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Abstract

This paper studies how to incorporate observable factors in difference-in-differences

and documents its empirical relevance. We show that even under random assignment

directly adding factors with unit-specific loadings into the difference-in-differences es-

timation results in biased estimates. This bias, which we term the “bad time control

problem” arises when the treatment effect covaries with the factor variation. Applied

researchers partially control for the factor structure by using: (i) unit time trends, (ii)

pre-treatment covariates interacted with a time trend and (iii) group-time dummies. We

show that all these methods suffer from the bad time control problem and/or omitted

factor bias. We propose two solutions to the bad time control problem. To evaluate the

relevance of the factor structure we study US housing returns. Adding macroeconomic

factors shows that factors have additional explanatory power and estimated factor load-

ings differ systematically across geographic areas. This results in substantially altered

treatment effects.
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1 Introduction

Arguably, over the last decades with the adoption of quasi-experimental techniques iden-

tification in economics and finance has significantly improved. We have surveyed papers

in the American Economic Review and 12% of the published papers in 2015 and 2016 use

difference-in-differences for identification.1,2 The majority (71%) of these papers use the

two-way fixed effect (TWFE) estimator that only captures very restricted factor variation.

The TWFE estimator has also been extensively employed when studying variables that

have been documented to have a factor structure (e.g., stock returns and housing returns)

and it has been shown theoretically that its omission leads to biased estimates.3 This raises

a number of questions that this paper addresses. First, if factors are observable how should

they be included in the difference-in-differences framework? Second, applied researchers use

techniques that partially control for the factor structure (e.g., unit time trends), but are

these techniques sufficient and unbiased? Third, if we include a factor structure does this

alter the conclusions of the difference-in-differences analysis?

An intuitive way to control for the factor structure is to augment the TWFE by allowing

for unit specific loadings (λi) interacted with the factor realizations (Ft) in the difference-in-

differences estimation. We call this estimation technique the full-sample estimator. Despite

its intuitive appeal, we show that the full-sample estimator in general leads to biased esti-

mates of the average treatment effect on treated (ATT). Intuitively, if the true treatment

effect is time-varying (∆t), but a non-dynamic estimator is used and the true treatment

effect covaries with the factor realizations then the estimated factor loadings will capture

some of the treatment effect. The end result is biased estimates of factor loadings that

in turn result in a biased estimate of the ATT, and we term this bias as the “bad time

control problem.” The bad time control problem only depends on the covariance between

the treatment effect and the factor realizations implying that it exists even under random

assignment.

In fact, variants of the full sample estimator are commonly used. For example, it is

common to augment the TWFE estimator by introducing unit-specific time trends (we
1A summary of our survey is attached at the end of the paper.
2de Chaisemartin, and D’Haultfoeuille (2020) report that 19% of papers published in the AER in years

2010 to 2012 use two-way fixed effects regressions.
3Gobillon and Magnac (2016) show that in the presence of an omitted factor structure the two-way fixed

effect estimator is inconsistent.
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denote this UTT), which is in effect the full sample estimator where factor realizations are

replaced by a time trend. A related alternative is to interact pre-treatment covariates with

a time-trend (we denote this CTT - covariates time-trend), this restricts the unit-specific

loadings to a linear function of pre-treatment covariates. Since these two augmentations

are restricted versions of the full-sample estimator, they are susceptible to the bad time

control problem if a non-dynamic estimator is used. In our survey, six (five) out of 21

DiD papers use the UTT (CTT) estimators. However, only 18 out of 217 specifications

combine time-trends (unit and covariate) with a dynamic estimator.4,5 That implies for

the remaining specifications, if the true treatment effect covaries with trends the estimated

ATT’s are biased.

There are two simple methods of avoiding the bad time control problem. First, when

using the full-sample estimator (or variants thereof) if you estimate dynamic treatment ef-

fects then you are not subject to the bad time control problem since then time-variation in

treatment effects cannot not be captured by the estimated loadings. As an alternative to

using dynamic treatment effects, we propose a two-step procedure termed pre-treatment es-

timator. Initially, loadings are estimated using only pre-treatment sample and subsequently

factor variation (λ̂i ×Ft) is subtracted from the dependent variable before the difference-in-

difference regression is estimated. Since no treatment variation is used to estimate loadings,

the pre-treatment estimator is unbiased.

Another commonly used augmentation that controls for factor variation is to introduce

group-time dummies. Each group (Gr) is assigned a dummy (e.g., firms in the same in-

dustry) and then these dummies are interacted with dummies for time periods (Hs, which

could either represent single or multiple time periods). We call this control procedure the

dummy factor method. 7 out of 21 DiD papers in our survey use group-time dummies. It

reduces the bias from omitting the factor structure by removing the between group factor

variation. If the dummies aggregate over multiple periods (e.g., Hs, are five year periods)

then the dummy factor estimator suffers from the bad time control problem since it is possi-

ble that the dummy factor variation covaries with the treatment effect. Additionally, since
4For details see Appendices C and D. Dynamic treatment effects are most often used in event-strudy

graphs.
5Bailey and Goodman-Bacon (2015) interact pre-treatment covariates with a time trend while estimating

treatment effects for various event periods. Additionally, in Figures 3 and 4 in Currie, Davis, Greenstone and
Walker (2015) there are treatment effects estimated per period while factor variation is saturated using time
trends. Finally, columns 1-3 of Table 5 in Bøler, Moxnes and Ulltveit-Moe (2015) use dynamic treatment
effects and a unit time-trend.
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it only uses within dummy group variation it also assigns treated observations different

weights than the TWFE estimator. Fortunately, the dummy factor always assigns positive

weights to all treated observations (unlike the TWFE in staggered treatment settings, see

de Chaisemartin and D’Haultfœuille, 2020, and Goodman-Bacon, 2021). Put differently,

dummy factors that are comprised of block of multiple periods suffer from the bad time

control problem, but it is much less severe than under the full sample estimator since all

treated observations still have positive weights.

To evaluate the importance of controlling for factor variation and the relative perfor-

mance of the different methods we study housing returns. There is extensive evidence that

they have been shown to exhibit a factor structure. For example, Cotter, Gabriel and Roll

(2014) document the explanatory ability of macroeconomic factors in the cross-section of

MSA (metropolitan statistical area) housing returns.6 We use county-level real estate price

data from the Federal Housing Finance Agency (FHFA) combined with the macroeconomic

factors founded in Cotter et al. (2014).

First, we examine the performance of the TWFE, full-sample and pre-treatment estima-

tors with randomly generated placebo interventions. Even with two-way clustered standard

errors we find that the TWFE rejects 50% more than expected if the true treatment ef-

fects are zero. The full-sample estimator rejects 100% more than expected. This suggests

that in our setting, controlling for factor variation using the full-sample estimator results in

worse performance than ignoring it. The pre-treatment estimator with optimally selected

economic factors rejects roughly as expected.

Second, we revisit the main difference-in-differences specifications of Favara and Imbs

(2015) and Zevelev (2021). In the case of Favara and Imbs (2015), introducing optimally

selected factors renders estimated treatment effects insignificant both when using the full

and pre-treatment estimators. We also considered all possible factor combinations. For the

full-sample estimator adding up to 3 factors implies that only 41.9% of estimated treatment

effects remain statistically significant. For the pre-treatment estimator adding up to 3

factors implies that only 53.3% of the treatment effects are still significant. In addition, we

show that the estimated state loadings differ systematically across U.S. regions.
6Further, arbitrage pricing theory (APT) models with macroeconomic factors have been used in Chan et

al. (1990), statistical factors (PCA) are employed by Titman and Warga (1986) while equity based factors
such as the Fama-French factors, momentum and liquidity have studied in the real estate context by Peterson
and Hsieh (1997), Hung and Glascock (2010) and Cannon and Cole (2010).
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Zevelev (2021) studies a Texas collateral reform. Given the importance of oil for Texas

he uses the full-sample estimator with the oil price as a factor. In addition he introduces

state time-trends. In the absence of factor controls the estimated treatment effect has the

opposite sign. This highlights the importance of using factors especially when treatment

controls are such diverse units as states. In most cases, introducing our economic factors

reduces estimated treatment effect, suggesting that economic factors are important controls.

One strength of Zevelev’s paper is that he analyses the treatment effect only considering

neighboring counties. In this case, the pre-treatment estimator with economic factors results

in treatment effects that are very similar to the full sample estimator of Zevelev (2021),

suggesting the importance of internal validity in research design. Overall, our empirical

replications highlight the importance of factor controls, but also suggest that factor controls

are not a substitute for strong internal validity.

This paper makes a number of contributions. First, we introduce the bad time control

problem that is a sibling of the bad control problem. Bad controls are controls that are

affected by treatment status while the bad time control problem arises due to a correlation

between the treatment effect value and controls (factors in our case). Second, we charac-

terize the bias of the full-sample estimator and commonly used augmentations of TWFE

estimators. Third, we show that for housing returns the TWFE estimator does not capture

sufficient factor variation, especially when interventions are at the state level and the sample

is comes from the entire United States.

The rest of the paper is organized as follows. Section 2 examines the related literature

while section 3 describes our theoretical results and Section 4 presents our simulations. Our

empirical evidence can be found in Section 5 and Section 6 concludes.

2 Related Literature

We contribute to the growing literature that studies methodological choices of economics

and finance researchers. For example, Bertrand et al. (2004) provide guidance how to treat

standard errors in difference-in-differences, while Karpoff and Wittry (2017) show that past

work using state level interventions on anti-takeover laws is not robust to controlling for

hisorical and institutional context as well as political economy.

In this paper, like Gobillon and Magnac (2016) we depart from parallel trends assump-
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tion due to an omitted factor structure and we use their result that the TWFE estimator

is inconsistent when the factor structure is omitted.7 However, our paper assumes that the

omitted factor is observable and explores the consequences of including it in the difference-

in-difference regression.

Caetano et al. (2022) study the performance of the TWFE estimator with time varying

covariates. Among other things, they show that TWFE estimator is biased if the covariates

are confounded with, rather than affected by, treatment. Essentially, they carefully extend

the bad control problem in multiple new dimensions while we extend the bad control problem

in the time dimension due to factor variation.

In an elegant paper, Callaway and Karami (2022) show that in an interactive fixed

effect setting (i.e., factor structure) GMM can estimate the ATT consistently under the

assumption that there exists covariates with time invariant effects. We do not focus on a

comprehensive solution in a general setting but more on the validity of currently widely-

used methods. Our proposed pre-treatment estimator, provides the researcher with an

easily implementable solutions when treatment effect covaries with the factor.

There is a burgeoning literature highlighting drawbacks of the two-way fixed effect es-

timator. Even under parallel trends this literature documents that the TWFE estimators

may assign wrong and even negative weights to treated observations. The intuition for

this is that with heterogeneous and staggered treatment already treated units may become

comparison units and resulting in very poor treatment effect estimates (de Chaisemartin

and d’Haultfoueille (2020), Borosyak, Jaravel and Spiess (2021), Goodman-Bacon (2021),

Sun and Abraham (2021)). The relevance of these issues for accounting and finance is

highlighted by the impressive survey contained in Baker et al. (2022).

3 Combining Factors with the DiD

In this section we describe the implications for inference using difference-in-difference when

the true data generating process has a linear factor structure. First, we characterize the bias

when the factor is omitted. Second, we establish that the full-sample estimator suffers from

the bad time control problem. Additionally, we characterize the degree to which commonly

used techniques such as unit time trends, covariate time trends, and dummy factors suffer
7Roth (2022) argues that the power of testing for parallel trends is often low implying that we may often

fail to reject even if trends are not parallel.
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from the bad time control problem. Finally, we provide two solutions to researchers that

want to control for time trends. First, we show that combining dynamic treatment effects

with the full-sample estimator eliminates a bad time control problem. Second, we propose

and prove that the two-step pre-treatment estimator results in unbiased estimation of both

the treatment effect and factor loadings.

Suppose the observed sample consists {Yit, Di, Pt, Ft} for N(N ≥ 2) (i = 1, . . . , N)

units across T (T ≥ 2) (t = 1, . . . , T ) periods. Yit is the observed outcome and Yit(0) and

Yit(1) are potential outcome if not treated and if treated, respectively. λi is r × 1 vector of

individual-specific unobserved loadings and Ft is r × 1 vector of observed time-specific

factors, where r is the number of factors8,9. Including covariates that are independent from

treatment would have made the notation significantly more complicated, but our results

would remain qualitatively unchanged10. Di is a binary treatment indicator such as Di = 1

if unit i is in the treatment group. Suppose treatment happens at time t∗ and Pt is a binary

time indicator such as Pt = 1 if t ≥ t∗.

Assumption 1 (Random sampling). Observed sample consists of {Yit, Di, Pt, Ft}N, T
i=1,t=1

which are independent and identically distributed.

Assumption 2 (Conditional parallel trend). Conditional on factor structure, the parallel

trend assumption holds.

E [Yit(0) − Yis(0) − Yjt(0) + Yjs(0)|λi, λj , Ft, Fs, Di = d1, Dj = d2, Pt = p1, Ps = p2]

=E [Yit(0) − Yis(0) − Yjt(0) + Yjs(0)|λi, λj , Ft, Fs] ∀(d1, d2, p1, p2) ∈ {0, 1}4

Assumption 3 (Strict exogeneity). Potential outcomes are mean independent with factor

loadings and factor realizations assigned to other units and periods.

E [Yit(0)|λi, Ft] = E [Yit(0)| λ,F ]

E [Yit(1)|λi, Ft] = E [Yit(1)| λ,F ]
8For simplicity we consider a single factor, but all of our results can be generalized into a multi-factor

setting.
9Note that a time fixed effects can be represented as a factor that all units have identical loadings to.

Symmetrically, the unit fixed effect can be seen as time-invariant factor, but with unit specific loadings.
10Caetano et al. (2022) carefully studies the difference-in-differences estimator with covariates affected

with treatment status. Also see Roth et al. (2022) section 4.2 for a review.
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Assumption 4 (Bilinear factor structure). The conditional expectation of the potential

outcome if not treated is a bilinear function of λ and F .

E [Yit(0) − Yis(0) − Yjt(0) + Yjs(0)] = (λi − λj)′(Ft − Fs)

Assumption 5 (Stable unit treatment value assumption). Potential outcomes are inde-

pendent with the treatment assigned to other units and periods.

Yit(0), Yit(1) ⊥⊥ D−i,P−t

Assumption 6 (Stable loading and factor assumption). Factor loadings and factor real-

izations are independent with the treatment assigned to other units and periods.

λi ⊥⊥ D−i Ft ⊥⊥ P−t

Define ∆it = Yit(1) − Yit(0) as the unobserved true treatment effect for each unit and

period. The goal of Difference-in-Difference (DID) estimators is to measure the average

treatment effect on treated (ATT)

αATT = E[∆it|Di = 1, Pt = 1]

3.1 Two-Way Fixed Effect estimator

The classical Two-Way Fixed Effect (TWFE) estimator can be defined as,

(α̂TWFE, γ̂TWFE
i , η̂TWFE

t ) = argmin
α,γ,η

{ T∑
t=1

N∑
i=1

(Yi,t − γi − ηt − αDiPt)2
}

Proposition 1. Given an omitted linear factor structure, the Two-Way Fixed Effect esti-

mator estimates α̂TWFE as,

E[α̂TWFE] = αATT + (E[λi|Di = 1] − E[λi|Di = 0])(E[Ft|Pt = 1] − E[Ft|Pt = 0]). (1)

Proof See Appendix A.2.

Thus, the TWFE estimator is unbiased unless E[λi|Di = 1] − E[λi|Di = 0] = 0 or

E[Ft|Pt = 1] − E[Ft|Pt = 0] = 0. This expression is non-zero if loadings of treated and

control units are not equal and the factor exhibits time-series variation. This result is

equivalent to Eq. (21) in Gobillon and Magnac (2016).11 Given the construction of the
11They prove inconsistency of the difference-in-differences estimator even when the factor is deterministic.

For our purposes, we are going to treat the factor as a random variable (similar to (Bai, 2009) Bai, 2009)
since this corresponds closer to the economic setting we are interested in.
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counterfactual any level differences between treated and control and any level differences

between before and after treatment are controlled for, but the interaction of differences in the

two dimensions may affect identification. Given that the TWFE is generically biased there

are a number of estimators that can potentially control for the omitted factor structure.

3.2 Full-sample estimator

If our factors are observable we can simply introduce the factors and estimate unit loadings

which we refer to as the full-sample (FS) estimator,

(α̂FS, γ̂FS
i , η̂FS

t , λ̂FS
i ) = argmin

α,γ,η,λ

{ T∑
t=1

N∑
j=1

(Yi,t − γi − ηt − λiFt − αDiPt)2
}

where λi are unit specific loadings and Ft are observable factor realizations. In practice it

is straightforward to estimate unit specific loadings, one interacts unit dummies with the

time-series of factor realizations to allow for unit specific sensitivities to the factors.

Proposition 2. When the factor realizations are exogenously determined, the FS estimator

can be expressed as

E[α̂FS] = αATT + wF Scov(Ft,∆it|DiPt = 1).

where wF S = E

[
NTTP − 1
NTTP

· F pre − F

σ2
F + (F post − F )(F pre − F )

] (2)

Proof See Appendix A.3.

Proposition 2 illustrates that only in partcular circumstances will the full-sample estima-

tor uncover the true ATT. It will be unbiased if there is no difference in factor realizations

between the pre and post treatment periods (E[Ft|Pt = 0] − E[Ft|Pt = 1]) or the factor

realizations do not covary with the treatment effect (Cov(Ft,∆it|DiPt = 1) = 0).

Corollary 1. If the treatment effect is time invariant (∀t, ∆it = ∆i) then the full-sample

estimator is unbiased since Cov(Ft,∆i|DiPt = 1) = 0

Corollary 1 implies that treatment heterogeneity across units does not result in bias.

The bias is driven by the covariance in the time dimension.

Corollary 2. The bias of the full-sample estimator is independent of the unit loadings (λi)
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One implication of Corollary 2 is that the full-sample estimator may be more biased

than the classical TWFE estimator. The intuition is that if the loadings of treated and

control units are sufficiently close (E[λi|Di = 1] ≃ E[λi|Di = 0]) then the bias in the TWFE

estimator will not be large while if the treatment effect significantly covaries with the factor

then the full-sample may be more biased than the TWFE.

It is important to consider what happens to the bad time control problem as the number

of units increase and as the number of time periods increase. First, the number of units does

not affect the size of the bad time control problem. Second, to evaluate the impact of the

increase in the number of time periods note that E[Ft] can be expressed as E[Pt]E[Ft|Pt =

1] + (1 − E[Pt])E[Ft|Pt = 0]. If we keep the conditional expectations of factor realizations

given treatment constant as T increases we can focus on the term E[Pt] which in turn can be

expressed as TP /T (the ratio of treated periods to total time periods). When T increases

TP /T tends to 0 and E[Ft] tends to (E[Ft|Pt = 0]) which in turn means the numerator

(E[Ft|Pt = 0] − E[Ft]) tends to 0. This is not surprising since effectively there is no post-

treatment period. However, a more likely case, is when we add more time periods the ratio

of treated time periods remains constant (e.g., half the time periods are still treated) then

the full-sample bias is unaffected when T is increased.

In the admittedly unrealistic setting with observable loadings and unobservable factors

the full-sample estimator would still be biased, but the bias would depend on the covariance

of the loadings with treatment heterogeneity in the unit dimension.

In practice, researchers add unit-specific time trend, termed unit time trend (UTT)

estimator, to control for time-varying heterogeneity. However, it is a special case of the full

sample estimator and have the same issue of “bad time control problem.”

We take unit-specific linear time trend Ft = t as an example. If the time trend is

polynomial, it does not make an essential difference. Similar to the bias of the full sample

estimator, the unit time trend estimator is generally biased.

Corollary 3. The unit time trend (UTT) estimator is unbiased if and only if the treatment

effect is orthogonal to the linear time trend over the treated observations (Cov (∆it, t|DiPt = 1) =

0).

Proof See Appendix A.4.

Another common way to augment TWFE estimator is by adding covariates interacted
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with a time trend. To avoid the bad control problem, researchers often use pre-treatment

covariates and control for covariate time trend (Xi0 · t). We show that this augmentation

may circumvent the bad control problem, but leads to a bad time control problem.

Proposition 3. The covariate time trend estimator leads to a bad time control problem as

long as Cov (∆it, Xi0 · t|DiPt = 1) ̸= 0

Proof See Appendix A.5.

3.3 Dummy factor estimator

The dummy factor is defined by the granularity chosen along the unit and time dimension.

We examine two limiting cases of the dummy factor. First, we consider the case where we

define the group dummies Ri for |R| < N groups interacted with T period dummies (i.e., we

have the most amount of granularity in the time dimension and less than full granularity

in the unit dimension). Second, we consider the case when we have N groups (i.e., full

granularity in the unit dimension) interacted with St time periods, where |S| < T .

Proposition 4. (i) The dummy factor with R× T dummies does not suffer from the full-

sample bias. The weighting of observations is altered, implying that the ATT is generally

not estimated. (ii) The dummy factor with N × S suffers from the full-sample bias and

weighting error.

Proof See Appendix A.6.

In conclude, the dummy factor estimate is a convex combination of of TWFE estimates

for each group. Omitted factor bias of the dummy factor estimator, compared to the TWFE

estimator, is reduced because factor structure variation across groups is eliminated. When

all groups have the same treated observation ratio, the dummy factor estimator degenerates

into the TWFE estimator.

When loadings are balanced within each group, the omitted factor bias will be equal to

zero, even though the dummy factor estimator is still biased because of the weighting issue.

The weighting issue is not extremely severe as in staggered DiD, because the weighting is

grantee to be between 0 and 1. In other words, the estimated treatment effect term is a

convex combination of the true treatment (unlike in de Chaismartin and D’Haullfulle, 2020)
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so it guarantee that the estimator does not become negative if true treatment effects are all

positive.

The weighting issue can transform into the bad time control problem. Though only

N ×S dummy factor suffers from it because R× T dummy factor captures factor variation

through full granularity in the time dimension.

3.4 Pre-treatment estimator

Given a sufficiently long time-series another possible solution is to estimate factor loadings

only using pre-treatment variation and then use the estimated loadings when estimating

the ATT in the full sample. We refer to this two step procedure as the pre-treatment (PT)

estimator. First loadings are estimated over pre-treatment periods,

(λ̂PT
i ) = argmin

λ

{ T∑
t=1

(1 − Pt)
N∑

j=1
(Yi,t − γi − ηt − λiFt)2

}
(3)

and the estimated loadings (λ̂i) are then used in the full sample when estimating the ATT,

(α̂P T , γ̂i
PT, η̂t

PT) = argmin
α,γ,η

{ T∑
t=1

N∑
j=1

(Yi,t − γi − ηt − λ̂PT
i Ft − αDiPt)2

}
. (4)

The pre-treatment estimator avoids estimated loadings capture the treatment effect

variation and therefore does not lead to biased estimation.

Proposition 5. The pre-treatment estimator results in an unbiased estimate of the Average

Treatment on Treated (ATT).

Proof See Appendix A.7.

The pre-treatment estimator has a number of advantages over the GMM estimator

with dynamic treatment effect proposed by Callaway and Karami (2022). First, recovering

the ATT and standard error using the dynamic estimator requires additional calculations.

Second, it is not completely clear how the dynamic estimator performs when treatment

is staggered. The advantages of the dynamic estimator is that it does not require a long

time-series to estimate loading and provides useful information about the treatment effect

over time.
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4 Simulation Evidence: Different factor estimation methods

To illustrate our theoretical findings, we simulate data according to the following data

generating process,

Yit = γi + ηt + λiFt + ∆itDi × Pt + εit (5)

γi ∼ N(0, σ2
γ) ηt ∼ N(0, σ2

η) εit ∼ N(0, σ2
ε)

γi are unit fixed effects, ηt are time fixed effects, λiFt represents the factor structure, and ∆it

is the heterogeneous and time-varying treatment effects. By construction the unit and time

fixed effects are independent from our other key quantities. In order to allow for loading

differences between treated and control we simulate loadings as follows,

λi = Pi + µ(Di − E[Di]) Pi ∼ N(0, 1)

where the parameter µ allows us to shift the loading of treated units while maintaining a

mean loading of zero. T Our factor realizations are given by,

Ft = Qt + ν(t− E[t]) Qt ∼ N(0, 1)

where the key parameter is ν that captures the time-trend of our factor. Like with our

loadings our factors are modeled to have mean zero. he last ingredient of our simulation is

our treatment effects which are simulated as follows,

∆it = ATT + σ∆(ψUi + ϕVt + (1 − ψ2 − ϕ2)Wit)

corr(Ui, Pi) = ρ∆,λ corr(Vt, Qt) = ρ∆,F Ui, Vt,Wit ∼ N(0, 1)

where the true ATT is 1.0, Ui is a unit specific treatment effect, Vt is the time specific

treatment effect and the term (1 − ψ2 − ϕ2)Wit ensures that the total variance is kept

constant. Crucially, the parameter corr(Ui, Pi) = ρ∆,λ allows for a possible correlation

between the loadings and the treatment effect and similarly corr(Vt, Qt) = ρ∆,F allows for

a correlation between the treatment effect and the factor realization.

We perform 1000 iterations for each cell. In our simulation analysis, we set number

of units N = 1000, number of treated unites NT = 0.3N = 300, number of periods T =

20, number of post-treatment periods TP = 0.5T = 10. We also set the baseline value

of stardard deviation of unit fixed effect σγ = 1, standard deviation of time fixed effect
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Table 1: Homogeneous Treatment Effect

We set σ∆ = 0 (homogeneous treatment effects). The loading difference µ and factor trend ν are the pa-
rameters of interest. All other parameter are the same as baseline setting. The mean of two-way fixed effect
estimators is displayed in the first line without any parentheses, the mean of full sample estimator is dis-
played in the second line with round parentheses, and the mean of pre-treatment estimators is displayed in
the third line with square parentheses.

TWFE Estimator
(FS Estimator) Loading Difference µ
[PT Estimator] 0 0.2 0.4 0.6 0.8 1

Fa
ct

or
Tr

en
d
ν

0 0.9958 1.0075 0.9824 1.0070 1.0029 0.9969
(0.9988) (1.0044) (0.9993) (1.0036) (1.0031) (0.9941)
[0.9986] [1.0037] [0.9998] [1.0022] [1.0041] [0.9936]

0.5 0.9947 1.0437 1.1183 1.1434 1.2331 1.2454
(0.9977) (0.9964) (1.0033) (0.9995) (0.9976) (1.0000)
[0.9983] [0.9967] [1.0055] [1.0001] [0.9976] [0.9999]

1 1.0030 1.1072 1.1973 1.3525 1.4156 1.5557
(1.0018) (0.9975) (1.0015) (0.9982) (0.9966) (1.0000)
[1.0020] [0.9978] [1.0012] [0.9979] [0.9964] [0.9997]

1.5 0.9998 1.1387 1.3233 1.4781 1.6147 1.7812
(0.9991) (1.0025) (1.0032) (0.9960) (1.0007) (0.9949)
[0.9973] [1.0038] [1.0029] [0.9975] [1.0005] [0.9954]

2 1.0059 1.2167 1.4339 1.6442 1.8459 2.0769
(0.9969) (0.9960) (1.0048) (1.0059) (0.9909) (1.0000)
[0.9971] [0.9963] [1.0042] [1.0061] [0.9916] [1.0011]

2.5 1.0051 1.2607 1.5119 1.7841 2.0723 2.3543
(1.0005) (0.9957) (0.9975) (0.9989) (1.0010) (1.0055)
[1.0017] [0.9981] [0.9970] [1.0000] [0.9997] [1.0011]

ση = 3, standard deviation of error term σε = 3, standard deviation of treatment effect

σ∆ = 2, loadings difference between treatment group and control group µ = 0.4, linear

time trend ν = 1.5, degree of time-varition in the treatment effect ϕ = 0.6, degree of unit

heterogeneity in the treatment effect ψ = 0.6, correlation between treatment effect and

loadings ρ∆,λ = 0.6, and the correlation between treatment effect and factors ρ∆,F = 0.6.

Table 1 is designed to illustrate Proposition 1, that is we assume the treatment effect is

homogeneous. On the horizontal axis we change the loading difference of treated and control

units. In the left most column there is no loading differential while on in the right most the

loading differential is one corresponding to one standard deviation of the loading (λ). On

the vertical axis we allow for an increasing factor trend, from none to 1.6 factor deviations.

If there is no loading difference or no factor trend the TWFE is unbiased (there is only

sampling error around the true ATT of 1). However, as we move diagonally introducing
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both a loading differential and factor trend the TWFE estimator gets significantly biased.

In the bottom right cell it estimates an ATT of 2.25.

Table 2: Heterogeneous Treatment Effect

The loading difference µ and factor trend ν are the parameters of interest. All other parameter are the same
as baseline setting. The mean of two-way fixed effect estimators is displayed in the first line without any
parentheses, the mean of full sample estimator is displayed in the second line with round parentheses, and
the mean of pre-treatment estimators is displayed in the third line with square parentheses.

TWFE Estimator
(FS Estimator) Loading Difference µ
[PT Estimator] 0 0.2 0.4 0.6 0.8 1

Fa
ct

or
Tr

en
d
ν

0 0.9810 1.0048 0.9698 1.0018 1.0122 0.9860
(0.9895) (1.0091) (0.9948) (0.9981) (1.0156) (0.9859)
[0.9839] [1.0009] [0.9872] [0.9971] [1.0133] [0.9827]

0.5 1.0187 1.0356 1.1295 1.1334 1.2078 1.2415
(0.9796) (0.9509) (0.9651) (0.9459) (0.9198) (0.9476)
[1.0222] [0.9886] [1.0167] [0.9900] [0.9724] [0.9959]

1 1.0046 1.1134 1.2058 1.3700 1.4069 1.5719
(0.9160) (0.9108) (0.9176) (0.9088) (0.8905) (0.9196)
[1.0036] [1.0040] [1.0098] [1.0154] [0.9877] [1.0160]

1.5 1.0067 1.1228 1.3278 1.4740 1.6078 1.7869
(0.8638) (0.8522) (0.8641) (0.8494) (0.8577) (0.8593)
[1.0042] [0.9880] [1.0074] [0.9934] [0.9936] [1.0011]

2 1.0125 1.2299 1.4341 1.6485 1.8406 2.0701
(0.8126) (0.8236) (0.8177) (0.8165) (0.7948) (0.8029)
[1.0037] [1.0095] [1.0045] [1.0104] [0.9863] [0.9943]

2.5 1.0221 1.2675 1.4957 1.8047 2.0882 2.3723
(0.7775) (0.7756) (0.7622) (0.7974) (0.7796) (0.7882)
[1.0187] [1.0049] [0.9808] [1.0207] [1.0156] [1.0191]

Turning to Table 2, we now set the σ∆ = 2 so the treatment effect is heterogeneous. The

bias of the TWFE remains the same as with homogeneous treatment effect. Also the pre-

treatment estimator performs as before. However, treatment heterogeneity implies that the

full sample estimator (within parentheses) becomes biased. The bias is only present when

there is a factor trend (in the first row the estimated ATT of the full-sample estimator is

1). However as the factor trend increases and it reaches 2.5 the estimated ATT using the

full sample estimator is 0.78. Finally, the estimated ATT using the full sample estimator is

independent of the loading difference as we move along columns verifying corollary 1.

In Table 3 we vary degree of treatment effect heterogeneity in the unit (columns) and

time (rows) dimension. Regarding the full sample estimator (within parentheses), it per-

forms the same irrespective of the amount of variance explained by unit heterogeneity
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Table 3: Treatment Effect Heterogeneity Asymmetry

The treatment effect unit heterogeneity ψ and time heterogeneity ϕ are the parameters of interest.
All other parameter are the same as baseline setting. The mean of two-way fixed effect estimators
is displayed in the first line without any parentheses, the mean of full sample estimator is displayed
in the second line with round parentheses, and the mean of pre-treatment estimators is displayed in
the third line with square parentheses.

TWFE Estimator
(FS Estimator) TE Unit Heterogeneity ψ
[PT Estimator] 0 0.2 0.4 0.6 0.8 1

T
E

T
im

e
H

et
er

og
en

ei
ty
ϕ

0 1.3058 1.3183 1.3084 1.3133 1.3069 1.3071
(1.0004) (1.0002) (0.9938) (1.0007) (1.0016) (1.0018)
[0.9995] [0.9996] [0.9921] [1.0032] [1.0006] [1.0008]

0.2 1.3364 1.3320 1.3163 1.3011 1.3406
(0.9508) (0.9507) (0.9590) (0.9569) (0.9551)
[1.0006] [0.9971] [1.0051] [1.0011] [1.0048]

0.4 1.2982 1.2910 1.3265 1.3445 1.3000
(0.9036) (0.8956) (0.9083) (0.9050) (0.9056)
[0.9932] [0.9904] [1.0018] [1.0072] [0.9950]

0.6 1.3183 1.3198 1.3011 1.3181 1.3062
(0.8652) (0.8617) (0.8456) (0.8640) (0.8610)
[1.0054] [1.0029] [0.9887] [1.0008] [0.9999]

0.8 1.3468 1.3248 1.2973 1.3057
(0.8226) (0.8005) (0.8023) (0.8139)
[1.0224] [0.9962] [0.9802] [0.9994]

1 1.3545
(0.7575)
[1.0132]

(moving across columns), but performs worse the more variance is explained by time het-

erogeneity (moving between rows). Throughout this table we have kept the baseline as-

sumption of a factor trend of ν = 1.5 illustrating that the performance of the full sample

estimator can either be degraded by the increasing factor trend (as in Table 2) or as in this

table through changing the degree of time variation in the treatment effect.

Appendix B provides additional simulations. The first table in Appendix B decomposes

cov(Ft,∆it|Dit = 1) into two components, first the correlation between the treatment effect

and the factor realization (ρ∆,F ) and second the time-variation in treatment effect (ϕ). The

second Table in Appendix B illustrates that the performance of the full-sample estimator

is independent of loading differentials and the correlation between the treatment effect and

loadings verifying corollary 2.
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5 Empirical Evidence

The goal of this section is to provide an empirical illustration of the importance of including

factors in difference-in-difference models. We choose to focus on housing returns for several

reasons. First, there is an extensive literature highlighting the importance of factors in

real estate returns (see below). Second, the TWFE estimator is used frequently. Third,

these studies often consider up to 10 years of data which means significant factor variation.

Fourth, the data and code is on occasion available.

We identified two papers using data from the Federal Housing Finance Agency (FHFA)

where all additional data needed is readily available. Table 4 of Favara and Imbs (2015)

studies the impact of interstate bank branching deregulation on housing returns and Table

B2 of Zevelev (2020) that studies the impact of allowing home equity loans on Texas house

prices. We revisit these two results using the full-sample and pre-treatment estimators.

There are a significant amount of factors that have been shown to be relevant in housing

returns. For example, models based on the arbitrage pricing theory (APT) with macroe-

conomic factors have been used in Chen et al. (1990), and Cotter et al. (2014), statistical

factors (PCA) are employed by Titman and Warga (1986) while equity based factors such as

the Fama-French factors, momentum and liquidity have studied in the real estate context by

Peterson and Hsieh (1997), Hung and Glascock (2010) and Cannon and Cole (2010). Given

the plethora of choice, we decided to pick the economic factors used by Cotter, Gabriel

and Roll (2014). The factors are: the loan-to-value ratio (LTV), mortgage-backed securities

issuance (PrivMBS), payroll employment (Payems), equity markets (S&P500), industrial

production (Indpro), PPI materials prices (PPIitm), personal Income (Income), consumer

sentiment (Umcsent), building permits (Permit1), and the Federal Funds rate (Fedfunds).

In including factors we need to address which factors should we include? We use two

criteria. First, we select the factors that are able to significantly price the cross-section

of county housing returns. Second, we use Bayesian Information Criterion (BIC) in our

difference-in-difference regressions.

5.1 Factor Selection based on BIC

Bai and Ng (2002) note that when the factors are observable then the factor selection

boils down to a model selection problem and the penalty term does not have to take into
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account the size of the cross-section. Additionally, the Bayesian Information Criterion (BIC)

consistently estimates the number of factors while the Akaike Infomation Criterion (AIC)

may overestimate the number of factors. Given this we use the BIC for model selection with

penalty parameters based on the number of periods T. It is important to note that factor

selection based on the BIC will not neccessarily select the factors that have the largest

impact on the treatment effect.

Table 4: Factor selection based on BIC

The factor in this table are selected based on Bayesian information criterion. We consider all possible factor
combinations and select the specification with the minimum BIC. In Panel A we consider the full-sample
estimator and in Panel B we consider the pre-treatment estimator. unit-level (range) indicates the data con-
tains observations in range and minimun data unit is unit. For example, County-level (US) sample indicates
the BIC value based on county-level data among all the united states.

Sample Optimal factor combination

Section A: Full sample estimator
County-level (US) Fedfunds Indpro Payems Permit1 PPIitm S&P500
ZIP5-level (US) Fedfunds Indpro Payems Permit1 PPIitm Umcsent S&P500 Income OilPrice
ZIP5-level (BorderState) Fedfunds Indpro Payems PPIitm S&P500 Income OilPrice
ZIP5-level (Border) Fedfunds Indpro Permit1 PPIitm Income OilPrice

Section B: Pre-treatment estimator
County-level (US) Fedfunds Payems Income
ZIP5-level (US) Income Umcsent S&P500
ZIP5-level (BorderState) Indpro Payems Permit1 PPIitm Income
ZIP5-level (Border) Indpro PPIitm

5.2 Cross-sectional Pricing of Real Estate Returns

We use Fama and MacBeth (1973) procedure to estimate risk premia. All factors are

standardized. We divided the sample into three parts to avoid using overlapping data. We

divide the time-series into three equally long time periods. The initial period is used to

estimate loadings which are used for ranking and portfolio formation. In the second period

we estimate factor loadings of the portfolio and in the final period cross-sectional pricing

regressions are run.

Based on the results in Table 5, we find factors are priced differently in different settings.

Generally speaking, Fedfunds, Indpro, PPIitm, Umcsent, SP500, and Income are priced

factors.
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Table 5: Esimated factor premium using Fama-MacBeth regression

This table presents factor premium estimated using the Fama-MacBeth two step procedure. Newey-west t-
values based on two lags are presented in parentheses. ***, **, * represent significance at 10%, 5%, and 1%
respectively.

Factors County 3-digit Zip code MSA
1987–2019, Yearly 1995–2020, Quarterly 1987–2020, Quarterly

Fedfunds 0.091** 0.586*** 0.189
(2.21) (2.79) (0.55)

Indpro 0.060 0.003 -0.006***
(0.51) (1.23) (-4.25)

Payems 0.213 0.001 0.0004
(1.57) (1.14) (0.82)

Permit1 -0.006 -0.038 -0.011
(-0.10) (-1.19) (-0.33)

PPIitm 0.232** 0.013** 0.006
(2.06) (2.20) (1.48)

Umcsent 0.001 -0.070*** -0.042***
(0.01) (-3.97) (-3.25)

S&P500 0.074 -0.132*** -0.053
(0.65) (-3.67) (-1.32)

Income −0.215∗∗∗ -0.002*** -0.001
(−3.33) (-2.61) (-0.32)

5.3 Placebo Interventions

An implication of using a misspecified benchmark model is some form of bias. In turn,

the bias implies that even when the true treatment effect is zero the null hypothesis may

be rejected. The TWFE estimator suffers from omitted factor bias and as result may

imply significant coefficients and some degree of over-rejection. In contrast, the full sample

estimator, if well specified, reduces the omitted factor bias, but introduces the bad time

control problem - another form of bias and hence a source of over-rejection. That is,

the relative over-rejection rates of the two estimators are likely to vary according to the

dependent variable studied and the level at which the interventions are undertaken (e.g.,

state vs firm).

It is important to note that using two-way clustered standard errors does not deal with

the over-rejection since the source of the bias that we are studying comes from the product

of the unit and time dimension. Dealing with serial correlation in each of the dimensions

separately does not deal with the product and therefore neither the omitted factor bias or

the bad time control problem.
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To evaluate the relative performance of these two classes of estimators, we study real

estate returns while introducing state-level random interventions. We use county-level real

estate price data from the Federal Housing Finance Agency (FHFA). The data spans the

period from 1975 to 2020. Each state has a 20% chance of being treated. All states

are treated simultaneously (the intervention is non-staggered) and the treatment year is

random, but selected such that there are at least seven years prior and post treatment. So

the earliest treatment year is 1982 and the last possible treatment year is 2013. For each

intervention, we only keep keep 15 years of data (seven years pre and post-treatment).

We simulate 3,000 interventions and estimate four different benchmark models. First,

we use the plain TWFE estimator:

lnPi,t − lnPi,t−1 = γi + ηt + αDiPt + εit,

where lnPi,t − lnPi,t−1 is the real estate return from year t− 1 to t for county i, γi and ηt

are county and year fixed effects, respectively. Second, we add a linear unit time-trend to

the TWFE estimator:

lnPi,t − lnPi,t−1 = γi + ηt + αDiPt + λi × t+ εit,

where t is a linear time trend and λi is a state-specific loading. Third, we use the full-sample

estimator with three economic factors:

lnPi,t − lnPi,t−1 = γi + ηt + αDiPt +
3∑

k=1
λkiFkt + εit,

where Fkt is the factor realization of factor k at time t and λi is the factor loading for state

i. We use the factors selected in 5.1. Lastly, we use the pre-treatment estimator (described

in Eqns. 3 and 4) with factor selection for the pre-treatment period (also found in 5.1). In

all specifications we cluster standard errors at the state and time levels.

The results are presented in Table 6. When using TWFE estimator we reject the null

hypothesis 7.6% of the time while in the absence of true interventions we would expect a

5% rejection rate. The high rejection rate could be the cause of true interventions happen

to be sampled or factor variation that is uncontrolled for. Strikingly, when we use the

full-sample estimator the rejection rate increases. When we include a unit time trend the

rejection rate is 10.3% while when we include economic factors the rejection rate is 8.8%.

This suggests that bad time control bias outweighs the omitted factor bias in this setting.
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Table 6: Rejection rates of placebo Interventions

This table presents rejection rates estimated using TWFE estimator without controlling factors, full-sample
and pre-treatment estimator using state-specific time trends and economic factors Fedfunds, PPIitm and
Income. The standard errors calculated are clustered by state and year level. The significance level is set at
5%.

No Factor Time Trend Economic Factors

Two-way fixed effect estimator 7.6%
Full-sample estimator 10.3% 8.8%
Pre-treatment estimator 10.2% 5.5%

This is plausible since we know that the TWFE is unbiased under random assignment while

the bad time control bias exists under random assignment.

However, when we use the pre-treatment estimator with economic factors the rejection

rate falls to 5.3%. Taken together our placebo interventions suggest: (1) the choice of

method matters substantially, (2) the bad time control problem can be substantial - almost

doubling the rejection rate and (3) the pre-treatment estimator with economic factors has

the rejection rate closest to our expectation.

5.4 Favara and Imbs (2015)

For economists and policy makers it is important to understand the impact of local credit

expansions on local asset prices. An increase in local house prices following a local credit

expansion provides evidence that non-local assets are not perfect substitutes. Favara and

Imbs (2015) use the state deregulation index introduced by Rice and Strahan (2010) to

relate increases in local credit supply to local house prices.12 Using a staggered difference-

in-difference they find that an increase in the deregulation index results in an increase in

local house prices by 1.2%. 13

As with many quasi-natural experiments it is likely that deregulation is not randomly

assigned. Indeed, Kroszner and Strahan (1999) study the causes of interstate banking dereg-

ulation and comment “We find that deregulation occurs earlier in states with fewer small

banks, in states where small banks are financially weaker, and in states with more small,
12The effect of interstate banking deregulation has been extensively studied, among other things it has

been documented to lead to less pronounced business cycles (Morgan, Rime and Strahan, 2004) per capital
growth in Income and output (Jayaratne and Strahan, 1996), credit costs of borrowers (Rice and Strahan,
2010), lower Income inequality (Beck, Levine and Levkov, 2010) and reallocation across sectors (Acharya,
Imbs and Sturgess, 2011)

13Other papers that analyze house prices in a difference-in-difference setting includes Blickli (2018) and
Di Maggio and Kermani (2017).
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presumably bank-dependent, firms. Also, a larger insurance industry delays deregulation

when banks may compete in the sale of insurance products. Interest group factors related

to the relative strength of potential winners (large banks and small firms) and losers (small

banks and the rival insurance firms) thus can explain the timing of branching deregulation

across states.” This suggests that treated and control units may have different loadings to

factors.

We incorporate a factor structure into Eq. (2) of Favara and Imbs (2015). This implies

we estimate the following,

lnPc,t − lnPc,t−1 = β1Ds,t−1 + β2Ds,t−1 × ηs
c + β3Xc,t + αc + γt +

K∑
k=1

λc,k × Ft,k + εc,t

where Pc,t denotes house price index, Ds,t−1 denotes deregulation index, ηs
c denotes housing

supply (in)elasticity, Xc,t denotes county-level control variables, αc and γt are county and

year fixed effects respectively. Indexes c refers to counties, s to states, and t to years. We

add factors based on the selection procedure described above where λc,k refers to the loading

to factor k of county c and Ft,k is the factor realization of factor k at date t.

Table 7: Incorporating factors into Favara and Imbs (2015)

This table presents the original results of Favara and Imbs (2015) and our full sample estimators as well as
pre-treatment estimators. Column (1) replicates column (3) of table 4 in Favara and Imbs (2015). Columns
(2) and (3) add the factors with significant premia. Columns (4) and (5) introduce the factors selected in
Panel A of Table 3. Columns (6) and (7) add the factors selected in Panel B of Table 3. The standard errors
reported are clustered by state. ***, **, * represent significance at 10%, 5%, and 1% respectively.

Variable Original FS Est. PT Est. FS Est. PT Est. FS Est. PT Est.
(1) (2) (3) (4) (5) (6) (7)

Deregulation index 0.0122*** -0.0002 0.0009 -0.0034 -0.0029 0.0005 0.0017
(0.002) (0.006) (0.006) (0.013) (0.014) (0.006) (0.006)

Deregulation index -0.005*** -0.003 -0.004 -0.002 -0.024 -0.003 -0.003
× house supply elasticity (0.000) (0.002) (0.0024) (0.004) (0.005) (0.002) (0.002)
County-level controls Yes Yes Yes Yes Yes Yes Yes
County & Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes
Fedfunds × State dummies " " " " " "

Indpro × State dummies " "

Payems × State dummies " " " "

Permit1 × State dummies " "

PPIitm × State dummies " " " "

Umcsent × State dummies
SP500 × State dummies " "

Income × State dummies " " " "

The results are presented in Table 7. In all specifications, the introduction of the factors
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Table 8: Combinatorial Factor Selection

This table uses all possible factor combinations and record the number of significant point estimates of the
treatment effect as well as the number of factors. In the full sample case, we use all 9 factors while in the
pre-treatment case we exclude PrivMBS due to data availability.

Panel A: FS estimator
# of factors 9 8 7 6 5 4 3 2 1
# significant 0/1 0/9 0/36 0/84 1/126 7/126 20/84 25/36 9/9

[0%] [0%] [0%] [0%] [0.8%] [5.6%] [23.8%] [69.4%] [100%]
Panel B: PT estimator
# of factors 3 2 1
# significant 29/56 14/28 6/8

[51.8%] [50%] [75%]

renders the estimated treatment effect economically and statistically insignificant.

Since factor selection could be argued is somewhat arbitrary we performed the same

analysis using all possible factor combinations while using from one to nine factors. In

Table 8 we report the number of factors used and the number of significant treatment

effects and the total of factor combinations. We present results separately for the full

and pre treatment estimators. Given the shorter time horizon there is a lower maximum

number of factors for the pre treatment estimators and PrivMBS is not available before

1994 implying that it cannot be used with the pre-treatment estimator. Using the full-

sample estimator only 7 out of 126 combinations are significant when using four factors.

For the pre-treatment estimator when we include 3 factors only 29 out of 56 combinations

are statistically significant.

To examine whether there are systematic differences in loadings we display the dereg-

ulation index of Rice and Strahan (2010) taken from Favara and Imbs (2015) in Figure 1

and in Figure 2. we display our estimated state loadings. Examining the loadings it seems

as if they cluster geographically.

5.5 Zevelev (2021)

Zevelev (2021) studies the effect of a constitutional amendment in Texas that legalized home

equity loans. He finds that this increases Texas house prices by 4%. We introduce a factor

structure into the Zevelev’s equation (static DID) which implies we estimate,

yi,s,t = αi + θt + βDIDTexass × Postt + ΓXi,s,t +
K∑

k=1
λs,k × Ft,k + εi,s,t
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Figure 1: Interstate Branching Deregulation Index

Figure 2: Estimated State Loadings
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where yi,s,t is log real house price index. Index i refers to five digit zip code, s refers to state

and year t. αi is zip code fixed effect while θt are time fixed effects. Texass is a dummy

variable that takes the value 1 if it is the state Texas and Postt takes the value 1 if it is in

post-treatment preiod (t ≥ 1998).

Interestingly Zevelev (2021) introduces a factor structure in some of his specifications.

He controls for the interaction between the oil price and MSA dummies as well as a time-

trend that is interacted with state dummies.

In Table 9 we introduce economic factors into Table B2 of Zevelev (2021). Panel A

provides results when we consider the entire United States. We show that without any

factor controls Zevelev’s result changes sign and is statistically significant. This highlights

the importance of including factor controls. Additionally, the point estimates of both the

full and pre-treatment estimators are negative and significant.

In Panel B, we present replication results for border states. Without factor controls the

treatment effect is rendered insignificant. Introducing optimally selected factors reduces

the treatment effects from 0.0616 to 0.039 (pre) and 0.0372 (full), but the point estimates

remain statistically significant.

Finally, in Panel C we replicate the results for border counties. Again, without factor

controls the treatment effect is rendered insignificant. This is also the case for the full

sample estimator. Interestingly, the point estimate of the pre treatment estimator is very

close to what is found in the original paper. Although the introduction of factors provides

mixed results, it is clear that they are essential for the estimated treatment effects.

6 Conclusion

For almost 30 years factor models were the standard methodology used to analyze housing

returns. The advent of quasi-experimental techniques that offer improved identification has

resulted in a shift in research methodology from factor models to difference-in-differences

estimators. We show that it is far from obvious how to incorporate the factor model into the

difference-in-differences framework. The TWFE estimator is generally biased when factors

are omitted, but so is the full-sample estimator. The TWFE estimator is preferred when

assignment is close to random while the full sample estimator is unbiased when treatment

is time-invariant.
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Table 9: Incorporating factors into Zevelev (2021)
This table presents the original results of Zevelev (2021) and our full sample estimators as well as pre-
treatment estimators. Column (1), (5), (9) replicates column (1) to (3) of table B.2 in Zevelev (2021).
Columns (2), (6), (10) remove factor controls from Zevelev (2021). Columns (3), (7), (11) introduce the fac-
tors selected in Panel A of Table 4. Columns (4), (8), (12) add the factors selected in Panel B of Table 4.
The standard errors of full sample esitmators and pre-treatment estimators are clustered by zip-code level.
***, **, * represent significance at 10%, 5%, and 1% respectively.

Variable Original Paper Without Factor FS Estimator PT Estimator

Panel A: United States (1) (2) (3) (4)
TexasPost 0.0350*** -0.0387 -0.0123** -0.0147***

(0.0099) (0.0040) (0.0062) (0.0040)
Zipcode & Year FE " " " "

State time trend "

Oil× MSA dummies " "

Fedfunds × State dummies " "

Indpro × State dummies "

Payems × State dummies "

Permit1 × State dummies "

PPIitm × State dummies "

Umcsent × State dummies " "

SP500 × State dummies " "

Income × State dummies "

Panel B: Border States (5) (6) (7) (8)
TexasPost 0.0616*** 0.0015 0.0372*** 0.0390***

(0.0221) (0.0051) (0.0041) (0.0048)
Zipcode & Year FE " " " "

State time trend "

Oil× MSA dummies " "

Fedfunds × State dummies "

Indpro × State dummies " "

Payems × State dummies " "

Permit1 × State dummies "

PPIitm × State dummies " "
Umcsent × State dummies
SP500 × State dummies "

Income × State dummies " "

Panel C: Border Counties (9) (10) (11) (12)
TexasPost 0.0476** 0.0024 0.0032 0.0450***

(0.0151) (0.0113) (0.0095) (0.0097)
Zipcode & Year FE " " " "

State time trend "

Oil× MSA dummies " "

Fedfunds × State dummies "

Indpro × State dummies "
Payems × State dummies
Permit1 × State dummies "

PPIitm × State dummies " "
Umcsent × State dummies
SP500 × State dummies
Income × State dummies " "
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Applied researchers frequently augment the TWFE estimator to control for factor varia-

tion. We show that the resulting estimators often suffer from the bad time control problem.

In our placebo analysis we find that the full sample estimator performs worse than the

TWFE estimator suggesting that the bad time control problem is significant when studying

housing returns. Further, we revisit the results of Favara and Imbs (2015) and Zevelev (2021)

while incorporating relevant factors. In both cases we find that the factor model explains

significant variation and should therefore be included. Additionally, depending on method

and specification the estimated treatment effect may be significantly changed. Overall,

this paper provides methods for incorporating factor models into difference-in-differences

regressions while showing that it is also necessary when studying housing returns.

Future work should consider other dependent variables which have been shown to have

a factor structure where difference-in-differences are often used. Given the importance of

factors for interest rates (e.g., Litterman and Scheinkman, 1991) and yields (e.g., Duffie and

Kan, 1996) we suspect that in these applications it is particularly beneficial to augment the

difference-in-differences analysis to control for factor variation.
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Appendix A Proof

A.1 Useful lemmas

Denote the sample mean of treatment effects on treated ∆ATT as

∆ATT =
∑

i,tDiPt∆it∑
i,tDiPt

Lemma 1. The expectation of the sample mean of treatment effects on treated is equal to

the average treatment effect on treated.

E[∆ATT] = αATT

Proof.

E
[
∆ATT]

=E

[∑
i,tDiPt∆it∑

i,tDiPt

]

=E

[
E

[ ∑
i,tDiPt∆it∑

i,tDiPt

∣∣∣∣∣ D,P

]]

=E

 1∑
i,tDiPt

∑
i,t

E [DiPt∆it| D,P ]


Since Yit(0) and Yit(1) are independent from Dj and Ps when j ̸= i and s ̸= t,

E [DiPt∆it| D,P ]

=E [DiPt∆it|Di, Pt]

=DiPt E [∆it|Di, Pt]

=1{DiPt=1} E [∆it|DiPt = 1]

In reason that E [∆it|DiPt = 1] is a constant,

E
[
∆ATT]

=E

 1∑
i,tDiPt

∑
i,t

E [DiPt∆it| D,P ]


=E [∆it|DiPt = 1]E

[∑
i,t 1{DiPt=1}∑

i,tDiPt

]

=αATT
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Denote the sample mean of λ for the treated (control) group λD (λC) as

λD =
∑

iDiλi∑
iDi

λC =
∑

i(1 −Di)λi∑
i 1 −Di

Denote the sample mean of F for the post-treatment (pre-treatment) period F post (F pre)

as

F post =
∑

t PtFt∑
i Pt

F pre =
∑

i(1 − Pt)Ft∑
i 1 − Pt

Using the method similar to lemma 1, it is not hard to verify that

E
[
λD

]
= E [λi|Di = 1]

E
[
λC

]
= E [λi|Di = 0]

E
[
F post

]
= E [Ft|Pt = 1]

E
[
F pre

]
= E [Ft|Pt = 0]

Denote the sample covariance between factor realizations Ft and individual treatment

effect ∆it as

QATT
F,∆ =

∑
i,tDiPtFt(∆it − ∆ATT)∑

i,tDiPt

Lemma 2. The expectation of the sample covariance between factor realizations and indi-

vidual treatment effect is equal to the overall covariance adjusted by degree of freedom.

E
[
QATT

F,∆

]
=

(
1 − 1

E [
∑

itDiPt]

)
cov (Ft,∆it|DiPt = 1)

Proof.

E
[
QATT

F,∆

]
=E

∑
i,tDiPtFt(∆it − ∆ATT)∑

i,tDiPt


=E

E
 ∑

i,tDiPtFt(∆it − ∆ATT)∑
i,tDiPt

∣∣∣∣∣∣ D,P


=E

∑
i,t E

[
DiPtFt(∆it − ∆ATT)

∣∣∣ D,P
]

∑
i,tDiPt



28



Since both Ft and ∆it are independent from Dj and Ps when j ̸= i and s ̸= t,

E [DiPtFt∆it| D,P ]

=1{DiPt=1} E [Ft∆it|Di = 1, Pt = 1]

=1{DiPt=1} (cov (Ft,∆it|Di = 1, Pt = 1) + E [Ft|Pt = 1]E [∆it|Di = 1, Pt = 1])

On the other hand, ∆it is independent from Fs when s ̸= t and therefore E[Ft∆js] =

E[Ft]E[∆js] + 1{t=s}cov(Ft,∆jt). Thus, we obtain

∑
i,t

E
[
DiPtFt∆

ATT∣∣∣ D,P
]

=
∑
i,t

E

[
DiPtFt

∑
j,sDjPs∆js∑

j,sDjPs

∣∣∣∣∣ D,P

]

= 1
NDTP

E

 ∑
(i,t):DiPt=1

Ft

  ∑
(j,s):DjPs=1

∆js


= 1
NDTP

E

 ∑
(i,t):DiPt=1

Ft

 E

 ∑
(j,s):DjPs=1

∆js


+ 1
NDTP

E

 ∑
(i,t):DiPt=1

cov(Ft,∆js)


=NDTP E [Ft|Pt = 1]E [∆it|Di = 1, Pt = 1] + cov (Ft,∆it|Di = 1, Pt = 1)

Therefore, the expectation of sample covariance is

E
[
QATT

F,∆

]
=E

[
NDTP E [Ft|Pt = 1]E [∆it|Di = 1, Pt = 1] +NDTP cov (Ft,∆it|Di = 1, Pt = 1)

NDTP

]
− E

[
NDTP E [Ft|Pt = 1]E [∆it|Di = 1, Pt = 1] + cov (Ft,∆it|Di = 1, Pt = 1)

NDTP

]

=

1 − 1
E

[∑
i,tDiPt

]
 cov (Ft,∆it|Di = 1, Pt = 1)

A.2 Proof of Proposition 1

The traditional way to estimate treatment effect is the two-way fixed effect difference-in-

difference estimator. The definition of two-way fixed effect is the following.
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(α̂TWFE, γ̂TWFE
i , η̂TWFE

t ) = argmin
α,γ,η

{ T∑
t=1

N∑
i=1

(Yit − γi − ηt − αDiPt)2
}

(6)

Given observed {Di} and {Pt}, we can regressDiPt on unit dummies, and time dummies.

The residuals are defined as uTWFE
it .

DiPt = κTWFE
i + ζTWFE

t + uTWFE
it (7)

It can be verified that the residual uTWFE
it is the two-way demeaned DiPt,

uTWFE
it = (Di −D)(Pt − P )

where D = 1
N

N∑
i=1

Di P = 1
T

N∑
t=1

Pt

In reason that uTWFE
it is the residual in regression (7), we can obtain

∀t,
∑

i

uTWFE
it = 0 ⇒

∑
i, tuTWFE

it Y1t = 0

∀i,
∑

t

uTWFE
it = 0 ⇒

∑
i, tuTWFE

it Yi1 = 0

∀(i, t) : DiPt = 1 uTWFE
it = (1 −D)(1 − P )

Then we can derive that

E

∑
i,t

uTWFE
it Yit

∣∣∣∣∣∣ D,P


=E

∑
i,t

uTWFE
it Yit(0)

∣∣∣∣∣∣ D,P

 + E

∑
i,t

uTWFE
it DiPt∆it

∣∣∣∣∣∣ D,P


=E

∑
i,t

uTWFE
it (Yit(0) − Yi1(0) − Y1t(0) + Y11(0))

∣∣∣∣∣∣ D,P

 + E

∑
i,t

uTWFE
it DiPt∆it

∣∣∣∣∣∣ D,P


=E

∑
i,t

uTWFE
it (λi − λ1)(Ft − F1)

∣∣∣∣∣∣ D,P

 + E

∑
i,t

uTWFE
it DiPt∆it

∣∣∣∣∣∣ D,P


=E

∑
i,t

uTWFE
it λiFt

∣∣∣∣∣∣ D,P

 + E

∑
i,t

uTWFE
it DiPt∆it

∣∣∣∣∣∣ D,P


Following the Frisch-Waugh-Lovell theorem, the two-way fixed effect estimator can be
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written as

E
[
α̂TWFE

∣∣∣ D,P
]

=E

[ ∑
i,t u

TWFE
it Yit∑

i,t u
TWFE
it DiPt

∣∣∣∣∣ D,P

]

=E

[ ∑
i,t u

TWFE
it DiPt∆it∑

i,t u
TWFE
it DiPt

∣∣∣∣∣ D,P

]
+ E

[ ∑
i,t u

TWFE
it λiFt∑

i,t u
TWFE
it DiPt

∣∣∣∣∣ D,P

]

=E

[ ∑
(i,t):DiPt=1 u

TWFE
it ∆it∑

(i,t):DiPt=1 u
TWFE
it

∣∣∣∣∣ D,P

]
+ E

 ∑
i

(
(Di −D)λi

) ∑
t

(
(Pt − P )Ft

)
∑

(i,t):DiPt=1(1 −D)(1 − P )

∣∣∣∣∣∣ D,P


=E

[ ∑
(i,t):DiPt=1 ∆it∑

(i,t):DiPt=1 1

∣∣∣∣∣ D,P

]
+ E

 ∑
i

(
(Di −D)λi

) ∑
t

(
(Pt − P )Ft

)
NTD(1 −D)P (1 − P )

∣∣∣∣∣∣ D,P


=E

[
∆ATT∣∣∣ D,P

]
+ E

[
(λD − λC)(FPost − FPre)

∣∣∣ D,P
]

According to lemma 1, we can get

E
[
α̂TWFE

]
=E

[
E

[
α̂TWFE

∣∣∣ D,P
]]

=αATT + (E[λi|Di = 1] − E[λi|Di = 0])(E[Ft|Pt = 1] − E[Ft|Pt = 0])

A.3 Proof of Proposition 2

Two-way fixed effect estimator totally ignores the presence of the factor structure. A

straight-forward idea is to add all the factors as control variables. To be explicit, full

sample estimator is defined as

(α̂FS, γ̂FS
i , η̂FS

t , λ̂FS
i ) = argmin

α,γ,η,λ

{ T∑
t=1

N∑
i=1

(Yit − γi − ηt − λiFt − αDiPt)2
}

(8)

Compared to TWFE estimator, a full sample estimator adds observed factor realizations

as covariates. Suppose treatment group Di, treatment time Pt and factor realizations Ft is

given, we regress DiPt on unit dummies, time dummies and factor realizations, and define

the residual as uFS
it .

DiPt = κFS
i + ζFS

t + ξFS
i Ft + uFS

it (9)
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In reason that uFS is the residual of regression (9), it satisfies the following equations.

∀t,
∑

i

uFS
it = 0

∀i,
∑

t

uFS
it = 0

∀i,
∑

t

uFS
it Ft = 0

Then it implies that

E

∑
i,t

uFS
it Yit

∣∣∣∣∣∣ D,P ,F


=E

∑
i,t

uFS
it Yit(0)

∣∣∣∣∣∣ D,P ,F

 + E

∑
i,t

uFS
it DiPt∆it

∣∣∣∣∣∣ D,P ,F


=E

∑
i,t

uFS
it (Yit(0) − Yi1(0) − Y1t(0) + Y11(0))

∣∣∣∣∣∣ D,P ,F

 + E

∑
i,t

uFS
it DiPt∆it

∣∣∣∣∣∣ D,P ,F


=E

∑
i,t

uFS
it (λi − λ1)(Ft − F1)

∣∣∣∣∣∣ D,P ,F

 + E

∑
i,t

uFS
it DiPt∆it

∣∣∣∣∣∣ D,P ,F


=E

∑
i,t

uFS
it DiPt∆it

∣∣∣∣∣∣ D,P ,F


Due to the degree of freedom, there exists multiple solutions of regression (9). However,

it does not change the values of residuals, which is what we are interested in. One of the

possible solutions is

ξFS
i = 0 if Di = 0

ξFS
i = P (1 − P )F post − F pre

σ2
F

if Di = 1

κFS
i = 0 if Di = 0

κFS
i = P − ξFS

i F if Di = 1

ζFS
t = −κFS − ξ

FS
Ft if Pt = 0

ζFS
t = −κFS − ξ

FS
Ft +D if Pt = 1

where

σ2
F = 1

T

T∑
t=1

(Ft − F )2 κFS = 1
N

N∑
i=1

κFS
i ξ

FS = 1
N

N∑
i=1

ξFS
i
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In this case, we can estimate the value of a full sample estimator. Unfortunately, the

full sample estimator is biased

E
[
α̂FS

∣∣∣ D,P ,F
]

=E

[ ∑
i,t u

FS
it Yit∑

i,t u
FS
it DiPt

∣∣∣∣∣ D,P ,F

]

=E

[ ∑
i,t u

FS
it DiPt∆it∑

i,t u
FS
it DiPt

∣∣∣∣∣ D,P ,F

]

=E

 ∑
(i,t):DiPt=1 u

FS
it ∆ATT∑

(i,t):DiPt=1 u
FS
it

∣∣∣∣∣∣ D,P ,F

 + E

 ∑
(i,t):DiPt=1 u

FS
it (∆it − ∆ATT)∑

(i,t):DiPt=1 u
FS
it

∣∣∣∣∣∣ D,P ,F


=E

[
∆ATT

∑
(i,t):DiPt=1 u

FS
it∑

(i,t):DiPt=1 u
FS
it

∣∣∣∣∣ D,P ,F

]
+ E

 ∑
(i,t):DiPt=1(1 − κFS

i − ζFS
t − ξFS

i Ft)(∆it − ∆ATT)∑
(i,t):DiPt=1 u

FS
it

∣∣∣∣∣∣ D,P ,F


=E

[
∆ATT∣∣∣ D,P ,F

]
+ (F pre − F )
σ2

F + (F post − F )(F pre − F ) E
[
QATT

F,∆

∣∣∣ D,P ,F
]

We can not get the analytical solution of E
[
α̂FS

]
without adding assumption, because

the variation of the factor σ2
F and the sample covariance QATT

F,∆ both depend on the factor

realizations in a specific sample. If we assume the factor realizations Ft are exogenously

determined (i.e. they are not random across samples), we can get a simplified expression.

E
[
α̂FS

]
=E

[
E

[
α̂FS

∣∣∣ D,P
]]

=E
[
E

[
∆ATT∣∣∣ D,P

]]
+ E

[
F pre − F

σ2
F + (F post − F )(F pre − F ) E

[
QATT

F,∆

∣∣∣ D,P
]]

=αATT + wF Scov (Ft,∆it|Di = 1, Pt = 1)

where

wF S = E

[
NTTP − 1
NTTP

· F pre − F

σ2
F + (F post − F )(F pre − F )

]

A.4 Proof of Corollary 3

In practice, researchers add unit-specific time trend, termed unit time trend (UTT) esti-

mator, to control for time-varying heterogeneity. However, it is a special case of the full

sample estimator and have the same issue of “bad time control problem”.
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We take unit-specific linear time trend Ft = t as an example. If the time trend is polyno-

mial, it does not make an essential difference. Since time trend is exogenously determined

and non-random across different samples, we can plug Ft = t into the estimation result

of the full sample estimator and get the bias of unit time trend estimator. Suppose the

treatment happens at time T − TP + 1.

E
[
α̂UTT

]
=αATT + E

[
NTTP − 1
NTTP

·
−TP

2
T 2−1

12 + T −TP
2

−TP
2

]
cov(∆it, t|DiPt = 1)

=αATT + wUTTcov(∆it, t|DiPt = 1)

where

wUTT = E
[
NTTP − 1
NTTP

· −6TP

T 2 − 1 − 3TP (T − TP )

]
< 0

A.5 Proof of Proposition 3

In order to avoid bad control problem, researchers add pre-treatment covariate interacted

with time trend termed covariate time trend (CTT) estimator. However, CTT has a similar

bias as the full sample estimator, because of “bad time control problem”. For simplicity, we

assume the time trend is a linear time trend, but the argument is also valid for polynomial

time trend. Let Zit = Xi0 · t. The definition of covariate time trend estimator is:

(α̂CTT, γ̂CTT
i , η̂CTT

t , β̂CTT) = argmin
α,γ,η,β

{ T∑
t=1

N∑
i=1

(Yit − γi − ηt − βZit − αDiPt)2
}

(10)

We regress DiPt on unit dummies, time dummies, and Zit:

DiPt = κCTT
i + ζCTT

t + ξCTTZit + uCTT
it (11)

The estimate of ξ is the coefficient of a covariant in the two-way fixed effect estimator.

ξ̂CTT =
∑

it(Di −D)(Pt − P )(Zit − Zi. − Z .t + Z)∑
it(Zit − Zi. − Z .t + Z)2

Thus, the residual of regression 11 can be written as:

uCTT
it =

(
Di −D

) (
Pt − P

)
− ξ̂CTTZit

where

Zi. =
∑T

t=1 Zit

T
Z .t =

∑N
i=1 Zit

N
Z =

∑N
i=1

∑T
t=1 Zit

NT
Z

ATT =
∑

i,tDiPtZit∑
i,tDiPt
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Denote the sample covariance between covariate time trend Zit and individual treatment

effect ∆it as

QATT
Z,∆ =

∑
i,tDiPtZit(∆it − ∆ATT)∑

i,tDiPt

In the best possible setting, researchers correctly identify the factor structure (i.e. λi =

Xi0 and Ft = t). However, the covariate time trend estimator is still subject to the bad

time control problem:

E
[
α̂CTT

∣∣∣ D,P ,Z
]

=E

[ ∑
i,t u

CTT
it Yit∑

i,t u
CTT
it DiPt

∣∣∣∣∣ D,P ,Z

]

=E

[ ∑
i,t u

CTT
it DiPt∆it∑

i,t u
CTT
it DiPt

∣∣∣∣∣ D,P ,Z

]
+ E

[ ∑
i,t u

CTT
it λiFt∑

i,t u
CTT
it DiPt

∣∣∣∣∣ D,P ,Z

]

=E

 ∑
i,t u

CTT
it DiPt∆

ATT∑
i,t u

CTT
it DiPt

∣∣∣∣∣∣ D,P ,Z

 + E

 ∑
i,t u

CTT
it DiPt

(
∆it − ∆ATT)

∑
i,t u

CTT
it DiPt

∣∣∣∣∣∣ D,P ,Z


=E

[
∆ATT∣∣∣ D,P ,Z

]
+ −ξ̂CTT

(1 −D)(1 − P ) − ξ̂CTTZ
ATT E

[
QCTT

Z,∆

∣∣∣ D,P ,Z
]

It shows that the covariate time trend estimator exists the bad time control problem in

general. Besides, the covariate time trend estimator may suffer from the misspecification

problem and generate additional bias terms if the pre-treatment covariate does not fully

correlated with the factor loading or the factor realization is not a linear time trend.

A.6 Proof of Proposition 4

A.6.1 Unit group interacted with time

Suppose gi indicates the group unit i belongs to and we define dummy factor estimator with

unit group interacted with time as

(α̂DF1, γ̂DF1
i , ω̂DF1

rt ) = argmin
α,γ,ω

{ T∑
t=1

N∑
i=1

(Yit − γi − ωgi,t − αDiPt)2
}

(12)

we regress DiPt on unit dummies, and group dummies interacted with time dummies.

DiPt = κDF1
i + θDF1

rt + uDF1
it (13)

Let Rg be the ratio of treated units overall all units in group g,

Rg =
∑

iDi1{i∈g}∑
i 1{i∈g}
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Then, the residual of regression 13 is:

uDF1
it = (Di −Rgi)(Pt − P )

Denote ND,g is the number of treated observations in group g, λD,g is the mean of factor

loadings λ of the treated observations in group g, λC,g is the mean of factor loadings λ of

the non-treated observations in group r, and ∆ATT
g is the mean of the treatment effects ∆it

for the treated observations in group g.

Following the Frisch-Waugh-Lovell theorem, we can show that the dummy factor esti-

mator is biased in two ways.

E
[
α̂DF1

∣∣∣ D,P ,G
]

=E

[ ∑
i,t u

DF1
it Yit∑

i,t u
DF1
it DiPt

∣∣∣∣∣ D,P ,G

]

=E

[ ∑
i,t u

DF1
it ∆itDiPt∑

i,t u
DF1
it DiPt

∣∣∣∣∣ D,P ,G

]
+ E

[ ∑
i,t u

DF1
it λiFt∑

i,t u
DF1
it DiPt

∣∣∣∣∣ D,P ,G

]

=E

[ ∑
i,t(1 −Rgi)(1 − P )DiPt∆it∑

i,t(1 −Rgi)(1 − P ))DiPt

∣∣∣∣∣ D,P ,G

]

+ E

 (
∑

i(Di −Rgi)λi)
(∑

t(Pt − P )Ft

)
∑

i,t u
DF1
it DiPt

∣∣∣∣∣∣ D,P ,G


=E

[ ∑
i,t(1 −Rgi)DiPt∆it∑

i,t(1 −Rgi)DiPt

∣∣∣∣∣ D,P ,G

]

+ E

[
(
∑

i(Di −Rgi)λi)TP (F post − F )
(
∑

i(1 −Rgi)Di) (1 − P )TP

∣∣∣∣∣ D,P ,G

]

=E

 ∑
g NgRg(1 −Rg)∆ATT

g∑
g NgRg(1 −Rg)

∣∣∣∣∣∣ D,P ,G


+ E

 ∑
g NgRg(1 −Rg)

(
λD,r − λC,r

) (
F post − F pre

)
∑

g NgRg(1 −Rg)

∣∣∣∣∣∣ D,P ,G


Given the assignment of groups, the expectation of a dummy factor estimator can be

expressed as a convex combination of TWFE estimates for each group.

E
[
α̂DF1

∣∣∣ G
]

=
∑

g

ωDF1
g E [∆it| gi = g,Di = 1, Pt = 1]

+
∑

g

ωDF1
g (E [λi| gi = g,Di = 1] − E [λi| gi = g,Di = 0]) (E [Ft|Pt = 1] − E [Ft|Pt = 0])
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where

ωDF1
g = NgRg(1 −Rg)∑

g NgRg(1 −Rg)

We find that weighting problem can be rewritten as the true ATT plus a covariance

term like bad time control problem. The weighting issue in Chaismartin and d’Haullfulle

can be also rewrite in this way. Let RATT be the sample mean of treated unit ratios for

treatment observations and QATT
G,∆ be the sample covariance of group treatment ratio Rgi

and treatment effect ∆it for the treated observations.

R
ATT =

∑
i,tDiPtRgi∑

i,tDiPt

QATT
G,∆ =

∑
i,tDiPt

(
Rgi −G

ATT) (
∆it − ∆ATT)

∑
i,tDiPt

When loadings are balanced within each group (∀group g, E [λi| gi = g,Di = 1]−E [λi| gi = g,Di = 0]),

the omitted factor bias will be equal to zero. But then, the dummy factor estimator is still

biased because of the weighting issue. The dummy factor estimator will be shown as

E

[
E

[ ∑
i,t(1 −Rgi)DiPt∆it∑

i,t(1 −Rgi)DiPt

∣∣∣∣∣ D,P ,G

]]

=E
[
E

[
∆ATT

∣∣∣ D,P ,G
]]

− E

[
1

1 −G
ATT E

[
QDF1

G,∆

∣∣∣ D,P ,G
]]

=αATT − cov (∆it, Rgi |DiPt = 1)
1 − E [Rgi |DiPt = 1]

Fortunately, the weighting issue is not extremely severe in the dummy factor estima-

tor, because the weighting is grantee to be between 0 and 1 (unlike in Chaismartin and

d’Haullfulle) and the estimator does not become negative if true treatment effects are all

positive.

αATT − cov (∆it, Rgi |DiPt = 1)
1 − E [Rgi |DiPt = 1]

=αATT − E [∆itRgi |DiPt = 1] − E [∆it|DiPt = 1]E [Rgi |DiPt = 1]
1 − E [Rgi |DiPt = 1]

≥αATT − E [∆it|DiPt = 1] − E [∆it|DiPt = 1]E [Rgi |DiPt = 1]
1 − E [Rgi |DiPt = 1]

=αATT − αATT

=0
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A.6.2 Time group interacted with unit

Suppose ht indicates the time group that time t belongs to and we define dummy factor

estimator with time group interacted with unit as

(α̂DF2, η̂DF2
t , ω̂DF2

is ) = argmin
α,η,ω

{ T∑
t=1

N∑
i=1

(Yit − ηt − ωi,ht − αDiPt)2
}

(14)

we regress DiPt on time dummies, and time group dummies interacted with unit dummies.

DiPt = ζDF2
t + θDF2

ist
+ uDF2

it

Define Kh is the ratio of treated time periods overall all time periods in group h,

Kh =
∑

t Pt1{t∈h}∑
i 1{t∈h}

Similarly, we can get

uDF2
it = (Di −D)(Pt −Kht)

Following the Frisch-Waugh-Lovell theorem, we can show that the dummy factor esti-

mator with time group interacted with unit.

E
[
α̂DF2

∣∣∣ D,P ,K
]

=E

[ ∑
i,t u

DF2
it Yit∑

i,t u
DF2
it DiPt

∣∣∣∣∣ D,P ,K

]

=E

[ ∑
i,t u

DF2
it ∆itDiPt∑

i,t u
DF2
it DiPt

∣∣∣∣∣ D,P ,K

]
+ E

[ ∑
i,t u

DF2
it λiFt∑

i,t u
DF2
it DiPt

∣∣∣∣∣ D,P ,K

]

=E

[ ∑
i,t(1 −D)(1 −Kht)DiPt∆it∑

i,t(1 −D)DiPt(1 −Kht)

∣∣∣∣∣ D,P ,K

]

+ E


(∑

i(Di −D)λi

)
(
∑

t(Pt −Kht)Ft)∑
i,t u

DF2
it DiPt

∣∣∣∣∣∣ D,P ,K


=E

[ ∑
i,t(1 −Kht)DiPt∆it∑

i,t(1 −Kht)DiPt

∣∣∣∣∣ D,P ,K

]

+ E

[
ND(λD − λ) (

∑
t(Pt −Kht)Ft)

ND(1 −D) (
∑

t(Pt −Kht)Pt)

∣∣∣∣∣ D,P ,K

]

=E

[ ∑
i,t(1 −Kht)DiPt∆it∑

i,t(1 −Kht)DiPt

∣∣∣∣∣ D,P ,K

]

+ E
[ ∑

t(Pt −Kht)Ft∑
t(Pt −Kht)Pt

(
λD − λC

)∣∣∣∣ D,P ,K

]

38



Because time groups are continuous in time, most of the time groups are either fully

before the treatment date or fully after the treatment date except for one group within

which the treatment takes place. This suggests most of Kh are either 0 or 1. For all time t

whose Kht = 0 or Kht = 0, it does contributes to neither the treatment effect part nor the

bias part. It means that when using a time group dummy factor only keeps the data of one

time group - the time group within which the treatment happens. However, for that time

group, the dummy factor estimator with time group interacted with unit suffers from the

bad time control problem like the one with unit group interacted with time.

A.7 Proof of Proposition 5

Given a sufficiently long time-series it is possible to estimate factor loadings only using

pre-treatment variation and then use the estimated loadings when estimating the ATT in

the full sample. We refer to this two step procedure as the pre-treatment (PT) estimator.

First loadings are estimated over pre-treatment periods,

(λ̂PT
i ) = argmin

λ

{ T∑
t=1

(1 − Pt)
N∑

i=1
(Yit − γi − ηt − λiFt)2

}

and the estimated loadings (λ̂i) are then used in the full sample when estimating the ATT,

(α̂P T , γ̂i
PT, η̂t

PT) = argmin
α,γ,η

{ T∑
t=1

N∑
i=1

(Yit − γi − ηt − λ̂PT
i Ft − αDiPt)2

}
. (15)

The pre-treatment estimator estimates the loadings using the sample of the pre-treatment

period in order to avoid estimated loadings captures the treatment effect variation.

Due to collinearity, we, without loss of generality, assume the estimated loading of unit

1 is 0 and the average of time fixed effects is 0, i.e. λ̂P T
1 = 0,

∑
t ζ

P T,k
t = 0. Define wP T,k

it

is the residual of Ft · 1i=k on unit dummies, time dummies, and the rest of factors in the

pre-treatment period.

Ft1[i = k] = κP T,k
i + ζP T,k

t +
∑

j ̸=k∧j ̸=1
ξP T,k

j Ft1[i = j] + vP T,k
it
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we can verify that

ξP T,k
i = ξP T,k

j if i ̸= k ∧ i ̸= 1 ∧ j ̸= k ∧ j ̸= 1

ϕP T,k
i = − ξP T,k

i

T − TP

∑
t:Pt=0

Ft if i ̸= k ∧ i ̸= 1

vP T,k
it = 0 if i ̸= k ∧ l ̸= 1

vP T,k
kt = −vP T,k

1t

Based on the Frisch-Waugh-Lovell theorem, the loading estimate of unit k (λ̂P T
k ) can be

written as:

λ̂P T
k =

∑
(i,t):Pt=0 v

P T,k
it Yit∑

(i,t):Pt=0 v
P T,k
it Ft1i=k

=
∑

(i,t):Pt=0 v
P T,k
it λiFt +

∑
(i,t):Pt=0 v

P T,k
it εit∑

(i,t):Pt=0 v
P T,k
it Ft1i=k

=
∑

t:Pt=0 v
P T,k
1t λ1Ft +

∑
t:Pt=0 v

P T,k
kt λkFt∑

t:Pt=0 v
P T,k
kt Ft

+
∑

(i,t):Pt=0 v
P T,k
it εit∑

(i,t):Pt=0 v
P T,k
it Ft1i=k

=
−λ1

(∑
t:Pt=0 v

P T,k
kt Ft

)
+ λk

(∑
t:Pt=0 v

P T,k
kt Ft

)
∑

t:Pt=0 v
P T,k
kt Ft

+
∑

(i,t):Pt=0 v
P T,k
it εit∑

(i,t):Pt=0 v
P T,k
it Ft1i=k

=λk − λ1 +
∑

(i,t):Pt=0 v
P T,k
it εit∑

(i,t):Pt=0 v
P T,k
it Ft1i=k

Then, we regress Yit − λ̂P T
i Ft on unit dummies, time dummies and treatment dummies and

get the pre-treatment estimator.

E
[
α̂P T

∣∣∣ D,P ,F
]

=E

[ ∑
i,t u

TWFE
it (Yit − λ̂P T

i Ft)∑
i,t u

TWFE
it DiPt

∣∣∣∣∣ D,P ,F

]

=E

[ ∑
i,t u

TWFE
it ∆itDiPt∑

i,t u
TWFE
it DiPt

∣∣∣∣∣ D,P ,F

]
+ E

[ ∑
i,t u

TWFE
it (λi − λ̂P T

i )Ft∑
i,t u

TWFE
it DiPt

∣∣∣∣∣ D,P ,F

]

=E

[ ∑
i,t:DiPt∆it∑

i,tDiPt

∣∣∣∣∣ D,P ,F

]
+ E

[ ∑
i,t u

TWFE
it λ1Ft∑

i,t u
TWFE
it DiPt

∣∣∣∣∣ D,P ,F

]

=E
[
∆ATT∣∣∣ D,P ,F

]
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We can show that pre-treatment estimator is unbiased.

E
[
α̂P T

]
=E

[
E

[
α̂P T

∣∣∣ D,P ,F
]]

=αATT
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Appendix B Additional Simulations

Table B1: Correlation between Treatment effects and Factor Structure

This table presents how estimates change along with the correlation between loadings and treatment ef-
fects ρ∆,λ and correlation between factors and treatment effects ρ∆,F . All other parameter are the same
as baseline setting. The mean of two-way fixed effect estimators is displayed in the first line without any
parentheses, the mean of full sample estimator is displayed in the second line with round parentheses, and
the mean of pre-treatment estimators is displayed in the third line with square parentheses.

TWFE Estimator
(FS Estimator) Correlation between Loadings and TE ρ∆,λ

[PT Estimator] 0 0.2 0.4 0.6 0.8 1

C
or

re
la

tio
n

be
tw

ee
n

Fa
ct

or
s

an
d

T
E
ρ

∆
,F

0 1.3161 1.3252 1.3179 1.3424 1.3471 1.3005
(1.0021) (1.0016) (1.0020) (0.9998) (1.0024) (1.0035)
[1.0098] [1.0066] [1.0067] [1.0052] [1.0024] [1.0054]

0.2 1.3315 1.3285 1.3212 1.3178 1.2856 1.3155
(0.9485) (0.9469) (0.9492) (0.9578) (0.9318) (0.9583)
[0.9956] [0.9936] [0.9965] [1.0005] [0.9825] [0.9979]

0.4 1.2988 1.2862 1.3037 1.2961 1.3558 1.2758
(0.9037) (0.8900) (0.8943) (0.8886) (0.9294) (0.8857)
[0.9938] [0.9856] [0.9914] [0.9804] [1.0273] [0.9774]

0.6 1.3206 1.3189 1.2996 1.2873 1.2742 1.3026
(0.8673) (0.8607) (0.8487) (0.8405) (0.8621) (0.8630)
[1.0077] [1.0019] [0.9825] [0.9809] [0.9919] [0.9969]

0.8 1.3433 1.3232 1.3067 1.3387 1.3221 1.2988
(0.8202) (0.8002) (0.8105) (0.8251) (0.8295) (0.8122)
[1.0189] [0.9946] [0.9966] [1.0158] [1.0121] [0.9926]

1 1.3476 1.3134 1.2950 1.2967 1.3757 1.3014
(0.7554) (0.7690) (0.7658) (0.7679) (0.7731) (0.7719)
[1.0063] [0.9971] [0.9950] [0.9910] [1.0327] [0.9987]
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Table B2: Unit Dimension Irrelevance

This table presents how estimates change along with the loading difference µ and correlation between load-
ings and treatment effects ρ∆,λ. All other parameter are the same as baseline setting. The mean of two-way
fixed effect estimators is displayed in the first line without any parentheses, the mean of full sample esti-
mator is displayed in the second line with round parentheses, and the mean of pre-treatment estimators is
displayed in the third line with square parentheses.

TWFE Estimator
(FS Estimator) Loading Difference µ
[PT Estimator] 0 0.2 0.4 0.6 0.8 1

C
or

re
la

tio
n

be
tw

ee
n

Lo
ad

in
gs

an
d

T
E
ρ

∆
,λ

0 0.9957 1.1476 1.3190 1.5148 1.6653 1.7614
(0.8554) (0.8637) (0.8699) (0.8566) (0.8532) (0.8751)
[0.9923] [0.9970] [1.0079] [1.0099] [1.0023] [1.0091]

0.2 1.0069 1.1718 1.3267 1.4874 1.5940 1.7955
(0.8571) (0.8581) (0.8621) (0.8511) (0.8386) (0.8711)
[1.0074] [1.0020] [1.0020] [0.9951] [0.9803] [1.0023]

0.4 1.0085 1.1402 1.3010 1.4801 1.6821 1.7797
(0.8631) (0.8458) (0.8455) (0.8574) (0.8884) (0.8419)
[1.0001] [0.9928] [0.9886] [0.9962] [1.0328] [0.9851]

0.6 1.0001 1.1574 1.3002 1.4449 1.5691 1.8105
(0.8668) (0.8566) (0.8493) (0.8392) (0.8648) (0.8470)
[1.0054] [1.0002] [0.9831] [0.9809] [0.9943] [0.9932]

0.8 1.0211 1.1664 1.3131 1.4811 1.6185 1.7735
(0.8709) (0.8520) (0.8637) (0.8689) (0.8757) (0.8617)
[1.0215] [0.9980] [1.0031] [1.0116] [1.0111] [0.9981]

1 1.0044 1.1412 1.2972 1.4659 1.6616 1.7427
(0.8558) (0.8436) (0.8635) (0.8798) (0.8657) (0.8638)
[1.0091] [0.9803] [0.9972] [1.0052] [1.0107] [0.9935]
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Appendix C Detailed literature review

We review 21 papers that use difference-in-difference or closely related methodology that

we found in our literature review. For each paper, we use the following presentation:

Authors (year), Title.

DiD: Which tables use difference-in-differences methodology.

Estimator: What difference-in-difference estimator is used in the respective difference-in-

differences tables.

Dimension: The unit dimension (e.g., plant), time frequency (e.g., monthly)) of the paper.

Factor Control: A description of the factor control that is used in the respective tables.

Description of variables and regressions: Brief description of the independent and

dependent variables or mechanism being tested.

Heterogeneous: Whether the paper estimates heterogeneous treatment effects. We take

a liberal classification here and describe also subsample analysis that acknowledges that the

treatment effects are heterogeneous.

Dynamic: Whether a dynamic difference-in-differences estimator is used and if so which

specifications with a factor structure use the dynamic estimator.

Staggered: Whether the difference-in-differences is staggered.

1. Collard-Wexler and de Loecker (2015), Reallocation and Technology: Evidence

from the US Steel Industry.

DiD: Tables 5, 9.

Estimator: Dummy Factor (Table 5, columns 2, 3, 4, Table 9, Columns 3, 4, 6, 7)

TWFE (Table 9, Column 8).

Dimensions: Plant × Year.

Description of factor control: Dummy Factor: Year × Firm, Year × State, Firm

× Year × State.

Description of variables and regressions: Main independent variable is a dummy

variable indicating whether a plant is vertically integrated interacted with a time

dummy. The tables measure the (negative) technology premium associated with old

technology.
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Heterogeneous: No

Dynamic: No

Staggered: The implied DiD could be staggered since plants could theoretically be

classified as vertically integrated and then change status at a later date.

2. Cicala (2015), When Does Regulation Distort Costs? Lessons from Fuel Procure-

ment in US Electricity Generation. DiD: Tables 2, 3, 4, 5, 6, 7.

Estimator: TWFE (Table 2, columns 1-6, Table 3, columns 2, 4-6, Table 4, columns

1-6, Table 6, columns 1-6, Table 7, columns 1-6) Dummy Factor (Table 3, column 3)

Unit time trend (Online Appendix Table B.5).

Dimensions: Facility × Month.

Description of factor control: Dummy Factor (Table 3, column 3) – Facility ×

Year. Unit time trend (Online Appendix Table B.5) State-specific quadratic time

trend.

Description of variables and regressions: DiD that relates deregulation to the

price paid for coal by power plants.

Heterogeneous: Yes p.432 discusses the heterogeneity of treatment effects.

Dynamic: Yes, Figure 5 presents dynamic treatment effects.

Dynamic used with factor control: No

Staggered: The deregulation is staggered.

3. Currie, Davis, Greenstone and Walker (2015), Environmental Health Risks and

Housing Values: Evidence from 1,600 Toxic Plant Openings and Closings.

DiD: Tables 2, 3, 4, 5, 6.

Estimator: Dummy Factor (Table 2, columns 1-8, Table 4, columns 1-8, Table 6,

columns 1-8), Covariates time trend (Table 2-6).

Dimensions: Plant × Year.

Description of factor control: Dummy Factor: Plant × Distance-bin, State ×

year, Plant × year, County × year. Covariates time trend: 1990 census tract charac-

teristics interacted with quadratic time trends.

Description of variables and regressions: Dependent variable pollution / birth-
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weight and independent variable is plant openings and closings.

Heterogeneous: No

Dynamic: Yes, Figure 3 and 4.

Dynamic used with factor control: Yes, Figure 3 and 4 which use Dummy Factor

and Covariates time trend. No, (Table 2, columns 1-8, Table 4, columns 1-8, Table 5,

columns 1-5, Table 6, columns 1-8)

Staggered: Yes

4. Favara and Imbs (2015), Credit Supply and the Price of Housing. Staggered.

DiD: Table 2, Table 3, Table 4, Table 6.

Estimator: TWFE (Table 2, 3, 4, 6)

Dimensions: County × Year.

Description of factor control: None

Description of variables and regressions: Dependent variables loan outcomes

and housing returns. Independent variable is state-wide banking deregulation index

(developed by Rice and Strahan, 2010).

Heterogeneous: Yes, allows for different treatment effects across counties depending

on their house price elasticity.

Dynamic: No

Staggered: Yes

5. Hackmann, Kolstad and Kowalski (2015), Adverse Selection and an Individual

Mandate: When Theory Meets Practice.

DiD: Table 2, 4.

Estimator: DiD (Table 2,4)

Dimensions: State × Year.

Description of factor control: None

Description of variables and regressions: Dependent variables are insurance

coverage, log premiums or log average costs and independent variable is regulation

change in Massachusetts that mandated insurance.

Heterogeneous: No

46



Dynamic: No

Staggered: No

6. Bailey and Goodman-Bacon (2015), The War on Poverty’s Experiment in Public

Medicine: Community Health Centers and the Mortality of Older Americans.

DiD: Table 2- 5.

Estimator: Dummy Factor (Table 2, Table 3, Table 4, Table 5) Covariate time trend

(Table 2, column 2, column 3, Table 3, Table 4, Table 5)

Dimensions: County × Year.

Description of factor control: Dummy Factor: Urban × Year, State × Year.

Covariate time trend: 1960 characteristics interacted with linear time trend: share

of population: in urban area, in rural area, under 5 years of age, 65 or older, non-

white, with 12 or more years of education, with less than 4 years of education, in

households with Income less than $3000. In households with Incomes greater than

$10000, total active MDs.

Description of variables and regressions: Dependent variable average mortality

rate and main independent variable is a dummy variables indicating the introduction

of community health centres.

Heterogeneous: Yes, Table 2, Panel A considers all ages while Panel B only con-

siders people over 50 years. Table 3 stratifies treatment effects on mortality causes

(e.g., heart disease). Table 4 stratifies treatment effects over 1960 characteristics and

census regions. Table 5 stratifies results over household Income.

Dynamic: Yes, Table 2, 3, and 4 consider dynamic treatment effects. Figures 5, 6

and 7 are dynamic.

Dynamic used with factor control: Yes, Table 2, 3, and 4 consider dynamic

treatment effects (treatment effects are estimated over different event time buckets).

Figure 5, 6 and 7. No, Table 5.

Staggered: Yes

7. Burgess, Jedwab, Miguuel, and Morjaria Padró I Miquel (2015), The Value

of Democracy: Evidence from Road Building in Kenya. DiD: Table 1, 2, 3, 5.
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Estimator: TWFE (Table 1, column 1, Table 2, column 2) Covariate time trend

(Table 1, column 2-5, Table 2, column 2 -5, Table 3, Table 5) Unit time trend (Table

1, column 5, Table 2, column 5, Table, 5 columns 3-4)

Dimensions: District × Year.

Description of factor control: Covariate time trend: Table 1, 2, 5: (Population,

area, urbanization rate) × trend, (earnings, employment, cash crops) × trend, (Main

highway, border, dist. Nairobi) × trend, District time trends. Table 3, Initial controls

× trend. Unit time trend: (Table 1, column 5, Table 2, column 5, Table, 5 columns

3-4)

Description of variables and regressions: The dependent variable is the share

of road expenditure normalized by population share. The independent variable is co-

ethnicity of president.

Heterogeneous: No

Dynamic: No

Staggered: Yes

8. Braguinsky, Ohyama, Okazaki, and Syverson (2015), Acquisitions, Productiv-

ity, and Profitability: Evidence from the Japanese Cotton Spinning Industry.

DiD: Table 2, 3 and 6.

Estimator: TWFE (Table 2, Table 3, Table 6, Columns 4-6)

Dimensions: Plant × Year.

Description of factor control: None

Description of variables and regressions: The dependent variable is the eco-

nomic performance. The main independent variable indicates whether the particular

plant was acquired.

Heterogeneous: Yes, Table 2, 3: treatment effects are stratified according to whether

the acquisition is undertaken by a serial acquirer.

Dynamic: No

Staggered: Yes

9. Pomeranz (2015), No Taxation without Information: Deterrence and Self-Enforcement
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in the Value Added Tax

DiD: Table 4, 5, 6, 7

Estimator: TWFE (Table 4, 5, 6, 7)

Dimensions: Firm × Month.

Description of factor control: None

Description of variables and regressions: The dependent variable is the line item

increase the main independent variable is letter from the tax office interacted with

line item.

Heterogeneous: No

Dynamic: Yes, Figure 2 is dynamic, tracking treatment effects over time.

Dynamic used with factor control: No factor used.

Staggered: Yes

10. de Janvry, Emerick, Gonzalez-Navarro and Sadoulet (2015), Delinking Land

Rights from Land Use: Certification and Migration in Mexico

DiD: Table 1, 4, 5, 6.

Estimator: TWFE (Table 1, Columns 1,2,3,5,6 Table 4, Columns 1-2, Table 5, Table

6 Column 1) Dummy Factor (Table 1, Column 4, Table 4, Column 3, Table 6, Column

2)

Dimensions: Household × Ejido × Year.

Description of factor control: Dummy Factor: Table 1, Column 4 (State × Time),

Table 4, Column 3 (High-yield × Time), Table 6, Column 2 (Progresa Treatment Lo-

cality × Time)

Description of variables and regressions: The main dependent variable is in an

indicator variable for whether households have a migrant and the main independent

variable is whether a geographic area has been certified.

Dynamic: No

Staggered: Yes

11. Yagan (2015), Capital Tax Reform and the Real Economy: The Effects of the 2003

Dividend Tax Cut
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DiD: Table 2, 3, 4.

Estimator: DiD (Table 2, Column 1, 3, 4, 5, 7, 8, 10, 11, Table 3, Table 4, Columns

1-2) TWFE (Table 1, Column 3, 6, 9, 12, Table 4, Column 3, Column 6).

Dimensions: Firm × Year.

Description of factor control: None. The main dependent variables are firm in-

vestment, employ compensation and firm payout. The main independent variable is

whether the firm is a C-Corp interacted with a time dummy indicating the 2003 tax

cut.

Heterogeneous: No

Dynamic: Yes, Table 4, Columns 1-6 includes dummies for each of the treatment

years.

Dynamic used with factor control: No factor used.

Staggered: No

12. Lalive, Landais and Zweimüller (2015), Market Externalities of Large Unem-

ployment Insurance Extension Programs

DiD: Table 2, 3, 4.

Estimator: TWFE (Table 2, Columns 1-2, Table 3, Table 4) Unit time trends (Table

2, Columns 3-6).

Dimensions: Firm × Year.

Description of factor control: Unit time trends: Region specific trends

Description of variables and regressions: The main dependent variable is un-

employment duration and the main independent variable indicated eligibility of the

Regional Extension Benefit Program (REBP) which extended unemployment benefits

for a large subset of Austrian workers.

Heterogeneous: Yes, treatment effects are evaluated across employment and age.

Dynamic: No

Staggered: Effectively yes since there are two treatments.

13. Muhlenbachs, Spiller, Timmins (2015), The Housing Market Impacts of Shale

Gas Development
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DiD: Table 2, 3, 4.

Estimator: Dummy Factor (Table 2, 3, 4) TWFE (Table 4)

Dimensions: Quarter × House

Description of factor control: Dummy Factor: Table 2 Panel A (County × year),

Panel B (Census tract × year), Table 3 Panel B (County × year)

Description of variables and regressions: The main dependent variable is log

sale prices of houses and the main independent variable is the number of wells at

different distances from the property as well as whether the property is reliant on

ground water.

Heterogeneous: Yes, both Table 3 and 4 considers subsamples in different panels.

Dynamic: No

Staggered: Yes, the number of wells are changing.

14. Bøler, Moxnes and Ulltveit-Moe (2015), R&D, International Sourcing, and the

Joint Impact on Firm Performance

DiD: Table 4, 5, 6, 7, 8, 9.

Estimator: TWFE (Table 4, Table 5, Columns 1-3, Table 7, Column 1, Table 8,

Column 5) Unit time trends (Table 5, Columns 4-7, Table 6, Table 7, Column 2,

Table 8, Columns 1-4, Table 9)

Dimensions: Firm × Year.

Description of factor control: Unit time trends, Table 5, Columns 4-7, Table 6,

Table 7, Column 2, Table 8, Columns 1-4, Table 9

Description of variables and regressions: The paper considers as dependent vari-

ables R&D expenditure and number of imported products and the main independent

variable captures whether the firm is eligible for tax credits.

Heterogeneous: Yes, Table 8 considers the origins of imported products.

Dynamic: Yes, Table 4, columns 1-3, Table 5, columns 1-3

Dynamic used with factor control: No (Table 4 no factor factor used, Table 5,

columns 4-7, Table 6, Table 7, columns 2, Table 8, Columns 1-4, Table 9) Yes (Table

5, columns 1-3) .

Staggered: No
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15. Duggan, Garthwaite and Goyal (2016), The Market Impacts of Pharmaceutical

Product Patents in Developing Countries: Evidence from India

DiD: Table 4, 5, 6, 7, 8.

Dimensions: Molecules × Quarter

Estimator: TWFE (Table 4, Columns 2, 4, 6, 8, Table 6, Columns 2, 4, Table 7,

Columns 2, 4, 6, 8) Unit time trends (Table 4, Columns 1, 3, 5, 7, Table 5, Table 6,

Columns 1, 3, Table 7, Columns 1, 3, 5, 7, Table 8)

Description of factor control: Unit time trends: λ × t × IEverP atent, where t is a

time indicator and IEverP atent is an indicator of whether the molecule ever has had

a patent. (Table 4, Columns 1, 3, 5, 7, Table 5, Table 6, Columns 1, 3, Table 7,

Columns 1, 3, 5, 7, Table 8)

Description of variables and regressions: The paper examines the effect of

molecule patents on prices and quantities sold.

Heterogeneous: No.

Dynamic: Yes, Figure 1, 2, 5, 6, 7, 8 and 9 are event studies.

Dynamic used with factor control: No (Table 4, Columns 1, 3, 5, 7, Table 5,

Table 6, Columns 1, 3, Table 7, columns 1, 3, 5, 7, Table 8).

Staggered: Yes

16. Jayaraman, Ray and De Véricourt (2016), Anatomy of a Contract Change

DiD: Table 2, Columns 4, 5

Estimator: DiD (Table 2, Columns 4, 5)

Dimensions: Rice output in kg × day

Description of factor control: None

Description of variables and regressions: This paper studies the effect of a con-

tract change on tea worker’s productivity.

Heterogeneous: No.

Dynamic: Yes, Figure 9 is estimated with time-varying treatment effects (one for

each of 17 weeks).

Staggered: No
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17. Hoynes, Whitmore Schanzenbach and Almond (2016), Long-Run Impacts of

Childhood Access to the Safety Net

DiD: Table 2, 3, 4, 5, 6, 7, 8, 9.

Estimator: Unit time trends & Covariate time trends (Table 2, 3, 4, 5, 6, 7, 8, 9)

Dimensions: Individual × County × Birth year

Description of factor control: Unit time trends & Covariate time trends (Table

2, 3, 4, 5, 6, 7, 8, 9), State specific cohort trend, county pre-treatment characteristics

trend.

Description of variables and regressions: This paper studies the effect of food

stamps programs on long-run health outcomes.

Heterogeneous: Yes, it is stratified across gender.

Dynamic: No

Staggered: Yes

18. Pierce and Schott (2016), The Surprisingly Swift Decline of US Manufacturing

Employment

DiD: Table 1, 2, 3, 4, 5, 6, 7, 8, 9.

Estimator: TWFE (Table 1, Table 2, Columns 1-4, 5, 6, Table 3, Columns 2-3, Table

7, Table 8, Table 9), Covariate time trend (Table 2, Column 5) Dummy factor (Table

3, Column 1, Table 4, Columns 1-4, Table 5, Columns 1-4, Table 6, Columns 1-4)

Dimensions: Industry × year.

Description of factor control: Covariate time trend (Table 2, Column 5): ln(RDGP )t×

ln(NP/Empi,t), effectively a GDP factor interacted with a covariate. Dummy factor

(Table 3, Column 1): Country × time, Country × industry, Industry × year (Table

4, 5, 6) Product × country, Country × time, Product × time.

Description of variables and regressions: This paper studies the effect of tariff

reduction on employment.

Heterogeneous: No

Dynamic: No.

Staggered: No
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19. Muralidharan, Niehaus and Sukhtankar (2016), Building State Capacity: Ev-

idence from Biometric Smartcards in India

DiD: Table 2, 7.

Estimator: TWFE (Table 2, Columns 5-8, Table 7, Columns 3-4)

Dimensions: Household / Individual × mandal-district × week.

Description of factor control: None.

Description of variables and regressions: This paper studies the impact of “smart

cards” on the functioning of the financial system.

Heterogeneous: No

Dynamic: No

Staggered: Yes

20. Sequiera, (2016), Corruption, Trade Costs, and Gains from Tariff Liberalization:

Evidence from Southern Africa

DiD: Table 5, 8, 9, 10, 11, 13, 15, 18, 19.

Estimator: DiD (Table 5, Columns 4-6, Table 8, Table 9, Table 10, Table 11, Table

13, Table 18, Table 19, Panel B), ≈ TWFE (Table 15)

Dimensions: Trade Gap × Year

Description of factor control: None.

Description of variables and regressions: This paper studies the effect of tariff

changes on trade and bribery.

Heterogeneous: No

Dynamic: No

Staggered: No

21. Koudjis and Voth (2016), Leverage and Beliefs: Personal Experience and Risk-

Taking in Margin Lending

DiD: Table 5, 6, 7 (Panel B), 8, 9, 11, 12

Estimator: ≈ TWFE (Table 5, Table 6, Table 7 Columns 3 & 6, Table 8, Table 9,

Table 11, Table 12)

Dimensions: Haircut × year
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Description of factor control: None.

Description of variables and regressions: This paper examines of unexpected

investor losses on the interest rates and haircuts charged.

Heterogeneous: Yes, treatment effects are stratified across exposure and whether it

is a loans consortium.

Dynamic: No

Staggered: No
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