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Abstract

I present a theoretical framework that shows how limited self-control could have evolved

as a mechanism to make humans behave against their own self-interest. I analyze the

evolution of self-control in a principal-agent framework with two agents, System 1 and

System 2, that represent the automatic and cognitive processes within the human mind,

respectively. Based on the relevant evidence, I assume that System 2 has access to private

information, but its utility cannot depend on all the relevant information. The principal can

achieve the asymptotically optimal outcome by biasing the utility of System 2 (from which

an endogenous conflict emerges) and simultaneously endowing it with a limited amount of

self-control. The model explains several empirical properties of self-control (observed in

experiments), and sheds light on its welfare implications.
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1 Introduction

Self-control is the ability to control or override one’s thoughts, emotions, urges, and behavior

(Gailliot et al., 2007). Self-control is a better predictor of college grades than IQ or SAT score

(Duckworth and Seligman, 2005), higher levels of self-control are associated with lower incidence

of mental illness and alcohol abuse (Tangney et al., 2004), and people who have more self-control

are better educated, wealthier and healthier (Heatherton and Wagner, 2011; Mischel, 2014).

Self-control seems therefore like a primary target for policy interventions, because increasing

self-control can increase the health, education, and productivity of individuals (Blattman et al.,

2017; Alan et al., 2019). Crucially, if self-control is so beneficial, and given that humans are

the result of an evolutionary process, this begs the question: why have we not evolved a perfect

self-control (Hayden, 2019)? It would seem a priori that having more self-control would lead to

more successful individuals, who would be better able to survive and reproduce (Baumeister and

Tierney, 2011; McGonigal, 2011). In this paper I argue that there is actually an optimal amount

of self-control from the point of view of genetic fitness: in other words, too much self-control is

detrimental for the survival and reproduction of our genes, and that is why we have evolved a

limited self-control.1

I consider a framework where an individual makes decisions that are generated from the

interaction between two brain systems: System 1 (automatic or “hard wired”) and System 2

(conscious and reflexive, Kahneman, 2011; Cerigioni, 2021). The individual has a series of K

opportunities to either cheat or to respect a social norm.2 The human genes are subject to

natural selection, that maximizes their replication to the next generation (i.e. quality-adjusted
1The notion that impulsivity could be adaptive has been proposed by several authors (Sozou, 1998; Stephens

and Anderson, 2001; Stephens, 2002; Kacelnik, 2003; Fawcett et al., 2012). However, the present model proposes
a novel mechanism, in that it is not impulsivity itself that is adaptive, but having limited amount of self-control
that forces the individual to behave impulsively in the right circumstances (i.e. when the fitness gains would be
higher).

2Cheating in the presence of social norms has been widely studied, for example in the context of academic
cheating, Teixeira and Rocha, 2010; scientific fraud, Necker, 2016; and tax evasion, Slemrod, 2007. Social norms
have been extensively studied (Schultz et al., 2007; Postlewaite, 2011), as well as their economic applications
(Allcott, 2011). Cheating in social contexts has also been studied in evolutionary psychology and cognitive
science Cosmides (1989); Gigerenzer and Hug (1992); Cosmides and Tooby (1992) and behavioral economics (Shu
et al., 2012).
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number of offspring, what is known as genetic fitness), and each of the two actions (respecting

norms vs. cheating) has fitness gains that are stochastic. I formalize this setup in a principal-

agent model, where the human genes are represented by the Principal, and the human individual

is represented by two different players: System 1 and System 2 (the “multiple-selves” approach

to self-control follows a long tradition; Schelling 1978; Thaler and Shefrin 1981; Bernheim and

Rangel 2004; Benhabib and Bisin 2005; Fudenberg and Levine 2006; Brocas and Carrillo 2008).

Following Kahneman (2011), I consider that System 1 is genetically hard-wired by the Principal,

and will be in charge of implementing actions “automatically”; while System 2 can be identified

with higher cognitive processes.3 The Principal chooses the utility function of Systems 1 and 2

(subject to constraints) i.e. utilities are endogenous and dependent on the genes, an assumption

that is standard in the literature on the evolution of preferences (Robson, 2001; Samuelson, 2004;

Samuelson and Swinkels, 2006; Rayo and Becker, 2007; Netzer, 2009; Robson and Samuelson,

2011; Rayo and Robson, 2016).

If there were no further constraints, the Principal could achieve the fitness-maximizing out-

come simply by choosing an unbiased utility for System 2 (Robson and Samuelson, 2010), in

which case self-control would play no role, as there would be no conflict of interest between the

Principal and System 2. However, based on the evidence from neuroscience that I review in

Section 2.3, I assume that the Principal cannot include all the relevant variables as arguments in

System 2’s utility function (a similar assumption is made by Brocas and Carrillo, 2008; Rayo and

Robson, 2016). This means that System 2 has superior information (relative to both Principal

and System 1) with respect to idiosyncratic details of the social norms that operate in the in-

dividual’s environment, and therefore the Principal has an incentive to extract this information

from System 2. The Principal can do this by linking together the outcomes that result from the

K decisions taken by System 2, generating accountability across decisions (Jackson and Sonnen-
3In particular, System 2 can be interpreted as the brain area known as the dorsolateral prefrontal cortex

(dlPFC), that is responsible for planning (Elliott, 2003) and self-control (Knoch et al., 2006; Hare et al., 2009;
Figner et al., 2010). I provide the relevant neuroscientific evidence in Section 2.3. However, despite being
identifiable with certain brain areas, I would like to follow Kahneman (2011) in emphasizing that Systems 1 & 2
are not necessarily two discrete systems, but should be understood as metaphors for complex organizations within
the brain.
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schein, 2007). In particular, System 2 can send messages to System 1, and each message should

be interpreted as a possibility for System 2 of exerting self-control (the larger the message, the

more self-control is exerted). By imposing a “self-control budget”, the Principal ensures that

System 2 exerts self-control proportionally to how valuable it is to follow the social norm in each

specific instance, in such a way that System 1 will choose cheating when the fitness gains from

cheating exceed the gains from following the social norm for that particular instance. Therefore,

I argue that limited self-control evolved as a mechanism to make humans behave against their

own self-interest in order to increase genetic fitness.4

The main result of the paper is that the Principal can achieve the (asymptotically) fitness-

maximizing outcome by endowing System 2 with a biased utility, while simultaneously restricting

its autonomy via a “self-control budget” (Proposition 1). In other words, natural selection pro-

duces a utility function that is biased in a way that gives the human individual enough autonomy

to adapt to a changing environment, while simultaneously restricting the individual’s autonomy

to make her comply with genetic fitness (rather than utility) maximization.5 This provides an

explanation for the apparent paradox that human’s lack of perfect self-control is detrimental for

the individual, and yet resulted from an evolutionary process that maximized genetic fitness.6

The model presented in this paper can also explain several other interesting facts about self-

control. A straightforward implication is that when someone uses self-control for a task, she

will have less amount of willpower left for subsequent tasks (Proposition 2), a fact observed
4Understanding the individual’s self-interest as the evolved utility function of System 2, or possibly a convex

combination of the utilities of Systems 1 and 2. I discuss this in further detail in Section 4.
5By a biased utility, what I mean is that the utility of System 2 does not correspond with (expected) genetic

fitness. While the Principal could always choose an unbiased utility function for System 2 (in which case no
conflict would exist), that would not be fitness-maximizing, because the Principal would not be able to extract
all the relevant information from System 2. Similar ideas, in which the Principal selects a biased Agent, can be
found in the literature: in Aghion and Tirole (1997) the Principal gives control to a biased Agent to generate
incentives to collect information, and in Che and Kartik (2009) a Principal who can choose from a pool of Agents
(including unbiased ones), will choose a biased Agent while retaining control so that the Agent has an incentive
to collect information in order to convince the Principal.

6Brocas and Carrillo (2008) proposed a model of the brain in which there is asymmetric information between
different brain systems. Using this framework, they obtain a result (Proposition 4) in which the Principal sets a
cap on the amount of the “tempting good” that System 2 can consume. Despite the similarity between the results,
they assume a benevolent Principal (who maximizes welfare) and faces self-control internalities as an external
constraint, whereas I am interested precisely in how those internalities arose in the first place through natural
selection.
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in experiments (Baumeister and Tierney, 2011). Another observed phenomenon is that when

a person exercises self-control regularly her “self-control budget” grows over time (Oaten and

Cheng, 2006b, 2007). This is because if the environment is changing over time in a structured

manner, the Principal can set a budget that adapts over time to better match the environment

(Proposition 3). Finally, it has been observed that when people have a low level of glucose in

the blood, they exert less self-control (Gailliot et al., 2007; Kurzban, 2010). I show that this

can be true even if glucose is only monitored, not consumed (Proposition 4). The model also

has welfare implications. I show that the self-control budget is smaller than the socially optimal

one (Proposition 5). Moreover, many relevant behaviors today are associated with self-control:

smoking, alcohol consumption, failing to exercise, not saving enough, etc. (Baumeister et al.,

1994). However, these are modern behaviors that either did not exist or were not relevant during

human evolutionary history (what is known as evolutionary mismatch). All of these behaviors

are influenced by poor self-control, and I show that because the current environment is more

tempting than the environment in which our genes evolved, people will not have enough self-

control to make the correct decisions (according to their own utility function), what entails a

reduction in welfare (Proposition 6).

This paper is connected to several literatures. Firstly, it belongs to the literature on the

evolution of preferences (Robson, 2001; Samuelson, 2004; Samuelson and Swinkels, 2006; Rayo

and Becker, 2007; Netzer, 2009; Robson and Samuelson, 2011; Rayo and Robson, 2016). This

literature analyzes the evolution of certain traits in a Principal-Agent model, in which the Prin-

cipal represents the human genes subject to natural selection, and has been quite successful at

providing explanations for a variety of features in human behavior: why people have preferences

instead of automatic behaviors (Robson, 2001), conspicuous consumption (Samuelson, 2004),

utility dependence on unchosen alternatives (Samuelson and Swinkels, 2006), hedonic adapta-

tion (Rayo and Becker, 2007), time and risk preferences (Netzer, 2009), and hedonic forecast

bias (Robson and Samuelson, 2011); see Robson and Samuelson (2010) for a review and an in-

depth justification of the framework. Particular attention deserve articles that have analyzed
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the evolution of intertemporal preferences in humans (Sozou, 1998; Dasgupta and Maskin, 2005;

Robson and Samuelson, 2007); the main difference between these articles and the present model

is that they have no conflict of interest between principal and agent (and hence intertemporal

preferences simply arise as the optimal solution of a given statistical problem), whereas in the

present model the (endogenous) principal-agent conflict is at the core of the explanation for self-

control. This paper is also connected to the literature on decision linkage, in which a principal

can discipline an agent by linking together several of the agent’s choices: while the principal can-

not observe particular realizations of some important variable, she knows its distribution, and

can therefore incentivize the agent by linking together several of the agent’s choices (Jackson

and Sonnenschein, 2007; Frankel, 2014). For example, in a school in which each teacher has an

incentive to inflate grades, the school principal can still extract the teacher’s knowledge about

the students by imposing a cap on the number of “A”s the teacher can give (Frankel, 2014),

and I propose a similar mechanism in which the Principal endows System 2 with a self-control

budget to link the decisions and discipline its choices.7 This paper also belongs to a literature

that consider dual decision processes (Cerigioni, 2021), in particular when such processes are

applied to study self-control (Schelling 1978; Thaler and Shefrin 1981; Bernheim and Rangel

2004; Benhabib and Bisin 2005; Fudenberg and Levine 2006; Brocas and Carrillo 2008, 2021);

the dual Systems model has also a long tradition in cognitive science and psychology (Sanfey

and Chang, 2008; Kahneman, 2011).

2 The model

This section presents the baseline model (proofs of all results can be found in the Appendix).

There are three players: the Principal, who stands for the human genes (that are subject to

natural selection), System 1 (that can be seen as a genetically-programmed automatic and un-
7This paper is also related to a literature on “veto-based delegation”, in which the principal chooses a default

option and allows the agent to choose the action only within a certain set of options; otherwise the default decision
is implemented (Mylovanov, 2008; Alonso and Matouschek, 2008). In the present model, it is System 1 who takes
the “default action” in lieu of the Principal.
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conscious module or “self” in the human brain, that executes the Principal’s planned actions),

and System 2 (that represents a module or “self” that is responsible for conscious decisions in

the human brain).8 The Principal’s objective is to maximize genetic fitness y, interpreted as

quality-adjusted offspring. There are K decisions to be made, and these should be understood as

cheating opportunities (that provide a private benefit at the expense of breaking a social norm),

and I will consider the case when K grows large. At each of those decision points, there are

two possible actions available, a ∈ {1, 2}. Action 1 represents cheating: an action that has the

potential to yield short-term fitness gains at the expense of the future (due to punishment from

the individual’s social group, Buss, 2015, Ch. 6).9 Action 2, on the contrary, is to be interpreted

as respecting social norms. Genetic fitness y is given by y1 when action a = 1 chosen, and y2

when action a = 2 is chosen. Both y1 and y2 are random and independent, as described below.

Variable y1 is generated randomly according to distribution F , which I assume to be strictly

concave and differentiable and with support in R+ (an exponential distribution, for example,

satisfies this property, which makes the first-order conditions in System 2’s problem sufficient

for an optimal solution). The Principal and System 1 (but not System 2) observe y1, which

should be interpreted as the benefit from transgressing the social norm, but that is difficult for

the individual to understand (for example, the value of mating at that particular moment, that

can depend on the level of sexual hormones in the body, the menstrual cycle, etc).10 System 2

(but not the Principal or System 1) observes y2, which should be interpreted as the importance

of respecting the social norms specific to the complex social environment of the individual.11

8Even though I consider the human genes (subject to the evolutionary process) as the Principal in this model,
no “design” or teleology is implied. See Robson and Samuelson (2010) for a review paper on the literature that
takes the approach of modeling the evolutionary process in a Principle-Agent relationship. While not a perfect
match, System 2 could be seen as the “planner”, and System 1 as the “doer”, of planner-doer models (Thaler and
Shefrin, 1981; Fudenberg and Levine, 2006).

9The main framework presented in this paper is static, and therefore the intuition of “short-term” gains and
“long-term” costs is provided only for ease of interpreting the model. See Section 5 for a dynamic version of the
main framework.

10This characteristic should be understood as “bottom up”, i.e. outside of the awareness of the individual, but
still able to be encoded by regions such as the orbitofrontal cortex in primates (OFC, Watson and Platt, 2012),
and later passed on to the vmPFC and the comparator regions that I identify with System 1 (see Section 2.3 for
a discussion of the relevant evidence from neuroscience).

11 Social norms are difficult to encode in genes, because they change too fast with respect to the natural
environment (although culture has undoubtedly affected the evolutionary process Boyd and Richerson, 1985).
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Variable y2 is distributed according to distribution G with support in R+. Moreover, y1 and y2

are independent. Therefore, the fitness maximizing action is to follow the social norm (a = 2) if

and only if y2 ≥ y1.

The Principal chooses the utility function u(·) of System 2, subject to constraints that I

describe below. This follows the previous literature on the evolution of preferences, where the

Principal maximizes fitness by choosing System 2’s utility function (Robson and Samuelson,

2010).12 I depart from this literature in two important aspects (for which I provide evidence

from neuroscience in Section 2.3 below). The first is that, although the Principal observes y1, it

cannot make System 2’s utility contingent on it (this is similar to the assumption of asymmetric

information in the brain by Brocas and Carrillo, 2008).

Assumption 1. The Principal, and Systems 1 & 2 have the following restrictions:

1. The Principal and System 1 observe y1, but not y2.

2. System 2 observes y2, but not y1.

3. The utility function of System 2, u(a, y2), cannot depend on y1.

Another departure from the previous literature on the evolution of preferences, stems from

the way in which the actions are implemented. As I mentioned above, there are K decisions that

need to be taken. In the present model, the incentives for System 2 of the K different choices are

linked together (with K > 1, as opposed to K = 1 in the previous literature). System 2, after

observing (independent and identically distributed) realizations (y21 , . . . , y
2
K), sends messages

(m1, . . . ,mK) ∈ RK+ to System 1 (each message must be non-negative, interpreted as the level of

Therefore, natural selection can design a utility function that yields payoffs for following the social norms, even
if the specific social norms are only observed by the human individual.

12Robson (2001) showed that the reason a utility function would evolve in the first place is because it allows for
flexibility in a fast-changing environment. Since social competition was one of the main causes of the evolution
of intelligence, and the social environment can be very fast-changing, it is therefore not surprising that I take
the choice of utility function by the Principal as the starting point of my analysis. Each paper in the literature
studies a particular phenomenon by selecting which constraints the Principal faces. For example, Rayo and Becker
(2007) derive the fact that happiness adapts over time (the phenomenon known as hedonic adaptation) from two
constraints: utility is bounded, and System 2 has a threshold of perception under which cannot differentiate two
alternatives with similar utility.
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self-control exterted). Upon observing each message mi, System 1 forms beliefs about the value

of y2i , and then implements the fitness-maximizing action ai, for 1 ≤ i ≤ K.13 Let β(mi) denote

the expectation of y2i after observing mi, according to System 1’s beliefs (I will refer to β(mi) as

System 1’s beliefs from now on).

Assumption 2. System 2 sends messages m1, . . . ,mK over K different actions to System 1,

who then chooses actions a1, . . . , aK , in such a way as to maximize fitness according to its beliefs.

Assumption 3. System 1’s beliefs are exogenous (the Principal takes them as given), and β(m),

is increasing, concave, and differentiable.14

Note that Assumption 2 implies that action ai = 2 will be chosen if and only if β(mi) > y1i ,

as System 1 maximizes fitness (given its beliefs). Finally, I assume that the Principal has an

extra way of disciplining System 2: the Principal can impose a “budget” B, such that System 2

can only send messages within the budget.

Assumption 4. The messages m1, . . . ,mK must be such that 1
K

∑K
i=1mi ≤ B, where B is

chosen by the Principal.

In summary, the timing of decisions in the model is as follows.

1. The Principal chooses the utility function u(a, y2) for System 2, and budget B.

2. Random variables (y11 , . . . , y
1
K) and (y21 , . . . , y

2
K) are realized (i.i.d.), according to distribu-

tions F and G respectively.

3. System 2 observes the y2 realizations and sends messages (m1, . . . ,mK) to System 1.

4. System 1 observes the y1 realizations and System 2’s messages, and chooses actions (a1, . . . , aK).
13Previous models in the “evolution of preferences” literature assume that although the Principal can choose

System 2’s utility function, it is System 2 who ultimately has all the control on which action becomes implemented.
Instead, I assume that the Principal retains de facto “veto power” (Mylovanov, 2008), through the intervention
of System 1, and only allows System 2 to implement her preferred actions under certain conditions, which will
become clear below.

14As it will become clear in Proposition 1 below, the Principal can obtain the first best asymptotically for any
beliefs β(m) that satisfy Assumption 3. Therefore, the outcome would be identical if I assumed that the Principal
could choose β(m) directly.
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5. Fitness and utility are then obtained by Principal, System 1 and System 2.

Example 1. To illustrate the functioning of the model, let’s consider an example with K = 2,

i.e. when only two actions need to be taken. Since System 2 only observes y21 and y22, then the

Principal can extract information from System 2 by making its utility u(1, y2) = 0 and u(2, y2) =

y2, and setting B = 1/2, so that 1
2 (m1 +m2) ≤ 1

2 . Assume that y1 is distributed according to a

geometric distribution with parameter λ = 1, and therefore the CDF is F (y1) = 1−e−y1 . Suppose

for simplicity that System 1 takes messages at face value, so that β(mk) = mk. Since System 1

will choose ak = 2 if and only if β(mk) = mk ≥ y1k, System 2 maximizes F (m1)y21 + F (m2)y22,

or equivalently:

max
m1

[1− e−m1 ]y21 + [1− em1−1]y22 ,

the solution of which is m1 =
log(y21/y

2
2)+1

2 . Note that System 1 can learn the relative benefit

of choosing action 2 for k = 1 vs. k = 2, i.e. the ratio y21/y22, but is unable to infer the absolute

values. The rest of the paper shows the Principal’s optimal choice for System 2’s utility and

self-control budget, such that the maximal information from System 2 can be extracted.

Assumptions 1-4 make this model depart from others in the literature of the evolution of

preferences. I define the following solution concept of asymptotic equilibrium, that considers

the players’ behavior as K grows large, inspired by a similar solution concept in Jackson and

Sonnenschein (2007). The reason to take K large is that the incentives generated by tying

the decisions together grow stronger with the number of decisions K. Before defining the main

concept of an asymptotic equilibrium, however, we need to define the concept of a K-equilibrium.

Definition 1. Given a utility function u(a, y2) for System 2, beliefs β for System 1, and a budget

B, a K-equilibrium is given by actions a1, . . . , aK , and messages m1, . . . ,mK , such that:

� System 1 chooses actions a1, . . . , aK , such that it maximizes fitness
∑K
i=1 y

ai
i , given its

beliefs.
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� System 2 choses mi, . . . ,mK such that it maximizes
∑K
i=1 E[u(ai, y

2
i )], subject to System

1’s behavior and to 1
K

∑K
i=1mi ≤ B.

Definition 2. An asymptotic equilibrium is given by a utility function u(a, y2) and a budget

B such that the Principal obtains optimal fitness asymptotically, i.e.

lim
K→∞

P

[
(ai)

K
i=1 = arg max

K∑
i=1

yai

]
= 1,

subject to the actions of Systems 1 and 2 constituting a K-equilibrium for u(a, y2) and B, for

all K.

In other words, an asymptotic equilibrium is similar to a Bayesian Nash Equilibrium, except

that the requirement on System 1’s beliefs, and on the Principal’s optimality, are asymptotic.

The asymptotic equilibrium should be understood as an approximation for a finite, but large

enough, number of decisions taken by the individual. This idea is similar to the way the normal

distribution is often used as an approximation, by the central limit theorem, when the number

of observations ir large enough (i.e. more than thirty). Thus, the asymptotic equilibrium should

be taken as an approximation, up to a small and vanishing error, of the optimal behavior of the

Principal (i.e. natural selection), even for large but finite K.

2.1 System 2’s problem

Recall that System 2 observes y21 , . . . , y2K and then chooses messages m1, . . . ,mK , such that

mi ≥ 0 and 1
K

∑K
i=1mi ≤ B. From the point of view of System 2, whether System 1 chooses

ai = 2 conditional on sending message mi is a random event, that has probability: P[ai = 2] =

P[β(mi) > y1i ] = F (β(mi)) . Because the Principal chooses a utility function u(a, y2) for System

2, the Principal can simply normalize the utility u(1, y2) = 0, and then consider a function

v(y2) = u(2, y2). This implies that (1−F (β(mi)))u(1, y2i ) +F (β(mi))u(2, y2i ) = F (β(mi))v(y2i ).
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Therefore, System 2’s problem is to choose mi such that it solves:

max
m1,...,mK

K∑
i=1

F (β(mi))v(y2i ) s.t. mi ≥ 0 for all i, and
1

K

K∑
i=1

mi ≤ B.

Let F̂ (m) = F (β(m)). Because of Assumption 3 on beliefs, the objective function is concave,

and the first order conditions are sufficient for optimality:

f̂(mi) · v(y2i ) = λ− µi, and hence mi = f̂−1
(
λ− µi
v(y2i )

)
, (1)

where f̂ is the derivative of F̂ , µi is the Lagrange multiplier of the first constraint, and λ is

the Lagrange multiplier of the second constraint (since F̂ is concave, f̂ is injective and its inverse

is well defined).

2.2 Principal’s problem and main result

The Principal’s problem consists on choosing utility function v(y2) for System 2, as well as a

budget B, in order to maximize genetic fitness given System 2’s induced behavior. The Principal

has two tools to influence the behavior of System 2: by choosing v(y2), the Principal gives System

2 incentives to consider a certain state more important than other; by choosing B, the Principal

decides how much to limit the autonomy of System 2. It turns out that these two tools are

enough for the Principal to achieve optimal fitness asymptotically (as it is standard in contract

theory, the optimal outcome is defined as the maximal payoff for the Principal in the absence of

constraints; in this case, it is the maximal fitness the Principal could attain if it observed y2i and

chose ai directly).

Proposition 1. There exists an asymptotic equilibrium, which is characterized by:

v(y2) =
1

f(y2)
, and B = E[y2],
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for the case β(m) = m. Moreover, this asymptotic equilibrium is unique, up to outcome-

irrelevant transformations of System 1’s beliefs.15

The intuition for the result is as follows. Because the Principal cannot include y1 into System

2’s utility function, it chooses a utility function v(y2) for System 2 which is biased towards always

choosing action a = 2, and the more so the higher y2 is. Note that the Principal could have

an unbiased System 2, by choosing v(y2) = u(2, y2)− u(1, y2) = y2 − E[y1]: System 2 would be

unbiased, but the Principal would be unable to extract System 2’s information about y2. Thus,

by biasing System 2 through its utility function, and then disciplining it through the budget

B, with a limited amount of self-control, so that System 2 is constrained in its autonomy, the

Principal can achieve optimal fitness. It is the combination of being able to choose both v(y2)

and B that allows the Principal to reach optimal fitness asymptotically.16

Observe that v(y2) is increasing in y2 (as f(y2) is strictly decreasing by virtue of F (y2)

being strictly concave in y2), so System 2 gives more importance to a = 2 being implemented in

states in which y2 is higher. In a sense, the Principal makes System 2 an “advocate” for action

a = 2 (as in the case of Che and Kartik, 2009, in which the Principal purposefully chooses a

biased Agent, to generate incentives for the Agent to collect information in order to convince

the Principal). Because the Principal disciplines System 2 by limiting the amount of messages

it can send, System 2 has an incentive to send high mi only when y2i is truly high, following the

intuition of the literature in decision linkage (Jackson and Sonnenschein, 2007; Frankel, 2014). In

fact, this is analogous to the example in the Introduction about the principal of a school choosing

an incentive scheme that encourages teachers to inflate grades, but who sets a cap on the number
15In particular, for any beliefs β(m), there is an asymptotic equilibrium with v(y2) = 1

f̂(β−1(y2))
and B =

E[β−1(y2)], that yields the exact same outcome as the proposed asymptotic equilibrium. Note that, although the
budget seems arbitrary, it is not so. The budget is uniquely determined, up to “changes in scale”: if System 1
would interpret every message m as β(m) = m/2, then the Principal would achieve the same final outcome by
endowing System 2 with a budget of 2B. In the remainder of the paper, I will assume β(m) = m, as it simplifies
all the expressions without affecting any results.

16Note that the Principal can achieve the first best asymptotically even if System 2 had distorted beliefs. If
System 2 believed that y1 ∼ F̃ (y1), all the previous arguments hold if the Principal chose v(y2) = 1

f̃(y2)
. The

only requirement is that, in that case, the distorted beliefs operate in an evolutionarily long time (an assumption
which is made for example by Rayo and Robson, 2016).
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of students who can receive a grade of “A”, while allowing the teacher to choose which students

get each grade (Frankel, 2014). In conclusion, Proposition 1 shows that, against the popular

intuition that “more self-control is always more adaptive”, there is actually an optimal amount of

self control that maximizes genetic fitness, thus explaining why humans evolved a limited (rather

than perfect) self-control.

2.3 Evidence from neuroscience

I attempt here to provide the intuition (based on the evidence we have from neuroscience about

the functioning of the brain) for the assumptions of the model.

I begin with Assumption 1, regarding the information that each player has. As I discussed

above, y2 refers to the particular social norms of the individual’s group about cheating, that

are extremely specific and too fast-changing to be encoded directly by the genes (Richerson and

Boyd, 2005; Henrich et al., 2001), and hence unobservable by the Principal (and also by System

1 since it is assumed that its behavior is genetically determined), although easily observable by

System 2. However, while the particular social norm about cheating cannot be encoded in the

genes, the value of following the social norms is stable enough that it can, hence having y2 as

an argument in System 2’s utility function. In other words, while the genes cannot encode the

particular social norms for each society, they can encode the disutility of breaking whichever

social norm happen to be in place. On the flip side, y1 is not observable for System 2, nor can

it be included in its utility function i.e. it represents characteristics for which the individual is

not aware (“bottom up signals”, such as hormones). This makes sense if we think of y1 as the

fitness value of a cheating opportunity: for example in the case of sexual cheating, this value

can depend on inferring the health and reproductive status of the potential sexual partner from

subtle cues. In primates, the orbitofrontal cortex (OFC) has been showed to respond to social

status and sexual cues (Watson and Platt, 2012), and the OFC can affect the value signal for

y1 in the vmPFC which, together with the self-control exerted by the dlPFC (i.e. System 2’s
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message m) are compared by System 1.17

Support for the last part of Assumption 1, regarding the impossibility of including all relevant

variables in System 2’s utility function, stems from the modularity of the brain. There is ample

evidence that the brain and the mind are modular (they are composed of several more-or-less

insulated modules which do not necessarily share information); and behavior stems from a conflict

between competing modules (Fodor, 1983; Tooby and Cosmides, 1992; Cosmides and Tooby,

1994; Pinker, 1997; Barrett and Kurzban, 2006; Sanfey et al., 2006; Kurzban and Athena Aktipis,

2007). Self-control can therefore be understood as a manifestation of a conflict between brain

systems, an approach that has been used previously (Thaler and Shefrin, 1981; Fudenberg and

Levine, 2006; Brocas and Carrillo, 2014). Modularity might be especially important in humans as

compared to other species, because as our brain became larger in the course of evolution, the cost

of connecting distant regions grew, and so there was a change in the pattern of connectivity, that

exacerbated local connections and specialization (Gazzaniga, 2012). From a computational point

of view, a build of the brain composed of a number of conflicting modules might be the optimal

design to solve complex tasks (Livnat and Pippenger, 2006).18 Behavior would then result from

the aggregation of these brain modules, and these modules can recommend different behaviors,

and hence be in conflict with each other.19 Further evidence of modularity and encapsulation

comes from studies that show that people do not have conscious access to their own mental states

and processes (Gazzaniga, 1970; Nisbett and Wilson, 1977; Libet et al., 1983). This assumption

has been incorporated into economics by Brocas and Carrillo (2008), who consider that there is

a problem of asymmetric information between different brain subsystems (see also Brocas and
17I thank a referee for suggesting that these neural circuits would affect the value signal before it reaches System

1, i.e. dmPFC and IPS regions.
18According to Sanfey et al. (2006): “There is a long legacy of research within psychology, strongly supported

by findings from neuroscience, to suggest that human behavior is not the product of a single process, but rather
reflects the interaction of different specialized subsystems. Although most of the time these systems interact
synergistically to determine behavior, at times they compete, producing different dispositions towards the same
information”. (Ainslie, 2001, p.43) agrees with this view. See also McClure et al. (2004), and Haidt (2006) for a
book-length treatment.

19Bisin and Iantchev (2016) showed a similar result, namely that a hierarchical mind with conflicting modules
is evolutionarily adaptive (see also Kurzban, 2012). I would like to emphasize that I am not arguing that there
exactly two subsystems in the mind, but rather that there are a number of subsystems that exhibit modularity,
and the framework with two subsystems serves as a useful modeling device (Alós-Ferrer and Strack, 2014).
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Carrillo, 2014, for a review of the implications of modularity in economic applications).

I turn now to justify the inclusion of System 1 in the model, as well as Assumption 2. An area

in the brain, namely the ventromedial prefrontal cortex (vmPFC), is responsible for valuation

of different alternatives (Kable, 2013), and exercising self-control happens by activating another

area, the dorsolateral prefrontal cortex (dlPFC), which modulates the value signal in the vmPFC

(for example, a dieter can reduce the value of a tasty but unhealthy meal by exerting self-control,

what activates their dlPFC and reduces that value of the meal in the vmPFC, Hare et al., 2009).20

This final value is passed on to regions specialized in comparing the values (dmPFC and IPS),

that then choose one course of action (Hare et al., 2011). System 2 is therefore assumed to

represent the dlPFC, exerting self-control in order to modulate the value of the alternatives.

This is consistent with the fact that the dlPFC is responsible for executive function (that involves

task-switching, planning, and working memory, Elliott, 2003), as well as directly on the exertion

of self-control (Knoch et al., 2006; Hare et al., 2009; Figner et al., 2010). System 1 represents

the comparator regions (dmPFC and IPS), that simply take the action that has the highest

value (in terms of genetic fitness), and implement such action. Further evidence has showed that

disruption of the left dlPFC leads subjects to choose immediate smaller options over delayed

larger ones (Figner et al., 2010), and disruption of the right dlPFC makes subjects more likely

to accept unfair (but “tempting”) offers in the Ultimatum Game (Knoch et al., 2006). Moreover,

patients with lesions in their dlPFC behaved more dishonestly in order to increase their payoffs

(Zhu et al., 2014). This evidence strongly suggests a role for the dlPFC in self-control.

Assumption 3 is a technical assumption for the maximization problem to be well defined.

Finally, the justification for Assumption 4 stems from evidence that humans have a limited

amount of self-control, a phenomenon known as ego depletion (Baumeister et al., 1998; Muraven

et al., 1998); see Achtziger et al. (2016) for an application in economics. In particular, the ego

depletion literature makes the following two claims: 1) people have a finite amount of willpower

which becomes depleted as they exercise self-control (Baumeister et al., 1998; Muraven et al.,
20Notably, when the choice task is reframed in such a way that temptation is reduced, the choice that previously

required self-control can be taken without exertion of self-control (i.e. activation of the dlPFC Magen et al., 2014).
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1998); and 2) all tasks that require self-control use the same “stock of willpower” (Baumeister

and Tierney, 2011). However, there has been a recent controversy regarding the ego depletion

literature: while a 2010 meta-analysis found this effect to be robust (Hagger, 2010), a more

recent meta-analysis which used a methodology that accounted for small sample experiments

and publication bias, found a zero effect (Carter and McCullough, 2014), and several replication

attempts have failed to find an effect distinguishable from zero (Alós-Ferrer et al., 2019), including

a multi-lab replication of a classic version of the experiment used to determine the ego depletion

phenomenon (Hagger and Chatzisarantis, 2016). However, another recent replication attempt

did find a small but significant effect (Dang et al., 2021). As of today, the debate is still open

and it seems that the ego depletion effect, if confirmed to exist, is probably heavily context-

dependent. Because of that, the framework provided in this paper can potentially shed light on

the nature of the ego depletion effect, and self-control more generally.

Despite the controversy in the ego depletion literature, Assumption 4 is the least in need

of external justification because, given the rest of the model, assuming that the Principal can

choose B (in addition to System 2’s utility function) is a natural assumption, and in line with the

spirit of the literature on the evolution of preferences discussed in the Introduction. Moreover,

this paper can add to the ongoing controversy by providing a theoretical framework that yields

testable predictions (Friese et al., 2019).

3 Is self-control like a muscle? An imperfect metaphor

In the following sections I apply the model to several interesting facts found in the empirical

literature on self-control. Before proceeding, I would like to point out that the experimental

tasks used to measure self-control, such as not eating a marshmallow or keeping one’s hands in

cold water (Mischel et al., 1972; Baumeister et al., 2007), can seem far from the stylized example

of cheating vs. breaking social norms. However, we must keep in mind that the economic

environment in which humans evolved was rather poor (with limited economic choices), and
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thus why it can be appropriately modeled by a series of K binary choices between cheating and

respecting a social norm. In today’s world, the number of economic choices is extremely large

for any individual, and that is why many tasks can be used to measure self-control, as long as

they generate a tradeoff in the individual between, for example, following the instruction of the

experimenter vs. cheating.21

3.1 Self-control becomes exhausted

Researchers of self-control have found that, after an individual exerts self-control in a given task,

they show less self-control in subsequent (possibly unrelated) tasks, a phenomenon which has

been termed ego depletion (Baumeister et al., 2007, but see Section 2.3 above for a nuanced view

of this phenomenon in light of the recent replication crisis). Note that as outside observers, we

cannot directly observe mi, only whether ai = 1 or ai = 2. In other words, if we ask a subject to

keep their hands in ice-cold water for one minute, we can only observe whether they succeeded

at doing so or not; we cannot observe the amount of self-control they exerted. Because of that,

I define a measure of self-control which simply amounts to counting the times when ai = 2, in

all tasks except the first.

Definition 3. Reveled self-control in subsequent tasks is given by
∑K
i=2 1{ai = 2}.

Suppose that System 2 is given a task in two different treatments τ : let τ = C be a control

condition, and τ = S be a treatment that requires self-control. Crucially, the first task’s fitness

y11(τ) is such that y11(τ) = ρ(τ)+y11 , where y11 ∼ F . In the control τ = C, we have that ρ(C) = 0,

so that we are back to the original model. However, in the treatment, we have ρ(S) > 0. All other

tasks i ≥ 2 are such that y1i (τ) = y1i as usual. The interpretation of ρ(S) is that in the treatment

condition, the temptation is higher for the first task. The following Proposition formalizes the

ego depletion effect.
21This is also the reason why limited self-control seems to be at the root of several modern behaviors, such

as alcohol consumption, smoking, not saving or exercising enough, etc. (Baumeister et al., 1994). I discuss the
implications of this evolutionary mismatch in Section 4.2.
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Proposition 2. Revealed self-control in subsequent tasks is smaller in the Treatment versus the

Control condition.

The intuition for Proposition 2 is simple: as ρ(S) increases, the amount of self-control exerted

in the first task increases too, and the remaining budget B − m1

K decreases accordingly. Since

there is less budget left in the Treatment than in the Control condition, then System 2 is forced to

send smaller messages, and therefore to have smaller revealed self-control. This shows that ego-

depletion is a natural consequence of the fact that System 2 has a limited budget of self-control

and, in that respect, the muscle metaphor is apt. We turn now to whether the “self-control

muscle” can become stronger.

3.2 Self-control grows over time when it is needed

For at least twenty-five centuries, philosophers have been advocating for people to exercise self-

control, in order to grow it over time. For example, the philosopher Epictetus recommended to

his students to strengthen their self-control daily. Recently, it has been showed that this is a good

advice, and that self-control can grow when necessary, just as a muscle. For example, exercising

self-control in any domain (be it physical exercise, dutifully attending one’s academic obligations,

or improving personal finance) improved people’s performance in an unrelated self-control task

(Muraven et al., 1999; Oaten and Cheng, 2006b,a, 2007). As I show next, having self-control

depend on previous needs is a simple way to adapt to a changing environment.

So far I have assumed that the distribution of y2 is fixed over time. In this section, I assume

instead that the distribution of y2 depends on a parameter θ, which is unknown a priori : y2

is distributed according to G(y2|θ) ∼ N+(θ, σ2), where N+ refers to a truncated normal (that

takes only non-negative values). Suppose that the Principal-Agent relation happens at different

time periods t ∈ {0, 1, 2, . . . }. In this extension of the model, the Principal can design a budget

B(t) that updates at the end of each period t. Let ȳ2(t− 1) = 1
K

∑K
i=1 y

2
i (t− 1) be the average

level of self-control “needed” in period t − 1. I assume that the updating process of Bt can be

conditional on ȳ2(t− 1).
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Proposition 3. The self-control budget B(t) is increasing in ȳ2(t− 1).

The main intuition behind Proposition 3 is that ȳ2(t−1) is informative about θ, and therefore

the Principal tailors the level of the self-control budget to the distribution of y2, which depends

on θ.22 The Principal anticipates that high realizations of ȳ2(t− 1) imply that θ must be higher

than expected, in which case there will be higher realizations of y2(t), and thus the optimal

self-control budget should be higher.

So far we have seen that self-control behaves much like a muscle: it gets tired when we use

it continuously (Proposition 2), and it grow over time (Proposition 3). However, the muscle

metaphor might be imperfect: self-control, unlike a muscle, might not need to depend directly

on a physical resource such as glucose.

3.3 Is glucose consumed or only monitored?

In the last decade, a series of studies have found that self-control is linked to glucose (for example,

low blood sugar is correlated with unlawful behavior, Gailliot and Baumeister, 2007). One

proposed hypothesis is that the brain consumes extra glucose during self-control tasks (Gailliot

et al., 2007). However, Kurzban (2010) re-analyzed the data from Gailliot et al. (2007) and found

no support for the original hypothesis, proposing instead that glucose should be considered as a

variable that is monitored, rather than as an input that is consumed, into the decision-making

process: I call this the glucose monitoring hypothesis.

Long-term investments are worthless (in terms of genetic fitness) if the individual dies and

hence cannot reap the benefits of the investment. The question then becomes: how does the

Principal determine the relative survival prospects of the individual? I assume that the level of

glucose γ can be monitored, and that this can serve as an input to assess potential fitness.23 Let
22The assumption that G(y2|θ) is distributed as a truncated normal is not innocuous: the normal distribution

has the Monotone Likelihood Ration Property, which implies that higher realizations of y2 imply that a higher θ
is more likely.

23Low blood glucose starts a cascade of hormonal and neurophysiological changes, and glucose and energy
balance (homeostais) are crucial for the survival and thriving of the individual (Williams and Elmquist, 2012).
Therefore, it is plausible that low blood glucose affects self-control indirectly, through neuroendocrine changes.
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γ be a function that transforms the monitored level of glucose into “fitness units”. I assume that

y1 does not change with glucose, but that y2 is obtained from a distribution G(y2|γ), and that

the budget B(γ) can depend on γ.

Proposition 4. There is a unique asymptotic equilibrium with v(y2) = 1
f(y2) and B(γ) = E[y2|γ],

for beliefs β(m) = m (up to outcome irrelevant-transformations of System 1’s beliefs).

Note that the budget B(γ) is given by the expectation of y2 conditional on γ: even though

glucose is not consumed, it is used as an indicator of how much self-control is optimal to endow

System 2 with. Proposition 4 therefore offers a plausible mechanism as for how glucose could

serve as a monitored variable, rather than an input that is consumed.

4 Welfare implications

The model presented in this paper has strong normative implications. The first, and most

important, is the idea that individuals might be choosing actions that are against their own

interest. This in turn implies that individuals are subject to internalities (Berridge, 2003; Berridge

and O’Doherty, 2014), what has given birth to the recent field of behavioral welfare economics.24

4.1 Decoupling choice from welfare

A recent literature is taking seriously the idea that revealed preferences do not always reflect

the welfare of the individual (Kahneman et al., 1997; Kahneman and Sugden, 2005; Allcott and

Taubinsky, 2015; Chetty, 2015). Suppose that the social planner aims to maximize a weighted

average of the utilities from System 2 and the Principal/System 1, E
[
ζ · u(a, y2) + (1− ζ) · ya

]
(note that Principal and System 1 have the same utility function, i.e. genetic fitness ya, and

so the social planner only needs to consider the relative weights of utilities between System 2

and Principal/System 1). Then, it is easy to see that whenever the weight given to System 2
24Chetty (2008); Mullainathan et al. (2012); Allcott et al. (2014); Chetty (2015); Allcott and Taubinsky (2015);

Taubinsky and Rees-Jones (2018); Allcott et al. (2019); Bernheim and Taubinsky (2019); Jimenez-Gomez (2017),
among others.
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is positive (ζ > 0), the social planner would like to endow System 2 with a larger self-control

budget.

Proposition 5. The socially optimal budget B∗ is larger than the budget B provided by natural

selection.

What Proposition 5 amounts to, is that the budget generated by natural selection is too small

as long as the social planner cares about System 2 at all. The reason is that when the budget

is B = E[y2] (the one provided by natural selection), this will result in the maximization of ya.

That means that action a = 1 is taken too often, and therefore the maximization of the convex

combination of u(a, y2) and ya would require an increase in the probability of action a = 2 being

chosen, what is achieved with a larger self-control budget.25

The implication is that the social planner should engage in policies that either increase peo-

ple’s level of self-control, or reduce the availability of temptations, and this is consistent with

(for example) evidence that suggests smokers are happier when cigarettes are taxed (Gruber and

Mullainathan, 2006).

4.2 Evolutionary mismatch

While the example I have used so far to discuss self-control (and lack thereof) is breaking social

norms, today self-control plays a large role in a myriad of different behaviors. Lack of self-

control has been linked to consumption of alcohol, cigarettes, and illicit drugs, undersaving,

lack of exercise, unhealthy eating, etc. (Heatherton and Wagner, 2011). This is validated by

research that shows that unhealthy eating is associated with neural activity consistent with self-

control, such as decreased activity and connectivity in the dorsolateral prefrontal cortex (Rhodes

et al., 2013, see also Section 2.3). It has been argued that humans suffer an evolutionary
25This reasoning is true for any social welfare function (not just the sum of utilities) that has System 2’s utility

as an argument, and is increasing on that argument. It has been suggested to me that I might want to consider
fitness maximization as a welfare criterion. However, there is no normative reason why we should care about
fitness maximization. If we did, this would lead to some paradoxical consequences, such that we should attempt
to maximize the number of children people have (which is what fitness measures) over their own happiness.
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mismatch: human behavior was optimized by natural selection for a hunter-gatherer lifestyle

but, because our environment has changed rapidly, those same behaviors are not adaptive in the

current environment (Spinella, 2003). Because of this evolutionary mismatch, we live in a period

where arguably there are more temptations than ever before. Addictive drugs such as alcohol

and tobacco can be legally purchased by adults over a certain age; sugar and red meat (which

were scarce in our evolutionary environment) are now readily available; and lack of exercise and

being overweight has been linked to an increase in the risk of contracting certain diseases such

as cancer (Kushi et al., 2012).26 In order to capture this increased availability of temptations,

suppose that there is a shift in the distribution of y1, so that the current value is ŷ1 = ρ + y1,

where ρ > 0 is a constant and y1 is the original value. This change happens too fast in the

evolutionary time scale for the Principal and System 1 to react to it, so that v and B are still

given by v(y2) = 1
f(y2) and B = E[y2]. I am agnostic about whether this change is stable enough

that System 2 perceives it, in which case I say it is sophisticated, or whether System 2 is not

aware about this change in the distribution, in which case I say it is naive. It turns out that in

both cases System 2 will fail to resist temptation more often in the current environment.

Proposition 6. Irrespectively of whether System 2 is sophisticated or naive, System 1 chooses the

“impulsive” action a = 1 more often in the current environment than in the original environment.

The intuition behind Proposition 6 is as follows: when y1 increases to ŷ1, System 2 needs to

exert more self-control in each task in order to have a = 2 implemented. Because the budget is

fixed, that means that it is now “more expensive” to have a = 2 implemented for each possible

realization of y2, and therefore the probability that a = 1 increases across the board. The reader

might argue that if the distribution of y1 has changed over time, then the Principal should have

changed B as well. However, gene evolution is (usually) a slow process: humans’ genes have not

changed fast enough to adapt to the temptations (in the form of alcohol, tobacco and other drugs,

fatty and sugary foods, etc., Buss, 2015), which have increased exponentially. Because of that, it
26Unhealthy eating is a primary factor in the rise of obesity across the world (Crino et al., 2015). Moreover,

non-communicable diseases (such as stroke and heart attack, cancers, chronic lung diseases, etc.) accounted for
more than 60% of global deaths in 2008 (Rünger and Wood, 2015).
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seems reasonable to consider that the change in environment ŷ1 = y1 + ρ happened faster than

our genes could evolve, and therefore that B has remained fixed. For the same reason, System

1, who shares the same utility function as the Principal, and could be thought of as “hard-wired”

by the Principal, does not adapt to the change in the environment. Proposition 6 implies that

whatever conclusions can be drawn from the present model will be exacerbated in the current

environment, because of an increase in y1: lack of self-control decreases individual welfare in the

original environment (under y1, Proposition 5), but Proposition 6 shows that it will decrease

individual welfare even more due to evolutionary mismatch in the current environment (under

ŷ1). Because of evolutionary mismatch, we are at a point where System 2 is receiving too little

self-control budget, to cope with all the temptations of the modern world (and firms might be

exploiting this fact Akerlof and Shiller, 2015; Jimenez-Gomez, 2017).

5 Robustness: Dynamic choice

So far, the problem we have analyzed had System 2 observing (y2i )Ki=1, and then making the

choice of mi. However in real life decisions do not happen simultaneously, but rather as they

appear into a person’s life. In this section I show that, asymptotically, the solution for the static

and the dynamic problems coincide (I follow Jackson and Sonnenschein (2007) in solving the

static problem first, and then showing that the solutions for the static and dynamic problem

are asymptotically identical). Suppose that the Principal chooses the same utility function

v(y2) = 1
f(y2) and budget B = E[y2] which solved the static problem in Proposition 1. Moreover,

suppose System 2 naively chooses mi = y2i as long as that option is within the budget, and

otherwise chooses the maximal mi possible. In other words:

mi =

 y2i if 1
K

∑i
j=1 y

2
j ≤ B,

max
{
B ·K −

∑i−1
j=1 y

2
j , 0
}

if 1
K

∑i
j=1 y

2
j > B.

(2)

In that case, System 2’s average payoff is given by 1
K {
∑K
i=1 u(1, y2i ) + F (mi) · v(y2i )}, which
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converges to E[u(1, y2) +F (y2) · v(y2)]. That means that the average payoff in the dynamic case

converges to the payoff in the static case. We have the following result.

Proposition 7. For every ν > 0 there exists K̄ such that for all K > K̄, if System 2 chooses

mi as in Equation 2, it obtains a payoff that is smaller than that of the static case by at most ν.

Proposition 7 implies that the dynamic behavior of System 2 described in Equation 2 ap-

proximates the optimal behavior for System 2 in the static case. Thus, we can consider that the

static baseline model, as well as its extensions presented up to now, are useful approximations

of a dynamic model in which Systems 1 & 2 face decisions (of actions ai and messages mi)

sequentially.

6 Conclusion

Self-control problems are at the heart of much human suffering, and are pervasive. Since the

human brain and mind are the result of an evolutionary process that selected for the most adapted

individuals, this begs the question of why did humans not evolve a stronger, or even perfect, self-

control (Hayden, 2019). I have provided an answer: the current (and limited) self-control that

humans posses evolved precisely to make humans behave against their own interest (as judged by

their evolved utility function), in instances in which that behavior would be genetically adaptive.

This is the solution to an endogenous conflict of interest between the genes and the human

individual; a conflict that arises from the impossibility of the genes to include all the relevant

variables into the individual’s (specifically, System 2’s) utility function.

The model presented in this paper can explain several stylized facts found in the empirical

literature on self-control, such as the fact that self-control becomes depleted with usage in the

short-run, and also that it can grow over time. Moreover, even if self-control becomes depleted

when glucose levels are low, the model shows that glucose is not necessarily consumed to exert

self-control. This paper can also help shed light on the ongoing debate about whether the results

from the ego depletion literature are real (a controversy I described in Section 2.3). It has been
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argued that in order to make progress in settling this debate, better theoretical models of self-

control are needed (Carter and McCullough, 2014; Friese et al., 2019), and this paper could

provide a theoretical framework with which to confront the conflicting empirical evidence of ego-

depletion effects, while also providing a critical view on some of their findings (as in the case of

the impact of glucose on self-control). The model is also helpful in thinking about normative

economics. While self-control problems have most likely always been detrimental for welfare

(Proposition 5), this phenomenon has been exacerbated in recent decades by an abundance of

temptations (Proposition 6), and there is ample evidence that in the present day self-control

problems are an important source of welfare loss (Baumeister et al., 1994).

The framework presented in this paper represents a step towards connecting research in

economics with current topics in cognitive science and neuroscience, and towards understanding

the evolutionary origin of human nature, one of the most fascinating questions we can ask, with

profound implications for cognitive science, positive and normative economics, and policy.
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Appendix

Proof of Proposition 1. I will show that the following is an asymptotic equilibrium given

beliefs β(m): v(y2) = 1
f̂(β−1(y2))

, and B = E[β−1(y2)]. System 2’s problem:

max
(mi)Ki=1

K∑
i=1

F̂ (mi) · v(y2i ) s.t. mi ≥ 0 for all i, and
1

K

K∑
i=1

mi ≤ B,

where F̂ (mi) = F (β(mi)). Recall that F is strictly concave, increasing and and differentiable,

and so is β (by Assumption 3), and hence F̂ is strictly concave and differentiable, and therefore

the problem is well defined and the first order conditions for System 2 are sufficient for optimality.

The first order conditions are then:

f̂(mi)v(y2i ) = λ− µi, (3)

where µi corresponds to the Lagrange multiplier of the first constraint, and λ to that of

the second constraint. The following equation solves System 2’s condition for the asymptotic

equilibrium:27 mi = f̂−1
(
λ−µi

v(y2i )

)
. This guarantees that System 2 is maximizing its expected

utility. In order to have an asymptotic equilibrium, it must be the case that the Principal’s

condition is also met, namely:

lim
K→∞

P

[
(ai)

K
i=1 = arg max

K∑
i=1

y(ai)

]
= 1.

But notice that the following events are all identical:

{
(ai)

K
i=1 = arg max

K∑
i=1

y(ai)

}
= {ai = 2⇔ y2i > y1i ∀i} =

= {β(mi) > y1i ⇔ y2i > y1i ∀i} = {β(mi) = y2i ∀i} =

27Since F̂ is increasing and concave, therefore f̂ is decreasing, and hence f̂−1 is well defined.
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{
f̂−1

(
λ− µi
v(y2i )

)
= β−1(y2i ) ∀i

}
=

{
v(y2i ) =

λ− µi
f̂(β−1(y2i ))

∀i

}
.

The last event can be further decomposed into three events

{
v(y2i ) =

λ− µi
f̂(β−1(y2i ))

∀i

}
=

{
v(y2i ) =

c

f̂(β−1(y2i ))
∀i

}
∩ {c = λ} ∩ {µi = 0 ∀i}, (4)

for some constant c > 0 (because λ is a positive Lagrange multiplier). In what follows, I take

c = 1, which is just a normalization. Hence, we must have v(y2i ) = 1
f̂(β−1(y2i ))

, and we need to

prove that limK→∞ P[{λ = 1} ∩ {µi = 0 ∀i}] = 1.

I will first show that the event {λ = 1} implies the event {µi = 0 ∀i}. In order to do so,

assume λ = 1, and note that for a particular y2i there are two options:

1. either the second constraint is not binding (µi = 0), in which case we have f̂(mi)

f̂(β−1(y2i ))
=

λ = 1,

2. or the second constraint is binding (µi > 0), in which case mi = 0 and we have that
f̂(0)

f̂(β−1(y2i ))
= λ − µi < 1, or equivalently f̂(0) < f̂(β−1(y2i )). But since f̂ is decreasing

(because F̂ is concave as discussed above), and β−1(y2i ) ≥ 0 (since y2i ≥ 0), this second

case is not possible!

That is, if λ = 1, the second constraint is never binding, and all µi = 0. Therefore, the event

{λ = 1} implies the event {µi = 0 ∀i}.

By the law of large numbers, we have that

lim
K→∞

1

K

K∑
i=1

mi = E[f̂−1((λ− µ)f̂(β−1(y2i )))].

But because 1
K

∑K
i=1mi = B = E[β−1(y2)], we have

E[f̂−1((λ− µ)f̂(β−1(y2)))] = E[β−1(y2)]. (5)

36



But note that λ = 1 is a solution to Equation 5, because we already proved that λ = 1 implies

µi = 0 for all i, and thus λ = 1 solves E[f̂−1(λf̂(β−1(y2)))] = E[β−1(y2)]. And this concludes

the proof that

lim
K→∞

P

[
(ai)

K
i=1 = arg max

K∑
i=1

y(ai)

]
= lim
K→∞

P

[{
v(y2i ) =

1

f̂(β−1(y2i ))
∀i

}
∩ {λ = 1} ∩ {µi = 0 ∀i}

]
= 1,

and therefore of the existence of the asymptotic equilibrium. Notice that this equilibrium is

essentially unique, in the sense that all the beliefs β produce the same outcome, namely System

1 chooses action 2 if and only if β(mi) ≥ y1i , or equivalently, if y2i = β(β−1(y2i )) ≥ y1i . Thus, the

beliefs do not affect the outcome of the equilibrium, and when we take β(m) = m, we obtain

the forms of v(y2) = 1
f(y2) and B = E[y2]. Finally, note that no other λ fulfills the conditions in

Equation 4, and thus there are no other asymptotic equilibria.

Proof of Proposition 2. System 2’s first order conditions are:28

f(m1(τ)− ρ(τ))v(y21) = λ(τ),

f(mj(τ))v(m(y2j )) = λ(τ) for j > 1.

Where λ(τ) is given as the solution to:

ρ(τ) +
K∑
j=1

f−1

(
λ(τ)

v(y2j )

)
= B.

Because f−1 is decreasing in λ(τ), we have that λ(S) > λ(C). Therefore, since mi(τ) =

f−1
(
λ(τ)
v(y2i )

)
, we have that mi(C) > mi(S) for all i > 1, and therefore System 1 chooses a = 2

more often in the Control, and so revealed self-control is larger under C than under S, as we
28For simplicity, I ignore the constraint mi ≥ 0 in this and the rest of proofs. As proved in the proof of

Proposition 1, that constraint holds asymptotically with probability 1. I also assume β(m) = m.
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wanted to show.

Proof of Proposition 3. The distribution of ȳ2 is given by a truncated normal, N+

(
θ, σ

2

K

)
,

with probability density function φ̃+. The normal distribution has the Monotone Likelihood

Ratio Property (MLRP), which is inherited by the truncated normal:

d

dȳ2

(
dφ̃+

dθ

φ̃+

)
> 0.

Let pt(ȳ2(t)|ȳ2(t−1)) be the posterior of ȳ2(t), after having observed y2(t−1). Using Lemma

2 in Alonso et al. (2013), we have that pt(ȳ2(t)|ȳ2(t− 1)) inherits MLRP from φ̃+. Finally, note

that
B(t)

K
= E[y2] = E[ȳ2(t)] =

∫
ȳ2(t) dp(ȳ2(t)|ȳ2(t− 1)).

But MLRP implies First Order Stochastic Dominance, so
∫
ȳ2(t) dp(ȳ2(t)|ȳ2(t − 1)) is in-

creasing in ȳ2(t− 1), and therefore so is B(t).

Proof of Proposition 4. The proof is completely analogous to that of Proposition 1, except

that the expectation of y2 is conditional on γ when applying the law of large numbers, and thus

the budget is B(γ) = E[y2|γ].

Proof of Proposition 5. Let W (B) = E
[
ζ · u(a, y2) + (1− ζ) · ya

]
, which is a function of the

budget B (and implicitly of the actions a chosen a as a result of the behavior of Systems 1 &

2). Note that when the budget is B = E[y2], then E[ya] is maximized (by Proposition 1), and

therefore ∂E[ya]
∂B = 0. Note also that System 2’s utility is increasing in a, and that a larger budget

implies a higher frequency of choosing a = 2, and therefore ∂E[u(a,y2)]
∂B > 0 for all B. Combining

both comparative statics, it follows that ∂W∂B > 0 at B = E[y2], and therefore the socially optimal

budget B∗ is larger than E[y2].
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Proof of Proposition 6. If System 2 is naive, it still chooses mi as if ρ was 0. Therefore,

P[a = 2|ρ+ y1, y2] = P[β(m) > ρ+ y1] < P[β(m) > y1] = P[a = 2|y1, y2].

If System 2 is sophisticated, it solves

max

K∑
i=1

F (m̂i − ρ) · v(y2i ) s.t.
1

K

K∑
i=1

m̂i ≤ B.

The optimality conditions are:

f(m̂i − ρ) · v(y2i ) = λ̂ =⇒ m̂i = ρ+ f−1

(
λ̂

v(y2i )

)
.

From the budget constraint, and the fact that B = E[y2] and v(y2) = 1
f(y2) , we know that

1

K

K∑
i=1

f−1(λ̂ · f(y2i )) = E[y2]− ρ.

Let m̃i and λ̃ be as in the original problem (i.e. when ρ = 0). Because f−1(λ · f(y2)) is

decreasing in λ, then we have that λ̂ > λ̃, and therefore that

P[a = 2|ρ+ y1, y2] = P[ρ+ f−1(λ̂ · f(y2)) > ρ+ y1] < P[f−1(λ̃ · f(y2)) > y1] = P[a = 2|y1, y2].

Proof of Proposition 7. Let GK(y2) be the empirical distribution of y2 when there are K

choices. By the Glivenko-Cantelli theorem, we have that for all δ > 0, there exists a K̄ such

that for all K > K̄, supy2 |GK(y2) − G(y2)| < δ almost surely. Because System 2 chooses mi

as in Equation 2, that means that the average message sent by System 2 is bounded above by

(1+δ)E[y2]. Therefore, that means that there are a fraction of at most 1− 1
1+δ = δ

1+δ tasks where

its self-control is exhausted (and receives payoff of at least u(1, y2), since v(y2) = 1
f(y2) > 0), so

System 2’s utility is bounded below by E[u(1, y2)] + E[F̂ (y2)·v(y2)]
1+δ . Therefore given ν > 0, we can
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find δ such that

E[u(1, y2)] +
E[F̂ (y2) · v(y2)]

1 + δ
= E[u(1, y2)] + E[F̂ (y2) · v(y2)]− ν,

and solving for δ we find: δ = ν
E[F̂ (y2)·v(y2)]−ν , where recall that E[u(1, y2)] + E[F̂ (y2) · v(y2)]

is System 2’s expected utility in the static case. Therefore, choosing K̄ such that for all K > K̄,

supy2 |GK(y2)−G(y2)| < δ almost surely, concludes the proof.
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