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Abstract

This paper discusses pairing double/debiased machine learning (DDML) with
stacking, a weighted average of several candidate machine learners. The combi-
nation of the two methods leads to improved performance and addresses some of
the recent concerns raised about the use of causal machine learning in economic
applications. Additionally, we introduce DDML with short-stacking, which exploits
the cross-fitting step of DDML to substantially reduce the computational burden
of stacking. The central motivation for pairing DDML and stacking approaches is
that, in practice, it is rarely obvious which machine learner performs best for a spe-
cific application, and we show that stacking can successfully address this problem.
Based on a diverse set of applications and calibrated simulation studies, we gauge
the finite sample performance of DDML combined with stacking approaches on real
data in various commonly encountered settings. We show that DDML with stacking
is more robust than other approaches when the underlying data-generating process
is unknown and develop practically-relevant recommendations for researchers.
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1 Introduction

Supervised machine learning promises superior prediction performance compared to con-
ventional parametric approaches and more flexibility in approximating unknown func-
tional forms. Although the precise distinction to traditional estimators is elusive, key fea-
tures shared by many supervised machine learners are that they are data-adaptive in the
sense that model selection and validation are partially inbuilt, that they are nonparametric
since they do not impose that outcomes follow parametrized conditional distributions and
that they rely on some form of regularization, e.g., shrinkage. While originally designed
for prediction and classification tasks, a flourishing literature proposes strategies for lever-
aging machine learning for causal inference. One domain of causal machine learning uses
supervised machine learning to control for observed confounders or the approximation of
optimal instrumental variables (IVs). Within this field, the post-double-selection (PDS)
lasso of Belloni, Chernozhukov, and Hansen (2014) selects control variables in a partially
linear model through two auxiliary lasso regressions. Belloni et al. (2012) and Athey,
Tibshirani, and Wager (2019) use lasso and random forests for IV regressions.1

More recently, however, concerns have been raised about the use of methods leveraging
machine learning for causal inference. Angrist and Frandsen (2022) illustrate through a
series of calibrated simulation studies that the selection of IVs via the lasso can perform
poorly relative to more conventional many IV estimators (e.g., LIML). In experiments
using artificial pure-noise IVs, they also show that IVs residualized by random forests may
yield spurious results. Wüthrich and Zhu (2021) find that PDS lasso is prone to under-
select in small samples, leading to a potentially substantial bias, and conclude that OLS
with appropriate standard errors compares favorably also in high-dimensional settings.
Giannone, Lenza, and Primiceri (2021) argue that the approximate sparsity assumption,
which the lasso fundamentally relies on, is frequently not plausible in economic data sets.
In an application to the evaluation of active labor market programs, Goller et al. (2020)
find that random forests are not suitable for the estimation of propensity scores.

Against this background, we revisit the use of machine learning for causal inference.
We highlight the benefits of pairing Double/Debiased Machine Learning (DDML; Cher-
nozhukov et al., 2018a) with stacking approaches and introduce a novel, computation-
ally more efficient variation of DDML with stacking, which we refer to as short-stacking.
DDML relies on cross-fitting, a sample-splitting approach, which offers a path for utilizing
a general class of machine learners for the estimation of causal parameters.2 Stacking is a
form of model averaging due originally to Wolpert (1992) and Breiman (1996). Stacking

1Another influential strand of the literature exploits machine learning for the estimation of conditional
average treatment effects; see Wager and Athey (2018), Chernozhukov et al. (2018b), and Künzel et al.
(2019). For a review and Monte Carlo evidence, see Knaus, Lechner, and Strittmatter (2021).

2Sample splitting approaches, such as cross-fitting, are commonly applied to leverage supervised ma-
chine learners for causal inference; e.g., Wager and Athey (2018) for the estimation of CATE using causal
forests, or Athey and Wager (2021) in the context of policy learning.
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combines several base or candidate learners into a final estimator or “super learner” and
has been shown to perform at least as well as the best-performing candidate learner (Laan,
Dudoit, and Vaart, 2006; Laan, Polley, and Hubbard, 2007).3 Short-stacking is a variant
of DDML with stacking that leverages the cross-fitting step of DDML to substantially
reduce the computational burden of stacking.

The central motivation for pairing DDML and stacking approaches is that, in practice,
it is rarely obvious which machine learner performs best for a specific application. In the
context of causal inference, Laan, Rose, et al. (2011) advocate for stacking for Targeted
Maximum Likelihood Estimations. Yet, despite its strong theoretical foundation and
practical relevance, stacking is rarely used in causal inference in economics and social
sciences. Based on a diverse set of applications and calibrated simulation studies, we
gauge the finite sample performance of DDML combined with stacking and short-stacking
on real data in various commonly encountered settings, including IV regressions, and show
that DDML with stacking addresses some of the aforementioned concerns. We also find
that short-stacking performs better in small samples.

We begin with a review of the motivation for causal machine learning. A reason often
brought forward is that machine learning allows one to deal with high-dimensional data
sets where the number of variables is “large” relative to the sample size. High-dimensional
models appear in many contexts in economics: for example, when a rich set of job seeker
characteristics is observed on an online job platform (Hangartner, Kopp, and Siegen-
thaler, 2021), when IVs constitute complex weather patterns (Gilchrist and Sands, 2016),
or when confounds are represented as text data (Roberts, Stewart, and Nielsen, 2020b).
However, the advantages of causal machine learning are not confined to settings where
the number of observed confounds or IVs is large. For instance, if identification relies
on an unconfoundedness assumption, traditional parametric approaches require knowl-
edge of the nuisance functions. Even if only a few controls are observed, the empirical
researcher faces the difficult challenge of correctly specifying which controls to include
and how to transform them (e.g., interaction terms, dichotomization). If the model is
incorrectly specified, parametric estimators generally do not give consistent estimates,
even if unconfoundedness holds true. Data-adaptive nonparametric approaches offer, in
comparison, more flexibility in approximating unknown data structures. This flexibility
translates into enhanced robustness in estimating causal effects, as we show in multiple
simulation studies.

Another motivation is related to the weak causality property introduced in Blandhol
et al. (2022). A weakly causal estimand can be expressed as a weighted average of sub-
group treatment effects where the weights are positive. In the context of IV estimation
where instrument validity relies on observable confounders, Blandhol et al. (2022) em-

3See also Hansen and Racine (2012) for discussion of jackknife (leave-one-out) stacking. Hastie,
Tibshirani, and Friedman (2009) includes a textbook treatment of stacking.
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phasize that, in the absence of strong functional form assumptions, TSLS is generally not
weakly causal. The implication is that parametric conditioning is generally insufficient for
guaranteeing that the TSLS estimand can be interpreted as the local average treatment
effect (LATE). As we discuss, the point is more general and does not only apply to IV
models. We highlight that nonparametric conditioning through DDML allows sustaining
a weakly causal interpretation of structural parameters also in partially linear models.

We then provide simulation evidence demonstrating that stacking safeguards against
ill-chosen and poorly tuned machine learners provided a generous and diverse set of base
learners is chosen. Stacking assigns large weights to linear learners when the data-
generating process is linear, and large weights to non-linear learners when the data-
generating process is non-linear. This behavior is reflected in a relatively low bias of
causal estimates, independent of the underlying data-generating process. Stacking, thus,
proves practically relevant in the ubiquitous scenario where there is uncertainty about
the appropriate regularization assumption for the application of interest. We also con-
sider the small-sample behavior of DDML with stacking. Following the simulation design
of Wüthrich and Zhu (2021), we show that stacking performs comparably to linear ap-
proaches for even moderate sample sizes when the data-generating process is indeed linear.
We argue that the poor sample performance of PDS lasso is partially driven by the choice
of covariate transformations and illustrate how stacking can accommodate a richer set
of specifications, including competing parametric models. However, while increasing the
number of folds helps, DDML with stacking should be used with caution for very small
samples. Motivated by these finite sample concerns, we suggest an alternative approach
which we refer to as short-stacking. Short-stacking leverages the cross-fitted predicted
values, is computationally cheaper, and performs better in small samples.

Lastly, we examine DDML for IV regressions. We test whether the concerns raised
by Angrist and Frandsen (2022) concerning IV regressions relying on random forests for
conditioning on covariates also apply to DDML with stacking. Using the application
of Angrist and Evans (1998), we find no evidence for spurious or imprecise IV estima-
tions when we use DDML paired with stacking and when constraints fundamental for
identification are directly enforced. The specific example illustrates the risks associated
with hidden identifications assumptions that are implicitly enforced by linear estimators,
but that need to be explicitly enforced by flexible nonparametric learners. Furthermore,
we show that the finite sample performance of the fully flexible DDML-IV estimator for
approximating optimal IVs can be enhanced by enforcing the law of iterated expectations.

Taken together, our results support the use of machine learning for causal inference.
We find that DDML paired with stacking approaches enhances robustness against mis-
specification compared to traditional parametric estimators as well as compared to causal
machine learning estimators exclusively relying on a single regularization assumption.

We proceed as follows. The next section provides a general introduction to DDML. In

3



Section 3, we motivate the use of DDML paired with stacking, introduce short-stacking
and provide simulation evidence in support of stacking approaches. In Section 4, we turn
to IV estimations. We discuss two alternative DDML estimators for IV regression and
assess their finite sample performance. Section 5 illustrates DDML using two applica-
tions. In the first application, we estimate the citation penalty for female authors while
conditioning on the full article text. The second application estimates the effect of a cash
transfer program in the presence of heterogeneous treatment effects. Section 6 concludes.

2 Double Debiased Machine Learning

On a general level, DDML considers the all-causes model

Y = f0(D,X,U), (1)

where f0 is a structural function, Y is the outcome variable, D is the treatment or policy
variable of interest, which may be binary or continuous, X are observed covariates, and
U collects unobserved determinants. Throughout this article, we will discuss special cases
of the all-causes model with different underlying assumptions.

DDML is concerned with estimating a parameter of interest θ0 while flexibly accommo-
dating high-dimensional nuisance functions η0. The parameter of interest θ0 will typically
be a summary of the causal effect of D on the outcome. DDML approaches the estima-
tion of causal parameters in two stages: the estimation of possibly nonparametric nuisance
functions, and then the estimation of the parameter itself. Depending on the underly-
ing model assumptions, these nuisance functions may govern the treatment assignment
mechanism or, if identification relies on IVs, describe how endogenous treatments relate to
excluded IVs. In leading cases, the nuisance functions represent conditional expectation
functions that lend themselves to the application of supervised machine learning. DDML
relies on cross-fitting, a sample-splitting approach that ensures that the same observation
is not used for both the first- and second-stage estimation. Cross-fitting allows utilizing
a general class of supervised machine learners for the estimation of causal effects, only
relying on a relatively mild convergence rate requirement. Its general applicability is the
main motivation for our focus on DDML.

DDML fundamentally relies on Neyman-orthogonality conditions of the form

∂ηE [ψ (W ; θ0, η0)] [η − η0] = 0, W = (Y,D,X). (2)

where ψ is a score function. Neyman-orthogonality refers to the property that the moment
condition is insensitive to local perturbations around the true nuisance parameter η0. The
implication is that we can utilize noisy estimates of η0 to estimate θ0.
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One leading special case of the all-causes model is the Partially Linear Model, which
assumes that treatment, unobservables, and observables are additively separable while
allowing the control variables to enter the model through an unknown function, i.e.,

f0(D,X,U) = θ0D + g0(X) + U. (3)

In addition, we make an unconfoundedness assumption, stating that treatment assign-
ment is as good as random conditional on observed covariates.

Assumption 1 (PL). We assume (3) and conditional orthogonality E[Cov(U,D|X)] = 0.

Under Assumption 1, the Neyman-orthogonal moment condition in (2) holds for the
Robinson (1988)-style score

ψ(W ; θ0, η0) =
(
Y − `0(X)− θ0

(
D −m0(X)

))(
D −m0(X)

)
,

where η0 ≡ (`0,m0) are the nuisance functions, which constitute the condition expecta-
tions m0(X) ≡ E[D|X] and `0(X) ≡ E[Y |X]. Rewriting yields

θ0 =
E
[(
Y − `0(X)

)(
D −m0(X)

)]
E [(D −m0(X))2] . (4)

Equation (4) highlights that the estimand θ0 depends on the CEFs m0(X) and `0(X).
Estimating these CEFs is in itself a predictive problem, for which we can draw from the
machine learning toolbox. In the classical setting of least squares with a known small-
dimensional set of covariates X, the estimation of (4) involves partialling out the controls
from Y and D, which by Frisch-Waugh-Lovell is equivalent to regressing Y against D
and X. However, DDML allows for estimating the high-dimensional nuisance functions
flexibly using a general class of supervised machine learners.

We note here that the population parameter θ0 in (4) has the weakly causal property of
Blandhol et al. (2022). Suppose thatD is integer-valued, taking on the values {0, 1, . . . , d},
then θ0 can be represented as a weighted average over the conditional average treatment
effects (CATEs) of increasing the dose by one unit:

θ0 = E

 d∑
t=1

CATEt,t−1(X)ω(t,X)
 .

where CATEt,t−1(X) ≡ E [f(t,X, U)− f(t− 1, X, U)|X]. Angrist and Krueger (1999)
show that the weights ω(t,X) are weakly positive and integrate to one. Similarly, for
continuous D with differentiable conditional expectation function, it holds that

θ0 = E

[∫
suppD

(
∂

∂t
E[Y |D = t,X]

)
ω(t,X)dt

]
,
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where again the weights are weakly positive and integrate to one. However, erroneously
imposing that the CEFs are linear or employing ill-suited CEF estimators may result in
negative weights. To avoid issues associated with negative weights, Blandhol et al. (2022)
stress the need for flexible covariate specifications. In this sense, DDML guarantees the
weakly causal interpretation of causal estimands by approximating the high-dimensional
nuisance functions flexibly.

In principle, we could plug CEF estimates derived from supervised machine learners
into (4). This, however, would generally induce an own-observation bias, or over-fitting
bias, unless we rely on appropriate regularization assumptions and confine ourselves to
a relatively narrow set of machine learners imposing, e.g., Donsker conditions. The own
observation bias stems from reusing the same observations for both estimating nuisance
terms and structural parameters. For example, in the partially linear model, the error
from learning `0(X) may be correlated with D−m0(X). Under the additional assumption
of approximate sparsity, we could employ PDS lasso with the plugin penalty of Belloni et
al. (2012), which tightly controls the overfitting bias. To allow for a general class of data-
adaptive non-parametric estimators and machine learners, while relaxing the linearity or
weakening the sparsity assumptions, Chernozhukov et al. (2018a) propose cross-fitting—a
form of sample splitting on swapped samples.

We introduce cross-fitting with an example. Suppose we observe data from a random
sample {(Yi, Di, Xi)}i∈I with I = {1, . . . , n}. The aim is to estimate the nuisance functions
η0 where η0 ≡ (`0,m0) in the partially linear model. In the simplest case, sample splitting
involves randomly splitting the sample into two typically evenly-sized folds, denoted as I1

and I2 = I \ I1. The auxiliary sample I1 is used to estimate the nuisance terms η0 using
supervised machine learners and obtain the out-of-sample estimates η̂I1(Xi) for i ∈ I2,
where the I1 sub-script indicates that the learner was trained only using the sample I1.
The main sample I2 is then used to estimate the structural parameter. While this simple
sample splitting approach ensures that the bias in learning η0 does not spill over to the
estimation of θ0, it is costly as only half of the data is used for the final estimation. The
trick of cross-fitting is to also fit the machine learner to the main sample I2 to obtain
η̂I2(Xi) for i ∈ I1, which yields a out-of-sample estimates of the conditional expectations
for each observation in the sample.4

The cross-fitting algorithm generalizes straightforwardly to more than two folds. We
split the sample in K folds of approximately equal size, denoted as I1, . . . , IK , and k(i) is
the fold that observation i is assigned to. The complement, Tk ≡ I \ Ik, constitutes the
training sample. The cross-fitted predicted values are then defined as η̃i := η̂Tk(i)(Xi) for

4The approach described above corresponds to algorithm ‘DML2’ described in (Chernozhukov et al.,
2018a). An alternative approach, referred to as ‘DML1’, is to fit the final estimation by fold to obtain one
parameter estimate per fold α̂k. The overall DDML estimate is then calculated as α̂DML1 = 1/K

∑
k α̂k.

Chernozhukov et al. (2018a, Remark 3.1) recommend ‘DML2’ over ‘DML1’. We thus focus exclusively on
‘DML2’ in this exposition.
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i = 1, . . . , n. Thus, the cross-fitted predicted value for observation i is constructed using
all folds except fold k(i), the fold that observation i falls into.

The DDML estimate is calculated by plugging the cross-fitted values into the score
function, and setting

1
n

∑
i∈I

ψ
(
W ; θ̂, η̃i

)
= 0

and solving for θ̂0.
In the partially linear model, where η̃i ≡ (˜̀

i, m̃i), this yields

θ̂PLMn =
1
n

∑n
i=1

(
Yi − ˜̀

i

)(
Di − m̃i

)
1
n

∑n
i=i

(
Di − m̃i

)2 . (5)

Hence, in the final estimation stage of the DDML estimation for the Partially Linear
Model, we regress the residualized outcome, (Yi − ˜̀

i) against the residualized treat-
ment (Di − m̃i) where we use cross-fitted predicted values for residualization. Classical,
heteroskedasticity-consistent or cluster-robust standard errors can be applied.

Since the DDML point estimate relies on the randomly drawn cross-fitting split, we
follow the recommendation of Chernozhukov et al., 2018a by repeating the cross-fitting
procedure using different random folds and aggregating the estimates to reduce reliance
on a specific fold split. For example, suppose θ̂(r)

n is the DDML estimate from the rth
cross-fit repetition and ŝ(r)

n is the associated standard error estimate with r = 1, . . . , R.
One option is to calculate the median point estimate and associated standard error are
defined as

˘̂
θn = median

((
θ̂(r)
n

)R
r=1

)
and ˘̂sn =

√√√√median
((

(ŝ(r)
n )2 + (θ̂(r)

n − ˘̂
θn)2

)R
r=1

)
.

While mean aggregation is also legitimate, we favor median aggregation since it is less
sensitive to outlier estimates.

3 The choice of machine learner

By virtue of cross-fitting, DDML estimators are well-behaved for a general class of CEF
estimators achieving a relatively mild convergence rate requirement. DDML estimators
are asymptotically normal and achieve the root-N convergence rate, even if estimators of
the nuisance terms converge at a slower rate.5 Naturally, we can employ fast-converging

5The exact convergence rate requirement for CEF estimators depends on the problem. Chernozhukov
et al. (2018a) name the crude rate requirement of o(n−1/4), but provide examples where the rate require-
ment is considerably weaker. Recent contributions show that these requirements are satisfied by specific
instances of machine learners; see, e.g., results for lasso (Bickel, Ritov, and Tsybakov, 2009; Belloni et al.,
2012), random forests (Wager and Walther, 2016; Wager and Athey, 2018; Athey, Tibshirani, and Wa-
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(a) Linear DGP (b) Non-linear DGP
Notes: Figures (a) and (b) compare the bias of the oracle estimator (which knows the true data-generating process), cross-
validated lasso and gradient-boosted trees under two alternative data-generating processes. Specifically, we generate 1’000
samples of size n = 1000 using the partially linear model Yi = θ0Di + g(Xi) + εi, Di = g(Xi) + ui where the nuisance
function is either g(Xi) =

∑
j

0.9jXij (linear) or g(Xi) = 1{Xi1 > 0.3}1{Xi2 > 0}1{Xi3 > −1} (non-linear DGP).
Gradient boosting uses 1000 trees, a learning rate of 0.01 and early stopping with 20% validation sample. See Ahrens et al.
(2023, Section 4.2) for details.

Figure 1: Bias in estimating θ0 in the partially linear model under linear and non-linear
data-generating process

parametric estimators, such as ordinary least squares, which assume knowledge of the
nuisance functions. However, the strength of DDML comes into play when we use flexible
adaptive nonparametric estimators that are able to accommodate certain non-linear and
unknown data structures.

Not every machine learner is suitable for a given task. To the practitioner, it is rarely
obvious which CEF estimator will perform best, especially when domain knowledge is
scarce. As we illustrate in the simulation exercise in Figure 1, the bias from relying
on a poorly chosen or misspecified machine learner can be severe. In the left figure,
we use a linear, approximately sparse data-generating process (DGP). Cross-validated
lasso perfectly matches the distribution of the infeasible oracle estimator, which assumes
knowledge of the unobserved nuisance functions, whereas gradient-boosted trees fail to
approximate the nuisance term sufficiently well, leading to a substantial bias. In the right
figure, we use non-linear DGP involving interaction effects. Here, gradient-boosted trees
perform much better compared to the cross-validated lasso, but still exhibit a significant
bias.

Given the apparent risk of misspecification and misleading inference, the choice of
machine learner needs to be thoroughly validated by comparing the performance of a
diverse set of candidate learners. A common approach is to cross-validate candidate
learners and select the learner with the lowest cross-validated loss. This approach is
sometimes referred to as cross-validation selector or single-best selector.

ger, 2019), neural networks (Schmidt-Hieber, 2020; Farrell, Liang, and Misra, 2021), and boosting (Luo,
Spindler, and Kück, 2022). The exact asymptotic properties of many machine learners, however, remains
an active research area.
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But instead of relying on a single learning algorithm, we can enhance the flexibility
and robustness of CEF estimators using stacking. Stacking allows combining several
individually trained base learners into a meta learner. Stacking is particularly well-suited
to DDML, given the main objective is to estimate the causal parameter of interest rather
than the CEFs per se. We also view stacking as a framework that encourages practitioners
to report not only the tuning parameters of the final learner, but the specification of all
candidate learners considered in the tuning process, thereby facilitating transparency and
reproducibility.

In Section 3.1, we outline stacking for DDML estimation. We also propose an alter-
native, computationally cheaper approach to stacking for DDML estimation, which we
refer to as short-stacking. Section 3.2 demonstrates the advantages of stacking using a
calibrated simulation. Section 3.3 examines the behavior of stacking and short-stacking
in small samples.

3.1 Stacking and short-stacking

Throughout this section, we assume the researcher observes a sample {(Yi, Xi)}i∈I which
we split into K cross-fitting folds, denoted I1, . . . , IK . Furthermore, we assume that
we have a set of J base or candidate learners at our disposal. The set of learners could
include distinct algorithms—e.g., tree-based methods and regularized regression—but also
the same algorithm with varying (hyper-)tuning parameters or different sets of predictors.
We use the estimation of `0(X) = E[Y |X] as an example, but note that the estimation
of other CEFs proceeds in the same way. Figures 2 and 3 illustrate the stacking and
short-stacking algorithm.

Stacking. In the context of DDML, stacking involves two layers of re-sampling. The
cross-fitting layer divides the sample into K cross-fitting folds. In each cross-fitting step
k ∈ {1, . . . , K}, the stacking learner is trained on the training sample Tk ≡ I \ Ik. Fitting
the stacking learner, in turn, requires to sub-divide the training sample Tk further into V
cross-validation folds, which constitutes the cross-validation layer. We denote the cross-
validation folds by Tk,1, . . . , Tk,V . Each candidate learner j ∈ {1, . . . , J} is cross-validated
on these folds, which yields cross-validated predicted values.

The final learner fits the outcome Yi against the cross-validated predicted values of each
candidate learner. The final learner could be a parametric or non-parametric estimator,
although the most common choice is constrained least squares where we impose that the
coefficients are non-negative and sum to one. Specifically, for each k, we use the objective

min
wk,1,...,wk,J

∑
i∈Tk

Yi − J∑
j=1

wk,j ˆ̀(j)
T c

k,v(i)
(Xi)

2

s.t. wk,j ≥ 0,
J∑
j=1
|wk,j| = 1.
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Figure 2: Cross-fitting and stacking. Illustration using the estimation of `0 = E[Y |X] as
an example.

I1 I2 I3 I4 I5

1. Split sample into K cross-fitting folds (here K = 5).

2. For each k, define stacking training sample
Tk ≡ I \ Ik, and split into V folds (here V = 3).

Tk,1 Tk,2 Tk,3

3. For each (k, v, j), fit base learner j on
T c
k,v ≡ Tk \ Tk,v and obtain out-of-sample

predicted values ℓ̂
(j)
Tc
k,v

(Xi) for i ∈ Tk,v.

Learner j = 1

j = 2

j = 3

4. For each k, fit Y against ℓ̂
(1)
Tc
k
(Xi), . . . , ℓ̂

(J)
Tc
k
(Xi)

with i ∈ Tk to obtain stacking weights ŵk,j . Obtain

out-of-sample predicted values as
∑

j
ŵk,j ℓ̂

(j)
Tk

for
i ∈ Ik.

Notes: The diagram illustrates cross-fitting with K = 5 cross-fitting folds
combined with stacking using V = 3 cross-validation folds and three base
learners. The illustration uses the estimation of `0 = E[Y |X] as an exam-
ple.
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Here, ˆ̀(j)
T c

k,v(i)
(Xi) denotes the out-of-sample predicted value for observation i, which is

calculated from training candidate learner j on T ck,v(i) ≡ Tk \ Tk,v(i), i.e., all step-k cross-
validation folds but fold (k, v(i)) which is the fold that observation i falls into. We call
ŵk,j the stacking weights. The stacking predictions are obtained as ∑j ŵk,j ˆ̀

(j)
Tk

(Xi) where
each learner j is fit on Tk. Constrained least squares facilitates the interpretation of
stacking as a weighted average of base learners (Hastie, Tibshirani, and Friedman, 2009).
Due to this constraint, CLS tends to set some stacking weights to exactly zero. The
constraint also implies a form of regularization that reduces the risk of over-fitting, which
is especially relevant given that candidate learners are likely highly correlated. If we
instead impose the constraint that wk,j ∈ {0, 1} and

∑
j wk,j = 1, implying that only one

stacking weight can be one, the approach is equivalent to the cross-validation selector,
which selects the candidate learner with lowest cross-validated loss. Other final learners
are possible. Laan, Dudoit, and Vaart (2006, Theorem 1) show for a parametric final
learner where the number of candidate learners grows at most at polynomial rate that the
stacking learner performs asymptotically at least as well as the best candidate learner.6

Figure 3: Cross-fitting and short-stacking. Illustration using the estimation of `0 =
E[Y |X] as an example.

I1 I2 I3 I4 I5

1. Split sample into K cross-fitting folds (here K = 5).

2. For each (k, j), fit learner j on the train-
ing sample j and obtain cross-fitted values as
ℓ̂
(j)
Ic
k
(Xi) for i ∈ Ik.

3. Use final learner to fit Y against ℓ̂
(1)
Ic
k
(Xi), . . . , ℓ̂

(J)
Ic
k
(Xi) on

full sample, obtain short-stacking weights ŵj and cross-fitted

short-stacked values as
∑

j
ŵj ℓ̂

(j)
Ic
k
(Xi).

Notes: The diagram illustrates cross-fitting combined with short-stacking
with K = 5 cross-fitting folds. The illustration uses the estimation of
`0 = E[Y |X] as an example.

6The scikit-learn (Buitinck et al., 2013) routines StackingRegressor and StackingClassifier im-
plement stacking for Python. In Stata, stacking regression and classification are available via pystacked,
a Stata front-end for these Python routines (Ahrens, Hansen, and Schaffer, 2022).
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Short-stacking. A drawback of DDML with stacking is its computational complexity.
Considering the estimation of a single base learner as the unit of complexity, DDML
with stacking heuristically has a computational cost proportional to K × V × J . For
example, when considering DDML with K = 5 cross-fitting folds and J = 10 base learners
that are combined based on V = 5 fold cross-validation, more than 250 base learners
need to be individually estimated. Although DDML with stacking is “embarrassingly
parallel” and can thus be expected to decrease in computational time nearly linearly in the
number of available computing processes, the increased complexity limits its application
to moderately complex applications. Another potential concern (which we investigate in
Section 3.3) is that DDML with stacking might not perform well in small samples, given
that base learners are effectively trained on approximately (K−1)(V−1)

KV
% of the full sample

(see Figure 2). These two concerns motivate short-stacking.
In the context of DDML where we rely on cross-fitting, we can take a short-cut to

stacking: Instead of fitting the final learner on the cross-validated fitted values in each
step k of the cross-fitting process, we can directly train the final learner on the cross-fitted
values using the full sample, see Figure 3. The objective function becomes:

min
w1,...,wJ

n∑
i=1

Yi − J∑
j=1

wj ˆ̀(j)
Ic

k(i)
(Xi)

2

s.t. wj ≥ 0,
∑
j

|wj| = 1

where wj are the short-stacking weights. Cross-fitting thus serves a double purpose:
First, it avoids the own-observation bias by avoiding overlap between the samples used
for estimating high-dimensional nuisance functions and the samples used for estimating
structural parameters. Second, it yields out-of-sample predicted values, which we can
leverage for training the final stacking learner. As a consequence, the computational
cost of DDML with short stacking is heuristically only proportional to K × J in units of
estimated base learners. In the example of the previous paragraph, short-stacking thus
requires about 200 fewer estimated base learners.

3.2 The benefits of pairing DDML and stacking

To test the performance of stacking and short-stacking in a realistic setting, we consider
the analysis of 401(k) eligibility and total financial wealth in Poterba, Venti, and Wise
(1995) as the basis for an empirically calibrated Monte Carlo simulation. The application
has recently been revisited by Belloni et al. (2017), Chernozhukov et al. (2018a), and
Wüthrich and Zhu (2021) to approximate high-dimensional confounding factors using
machine learning. We focus on the partially linear model where the outcome is measured
as net financial wealth, and the treatment variable is a dummy for eligibility to the 401(k)
pension scheme. The set of controls includes age, income, education in years, family size,
as well as indicators for two-earner status, home ownership, and participation in two

12



alternative pension schemes.
In the calibration step of the simulation, we fit two generative models to the n = 9,915

households from the 1991 SIPP. Specifically, we use linear regression and gradient-boosted
trees to extract and magnify the linear or non-linear structures in the empirical conditional
distributions. The generative step then simulates two samples from the fully linear and
the partially linear model, respectively, where we set the effect of 401(k) eligibility on
total financial wealth to θ0 = 6000. Finally, in the estimation stage, we fit OLS, PDS
lasso and different DDML estimators on bootstrapped samples to estimate the effect of
401(k) eligibility, and compare their bias and coverage rates. The simulation set-up thus
allows for assessing the performance of estimators across favorable or unfavorable data-
generating processes.

Since we will make use of similar simulation designs repeatedly in this article, we
outline the steps used for constructing the two generative models in detail below:

1. Let {(yi, di, xi)}i=1,...,n denote the observed sample, where i is a household in the
1991 SIPP. yi, di, and xi denote the net wealth, an indicator for 401(k) eligibility,
and the vector of control variables, respectively.

2. Using the full sample, calculate the slope coefficient θ̂OLS from linear regression of
di against di, and xi in the original data.7 Construct the partial residuals y(r)

i =
yi − θ̂OLSdi, ∀i.

3. Fit a supervised learning estimator (either linear regression or gradient boosting) to
predict y(r)

i with the controls xi. Denote the fitted estimator by g̃. Similarly, fit a
supervised learning estimator to predict di with xi and denote the fitted estimator
by h̃.

4. Sample from the empirical distribution of xi by bootstrapping nb observations from
the original data. Denote the bootstrapped sample by Db.

5. Draw νi
iid∼ N (0, κ1) and εi

iid∼ N (0, κ2), where κ1 and κ2 are simulation hyperpa-
rameters. Define

d̃
(b)
i = 1{h̃(xi) + νi ≥ 0.5}

ỹ
(b)
i = θ0d̃

(b)
i + g̃(xi) + εi ∀i ∈ Db

where we set θ0 = 6000 to roughly resemble the magnitude of the regression coeffi-
cient of 401(k) eligibility in the full data. We set the hyper-parameter κ1 and κ2 to
approximately match variance of 401(k) eligibility and log-wealth in the data.8

The simulation exercise repeats steps 4.-5. to generate simulated samples of size nb.
7In the full sample, this results in θ̂OLS ≈ 5896.
8The values of the simulation hyperparameters (κ1, κ2) differ slightly depending on the supervised

learning estimator used to fit the reduced form equations in the data. We take κ1 = 0.35 in both
scenarios but take κ2 = 55500 when using linear regression and κ2 = 54000 when using gradient boosting.
Differences arise because gradient boosting reduces residual variance in the true data.
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For each sample, we calculate estimates of the effect of 401(k) eligibility on wealth,
which allows us to compare the performance of linear regression, PDS lasso, as well as var-
ious DDML estimators with different supervised learners for estimating the CEFs E[Y |X]
and E[D|X]. We consider the following learners: CV lasso and CV ridge with interactions
and second-order polynomials, CV lasso and CV ridge with 10th-order polynomials and
no interactions, two versions of random forests, two versions of gradient-boosted trees
and feed-forward neural nets with three hidden layers of size five (see Table 1 notes for
details). In addition to calculating DDML estimators based on a single estimator, we
consider two stacking and two short-stacking approaches, each using either CLS or the
single-best learner (i.e., the learner that minimized the cross-validated MSPE) as the final
learner.

Table 1 presents the bias and coverage rates of a 95% confidence interval associated
with estimates of the effect of 401(k) eligibility on total financial assets for all considered
estimators and bootstrap sample sizes of nb = {9915, 99150}. The top and bottom panels
correspond to results based on data simulated from the linear and non-linear generative
models, respectively. The individual learners combined in each ensemble are given in
Table 2 along with their respective stacking weights averaged over folds and over bootstrap
iterations. Table A.1 gives the corresponding mean-squared prediction errors.

Given the construction of the generative models, we would expect that OLS performs
best in the fully linear setting and that DDML with gradient boosting performs best
in the nonlinear setting where the nuisance function is generated by gradient boosting.
The simulation results confirm this intuition, showing that the two procedures achieve
among the lowest bias and median absolute bias (MAB) in the data-generating processes
that are based on them. Researchers are rarely certain of the functional structure in
economic applications, however, so that it is more interesting to consider their respective
performance in the non-favorable setting. In the non-linear data-generating process, linear
regression is among the estimators with the worst performance across all three measures.
Similarly, gradient boosting-based DDML is non-optimal in the linear data-generating
process, outperformed by linear regression and CV lasso in terms of MAB, both of which
enforce a linear functional form on the control variables.

The simulation results are consequences of the “no free lunch” theorem in machine
learning (Wolpert, 1996). Informally, the theorem states that there exists no estimator
that performs best across all empirical settings. Researchers must, therefore, carefully
match estimators to their application. However, with limited knowledge about underlying
data-generating processes and few functional form restrictions implied by economic theory,
the number of plausibly well-suitable estimators is typically large.

Stacking reduces the burden of choice the researcher faces when selecting appropriate
estimators by allowing for the simultaneous consideration of multiple estimators. The
four approaches we consider adaptively weight the included learners, which increases the
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Table 1: Bias and Coverage Rates in the Linear and Non-Linear DGP

nb = 9,915 nb = 99,150

Panel (A): Linear DGP Bias MAB Rate Bias MAB Rate

Full sample:
OLS 25.2 827.7 0.95 −1.8 263.1 0.95
PDS-Lasso 26.2 822.8 0.96 0.7 264.1 0.95

DDML methods:
Base learners
OLS 27.2 807.0 0.95 −2.1 263.7 0.95
Lasso with CV (2nd order poly) 26.1 804.7 0.96 −1.0 263.5 0.95
Ridge with CV (2nd order poly) 24.6 814.7 0.95 −1.6 261.5 0.95
Lasso with CV (10th order poly) −4.7 995.5 0.95 61.1 270.6 0.95
Ridge with CV (10th order poly) 583.3 1269.9 0.94 35.6 266.2 0.95
Random forest (low regularization) −129.9 1028.0 0.90 −14.8 337.0 0.87
Random forest (high regularization) 30.5 852.7 0.95 −14.2 277.9 0.94
Gradient boosting (low regularization) −21.1 841.0 0.95 −18.7 255.1 0.95
Gradient boosting (high regularization) 85.4 836.2 0.96 71.9 270.8 0.95
Neural net −3756.6 5537.2 0.16 −2269.4 3144.1 0.16

Meta learners
Stacking: CLS 10.7 826.9 0.96 −2.2 263.9 0.95
Stacking: Single best 16.7 830.0 0.95 −4.1 262.3 0.95
Short-stacking 21.5 801.9 0.96 −2.5 264.5 0.95
Single best 25.9 800.9 0.95 −3.7 262.9 0.95

Panel (B): Non-Linear DGP Bias MAB Rate Bias MAB Rate

Full sample:
OLS −2733.3 2730.6 0.55 −2641.0 2630.4 0.
PDS-Lasso −2744.8 2739.8 0.55 −2640.1 2631.5 0.

DDML methods:
Base learners
OLS −2759.5 2729.6 0.54 −2643.9 2634.4 0.
Lasso with CV (2nd order poly) 599.7 1014.7 0.92 705.8 700.4 0.63
Ridge with CV (2nd order poly) 662.0 1037.7 0.92 716.5 710.9 0.62
Lasso with CV (10th order poly) −5866.9 1944.0 0.91 −24.6 275.1 0.94
Ridge with CV (10th order poly) −3036.6 2180.1 0.89 −12.7 273.3 0.94
Random forest (low regularization) −197.9 1024.5 0.90 −14.7 332.4 0.88
Random forest (high regularization) −292.8 941.1 0.93 −0.1 275.0 0.94
Gradient boosting (low regularization) −73.2 864.9 0.94 26.5 250.8 0.96
Gradient boosting (high regularization) 72.4 868.4 0.94 191.0 296.8 0.93
Neural net −4584.3 5728.9 0.20 −2968.9 3882.3 0.16

Meta learners
Stacking: CLS −309.5 1008.8 0.95 21.3 247.7 0.96
Stacking: Single best −21.6 969.4 0.94 27.8 247.8 0.95
Short-stacking 58.0 889.0 0.95 33.0 254.3 0.95
Single best −16.8 859.3 0.95 26.5 250.8 0.96

Notes: The table reports mean bias, median absolute bias (MAB) and coverage rate of a 95% confidence interval for the
listed estimators. We consider DDML with the following individual learners: OLS with elementary covariates, CV lasso
and CV ridge with second-order polynomials and interactions, CV lasso and CV ridge with 10th-order polynomials but no
interactions, random forest with low regularization (8 predictors considered at each leaf split, no limit on the number of
observations per node, bootstrap sample size of 70%), highly regularized random forest (5 predictors considered at each
leaf split, at least 10 observation per node, bootstrap sample size of 70%), gradient-boosted trees with low regularization
(500 trees and a learnings rate of 0.01), gradient-boosted trees with high regularization: 250 trees and a learnings rate of
0.01, feed-forward neural nets with three hidden layers of size five. For reference, we report two estimators using the full
sample: OLS and PDS lasso. We report results for four meta learners: Stacking with CLS, short-stacking with CLS, single
best overall and single best by fold. Results are based on 1,000 replications.
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Table 2: Average stacking weights

Stacking Single-Best
Panel (A): Linear DGP E[Y |X] E[D|X] E[Y |X] E[D|X]

OLS 0.673 0.507 0.828 0.654
Lasso with CV (2nd order poly) 0.115 0.156 0.146 0.267
Ridge with CV (2nd order poly) 0.065 0.058 0.017 0.020
Lasso with CV (10th order poly) 0.032 0.084 0.003 0.039
Ridge with CV (10th order poly) 0.030 0.044 0.005 0.012
Random forest (low regularization) 0.012 0.012 0. 0.
Random forest (high regularization) 0.018 0.027 0. 0.
Gradient boosting (low regularization) 0.028 0.045 0. 0.005
Gradient boosting (high regularization) 0.025 0.063 0. 0.002
Neural net 0.013 0.003 0. 0.

Panel (B): Non-Linear DGP E[Y |X] E[D|X] E[Y |X] E[D|X]

OLS 0.033 0.020 0. 0.
Lasso with CV (2nd order poly) 0.038 0.067 0.095 0.157
Ridge with CV (2nd order poly) 0.182 0.238 0.118 0.130
Lasso with CV (10th order poly) 0.060 0.085 0.079 0.046
Ridge with CV (10th order poly) 0.084 0.066 0.024 0.057
Random forest (low regularization) 0.044 0.011 0. 0.
Random forest (high regularization) 0.029 0.079 0.007 0.001
Gradient boosting (low regularization) 0.556 0.222 0.665 0.371
Gradient boosting (high regularization) 0.016 0.209 0.011 0.239
Neural net 0.009 0.002 0. 0.

Notes: The table shows the average stacking weights of each base learner (left) and the
relative frequency at which each base learner is selected by the single-best meta learner
(right). The bootstrap sample size is 9,915. Results are based on 1,000 replications.

relative impact of well-suited estimators. Our simulation results show that, both in the
linear and the non-linear settings, the DDML estimators based on the four meta-learners
perform near-optimally. The stacking weights in Table 2 indicate that the procedures
successfully select well-suited estimators among the ten included base learners. For ex-
ample, the stacking approaches applied to the non-linear data-generating process assign
the largest weights to the gradient-boosting estimators and the lowest weights to estima-
tors that impose a linear functional form on the control variables. Stacking, therefore,
appears to have attractive robustness properties across a variety of data-generating pro-
cesses.

3.3 DDML and stacking in very small samples

A possible concern for estimators relying on machine learning is that they might not per-
form well for very small samples given that they are designed for and typically applied
to large data sets. Wüthrich and Zhu (2021, henceforth WZ) use two simulations to
demonstrate that PDS lasso tends to underselect controls, which may result in a substan-
tial small-sample bias. They also show that the bias heavily depends on the exact lasso
penalty chosen (i.e., whether the penalty of Belloni, Chernozhukov, and Hansen (2014) is
scaled by 0.5 or 1.5). We revisit the 401(k) simulation in WZ to assess the performance
of DDML paired with stacking relative to PDS lasso and OLS.

Following WZ, we consider two sets of controls: two-way interactions (TWI), and
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quadratic splines with interactions (QSI) (as in Belloni et al., 2017). The number of
predictors are 167 and 272, respectively. WZ runs their simulations on bootstrap samples
of the data (nb = {200, 400, 800, 1600}) and approximates the bias as the mean difference
to the full-sample estimates (n = 9,915).9 Figure 4 replicates the main results of WZ
(Figure 8). Figure (a) and (b) show the bias relative to the full sample estimate for the
TWI and QSI specification. It is noteworthy that the speed at which the bootstrapped
estimates converge to the full-sample estimate depends on the set of controls for the PDS
lasso, but less so for OLS. While PDS lasso with c = {0.5, 1} and OLS perform similarly if
QSI controls are used, PDS lasso converges much slower to the full-sample estimate with
TWI controls.

(a) Bias (TWI) (b) Bias (QSI)
Notes: The figures report the mean bias calculated as the mean difference to the full sample estimates. Full sample estimates
reported in Table B.1. Following WZ, we draw 600 bootstrap samples of size nb = {200, 400, 600, 800, 1200, 1600}. ‘TWI’
indicates that the predictors have been expanded by two-way interactions. ‘QSI’ refers to the quadratic spline & interactions
specification of Belloni et al. (2017).

Figure 4: Replication of Figure 8 in Wüthrich and Zhu (2021).

Figure 5 compares the performance of OLS and PDS lasso (with scaling factor of one)
to various DDML estimators, including DDML with stacking and short-stacking. We
report DDML results using K = 10 cross-fitting folds, but also show results for K = 2
in the Appendix (see Table B.2 for full results.) We begin with Figure 5a, where we
focus on the lasso. One advantage of DDML over PDS lasso is that cross-fitting allows
us to employ lasso with cross-validated penalization for a fully data-driven penalization
approach. When using TWI controls, we find that DDML with CV lasso performs slightly
better than PDS lasso, but both lasso approaches converge only slowly to the full-sample
estimates, suggesting that the TWI specification is very sensitive to omitted variable
biases. Turning to the QSI controls, DDML with CV lasso outperforms PDS lasso and
even OLS. DDML with CV ridge (shown in Figure 5b) converges faster than DDML
with CV lasso, for both TWI and QSI controls, suggesting that approaches fully relying
on the lasso are sub-optimal in this application. Results for DDML combined with two

9The full-sample estimates are reported in Table B.1.
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versions of gradient-boosted trees are in Figure 5c. Both gradient boosting specifications
outperform OLS estimators across all sample sizes, even for nb = 200. When comparing
random forests and gradient boosting, neither method seems to clearly outperform the
other.

The results highlight again that there are risks in relying on poorly chosen specifica-
tions. In practice, the researcher does not know whether TWI or QSI controls perform
better and whether to use lasso or gradient boosting. We thus turn to Figure 5d, where
we show the stacking and short-stacking results. The base learners are CV lasso and CV
ridge with TWI and QSI controls, two types of random forests, two types of gradient
boosting as well as OLS. Crucially, by considering both TWI and QSI controls and by
including OLS, we are agnostic about the optimal set of covariates and about whether a
fully parametric approach might be more appropriate in this application. The results are
encouraging: DDML paired with stacking or short-stacking outperforms OLS and PDS
lasso across all sample sizes. Even at nb = 200, stacking approaches produce estimates
which are on average closer to the full-sample estimate. The stacking weights reported
in B.3 reveal that stacking approaches also adapt to the sample size. For example, for
smaller sample sizes, a larger weight is put on OLS in the estimation of E[Y |X]. Fur-
thermore, the stacking weights differ substantially for the estimation of the two nuisance
functions, questioning the common approach to rely on the same estimator for all CEFs.

A drawback of measuring the bias as the difference to the full-sample estimate is that
we do not gain insights about convergence to the true parameter. We thus revisit the
calibrated simulation study from Section 3.2, which allows us to measure the bias as the
difference to the true parameter. When the DGP is linear, see Figure 6a, DDML with
stacking or short-stacking perform overall similarly to OLS, but only when the number
of folds is increased to K = 10. With only two folds, DDML with stacking appears, in
this application, unsuitable for sample sizes below 800. If the true DGP is non-linear, see
Figure 6b, OLS and PDS-Lasso are unable to recover the true effect. DDML with stacking
performs much better in comparison but exhibits a substantial bias for any sample size
smaller than the full sample. DDML with short-stacking is the only method able to
produce a reasonably close approximation of the true parameter, even for small sample
sizes.

The results highlight again the risks of relying on inappropriate functional form as-
sumptions. Stacking or short-stacking, when combined with a rich and diverse set of base
learners, impose much weaker conditions on the underlying data-generating process. We
emphasize that regular stacking might exhibit a large bias for (very) small sample sizes,
which can be partially attenuated by increasing the number of folds. Short-stacking is
less costly. In the linear DGP it behaves almost identically to OLS. In the non-linear
DGP, it is the best-performing method.
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(a) CV lasso (b) CV ridge

(c) Gradient-boosted trees (d) Stacking

Notes: The figures report the mean bias calculated as the mean difference to the full sample estimates (see Table B.1).
Following WZ, we draw 600 bootstrap samples of size nb = {200, 400, 600, 800, 1200, 1600}. ‘TWI’ indicates that the
predictors have been expanded by two-way interactions. ‘QSI’ refers to the quadratic spline & interactions specification of
Belloni et al. (2017). For comparison, we show results for the full-sample estimators OLS and PDS lasso with TWI and
QSI controls in all figures. Figures (a) and (b) consider DDML with CV lasso and CV ridge. In Figure (c), we also show
results for DDML paired with gradient-boosted tree with either low (500 trees, learnings rate of 0.01) or high (250 trees,
learning rate of 0.01) regularization where we only use the elementary controls. Furthermore, in Figure (d), we consider
stacking and short-stacking with CLS, relying on the following individual learners: OLS, CV lasso and ridge with TWI or
QSI controls, random forest with low (8 predictors considered at each leaf split, no limit on the number of observations per
node, bootstrap sample size of 70%) or high regularization (5 splitting predictors, at least 10 observation per node, bootstrap
sample size of 70%), gradient-boosted trees with low or high regularization (as defined above). All DDML estimators use
K = 10. We report full results (including results for K = 2) in Table B.2.

Figure 5: Mean bias relative to full sample
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(a) Linear DGP (b) Non-linear DGP
Notes: The figure shows results from the calibrated simulation in Table 1, but with smaller bootstrap sample sizes.

Figure 6: Mean bias for very small sample sizes

4 DDML, stacking and IV

This section examines DDML with stacking for IV regressions. Section 4.1 introduces
two practically relevant and distinct DDML approaches to IV regression, along with their
underlying assumptions. Section 4.2 uses the framework of Angrist and Frandsen (2022)
to test DDML with stacking for IV regressions with flexibile controls. Section 4.3 discusses
the fully flexible DDML-IV estimator which allows to approximate optimal instruments.
We suggests a LIE-compliant algorithm for improving the finite-sample performance of
this estimator.

4.1 Partially Linear Model with IVs

We continue focusing on partially linear models of the form

f0(D,X,U) = θ0D + g0(X) + U,

but now leverage IVs Z to identify θ0. The first of the two approaches takes the identity
of IVs Z as given but flexibly conditions on confounders X. A typical application involves
one or a few IVs for which the exclusion restrictions only hold conditional on observ-
ables. The second approach is more agnostic about how we exploit the IVs for estimation.
We approximate optimal IVs (as in Belloni et al. 2012 and Chernozhukov, Hansen, and
Spindler 2015) based on the set of observed IVs Z, while again allowing to flexibly control
for covariates X. If we consider the lasso as a CEFs estimator, this approach involves se-
lecting both controls and instruments. The benefits of the second approach are especially
evident when dealing with many observed IVs or when we expect that the treatment and
IVs are connected through an unknown, possibly nonlinear function. Another motivation
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for the second approach is that it yields optimal IVs under homoskedasticity.10

The two approaches rely on two distinct sets of assumptions:

Assumption 2 (Partially Linear IV Model). We assume Linear Conditional Orthogonal-
ity: Cov(U,Z|X) = 0, and Linear IV Relevance: Cov(D,Z|X) 6= 0.

Assumption 3 (Flexible Partially Linear IV Model). We assume Conditional IV Mean
Independence: E[U |Z,X] = 0, and Conditional IV Relevance: V ar(E[D|Z,X]|X) 6= 0.

Both Assumption 2 and 3 form beliefs about the dependence structures of IVs with
respect to unobserved errors and with respect to the treatment variable. By confining
itself to linear dependence, Assumption 2 uses a weaker exclusion restriction but a stronger
relevance requirement in comparison to Assumption 3.

Under Assumption 2, Neyman-orthogonality holds with

ψ(W ; θ0, η0) =
(
Y − `0(X)− α(D −m0(X))

)(
Z − r0(X)

)
. (6)

where η0 ≡ (`0,m0, r0) are the nuisance functions, which constitute the condition expecta-
tions m0(X) ≡ E[D|X], `0(X) ≡ E[Y |X] and r0(X) ≡ E[Z|X]. The score in (6) implies
that we can obtain the DDML-IV estimate of θ0 under Assumption 2 using

θ̂PLIVn =
1
n

∑n
i=1(Yi − ˜̀

i)(Zi − r̃i)
1
n

∑n
i=1(Di − m̃i)(Zi − r̃i)

,

where ˜̀
i, m̃i and r̃i are cross-fitted estimates of the CEFs. The estimation stage amounts

to an IV regression of the residualized outcome against the residualized treatment using
the residualized IV (Zi − r̃i).

Under Assumption 3, we can also define the score as

ψ(W ; θ0, η0) =
(
Y − `0(X)− α(D −m0(X))

)(
p0(Z,X)−m0(X)

)
. (7)

with η0 ≡ (`0,m0, p0) and p0(X) ≡ E[D|Z,X]. This suggests the alternative DDML-IV
estimator

θ̂n =
1
n

∑n
i=1(Yi − ˜̀

i)(p̃i − m̃i)
1
n

∑n
i=1(Di − m̃i)(p̃i − m̃i)

, (8)

where p̃i areK-fold cross-fitted predicted values from fittingDi against (Zi, Xi) and m̃i are
the cross-fitted predicted values from fitting Di against Xi. The IV (p̃i− m̃i) summarizes
the information shared by Di and Zi conditional on Xi.

A practical concern with the estimator in (8) is that the IV may not be mean in-
dependent of Xi, i.e., we cannot guarantee that Ê[(p̃i − m̃i)|Xi] ≈ 0. We thus suggest

10Under heteroskedasticity or dependent errors, optimality would require estimating conditional vari-
ance functions, which we do not consider here.
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estimating m0 by fitting (in-sample) estimates of p0 against Xi to estimate m0. We show
in simulations in Section 4.3 that the resulting estimator exhibits superior finite sample
performance.

4.2 Flexible controls in IV regression

To examine the performance of DDML paired with stacking for IV regressions with flexible
controls, we follow Angrist and Frandsen (2022, henceforth AF) in revisiting Angrist and
Evans (1998). The original study estimates the effect of giving birth to a third child on
the mother’s employment status using a binary same-sex indicator of the first two children
as the IV. The rationale for the IV choice is that women are more likely to have a third
child if the first two children are of the same sex, while the sex assignment of each child is
as good as random. Since the mother’s employment decision could also be affected by the
first and second child’s sex individually, as well as by other demographic characteristics,
Angrist and Evans (1998) include the first and second child’s sex as controls, as well as
mother’s age, mother’s age at first child, indicators for black, hispanic and other race, as
well as mother’s years of education.

The model can be written as

Yi = θmorekidsi + gY (boy1sti, boy2ndi, Xi) + εi,

morekidsi = π samesexi + gD(boy1sti, boy2ndi, Xi) + νi, for i = 1, . . . , n,

where Yi is the mother’s labor market outcome (either measured as a binary employment
indicator or in weeks of employment), morekidsi is a dummy for more than 2 kids, samesexi
is the same-sex IV described above, boy1sti and boy2ndi are indicators that equal 1 if the
first and second child is male, respectively. The vector Xi collects the additional controls
listed above.

Angrist and Evans (1998) impose additivity by setting

gY (boy1st1i, boy2nd2i, Xi) = θ0 + θ1boy1sti + θ2boy2ndi +X ′iθX ,

gD(boy1st1i, boy2nd2i, Xi) = π0 + π1boy1sti + π2boy2ndi +X ′iπX

and thus allow for direct effects of first and second child’s sex on labor outcomes, while
ruling out direct effects of boy1sti×boy2ndi on the mother’s labor market outcomes. In-
deed, direct effects of boy1sti×boy2ndi would imply that the model is not identified since
intercept, boy1sti, boy2ndi, boy1sti×boy2ndi and samesexi are linearly dependent.

AF estimate the effect as

θ̂ =
∑
i [Yi − ĝY (boy1st1i, boy2nd2i, Xi)] [Zi − ĝZ(boy1st1i, boy2nd2i, Xi)]∑
i [Di − ĝD(boy1st1i, boy2nd2i, Xi)] [Zi − ĝZ(boy1st1i, boy2nd2i, Xi)]
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(a) Legal tree (b) Illegal tree
Notes: The two figures show two decision trees grown on bootstrapped samples of size 2000 using the data of Angrist and
Evans (1998). The outcome is a binary indicator (labeled as morekidsi) set to one if a woman gives birth to more than two
kids and zero otherwise. The predictors are mothers’ years of education (educmi), mothers’ age (agemi), and indicators for
whether the first and second child is a boy (denoted boy1sti and boy2ndi). The left tree is legal since boy1sti and boy2ndi

do not interact, i.e., are not associated with the same leaf. The right tree violates the additivity assumption. The predicted
outcome is shown in rounded boxes at the bottom.

Figure 7: Two exemplary decision trees

where ĝY , ĝZ and ĝD are estimates using various random forests specifications. They
consider random forests without sample splitting and with leave-one-out cross-fitting (as
suggested in Athey, Tibshirani, and Wager, 2019). AF document that the random-forest-
based estimates are imprecise compared to 2SLS. As the authors discuss, random forests
do not enforce the additivity constraint that is required for identification.

To understand why, it helps to recall that random forests are composed of many trees,
which are individually grown by estimating optimal splitting rules. Each rule involves one
predictor. Figure 7 illustrates two decision trees where morekidsi is used as the outcome,
and agem1i, educmi, boy1sti and boy2ndi as predictors. The rounded box at the bottom
of each tree indicates the predicted outcome. The left tree does not violate the additivity
constraint, even though both boy1sti and boy2ndi feature in the same tree, since no leaf
(also referred to as terminal node) is associated with both variables. The right tree does,
however, violate the additivity constraint since the decision rule corresponding to the
right-most leaf predicts that mothers whose first and second child is female and who have
at least 12 years of education will have a third child. The illustration reveals that, since we
can easily identify and discard illegal trees, we could, in principle, fit a constrained random
forest only using legal trees. While there is, to our knowledge, no readily available random
forest implementation that allows for interaction constraints, such interaction constraints
are supported by XGBoost (Chen and Guestrin, 2016), a widely popular implementation
for gradient-boosted trees.

We follow AF but consider various DDML estimators which comply with the addi-
tivity constraint. Namely, we use OLS with the base controls, CV lasso and ridge with
third-order polynomials which are separately formed for boy1sti and boy2ndi, and XGBoost
which only uses additivity-compliant trees. We also consider DDML paired with stacking
combining these learners. For comparison, we report TSLS estimates and DDML with
unconstrained XGBoost. Furthermore, to learn more about the distribution of each estima-
tor, we conduct a simulation exercise involving 500 bootstrap samples of nb = 20000. The
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results are shown in Table 3, Panel A, where we list the average coefficient estimates as
well as standard deviations over bootstrap iterations in parentheses. Our results indicate
little differences among DDML estimators as well as in comparison to TSLS. However,
we find that unconstrained XGBoost behaves markedly differently from the constrained
XGBoost, with larger average coefficient estimates and large standard deviation.

AF separately show that the random forest may yield spurious results when the same-
sex IV is replaced by a signal-free IV that is generated as agemi + educmi + ui where ui
is drawn from the standard uniform distribution. They also consider an IV with some
signal defined as agemi + educmi +ui× samesexi. With IVs that are pure noise, AF find
that the random forest yields implausibly large effects (in absolute value), which are in
most cases significant, whereas TSLS standard errors are many times larger compared to
TSLS standard errors relying on the original same-sex IV. They identify as one reason
that the random forest may fail to purge the effect of the covariates agemi and educmi

from the IV, reflected in a non-zero correlation between the random-forest-residualized
IV and agemi + educmi. Based on these finding, AF suggest that random forest yields
misleading estimates when used to condition on controls in IV regressions.

Table 3: Simulation based on Angrist and Evans (1998)

TSLS DDML
Equation OLS lasso ridge XGBoost(c) stacking XGBoost

Panel A. Original IV:
First stage .0693 .0693 .0693 .0693 .0692 .0693 4.122

(.0066) (.0066) (.0066) (.0066) (.0068) (.0066) (2.6612)
Index - 0 -.0004 -.0003 0 -.0002 0

(-) (0) (.0005) (.0004) (.0003) (.0003) (.0001)
Employment -.1286 -.1284 -.1302 -.1311 -.1294 -.1297 -.1849

(.0987) (.0989) (.0988) (.099) (.102) (.0982) (.7653)
Weeks worked –5.6163 –5.6012 –5.6427 –5.7021 –5.6943 –5.6571 –7.9362

(4.2916) (4.3211) (4.3184) (4.3223) (4.3898) (4.279) (30.4164)
Panel B. Artificial IV:

First stage .0004 .0004 .0005 .0035 -.0014 .0004 -.0014
(.011) (.011) (.0109) (.0127) (.0055) (.011) (.0055)

Index - 0 .0012 .0127 .0092 .0002 .0092
(-) (0) (0) (.0246) (.0003) (.0005) (.0003)

Employment –2.6761 1.1148 2.481 1.1053 -.8519 6.8049 -.655
(68.4474) (35.1599) (30.8941) (19.6774) (21.7516) (140.802) (19.196)

Weeks worked –119.6848 33.8069 80.3055 36.4932 –83.1191 292.5573 –61.3623
(2864.082) (3084.742) (1277.043) (514.9237) (754.2967) (6046.517) (1154.677)

Panel C. IV with some signal:
First stage .0828 .0828 .0828 .0723 .0435 .0827 .0235

(.0104) (.0104) (.0104) (.0208) (.0059) (.0105) (.0057)
Index - 0 .0012 .0134 .0093 .0003 .0093

(-) (0) (0) (.0248) (.0003) (.0009) (.0003)
Employment -.1119 -.1116 -.1039 .0235 -.1036 -.1119 -.1338

(.1277) (.1285) (.1284) (.3045) (.1368) (.1272) (.2435)
Weeks worked –5.2283 –5.2204 –4.7685 2.3651 -.7736 –5.1799 1.7544

(5.6945) (5.7035) (5.711) (16.5527) (6.3336) (5.691) (11.6248)

Notes: 500 bootstrap replications of size nb = 20, 000, s.e. in parentheses are calculated as standard deviation over coefficient
estimates. OLS, lasso and ridge use 3rd order polynomials and interaction separately for first-child sex dummy × covariates
and 2nd-child sex dummy × covariates. XGBoost(c) is impose a constraint on interactions between first and second child
sex. Stacking uses OLS, lasso, Ridge and XGBoost(c) as base learners. Row ‘Index’ reports slope coefficient from regressing
residualized IVs against agem1+educm. Row ‘First stage’ reports slope coefficient of regression residualized treatment (i.e.,
morekids) against residualized IV. Rows ‘employment’ and ‘weeks worked’ report effect of more than 2 kids on outcome.

In Panel B and C of Table 3, we again put DDML paired with constrained machine
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learners to the test. Panel B uses the signal-free IV, Panel C refers to the IV with some
signal. The row labeled Index reports the slope coefficient from regressing the residualized
IV against hi = agemi+educmi. In Panel B, we find that all DDML estimators yield noisy
estimates. This includes DDML with stacking for which the bootstrapped standard errors
more than twice as large as for TSLS. Turning to the mixed signal IV, Panel C shows
that DDML with ridge and XGBoost yield estimates considerably different from TSLS,
whereas DDML with OLS and DDML with stacking produce estimates and standard
errors almost identical to TSLS. We indeed find that the residualized IV exhibits some
degree of correlation with hi in the case of ridge and XGBoost, but this is not the case for
DDML with stacking where the slope coefficient is almost zero and insignificant.

For further insights, we again consider a calibrated simulation study (similar to Sec-
tion 3.2). Based on the original data, we generate two artificial samples which match
the original data in observed characteristics, but where the empirical reduced forms are
either generated with linear regression or gradient-boosted trees to emulate a fully lin-
ear or non-linear setting (see Appendix C.2 for details). The advantage is that we know
the true target parameter and can flexibly vary the IV strength. Results are shown in
Table 4. We report median absolute bias and coverage rates of TSLS and DDML for
varying IV strength, which is determined by π. Furthermore, we report rejection rates
of the Kleibergen-Paap under-identification test using a 5% nominal level. We find that
TSLS and DDML paired with stacking behave very similarly. The results suggest that
even when we magnify the non-linear structures in the data, the bias of TSLS is hardly
affected, suggesting that linear estimators perform well in this application.

Table 4: Calibrated Monte Carlo simulation based on Angrist and Evans (1998)

Rejection rates
Kleibergen-Paap LM Median absolute bias Coverage

π TSLS DDML TSLS DDML TSLS DDML

Panel A. Linear DGP
0 0.048 0.048 1.159 1.154 0.993 0.993
.01 0.174 0.166 0.685 0.693 0.990 0.988
.025 0.776 0.768 0.281 0.287 0.966 0.964
.05 1. 1. 0.135 0.135 0.962 0.960
.075 1. 1. 0.088 0.088 0.956 0.954
.1 1. 1. 0.067 0.065 0.956 0.952

Panel B. Non-linear DGP
0 0.038 0.038 1.076 1.089 0.990 0.993
.01 0.213 0.215 0.692 0.667 0.980 0.983
.025 0.805 0.795 0.282 0.279 0.961 0.963
.05 1. 1. 0.130 0.136 0.958 0.961
.075 1. 1. 0.083 0.085 0.946 0.946
.1 1. 1. 0.065 0.066 0.956 0.951

Notes: The table shows median absolute bias, coverage rate as well as rejection rates of the Kleibergen-Paap LM under-
identification test for TSLS and DDML with stacking for varying IV strength. π determines the strength of the IV. Standard
errors are clustered at the observation-ID level. Bootstrap samples of size nb = 50,000 with 400 replications. The DDML
estimator in this table uses stacking regression with two folds and the following base learners: OLS, CV lasso, CV ridge
and constrained XGBoost. OLS, CV lasso and CV ridge use third-order polynomials formed separately for (boy1sti, xi) and
(boy2ndi, xi). XGBoost uses the untransformed controls, but imposes the constraint of no interactions between boy1sti and
boy2ndi.
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We take two lessons from this application. First, machine learning does not protect
us from needing to impose constraints necessary for identification. In TSLS estimation,
we guarantee identification by not including the interaction term boy1sti × boy2ndi as
an excluded IV. There is a direct counterpart in tree-based methods where we can, and
should, impose a ban on decision rules involving both boy1sti and boy2ndi. The risk in
using flexible methods stems from hidden identification assumptions—in this example,
additivity—which, when ignored and not enforced, may lead to spurious results.

Second, DDML with stacking appears robust against the concerns raised by AF for
the use of random forests in IV regression with controls. We do not find evidence for
imprecise second-stage results when using the original IV or for spuriously precise results
when using signal-free IVs (provided that we impose the required constraints). At first
glance, the almost identical results between TSLS and DDML with stacking might suggest
that there is little value in considering flexible approaches to nuisance function estimation.
However, the conclusion would ignore the additional robustness of stacking approaches
toward unexpected data structures. Indeed, the downside risks to DDML appear minimal
in scenarios where parametric methods work well as long as we include OLS as one of the
base learners.

4.3 Importance of Enforcing the Law of Iterated Expectations

The simulations in this section are based on the analysis of Angrist and Krueger (1991),
who use quarter of birth (QOB) indicators as IVs to estimate the returns to schooling in
a sample of 329,509 American men born between 1930 and 1939. A high-dimensional IV
setting arises when interactions between QOB and indicators for year of birth (YOB) and
place of birth (POB) are formed. These interactions are motivated by policies differing
across cohorts and states that affect how schooling varies with QOB. A fully interacted
specification results in 1530 excluded IVs and 510 control variables. The setting of Angrist
and Krueger (1991) is thus an interesting application for assessing the performance of
DDML with high-dimensional IVs.

We adopt the calibration of a generative model of Angrist and Frandsen (2022) but
extend the set of considered estimators. In particular, we consider DDML estimators
based on CV lasso and gradient boosting both with and without enforcing the law of
iterated expectations in the estimation of the reduced-form equations.

The data generation process of Angrist and Frandsen (2022) is calibrated such that
the true effect of schooling on log wages, controlling for year of birth (YOB) and place of
birth (POB), is 0.1. A detailed construction of simulated samples is reviewed below:

1. Draw a bootstrap sample, Db, of size nb from the empirical distribution of the data.
2. Simulate years of schooling via s̃i ∼ Poisson(µi),∀i ∈ Db, where

µi = max {1, s(QOBi, Y OBi, POBi) + κ1νi} ,
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is the sample-average years of education among all individuals with the same com-
bination of QOB, YOB, and POB. Further, νi ∼ N (0, 1) and κ1 = 1.7.11

3. The simulated log wage is then constructed as

ỹi = ŷ(Y OBi, POBi) + 0.1s̃i + ω(QOBi, Y OBi, POBi)(νi + κ2εi),

∀i ∈ Db, where ŷ(Y OBi, POBi) are second stage fitted values from a LIML es-
timator on the full sample, ω(QOBi, Y OBi, POBi) is a weight parameter chosen
proportionally to the variance of the TSLS residuals in the original data to mimic
the heteroskedasticity. Further εi ∼ N (0, 1) and κ2 = 0.1.

A single iteration of the simulation generates a sample of size nb from this data-
generating process, estimates the IV slope coefficient using various estimators, and com-
putes the corresponding bias and t-statistic (where the true parameter is 0.1).12

Table 5: Bias and coverage with and without LIE enforcement

Estimator Bias Coverage Bias Coverage Bias Coverage
nb = 32,951 nb = 164,755 bn = 329,509

Full sample:
TSLS 0.092 0. 0.058 0.015 0.040 0.076
TSLS (all IVs) 0.099 0. 0.078 0. 0.061 0.
LIML 0.087 0.952 0.021 0.970 0.013 0.972
LIML (all IVs) 0.077 0.964 0.014 0.970 0.007 0.966
IV-Lasso 0.089 0.046 0.034 0.663 0.023 0.893
IV-Lasso (all IVs) 0.089 0.226 0.076 0.129 0.066 0.254

DDML with LIE enforcement:
Lasso with CV 0.086 0.969 0.026 0.946 0.016 0.937
Lasso with CV (all IVs) 0.114 0.970 0.026 0.959 0.013 0.943

No LIE enforcement:
Lasso with CV 0.048 0.515 0.015 0.885 0.012 0.894
Lasso with CV (all IVs) 1.303 0.785 0.271 0.017 0.078 0.087

Notes: The table reports average bias and coverage rates of 95% heteroskedasticity-robust confi-
dence intervals. The controls are quarter-of-birth fixed effects interacted with year of birth. The
base set of IVs is quarter of birth, quarter of birth interacted separately with year of birth and
place of birth. The extended IV set interacts quarter of birth with year of birth and place of
birth. We consider TSLS, the IV-Lasso of Belloni et al. (2012) and DDML with cross-validated
lasso with and without LIE enforcement. nb indicates the bootstrap sample size.

Table 5 gives the median absolute bias (MAB) and coverage rates of conventional two-
stage least squares, post-double selection lasso, as well as two sets of DDML estimators
based on CV lasso and gradient boosting where the law of iterated was enforced and
not enforced, respectively. Importantly, DDML estimates that are allowed to violate the
law of iterated expectations exhibit higher MAB and worse coverage rates compared to
the other DDML estimates. While the gap in performance decreases with sample size, it
persists even in the sample with nb = 164,755 observations.

11Angrist and Frandsen (2022) set κ1 such that the the first stage R2 and partial F statistic match
those of a 2SLS procedure with IVs QOB × POB and QOB × Y OB.

12Note that the data-generating process as described here is dense, not sparse. In the first stage, for
example, there are 2040 possible combinations of QOB, YOB, and POB (QOB takes four values, YOB
takes 10 values, and POB takes 51 values), each of which corresponds to a unique conditional mean. The
simulated data may thus be, at best, approximately sparse.
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5 Applications

5.1 Gender gap in citations

Our first applications illustrates DDML by estimating the gender gap in citations. The
application is related to the wider literature on gender gaps in various domains, e.g.,
entry to STEM programs (Card and Payne, 2021), ICT literacy (Siddiq and Scherer,
2019) or wages (Strittmatter and Wunsch, 2021; Bonaccolto-Töpfer and Briel, 2022).
The application is also an example of the increasingly frequent appearance of text data
in economics and social sciences (e.g., Chen and Ornaghi, 2023; Eberhardt, Facchini, and
Rueda, 2022).

We revisit Maliniak, Powers, and Walter (2013, henceforth MPW) who study the
gender gap in citations in the International Relations literature. The original study esti-
mates the effect of all-female authorship on citation counts using more than 2,500 articles
published between 1980 and 2006. Since female authors might choose to write on differ-
ent subjects and employ different methodologies than male authors, MPW control for a
range of hand-coded variables, including 18 topics (e.g., US foreign policy, human rights),
6 paradigms (e.g., liberal, Marxist), 8 methodologies (e.g., quantitative, formal theory),
and three indicators describing the theoretical approach. The authors also control for
tenure and journal. Roberts, Stewart, and Nielsen (2020a) extend the analysis by incor-
porating the full article text into the analysis. They propose a text-matching approach
based on structural topic modeling. Grimmer, Roberts, and Stewart (2022) employ a full-
sample CV lasso to fit outcome against an unpenalized all-female dummy, MPW controls
and word counts, yet without considering sample splitting or double-selection.

Similar to Roberts, Stewart, and Nielsen (2020a) and Grimmer, Roberts, and Stewart
(2022), we match article texts retrieved from JSTOR Constellate with the original MPW
data.13 We consider five sets of control variables: no controls, the hand-coded controls
of MPW (44 controls), the article text in the form of word counts (92,374), both article
text and hand-coded controls (92,408). Splitting text and hand-coded controls allows us
to compare a fully data-driven approach to manual coding guided by domain knowledge.
In terms of estimation methods, we consider OLS, the full-sample one-step CV lasso as
employed by Grimmer, Roberts, and Stewart (2022)), PDS lasso and DDML with CV
lasso, CV ridge and CV elastic net (using a mixing parameter of 0.5), and six versions
of XGBoost. In addition, we use DDML with stacking, which combines these candidate

13Due to restrictions on data sharing, we do not have access to exactly the same data set but constructed
a similar data set. Since the MPW data does not include the JSTOR identifier, we query the article
titles on JSTOR via the search engine DuckDuckGo to retrieve the JSTOR identifier. For the remaining
articles, we use fuzzy string matches and verify that either the publication year or journal match. In the
processing of the text data, we remove common stop words and non-alphabetical symbols. The final data
set includes 2,563 articles, which is similar to the sample size in MPW. We thank Grimmer, Roberts, and
Stewart (2022) who kindly shared their code.
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learners.

Table 6: Citation penalty for all-female authors. Estimates based on OLS, naïve CV lasso
and various DDML estimators.

Controls variables

Estimator None Hand-coded All Only text

OLS -6.44 -7.527
(1.981)*** (2.326)***

Naive Lasso -7.475 -6.44 -5.976
(2.298)*** (1.981)*** (1.926)***

PDS-Lasso -7.65 -5.025 -7.94
(2.242)*** (2.256)** (2.117)***

DDML Stacking -8.009 -8.032 -7.279
(2.331)*** (2.437)*** (2.096)***

DDML Ridge -7.772 -7.898 -7.331
(2.316)*** (2.39)*** (2.052)***

DDML Lasso -7.684 -7.549 -6.922
(2.341)*** (2.322)*** (2.013)***

DDML Elastic net -7.522 -7.971 -6.955
(2.316)*** (2.41)*** (2.05)***

DDML XGB 1 -8.205 -7.877 -7.076
(2.261)*** (2.649)*** (2.275)***

DDML XGB 2 -8.172 -6.173 -5.239
(2.314)*** (3.915) (2.68)*

DDML XGB 3 -7.836 -3.039 -4.113
(2.302)*** (3.42) (3.085)

DDML XGB 4 -8.43 -8.035 -7.551
(2.269)*** (2.379)*** (2.257)***

DDML XGB 5 -8.076 -6.539 -5.615
(2.282)*** (3.017)** (2.466)**

DDML XGB 6 -8.093 -4.789 -3.772
(2.241)*** (3.587) (2.893)

Notes: The table shows estimates of the citation penalty for all-female authorship and heteroskedasticity-robust standard
errors in parentheses). We consider the following estimators: OLS, naïve CV lasso which fits the outcome against unpenalized
treatment and controls, PDS lasso as well as DDMl with the following base learners: CV ridge, CV lasso, CV elastic net
(with mixing parameter of 0.5), and six versions of XGBoost. All XGBoost specifications rely on 1000 trees and enable early
stopping after 5 rounds without improvement in predictive performance. The six specifications use the following parameters
for the maximum tree depths and the learning rate: (2, 0.01), (2, 0.05), (2, 0.2), (5, 0.01), (5, 0.05), (5, 0.2). Finally, we also
consider DDML with stacking using the above base learners. We use 5 re-sampling iterations, 5 cross-fitting folds and 10
cross-validation folds regularized regression. We consider five different sets of control variables (shown in columns): no
controls, all controls, only text controls, only hand-coded controls of Maliniak, Powers, and Walter (2013). The sample size
is 2,563.

Table 6 shows the citation penalties for all-female authorship. The unconditional
citation penalty is −6.44 (s.e. = 1.98). If we condition on the hand-coded controls of
MPW using OLS, the citation gap widens to −7.53 (2.33). When only considering hand-
coded controls, the differences across estimators are relatively small, with point estimates
ranging between −7.47 and 8.20. If we add word counts from the original articles into
the set of controls, the number of controls increases from 44 to 92,418, and we find a
substantial variation across estimators. The full-sample CV Lasso selects no controls and
thus yields the same estimate as OLS without controls. This approach, however, is likely
biased since it ignores controls that correlate weakly with citations, but strongly with
all-female authorship. Indeed, we find that a number of controls are selected when we
regress all-female authorship against text controls.

There are also large differences across DDML estimators, especially among the DDML
estimators relying on XGBoost. For example, the penalty estimates of DDML with XG-
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Boost 3 and XGBoost 4 are −3.04 (3.04) and −8.04 (2.38), highlighting that even the
same machine learning algorithm can yield vastly different treatment effects. These stark
differences emphasize the need to carefully choose and tune CEF estimators. Without
thoroughly validating each base learner, it is impossible to judge which results are more
credible.

Stacking provides a framework for tuning learners and discarding ill-suited CEF es-
timators. Appendix Table D.1 shows that stacking assigns on average relatively small
weights to learners which exhibit relatively large cross-fitted mean-squared prediction er-
rors. For example, the stacking weights associated with XGBoost 2 to 6 are close to zero
for the estimation of E[D|X]. It is also noteworthy that the stacking weights for the
estimation of E[Y |X] and E[D|X] differ, which shows that there is no reason to assume
that the same learner is best suited for both CEFs. Interestingly, the point estimate of
DDML with stacking is close if we exclude hand-coded controls, suggesting that a fully
data-driven approach yields almost the same results as hand-coded variables.

5.2 The effect of cash-transfers on longevity

In the second application, we re-examine the analysis of Aizer et al. (2016) and estimate
the effect of a cash transfer paid out to mothers in the US over 1911–1935 on children’s
long-term education, health, and economic outcomes. We focus on children’s longevity for
this demonstration. The sample includes 7860 children. For identification, the authors use
families who applied for the transfer but were rejected as the control group and estimate
the effect of longevity using linear regression with a battery of controls, including mother
and children characteristics, application year, cohort and county fixed effects (between
34 and 61 controls in total). Słoczyński (2022) re-examines the same analysis and argues
that the OLS estimate is a poor proxy for the average treatment effect (ATE) since the
OLS estimate is biased towards the average treatment effect on the untreated (ATEU).
As a solution, Słoczyński (2022) propose to decompose the OLS estimate into the average
treatment effect on the treated (ATET) and the ATEU. The decomposition, however,
assumes that the CEFs are linear.

For a more flexible approach that allows treatment effects to vary with observables,
we relax the assumption that treatment D and controls X are separable. In addition, we
assume overlap and that treatment assignment is random conditional on observables. We
summarize the required assumptions:

Assumption 4 (Interactive Model). We assume Y = g0(D,X) + U , conditional mean
independence E[U |D,X] = 0 and overlap condition, Pr(D = 1|X) ∈ (0, 1).

Under Assumption 4, we can use the Neyman-orthogonal score

ψ(W ; θATE0 , η0) = D(Y − g0(1, X))
m0(X) −(1−D)(Y − g0(0, X))

1−m0(X) +g0(1, X)−g0(0, X)−θATE0
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Table 7: The effect of cash transfers to mothers on their children’s longevity.

(1) (2) (3) (4) (5)

OLS OLS OLS DDML
OLS/Logit Extended

Panel A.
Accepted 0.0157∗ 0.0158∗ 0.0182∗ 0.0154∗ 0.0154∗

(0.00646) (0.00655) (0.00694) (0.00677) (0.00670)

Panel B.
ATET 0.0129∗ 0.0149∗ 0.00967 0.0126 0.0173∗∗

(0.00606) (0.00694) (0.00790) (0.0112) (0.00632)
ATEU 0.0162∗∗ 0.0160∗ 0.0206∗∗ 0.0148∗ 0.0145∗

(0.00566) (0.00631) (0.00690) (0.00677) (0.00647)
ATE 0.0133∗ 0.0150∗ 0.0110 0.0124 0.0167∗∗

(0.00594) (0.00666) (0.00747) (0.00965) (0.00607)

State fixed effects Yes Yes Yes
County fixed effects Yes Yes Yes
Cohort fixed effects Yes Yes Yes Yes Yes
State characteristics Yes Yes Yes Yes
County characteristics Yes Yes Yes
Individual characteristics Yes Yes Yes Yes
Observations 7860 7859 7859 7859 7859

Notes: The table shows the effect of a cash transfer to mothers on children’s longevity. Panel A, column 1-3, replicates
Aizer et al. (2016, Table 4). Panel B, column 1-3, replicates Słoczyński (2022, Table 2) using the Stata package hettreatreg
(Sloczynski, 2019). Panel A, column 4-5 uses DDML with stacking using the estimator (5). Panel B, column 4-5 also uses
DDML with stacking but relies on the Interactive Model in Assumption 4.
The DDML estimator in column 4 uses OLS for the outcome equations and logit for estimating propensity scores, both
with the three sets of controls corresponding to Columns 1-3. Column 5 adds CV lasso and ridge with all controls, random
forests (RF) with low regularization (all controls, maximum tree depth of 10, 500 trees and approximately √p features
considered at each split), RF with medium regularization (same as previous but maximum tree depth of 6), RF with low
regularization (maximum tree depth of 2), gradient-boosted trees (GB) with low regularization (all controls, 1000 trees,
learning rate of 0.3, early stopping which 20% validation), GB with medium regularization (learning rate of 0.1), GB with
high regularization (learning rate of 0.01).
Significance codes: ∗ p<0.05, ∗∗ p<0.01, ∗∗∗ p<0.001
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to identify the ATE θ0. As in the partially linear models, the score depends on conditional
expectation functions, which are collected in the nuisance term η0 := (g0(D,X),m0(X)).
The score for the ATET and ATEU can be defined similarly.

We report results in Table 7. The first three columns in Panel A replicate Aizer et al.
(2016) and use three different sets of control variables as indicated at the bottom of the
table. Columns 1-3 in Panel B replicate Słoczyński (2022) who decomposes the OLS
estimates into ATE, ATET and ATEU under the linearity assumption. Note that while
the results of Aizer et al. (2016) do not change much depending on the chosen set of
controls, the ATET and ATE estimates of Słoczyński (2022) are smaller in comparison
and insignificant when county fixed effects are included.

The final two columns show results for DDML combined with several stacking ap-
proaches. Column 4 uses OLS for the outcome equations and logit for estimating propen-
sity scores, both with the three sets of controls corresponding to Columns 1-3. Column 5
adds regularized regression, random forests and gradient-boosted trees as base learners
(see table notes). We use the DDML-PLM estimator in (5) in Panel A, and the interactive
DDML estimators of average treatment effects in Panel B.

The DDML results based on the Partially Linear Model in Panel A are similar to the
estimates of Aizer et al. (2016). Stacking puts the largest weights on the specification in
Columns 1. The ATE and ATET estimates of the fully parametric DDML estimates in
Column 4 are similar to the OLS-based estimates of Słoczyński (2022), suggesting that
the OLS estimates in Panel A over-estimate the effect of the cash transfer. However,
the DDML estimates in Panel B relying on an extended set of nonparametric estimators
yield ATE and ATET that are larger and more precisely estimated. The ATET estimate
from the extended DDML estimator is almost twice as large compared to the lowest OLS-
based ATET estimate (0.0173 compared to 0.009), revealing noticeable differences when
accounting for unknown nonlinear structures. Indeed, the stacking estimators assigns
significant weights to tree-based estimators in each CEF estimation.

6 Conclusion

We indeed find there are pitfalls to leveraging machine learning for causal inference.
The main risk arises when using supervised machine learners in applications where the
regularization assumption does not match the underlying data-generating process. We
highlight that DDML paired with stacking provides a solution and assess the performance
of DDML with stacking in realistic settings using applications and simulation studies
calibrated to real economic data. In addition, we introduce DDML with short-stacking, a
variant of DDML with stacking, that is computationally less expensive and shows better
small-sample performance.

Our findings overall support the use of machine learning for causal inference, provided
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that a diverse set of candidate learners is considered. While machine-learning-based causal
methods may yield fundamentally different results from linear regression only in specific
examples, we show that DDML with stacking accommodates traditional parametric ap-
proaches and can help to decide between alternative models. There, thus, are good reasons
for shifting from purely parametric to more flexible semi-parametric approaches that are
robust to unexpected structures in the data.
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Supplementary material

A Additional tables ‘The benefits of pairing DDML
and stacking’

Table A.1: Mean-squared prediction error

nb = 9,915 nb = 99,150

Panel (A): Linear DGP Y |X D|X Y |X D|X
(1) (2) (3) (4)

Base learners
OLS 3.093 0.200 3.088 0.200
Lasso with CV (2nd order poly) 3.095 0.200 3.089 0.200
Ridge with CV (2nd order poly) 3.100 0.200 3.089 0.200
Lasso with CV (10th order poly) 3.218 0.202 3.095 0.200
Ridge with CV (10th order poly) 3.340 0.205 3.093 0.200
Random forest (low regularization) 3.613 0.233 3.698 0.239
Random forest (high regularization) 3.182 0.205 3.197 0.207
Gradient boosting (low regularization) 3.130 0.201 3.102 0.200
Gradient boosting (high regularization) 3.151 0.201 3.138 0.200
Neural net 3.657 18.260 3.408 9.864

Base learners
Stacking: CLS 3.097 0.200 3.089 0.200
Stacking: Single-best 3.097 0.200 3.088 0.200

Panel (B): Non-Linear DGP Y |X D|X Y |X D|X
(5) (6) (7) (8)

Base learners
OLS 3.683 0.203 3.668 0.203
Lasso with CV (2nd order poly) 3.478 0.201 3.446 0.200
Ridge with CV (2nd order poly) 3.476 0.201 3.446 0.200
Lasso with CV (10th order poly) 5.286 0.228 3.419 0.200
Ridge with CV (10th order poly) 6.340 0.236 3.421 0.200
Random forest (low regularization) 3.793 0.231 3.514 0.236
Random forest (high regularization) 3.589 0.204 3.250 0.205
Gradient boosting (low regularization) 3.351 0.200 3.094 0.198
Gradient boosting (high regularization) 3.403 0.201 3.215 0.199
Neural net 4.214 20.126 4.064 8.365

Meta learners
Stacking: CLS 3.640 0.203 3.062 0.198
Stacking: Single-best 3.981 0.206 3.095 0.198

Notes: The table shows the mean-squared prediction error of each base learner. The
bootstrap sample size is 9,915 (left) and 99,150 (right).
Results are based on 1,000 replications. See Table 1 for more information.



B Additional results ‘DDML and stacking in very
small samples’

Estimator Estimate Std. error
Panel A. No sample splitting

OLS QSI 5988.413 2033.021
OLS TWI 6751.907 2067.859
Post double Lasso QSI c=0.5 5648.14 1985.495
Post double Lasso QSI c=1 4646.575 2012.597
Post double Lasso QSI c=1.5 4472.324 2025.874
Post double Lasso TWI c=0.5 6562.923 2062.475
Post double Lasso TWI c=1 6630.751 2064.408
Post double Lasso TWI c=1.5 7474.508 2049.787

Panel B. DDML with K = 2
Stacking 5689.147 2003.847
OLS 6472.339 2116.396
Lasso with CV (TWI) 6897.007 2066.365
Ridge with CV (TWI) 6967.574 2062.864
Lasso with CV (QSI) 5460.024 2026.607
Ridge with CV (QSI) 5946.86 2005.534
Random forest (low regularization) 7090.91 2150.247
Random forest (high regularization) 22164.99 2309.582
Gradient boosting (low regularization) 6958.092 2088.807
Gradient boosting (high regularization) 7985.865 2119.756
Minimum MSE 5440.646 1997.503
Short-stacking 5623.86 1996.515

Panel C. DDML with K = 10
Stacking 5780.801 1997.006
OLS 6457.161 2116.448
Lasso with CV (TWI) 6777.813 2066.669
Ridge with CV (TWI) 6747.91 2051.715
Lasso with CV (QSI) 5730.387 2012.293
Ridge with CV (QSI) 6007.533 1998.671
Random forest (low regularization) 6969.11 2151.209
Random forest (high regularization) 22189.08 2307.768
Gradient boosting (low regularization) 6995.855 2081.898
Gradient boosting (high regularization) 7991.744 2111.687
Minimum MSE 5708.67 2006.347
Short-stacking 5834.879 1994.693

Notes: In the case of DDML estimators, the average estimates and stan-
dard errors are based on 300 replications. Panel A is reproduced from
Table 1 in WZ.

Table B.1: Estimates and std. errors based on the full sample (N = 9,915).



200 400 600 800 1200 1600
Panel A. No sample splitting

OLS QSI -1271.8 -383.9 -935.3 -553 -939.9
OLS TWI -2642.9 -843.4 -147.7 -636.5 -230.7 -615.4
Post double Lasso QSI c=0.5 -1117.1 -337.9 -204 -599.2 -340.3 -760.9
Post double Lasso QSI c=1 -1531.6 -1179.8 -763 -1120.5 -794 -955.7
Post double Lasso QSI c=1.5 7619.6 1067.8 -1516.7 -2534.6 -2030.4 -2165.1
Post double Lasso TWI c=0.5 2589.5 2243.7 2142.1 1663.3 1399.3 872.3
Post double Lasso TWI c=1 4841.4 3409.9 3121.6 2300.2 1772.6 1331.6
Post double Lasso TWI c=1.5 13124.8 8868.1 5899.3 4426.6 3758.3 2289

Panel B. DDML with K = 2
Stacking 362.6 540.4 118.1 -306.5 -148.5 -360.7
OLS -408.8 -138 -57.5 -248.9 72.8 -450.3
Lasso with CV (TWI) 5858.6 4726.8 3890.4 3079.6 2244.4 1085.4
Ridge with CV (TWI) 3783.4 3249.5 2447.5 1758.2 1321.3 516.5
Lasso with CV (QSI) 266.7 -98.5 82.2 -146.3 -138.5 -462.8
Ridge with CV (QSI) 431.9 25.6 477.1 -123.7 95.4 -411.7
Random forest (low regularization) 680.3 682.2 734.3 514.9 645.2 71.7
Random forest (high regularization) -895.2 -869.8 -566.2 -534 -458.4 -432.1
Gradient boosting (low regularization) -694.8 -158.2 -357.8 -17.9 170.4 -361.4
Gradient boosting (high regularization) -538.4 54.1 -19.7 179.5 259 -125.3
Minimum MSE 835.4 608.3 316.6 134.1 310.8 -191.1
Short-stacking 1001 553.8 427.7 83.7 265.7 -185.1

Panel C. DDML with K = 10
Stacking -561 -164.4 -65 -205.5 -66.1 -435.7
OLS -912.5 -135 59.5 -202.7 2.1 -342.6
Lasso with CV (TWI) 4474.5 3270.1 2484 1840.1 1314.3 491
Ridge with CV (TWI) 2953.4 2057.9 1627.9 1103.8 1179.6 736.1
Lasso with CV (QSI) -978.8 -692.7 -384.6 -591.7 -370.8 -674
Ridge with CV (QSI) -650.3 -281.9 133 -154.1 -21.3 -404.4
Random forest (low regularization) 489.7 727.2 1003.9 703.4 565.9 193
Random forest (high regularization) -967.5 -804.4 -449.4 -424 -331.7 -304.3
Gradient boosting (low regularization) -1058.9 .6 -177.9 -127.5 -8.1 -338.8
Gradient boosting (high regularization) -774.8 301.8 25 69.6 155.9 -190.7
Minimum MSE -560.1 -133.7 51.8 -175.5 34.1 -431.8
Short-stacking -506.1 -106.6 60.4 -187.9 82.5 -364.5

Notes: This table shows the extended results of the bootstrapping exercise in Figure 5. See notes below
Figure 5 for more information.

Table B.2: Mean bias relative to full sample



Estimator Observations
200 400 600 800 1200 1600 9915

Panel A. E[Y |X], K = 10
OLS .159 .159 .127 .096 .056 .027 0
Lasso with CV (TWI) .046 .047 .033 .034 .057 .066 .121
Ridge with CV (TWI) .062 .06 .061 .056 .041 .027 .084
Lasso with CV (QSI) .268 .287 .291 .296 .309 .297 .567
Ridge with CV (QSI) .208 .279 .324 .368 .39 .435 .252
Random forest (low regularization) .165 .123 .117 .105 .086 .082 .002
Random forest (high regularization) .044 .013 .004 .003 .001 0 0
Gradient boosting (low regularization) .048 .05 .065 .073 .091 .1 0
Gradient boosting (high regularization) .037 .022 .016 .009 .007 .003 0

Panel B. E[D|X], K = 10
OLS .141 .22 .233 .258 .242 .212 .173
Lasso with CV (TWI) .046 .037 .031 .021 .017 .018 .14
Ridge with CV (TWI) .054 .023 .017 .023 .03 .022 0
Lasso with CV (QSI) .164 .215 .248 .254 .23 .204 .388
Ridge with CV (QSI) .201 .167 .099 .073 .08 .097 0
Random forest (low regularization) .135 .154 .214 .219 .253 .268 .125
Random forest (high regularization) .159 .067 .028 .019 .005 .002 0
Gradient boosting (low regularization) .035 .05 .064 .073 .104 .154 .172
Gradient boosting (high regularization) .063 .068 .067 .06 .039 .023 .002

Notes: The table reports the stacking weights corresponding to the DDML stacking estimator in
Figure 5. The stacking weights are averages over folds, based on 10-fold cross-fitting and shows for
the estimation of E[Y |X] and E[D|X] in Panel A and B, respectively. See notes below Figure 5 for
more information.

Table B.3: Stacking weights



C Additional results ‘Flexible controls in IV regres-
sion’

C.1 Additional tables

Table C.1: Stacking weights

Estimator Employ- Weeks > 2 IVs
ment worked children Same sex Noise Semi-noise

OLS .401 .321 .449 .223 .832 .842
CV-Lasso .365 .374 .26 .281 .144 .128
CV-Ridge .014 .027 .018 .415 .022 .029
XGBoost-c .22 .278 .273 .082 .001 .002

Notes: The table shows the average stacking weights of the DDML stacking esti-
mator by outcome variable and by base learner. See Table 3 for more information.



C.2 Calibrated simulation
1. We generate the partial residuals d(r)

i = morekidsi − π̂OLS and y(r)
i = workedmi −

θ̂2SLS, where π̂OLS and π̂OLS are the full sample estimates θ̂2SLS using controls
(boy1sti, boy2ndi, Xi).

2. Then, fit a supervised learning estimator that aims to predict y(r)
i with the controls

xi. Denote the fitted estimator by g̃y. Similarly, fit a supervised learning estimator
that aims to predict d(r)

i and samesexi with xi and denote the fitted estimator by
g̃d and g̃z. The two estimators considered in this exercise are linear regression and
gradient boosting.

3. Sample from the empirical distribution of xi by bootstrapping nb observations from
the original data. Denote the bootstrapped sample by Db.

4. To generate the simulated sample:

ỹ
(b)
i = 1{θ0d̃

(b)
i + g̃y(xi) + εi > 0.5}, εi iid∼ N (0, κy)

d̃
(b)
i = 1{π0z̃

(b)
i + g̃d(xi) + ui ≥ 0.486}, ui iid∼ N (0, κd)

z̃
(b)
i = 1{g̃z(xi) + νi ≥ 0.5}, νi iid∼ N (0, κz) ∀i ∈ Db,

where κy = κd = κz = 0.35. We set θ0 = −0.1.



D Text as confounders

Table D.1: Stacking weights and mean-squared prediction error.

Learner Hand All Text Hand All Text
coded only coded only

Panel A. Stacking weights
E[Y |X] E[D|X]

Ridge 0.233 0.200 0.219 0.265 0.031 0.222
Elastic net 0.233 0.225 0.270 0.251 0.018 0.238
Lasso 0.210 0.159 0.217 0.267 0.015 0.215
XGB 1 0.148 0.076 0.065 0.079 0.720 0.255
XGB 2 0.088 0.052 0.038 0.042 0.095 0.028
XGB 3 0.062 0.099 0.076 0.031 0.023 0.012
XGB 4 0.000 0.048 0.018 0.018 0.095 0.025
XGB 5 0.007 0.048 0.024 0.004 0.000 0.002
XGB 6 0.019 0.091 0.074 0.043 0.003 0.003

Panel B. Mean-squared prediction error
E[Y |X] E[D|X]

Ridge 2244.866 2660.745 2666.535 0.076 0.083 0.099
Elastic net 2244.735 2661.533 2704.363 0.076 0.082 0.099
Lasso 2244.861 2651.400 2745.828 0.076 0.082 0.099
XGB 1 2271.782 2672.759 2795.575 0.077 0.079 0.100
XGB 2 2260.094 2862.695 3005.694 0.077 0.083 0.109
XGB 3 2265.449 3058.253 3180.970 0.077 0.099 0.131
XGB 4 2280.125 2668.943 2796.651 0.077 0.079 0.101
XGB 5 2273.701 2865.233 3011.869 0.077 0.085 0.112
XGB 6 2278.368 3018.737 3187.590 0.078 0.104 0.137

Notes: The table shows stacking weights in Panel A and cross-fitted mean-squared prediction error (MSPE) in Panel B.
The stacking weights are averaged over folds and over cross-fitting repetitions. The MSPEs are averaged over cross-fitting
repetitions. See Table 6 for more information.
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