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Abstract

We study innovation and diffusion of technology at the industry level. We

derive an industry’s evolution, from birth to its maturity, and we characterize

how diffusion affects the incentive to innovate. The model implies that protec-

tion of innovators should be only partial due to the congestion externality in

the meetings in which idea transfers take place. We fit the model to the early

experiences of the automobile and the personal computer industries, both of

which show -shaped growth of the number of firms.

1 Introduction

Innovation and diffusion are fundamental drivers of technological progress and long-

run growth. An innovation cannot fulfill its potential without being widely adopted,

but rapid diffusion and imitation may reduce the incentive to innovate. In this paper,

we study the interplay between innovation and diffusion in a competitive industry

setting, and discuss welfare and policy implications.

The model features an industry with a fixed demand curve for a homogeneous

product and a group of zero measure potential producers. An innovation or “idea”

enables an agent to produce the good at zero cost subject to a capacity constraint.

At the outset, agents decide whether to pay a sunk cost to innovate. Some will do so

immediately; others may consider innovating later, or wait to imitate the innovation.

Imitation occurs in random pairwise meetings between those who have the idea

and those who do not. Imitation is costless, but the imitator may have to pay a fee

to the idea seller and the fee is determined by the latter’s bargaining share.

We study two regimes regarding the payment for ideas. In Regime 1, imitators

cannot resell ideas to other imitators. A potential adopter can copy an idea from an
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imitator but the fee goes to the idea’s original innovator and not to the imitator — this

scenario is typically seen in patent licensing or franchising. In Regime 2, by contrast,

imitators can resell ideas to other imitators and keep the proceeds, a scenario which

is often relevant for non-patented know-how.

Our model leads to the following findings. First, under either regime, innovators

enter the industry only at the beginning and the number of imitators then follows

an -shaped logistic diffusion curve over time. More innovators enter in Regime 1 or

when idea sellers’ bargaining share is larger, resulting in faster industry growth.

Second, socially optimal compensation for innovators should be only partial. In-

novators do generate positive knowledge spillovers, but they also generate a meeting-

congestion externality, and from the welfare viewpoint, they should be compensated

but not fully. Moreover, the socially optimal bargaining share of idea sellers is larger

in Regime 2 where innovators collect the payoff of ideas partly indirectly.

Third, a policy restricting the speed of diffusion reduces welfare. It may encourage

entry of innovators and raise initial industry capacity, but it lowers imitation and

leads to slower growth of capacity. Non-compete contracts restrict idea diffusion and

we show their enforcement in Massachusetts but not in California may explain why

venture activity on Route 128 was overtaken by that in Silicon Valley.

We fit the model to the early experiences of the U.S. automobile and personal

computer industries, both of which show -shaped growth in the number of producers

in the period before the shakeout, a pattern shared by many industries. We thus add

to the literature on industry life cycles — e.g., Gort and Klepper (1982), Utterback

and Suarez (1993), Jovanovic and MacDonald (1994), Klepper (1996), Filson (2001),

and Hayashi, Li, and Wang (2017). Those studies focus on explaining the shakeout of

firms, while our study explains the expansion of firm numbers prior to the shakeout.

We find that the auto and the PC industries both face highly elastic demands, under

which entry of imitators can drive prices down only slowly. Because this encourages

innovation and exacerbates the congestion externality, the socially optimal bargaining

share of idea sellers should be low for both industries, and lower for the more price

elastic PC.

In our model, random meetings between agents who have ideas and those who do

not give rise to a logistic diffusion process. This is consistent with prior work that

features logistic diffusion curves in the technology diffusion literature (e.g., Griliches

1957, Mansfield 1961, Bass 1969, 2004, Young 2009),1 as well as in the epidemics

studies (e.g., Atkeson 2020, Garibaldi, Moen, and Pissarides 2020, among many

applications of the SIR model to the spread of the COVID-19 disease). And the

quadratic matching function underlying the logistic diffusion was recently studied by

Lauermann, Nöldeke, and Tröger (2020).

1Our model focuses on the diffusion process driven by information spillovers from prior to future

adopters, which has been a classic approach for studying diffusion in the literature (see Young 2009

for a review). There are also models where diffusion is driven by falling prices of inputs; e.g., David

(1968) and Manuelli and Seshadri (2014).
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Saxenian (1994), Gilson (1999) and Franco and Mitchell (2008) discuss the role of

non-compete contracts in the overtaking of Route 128 by Silicon Valley. Our model

generates this overtaking via the discouragement effect that banning non-competes

has on innovation and via the offsetting effect on imitation.

We add to several other strands of the literature. First, the work on competitive

innovation; Boldrin and Levine (2008) provide evidence that such innovation is per-

vasive and they argue that in both theory and practice, capacity constraints provide

incentives to innovate in a competitive marketplace. They consider a single innova-

tor’s entry decision in a market where the number of imitators grows at a constant

rate. By contrast, our model endogenizes the entry number of innovators and gener-

ates -shaped growth in the number of imitators, and we also consider compensation

from imitators to innovators, and our policy implications are different.

Second, our finding that protection of innovators should be only partial agrees with

findings in some recent papers on aggregate growth. For example, Hopenhayn and

Shi (2020) show that due to matching congestion, the growth-maximizing bargaining

share of innovators is sensitive to the parameters in the matching function. Benhabib,

Perla, and Tonetti (2021) show that innovators’ licensing income becomes highly

elastic with regard to the license price when innovators’ bargaining power is too

strong and that this can lower licensing income, the return to innovation, and growth.

These models compare aggregate growth rates at steady states whereas our model

studies transitional dynamics of industry evolution and two policy-relevant regimes

concerning idea resale.

In our model, innovation generates a payoff that depends partly on the use of

the idea in production, and partly on the value the idea yields when it is sold. Idea

sales occur in bilateral meetings and our model relates to models in which agents

search for a production partner after one has invested, such as Burdett and Coles

(2001), Mailath, Samuelson, and Shaked (2000) and Nöldeke and Samuelson (2015).

In these models, payoffs in a match depend on partners’ investments and this affects

investment incentives.

In the model, owners of ideas use them to compete in the product market and

thus the flow value of an idea depends on how many others use it. Manea (2021) also

assumes ideas are sold in bilateral meetings and uses bargaining to allocate rents, but

in his model the flow value of an idea to its user does not depend on how many others

have it or use it.

The paper is organized as follows. Section 2 lays out the model and Section 3

characterizes the equilibrium. Section 4 conducts welfare analysis, and Section 5 fits

the model to data for the U.S. automobile and personal computer industries. Section

6 analyzes a limiting version of our model that relates to Boldrin and Levine (2008)

and Quah (2002), and Section 7 concludes. The proofs of model propositions and

robustness checks of empirical studies are in the Appendix.
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2 Model

Consider a competitive market in continuous time. There is a measure  of potential

producers. At date 0, a measure 0 who we call “innovators,” each invest an amount

 in an innovation that results in the ability to produce one unit of a new good

each period at zero cost. They then immediately become producers. After that, the

innovation spreads to others. At any date  ≥ 0 the measure of producers is  and
the remaining − agents are “outsiders.” We normalize outsiders’ earnings to zero
and denote  as an outsider’s option value at date  for entering the industry in the

future.

The total output of the homogeneous good is , and the product price is

 = 
−
  (1)

where  is a market size parameter and   0 is the inverse demand elasticity.

Two types of producers.– All producers have the idea and all are equally pro-

ductive, but some are “innovators” while the others are “imitators.” An innovator

has paid a direct cost  to invent the idea. An imitator who at date  has copied a

producer’s idea, has paid a fee equal to

 =  (2)

where  is the value of becoming an imitator at  The parameter  ∈ [0 1] is an
idea seller’s bargaining share.2

2.1 Diffusion process

Diffusion occurs through random pairwise meetings between the  producers and the

 −  outsiders in which outsiders learn and imitate the innovation. The matching

function is assumed to be quadratic, and each meeting results in a new producer. An

outsider can also enter as an innovator after date 0, but Propositions 1 and 2 will

show that no one will want to do so. Thus, for   0 meetings are the only way

that agents will in equilibrium become producers, and the number of producers then

evolves as



=  ( − )  (3)

2Hopenhayn and Shi (2020) show that the bargaining share  could result from an enforcement

threat game, in which the firms split the imitator’s surplus  from idea transfer. This bargaining

protocol is different from Nash bargaining, where the innovator and imitator would split the joint

surplus  −  from the idea transfer. This alternative bargaining is easier to enforce than a Nash

bargain because the courts need to know only  and not the imitators’ outside options. Section 6

will show that  coincides with the Nash bargaining share in a limiting version of the model where

 = 0 as  →∞.
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where   0 is a parameter. The solution to (3) is

 =


 + 
0
− 1  (4)

Matching function specification.–The matching function (3) features increasing

returns to scale. However, the assumption on returns to scale is inessential for our

analysis.3 The labor search literature often assumes a Cobb-Douglas matching func-

tion:



=  ( − )

1−


where 0    1 However, the Cobb-Douglas formulation does not appear to fit data

better, and more importantly, it does not have a closed-form solution for the time

path of . Therefore the logistic formulation has analytical advantages.
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Fig. 1. Diffusion Models: Fitting Time Paths of Firm Numbers

3To show why, let us generalize Eq. (3) to




= ̂ ( − ) where ̂ =




 (5)

The solution of  then becomes

 =
̂

̂ + 
0
− 1 =


1−


1− + 

0
− 1  (6)

By rescaling the diffusion parameter  with a constant 1
 , the matching function features increasing

returns to scale if   1, constant returns if  = 1, and decreasing returns if   1. We shall assume

that  = 0, but our analysis and findings would hold for any  because a time series study takes 

and 
 as given; the value of  plays no role except in a counterfactual that would involve changing

the value of  .
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Figure 1 shows that the estimated logistic diffusion model (cf. Eq. (4)) matches

the time paths of firm numbers well for U.S. automobile and PC industries. Compar-

ing with the symmetric Cobb-Douglas counterpart (i.e.,  = 05), logistic diffusion

shows a more pronounced inflection point and fits better for the PC industry, as

shown in the top panels. In the bottom panels, we compare logistic diffusion with the

best fitting Cobb-Douglas formulation for each industry without restricting . The

former still fits better for the PC industry.4

2.2 Two regimes

We shall analyze two regimes that differ in how much revenue innovators get from

idea sales.

Regime 1: Imitators cannot resell ideas

In Regime 1, the original innovators receive all of their ideas’ sale revenues; at each

date they are divided among the innovators. While an imitator may have learned the

innovation from any incumbent producer, he has to pay the idea’s original innovator.

This type of idea transfer often occurs under franchising or patents that do not allow

sublicensing.

Since an imitator cannot resell the innovation, his only revenue comes from selling

the good, and his value  satisfies

 =  +



 (7)

where  is the interest rate.

An innovator receives revenues from selling both the good and the idea. We

will prove that at equilibrium, innovators only enter at date 0. Accordingly, the

number of ideas sold at  is  ( − ) and the total date- revenue from these

sales,  ( − ), is divided among the 0 innovators. Therefore, the date-

value  of an innovator satisfies

 =  +
 ( − )

0
 +




 (8)

An outsider’s hazard rate for meeting a producer is
(−)

− =  Therefore,

his lifetime value at date , , satisfies

 =  [(1− ) − ] +



 (9)

The free entry condition requires that  −  =  for  = 0.

4The Cobb-Douglas diffusion curves plotted in Fig. 1 are ones that minimize the sum of the

squares of the prediction errors. The data fitting suggests that Cobb-Douglas curves fit slightly

better in the auto case (2 = 0985 when  = 05 and 2 = 0987 when  = 055) than the

logistic curve (2 = 0975), but the logistic curve fits better in the PC case (2 = 0981) than the

Cobb-Douglas curves (2 = 0936 when  = 05 and 2 = 0969 when  = 090).

6



Regime 2: Imitators can resell ideas

In Regime 2, imitators do get paid for ideas that they resell. An incoming idea buyer

pays the agent from whom he copies the idea. This may capture the cases of patents

that allow sublicensing and also the spread of non-patented know-how.

Any producer (innovator or imitator) that sells an idea can keep the proceeds.

Then all producers now have the same value  = . Again, we will prove that at

equilibrium, innovators only enter at date 0. The revenue from a single idea sale is

, and total revenue from idea sales,  ( − ), is now shared by all the 
producers. Therefore,  now satisfies

 =  +  ( − ) +



 (10)

The value of an outsider becomes

 =  ((1− ) − ) +



 (11)

Motivation for two regimes.–In a frictionless world, innovators would prefer Regime

2, as it does not require them to track the idea they sold and enforce the no-reselling

constraint on imitators. But in Regime 2 an imitator needs to pay for an idea with a

higher fee that incorporates his future revenues from reselling. This can be challenging

for new entrants in an emerging industry who often face tight financial constraints.

Regime 1 requires a smaller up-front payment by the buyer of the idea each time

the idea is transferred. Of course, the use of no-reselling constraint relates to its

enforceability; Regime 1 would better reflect patented innovations than non-patented

ones.

In our model, imitators’ ability to resell ideas or not resell ideas does not affect the

meeting process, but it affects the incentive to innovate, and it thus affects market

allocation and welfare, as will be shown in the following analysis.

3 Characterization

In this section, we characterize equilibrium under each regime.

3.1 Market equilibrium

We first solve the equilibrium for each regime. We find that in either Regime 1 or 2,

innovators only enter at date 0. Accordingly, the time path of firm numbers is given

by Eq. (4).

In Regime 1, if a measure-0 outsider were to deviate from the equilibrium and

enter as an innovator at date   0, its value at date  ≥  , denoted as  , would

satisfy

 =  +
 ( − )


 +




 (12)
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This differs from  in Eq. (8) because at any date  ≥  , this new entrant always

has a chance 1 (where  is the number of incumbent firms at his entry date )

to share the industry’s total idea sale revenues from new imitators. Because firm

numbers continue to rise over time, it does not pay an innovator to enter at a later

stage.

Solving the equilibrium for Regime 1, we derive the full dynamic paths of , ,

, 

 and pin down 0 (See Appendix A.1 for details). The results yield Proposition

1. To distinguish Regimes 1 and 2, we will use the superscripts I and II.

Proposition 1 (A) In Regime 1, innovators enter only at date 0. (B) The number

of innovators I0 solves

1

 − 0

Z ∞

0

−
µ



0
+ (1− )




− 1
¶


1−
 | {z } = 

0 − 0

(13)

where  is given by Eq. (4).

Proof. See Appendix A.1.

In Regime 2, if any innovator were to enter the industry after date 0, he would

share the same value  as an incumbent, be it an innovator or an imitator. The free

entry condition requires that  −  =  for  = 0 and one can verify at equilibrium

 −    for any   0 so that even in Regime 2, innovators enter only at date 0.

Solving the equilibrium for Regime 2, we derive the full dynamic paths of ,  and

pin down 0 (See Appendix A.2 for details). The results yield Proposition 2.

Proposition 2 (A) In Regime 2, innovators enter only at date 0. (B) The number

of innovators II0 solves

1

 − 0

Z ∞

0

−
Ãµ



0

¶µ




¶1−
− 1
!


1−
 | {z } = 

0 − 0

(14)

where  is given by Eq. (4).

Proof. See Appendix A.2.

The isoelastic form for demand in Eq. (1) implies that 0  0 in either regime,

otherwise 0 would be infinite. But additional conditions are needed for 0 to be

strictly below  :

Proposition 3 In either regime, the entry number of innovators is below  (i.e.,

I0   and II0  ) if and only if the following condition holds:

 
( + )

( + )
− (15)
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Proof. See Appendix A.3.

Assuming condition (15) holds, a comparison of Eqs. (13) and (14) yields the

findings stated in Propositions 4 and 5:

Proposition 4

(A) I0 and II0

½
increase with  and ,

decrease with  and .
(16)

(B) All parameters being equal across the two regimes,

I0
II0

=

½
1 for  ∈ {0 1}
 1 for  ∈ (0 1)  (17)

Proof. See Appendix A.4.

Equation (16) follows because a larger market size  or a higher compensation

share  encourages innovation, while a bigger innovation cost  or a higher interest

rate  does the opposite. The first line of Eq. (17) holds because the innovators who

enter at date 0 either receive no revenue from selling ideas at all (if  = 0) or get all

the revenues (if  = 1), and in either scenario whether imitators can or cannot resell

the innovation would not matter. For  ∈ (0 1), however, innovators’ revenues get
discounted if they collect the payoff of ideas indirectly, so fewer enter in Regime 2

than in Regime 1. Because the two regimes share the same diffusion process, industry

output is higher for all  under Regime 1 due to its larger entry of innovators at date

0.

Next, we obtain additional insights into how the diffusion rate  affects innovation.

Proposition 5 The effect of the diffusion rate  on innovation I0 and 
II
0 hinges on

the values of  and . Particularly,

• For inelastic demand   1,

I0  II0 decrease with  given that   1 ≥ 

• For unit elastic demand  = 1,
I0  II0 decrease with  when  = 1  

I0  II0 do not vary with  when  =  = 1

• For elastic demand   1,

I0

⎧⎨⎩ decreases with  if 0 ≤   1


I
0

(1−)+  1

increases with  if 1 ≥    +
I0

(1− )  0

and

II0

(
decreases with  if 0 ≤    +

II0

(1− )  1

increases with  if 1 ≥  
³
II0


´
(1− ) + 
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Proof. See Appendix A.5.

The findings of Proposition 5 are intuitive. There are two channels through which

diffusion affects innovation. One is the negative price effect, captured by  — the

faster the diffusion, the lower the revenue from selling the good. Another is the

positive idea-selling effect, captured by  — the faster the diffusion, the more idea-

selling revenue for the innovators. When demand is inelastic (  1), a faster inflow

of imitators would reduce the industry revenue stream, so the price effect dominates

and the innovators’ value at date 0 would drop even with the highest bargaining

share ( = 1). This is also true for the unit demand elasticity case when    = 1.

When demand is elastic (  1), a faster inflow of imitators would increase the

industry revenue stream. If  is sufficiently high compared with , the idea-selling

effect dominates, which raises the incentive to innovate. Otherwise, the price effect

dominates which dampens innovation.

3.2 Market equilibrium: Illustration and applications

The findings of our model help explain some industry observations and suggest policy

impacts.

Intellectual property rights The protection of intellectual property rights raises

innovation: Proposition 4 shows that more innovators enter in Regime 1 than in

Regime 2 and in each regime, the higher the compensation share , the more inno-

vators enter.

The findings can be visualized using an explicit example. Consider a unit demand

elasticity case where  = 1. We normalize  = 1 and assume  = . Equations (13)

and (14) can then be simplified as

2I0
(1 + )

=



 (18)

1− II0

II0
(2−)(−II0 )

µ³
1

II0

´2
−
³
1

II0

´¶
− 1

=



 (19)

Figure 2 plots the solutions of I0 and II0 . The solid lines stand for 
I
0 and the

dashed lines stand for II0 . Cases with different values of  are plotted in different

colors. The figure shows that both I0 and II0 increase in  and  but decrease in .

It also shows that, I0 = II0 for  ∈ {0 1}, and that I0  II0 for  ∈ (0 1) Moreover,
with the assumed parameter values, condition (15) stated in Proposition 3 can be

simplified as 


 2
1+
, which needs to hold for I0 and II0 to have interior solutions

(  = 1) as illustrated by the figure.
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Fig. 2. Entry of Innovators: Model Implications

Restricting entry of imitators Proposition 5 sheds light on the impact of imita-

tion on innovations, which has important bearings on industry policies. For example,

one may consider employee spin-offs as imitators, who copy their previous employ-

ers’ ideas but do not provide sufficient compensation.5 In this setting, the diffusion

parameter  in our model may reflect the enforcement of non-compete contracts —

the stricter the enforcement, the lower the .6 Klepper (2010), Samila and Sorenson

(2011) and Cabral, Wang, and Xu (2018) find that employee spin-offs lead to indus-

try clusters and that a ban on non-compete contracts is an important contributing

factor. According to Saxenian (1994), Gilson (1999) and Franco and Mitchell (2008),

because California bans non-compete contracts while Massachusetts enforces them,

Silicon Valley overtook Massachusetts’ Route 128 in developing high-tech industry.

Indeed, our model shows a mechanism that produces such an overtaking pattern.

Suppose that Route 128 and Silicon Valley each specialize in some high-tech sectors,

and the two locations face the same environment (i.e., same   and ) except

that, because California bans non-compete contracts,  is higher than in Massa-

chusetts where non-competes are enforced. Therefore, Route 128 would offer higher

5While our model does not include labor inputs in production, one may think of employees as

people who meet innovators and learn about their innovation. For example, they could work in the

same company but do not have to directly produce the new product.
6Non-compete contracts require that employees who leave incumbent firms may not conduct

business to compete against their previous employers for a period of time. Among others, Shi (2022)

analyzes the effects of non-compete contracts which in her model restrict the mobility of managers

and reduce welfare. In practice, the enforcement of non-compete contracts varies substantially across

the 50 U.S. states (See Bishara, 2011).
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incentives to innovators that result in a higher initial entry rate of firms (i.e., a higher

0) than Silicon Valley. Later on, Silicon Valley’s higher imitation rate would lead to

its overtaking Route 128.7

Fig. 3. Industry Overtaking: Data and Model

The left and right panels of Fig. 3 show the data from Saxenian (1994) and our

model simulation, respectively. In the simulation, we assume  = 1 and  = 0 in

both locations.8 Equations (13) and (14) then imply that 0 = I0 = II0 =


(+)
,

which together with (4) yields

 =


 +
(+)


− 1



We assume  = 3,  = 1000,  = 005, and plot  in two locations: One with a

high diffusion rate ( = 009), the other with a low one ( = 006). As a result,

the location with the lower  has more firms early on, but it gets overtaken by the

other location after about ten years. In the following welfare analysis, we will show

that a higher  also yields higher welfare in this simulation (cf. Proposition 10).

7Enforcing non-compete contracts may also increase the bargaining share  of innovators. If that

happens, the entry of initial innovators will be larger in the enforcing location and the timing of

overtaking will be postponed compared with the case where both locations have the same value of

.
8One could think in one location, non-compete contracts are banned so innovators do not receive

any compensation from their employee spin-offs. In another location, non-compete contracts are

strictly enforced and the bilateral negotiation to buy out those contracts is too costly for the parties

involved, so that spin-off entrants are largely blocked. As a result, both locations have  = 0 at

equilibrium but the diffusion speed  differs.
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4 Welfare analysis

We now study the welfare implications of the model. Consumers’ utility from con-

suming output  is the integral under the demand curve. For  ∈ (0 1), aggregate
utility at output  is

 () =

Z 

0

− =


1− 
1− (20)

For  ≥ 1 the above integral is infinite; to ensure consumer surplus is finite, we
put a maximum, −, on the willingness to pay. Let  () = min

¡
− −

¢
and define aggregate utility as  () =

R 
0
 ()  = 

³R 
0
−+

R 

−

´
where

¿ . Accordingly, for  = 1 we have

 () = (ln  + 1− ln ) (21)

and for   1, we have

 () =


 − 1
1− +



1− 
1− (22)

4.1 Planner’s problem

The social planner would like to maximize social welfare 0 given by

0 =

Z ∞

0

− () − 0 (23)

where  satisfies Eq. (4).

Proposition 6 (A) It is socially optimal to innovate only at date 0. (B) The socially

optimal number of innovators ∗0 solvesZ ∞

0

−(+)
µ


0

¶2


−
 | {z } = 

marginal social return to 0

(24)

(C) The socially optimal entry number of innovators is an interior solution (i.e.,

∗0  ) if and only if the following condition holds:

 
−

( + )
 (25)

Proof. See Appendix A.6.

The results of Proposition 6 are intuitive. As of date  ≥ 0, the social return to
innovation is

 =

Z ∞



−(−) () 
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and one can verify that the marginal social return  is strictly decreasing in

 . So if 
∗
0 is chosen so that 00 =  at date 0, thereafter    for

any   0. Hence, it is socially optimal to innovate only at date 0. And the condition

00 =  yields Eq. (24). Finally, the social welfare given by Eq. (23) is strictly

concave in 0, so for 
∗
0   to hold, one needs

0

0
|0=  0

which yields condition (25). This condition is satisfied whenever condition (15) holds.

In what follows we shall assume that condition (25) always holds.

Denote the socially optimal welfare by  ∗
0 . We have the following comparative-

static results.

Proposition 7 All else being equal,

(A) ∗0

⎧⎨⎩
increases with 

decreases with  and 

decreases with  if   1− ∗0
−∗0 .

(26)

(B)  ∗
0

½
increases with  and ,

decreases with  and .
(27)

Proof. See Appendix A.7.

Thus ∗0 and  ∗
0 both increase in market size  but decrease in innovation cost 

and interest rate . Moreover, ∗0 decreases with the diffusion rate  if the demand is
not too elastic, while  ∗

0 always increases with .

4.2 Three policy instruments

For a given level of , we now show that a planner can achieve ∗0 by choosing the
bargaining share of idea-sellers, , or by choosing an innovation subsidy (or tax) .

And if the planner could raise  by certain policies, we show that doing so would be

desirable.

Optimal bargaining share.– Denote the socially optimal bargaining shares for

Regimes 1 and 2 by I∗ and II∗. A comparison of Eqs. (13), (14) and (24) yields
the following result:

Proposition 8

0  I∗  II∗  1 (28)
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Proof. See Appendix A.8.

The findings of (28) hold because if I∗ = II∗ = 0, no innovator would internalize
knowledge spillovers they create for imitators, so fewer innovators enter than the

social optimum. On the other hand, if I∗ = II∗ = 1, innovators would not fully

internalize the congestion externality they impose on one another, so more innovators

enter than the social optimum. The congestion arises because an innovator’s meeting

rate



= (−) decreases with  while an imitators’ meeting rate



− = 
increases with .

9

Optimal innovation subsidy or tax.–Whenever  6= ∗ in each regime, the planner
can use a subsidy (or a tax if the subsidy is negative) to achieve the social optimum.

Denote the socially optimal subsidy for Regimes 1 and 2 by I∗ and II∗. We obtain
the following result:

Proposition 9 Social optimum implies I∗  II∗ for  ∈ (0 1), I∗ = II∗  0 for

 = 0, and I∗ = II∗  0 for  = 1

Proof. See Appendix A.9.

The intuition for Proposition 9 is as follows. Whenever  6= ∗ in each regime,
the number of innovators 0 differs from the social optimum ∗0, in which case offering
an innovation subsidy (i.e., ∗  0 whenever   ∗) or a tax (i.e., ∗  0 whenever
  ∗) to adjust the innovation cost  would help restore the social optimum. Recall
that when  ∈ {0 1}, Regimes 1 and 2 coincide. When  = 0, too fewer innovators

enter than the social optimum, so both regimes would need a positive subsidy to

reduce  to achieve ∗0. When  = 1, a negative subsidy (i.e., a tax) is needed.

Moreover, for  ∈ (0 1) according to Proposition 4(B), if a given pair of  and

(−I∗) lead to the social optimum ∗0 in Regime 1, the same parameter values would
result in a II0  ∗0 in Regime 2. Therefore, a higher subsidy (or a smaller tax) 

II∗

is needed for adjusting  to achieve ∗0 in Regime 2 given that 
II
0 decreases with  as

shown by Proposition 4(A).

Optimal diffusion rate.–Suppose that incumbents are not compensated by imita-

tors for spreading ideas, so that  = 0. From the social welfare point of view, should

the planner reduce the diffusion speed  (e.g., by restricting entry of imitators) to

enhance incentives for innovation?

9Assuming a Cobb-Douglas matching function, Hopenhayn and Shi (2020) show that the socially

optimal compensation share for innovators should be the innovators’ share in the matching function,

as in Hosios (1990). However, the same condition would not mechanically apply to our case where

we assume a quadratic matching function and solve for the full dynamic path in contrast to a steady

state equilibrium. In fact, it is easy to see when  is finite, the parallel to Hosios’ condition does not

hold. In the quadratic matching function, the shares of  and  −  are equal, which also happens

in the Cobb-Douglas case when  = 12. Yet as we show in this section, the socially optimal ∗

does not have to be 1/2, and it varies by regime and with other parameters in the model.
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Note that if  = 0, Proposition 5 shows that the entry of innovators decreases

with  for any   0. Therefore, a policy that reduces the diffusion rate  would

boost the entry of innovators. Such policy, however, does not necessarily increase

welfare. In fact, we prove the following result for the unit demand elasticity case

(i.e.,  = 1).

Proposition 10 For  = 0 and  = 1, social welfare always increases with the

diffusion rate  for Regimes 1 and 2.

Proof. See Appendix A.10.

Recall that Regimes 1 and 2 coincide when  = 0 as shown in Proposition 4. Note

that
0


=

0

0

0


+

0


 (29)

From Proposition 8, we know that  = 0 is below the socially optimal level ∗, so
0

0
 0. Proposition 5 shows that 0


 0 for  = 0, so 0

0

0


 0. However,

holding 0 fixed,
0


 0. Ultimately, Proposition 10 finds that the positive effect

of 0


(i.e., gains from knowledge spillovers) dominates the negative effect of 0

0

0


(i.e., disincentives to innovation). This finding suggests that in the numerical example

above (cf. Fig. 3), a higher value of  not only helps Silicon Valley overtake Route 128

in industry size, but also yields higher social welfare. In the simulation exercises in

Section 4.3 and empirical analysis in Section 5, we find that the result of Proposition

10 actually holds more generally for other values of  and .

4.3 Welfare analysis: Illustration and applications

We illustrate our welfare analysis with the following examples and applications.

Optimal compensation for idea sellers One can solve for ∗ ∈ (0 1) that yields
the social optimum. Consider an explicit example used in the above analysis, where

 = 1  = 1 and  = . In this example, Eq. (24) simplifies to

(1− ∗0)
2

1
∗0
− 1− ln 1

∗0

=



 (30)

In Regime 1 where imitators cannot resell the innovation, Eqs. (18) and (30) imply

that

I∗ =
2(1− ∗0 + ∗0 ln 

∗
0)

(1− ∗0)
2

− 1 (31)

Alternatively, in Regime 2 where imitators can resell ideas, Eqs. (19) and (30) imply

that II∗ solves
1

∗0
(2−)(1−∗0)

µ³
1
∗0

´2
−
³
1
∗0

´¶
− 1

=
1− ∗0

1
∗0
− 1− ln 1

∗0

 (32)
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Fig. 4. Properties of the Social Optimum

Figure 4 illustrates this example. Assuming () = 03, Fig. 4A plots the

relation between 0 and 0, given by Eq. (23).
10 The result shows that welfare

maximizes at ∗0 = 022. Note that Fig. 4A has the planner controlling 0 directly, so
 plays no role. Figure 4B shows that this welfare maximum can be implemented via

market equilibrium by either setting I∗ = 047 under Regime 1 or setting II∗ = 057
under Regime 2. Figures 4C and 4D extend the results to the full domain of ()

where ∗0 has an interior solution. Figure 4C plots the relation between 
∗
0 and ()

given by Eq. (30), and Fig. 4D traces out the relation between ∗0 and 
∗ that satisfies

Eqs. (31) or (32). The negative relation between two endogenous variables, ∗0 and
∗, is induced by changes in () – as () rises, so does ∗0 but 

∗ falls.11 For
a given value of ∗0 (or the corresponding ()), the value of 

I∗ is always smaller
than II∗.

Optimal innovation subsidy or tax Alternatively, if the planner does not control

, he could use an innovation subsidy if  is below ∗ or an innovation tax if   ∗.
Consider again the case where  = 1  = 1 and  = . In Fig. 5A, we plot Eq.

(30) using a black solid line and overlay it on Fig. 2 introduced in Section 3.2. Figure

10Equations (21) and (23) show that  and  are just scaling parameters and they do not affect

the maximization of 0, so without loss of generality we set  = 1 and  = 00001 for plotting Figs.

4A and 4B.
11Intuitively, a lower  or a higher  leads to a higher ∗0 at the social optimum, and because such

conditions also encourage entry of innovators at market equilibrium and exacerbate the congestion

externality, they would require a lower ∗ to achieve ∗0 (see Section 5.3.1 for more discussion of the
comparative statics for ∗).
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5A shows that for a given level of 

, ∗0 always exceeds the market equilibrium level

(i.e., I0 or 
II
0 ) when  = 0, but falls short when  = 1. Moreover, for any value of

 ∈ (0 1), the socially optimal entry ∗0 can be achieved by adding an appropriate
subsidy or tax to  In the figure, the difference between a market equilibrium path

(associated with a particular  and a regime) and the socially optimal path indicates

the amount of adjustment to 

(i.e., 

(−I∗) or


(−II∗)) needed to achieve each
socially optimal level of ∗0. Figure 5B plots the subsidy (scaled by the innovation
cost ) needed to achieve the social optimum. The figure shows that the scaled

subsidies, I∗ and II∗, both decrease in 

and , and can turn negative (i.e.,

become taxes) if 

or  becomes sufficiently large. Moreover, I∗ = II∗  0 (i.e., a

subsidy) for  = 0, I∗ = II∗  0 (i.e., a tax) for  = 1, and I∗  II∗ for 0    1.

Fig. 5. Socially Optimal Subsidy or Tax

Optimal diffusion rate Our model also sheds light on diffusion policies. Propo-

sition 10 shows that from the social welfare point of view, the planner may not want

to slow down the diffusion speed  (e.g., by restricting entry of imitators) even when

it could enhance incentives for innovation.

Figure 6 extends the discussion to other values of  for the unit elastic demand

case (i.e.,  = 1).12 The figure shows that in both Regimes 1 and 2, for any  in

the unit interval, a lower diffusion rate  raises the entry of innovators 0 but always

lowers social welfare 0. In fact, one can prove the result formally for Regime 1.

12For illustration, we assume  = 1, () = 03,  = 005 in the simulation, and we compare a

high  ( = 05) case versus a low  ( = 025) case.
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Proposition 11 For  = 1 and for any  ∈ [0 1], social welfare always increases
with the diffusion rate  in Regime 1.

Proof. See Appendix A.11.

Fig. 6. Effects of the Diffusion Rate 

This exercise suggests that the planner may not want to slow down diffusion by

lowering  even when I0 and 
II
0 are below ∗ Rather, the planner should address the

compensation to innovators (i.e., ) directly. This finding highlights the importance of

technology diffusion to welfare and lends support to public policies that accommodate

diffusion. In Section 5, we carry the analysis to empirical studies on the U.S. auto

and PC industries where demands are price elastic (i.e.,   1) and show this finding

continues to hold.13

5 Empirical applications

In this section, we apply our model to data. We consider two historically important

industries: automobile and personal computer, where idea diffusion played an impor-

tant role in the industries’ development.14 Using model calibration and counterfactual

exercises, we evaluate and quantify our theoretical predictions.

13Note that the finding does not rule out the possibility that policymakers can exploit the welfare

gain of temporarily restricting . For example, policymakers could promise to restrict  initially

to achieve the socially optimal entry of innovators ∗, and then free up the limitation. However,
such a policy is time-inconsistent and would be futile if market participants anticipate that ex post

policymakers cannot commit to that promise (Kydland and Prescott, 1977). Presumably policy

must apply more broadly, not just to one instance, but to future products and future instances of .
14E.g., Klepper (2010) documents how the spawning of employee spin-offs and entry by firms in

related industries drove the development of the automobile and the semiconductor industries.
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5.1 Parameter estimation

We first estimate the model parameters using auto and PC industry data. The data

comes from the following sources:

Auto.– Smith (1970) lists every make of passenger cars produced commercially

in the United States from 1895-1969. Smith’s list of car makes is used to derive the

number of auto firms each year. Thomas (1977) provides annual data of average car

price and output from 1900-1929.

PC.– Firm numbers are from Stavins (1995) and the Thomas Register of Ameri-

can Manufacturers, which include desktop and portable computers. Price and quan-

tity information is from the Information Technology Industry Data Book.

In addition, Williamson (2020) provides annual data of U.S. population, real GDP,

and the GDP deflator.

5.1.1 Auto Industry

The U.S. automobile industry started in 1890s and grew from a small infant industry

to a major sector of the economy in a few decades. Starting with 3 firms in 1895, the

number of auto producers exceeded 200 around 1910. A shakeout then followed when

a major process innovation, the assembly line, was introduced in the early 1910s. As

a result, the number of firms declined sharply while the industry output expanded

tremendously. Eventually, only 24 firms survived into 1930s. Figure 7 plots the

number of firms and output per firm in the U.S. auto industry from 1895-1929.

Our model describes the auto industry development well for the pre-shakeout

period (1895-1910). As shown in Fig. 7, during that period, the time path of firm

numbers followed an -shaped curve and the average output per firm stayed flat

which reflects firms’ production capacity constraint. To calibrate the model, we focus

on the pre-shakeout era. We assume the shakeout to be an unexpected shock in the

benchmark analysis, and we then extend the model to incorporate the shakeout as

an anticipated shock in Section 5.4.2.
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Fig. 7. Auto Firm Numbers and Output Per Firm
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Diffusion estimation We first use the data of firm numbers in the pre-shakeout

period, 1895-1910, to estimate the diffusion parameters. In doing so, we rewrite Eq.

(4) to estimate the diffusion process of  as follows:

ln


 − 
=  +  (33)

where  = ln 0
−0  and  = 15

We assume that the shakeout started after almost all the potential firms had

entered the industry. Accordingly, we set  = 210 and run the regression model.16

The result shows that

ln


 − 
= −413

(026)∗∗∗
+ 053
(003)∗∗∗

 (34)

and the standard errors are reported in the parentheses. The estimates of  and

 are both statistically significant at 1% level (noted by three stars), and adjusted

2 = 096 The fit of estimation is shown in Fig. 8. Based on the estimates of

diffusion parameters, we calibrate  = 053 and 0 = 331 (i.e., ln
0

−0 = −413).
For robustness checks, we also estimated the diffusion process using the matching

function (3) which allows differencing the data. The regression results, reported in

Appendix B.1, are consistent with the estimates above.

Demand estimation We then estimate the auto demand function using annual

data of real auto prices  (in 2012 price) and industry output  from 1900—1929.

Equation (1) suggests a simple log-log demand function:

ln() = −  ln()

To address potential endogeneity of the price variable, we use the output per

firm (lagged by a year) as an instrumental variable to estimate the demand elasticity

parameter  in a two-stage least-squares regression. Output per firm, while assumed

fixed in our theory, did grow over the long term in data due to technological progress.

As a result, it can serve as a valid supply shifter to trace out the demand curve.

The first-stage regression result (adj. 2 = 087) is given by

ln() = 1137
(014)∗∗∗

− 024
(002)∗∗∗

× ln(output per firm)−1

and the second-stage regression result (2 = 082) is

ln() = 4705
(275)∗∗∗

− 361
(029)∗∗∗

× ln() (35)

All the estimates are statistically significant at 1% level (noted by three stars). The

fit of estimation is shown in Fig. 8.

15Note that Eq. (4) implies 
− =




0
−1  which leads to Eq. (33).

16We try an alternative assumption for  in Section 5.4.1 as a robustness check.
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Fig. 8. Auto Diffusion and Demand Estimates

The IV estimation gives  = 361 and  = 4705. Because our model specifies an

inverse demand function (1) that implies

ln =
1


ln ̃− 1


ln 

this yields that  = 028 (i.e., 1

=  = 361) and ̃ = 45 737 (i.e., 1


ln ̃ = 4705).17

For robustness checks, we also re-ran the IV regressions by controlling changes

of population and per capita income over time, and the results are very similar (see

Appendix B.2). Cabral, Wang and Xu (2018) estimated the auto demand function

for the same sample period. They used a different instrumental variable, the share

of spin-off firms in the auto industry. The idea is that the founders of spin-off firms

are more experienced than de novo entrants, so spin-off firms tend to perform better

(Klepper, 2010). They show that their instrument variable performs well and the

estimated demand elasticity  = 339, which is very close to ours.

5.1.2 PC industry

The personal computer industry was developed 80 years later than the automobile

industry, but the industry evolution was not much different. Starting with two firms

in 1975, the number of PC producers exceeded 430 in 1992. A shakeout then started

when the number of firms fell sharply while the industry output continued to expand.

Figure 9 plots the number of firms and output per firm in U.S. PC industry from

1975-1999. Like in the auto industry case, our model describes the pre-shakeout

period (1975-1992) of the PC industry well. As shown in Fig. 9, during that period,

the time path of firm numbers followed an -shaped curve and the average output

per firm stayed flat.

17In the model, we normalize a firm’s output to 1, so  =  and the inverse demand function

is  = 
−
 . In the empirical analysis, we denote a firm’s output by , so  =  and the

corresponding inverse demand function becomes  = ̃
−
 .
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Fig. 9. PC Firm Numbers and Output Per Firm

Diffusion estimation We first use the data of firm numbers in the pre-shakeout

period, 1975-1992, to estimate the diffusion parameters. We assume the shakeout

started after almost all the potential PC firms had entered the industry. Accordingly,

we set  = 435 and run the following regression model (36).18 The result shows that

ln


 − 
= −549

(029)∗∗∗
+ 058
(003)∗∗∗

 (36)

with the standard errors reported in the parentheses. All the coefficient estimates

are statistically significant at 1% level, and adjusted 2 = 096 The fit of estimation

is shown in Fig. 10. Based on the estimates of diffusion parameters, we calibrate

 = 058 and 0 = 178 (i.e., ln
0

−0 = −549).
For robustness checks, we also estimated the diffusion process using the matching

function (3) which allows differencing the data. The regression results, reported in

Appendix B.3, are consistent with the estimates above.

Demand estimation We then estimate the PC demand function using annual

data of real PC prices  (in 2012 price) and industry output  from 1975-1992. As

before, in order to address potential endogeneity of the price variable, we use average

output per firm (lagged by a year) as an instrumental variable to estimate the demand

elasticity .

The first-stage regression result (adj. 2 = 023) is given by

ln() = 962
(050)∗∗∗

− 012
(005)∗∗

× ln(output per firm)−1

and the second-stage regression result (2 = 094) is

ln() = 13715
(1252)∗∗∗

− 1458
(149)∗∗∗

× ln() (37)

18We try an alternative assumption for  in Section 5.4.1 as a robustness check.
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Standard errors are reported in the parentheses, with two and three stars indicating

statistical significance at 5% and 1% levels, respectively. The fit of estimation is

shown in Fig. 10.

The IV estimation gives  = 1458 and  = 13715. This yields  = 007 (i.e.,
1

=  = 1458) and ̃ = 12 170 (i.e., 1


ln ̃ =  = 13715). For robustness checks,

we also re-ran the IV regressions by controlling changes of population and per capita

income over time, and the results are very similar (see Appendix B.4).

Fig. 10. PC Diffusion and Demand Estimates

5.2 Model calibration

To calibrate the model, we first pick values for  ,  and 0 from the diffusion

estimation for the auto and the PC industries, respectively. We then pick values

for  and  from the demand estimation. Note that in the model, a firm’s output

is normalized to 1 per period. While this does not affect the theoretical analysis,

we account for a firm’s production size in the empirical applications. In doing so,

we denote  a firm’s output and  the industry output, so  =  at date .

Accordingly, we revise Eqs. (13), (14) and (24) as follows by replacing  with ̃1−

(where ̃ and  are from the demand function estimation above):

Regime 1:
1

 − 0

Z ∞

0

−
µ



0
+ (1− )




− 1
¶
̃1−1−  = ; (38)

Regime 2:
1

 − 0

Z ∞

0

−
Ãµ



0

¶µ




¶1−
− 1
!
̃1−1−  = ; (39)

Social optimum:

Z ∞

0

−(+)
µ


0

¶2
̃1−−  = . (40)

In the auto case, a firm on average produced less than 1,000 cars a year up to

1910, and we calibrate  = 900 based on output per firm in 1910 and ̃1− = 6128
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(million). In the PC case, using output per firm in 1992, we calibrate  = 27 500 and

̃1− = 16363 (million).
We then set  = 005. The two remaining parameters are  and  Because we have

no direct information about them, we assume  = 0 to pin down  in the benchmark

analysis. Since Regimes 1 and 2 coincide when  = 0, one can use either Eq. (38)

or Eq. (39) to solve for . Table 1 summarizes the benchmark parameter values

calibrated for the auto and the PC industries. Because the values of ,  and  are

chosen by assumption, we will consider alternative values for them in Section 5.4 for

robustness checks.

Table 1. Model Parameterization

    0  ̃1−

Auto 0 005 210 053 331 028 6128

PC 0 005 435 058 178 007 16363

Figure 11 plots the calibrated model dynamics for the auto industry. The number

of firms  grows along a logistic curve. Meanwhile,  decreases while  increases

over time.19 The initial difference 0 − 0 equals the innovation cost Auto = $17373

million (in 2012 price). By 1910, the value of a producer  comes down to $274

million and the value of a future imitator rises to $250 million. Because almost all

the potential entrants  have entered the industry by then, the total value of firms

19101910 is very close to the present value of the industry revenue 19101910.
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Fig. 11. Model Calibration: Auto

19Because we assume  = 0 in the benchmark calibration, Regimes 1 and 2 coincide. The model-

implied time paths of  and  are consistent with the proof in Appendix A.1, which shows that 
decreases in  when  = 0 and  increases in  when   1. More broadly, for  ∈ (0 1), Regimes 1
and 2 do not coincide and the time paths of  and  may look differently between the two regimes.

For example, with certain parameter values,  in Regime 1 may initially increase and later decrease

in , but  in Regime 2 always decreases in . Regardless, no innovator would enter after date 0 in

either regime because the entry value of an innovator minus his option value of waiting to imitate

always decreases in , as shown in the proofs in Appendix A.1 and A.2.
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Figure 12 plots the calibration results for the PC industry. Again, the number of

firms  grows along a logistic curve, and  decreases while  increases over time.

The initial difference 0 − 0 equals the innovation cost PC = $ 986.87 million (in

2012 price). By 1992, the value of a producer  comes down to $214 billion and

the value of a future imitator rises to $197 billion. Because almost all the potential

entrants have entered the industry by then, the total value of firms 19921992 is very

close to the present value of the industry revenue 19921992.
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Fig. 12. Model Calibration: PC

5.3 Counterfactual analysis

Given the calibrated model parameter values, we then conduct counterfactual analysis

and evaluate welfare.

5.3.1 Optimal compensation for idea sellers

We first evaluate the effect of the compensation share  in Regimes 1 and 2, and

start with the auto industry. Given the innovation cost Auto derived from the model

calibration, we solve the equilibrium industry dynamics for each counterfactual value

of  ∈ (0 1]. Particularly, Eqs. (38) and (39) allow us to pin down the counterfactual
entry number of innovators 0 at date 0. Figure 13 shows that 0 strictly increases

with  for both Regimes 1 and 2 when 0    061 and Regime 1 has a higher

value of 0 than Regime 2 For  ≥ 061, the values of 0 in both regimes reaches the
corner solution 0 =  Equation (40) pins down the socially optimal entry number

of innovators ∗0 to be 0151, which can be achieved by choosing I∗Auto = 007 in
Regime 1 and II∗Auto = 0167 in Regime 2. The social optimum yields a social surplus
 ∗
0,Auto = $6445 billion (in 2012 price).
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Fig. 13. Effect of  : Auto

We then look into the PC industry. Given the innovation cost PC derived from

the model calibration, Eqs. (38) and (39) pin down the entry number of innovators 0
for each counterfactual value of  ∈ (0 1]. Figure 14 shows that 0 strictly increases
with  for both Regimes 1 and 2 when 0    042 and Regime 1 has a higher

value of 0 than Regime 2 For  ≥ 042, the values of 0 in both regimes reaches
the corner solution 0 =  The socially optimal entry number of innovators ∗0 is

0164, which can be achieved by choosing I∗PC = 0055 in Regime 1 and 
II∗
PC = 0135

in Regime 2. The social optimum yields a social surplus  ∗
0,PC = $7989 billion (in

2012 price).

Fig. 14. Effect of  : PC

Comparative statics for ∗.–Figure 15 plots comparative statics for the socially
optimal compensation share ∗ under Regimes 1 and 2 based on the auto calibration.
The results show the following:
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• ∗ increases with .–A higher  means a lower price elasticity, which leads

price to decline faster which discourages 0. This makes the congestion exter-

nality less of a concern, so ∗ rises.

• ∗ decreases with  (holding  fixed, when  is sufficiently large).–A higher 

implies a better imitation technology, so the planner would need less innovation

when  is sufficiently large and so ∗ falls.

• ∗ rises with  but falls with ̄ (≡ ̃1−).–A higher  or a lower ̄ discourages
0. This makes the congestion externality less of a concern, so 

∗ rises.

• ∗ rises with  (holding  =  fixed).–A higher  leads to faster price

decline which discourages 0. This, together with a larger pool of potential

adopters  , makes the congestion externality less of a concern, so ∗ rises.

• Comparison of Regimes 1 and 2 .–∗ is higher under Regime 2 than under
Regime 1, and the difference rises with , , ̄ and  .

Fig. 15. Comparative Statics for ∗ under Regimes 1 and 2

The comparative statics help explain the difference in ∗ between the auto and the
PC industries. Compared to the auto, the PC industry has a smaller  and a larger

 , and these two dominate the offsetting forces of the larger ̄ and larger  and

hence ∗PC  ∗Auto under each regime. Quantitatively, by comparing counterfactuals
that let one industry take on the other industry’s parameter values, we find that the

smaller  (i.e., the higher price elasticity) accounts most for the smaller ∗PC.
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5.3.2 Optimal innovation subsidy

Given  = 0, the entry of innovators is lower than the socially optimal level. Providing

innovators a subsidy , instead of setting a socially optimal ∗, can also help achieve
the social optimality.

Note that with the subsidy,  −  is the net entry cost for innovators. Figure 16

plots the effect of  on the entry of innovators 0 and welfare 0. The results show

that 0 increases with , and the social welfare peaks at ∗ = 061 for the auto

industry and ∗ = 062 for the PC industry.

Fig. 16. Effect of the Subsidy 

5.3.3 Optimal diffusion rate

We can similarly evaluate the effects of varying the diffusion rate  (holding  fixed).

Consider again the scenario where incumbents are not compensated by imitators, so

 = 0. Should the planner slow down the diffusion?

Fig. 17. Effect of the Diffusion Rate 
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Figure 17 shows that for both the auto and the PC industries, 0 decreases with 

while 0 increases with . Therefore, if the planner were to push down , the entry

of innovators 0 would increase but social welfare would decline. The intuition is that

while slowing down diffusion could encourage entry of innovators, it would forego too

much free learning and the welfare effect of the latter dominates.

5.4 Robustness checks

For robustness checks, we redo the above exercises with alternative assumptions on

  and . The results are consistent with our previous findings.

5.4.1 Pool of potential entrants

In the benchmark analysis, we assumed that the shakeout started after almost all the

potential firms had entered the industry. Alternatively, one could consider that the

shakeout started in the middle of the diffusion process, so there might be a larger

pool of potential entrants. For example, we may assume  = 1 000 (instead of 210)

for the auto case and  = 2 000 (instead of 425) for the PC case. In each case, we

then obtain a smaller  from the diffusion estimation. The new estimates imply

that it would take 30 years for each industry to reach 99% adoption rate among

potential producers had the shakeout not happened, doubling what is assumed in the

benchmark calibration.

We then re-do the calibration and counterfactual exercises with the alternative

 . Regarding the socially optimal compensation for idea sellers, we now find for the

auto case, I∗Auto = 0134 under Regime 1 or II∗Auto = 0309 under Regime 2, while

for the PC case, I∗PC = 0095 under Regime 1 or II∗PC = 0215 under Regime 2.

These estimates of ∗ are larger than those found in the benchmark analysis, due to
the larger  and smaller  and higher  from the re-calibrated models, which is

consistent with the prediction of our comparative-statics analysis (cf. Fig. 15). We

also find that the social optimum can be achieved by subsidizing 657 percent of the

innovation cost in the auto case, or 621 percent in the PC case.

5.4.2 Anticipated shakeout

Our model can also be extended to allow the shakeout being anticipated. Specifically,

we could assume that the industry expects a disruptive innovation to arrive at a

Poisson rate . This innovation would make obsolete existing technologies and drive

firm values to zero.20

20For example, an industry may expects a disruptive innovation (e.g., the assembly line in the

auto case) to arrive at a Poisson rate . This innovation would require an incumbent firm to incur a

big capital investment to produce a newly designed product at a large scale. When that innovation

does arrive, the new (and lower) equilibrium price can only support the capital investment made by

a few firms and the rest have to exit. As a result, the present value of an investing firm (net of its
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Accordingly, the value of an incumbent firm under Regime 2 satisfies

 =  +  ( − ) −  +





i.e.,

( + )  =  +  ( − ) +



 (41)

Note that   0 in Eq. (41) is equivalent to raising  to  +  in Eq. (10). Similarly,

we can revise the value function conditions for outsiders as well as for Regime 1 and

for the social planner’s problem. The original functional forms of our model hold,

except that  becomes  + 

Considering that the shakeout occurred in the 16th year for the auto industry and

in the 18th year for the PC industry, we take the average and calibrate  = 117 =

006. Accordingly, we set  +  = 005 + 006 = 011 and redo the model calibration

and counterfactual analysis.

Regarding the socially optimal compensation for idea sellers, we now find in the

auto case, I∗Auto = 0147 under Regime 1 or II∗Auto = 0296 under Regime 2, while

in the PC case, I∗PC = 0115 under Regime 1 or 
II∗
PC = 0235 under Regime 2. The

values of ∗ are larger than the benchmark analysis due to the higher discount + 

in spite of lower  implied by the re-calibrated models. We also find that the social

optimum can be achieved by subsidizing 592 percent of the innovation cost in the

auto case or 584 percent in the PC case.

5.4.3 Idea sellers’ bargaining share

We assumed  = 0 in the benchmark model calibration. For robustness checks, we

re-do the calibration for other values  ∈ (0 1]. The results are plotted in Fig. 18.

Fig. 18. Assumed  and Implied ∗

investment costs) is zero, and the value of an exiting firm is also zero.
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Note that the larger value  we assume in the calibration, the higher innovation

cost must be to rationalize the observations. But then, as Fig. 18 shows, the implied

rise in  means that ∗ rises, consistent with our comparative-statics analysis shown
in Fig. 15.

Moreover, Fig. 18 shows that ∗ ∈ (0 1) and that it crosses the 45-degree line. In
the range where ∗  , an innovation subsidy could help improve welfare; otherwise,

a tax would do so.

Finally, for all  ∈ [0 1], ∗ remains small in Regime 1 between 7%-12.6% for

the auto and between 5.6%-9.3% for the PC. In Regime 2, as the assumed  gets

larger, ∗ does increase quite a bit for both industries and the optimal ∗ for the PC
eventually exceeds that for the auto as the effect of  starts to dominate. However, to

the extent that Regime 2 applies naturally to scenarios of non-patented know-how, a

small value of assumed  is more realistic, which would also imply a small ∗. Note
that both autos and PCs appear to have highly elastic demand curves — we estimate

PC and Auto to be quite small. Imitator entry then drives prices down slowly, and

that encourages innovation, and raises the congestion externality that innovators face.

Then ∗Auto and 
∗
PC should both be low, especially 

∗
PC because PC demand is more

price elastic.

6 The  →∞ limit

In this section, we study a limiting version of our model as  → ∞ which yields a

constant growth of firm numbers. Because the limiting model does not incorporate the

congestion externality in the diffusion process, it implies that letting initial innovators

extract the entire rents (i.e.,  = 1) is socially optimal.

The special case where  →∞ does not fit the industry data well, but we present

it here because of its simplicity and because it relates to earlier models of competitive

innovation: Boldrin and Levine (2008) and Quah (2002) assume a simple diffusion

process



=  (42)

so that

 = 0
 (43)

The following proposition connects our model with theirs. We shall now characterize

the limiting model by letting  get large while at the same time reducing  so that

the logistic diffusion process (3) converges to the one in Eq. (42):

Proposition 12 Let  → 0 and  →∞ in such a way that  →   0 a constant.

The incumbents’ meeting rate then converges to a constant:




¯̄̄
→∞

→  for all

 ≥ 0
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Proof. See Appendix A.12.

Therefore, a constant growth of firm numbers can be seen as a limiting version

of the logistic diffusion studied in our model as  → ∞. In what follows we shall
assume that

   (44)

to ensure that social welfare derived from the innovation is bounded.

6.1 Equilibrium when  →∞
The following propositions characterize the equilibria for the limiting model.

Proposition 13 If condition (44) holds, in Regime 1 an innovator’s value at date 

is

 =


−
0 −

 + 
+


−
0

( + ) ( + ( − 1))
−(−1)

an imitator’s value is

 =


−
0

 + 
−

and an outsider’s value is

 = 0

Entry of innovators at date 0 is

I0 =

µ
( + ( − 1)+ )

 ( + ) ( + ( − 1))
¶ 1



 (45)

which is valid for  ≥ 1 or for all   0 if  = 0. No innovator enters after date 0.

Proof. See Appendix A.13.

Proposition 14 If condition (44) holds, in Regime 2 the value of a producer (inno-

vator or imitator) at date  is

 =


−
0 −

 + ( − )


and an outsider’s value is

 = 0

Entry of innovators at date 0 is

II0 =

µ


( + ( − ))

¶ 1


 (46)

which is valid for all   0. No innovator enters after date 0.
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Proof. See Appendix A.14.

Comparing the two regimes, we have the following findings.

Proposition 15

(A) I0 and II0

⎧⎨⎩ increase with  and ,

decrease with  and ,

decreases with  if   

(B) All parameters being equal across the two regimes,

I0
II0

=

½
1 for  ∈ {0 1}
 1 for  ∈ (0 1) 

Proof. See Appendix A.15.

Proposition 15 shows that the limiting model yields comparative statics for 0
consistent with our previous findings. However, the welfare implications can be quite

different, as shown in the following.

6.2 Welfare analysis when  →∞
Optimal compensation for idea sellers The limiting model implies that allowing

the original innovators to extract the entire rents from succeeding imitators would

yield the socially optimal incentive for innovation. This result holds for both Regimes

1 and 2. Formally, we assume that condition (44) holds and prove the following result:

Proposition 16 (A) It is socially optimal to innovate only at date 0. (B) The so-

cially optimal number of innovators is

∗0 =

µ


( + ( − 1))
¶ 1



 (47)

(C) Social optimum implies ∗ = 1 for both Regimes 1 and 2.

Proof. See Appendix A.16.

Why does the limiting model yield an optimal compensation share for idea sellers

different from our previous finding? The key is that in the model with logistic diffusion

there is a congestion externality that an innovator creates and ignores — He reduces the

meeting rate for other innovators. However, in the limiting model, the meeting rate

for an innovator is fixed (cf.



= ). Therefore, by considering a more realistic

logistic diffusion process, we not only fit the industry evolution pattern better but

also uncover novel implications of congestion externalities that take place during the

idea diffusion process.
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Optimal innovation subsidy Given that the optimal compensation for idea sellers

is ∗ = 1, the planner could offer an innovation subsidy ∗  0 to achieve the social
optimum whenever   1. With our solutions for I0, 

II
0 and 

∗
0 (cf. Propositions 13,

14 and 16), we prove the following result:

Proposition 17 Social optimum implies 0  I∗  II∗ for  ∈ (0 1), I∗ = II∗ =


+
 0 for  = 0, and I∗ = II∗ = 0 for  = 1

Proof. See Appendix A.17.

Note that the socially optimal subsidy never goes negative (i.e., becomes a tax),

which is in contrast to our finding with logistic diffusion. Again, this is because the

limiting model incorporates only knowledge spillovers but not the meeting congestion.

Optimal diffusion rate Parallel to the finite- case where we showed that the

planner does not want to reduce , here the planner does not want to reduce , as

shown in the following claim:

Proposition 18 For any values of  and  permitted by the limiting model, social

welfare increases with  for both Regimes 1 and 2.

Proof. See Appendix A.18.

7 Conclusion

We modeled an innovation and its diffusion in one industry and discussed policy and

welfare. Capacity constraints imply that licensing raises the revenues of innovators

and that licensing is also socially beneficial to a degree. We showed that the welfare

outcome depends on whether imitators can resell the innovation, and on how much

the innovators are compensated for transferring the innovation.

The socially optimal bargain allocation hinges on the diffusion process, particu-

larly the congestion externality in meetings between innovators and imitators. Our

analysis also showed that slowing down diffusion encourages innovation and raises

initial capacity, but that it lowers imitation so that capacity grows more slowly. We

argued that this may help explain why Silicon Valley overtook Route 128.

We calibrated the model to data for the U.S. automobile and personal computer

industries. Though starting nearly one century apart, the industries shared the basic

feature of an -shaped diffusion prior to the shakeout. Our empirical findings match

well the expansion of firm numbers prior to the shakeout in each industry and quantify

the theoretical predictions of the model.
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Appendix to “Idea Diffusion and Property Rights”

Boyan Jovanovic and Zhu Wang

A. Proofs.

A.1. Proof of Proposition 1

Proof. Solving the differential equations (7)-(9) directly is only feasible for special

cases, so we develop an alternative approach to prove Proposition 1. We then provide

a special-case example for which we solve the differential equations (7)-(9) directly

for a cross check.

(A) In Regime 1, imitators cannot resell ideas to other imitators. A potential

adopter can copy an idea from an imitator but the fee goes to the idea’s original

innovator. We first assume that at equilibrium, innovators only enter at date 0, so

the time path of firm numbers is determined by Eq. (4) that

 =


 + 
0
− 1 

We then check if any agent would want to deviate by entering as an innovator at a

date   0.

The entry of a measure-zero innovator at   0 would not change the industry

quantity and price through Eq. (4). Upon entry, the value of this innovator is

determined by two sources: One is that he will receive a fraction 1 of the total

industry revenues 
1−
 at each date  ≥  by selling goods; the other is that he

will get a chance 1 to collect idea-sale revenues from new imitators at each date

 ≥  (Note that  is the number of incumbent firms, including both innovators and

imitators, at his entry date ). At each date  ≥  , a fraction −


of firms in the

industry are imitators who enter between date  and date , so this new innovator

at his entry date  expects to have 1 chance to receive the discounted sum of

the fraction  ( − )  of the total industry revenues 
1−
 as idea-sale revenues

starting from date  .21

Therefore, the value of a new innovator at his entry date  , denoted by  , can

be written as

 =

Z ∞



−(−)
µ
1


+




(
 − 


)

¶


1−
  (48)

Note that the entry value of an innovator  varies by entry date  because the

number of existing firms  increases with  . Also, 

 is different from the value of an

21In Regime 1,  is an imitator’s date- present value of revenues from selling goods. It is not

feasible to characterize  by calculating the integral of  over time except for special cases (e.g.,

 = 1). Instead, we calculate the date- present value of imitators’ shares of industry revenues.
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existing innovator at date  who entered before  . In fact, an innovator who enters

at date 0 should have the value at date  :

0 =

Z ∞



−(−)
µ
1


+



0
(
 − 


)

¶


1−
  (49)

so   0 for any   0, and  = 0 for  = 0

Equation (4) implies that for any date  ≥  ,

 =
(−)

(−) + (

− 1)  (50)

and



=

(−)

 + ((−) − 1)  (51)

We can rewrite Eq. (48) as

 =

Z ∞



−(−)
µ
1− + 





¶


−
  (52)

Defining  = −  , Eq. (52) becomes

 =

Z ∞

0

−
µ
1− + 

+



¶


−
+ (53)

Note that Eqs. (50) and (51) imply that

+


=



 + ( − 1)  
−
+ =

Ã


 + (

− 1)

!−


which both decrease in  . In Eq. (53), because  increases in  ,
+


and 
−
+

decrease in  , and hence  decreases in  

Similarly, because an imitator can keep (1−) share of his output, the total value
of outsiders  ( − ) at date  equals the imitators’ share of the total discounted

industry revenues from date  and onward. Therefore, we have

 ( −  ) =

Z ∞



−(−)
µ
(1− )( − )



¶


1−
 

which implies

 =

Z ∞



−(−)
µ
(1− )( − )

( − )
)

¶


1−
  (54)

Inserting Eq. (51) into Eq. (54), we derive

 =

Z ∞



−(−)
Ã
(1− )

¡
(−) − 1¢

(−)

!


1−
  (55)
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Again, defining  = −  , Eq. (55) becomes

 =

Z ∞

0

−
Ã
(1− )

¡
 − 1¢



!


1−
+ (56)

Equation (56) yields that if  = 1,  is a constant that does not vary with  ; if

  1, 
1−
+ decreases with  so  decreases with  ; and if   1 

1−
+ increases

with  so  increases with  . Moreover, combining Eqs. (53) and (56), we have

 −  =

Z ∞

0

−
Ã
1− + 

+


− (1− )

¡
 − 1¢


+

!


−
+ (57)

Within the integral of Eq. (57), both terms

µ
1− + 

+

− (1−)(−1)

 +

¶
and 

−
+ decrease in   so  −  decreases with  . Therefore, given the free entry

condition 00−0 = , we have  −   for any   0, so no innovator would enter

the industry after date 0.

(B) Note that 0 = 00. Equations (49) and (54) yield that

0 − 0 =
1

 − 0

Z ∞

0

−
µ



0
+ (1− )




− 1
¶


1−
  (58)

The free entry condition 0 − 0 =  then pins down the entry of innovators 0 at

date 0, as shown by Eq. (13).

Full dynamic paths.– The proof above confirms that innovators only enter at

date 0, so the time path of firm numbers is given by Eq. (4). Following that, the full

dynamic paths of ,  and  for any  ≥ 0 can be derived. Besides, the time path
of  has been solved above (cf. Eq. (56)). Recall Eq. (7) that

 =  +





which yields that

 =

Z ∞



−(−) =
Z ∞



−(−)−  (59)

Because  increases in ,  declines in 

Consider a marginal innovator who enters at date  ≥ 0 From any date  ≥  ,

he collects − in each period  ≥  by selling goods, and collect a fraction
(−)


of the total industry revenues 1− from new entrants after date  by selling ideas.

Therefore, his value at date  is determined by

 = 

Z ∞



−(−)− +




Z ∞



−(−)(1− 


)1−  (60)
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Because  increases in  ,  declines in  .

Finally, Eq. (60) suggests that an innovator who entered at date 0 has value 
for any  ≥ 0 :

 = 0 = 

Z ∞



−(−)− +


0

Z ∞



−(−)(1− 


)1−  (61)

Equation (61) suggests that the time path of  depends on parameter values. For

example, it is easy to see  decreases in  when  = 0 or when  ≥ 1, and one can
also prove that  may initially increase and later decrease in  if  is close to 1,  is

close to zero, and  is large enough (A formal proof is available upon request).

A special-case example.– The differential equations (7)-(9) can be solved directly

when demand is unit elastic (i.e.,  = 1). We show the result is consistent with our

general solution above. Again, we start with the conjecture that at equilibrium no

agent would enter as an innovator after date 0, so the number of firms  evolve as

described by Eq. (4). To simplify the notation, we define  = 
0
− 1.

An imitator’s value  satisfies the ordinary differential equation (ODE) intro-

duced by Eq. (7):

 =  +



= (



 + 
)−1 +






The ODE has the unique bounded solution satisfying →∞ ∞ that

 =



+

−

( +)
 (62)

An innovator’s value  satisfies the ODE introduced by Eq. (8):

 =  +


0
 +





= (


 + 
)−1 +

(1 + )

( + )2

µ
1


+



( +)

¶
+






Solving the ODE and imposing  is bounded as →∞ yields

 =



+


¡
( +  + ) + 2

¢
( +)(2 + )

 (63)

Equation (63) implies that at date 0, we have

0 =



+

( + )

( +)
 (64)

and the value of being an innovator declines over time (i.e.,   0).
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The option value of being an outsider  satisfies the ODE introduced by Eq. (9):

 =  [(1− ) − ] +




=


 + 

∙
(1− )

µ



+

−

( +)

¶
− 

¸
+






The unique bounded solution for  is a constant:

 =  =
(1− )

2 +
 (65)

Note that if an agent deviates from the equilibrium and enters at date   0, he

would have a lower value than an innovator who entered at date 0 (i.e.,   0 )

because the latter would have a larger family of imitators to disseminate his idea and

collect idea-sale revenues. Therefore, the finding that − declines in  implies that
 −    at any date   0 so no agent would enter as an innovator after date 0.

At  = 0, given the free entry condition requires 0 − 0 = , Eqs. (64) and (65)

yield

 =
( +)−−

( + )


Since  = 
0
− 1, we derive the equilibrium entry of innovators at date 0, denoted by

I0 for Regime 1, to be

I0 =
( + )

( +)
 (66)

which is consistent with the general solution above, shown by Eq. (13) for  = 1

A.2. Proof of Proposition 2

Proof. (A) In Regime 2, all firms at date- share the same value  regardless of

their entry date or type. In this case, we can characterize the differential equations

(10)-(11) directly. We first conjecture that no agent would enter as an innovator after

date 0, so the time path of firm numbers is determined by Eq. (4) that

 =


 + 
0
− 1 

Then,  is determined by Eq. (10) that

 =  +  ( − ) +




⇒



− [ −  ( − )]  = − (67)
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Defining  = exp
¡R − [ −  ( − )] 

¢
, we can rewrite Eq. (67) as

()


= −

which yields the general solution

 = −1

Z
−+ −1 

where  is a constant of integration.

Given that  =


+ 
0
−1  we can solve :

 = exp

µZ
− [ −  ( − )] 

¶
= −

µ
 − 0

0
− + 1

¶−


Accordingly,

 = 
µ
 − 0

0
− + 1

¶ Z
−−

µ
 − 0

0
− + 1

¶−


+
µ
 − 0

0
− + 1

¶



which requires  = 0 given that  needs to be bounded as →∞. We then solve 
as follows:

 = 
µ
 − 0

0
− + 1

¶ Z
−−

µ
 − 0

0
− + 1

¶−


= 
µ
 − 0

0
− + 1

¶ Z ∞



−
µ
 − 0

0
− + 1

¶−


=

Z ∞



−(−)
Ã

−0
0

− + 1

−0
0

− + 1

!−


=

Z ∞



−(−)
Ã
1− 1− −(−)

0
−0 

 + 1

!−
 (68)

Defining  = −  we can rewrite Eq.(68) as

 =

Z ∞

0

−
Ã
1− 1− −

0
−0 

 + 1

!−
+

In the integral, both terms

µ
1− 1−−

0
−0 

+1

¶−
and + = 

−
+ decrease in .

Therefore,  decreases with .
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Next, we show −  decreases with . Recall that in Regime 2,  is determined

by Eq. (11) that

 =  ((1− ) − ) +





which, together with Eq. (10), implies that

 ( − )


= ( + )( − )− ( + ) (69)

Defining  ≡  − , we can rewrite Eq. (69) as




− ( + ) = −( + )

Define  = exp
R −( + ). We then have

()


= −( + )

which yields the general solution

 = −1

Z
−( + )+ −1 

where  is a constant of integration.

Given that  =


+ 
0
−1  we can solve  :

 = −
0

 − 0 + 0


Again,  needs to be bounded as →∞, so  = 0. We then have

 = −1

Z
−( + )

= 
 − 0 + 0



0

Z
−− 0

 − 0 + 0
( + )

= 
 − 0 + 0



0

Z ∞



−
0

 − 0 + 0
( + )

=

Z ∞



−(−)
Ã
1− (−) − 1

(−0
0
)− + (−)

!
( + ) (70)

Define  = − . We can rewrite Eq. (70) as

 =

Z ∞

0

−
Ã
1−  − 1

(−0
0
)− + 

!
(+ + +)
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Note that in the integral, both terms

µ
1− −1

(
−0
0

)−+

¶
and (+ + +)

decrease in , hence  =  −  strictly decreases with . Given the free entry

condition that 0 − 0 =  at date 0, we know  −    at any date   0 so no

agent would enter as an innovator after date 0.

(B) Equation (68) implies that

 =

Z ∞



−(−)
µ




¶



so that

0 =

Z ∞

0

−
µ


0

¶


−
  (71)

At date 0, the total industry discounted revenue,
R∞
0

−1−  is shared by the

two groups — the initial incumbents 0 and the outsiders  − 0. With the free entry

condition 0 −  = 0 we haveZ ∞

0

−1−  = 00 + 0 ( − 0) = 0 −  ( − 0)  (72)

Plugging Eq. (71) into Eq. (72) yields Eq. (14).

A.3. Proof of Proposition 3

Proof. In Regime 1, I0 is determined by Eq. (13) that

1

 − 0

Z ∞

0

−
µ



0
+ (1− )




− 1
¶


1−
  = 

Note that as 0 →  , we have  →  . So both the numerator and the denominator

of the left hand side of Eq. (13) goes to 0 as 0 →  . Applying L’Hôpital’s rule, the

left hand side converges to

lim
0→

R∞
0

−
³

0
+ (1− ) 


− 1
´


1−
 

 − 0

=

lim0→

R∞
0

−

⎧⎨⎩
³
−−20  − (1− )−2


0

´


1−


+
³

0
+ (1− ) 


− 1
´
(1− )

−



0

⎫⎬⎭ 

−1
= lim

0→

Z ∞

0

−
¡
+ (1− ) −

¢
− =

 + 

( + )
−

Proposition 4 shows that I0  0 Therefore, the model has an interior solution

I0   in Regime 1 iff  
(+)

(+)
−
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Similarly, II0 is determined by Eq. (14) that

1

 − 0

Z ∞

0

−
Ãµ



0

¶µ




¶1−
− 1
!


1−
  = 

As 0 →  , applying L’Hôpital’s rule, the left hand side of Eq. (14) converges to
+

(+)
− Proposition 4 shows that II0   0 Therefore, the model has an

interior solution II0   in Regime 2 iff  
(+)

(+)
−

A.4. Proof of Proposition 4

Proof. (A) We first prove that I0 increases with  and , but decreases with  and

. Rewrite Eq. (13) as

 =

Z ∞

0

− (; 0)−  = 0

where

 (; 0) =
1

 − 0

µ



0
+ (1− )




− 1
¶


1−
 

and

 =


 + 
0
− 1 

We verify that
 (;0)

0
 0, so that 

0
 0 Therefore,

I0


= − 

I0
 0;

I0


= − 

I0
 0 ;

I0


= − 

I0
 0;

I0


= − 

I0
 0

Similarly, with Eq. (14), we can prove that II0 increases with  and , but

decreases with  and .

(B) First, it is straightforward to verify Eqs. (13) and (14) are identical when

 ∈ {0 1}  so I0 = II0 

Second, for any  ∈ (0 1) and   0, we can apply the mean-value theorem and

derive µ


0

¶µ




¶1−
=

µ




¶µ


0

¶

=

µ




¶Ã
1 + 

µ

0

0

¶−1
( − 0)

0

!
where   

0
 0. Therefore,µ



0

¶µ




¶1−


µ




¶µ
1 + 

( − 0)

0

¶
= 



0
+ (1− )




 (73)
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Given that I0 and I satisfy Eq. (13) thatZ ∞

0

−
1

 − I0

µ



I0
+ (1− )



I
− 1
¶
(I )

1− = 

the same I0 and I would not satisfy Eq. (14). Instead,Z ∞

0

−
1

 − I0

Ãµ


I0

¶µ


I

¶1−
− 1
!
(I )

1−   (74)

given the inequality (73).

The left-hand side of Eq. (14) can be written as

 =

Z ∞

0

− (; 0)

where

 (; 0) =
1

 − 0

Ãµ


0

¶µ




¶1−
− 1
!


1−
 

and

 =


 + 
0
− 1 

We verify that
 (;0)

0
 0, so that 

0
 0. Therefore, the solution II0 that satisfies

(14) has to satisfy II0  I0

A.5. Proof of Proposition 5

Proof. (i) We first prove the results for Regime 1. Rewrite Eq. (13) as

 =

Z ∞

0

− (; )− 

1− = 0

where

 (; ) =
1

( − 0)

µ



0
− 1 + (1− )

µ
1 + (



0
− 1)−

¶¶µ
1 + (



0
− 1)−

¶−1


Note that

 (; )


∝
⎧⎨⎩ − (1− )

³
1 + (

0
− 1)−

´
−
³

0
− 1 + (1− )

³
1 + (

0
− 1)−

´´
( − 1)

⎫⎬⎭ 

48



Therefore, for  ≥ 1, we have   0 (except  = 0 when  =  = 1)

Recall that 0  0 from the proof of Proposition 4, so we derive

I0


= − 

I0
 0 (except

I0


= 0 when  =  = 1)

In contrast, for   1

 (; )


 0⇐⇒ (1− )

µ
1 + (



0
− 1)−

¶
 (



0
− 1)(1− )

which holds for any  ≥ 0 if

(1− )  (


0
− 1)(1− )⇐⇒  

1

0
(1− ) + 



Therefore, we have

I0


= − 

I0
 0 if  

1


I0
(1− ) + 



Similarly, for   1

 (; )


 0 ⇐⇒ (1− )

µ
1 + (



0
− 1)−

¶
  (



0
− 1)(1− )

which holds for any  ≥ 0 if

(1− )

µ


0

¶
  (



0
− 1)(1− )⇐⇒    +

0


(1− )

Therefore, we have

I0


= − 

I0
 0 if    +

I0

(1− )

(ii) We now prove the results for Regime 2. Rewrite Eq. (14) as

 =

Z ∞

0

− (; )− 

1− = 0

where

 (; ) =

Ãµ


0

¶µ
1 + (



0
− 1)−

¶1−
− 1
!µ

1 + (


0
− 1)−

¶−1
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Note that

 (; )


∝⎧⎪⎨⎪⎩

−
³

0

´
(1− )

³
1 + (

0
− 1)−

´1−
+

µ³

0

´ ³
1 + (

0
− 1)−

´1−
− 1
¶
(1− )

⎫⎪⎬⎪⎭ 

Therefore, for  ≥ 1, we have   0 (except  = 0 when  =  = 1)

Recall that 0  0 from the proof of Proposition 4 so we derive

II0


= − 

II0
 0 (except

II0


= 0 when  =  = 1)

In contrast, for   1

 (; )


 0⇐⇒

µ


0

¶µ
1 + (



0
− 1)−

¶1−
(− )  (1− )

which holds for any  ≥ 0 ifµ


0

¶
(− )  (1− )⇐⇒  

0


(1− ) + 

Therefore, we have

II0


= − 

II0
 0 if  

II0

(1− ) + 

Similarly, for   1

 (; )


 0⇐⇒

µ


0

¶µ
1 + (



0
− 1)−

¶1−
(− )  (1− )

which holds for any  ≥ 0 if

µ


0

¶

(− )  (1− )⇐⇒  

µ
0



¶

(1− ) + 

Therefore, we have

II0


= − 

II0
 0 if  

µ
II0


¶

(1− ) + 
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A.6. Proof of Proposition 6

Proof. (A) Consider the case   1 first. For any date  ≥ 0, if no further innovators
enter, the number of firms at dates  ≥  is

 =
(−)

(−) + 

− 1 for  ≥   (75)

As of date  , the social return to innovation is

 =

Z ∞



−(−)


1− 

1−
  (76)

The current cost of innovation is  per unit, and its marginal social return (even if

no further innovations are made) is




=

Z ∞



−(−)−




 (77)

where



=

2(−)

( + ((−) − 1)  )2


which is strictly decreasing in  . And since  is increasing in ,

−(−)−





is also decreasing in  . Therefore



is also strictly decreasing in  and so if at

date zero 0 is chosen so that
0
0

= , thereafter 


 . Similarly, we can prove

the result holds for  ≥ 1. Hence, it is socially optimal to innovate only at date zero.
(B) Since it is socially optimal to innovate only at date zero, the planner should

choose ∗0 to maximize social welfare:

max
0

½Z ∞

0

− () − 0

¾
 (78)

subject to Eq. (4). We can verify that the objective function is strictly concave in

0, so the socially optimal number of innovators 
∗
0 is pinned down by the first-order

condition which is Eq. (24) for any   0

(C) Given that the social welfare function (78) is strictly concave in 0, for 
∗
0  

to hold, one needs

©R∞

0
− () − 0

ª
0

|0=  0

which yields condition (25).

51



A.7. Proof of Proposition 7

Proof. (A) Rewriting Eq. (24), we define

 =

Z ∞

0

−(+)


∗20

Ã


 + (
∗0
− 1)

!2−
−  = 0

It follows that
∗0


= − 

∗0
 0

Similarly, we can prove ∗0  0 and ∗0  0.
The sign of ∗0 depends on  and requires some discussions.




∝
Z ∞

0

−

⎧⎪⎨⎪⎩ (1− )
³
1 + (

∗0
− 1)−

´−2 ³
 + (

∗0
− 1)

´−1
(
∗0
− 1)−

−
³
1 + (

∗0
− 1)−

´−1 ³
 + (

∗0
− 1)

´−2


⎫⎪⎬⎪⎭ 

This implies 


 0 if  ≥ 1When   1, the sign of 


 0 if (1−)(
∗0
−1)  

A sufficient condition is that

(1− )(


∗0
− 1)  1

⇐⇒
  1− ∗0

 − ∗0


(B) Social planner’s problem (78) requires
∗

0

0
= 0. Applying the envelope theo-

rem, we have

 ∗
0


=

 ∗
0

0

0


+

 ∗
0


=

Z ∞

0

−
()


  0

for any   0. Similarly, we can prove  ∗
0   0,  ∗

0   0 and  ∗
0   0.

A.8. Proof of Proposition 8

Proof. Given that condition (25) holds, we have ∗0   . Proposition 6 shows that

the socially optimal innovation ∗0 satisfies Eq. (24) thatZ ∞

0

−(+)
µ


0

¶2


−
  = 
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When  = 0, condition (25) is equivalent to condition (15). We have I0 = II0  

and they satisfy Eq. (13) or Eq. (14) so thatZ ∞

0

−
1

 − 0

µ



− 1
¶


1−
  = 

⇐⇒ Z ∞

0

−(+)
µ
0



¶µ


0

¶2


−
  =  (79)

Note that the left hand side of Eq. (79) is smaller than the left hand side of Eq.

(24) given that 0


 1 for   0. Therefore, the solution I0 = II0 to Eq. (79) would

cause the left hand side of Eq. (24) greater than . Because the left hand side of (24)

decreases with 0, the value of 
∗
0 needs to be larger. Proposition 4(A) shows that

I0  0 and II0   0, which implies that I∗  0 and II∗  0.
When  = 1, if condition (15) holds, we have I0 = II0   and they satisfy Eq.

(13) or Eq. (14) so that Z ∞

0

−(+)
µ


0

¶2


−
  = 

⇐⇒ Z ∞

0

−(+)
µ
0


 − 0


+ 1

¶µ


0

¶2


−
  =  (80)

Note that the left hand side of Eq. (80) is greater than the left hand side of Eq. (24)

given that 0

− 0


+1  1 for   0. Therefore, the solution I0 = II0 to Eq. (80)

would cause the left hand side of (24) smaller than . Because the left hand side of

Eq. (24) decreases with 0, the value of 
∗
0 needs to be smaller. Proposition 4(A)

shows that I0  0 and II0   0, therefore I∗  1 and II∗  1. Note that
in case condition (15) does not hold when  = 1, we have I0 = II0 =  and a smaller

value of   1 is needed to achieve ∗0   .

Because Eqs. (13) and (14) are continuous functions, there exist 0  I∗  1

and 0  II∗  1 to achieve ∗0 in Regime 1 and 2, respectively. Proposition 4(B)
shows that for any given  ∈ (0 1), we have I0  II0 . Accordingly, if the bargaining

share I∗ leads to the social optimum I0 = ∗0 in Regime 1, the same bargaining share
would lead to a II0  ∗0 in Regime 2. This implies that a higher bargaining share
II∗  I∗ is needed to achieve ∗0 in Regime 2 given that 

II
0   0 as shown by

Proposition 4(A).

A.9. Proof of Proposition 9

Proof. In Regime 1, for a given value of , Eq. (13) yields the market equilibrium

entry of innovators I0. Proposition 8 suggests that whenever  6= I∗, the number of
innovators I0 from Eq. (13) differs from the social optimum ∗0, in which case offering
an innovation subsidy (or tax) to adjust the innovation cost  would help restore the

53



social optimum. This implies that ∗0 can be achieved by a subsidy (or a tax if the
subsidy is negative) I∗ as follows:

1

 − ∗0

Z ∞

0

−
µ



∗0
+ (1− )



∗
− 1
¶


∗1−
  = − I∗

The same logic applies to Regime 2 that

1

 − ∗0

Z ∞

0

−
Ãµ



∗0

¶µ


∗

¶1−
− 1
!


∗1−
  = − II∗

Recall that when  ∈ {0 1}, Regimes 1 and 2 coincide. When  = 0, both regimes

would need more entry of innovators, so a positive subsidy is needed to achieve that,

and when  = 1, a negative subsidy (tax) is needed. Moreover, for  ∈ (0 1)
according to Proposition 4(B), if a given pair of  and ( − I∗) lead to the social
optimum ∗0 in Regime 1, the same parameter values would result in a II0  ∗0 in
Regime 2. Therefore, a higher subsidy (or a smaller tax) II∗ is needed for adjusting
 to achieve ∗0 in Regime 2 given that 

II
0 decreases with  as shown by Proposition

4(A).

A.10. Proof of Proposition 10

Proof. This is a special case of Proposition 11 by taking  = 0, and Regimes 1 and

2 coincide in this case.

A.11. Proof of Proposition 11

Proof. With  = 1 under Regime 1, Eq. (13) can be simplified as

I0 =
( + )

( + )
 (81)

Given Eq. (81) and  = 1, social surplus is

0 = −(1− )

( + )
+

Z ∞

0

−
∙
− ln

µ
 +

( + )

( + )
− 1
¶¸

+constant.

This suggests that

0


=

(1− )

( + )2
+

Z ∞

0

−−
Z ∞

0

−

⎡⎣ + 2

(+)
− (+)2

(+)2

 +
(+)

(+)
− 1

⎤⎦ 
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We then verify that



⎡⎣ + 2

(+)
− (+)2

(+)2

 +
(+)

(+)
− 1

⎤⎦ 
∝

µ
(1− )

( + )

¶µ
 +

( + )

( + )
− 1
¶

−
µ
 +



( + )
− ( + )

( + )2

¶
( + )

 0

for any   0. Equation (81) implies that  
(+)

(+)
for I0 to be interior solution

(i.e., I0  ). Accordingly, given that  
(+)

(+)
, we have



Z ∞

0

−

⎡⎣ + 2

(+)
− (+)2

(+)2

 +
(+)

(+)
− 1

⎤⎦   

Z ∞

0

−
"
 + 

+
− 

(+)



#


Therefore,

0




(1− )

( + )2
+

Z ∞

0

−−

Z ∞

0

−
"
 + 

+
− 

(+)



#


=
(1− )

( + )2
− 

( + )

µ


 + 
− 

( + )

¶
=



( + )

µ
1

 + 
− 1

 + 

¶
≥ 0 for any  ∈ [0 1]

A.12. Proof of Proposition 12

Proof. Equations (3) and (4) imply that for given ,




=  ( − ) = (1− 

 + 
0
− 1) (82)

Given that the demand curve is downward slopping, 0 has to be finite as  → ∞;
otherwise 0 → 0, and no innovator would enter at date 0. Therefore, Eq. (82)

implies that




¯̄̄̄
→∞

→  (83)

i.e., the incumbents’ meeting rate converges to a constant.
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A.13. Proof of Proposition 13

Proof. Assume that condition (44) holds (i.e.,   ) so that social welfare derived

from the innovation is bounded. We start with the conjecture that no agent would

enter as an innovator after date 0, so firm numbers evolve as described by Eq. (43).

Given that an imitator cannot resell the idea, his only revenue comes from selling the

good, and his value  satisfies the ordinary differential equation (ODE):

 =  +



= (0

)− +



 (84)

The ODE has the unique bounded solution

 =


−
0

 + 
− (85)

which decreases at the rate .

An innovator receives revenues from selling both the good and the idea. The

number of ideas sold at  is  and the total date- revenue from these sales, 

is divided among the 0 innovators. Thus , the value of being an innovator at date

, follows the ODE:

 =  +


0
 +




= (0

)− +


−
0 (1−)

 + 
+




 (86)

Unless  = 0, innovators receive a fraction of revenues from idea sales, and we shall

need to restrict the elasticity of demand to be below unity which means  ≥ 1.

Imposing the boundary condition →∞ ∞ yields the unique solution to Eq. (86):

 =


−
0 −

 + 
+


−
0

( + ) ( + ( − 1))
−(−1) (87)

Recall that  denotes the option value of becoming a future imitator. At  = 0

the free entry condition requires 0 − 0 =  The pool of outsiders being infinite, an

outsider’s chance of meeting an incumbent is zero so that  = 0 for all , implying

that 0 =  Since  decreases over time, we verify the conjecture that no one would

pay  to become an innovator at any date   0. Note that if an agent deviates from

the equilibrium and enters at date   0, he would have a lower valuation than an

innovator who entered at date 0 (i.e.,   0 ) because the latter would have a larger

family of imitators to disseminate his idea and collect idea-sale revenues. Therefore,

the finding that  −  declines in  implies that  −    at any date   0.

Combining 0 =  with Eq. (87) yields

0 =


−
0

 + 
+


−
0

( + ) ( + ( − 1)) =  (88)
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Equation (88) then determines the entry of innovators at date 0 to be

I0 =

µ
( + ( − 1)+ )

 ( + ) ( + ( − 1))
¶ 1



 (89)

which is valid for  ≥ 1 or for all   0 if  = 0.

A.14. Proof of Proposition 14

Proof. Assume that condition (44) holds (i.e.,   ) so that social welfare derived

from the innovation is bounded. We conjecture that no agent would enter as an inno-

vator after date 0. Given that imitators can resell the innovation, all the incumbents

(be they innovators or imitators) share the same value . The revenue from an idea

sale is  and the total date- revenue from these sales, , is shared equally

among all the incumbents. Then  follows the ODE:

 =  +  +



= (0

)− +  +



 (90)

The general solution of Eq. (90) is

 =


−
0 −

 + − 
+

−
0 (−)

where  is a constant of integration. Given that   , the boundary condition

→∞ ∞ requires  = 0 and yields

 =


−
0 −

 + ( − )
 (91)

Equation (91) shows  decreases with . Also, because the pool of outsiders is

infinite, an outsider’s chance of meeting an incumbent is zero so that  = 0 for all

. Hence, we verify the conjecture that innovators only enter at  = 0. At  = 0 we

again have 0 = , thus

0 =


−
0

 + ( − )
=  (92)

Equation (92) then determines the entry of innovators at date 0 to be

II0 =

µ


( + ( − ))

¶ 1


 (93)
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A.15. Proof of Proposition 15

Proof. (A) It is straightforward to verify from Eqs. (89) and (93) that

I0  0 I0  0 I0  0 I0  0

II0   0 II0   0 II0   0 II0   0

Moreover, Eq. (89) shows I0  0 for  ≥ 1   or for any    = 0, and

I0 = 0 for  =  = 1. Equation (93) shows II0  S 0 if  T .

The effect of .–The effect of diffusion speed on innovation depends on  and

. Specifically, in Eq. (93), II0 falls with  if    because the effect of entry of

competitors on reducing  (summarized by ) exceeds the benefit (summarized by

) that incumbents derive from selling the idea. The effect of  on II0 turns positive

if   , and it vanishes if  = . In Regime 1 where imitators cannot resell ideas

(cf. Eq. (89)), I0 falls with  for  ≥ 1   or for any    = 0, and the effect of

 on I0 vanishes when  =  = 1

(B) Equations (89) and (93) imply thatµ
I0
II0

¶

= 1 +
 (1− )2

( + ) ( + ( − 1)) =
½
1 for  ∈ {0 1}
 1 for  ∈ (0 1)  (94)

A.16. Proof of Proposition 16.

Proof. Recall that the planner would like to maximize social welfare

0 =

Z ∞

0

− () − 0

where

 () =

⎧⎪⎨⎪⎩

1−

1−
 if  ∈ (0 1) 

(ln  + 1− ln ) if  = 1

1−

1−
 + 

−1
1− if   1

and

 = 0


We assume that condition (44) holds (i.e.,   ) so that social welfare0 is bounded.

(A) Consider the case   1 first. For any date  ≥ 0, if no further innovators
enter, the number of firms at dates  ≥  is

 =  
(−) for  ≥  

As of date  , the planner’s return to innovation is

 =

Z ∞



−(−)


1− 

1−
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The current cost of innovation is  per unit, and its marginal social return (even if

no further innovations are made) is




=

Z ∞



−(−)−




 =

Z ∞



−(−)(−)−  (95)

Define  = −  , we can rewrite Eq. (95) as




=

Z ∞

0

−(−)−+ =

Z ∞

0

−(−)
¡



¢−



which is strictly decreasing in   Therefore, if at date zero 0 is chosen so that
0
0

= , thereafter 


 . Similarly, we can prove the result holds for  ≥ 1.

Hence, it is socially optimal to innovate only at date 0.

(B) The social planner chooses 0 to maximize social welfare:

0 =

Z ∞

0

− () − 0

We verify that the social welfare function is strictly concave in 0, so the first-order

condition yields the socially optimal number of innovators ∗0 :

∗0 =

µ


( + ( − 1))
¶ 1



 (96)

(C) Comparing (96) to the expressions in Eqs. (89) and (93), ∗0 = I0 = II0 iff

 = 1.

A.17. Proof of Proposition 17.

Proof. Recall that the solutions for I0, 
II
0 and ∗0 are given by Propositions 13, 14

and 16, respectively. Given that the optimal compensation for idea sellers is ∗ = 1,
the planner could improve social welfare by offering an innovation subsidy  whenever

  1. Accordingly, the net entry cost of innovators becomes  − . Under Regime

1, Eqs. (89) and (96) pin down the optimal subsidy I∗ so that

 [ + ( − 1)+ ] = (− I∗) ( + ) 

which yields

I∗ =
(1− )

 + 
 (97)

Under Regime 2, Eqs. (93) and (96) pin down the optimal subsidy II∗ so that

 [ + ( − 1)] = (− II∗)[ + ( − )]
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which yields

II∗ =
(1− )

 + ( − )
 (98)

The result (97) and (98) suggest that in the limiting model, 0  I∗  II∗ for any
0    1; I∗ = II∗ = 0 for  = 1; and I∗ = II∗ = 

+
for  = 0.

A.18. Proof of Proposition 18

Proof. Recall that the solutions for I0 and II0 are given by Propositions 13 and 14,

respectively. According to Eqs. (89) and (93),

I0 =

µ
( + ( − 1)+ )

 ( + ) ( + ( − 1))
¶ 1



; II0 =

µ


( + ( − ))

¶ 1




In each regime, the number of firms grows at a constant rate  (i.e., I = I0
 and

II = II0 
). The planner would like to maximize social welfare

0 =

Z ∞

0

− () − 0

where

 () =

⎧⎪⎨⎪⎩

1−

1−
 if  ∈ (0 1) 

(ln  + 1− ln ) if  = 1

1−

1−
 + 

−1
1− if   1

We assume that condition (44) holds (i.e.,   ) so that social welfare0 is bounded.

Denote  I
0 and  II

0 as the social welfare under Regimes 1 and 2, respectively.

With free knowledge spillovers ( = 0), we have  I
0 = II

0 =0 where

0 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩


1
 
1− 1



µ
(+)

1− 1


(1−)(−(1−)) − ( + )
− 1


¶
if  ∈ (0 1) 



ln 

(+)
+ 

2
− 

(+)
+

(1−ln )


if  = 1


1
 1−

1


µ
(+)

1− 1


(1−)(−(1−)) − ( + )−
1


¶
+ 

(−1)
1− if   1

(99)

It is straightforward to show that for any   0 0


 0

This finding can be extended to any  ∈ (0 1], for which we have

 I
0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

N/A if  ∈ (0 1) 


ln
³
(+)

(+)

´
+ 

2
− (+)

(+)
+

(1−ln )


if  = 1


1
 
1− 1



⎛⎜⎝ 1
(1−)

³
(+(−1)+)

(+)

´ 1−


( + ( − 1))− 1


−
³

+(−1)+
(+)(+(−1))

´ 1


⎞⎟⎠
+ 

(−1)
1−

if   1

(100)
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 II
0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩


1
 
1− 1



µ
(+(−))1−

1


(1−)(−(1−)) − ( + ( − ))
− 1


¶
if  ∈ (0 1) 



ln 

(+(1−)) +

2
− 

+(1−) +


(1− ln ) if  = 1


1


1− 1



µ
(+(−))1−

1


(1−)(−(1−)) − ( + ( − ))
− 1


¶
+1−

(−1)

if   1

(101)

We then confirm from Eqs. (100) and (101) that
 I

0


 0 for  ≥ 1 and  II

0


 0 for

  0

B. Regressions.

B.1. Auto diffusion estimation: Robustness checks

For robustness checks, we estimate the matching function directly by rewriting

Eq. (3) into a discrete-time version:

 − −1
 − −1

= −1 (102)

Note that the left-hand side of Eq. (102) is the hazard rate of adopting the new

product. We set  = 210 and run the regression model (102) using auto firm number

data from 1895-1908. The result shows that

 − −1
 − −1

= 00028
(00004)∗∗∗

−1

and the standard error is reported in the parentheses. The estimate of  is statistically

significant at 1% level and adjusted 2 = 077 The estimate  = 00028 implies that

 = 059, which is similar to the estimate from Eq. (34).

We also redo the exercise by estimating an extended version of Eq. (102) that

 − −1
 − −1

=  + −1 (103)

proposed by Bass (1969). The Bass model allows the hazard rate of adoption to

be influenced by both the coefficient of innovation  and the coefficient of imitation

. In our context,  captures the hazard rate of entry by innovators independent of

incumbents while −1 captures the hazard rate of entry by imitators. The regression
result shows that

 − −1
 − −1

= −00292
(0069)

+ 0031
(0007)∗∗∗

−1

and the standard errors are reported in the parentheses. The estimate  = 00031

(which implies  = 064) is statistically significant at 1% level, but the estimate
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of  is not statistically significant, which is consistent with our theoretical prediction

that innovators only enter at the beginning of the industry.

B.2. Auto demand estimation: Robustness checks

For robustness checks, we estimate the auto industry demand function by control-

ling for changes of population and per capita income over time. In doing so, we use

annual data of auto prices  and output  from 1900—1929 to estimate a per capita

demand function:

ln(



) =  −  ln()

The dependent variable is auto demand per capita (where  is U.S. population at

year ), and we control for log U.S. GDP per capita (as a proxy for income) in the

demand intercept . Both auto price and GDP per capita are in real terms.

As before, to address potential endogeneity of the price variable, we use the output

per firm (lagged by a year) as an instrumental variable to estimate the demand

elasticity parameter  in a two-stage least-squares regression.

The first-stage regression result (adj. 2 = 089) is given by

ln() = 856
(109)∗∗∗

+ 166
(064)∗∗

× ln(


)− 029

(003)∗∗∗
× ln(output per firm)−1

and the second-stage regression result (2 = 083) is

ln(



) = 3237

(716)∗∗∗
+ 028
(210)

× ln(


)− 333

(038)∗∗∗
× ln()

Standard errors are reported in the parentheses, with three stars and two stars repre-

senting statistical significance at 1% and 5% level, respectively. The estimate  = 333

is highly statistically significant and the implied inverse demand elasticity  = 1

= 03

is similar to the estimate from Eq. (35).

B.3. PC diffusion estimation: Robustness checks

For robustness checks, we estimate the matching function (102) for the PC indus-

try:
 − −1
 − −1

= −1

We set  = 435 and run the regression using PC firm number data from 1975-1991.

The result shows that
 − −1
 − −1

= 000092
(000025)∗∗∗

−1

and the standard error is reported in the parentheses. The estimate of  is statistically

significant at 1% level and adjusted 2 = 044 The estimate  = 000092 implies

that  = 040.
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We also redo the exercise by estimating a more general version (cf. Eq. (103))

that
 − −1
 − −1

=  + −1

proposed by Bass (1969). In our context,  captures the hazard rate of entry by

innovators independent of incumbents, while −1 captures the hazard rate of entry
by imitators. The regression result shows that

 − −1
 − −1

= 004721
(008398)

+ 000078
(000036)∗

−1

and the standard errors are reported in the parentheses. The estimate  = 000078

(which implies  = 034) is statistically significant at 5.1% level, but the estimate

of  is not statistically significant, which is consistent with our theoretical prediction

that innovators only enter at the beginning of the industry.

B.4. PC demand estimation: Robustness checks

For robustness checks, we estimate the PC industry demand function by control-

ling for changes of population and per capita income over time. In doing so, we use

annual data of PC prices  and output  from 1975—1992 to estimate a per capita

demand function:

ln(



) =  −  ln()

The dependent variable is PC demand per capita (where  is U.S. population at

year ), and we control for log U.S. GDP per capita (as a proxy for income) in the

demand intercept . Both auto price and GDP per capita are in real terms.

As before, to address potential endogeneity of the price variable, we use the output

per firm (lagged by a year) as an instrumental variable to estimate the demand

elasticity parameter  in a two-stage least-squares regression.

The first-stage regression result (adj. 2 = 095) is given by

ln() = 1244
(023)∗∗∗

− 095
(006)∗∗∗

× ln(


)− 007

(001)∗∗∗
× ln(output per firm)−1

and the second-stage regression result (2 = 095) is

ln(



) = 14318

(2900)∗∗∗
− 290
(263)

× ln(


)− 1557

(240)∗∗∗
× ln()

Standard errors are reported in the parentheses, with three stars indicating statistical

significance at 1% level. The estimate  = 1557 is highly statistically significant and

the implied inverse demand elasticity  = 1

= 006 is similar to the estimate from

Eq. (37).
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