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Abstract

In this study, we develop a reliable decomposition method based on the
expectile RIF-regression, which is more efficient under the normality assump-
tion than the quantile RIF-regression. The proposed approach constitutes a
natural extension of the conventional Oaxaca-Blinder decomposition of means
over the entire distribution. It is illustrated to document the factors that con-
tributed to the level of income inequality in Egypt during the ten-year period
preceding the 2011 revolution. The empirical results show that young heads of
middle-income households in urban areas were more affected by the Egyptian
economic crisis, which may explain their leading position in Tahrir Square on
January 25, 2011.
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1 Introduction

In recent years, there has been a resurgence of interest in utilizing econometrics meth-
ods to fill knowledge gaps related to sources of the recent rapid rise in inequality. The
seminal Oaxaca-Blinder (OB) (Oaxaca 1973; Blinder 1973) decomposition method
decomposes differences in the mean outcomes between two groups into an explained
part associated with differences in observed characteristics and an unexplained part
attributable to the differences in the estimated regression coefficients. This latter
effect is generally considered as a measure of discrimination under certain conditions
in some empirical studies on inequality. However, despite its popularity, the mean
OB decomposition only provides a partial framework to describe inequalities in the
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different parts of the distribution of the outcome variable. For example, it fails when
the gap between groups varies differently along the entire distribution. Several alter-
natives based on the conditional quantile regression models have been developed to
overcome some of these limitations. However, in regression, conditional quantiles do
not average up to their unconditional population counterparts as conditional means
do in a classical linear regression model. Furthermore, all proposed resampling ex-
tensions involve, either several restrictive hypotheses or computational difficulties
that can be avoided to perform an aggregate quantile decomposition (Oaxaca and
Ransom 1994; Machado and Mata 2005; Melly 2005). A detailed quantile decompo-
sition in the same spirit of the conventional mean OB decomposition is based on the
RIF-regression (Firpo et al. 2009; Firpo et al. 2011). However, the RIF for quantile
has a bounded dichotomous structure, therefore, regressing it on a set of covariates
in a linear gaussian regression model is not appropriate to evaluate its conditional ex-
pectation. Moreover, the reweighing extension of Firpo et al. (2018) in a probability
RIF-regression model is restrictive because the two bounds are also decomposable.
Hence, going beyond the mean remains an econometric challenge to extending the
conventional mean OB decomposition to the whole distribution.

In this paper, we develop a decomposition method based on the expectile RIF-
regression. Introduced by Newey and Powell (1987), expectiles are reliable alterna-
tives to quantiles related to the mean in the same way as quantiles are related to the
median. Similarly to quantiles, a sequence of expectiles can describe the distribution
of a variable with the mean and few expectiles above and below it. In “expectiles are
quantiles”, Jones (1994) shows that an expectile for a given distribution corresponds
to a quantile for a related distribution. Similarly, Breckling and Chambers (1988)
argued that expectiles can be understood as a particular form of M-quantiles. In
regression, they could generalize the classical mean regression model. By employing
the RIF for expectiles, we may benefit from the property that the unconditional
expectation of the expectile RIF is the expectile itself. Furthermore, contrariwise
to quantiles, the RIF for expectile is continuous and does not depend on the distri-
bution of the outcome variable. Therefore, under appropriate regularity conditions,
the one-step OLS-estimation of the αth linear expectile RIF-regression coefficients
is consistent and more efficient than the two-steps estimation of the quantile RIF-
regression coefficients.

We illustrate the proposed approach to document the factors that contributed
to the level of income distribution inequality in Egypt during the ten-year period
preceding the 2011 revolution. The empirical results demonstrate that the differences
in income from 1999 to 2010 are mainly due to the return effects at each level
of expectiles. The returns to higher education decreased in the upper part of the
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distribution and was accompanied by a positive difference in the marginal effects of
age and an increasing return effect of rural. These findings demonstrate that the
young educated heads of household living in urban areas being the most heavily
affected by the Egyptian’s economic crisis, explaining their frustration and justifying
their leading position in Tahrir Square on January, 2011.

The paper is organized as follows. Section 2 provides a remind of the different
decomposition methods based on RIF-regression. Section 3 describes the proposed
decomposition approach. Section 4 illustrates our approach to analyze income in-
equality in Egypt between 1999 and 2010. Section 5 concludes the paper.

2 Notations and Background

Let y be a vector of n real-valued dependent variables characterized by a c.d.f Fy.
We denote by ν(Fy)

1 the distributional statistics of Fy, X the (n×K) matrix of inde-
pendent regressors and (y,X) the sample of the independent realizations of (y,X).
The Influence Function (IF) of ν(Fy) is a widely used concept in robust statistics
introduced by Hampel (1974) to describe the influence of an infinitesimal change in
the distribution of X on ν(Fy). It is defined as :

limε→0

ν(Fy,ε.Gy)− ν(Fy)

ε
=
∂ν(Fy,ε.∆y)

∂ε
|ε=0 =

∫
R

IFν . d (Gy − Fy) (1)

where Fy,ε.Gy = (1− ε)Fy + εGy (see also Firpo et al. 2009). The RIF for ν is defined
as RIFν = ν + IFν with the property E

(
RIFν(Fy)

)
= ν. The linear RIF-regression

consists of regressing RIFν on X, RIFν = Xβ + u where u is the error term with a
null conditional expectation given X and β the vector of parameters which can be
consistently estimated by OLS. By the law of iterated expectation, we may derive the
convenient property that the unconditional distributional statistics of y average up
to the unconditional mean of X, ν =

∑K
k=1 Xkβ̂k. From this latter, the differences of

the given distributional statistics between two groups A and B can be decomposed
into two components as:

νA − νB =
K∑
k=1

(
XAk −XBk

)
β̂Bk +

K∑
k=1

(
β̂Ak − β̂Bk

)
XAk. (2)

1ν(Fy) = E(y) for the expectation of y, ν(Fy) = qτ (Fy) for the τth quantile and ν(Fy) = eα(Fy)
for the αth expectile of F (y). We denote by ν the realization of ν(Fy) : ν = y for the unconditional
mean of y, ν = qτ for the empirical τth quantile and ν = eα for the empirical αth expectile.
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The first right-hand component is attributed to the explained part associated with
the difference in characteristics between the two groups given the structure of returns
in the second group. The second right-hand term corresponds to the difference in
returns to covariates given individual characteristics of the group of reference.

Since the the unconditional mean-RIF is y, RIFy = y then the decomposition
based on the mean RIF-regression corresponds to the conventional mean OB decom-
position. The RIF for the τth quantile developed by Firpo et al. (2009) is expressed
as RIFqτ = c1,τ1(y > qτ ) + c2,τ where c1τ = 1/fy(qτ ) and c2τ = qτ − (1 − τ)c1τ . A
linear τth quantile RIF-regression model would specify the conditional expectation of
RIFqτ (Fy) given X as Xβτ . However, such a model fails to impose the condition that
E
(
RIFqτ (Fy)|X

)
belongs to [c1τ , c1τ + c2τ ] which must hold only if X is constrained.

Therefore, regressing the RIFqτ on X in a linear gaussian regression model is not
appropriate to model its conditional expectation. Moreover, the reweighing exten-
sion of Firpo et al. (2018) in a probability regression model is restrictive because c1τ

and c2τ are also decomposable because they both depend on the probability density
function of y, fy.

In this paper, we extend the RIF-regression model for expectiles and perform a
decomposition method from which all expectiles are decomposed in the same way
as the mean is decomposed in the conventional OB decomposition method. More-
over, since the mean is the .5th expectile, we directly derive from our approach the
conventional mean OB decomposition.

3 Decomposition based on Expectile RIF-regression

Following the description of quantiles2, Newey and Powell (1987) characterized the
αth expectile eα as the solution of the minimization of the asymmetrically weighted
mean squared deviations criterion using a continuously differentiable weighted L2

loss function:
eα = arg min

ζ∈R
E [ρα (y − ζ)] (3)

where ρα(u) = u2 [α− 1(u < 0)]. From the first-order condition of (3), the αth
expectile eα can be expressed as the weighted average of random weights varying
according to the observations below it

eα = E

[
|α− 1(y < eα)|

E (|α− 1(y < eα)|)
y

]
.

2The τth quantile qτ of Koenker and Bassett (1978) is the minimizer of the least absolute
deviation qτ = arg minζ∈R E [φτ (y − ζ)] using a weighted L1 convex loss function ρτ defined as
ρτ (u) = u [τ − 1(u < 0)].
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3.1 Expectile RIF-regression

The αth expectile RIF-regression consists of regressing the RIFeα on the set of
covariates X. It can be described under the normality assumption as RIFeα =
E (RIFeα |X) + u where E (u|X) = 0. It allows to evaluate the effect3 of changes in
the distribution of X on the αth unconditional expectile, eα of the distribution of
the outcome variable y.

Theorem 1. The Influence Function for the αth expectile of the distribution of the
outcome variable, IFeα can be expressed as

IFeα = ψ (y)−
∫

R
ψ (y) dFy (4)

where ψ (.) is a bounded linear functional defined as

ψ (y) =
1− 2α

α
(y − eα)1(y < eα) + y. (5)

Lemma 1.1. The RIF for the αth expectile is given by RIFeα = ψ (y) in (5).

Contrariwise to the RIFqτ , the RIFeα is a linear functional independent of the
distribution of y. For the sake of decomposition, we consider a linear expectile RIF-
regression specified as RIFeα = Xβα + u, where each element of the error term
u is assumed to be normally, independently, and identically distributed, with zero
mean and a fixed variance. Under these assumptions, the one-step OLS-estimation
of the αth expectile RIF-regression coefficients given by β̂α = (X

′
X)−1X

′
RIFêα is

consistent and more efficient than the two-steps estimation of the quantile RIF-
regression coefficients.

3.2 Decomposition based on Expectile RIF-regression

Let the unconditional αth expectile of the outcome variable for a given group g be
the distributional statistics of Fyg and β̂α,g the OLS coefficients of the αth expectile-
RIF regression. From (2), the difference of the αth unconditional expectile of Fyg
between two groups A and B can be decomposed as:

eA,α − eB,α =
K∑
k=1

(
XAk −XBk

)
β̂α,Bk +

K∑
k=1

(
β̂α,Ak − β̂α,Bk

)
XAk. (6)

3The marginal effect of a continuous covariate x can be evaluated as :
∂E(RIFeα |X=x)

∂x .
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where the first right hand component denoted by ∆α,X is attributed to the “covariate
effect” while the second right hand term, ∆α,β is associated to the “return effect”.
Since RIFe0.5 = y the .5th expectile RIF-regression approach corresponds to the
conventional mean Oaxaca-Blinder decomposition method.

4 Income Inequality in Egypt (1999–2010)

The 2011 Egyptian revolution is one of the most widely discussed revolutions in re-
cent history. Although several social, political, and religious reasons have emerged as
causes of this revolution, factors such as lack of democracy, widespread government
corruption, and religious tensions were not the main triggers of the revolution. The
Egyptian revolution was a demonstration against the deterioration of living standards
and the state of the economy, which resulted in increased poverty, unemployment,
and increasingly unequal income distribution and disparity. Our empirical applica-
tion focuses on analyzing the temporal evolution of income over the 10-year period
preceding the 2011 revolution to explain a part of the income disparities between
different income groups that contributed to the Egyptian crisis.

4.1 Baseline Model

We consider the typical income equation:

RIF(eα, ln y) = β0α + β1αRural + β2αFem + β3αMarried + β4αHsize +

β5αAge + β6α (Age)2 + β7αLeduc + u, (7)

where y is the vector of equivalized4 real disposal income of households, Rural is
the place of residence (rural/urban), Fem is the gender, Age is the age and Leduc
corresponds to the level of education considered as dummies (i.e., primary, secondary,
post-secondary, university, postgraduate) and (β1α, β2α, β3α, β4α, β4α, β5α, β6α, β7α)′ is
a vector of the RIF-regression coefficients. The analysis covers the 10-years period
preceding the 2011 revolution (1999–2010). Bootstrap procedure is used to estimate
standard errors with 1000 replications.

4We use the OECD-modified scale that assigns a value of 1 to household head, of 0.5 to each
additional adult member and of 0.3 to each child. A correction for inflation was also implemented
so as to be able to compare living standards across the years.
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4.2 Data and Descriptive Statistics

The empirical analysis made use of data from the Egypt Household Income, Expen-
diture, and Consumption Survey (HIECS) for the years 1999 to 2010. The HIECS
provides information on the living standards of households and individuals as well
as the usual socio-demographic characteristics of individuals. These surveys, which
covered all governorates throughout Egypt, were conducted every two years to ac-
curately track changes in the living standards of Egyptian households and to define
average household and per-capita income from different sources.

The empirical expectiles of equivalized income have continuously increased over
the years preceding the 2011 revolution.

Descriptive Statistics 1999 2010
N. of observations 23975 7718
e.10 7.87 8.74
e.25 8.08 8.92
Mean 8.30 9.12
e.75 8.57 9.34
e.90 8.87 9.59
Median 8.24 9.07

7 8 9 10 11 12

0
.
0

0
.
4

0
.
8

2010
1999

The shapes of estimated log equivalized income densities remained relatively sta-
ble over the years 1999 to 2010.

Table 1 describes the evolution of certain characteristics of households. From
1999 to 2010, household characteristics such as family size, sex and marital status of
the head member did not vary greatly. However, the educational level of household
heads have slightly evolved over this period along with a general improvement in
the primary and secondary education levels. Moreover, the illiteracy rate has fallen
while the unemployment rate has risen monotonically.
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Table 1: Descriptive of the different explanatory variables

Characteristics of households
Years

Level of education
Years

1999 2010 1999 2010
Rural 40.03 53.54 Primary 8.41 12.31
Hsize 4.72 4.41 Secondary 18.41 25.34
Female 14.94 16.70 Psecondary 3.92 4.20
Married 79.81 79.41 University 14.56 11.71
Uempl 21.20 21.83 Pgraduate 0.88 0.80

5 Empirical Results

The decomposition results based on the expectile RIF-regression reported in Table 2
indicate a positive overall income gap from 1999 to 2010 in each part of the distribu-
tion. The covariate effects have a weak contribution on the temporal evolution of the
income except rural as also shown by the descriptive statistics presented in Table 1.
Therefore, the income inequality in Egypt during the ten-year period preceding the
2011 revolution was mainly due to the return effect5 in each part of the distribu-
tion. The estimated regression coefficients presented in Table 3 display the same
pattern across expectiles for both years. The household heads incomes were higher
in urban areas. However, the positive and monotonously increasing return effects of
rural across all expectiles show that there was an improvement in living conditions
in rural areas between 1999 and 2010 compared to urban areas. Consequently, the
rural population increased sharply from 1999 to 2010 as indicated by the covariate
effects.

The monotonous increase in the marginal effect of age between 1999 and 2010
across expectiles explains why young heads of household have more difficulty reaching
a certain level of income than older ones. As for the negative differences in the
marginal effects of household size, they reflect a decline in the standard of living of
large households above the 10th expectile.

The return to education increased on average from 1999 to 2010 for each level.
The difference in primary school returns was significant only in the lower part of
the distribution, which is in line with our expectations because policies to improve
primary education aim to increase the income of the lower part of the distribution.

5These return effects correspond to the difference in the estimated regression coefficients given
the characteristics in 2010.
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Table 2: Decomposition based on the Expectile-RIF regression

Level α
Below the Mean Mean Above the Mean
0.1 0.25 0.5 0.75 0.90

Return Effects
Total 0.8648∗∗∗

(0.0020)
0.8534∗∗∗

(0.0032)
0.8361∗∗∗

(0.0055)
0.8173∗∗∗

(0.0114)
0.7970∗∗∗

(0.0247)

Intercept 0.8407∗∗∗
(0.0127)

0.8194∗∗∗
(0.0238)

0.8216∗∗∗
(0.0454)

0.9108∗∗∗
(0.1050)

1.2236∗∗∗
(0.2532)

Rural 0.0133∗∗∗
(0.0022)

0.0258∗∗∗
(0.0036)

0.0397∗∗∗
(0.0062)

0.0411∗∗∗
(0.0116)

0.0043ns
(0.0233)

Female 0.0005ns
(0.0017)

−0.0004ns
(0.0031)

−0.0055ns
(0.0063)

−0.0230ns
(0.0152)

−0.0665∗
(0.0368)

Age 0.0250∗∗∗
(0.0074)

0.0474∗∗∗
(0.0126)

0.0800∗∗∗
(0.0221)

0.1120∗∗
(0.0445)

0.0894ns
(0.1018)

Hsize −0.0085ns
(0.0056)

−0.0212∗∗
(0.0085)

−0.0419∗∗∗
(0.0134)

−0.0675∗∗∗
(0.0245)

−0.0797∗
(0.0469)

Maried −0.0023ns
(0.0068)

−0.0064ns
(0.0136)

−0.0322ns
(0.0277)

−0.1103ns
(0.0682)

−0.3059∗
(0.1670)

Primary −0.0016∗∗
(0.0008)

−0.0027∗∗
(0.0013)

−0.0042∗∗
(0.0022)

−0.0064ns
(0.0041)

−0.0081ns
(0.0074)

Secondary −0.0014ns
(0.0013)

−0.0039∗
(0.0021)

−0.0071∗
(0.0036)

−0.0082ns
(0.0076)

−0.0036ns
(0.0148)

Psecondary 0.0001ns
(0.0003)

−0.00002ns
(0.0006)

−0.0002ns
(0.0012)

0.0005ns
(0.0024)

0.0011ns
(0.0052)

University −0.0009∗
(0.0006)

−0.0042∗∗∗
(0.0011)

−0.0129∗∗∗
(0.0026)

−0.0294∗∗∗
(0.0067)

−0.0551∗∗∗
(0.0163)

Pgraduate −0.0001ns
(0.0001)

−0.0003ns
(0.0002)

−0.0010ns
(0.0007)

−0.0021ns
(0.0020)

−0.0023ns
(0.0060)

Covariate Effects
Total −0.0014ns

(0.0010)
−0.0061∗∗∗

(0.0023)
−0.0180∗∗∗

(0.0046)
−0.0410∗∗∗

(0.0090)
−0.0762∗∗∗

(0.0159)

Rural −0.0084∗∗∗
(0.0005)

−0.0185∗∗∗
(0.0010)

−0.0356∗∗∗
(0.0019)

−0.0583∗∗∗
(0.0032)

−0.0815∗∗∗
(0.0045)

Female −0.0006∗∗∗
(0.0003)

−0.0013∗∗∗
(0.0003)

−0.0019∗∗∗
(0.0005)

−0.0031∗∗∗
(0.0011)

−0.0046∗∗
(0.0019)

Age −0.0001ns
(0.0001)

−0.0005ns
(0.0002)

−0.0010ns
(0.0007)

−0.0022ns
(0.0014)

−0.0043ns
(0.0029)

Hsize 0.0040∗∗∗
(0.0005)

0.0079∗∗∗
(0.0007)

0.0138∗∗∗
(0.0013)

0.0216∗∗∗
(0.0020)

0.0318∗∗∗
(0.0032)

Maried 0.0000ns
(0.0000)

0.0001ns
(0.0001)

0.0003ns
(0.0003)

0.0006ns
(0.0008)

0.0011ns
(0.0016)

Primary 0.0023∗∗∗
(0.0004)

0.0044∗∗∗
(0.0005)

0.0075∗∗∗
(0.0009)

0.0113∗∗∗
(0.0014)

0.0149∗∗∗
(0.0021)

Secondary 0.0048∗∗∗
(0.0004)

0.0101∗∗∗
(0.0009)

0.0187∗∗∗
(0.0016)

0.0308∗∗∗
(0.0026)

0.0449∗∗∗
(0.0042)

Psecondary 0.0002ns
(0.0002)

0.0005ns
(0.0004)

0.0009ns
(0.0009)

0.0015ns
(0.0015)

0.0022ns
(0.0021)

University −0.0036∗∗∗
(0.0005)

−0.0087∗∗∗
(0.0013)

−0.0198∗∗∗
(0.0030)

−0.0408∗∗∗
(0.0063)

−0.0759∗∗∗
(0.0117)

Pgraduate −0.0001ns
(0.0002)

−0.0004ns
(0.0006)

−0.0009ns
(0.0014)

−0.0023ns
(0.0035)

−0.0049ns
(0.0074)

Bootstrapped standard errors (1000 replications) are indicated in parentheses.
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Beyond the mean, only differences in college performance were significant. The
monotonic decline in its return effects shows a decrease in the earnings of higher
education in the upper part of the distribution between 1999 and 2010.

6 Conclusion

In this study, we develop a reliable decomposition method based on the expectile
RIF-regression, which constitutes a natural extension of the conventional Oaxaca-
Blinder decomposition of means to the entire distribution. The proposed expectile
RIF-regression is more efficient in close-to-Gaussian situations than the quantile
RIF-regression. It is illustrated to document the factors that contributed to the
level of income inequality in Egypt during the ten-year period preceding the 2011
revolution (1999–2010). The empirical results demonstrate that the overall gap in
income across expectiles was mainly due to the differences in returns to covariates,
while the differences in characteristics did not vary much expect rural. The returns
to university education decreased in the upper part of the distribution and was
accompanied by a positive difference in the marginal effects of age and an increasing
return effect in rural areas. These findings demonstrate that young heads of middle-
income households in urban areas were more affected by the Egyptian economic crisis,
which may explain their leading position in Tahrir Square on January 25, 2011.
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Appendix

Proof of Theorem 1 and Lemma 1.1

Proof of Theorem 1. Following Newey and Powell (1987), the αth expectile can be
determined by:

eα =
1− 2α

α

∫ eα

∞
(y − eα)dFy + E(y)

=

∫
R

[
1− 2α

α
(y − eα)1(y < eα) + y

]
dFy. (8)
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If we denote by ν(Fy) = eα and ψ (y) = 1−2α
α

(y − eα)1(y < eα) + y then the αth
expectile in (8) is a linear functional of F expressed as :

ν(Fy) =

∫
R
ψ (y) dFy.

Hence,

ν(Fy,ε.Gy)− ν(Fy) =

∫
R
ψ (y) dFy,ε.Gy −

∫
R
ψ (y) dFy.

The Von Mises (1947) linear expansion of the functional ν(Fy,ε.Gy) is given by

ν(Fy,ε.Gy) = ν(Fy) +

∫
R

[
ψ (y)−

∫
R
ψ (y) dFy

]
d
(
Fy,ε.Gy − Fy

)
+ o

[
δ(Fy,ε.Gy , Fy)

]
where o

[
δ(Fy,ε.Gy , Fy)

]
is the rest that tends to zero and δ(Fy,ε.Gy , Fy) is the distance

between Fy,ε.Gy and Fy.

ν(Fy,ε.Gy)− ν(Fy) =

∫
R

[
ψ (y)−

∫
R
ψ (y) dFy

]
d (εGy − εFy) + o

[
δ(Fy,ε.Gy , Fy)

]
=

∫
R

[
ψ (y)−

∫
R
ψ (y) dFy

]
εd(Gy − Fy) + o

[
δ(Fy,ε.Gy , Fy)

]
.

Therefore,

limε→0

ν(Fy,ε.Gy)− ν(Fy)

ε
=

∫
R

ψ (y)−
∫

R
ψ (y) dFy︸ ︷︷ ︸

IFν

 d(Gy − Fy).

Hence,

IFν = ψ (y)−
∫

R
ψ (y) dFy.

Proof of Lemma 1.1.

RIFν = ν + IFν

=

∫
R
ψ (y) dFy + ψ (y)−

∫
R
ψ (y) dFy(y)

= ψ (y)
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Table 3: Expectile-RIF regression estimates, 1999-2010

Level α
Below the Mean Mean Above the Mean
0.1 0.25 0.5 0.75 0.90

Expectile-RIF regression estimates, 1999
Intercept 8.2076∗∗∗

(0.0556)
8.2082∗∗∗

(0.0313)
8.3186∗∗∗

(0.01931)
8.5290∗∗∗

(0.0134)
8.8203∗∗∗

(0.0097)

Rural −0.5619∗∗∗
(0.0191)

−0.4117∗∗∗
(0.0107)

−0.2634∗∗∗
(0.00664)

−0.1440∗∗∗
(0.0046)

−0.0670∗∗∗
(0.0033)

Female −0.3085∗∗∗
(0.0439)

−0.1839∗∗∗
(0.0247)

−0.1065∗∗∗
(0.01524)

−0.0590∗∗∗
(0.0106)

−0.0289∗∗∗
(0.0076)

Age 0.0034∗∗∗
(0.0007)

0.0042∗∗∗
(0.0004)

0.0038∗∗∗
(0.00024)

0.0028∗∗∗
(0.0002)

0.0018∗∗∗
(0.0001)

Hsize −0.1172∗∗∗
(0.0043)

−0.0766∗∗∗
(0.0024)

−0.0444∗∗∗
(0.00149)

−0.0232∗∗∗
(0.0010)

−0.0114∗∗∗
(0.0007)

Maried −0.0472ns
(0.0395)

−0.0644∗∗∗
(0.0222)

−0.0656∗∗∗
(0.01371)

−0.0517∗∗∗
(0.0095)

−0.0303∗∗∗
(0.0069)

Primary 0.5260∗∗∗
(0.0329)

0.3366∗∗∗
(0.0185)

0.1920∗∗∗
(0.01141)

0.0966∗∗∗
(0.0079)

0.0424∗∗∗
(0.0057)

Secondary 0.6293∗∗∗
(0.0252)

0.4349∗∗∗
(0.0142)

0.2695∗∗∗
(0.00875)

0.1480∗∗∗
(0.0060)

0.0720∗∗∗
(0.0044)

Psecondary 0.7419∗∗∗
(0.0465)

0.5250∗∗∗
(0.0261)

0.3324∗∗∗
(0.01615)

0.1839∗∗∗
(0.0112)

0.0902∗∗∗
(0.0081)

University 1.1343∗∗∗
(0.0277)

0.9182∗∗∗
(0.0156)

0.6949∗∗∗
(0.00960)

0.4786∗∗∗
(0.0066)

0.2967∗∗∗
(0.0048)

Pgraduate 1.6558∗∗∗
(0.0940)

1.4631∗∗∗
(0.0529)

1.2432∗∗∗
(0.03264)

0.9879∗∗∗
(0.0226)

0.7084∗∗∗
(0.0164)

Expectile-RIF regression estimates, 2010
Intercept 8.8665∗∗∗

(0.1053)
8.9717∗∗∗

(0.0569)
9.1402∗∗∗

(0.0334)
9.3501∗∗∗

(0.0221)
9.5969∗∗∗

(0.0158)

Rural −0.3384∗∗∗
(0.0315)

−0.2670∗∗∗
(0.0170)

−0.1893∗∗∗
(0.0100)

−0.1184∗∗∗
(0.0066)

−0.0661∗∗∗
(0.0047)

Female −0.2834∗∗∗
(0.0826)

−0.1917∗∗∗
(0.0446)

−0.1392∗∗∗
(0.0262)

−0.1049∗∗∗
(0.0174)

−0.0732∗∗∗
(0.0124)

Age 0.0081∗∗∗
(0.0012)

0.0072∗∗∗
(0.0006)

0.0054∗∗∗
(0.0004)

0.0036∗∗∗
(0.0002)

0.0020∗∗∗
(0.0002)

Hsize −0.1346∗∗∗
(0.0080)

−0.0911∗∗∗
(0.0043)

−0.0539∗∗∗
(0.0025)

−0.0283∗∗∗
(0.0017)

−0.0134∗∗∗
(0.0012)

Maried −0.0732ns
(0.0777)

−0.0886∗∗∗
(0.0420)

−0.1062∗∗∗
(0.0247)

−0.0980∗∗∗
(0.0163)

−0.0731∗∗∗
(0.0117)

Primary 0.4107∗∗∗
(0.0493)

0.2716∗∗∗
(0.0266)

0.1581∗∗∗
(0.0156)

0.0793∗∗∗
(0.0104)

0.0351∗∗∗
(0.0074)

Secondary 0.5799∗∗∗
(0.0403)

0.3893∗∗∗
(0.0218)

0.2412∗∗∗
(0.0128)

0.1372∗∗∗
(0.0085)

0.0704∗∗∗
(0.0061)

Psecondary 0.7709∗∗∗
(0.0777)

0.5236∗∗∗
(0.0420)

0.3276∗∗∗
(0.0247)

0.1877∗∗∗
(0.0163)

0.0930∗∗∗
(0.0117)

University 1.0676∗∗∗
(0.0515)

0.8102∗∗∗
(0.0278)

0.5848∗∗∗
(0.0164)

0.3947∗∗∗
(0.0108)

0.2444∗∗∗
(0.0078)

Pgraduate 1.5571∗∗∗
(0.1691)

1.3331∗∗∗
(0.0914)

1.1174∗∗∗
(0.0537)

0.8989∗∗∗
(0.0355)

0.6760∗∗∗
(0.0254)
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