)− u(θL)) + Ω
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where Ω collects all the terms that do not depend on ρ. Because the initial allocation
is optimal,

[
1

u′(θL−bL)
− 1

u′(θH−bH)

]
< 0 and u(θH) − u(θL) > 0. Therefore, the principal’s

resource gain from this perturbation is increasing in ρ, i.e. ∂∆K
ε

∂ρ
< 0, which implies that

∂αL

∂ρ
> 0 is optimal.

C.3 Screening model: divert funds before investing

In this section, I study a screening version of the model where the entrepreneur can choose
what fraction of the funds available he invests in the project. The remaining funds are
secretly diverted for consumption. Now the lender can observe the entrepreneur’s returns
but not the entrepreneur’s productivity nor invested and diverted funds. In this sense, the
investment decision is similar to the labor/leisure choice in the Mirrlees taxation problem.
This model yields the same characterization of the shadow costs µt, the GIEE, and the firm
size dynamics. Moreover, we can directly define the investment wedge τ k(θt) as the wedge
between invested and diverted funds relative to the first best.

Denote by Bt the funds advanced by the lender. The entrepreneur can use these funds to
invest in the project kt, but he can also divert a portion at of the funds for his consumption.
Therefore, invested and diverted funds are subject to the flow of funds constraint

kt + at ≤ Bt (41)

The lender now observes returns f(kt, θt) but not productivity θt and how funds are used,
i.e. kt and at. Diverted funds are converted into consumption units according to the function
g(at), with g′′ ≤ 0 < g′, so the entrepreneur’s consumption is

ct = f(kt, θt)− bt + g(at) (42)

The principal’s within period objective now is Bt − bt. The envelope condition is

∂

∂θt
wt(θ

t) = u′(ct(θ
t))fθ(kt(θ

t), θt) + β∆t(θ
t)

Now the investment wedge can be defined explicitly as the distortion in invested and diverted
funds relative to the first best (where we would have fk(kt(θt), θt) = g′(at(θ

t)). Define

τ k(θt) ≡ 1− g′(a(θt))

fk(k(θt), θt)
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The rest of the planning problem is the same but with the extra flow of funds constraint
(41). The optimality condition for diverted funds is

ζt(θ
t) = g′(at(θ

t))

where ζt(θt) is the multiplier on the flow of funds constraint (41). The FOC for investment
is

ζt(θ
t) = fk(kt(θ

t), θt)−
µt(θ

t)

φt(θt|θt−1)
u′(θt)fθk(kt(θ

t), θt)

Then combining the two optimality conditions we get

τ k(θt) =
µt(θ

t)

φt(θt|θt−1)

fθk(θ
t)

fk(θt)
u′(θt) > 0

which is the same as in proposition 2. Because τ k(θt) > 0, there is more cash diversion than
in the first best. This is the standard screening result; the principal distorts effort (here
investment kt) downwards to screen types at a lower cost. When shadow costs (µt(θ

t)) are
high, the principal increases distortions to reduce the costs of screening types. Moreover,
this wedge also captures the distortions to firm size as in the cash flow diversion model.
Combining the FOC for Bt+1(θ

t) and the envelope condition, we get

1

q
= E

[
fk(kt+1(θ

t), θt+1)−
µt+1(θ

t+1)

φt+1(θt+1|θt+1)
u′(θt+1)fθk(kt+1(θ

t), θt+1)|θt
]

= E
[
fk(kt+1(θ

t), θt+1)
(
1− τ k(θt+1)

)
|θt
]

which is exactly how the wedges where defined for the cash flow diversion model in equation
(16). Then, it is also easy to verify that this model yields the same characterization for the
shadow costs µt(θ

t) and the GIEE.

D Full implementation in two-period model

In this section, I study a full implementation in a simplified two-period version of the model.
Now, the entrepreneur can freely choose between paying himself dividends or reinvesting
in the firm. This implementation focuses on another way the principal can lower Markov
information rents. Instead of buying equity, the principal discourages reinvesting profits to
distort firm size. Because lower future capital is less attractive for higher types if shocks
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are persistent, this margin can be used to screen types. This implementation of the optimal
allocation involves either a (nonlinear) subsidy on dividend payouts or a (nonlinear) tax
on reinvested funds so that capital is lowered in period 2 relative to the first best. The
magnitudes of the marginal subsidy (or tax) are increasing in the persistence of productivity.

There are two periods t = 1, 2. I assume the production function is of the form f(k, θ) =

θf(k); for the first period, I normalize f(k1) = 1 and assume there is no cost of diverting
funds ι = 1. The entrepreneur is risk neutral in the second period and there is no repayment.
So the entrepreneur’s utility if he is type θ1 and reports θ̃1 is

w(θ1, θ̃1) = u(θ1 − b(θ̃1)) + βE [θ2|θ1] f(k2(θ̃1))

Solving the lenders problem we obtain

u′(θ1 − b(θ1)) = βE [θ2|θ1] f ′(k(θ1))
(
1− τ k(θ1)

)
where

τ k(θ1) = µ̃(θ1)Ψ(θ1)θ1

(
∂E[θ2|θ1]

∂θ1

E [θ2|θ1]
− u′′(θ1 − b(θ1))

u′(θ1 − b(θ1))

)
> 0

The wedge to investment is increasing in the persistence of the process, as with higher persis-
tence, higher types have an even higher preference for future capital. But now also depends
on the absolute risk aversion35. We now turn to the implementation. The entrepreneur can
freely use his returns to pay dividends d or reinvest in the firm I. The optimal can be im-
plemented with either a tax T on investment such that k2 = T (I) or a subsidy on dividend
payments c = S(d). Here I consider only the subsidy on dividends, so I = k2. Then the
entrepreneur’s problem is

w(θ1) = max
d,k2

u(S(d)) + βE [θ2|θ1] f(k2)

s.t d+ k2 = θ1

The marginal subsidy on dividend payments that implements the optimum is

S ′(d(θ1)) =
1

1− τ k(θ1)

35Because there is no repayment b2 in the second period, capital also plays a similiar role as savings for
the entrepreneur.
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Moreover, we have S ′(d(θ)) = S ′(d(θ)) = 1 and S ′(d(θ)) > 1 for θ ∈ (θ, θ), so the marginal
subsidy is inverse U-shaped. Because τ k(θ1) is increasing in the persistence of productivity,
the marginal subsidy will also be increasing in the persistence.

E Details numerical simulations

I follow a similar procedure as Farhi and Werning (2013), Stantcheva (2017) and Ndiaye
(2020). In these papers (and in Kapička (2013) and Golosov et al. (2016a)), the model
is solved with a geometric random walk process. This allows to normalize the principal’s
optimization problem and drop θt−1 as a state variable. Here, the problem can also be
normalized if the production function is assumed to be of the form f(k, θ) = zθ1−αkα.
However, I am interested in performing comparative statics with respect to the persistence
of the process (ρ). Therefore, I solve the full problem without renormalizing.

It is convenient to transform the problem to write the Hamiltonian as a function of the
current shock εt instead of the current productivity θt. Denote the density function of the
shock by gε(εt), then it follows that

φ (θt | θt−1) =
gε(εt)

θρt−1

moreover, we also have that

∂φ (θt | θt−1)

∂θt−1

= − ρ

εtθ
1+ρ
t−1

1

σε
√
2π

(log θt − ρ log θt−1 − µ)

σ2
ε

exp

{
−(log θt − ρ log θt−1 − µ)2

2σ2
ε

}

and

∂gε(εt)

∂εt
= − 1

ε2tσε
√
2π

(log εt − µ)

σ2
ε

exp

{
−(log εt − µ)2

2σ2
ε

}

therefore,

g̃ε(εt) ≡ gε(εt) + ε
∂gε(εt)

∂εt
=
θ1+ρ
t−1

ρ

∂φ (θt | θt−1)

∂θt−1

Then note that dθt = θρt−1dεt implies

φ (θt | θt−1) dθt = gε(εt)dεt
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and
∂φ (θt | θt−1)

∂θt−1

dθt = ρ
g̃ε(εt)

θt−1

dεt

The planning problem over the shock εt is

K(vt−1,∆t−1, kt, θt−1) = min

∫ (
kt+1(εt)− bt(εt) + qK(vt(εt),∆t(εt), kt+1(εt), θ

ρ
t−1εt)

)
gε(εt)dεt

s.t (PK) wt(εt) = u(ct(εt)) + βvt(εt) [gε(εt)ξt(εt)]

vt−1 =

∫
wt(εt)gε(εt)dεt [gε(εt)λt−1]

(IC) ẇt(εt) = θρt−1

(
u′(c(εt))ιfθ(kt, θ

ρ
t−1εt) + β∆t(εt)

)
[µt(εt)]

∆t−1 =

∫
wt(εt)

ρ

θt−1

g̃ε(εt)dεt [gε(εt)γt−1]

(Feasibility) ct(εt) = f(kt, θ
ρ
t−1εt)− bt(εt)

The optimality conditions are

q

β
λt(εt) =

1

u′(ct(εt))

[
1 +

µ(εt)

gε(εt)
θρt−1ιfθ(kt, θ

ρ
t−1εt)u

′′(c(εt))

]
(43)

γt(εt) = −β
q
θρt−1

µ(εt)

gε(εt)
(44)

And the two LOM

µ̇(εt) = −
[
q

β
λt(εt)− λt−1 + γt−1

ρ

θt−1

g̃ε(εt)

gε(εt)

]
gε(εt) (45)

ẇt(εt) = θρt−1

(
u′(c(εt))ιfθ(kt, θ

ρ
t−1εt) + β∆t(εt)

)
(46)

I truncate the distribution of εt at the 0.01 and 0.99 percentiles, the boundary conditions
then need to be adjusted to µ(ε) = −γt−1

ρ
θt−1

εgε(ε) and µ(ε) = −γt−1
ρ

θt−1
εgε(ε).

To solve the model, the state space is modificed to (λ−, γ−, k, θ−) , so the multipliers λ− and
γ− are used instead of v− and ∆−, respectively. I use 14 grid points for λ−, 8 for γ−, 20 for
k and 10 for θ−. I interpolate on K, v and ∆ with cubic splines and allow to extrapolate.
To solve the model with an i.i.d type process, the algorithm is the same but with ∆ = 0 and
without the state variables γ− and θ−.
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Algortihm

Step 0: Guess the value function K ′, promised utility v′ and promised marginal utility ∆′

on the grid (λ−, γ−, k, θ−)

Step 1: Compute the policy functions for k+ on a grid (λpol, γpol, θ) by minimizing

k+ + qK ′(λpol(i), γpol(i), k+, θ(i))

(Note: k+ needs to be computed multiple times at every step while solving the ODE. But to
improve speed, we can solve before the policies on a dense grid and then interpolate when
solve the ode).

Step 2: For each point in (λ−, γ−, k, θ−), solve the optimal control problem with a shooting
method.

• a) Guess continuation utility of lowest type w(ε) = w

• b) For each ε, solve λ(ε) in equation (43) and γ(ε) in equation (44). To compute c(ε),
first compute k+(ε) by interpolationg the array of policies on (λ(ε), γ(ε), θρ−ε). Then
obtain v(ε) by interpolation of v′ on (λ(ε), γ(ε), k+(ε), θ

ρ
−ε) and solve

c(ε) = u−1 (w(ε)− βv(ε))

With these solutions solve the differential equations (45) and (46). Note when solving
(45) also need to interpolate ∆′ on (λ(ε), γ(ε), k+(ε), θ

ρ
−ε).

• c) Check the boundary condition µ(ε) = −γ− ρ
θ−
εgε(ε). If it does not satisfy the

tolerance, go back to step a).

Step 3: Given the solution (µ(ε), w(ε)), repeat step b) to obtain all policy functions on a
grid (λ−, γ−, k, θ−, ε), also compute b(ε) = f(k, θρ−ε)− c(ε).

Step 4: Compute the lender’s value function, promised utility and expected marginal utility
at every grid point

v(λ−, γ−, k, θ−) =

∫
w(λ−, γ−, k, θ−, ε)gε(εt)dεt

∆(λ−, γ−, k, θ−) =

∫
w(λ−, γ−, k, θ−, ε)

ρ

θ−
g̃ε(εt)dεt
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K(λ−, γ−, k, θ−) =

∫
(k+(λ−, γ−, k, θ−, ε)− b(λ−, γ−, k, θ−, ε) + qK ′(λ(ε), γ(ε), k+(ε), θ

ρ
−ε)) gε(εt)dεt

Calculate the distance with previouss guess of K ′, v′ and ∆′ , and repeat from Step 1 until
the convergence criteria is satisfied.

For the Montecarlo simulation, at the starting period, λ0 and θ0 can be fixed at arbitrary
values. Because ∆0 is a free variable, we must set γ0 = 0. Then k1 is chosen optimally given
(λ0, θ) and γ0 = 0.

E.1 Check global IC constraints

The first-order approach consists in solving a relaxed problem where only the local incentive
constraints are considered. A priori global incentive constraints may bind, in which case the
solutions of the relaxed program (12) and the full program (6) would not coincide. I follow
the approach outlined in Kapička (2013) and Farhi and Werning (2013) to verify ex-post
that only the local incentive constraints bind.

The procedure is the following. First, after solving numerically the relaxed problem, we
have obtained the policy functions λ(λ−, γ−, k, θ−, ε), γ(λ−, γ−, k, θ−, ε), k+(λ−, γ−, k, θ−, ε)
and b(λ−, γ−, k, θ−, ε) and the value function v(λ−, γ−, k, θ−). Let ε̃ denote the agent’s report
about the innovation to the productivity. Then we consider a problem where the entrepreneur
takes as given the policy functions and can report any ε̃ ∈ [ε, ε] and verify that for every
(λ−, γ−, k, θ−, ε)

ε = argmax
ε̃∈[ε,ε]

u(c̃(λ−, γ−, k, θ−, ε, ε̃))

+ βv(λ(λ−, γ−, k, θ−, ε̃), γ(λ−, γ−, k, θ−, ε̃), k+(λ−, γ−, k, θ−, ε̃), θ
ρ
−ε̃)

s.t c̃(λ−, γ−, k, θ−, ε, ε̃) = ιf(k, ε) + (1− ι)f(k, ε̃)− b(λ−, γ−, k, θ−, ε̃)
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E.2 Solution implementation

With persistent shocks and constant equity, the entrepreneur’s problem in the quasi-implementation
is

W(Wt, θt−1, θ̃t−1, εt) = max
θ̃t≤θρt−1εt

u(c̃t) + βV(Wt+1, θ
ρ
t−1εt, θ̃t)

s.t Wt+1 = qC(Wt, θ̃t, θ̃t−1)

ct = (1− q)C(Wt, θ̃t, θ̃t−1)

c̃t =ct + ι(f(kSB, θ
ρ
t−1εt)− f(kSB, θ̃t))

where
C(Wt, θ̃t, θ̃t−1) =

1

q
Wt + χ(f(kSB, θ̃t) + qf(kSB, θ̃t)− f(kSB, θ̃t−1))

f(kSB, θt) = E

[
∞∑
τ=1

qτ−1f(kSB, θt+τ )|θt

]
and

V(Wt+1, θt, θ̃t) =

∫
W(Wt+1, θt, θ̃t, εt+1)gε(εt+1)dεt+1

With i.i.d shocks, the problem is the same but without θt−1 and θ̃t−1 as state variables
and with f(kSB) independent of θt. The problem is solved with standard value function
iteration, and to have the closest comparison with the solutions of the optimal allocation,
V(Wt+1, θt, θ̃t) is computed with numerical integration.
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