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Abstract

The theory of repeated games offers a compelling rationale for cooperation in a

variety of environments. Yet, its consequences for collective decision-making have

been largely unexplored. In this paper, we propose a general model of repeated

voting in committees and study equilibrium behavior under alternative majority

rules. Our main characterization reveals a complex, relationship between the ma-

jority threshold, the preference distribution, and the set of equilibrium payoffs. In

contrast with the stage game, equilibria in the repeated game may involve a form

of implicit logroll, individuals sometimes voting against their preference to achieve

the efficient decision. In turn, this affects the optimal voting rule, which may sig-

nificantly differ from the optimal rule under sincere voting. The model provides

a rationale for the use of unanimity rule, while accounting for the prevalence of

consensus in committees which use a lower majority threshold.
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to participants of the following seminars: University of Strasbourg, Paris School of Economics, Online Social
Choice and Welfare, COMSOC, and of the following conferences: Aggregation Across Disciplines, Social Choice
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1 Introduction

Collective decisions in many committees display two key features: (i) decisions

are taken repeatedly over time, and (ii) committee members often differ in how

much they care about each decision. Examples include international organiza-

tions, standard-setting organizations, city councils, hiring committees, etc. For

instance, the Council of the European Union, one of the three main decision bod-

ies of the EU, issues more than 300 legislative acts every year on a wide range of

topics. Countries’ stakes on these proposed reforms may vary significantly depend-

ing on their economy, citizens’ preferences, historical background, cultural norms,

current national legislation, etc. In this paper, we propose a model of collective

decisions that captures these two defining characteristics and study how they affect

equilibrium voting behavior, and in turn the comparison of alternative voting rules.

In the classical setting where the committee takes a single binary decision,

sincere voting is a dominant strategy under any qualified majority rule. In a

repeated setting, individuals may choose to condition their voting behavior on

past votes. This history dependence may lead to strategic (non-sincere) behavior,

thus changing the outcome of collective decisions compared to the static, sincere,

benchmark. It is thus essential to account for the repeated nature of collective

decisions to understand the implications of different voting rules.

Our paper sheds light on two important facts about collective decision-making

that can be hard to reconcile with standard voting theory. The first observation

is that, despite strong similarities in their organization and structure, committees

vary widely in the procedures and voting rules used for making collective decisions:

from simple majority, unanimity rule, and weighted majority rules to the use of

veto power. The heterogeneity of voting procedures can sometimes be observed

within the same organization, decisions of different nature being taken according

to different voting rules. For instance, the Council of the EU uses simple ma-

jority for some decisions, but the unanimity rule for others. Why do otherwise

similar committees use different voting rules? And why is the unanimity rule so

prevalent, when it is usually considered to be inefficient and prone to gridlock?

The second observation is that decisions in many committees are often made by
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consensus, without taking a formal vote, even when the committee is supposed

to use a (possibly non-unanimous) voting rule (Urfalino, 2014). The prevalence

of consensus may seem puzzling, especially in large committees, where preferences

over decisions are rarely consensual. We show that it is possible to rationalize such

consensual behavior without assuming any type of social preference. Instead, our

model features a social norm of consensus emerging from equilibrium behavior in

a repeated interaction.

In our model an ex-ante symmetric committee makes repeated binary decisions

about whether to accept or reject proposed reforms. At each stage utilities are

drawn and observed publicly. Utilities reflect individuals’ cardinal preferences for

the reform relative to the status quo. Individuals then vote simultaneously either

in favor or against the reform and a collective decision is taken according to a

qualified majority rule. We study the equilibrium outcomes of this repeated game.

Our first result characterizes the set of equilibrium payoffs. The width of this set

and the discount factor together determine the power of intertemporal incentives

in the repeated game. In turn, this power of intertemporal incentives drives the

optimal equilibrium, the one achieving the highest level of (ex-ante) utility. This

equilibrium takes the form of a cooperation norm, the committee adopting efficient

decisions unless it becomes too costly to incentivize the pivotal voter to abide by

them. The power of intertemporal incentives thus provides a measure of the degree

of cooperation that can be sustained at equilibrium. When the discount factor is

large enough, even the first best can be achieved.

We then refine the analysis by focusing on individual voting behavior. We show

that the cooperation norm of the optimal equilibrium may allow for a substantial

level of consensual decisions, even if preferences are never consensual. When the

discount factor is large enough, not only all decisions can be efficient, but any

accepted reform can receive unanimous approval.

To explore the implications of the cooperation norm we uncover, we then focus

on a more stylized setting where utilities write as a sum of common and private

components. We derive explicit formulas for the set of equilibrium payoffs under

any possible majority rule and discount factor. Taking stock, we perform two

comparative statics exercises. First, we look for the optimal voting rule, the one
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which allows to reach the highest level of utility. While simple majority appears

optimal in the static benchmark, a super-majority (or even the unanimity) can be

optimal in the repeated game. Second, we show that, contrary to what we would

obtain in a static model, the level of consensus may be higher when committee

members have more heterogeneous preferences or when the majority threshold is

lower.

1.1 Illustrative example

A group of three individuals decides whether to accept or reject repeated proposals

at either unanimity or simple majority. Assume proposals are of the following two

types:

− Proposals of type A benefit one individual strongly (ui = 5), one individual

weakly (ui = 1), and hurt one individual mildly (ui = −3).

− Proposals of type B benefit one individual strongly (ui = 5) and hurt two

individuals weakly (ui = −1).

Individuals are equally likely to occupy any position for each kind of proposals.

We denote by p ∈ (0, 1) the probability of occurrence of proposals A. Since both

proposals generate an average utility of 1, the first-best consists in accepting any

proposal and yields ex-ante utility U e = 1.

If the organization only makes one decision, voting sincerely is a weakly domi-

nant strategy. Under unanimity, no reform is ever accepted at equilibrium, yielding

ex-ante utility Uu = 0. Under simple majority, only proposals A are accepted at

equilibrium, yielding ex-ante utility U s = p. Simple majority dominates unanimity

but does not achieve the first best.

If the organization makes (infinitely) repeated decisions, it is possible to in-

centivize individuals to sometimes vote against their preference so as to achieve

a higher level of utility. Consider the following strategy profile under unanimity:

on the equilibrium path all three individuals always vote in favor of proposals A

and B; any deviation is punished by a permanent reversal to the stage-game equi-

librium. Such a profile is an equilibrium if and only if the worst-off individual in

proposals A has an incentive to vote in favor of the proposal. This is the case if
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her inter-temporal utility from the reform being adopted, −3(1− δ) + δU e, exceeds

her inter-temporal utility from the reform being rejected, δUu. As a result, the

first-best can be sustained under this profile if δ ≥ δFu := 3/4. In fact, this equilib-

rium is optimal, and the previous condition is thus necessary for the first-best to

be achieved at equilibrium.

If the discount factor is too small, full cooperation cannot be achieved at equi-

librium but it may still be possible to improve over the stage-game equilibrium.

Consider the following strategy profile: on the equilibrium path all three indi-

viduals vote in favor of proposals B, but they vote sincerely on proposals A; any

deviation is punished by a permanent reversal to the stage-game equilibrium. Only

proposals B are now accepted, which yields a lower level of utility than under the

first-best, Û = 1− p < U e. However, individuals who need to be incentivized only

have a stake of 1, as opposed to 3 previously. Such a profile is an equilibrium if

and only if −(1 − δ) + δÛ ≥ δUu, or equivalently δ ≥ δPu := 1/(2 − p). When

p < 2/3, threshold δPu is smaller than the threshold for full cooperation δFu : we

get an intermediate range of discount factors (δPu , δ
F
u ) such that unanimity cannot

achieve the first-best, yet improves over the stage-game equilibrium.

Under simple majority, sustaining the first-best no longer requires incentivizing

A’s worst-off individual to vote in favor since proposals A are accepted under sincere

voting. Consider the following strategy profile: on the equilibrium path all three

individuals vote in favor of proposals B, but they vote sincerely on proposals A;

any deviation is punished by a permanent reversal to the stage-game equilibrium.

This profile is an equilibrium if and only if −(1− δ) + δU e ≥ δU sm, or equivalently

δ ≥ δFsm := 1/(2−p). This equilibrium is optimal, and the previous condition is thus

necessary for the first-best to be achieved at equilibrium.1 In contrast to unanimity,

achieving efficiency under simple majority only requires incentivizing individuals

with a stake of 1, as opposed to 3, and may thus seem easier to achieve. However,

since simple majority outperforms unanimity in the stage game, the long term

benefit from complying with prescribed behavior is smaller, which can eventually

1Under simple majority, the payoff of the stage-game equilibrium is not the lowest feasible payoff (Us = p >
0). However, it can be shown (in this example) that the worst equilibrium payoff in the repeated game does in
fact coincide with the payoff of the stage-game equilibrium.
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make efficiency harder to sustain. Here, if p > 2/3, there exists a range of discount

factors (δFu , δ
F
sm) where only unanimity can sustain the first-best.2

This simple example illustrates how the repeated nature of collective decisions

may affect equilibrium voting behavior and allow for better outcomes to be sus-

tained relative to the stage game. In turn, this may have consequences for the

optimal voting rule and the level of consensus.3

1.2 Literature Review

Most of the literature on repeated collective decision-making considers decisions

over a single, persistent, issue (e.g. a central bank setting the interest rate). The

objective is then to understand how the endogeneity of the status quo (today’s

decision becomes tomorrow’s status quo) affects voting behavior, most often under

the assumption of Markovian strategies. For instance, Baron (1996) proposes a

model of dynamic redistributive politics where legislators have single peaked pref-

erences over a one-dimensional policy space. He characterizes voting behavior at

the stationary equilibrium and show how it relates to the preference of the median

voter. More recently, Dzuida and Loeper (2018) study an infinite horizon model

where a group of legislators repeatedly make the same binary decision. They show

how the endogeneity of the status quo leads to more polarized voting behavior

at equilibrium than under sincere voting.4 By contrast, our model considers a

committee making repeated collective decisions about exogenous and independent

proposals. The repeated, as opposed to dynamic, nature of our model allows us

2The fact that δFsm coincides with δPu is specific to this simple example. In general, unanimity can also
outperform simple majority in a regime of partial cooperation.

3Note for instance that it is possible to achieve full consensus under simple majority if individuals are patient
enough. Consider the following strategy profile: on the equilibrium path all three individuals always vote in
favor of proposals A and B; any deviation is punished by a permanent reversal to the stage-game equilibrium.
This profile is an equilibrium if and only if δ ≥ 3/(4 − p) > δFs . In contrast with the original profile used to
sustain the first-best, the worst-off individual in proposals A now has to be incentivized to vote in favor as well,
which is more demanding and may only be achieved at equilibrium for a larger discount factor.

4Other references in this literature include Kalandrakis (2004), who extends Baron (1996)’s model of leg-
islative bargaining to a dynamic setting by considering a three players version of the divide the dollar game
with endogenous reversion point, Duggan and Kalandrakis (2012), who prove the existence of stationary Markov
perfect equilibria in an infinite-horizon model of legislative policy making with endogenous status quo, under
general assumptions about the policy space and preferences, and Penn (2009), who studies the formation of “far-
sighted” preferences under endogenous status quo when voters must choose, at each stage, between a randomly
drawn proposal and the status quo.
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to consider non-Markovian strategies, which are essential to generate the implicit

logrolling behavior characteristic of our optimal equilibrium. While the benefit

of repetition on cooperation has long been acknowledged in the repeated games

literature (Mailath and Samuelson, 2006), very few papers have explored the im-

plications for voting behavior and optimal voting rules. This is the main purpose

of our paper.

Going back to Buchanan and Tullock (1962), it has been argued that making

multiple, as opposed to a single, collective decisions opens up the possibility of

vote trading between committee members. As noted in Buchanan and Tullock

(1962), “The existence of a logrolling process is central to our general analysis of

simple majority voting”. The literature on logrolling usually considers the possi-

bility of vote trading over a finite and explicit set of alternatives under complete

information (Park, 1967; Casella and Palfrey, 2019; Casella and Macé, 2021). An

important take-away from this literature is that logrolling does not necessarily im-

prove welfare, as a mutually beneficial exchange of votes might end up hurting the

voters who are not part of the trade. Our model does not assume explicit vote

trading agreements between voters. Instead, logrolling emerges endogenously at

equilibrium, as an implicit agreement between voters. Increased cooperation can

be sustained at equilibrium because of the threat of reverting to an inefficient equi-

librium in case of failure to achieve the efficient decision. In contrast with most of

the existing literature on vote trading, logrolling in our model is associated with

welfare improvements.

A few papers from the logrolling literature are particularly connected to our

study. In the experiments reported in Fischbacher and Schudy (2014, 2020),

logrolling also arises from a dynamic sequence of votes and can be explained by

social preferences. Voters that have benefited from non-sincere voting from other

voters in the past reciprocate when given the opportunity. In turn, trusting voters

may vote non-sincerely at the beginning of the sequence, anticipating that their

fellow committee members will reciprocate. By contrast, logrolling is obtained in

our model as an equilibrium outcome of the repeated voting game. This feature is

also present in Carrubba and Volden (2000), who consider a sequential model of

logrolling embedded in a repeated model of coalition formation in a legislature. At

7



each period a winning coalition of legislators is picked endogenously and a series

of proposals, each benefiting only one of the coalition’s members (at the expense

of all other legislators), is put to a vote. The voting rule is chosen endogenously

by the legislators at the beginning of the super game. The objective of the model

is to show why legislators may form oversized coalitions (larger than the majority

threshold) to enter into logrolling agreements. The result relies on the legislators

having a smaller incentive to deviate once their own bill has been passed if reject-

ing a proposal requires the defection of more than one legislator in the coalition.

In contrast with Carrubba and Volden (2000), logrolling in our model is implicit

(no explicit agreement between individuals within a specific coalition), and the

intensity of individual preferences varies across proposals. Furthermore, we char-

acterize the optimal equilibrium, as opposed to only considering a specific kind of

equilibrium.

To the best of our knowledge, the sole paper that has considered the implica-

tions of logrolling for the choice of a voting rule is Charroin and Vanberg (2021).

They study a classical logrolling model over a finite set of decisions and restrict at-

tention to the comparison between simple majority and unanimity, when there are

only three voters. Relying on simulations and lab experiments, they obtain that

logrolling is welfare-improving under unanimity but not necessarily under simple

majority. As in our model, they show that unanimity may outperform simple ma-

jority. Yet, the results we obtain in the current paper are more general in the

following sense : we consider any number of voters and any super-majority re-

quirement, and we explicitly characterize the circumstances under which a given

majority rule is optimal on the stylized (yet broad) model. Moreover, by resorting

to analytical results, we are able to highlight a precise mechanism (the truncated

rule of the optimal equilibrium) underlying the comparison of voting rules.

Finally, the paper closest to ours is Maggi and Morelli (2006), who study self-

enforcing voting rules in international organizations. A group of countries takes

repeated collective actions under the assumption that an action is only effective if

taken by all countries (what they call a pure collective action). Before taking action,

countries engage in a cheap talk stage where they announce whether they are in

favor or against the proposed action. At the optimal symmetric public perfect equi-
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librium, countries reveal their preference truthfully and take action (unanimously)

if the number of countries in favor exceeds a fixed threshold. The decision rule

on the equilibrium path thus mimics the outcome of a (super)majority rule under

enforceable decisions. Similar to our model, Maggi and Morelli (2006) consider

repeated decisions over exogenous and independent proposals, and strategies may

depend on the past (public) history of collective actions and votes. However, our

model differs from theirs in three important respects. First, we consider a model

where decisions can be enforced. The voting rule (majority threshold) matters in

an explicit way, and a winning coalition can impose its preference on the losing

minority. Second, we consider a model where members’ preferences have varying

intensities. This aspect is crucial in many environments and greatly exacerbates

the benefits of logrolling. Third, we assume complete information.5 Similar to

Maggi and Morelli (2006), we find that it is possible to achieve the first-best if the

discount factor is large enough. However, our analysis of the optimal equilibrium

differs substantially.6

The rest of the paper is organized as follows. Section 2 introduces the model

and lays out the main assumptions. Section 3 characterizes the set of equilibrium

payoffs and the optimal consensus probability. Section 4 revisits our general results

on a more stylized model to perform comparative statics. Section 5 discusses our

main assumptions. Section 6 concludes.

2 Setup

2.1 Stage game

Model - A group of individuals N = {1, . . . , n} must collectively decide whether

to adopt a proposed reform or keep the status quo. If enacted, the reform yields

utility ui ∈ R to individual i ∈ N , while the status quo’s utility is normalized to 0.

5Note that truthful revelation under incomplete information, as obtained in Maggi and Morelli (2006), would
not be possible in an environment where preferences have varying intensities.

6Under unanimity rule, our model can be interpreted as a model of repeated collective decisions without
enforcement under a pure collective action assumption. Our paper can thus be seen as an extension of Maggi
and Morelli (2006)’s analysis of self-enforcing voting rules to preferences that exhibit varying intensities under
complete information.
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An individual i ∈ N is thus favorable to the reform if ui ≥ 0, opposed if ui < 0, and

we refer to |ui| as her stake in the collective decision. The reform is characterized

by the utility vector u = (ui)i∈N , with mean u = (
∑

i∈N ui)/n. We say that a reform

is good when u ≥ 0 and bad when u < 0.

The reform u is drawn from a cumulative distribution functionG, whose support

is denoted by S ⊆ RN . We make the following three assumptions on G.

Assumption 1. G is symmetric: for any u ∈ S and any permutation π of N ,

G(u) = G(uπ).

Assumption 2. G is smooth and its support S is bounded and convex.

Assumption 3. EG[|u|] < +∞.

Assumption 1 reflects the fact that individuals are ex-ante identical, but ex-post

heterogeneous. Assumption 2 is made for ease of exposition, it ensures in particular

that the distribution G has no atom. Finally, Assumption 3 guarantees that the

game has well-defined expected payoffs.

After observing reform u, each individual i votes either in favor of the reform,

vi = 1, or against, vi = 0. A majority rule with threshold k ∈ {1/2, . . . , 1} then

decides the reform’s fate d ∈ {0, 1}. If at least kn individuals vote in favor, the

reform is adopted, d = 1, and each individual i gets utility ui. If not, the status

quo remains, d = 0, and each individual gets utility 0.

Strategies and Equilibrium - A voting strategy vi for player i associates to any reform

u a vote vi(u) ∈ {0, 1}. At the unique Nash equilibrium in weakly undominated

strategies,7 every individual votes sincerely, i.e. vi(u) = 1{ui ≥ 0}. As a result, a

reform is collectively accepted if and only if the individual with the [kn]-th largest

utility is favorable, i.e. u[kn] ≥ 0. This individual plays a central role in our analysis

as she acts as a pivot, both in the static and in the repeated game. Henceforth,

we refer to her as the critical individual, and to her utility uc := u[kn] as the critical

utility. We note that the equilibrium is usually inefficient, as bad reforms may be

accepted (when uc ≥ 0 but u < 0) and good reform may be rejected (when uc ≤ 0

7Individuals with utility ui = 0 are indifferent between voting in favor or against, but this instance almost
never arises under Assumption 2. The equilibrium in undominated strategies is thus essentially unique.
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but u > 0) under sincere voting.

Decision rules - Given majority rule k, a strategy profile (vi)i∈N induces a (group)

decision rule. Formally, a decision rule d associates to any reform u a collective

decision d(u) ∈ {0, 1}. The expected utility of individual i under decision rule d is

given by:

Ui(d) =

∫
uid(u) dG(u). (1)

When the rule d is symmetric, we simply denote by U(d) the common expected

utility. We denote by d0 the sincere decision rule induced by the stage-game equi-

librium, d0(u) = 1{uc ≥ 0}.

Cost of Implementation - For any reform u ∈ S and any collective decision d ∈ {0, 1},
let c(u, d) denote the smallest transfer that would make the critical individual favor

decision d,

c(u, d) =

{
0 if d = d0(u)

|uc| if d 6= d0(u).

We refer to c(u, d) as the cost of implementing decision d on reform u. It is

equal to 0 if the critical individual favors d and to the critical stake |uc| if she does

not. The cost c(u, d) reflects the smallest common reward needed to incentivize

the required majority of k individuals to favor decision d on reform u.8 For any

decision rule d(.), we define C(d) and ∆(d) as, respectively, the expected and the

largest cost of implementing decision d(u),

C(d) = E [c(u, d(u))] and ∆(d) = sup
u∈S

c(u, d(u)).

Note that C(d0) = ∆(d0) = 0 since the critical individual always agrees with d0.

Two benchmark rules - Two decision rules play an important role in our characteriza-

tion of the repeated game’s equilibrium payoffs. First, we define the efficient rule de

8The focus on a common (rather than personalized) reward is a consequence of Assumption 5 below.
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as the rule which accepts reforms if and only if they are good, i.e. de(u) = 1{u ≥ 0}.
In what follows, we focus on the interesting case where the stage-game is inefficient,

i.e. U e := U(de) > U 0 := U(d0).

Second, we define the cost-adjusted inefficient rule di as the rule which selects the

inefficient decision if and only if the inefficiency exceeds the cost of implementing

the corresponding decision: di(u) = 1−de(u) if and only if c(u, 1−de(u)) ≤ |u|. We

note that de maximizes U(.) over all symmetric rules, while di minimizes U(·)+C(·)
over all symmetric rules. In the sequel, we will denote the largest costs of imple-

mentation of the two benchmark rules by ∆e = ∆(de) and ∆i = ∆(di).

We illustrate decision rules d0, de and di on Figure 1. A reform is identi-

fied graphically by the average utility u and the critical utility uc. The colored

area represents the (projected) support S of G. Good reforms are represented in

green, while bad reforms are represented in red. Collectively accepted proposals

are located inside the black polygon. Inefficient decisions, either proposals ineffi-

ciently rejected or inefficiently accepted, are represented in darker tones. Reforms

in hatched areas have a positive cost of implementation, i.e. c(u, d(u)) = |uc|) > 0,

while reforms outside of hatched areas have a zero cost of implementation.

Figure 1: Three decision rules.

(a) Sincere rule d0. (b) Efficient rule de. (c) Cost-adjusted inefficient rule di.
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2.2 Repeated Game

We now consider an infinitely repeated version of the stage game.

Timing - At each stage, a reform u is drawn from G independently of previous

stages. The reform u is publicly observed, then individuals simultaneously vote

under majority rule k to decide the reform’s fate. The history at time t, denoted

by ht, consists of all reforms and votes prior to t. A strategy σi for individual i

associates to every history h and reform u ∈ S a vote σi(h,u) ∈ {0, 1}. Utilities

are discounted with a discount factor δ ∈ (0, 1). We say that a history h is on

the path of a strategy profile σ = (σi)i∈N if the votes at each period are the ones

specified by σ given the utility realizations.9

Assumptions - We restrict our analysis to strategy profiles that satisfy the following

three properties.

Assumption 4 (Symmetry). All individuals use the same strategy.

Assumption 5 (Independence of Individual Votes (IIV)). Voting behavior only

depends on past anonymized realizations of utilities and decisions.

Assumption 6 (As-if-pivotal Voting). Taking as given future play prescribed by

the strategy profile, players play as if they were pivotal.

Symmetry is a natural assumption in our context since the model is fully sym-

metric ex-ante. IIV requires that strategies only depend on past decisions, and not

on past individual votes. This implies that deviations from the equilibrium path

may only be punished collectively. IIV can be justified by a reluctance to single out

or antagonize specific individuals for their votes.10 Similar requirements have been

used in the literature to allow for history-dependent strategies, without losing too

much tractability (Bernheim and Slavov, 2009; Anesi and Seidmann, 2015). As-if-

pivotal Voting allows us to pin down the voting behavior of individuals who are

9Such histories are also referred to in the literature as consistent histories (Mailath and Samuelson (2006)).
10In a previous version of the paper, we showed that IIV can be weakened to the requirement of Anonymity,

i.e. that voting behavior only depends on past anonymized realizations of utilities and votes (voting behavior
may then be conditioned on the fraction of individuals voting in favor of the reform). We decided to require the
slightly stronger property for ease of exposition.
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not pivotal, which is left unconstrained by subgame perfection. Individuals then

vote for the alternative that maximizes their continuation utility. The requirement

is commonly used in dynamic voting games (see for instance Ali et al. (2022)), it

was first proposed in Baron and Kalai (1993) as stage-undomination.11

Equilibrium - We focus on subgame perfect equilibria that satisfy the above three

assumptions, and simply refer to them as equilibria. Denoting by v(δ) and v(δ) the

lowest and highest equilibrium payoffs,12 respectively, we define,

bδ :=
δ

1− δ

(
v(δ)− v(δ)

)
(2)

as the power of intertemporal incentives. Parameter bδ reflects how costly a deci-

sion can be implemented at equilibrium in the first stage, given that continuation

promises must themselves be equilibrium payoffs and future is discounted by δ.

3 Equilibrium

We start by introducing truncated decision rules, which play an important role in

our characterization of equilibrium payoffs.

3.1 Truncated Rules

We have highlighted in the previous section that decision rules sometimes involve

positive implementation costs, which might be prohibitive in the repeated game if

intertemporal incentives are not powerful enough. This consideration leads us to

the following definition. For any decision rule d and any cutoff b ∈ R+, the truncated

rule db selects decision d(u) unless its cost of implementation is greater than b, in

11A formal definition of Stage-undomination is given in the appendix. Note that when strategies do not
depend on the detail of past individual votes, but only on the resulting collective decision (as under IIV),
imposing Stage-Undomination does not affect the set of equilibrium utilities.

12The set of equilibrium payoffs is a compact interval, see Lemmas 1 to 3.
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which case it selects the sincere decision,

db(u) =

{
d(u) if c(u, d(u)) ≤ b

d0(u) if c(u, d(u)) > b.

For any cutoff b ∈ R+, letDb denote the set of all symmetric decision rules truncated

by b. A symmetric decision rule can be implemented at equilibrium in the first

stage if and only if it belongs to Dbδ . Indeed, as long as the cost of implementation

is smaller than bδ, the critical individual may be incentivized to vote in any desired

direction by rewarding compliance with continuation promise v(δ) and punishing

deviations with continuation promise v(δ).

Two truncated rules play a central role in our characterization of equilibrium

payoffs. Under the truncated efficient rule deb, the decision taken is efficient unless

its cost of implementation exceeds b. That is, good reforms are accepted unless

the critical utility is too small (uc ≤ −b), while bad reforms are rejected unless

the critical utility is too high (uc ≥ b). When b = 0, the rule deb coincides with

the sincere rule d0 as no decision with positive implementation cost is allowed. For

b ∈ (0,∆e), the rule deb coincides with the sincere rule whenever it prescribes efficient

decisions, while reversing some, but not all, inefficient decisions. For b ≥ ∆e,

the truncation becomes moot (since ∆e is the highest implementation cost of an

efficient decision) and deb coincides with the efficient rule. In terms of utility, U(deb)

is increasing in b, going from U 0 when b = 0 to the first best U e when b ≥ ∆e.

Under the truncated cost-adjusted inefficient rule dib, the decision taken on reform u

is inefficient unless its cost of implementation exceeds u or exceeds b. That is, good

reforms are rejected unless the critical utility is too high (uc ≥ min(u, b)), while

bad reforms are accepted unless the critical utility is too low (uc ≤ max(u,−b)).
As the cutoff b increases, more inefficient decisions are taken. The utility U(dib)

thus decreases with b, and the rule dib coincides with di whenever b ≥ ∆i.

We illustrate the two truncated rules on Figure 2 below.
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Figure 2: Truncated decision rules.

(a) Truncated efficient rule deb. (b) Truncated cost-adjusted inefficient rule dib.

3.2 Characterization of equilibrium payoffs

For any cutoff b ∈ R+, let U(b) and U(b) be such that,

U(b) := max
d∈Db

U(d) and U(b) := min
d∈Db

(
U(d) + C(d)

)
.

In words, U(b) is the highest payoff achievable by a b-truncated rule, while U(b)

is the lowest cost-augmented payoff achievable by a b-truncated rule. Since both

optimizations can be performed reform by reform, it follows that U(b) and U(b) can

be implemented, respectively, by the truncated efficient rule deb and the truncated

cost-adjusted inefficient rule dib,

U(b) = U(deb) and U(b) = U(dib) + C(dib).

Furthermore, because set Db expands when b increases, we get that U(b) increases

with b, while U(b) decreases with b.

Theorem 1. The set of equilibrium payoff is equal to [U(bδ), U(bδ)], where the power

of intertemporal incentives bδ is given by:

bδ = max
{
b ≥ 0

∣∣∣ (1− δ)b = δ
[
U(b)− U(b)

] }
. (3)

Theorem 1 characterizes the set of equilibrium payoffs in the repeated game
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through the power of intertemporal incentives bδ, defined as a solution to fixed-

point equation:

(1− δ)bδ = δ
[
U(bδ)− U(bδ)

]
. (4)

The intuition for Theorem 1 follows from the dual relationship between the power

of intertemporal incentives bδ and the extremal equilibrium payoffs v(δ) and v(δ).13

First, the power bδ can be simply expressed from the extremal payoffs, as in (2).

Second, to see how extremal payoffs depend on power bδ, recall that any decision

rule inDbδ can be implemented at the first stage of the repeated game. Now, the key

observation is that there is no on-path cost at incentivizing high payoffs, since high

payoffs can be sustained by high rewards (on-path) and low punishments payoffs

(off-path). Hence, the highest equilibrium payoff that can then be sustained is

simply given by the payoff-maximizing decision rule in Dbδ , that is v(δ) = U(bδ) =

U(debδ).

By contrast, there may be on-path costs at incentivizing low payoffs, since low

payoffs may require high rewards which are then realized on-path. As a result

of this trade-off, the lowest equilibrium payoff is obtained by minimizing the cost-

augmented payoff U(·)+C(·) on Dbδ , and we obtain v(δ) = U(bδ) = U(dibδ)+C(dibδ).

This intertemporal utility can be achieved by a non-stationary equilibrium which

implements dibδ at the first stage. Intuitively, to achieve the lowest equilibrium

payoff, an inefficient decision is taken at the first stage only if its inefficiency exceeds

its implementation cost, which then realizes on the equilibrium path.

3.3 Equilibrium outcomes

In this section, we derive a number of implications of Theorem 1 on equilibrium

outcomes.

Corollary 1. The optimal equilibrium payoff can be achieved by a stationary equilibrium

in which the truncated efficient rule debδ is implemented at each stage.

Corollary 1 implies that the optimal equilibrium may be understood as a (self-

13The proof is provided in the appendix, it relies on the technique of self-generation, see for instance Mailath
and Samuelson (2006).
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enforcing) cooperation norm,14 whereby voters routinely abide by collectively efficient

decisions unless the critical stake exceeds cutoff bδ. In turn, the parameter bδ may

be interpreted as the optimal degree of cooperation that is achievable in the repeated

game.

Corollary 2. The optimal degree of cooperation bδ is weakly increasing with δ.

A consequence of Corollary 2 is that the set of equilibrium payoffs expands

with δ. Then, with a higher discount factor δ, a higher degree of cooperation can

be achieved for two reasons: because voters attach a greater importance to the

future (relative to the present) and because the available rewards and punishments

become richer.

The next result addresses the following questions: Can even the first best be

achieved? If not, can there by any cooperation? We say that partial cooperation

is achieved when an equilibrium delivers a utility strictly higher than U 0. We say

that full cooperation is achieved when an equilibrium delivers the first-best utility

U e.

Corollary 3. There are thresholds δP , δF with 0 < δP ≤ δF < 1 such that:

• if δ < δP , the unique equilibrium payoff is U 0, the stage-game equilibrium payoff.

• if δ ∈ [δP , δF ), only partial cooperation is possible at equilibrium.

• if δ < δP , full cooperation is possible at equilibrium.

Corollary 3 characterizes when either partial or full cooperation can be achieved

at equilibrium. For intermediate values of the discount factor, the optimal coop-

eration norm coincides with a (strictly) truncated efficient rule. For higher values

of δ, even the efficient rule can be sustained.

3.4 Consensus

While the previous section focuses on equilibrium outcomes at the group level, we

now derive implications of Theorem 1 for individual voting behavior. We focus on

optimal equilibria and ask how much consensus they can generate.

14In fact, this stationary path constitutes the unique optimal equilibrium path.
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For a stationary equilibrium σ, we let vσ denote the voting profile used at each

stage. The consensus probability under σ is then defined as the probability that a

reform is approved unanimously, that is:

PC(σ) = P

(∏
i∈N

vσi (u) = 1

)
.

We focus on the optimal consensus probability which is defined as the highest con-

sensus probability that can be achieved at an optimal equilibrium: if Σ∗(δ) is the

set of stationary optimal equilibria, we define:15

P ∗(δ) = max
σ∈Σ∗(δ)

PC(σ).

Theorem 2. The optimal consensus probability P ∗(δ) is weakly increasing with δ. There

is δC ∈ (0, 1) such that the optimal consensus probability is maximal for δ ≥ δC. All good

reforms are then accepted with consensus.

When the discount factor is higher, the higher power of intertemporal incentives

allows to construct optimal equilibria with worse punishments. The increase in the

optimal consensus probability thus reflects two effects. First, the optimal degree of

cooperation is higher and thus more good reforms are approved.16 Second, any good

reform is more likely to receive consensus, as harsher punishments can incentivize

even the least favorable voter to vote in favor of the reform.

The first substantive lesson of Theorem 2 is that consensus becomes easier to

achieve when voters become more patient. This refines the observation made in

Corollary 2 on self-enforcing cooperation norms. When δ increases, it becomes

possible to implement cooperation norms such that collective decisions are better

on average and also such that reforms are more likely to be approved unanimously.

Moreover, if the discount factor is high enough, i.e. δ ≥ max(δF , δC), a coopera-

tion norm can be sustained whereby only good reforms are approved, and all are

15We note that the highest consensus probability at an equilibrium of the repeated game might be attained for
non-optimal equilibria. Here, we treat consensus as a secondary objective that comes after payoff maximization.
While not exhaustive, we believe that this approach still provides a reasonable and tractable benchmark to
highlight how consensus can emerge in the repeated game.

16This also means that less bad reforms are approved, but as we note in the proof, these reforms never receive
a consensual approval.
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approved unanimously.

4 Comparative statics

In this section, we derive rich comparative statics in a simplified model. We focus

on a stylized class of preference distributions where (i) individual utilities write as

the weighted sum of a common and a private component, and (ii) the distribution

of private components is fixed across reforms. The model illustrates how repetition

may significantly affect the relative efficiency of alternative majority rules.

4.1 Preference distributions

We assume that the utility of each individual i ∈ N now writes as,

ui = θ + αεi

where (i) the ordered vector of private components is fixed across reforms: there

exist e1 ≤ · · · ≤ en such that ε[j] = ej for all j ∈ {1, . . . , n}, and (ii) the common

component θ is drawn uniformly on [−1, 1]. As in the general model, we assume that

the distribution of u = (ui)i∈N is symmetric, so that any voter has an equal chance

to have a private component at any given rank of the distribution e = (ei)i∈N .

Parameter α reflects the (relative) weight attached to the private component, which

we interpret as a measure of diversity within the committee. For ease of exposition,

we assume that e1 = −1 and en/2 < e = 0.

In this setting, the difference between the average and the critical utility is

constant, as u− uc = −αec, while the average utility, u = θ, varies across reforms.

This feature greatly simplifies the computation of the optimal equilibrium, allowing

us to study the effects of the majority threshold and of the degree of diversity on

equilibrium outcomes.

A proposal is good if and only if the common component is positive, θ ≥ 0,

while it is collectively accepted at the stage-game equilibrium if and only if the

critical individual is in favor, θ ≥ −αec. As en/2 < 0, we have ec ≤ en/2 < 0 for any

majority rule, so that the inefficiency of the stage-game equilibrium comes from
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good reforms θ ∈ [0,−αec] being rejected.

Under any voting rule k, the expected payoff under the efficient and sincere

decision rules are now equal to:

U e =
1

4
and U 0(k) = U e − (∆(k))2

4
, (5)

where we abuse notation to write ∆(k) := ∆e(k) = α|ec| = α|en−k+1|. Here, the

parameter ∆(k) can be interpreted as a measure of the inefficiency associated with

majority rule k in the stage game. In particular, we get that the equilibrium utility

in the stage-game is decreasing with threshold k.

Proposition 1. In the stage game of the simplified model:

• the optimal rule is simple majority (k = 1/2)

• the worst rule is unanimity (k = 1).

We note that, although majority rule is optimal, it does not achieve the first

best since ∆e(1/2) = |αen/2| > 0 and thus U 0(1/2) < U e.

4.2 Optimal voting rule

We turn to the analysis of the repeated game. As we show in the appendix, by

applying Theorem 1 for each possible value of the inefficiency ∆, we can obtain

closed-form formulas for the optimal degree of cooperation bδ. In turn, we obtain

the partial and full cooperation thresholds δF and δP , as well as the optimal utility

v(δ). Taking stock, our first result characterizes the optimal voting rule, i.e. the

rule maximizing the highest equilibrium payoff v(δ).

Theorem 3. In the simplified model, there are thresholds δ, δ with 0 < δ < δ < 1 and

continuous functions k∗, k∗∗ : [0, 1]→ [1/2, 1] such that:

• if δ < δ, the optimal rule is simple majority (k = 1/2)

• if δ ≤ δ < δ, the optimal rule is a (super-) majority k∗(δ)

• if δ ≤ δ, any majority rule k with k∗(δ) ≤ k ≤ k∗∗(δ) is optimal.
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Moreover, k∗(·) is weakly decreasing, from k∗(δ) > 1/2 up to k∗(1) = 1/2, while k∗∗(·)
is weakly increasing, from k∗∗(δ) = k∗(δ) up to k∗∗(1) = 1.

Theorem 3 shows that accounting for the repetition of collective decisions can

drastically affect the assessment of alternative majority rules. In the benchmark

case where the discount factor is low (δ < δ), future is so discounted that the

stage-game result of Proposition 1 applies, i.e. simple majority (k = 1/2) is the

optimal rule. In the opposite benchmark where the discount factor is high (δ ≥ δ),
intertemporal incentives are sufficient to achieve full cooperation for some rules

(k∗(δ) ≤ k ≤ k∗∗(δ)), and eventually for all rules when δ is large enough. This last

remark coincides with the standard folk theorem.

The most interesting case of Theorem 3 arises for intermediate discount factors

(δ ≤ δ < δ). The optimal rule is then a majority k∗ that is a strict supermajority

at first (k∗(δ) > 1/2) and then weakly decreases for higher discount factors. In par-

ticular, this shows that a strict supermajority can dominate simple majority when

accounting for the repetition of collective decisions, while the opposite conclusion

would be drawn by focusing only on the stage game. Moreover, as we show below,

a common case is that unanimity becomes uniquely optimal in the repeated game,

thus completely overturning the result of Proposition 1.

Corollary 4. In the simplified model, when α ≤ 1/2, there is a range of discount factors

for which unanimity (k = 1) is uniquely optimal.

4.3 Consensus

Following Section 3.4, we look for the maximal consensus that can be obtained at

the optimal equilibrium of the repeated game. This is achieved by providing to

each voter the highest possible incentive (given by the power bδ) to vote in favor of

decisions that must be accepted at equilibrium. The optimal consensus probability

is thus given by

P ∗(δ) = P(u[1] + bδ ≥ 0) = P(θ ≥ α− bδ) =
1 + bδ − α

2

whenever α − bδ ∈ [−1, 1]. This probability can be computed explicitly in the

simplified model by plugging in the formulas for bδ.
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Proposition 2. The optimal consensus probability P ∗ can be:

• decreasing with diversity α

• decreasing with majority rule k.

Proposition 2 testifies of the complex mapping from parameters to equilibrium

outcomes in the repeated game. First, when preferences in the committee are more

diverse (α is higher), voting outcomes may be more often unanimous. Hence, the

observation of vote tallies may be a poor indicator of preferences within a committee

when a norm of cooperation operates. Second, by increasing the majority k (the

required threshold to pass a reform), consensus might in fact decrease within the

committee. This prediction contrasts with standard models of strategic voting to

aggregate dispersed information under common preferences (Maug and Rydqvist,

2009), where voters respond to an increase in the majority threshold by a higher

propensity to vote in favor of the reform (so as to counteract the voting rule’s bias),

thus making consensus more likely.

5 Discussion

Malevolent Behavior - Some of the equilibrium payoffs we characterize in Theorem

1 rely on the possibility of punishing individuals for voting in favor of efficient

decisions (either rejecting good proposals or accepting bad proposals). One may

consider such behavior to be unrealistic, or at the very least undesirable. How

much cooperation could be achieved at equilibrium without having to rely on these

kind of malevolent incentives? We say that a strategy profile is non-malevolent if

after any history, implementing the inefficient decision does not lead to a greater

continuation utility than implementing the efficient decision. Under the assumption

of non-malevolent strategies, the worst equilibrium payoff necessarily coincides with

the payoff of the stage-game equilibrium U 0. The set of equilibrium payoffs is then

equal to E∗ = [U 0, U(b∗δ)], where cutoff b∗δ ≤ bδ is given by,

b∗δ = max
{
b ≥ 0 | (1− δ)b = δ

[
U(b)− U 0

]}
.
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The restriction to non-malevolent strategies weakens the optimal punishment (i.e.

the lowest equilibrium payoff), thus reducing the largest equilibrium payoff. The

set of equilibrium payoffs under non-malevolence E∗ is thus always included in the

set of equilibrium payoffs E. The inclusion is strict unless there is no cooperation

(i.e. E = {U 0}). Yet, we can show that the result on the optimal majority rule in

the simplified model (Theorem 3) remains valid under non-malevolence.

Dropping IIV - If strategies can be conditioned on the detailed history of past votes

(as opposed to only past collective decisions), then deviations can be punished

individually. In some cases, this may lead to worst equilibrium outcomes than the

ones we characterize under IIV. In that sense, our analysis can be understood as

providing a lower bound on the maximal equilibrium payoff.

Dropping Symmetry - Our analysis describes the emergence of a norm of coopera-

tion in a stylized setting where committee members are ex-ante symmetric. This

is a substantive assumption that allows the precise characterization of equilibrium

outcomes (Theorem 1) and optimal voting rules (Theorem 3). In many commit-

tees, voters are often organized, formally or not, in groups (e.g., political parties

in assemblies) which share similar preferences. While the precise analysis seems

more difficult in this context, we may speculate that similar cooperation norms

can emerge in two ways. First, a cooperation norm can emerge within groups,

voters sometimes voting against their will to better satisfy the overall preference

of the group, if a form of symmetry in preferences exists within the group. Second,

a cooperation norm can also be sustained across groups, provided that “groups’

preferences” are sufficiently symmetric.

Incomplete information - Our model assumes complete information in the stage

game. This assumption is essential for individuals to identify good proposals and

punish deviations in order to sustain better outcomes at the equilibrium of the

repeated game. Yet, we can show a property of continuity : if the incompleteness

of information is low enough, the norm of cooperation that we showcase in our

analysis can still emerge in the repeated game.
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6 Conclusion

In this paper, we propose a general model of repeated voting in committees and

study equilibrium outcomes under alternative majority rules. In contrast with

most of the existing literature, which usually focuses on repeated decisions over

a single issue under Markovian strategies, we consider a committee making deci-

sions over issues of varying nature, while allowing for history-dependent strategies.

Our characterization reveals a complex relationship between the majority rule,

the preference distribution, and the set of equilibrium payoffs. We thus turn to

a simplified preference domain to perform various comparative statics. Our find-

ings provide theoretical support for two important stylized facts about collective-

decision-making in committees: the ubiquity of unanimity as a formal voting rule,

and the prevalence of consensus decision-making.
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A Proofs

Note : the proofs are incomplete in the current version of the file. All proofs will

be typed shortly, and the updated file will be made available online.

A.1 Equilibrium characterization

In the sequel, we associate to any utility vector u the reduced vector ũ := (uc, u) and

we denote by S̃ the image of the support S of utilities by the projection u 7→ ũ.

Definition 1. A payoff w ∈ R is decomposable on W if there exists a decision rule

dw : S̃ 7→ {0, 1} and continuation payoffs vw+ : S̃ 7→W and vw− : S̃ 7→W such that:

w = E[(1− δ)dw(ũ)u+ δvw+(ũ)] (6)

and

∀ũ = (uc, u) ∈ S̃, (1− δ)dw(ũ)uc + δvw+(ũ) ≥ (1− δ)(1− dw(ũ))uc + δvw−(ũ). (7)

The set W is self-generating if any w ∈W is decomposable on W .

In words, w is decomposable by (dw, vw+, v
w
−) if (i) it is the expected average payoff

given by the rule dw and on-path continuation promise vw+ and (ii) for any utility

realization ũ, implementing the action dw(ũ) is rational for the critical individual

given a continuation payoff vw+(ũ) and a punishment vw−(ũ). For the sequel, it is

useful to note that the rationality condition (7) is equivalent to:

∀ũ = (uc, u) ∈ S̃, (1− δ)(2dw(ũ)− 1)uc + δ(vw+(ũ)− vw−(ũ)) ≥ 0 (8)

Lemma 1. If W is self-generating, then any w ∈W is an equilibrium payoff.

Proof. This proof is adapted from standard techniques exposed in [Mailath and

Samuelson, 2006].
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Let W be self-generating and let w0 ∈W . Consider the automaton defined by:

• the set of states W

• the initial state w0

• the output function f : w 7→ dw

• a transition function τ : W × S̃ × {0, 1} →W , such that

τ(w, ũ,D) =

{
vw+(ũ) if D = dw(ũ)

vw−(ũ) otherwise

Extend the transition function from W × S̃ × {0, 1} to W × H̃, where H̃ denotes

the set of (ex-ante) reduced histories, by recursively defining τ(w, ∅) = w and

τ(w,ht) = τ(τ(w,ht−1), ũt,Dt).

Then define the group-strategy γ by γ(h, ũ) = f(τ(w0, h))(ũ) and the collective

continuation payoff v+ and punishment v− by v+(h, ũ) = vτ(w0,h)
+ (ũ) and v−(h, ũ) =

vτ(w0,h)
− (ũ).

Let ∆i(h, ũ) be the utility difference in state τ(w0, h) between following the group-

strategy γ(h, ũ) and deviating for an individual with utility ui (assuming that the

individual is pivotal). Formally:

∆i(h, ũ) = (1− δ)γ(h, ũ)ui + δv+(h, ũ)−
(

(1− δ)(1− γ(h, ũ))ui + δv−(h, ũ)
)

= (1− δ)(2γ(h, ũ)− 1)ui + δ(v+(h, ũ)− v−(h, ũ)).

By construction, as W is self-generating, we must have ∆c(h, ũ) ≥ 0 for any h ∈ H̃
and ũ ∈ S̃.

Now, define individual strategy σi by:

∀h ∈ H̃, ∀ũ ∈ S̃, σi(h, ũ) =

{
γ(h, ũ) if ∆i(h, ũ) ≥ 0

1− γ(h, ũ) otherwise.
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Observe first that the strategy profile σ = (σi)i∈N indeed implements the group-

strategy γ:

• if γ(h, ũ) = 1, then for any i with ui ≥ uc, we have ∆i(h, ũ) ≥ ∆c(h, ũ) ≥ 0

and thus σi(h, ũ) = γ(h, ũ) = 1. Therefore dσ(h)(ũ) = 1 = γ(h, ũ).

• if γ(h, ũ) = 0, then for any i with ui ≤ uc, we have ∆i(h, ũ) ≥ ∆c(h, ũ) ≥ 0

and thus σi(h, ũ) = γ(h, ũ) = 0. Therefore dσ(h)(ũ) = 0 = γ(h, ũ).

Then, as W is self-generating, we have by construction that U(σ) = w0. It remains

to show that σ is an equilibrium. It is easy to see that by construction σ satifies

the sufficient conditions for equilibrium �

Lemma 2. The set of equilibrium payoffs is the largest self-generating set.

Proof. This proof is adapted from standard techniques exposed in [Mailath and

Samuelson, 2006].

By the previous lemma, it suffices to show that the set of equilibrium payoffs

E ⊆ R is a self-generating set. For any payoff w ∈ E with associated equilibrium

σ, we let:

• the decision rule dw be dw(ũ) = dσ(ũ)

• the continuation payoff vw+ be vw+(ũ) = U(σ | ũ, dσ(ũ))

• the punishment payoff vw− be vw−(ũ) = U(σ | ũ, 1− dσ(ũ))

As σ is a subgame-perfect equilibrium, the promises vw+ and vw− take values in E,

as desired. Moreover, we have w = U(σ) = E[(1− δ)dw(ũ)u+ δvw+(ũ)] by definition

of dw and vw+. Finally, it is easy to see that (7) is satisfied since σ is an equilibrium:

• if dσ(ũ) = 1, then there are at least k individuals (where k is the majority

rule threshold) for which

(1− δ)ui + δU(σ | ũ, 1) ≥ δU(σ | ũ, 0)

and thus

(1− δ)uc + δU(σ | ũ, 1) ≥ δU(σ | ũ, 0).

We thus obtain that (7) is satisfied.
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• if dσ(ũ) = 0, the proof is similar and thus omitted.

�

Lemma 3. The set of equilibrium payoffs is a compact interval.

Proof. Claim 1: If W ⊂ R is a self-generating set such that U 0 ∈ W , then any

payoff w ∈ (infW, supW ) can be decomposed on W .

To show that, it suffices to show that for any payoff w decomposable on W and

any α ∈ (0, 1), the payoff w′ = αw + (1− α)U 0 is also decomposable on W . Let w

be decomposable by a triplet (d, v+, v−) on W .

We may write:

w = U 0 + (w − U 0)

= U 0 + E

(1− δ)d(ũ)u+ δv+(ũ)− (1− δ)d0(ũ)u− δU 0︸ ︷︷ ︸
z(ũ)


= U 0 +

∫
S̃

z(ũ)dG̃(ũ).

As G has no atom by assumption, there must exist a subdomain S̃ ′ ⊂ S̃ such that∫
S̃′
z(ũ)dG̃(ũ) = α

∫
S̃
z(ũ)dG̃(ũ). Let us define (d′, v′+, v

′
−) by:

d′(ũ) =

{
d(ũ) if ũ ∈ S̃ ′

d0(ũ) otherwise
, v′+(ũ) =

{
v+(ũ) if ũ ∈ S̃ ′

U 0 otherwise
, v′−(ũ) =

{
v−(ũ) if ũ ∈ S̃ ′

U 0 otherwise.

As U 0 ∈ W , it is clear that both v′+ and v′− take values in W . Moreover, since

d0 is the stage-game equilibrium, it is clear by construction that the rationality

condition (7) is satisfied by (d′, v′+, v
′
−). Finally, applying (6), the expected payoff

is given by:

w′ =

∫
S̃′

((1− δ)d(ũ)u+ δv+(ũ)) dG̃(ũ) +

∫
S̃\S̃′

((1− δ)d0(ũ)u+ δU 0) dG̃(ũ)

=

∫
S̃′
z(ũ)dG̃(ũ) + U 0 = α(w − U 0) + U 0 = αw + (1− α)U 0,

as desired. Hence αw+ (1−α)U 0 is decomposable on W , this concludes the proof

of Claim 1.
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Claim 2: The set of payoffs generated by a compact interval is a compact interval.

Let W = [w,w] be a compact interval. Let b = δ
1−δ (w − w). We define

(dmax, vmax
+ , vmax

− ) by:

dmax(ũ) = 1{|uc|≤b}d
e(ũ) + 1{|uc|>b}d

0(ũ), vmax
+ (ũ) = w, vmin

− (ũ) = w.

In words, the decision rule is efficient whenever the critical stake is below b, and

coincides with the sincere rule otherwise. The continuation payoff is always the

highest possible and the punishment payoff is always the lowest possible. Clearly,

by definition of b, the triplet (dmax, vmax
+ , vmax

− ) satisfies the rationality condition (7).

The payoff induced by the triplet (dmax, vmax
+ , vmax

− ) is given by:

wmax = (1− δ)
(∫
|uc|≤b

de(ũ)udG̃(ũ) +

∫
|uc|>b

d0(ũ)udG̃(ũ)

)
+ δw.

Now, suppose that there is a triplet (d′, v′+, v
′
−) which generates a higher payoff

w′ > wmax. As we have for any ũ ∈ S̃ that d′(ũ)u ≤ de(ũ)u and v′+(ũ) ≤ w, there

must exists ũ with |uc| > b and such that d′(ũ)u > d0(ũ)u. Suppose without loss of

generality that u > 0. Then we have d0(ũ) = 0, and thus uc < −b and d′(ũ) = 1.

Now, we have:

(1− δ)(2d′(ũ)− 1)uc + δ(v′+(ũ)− v′−(ũ)) ≤ (1− δ)uc + δ(w −w) < δ(w −w)− (1− δ)b = 0.

Thus, the triplet (d′, v′+, v
′
−) fails (7). We conclude that wmax is the highest payoff

that can be decomposed on W . Consider now the triplet (dmin, vmin
+ , vmin

− ) defined

by:17

dmin(ũ) = 1{|uc|≤b}∪{uc∈(0,u)}(1− de(ũ)) + 1{|uc|>b}∪{uc /∈(0,u)}d
0(ũ)

and

vmin
+ (ũ) = 1{|uc|≤b}∪{uc∈(0,u)}

(
w +

1− δ
δ
|uc|
)

+ 1{|uc|>b}∪{uc /∈(0,u)}w, vmin
− (ũ) = w.

In words, the decision rule is inefficient whenever the critical stake is below b and the

17In the formula, as in the sequel, we abuse notation by writing uc ∈ (0, u) for uc ∈ (min(0, u),max(0, u)).
Note in particular that uc ∈ (0, u) implies that uc and u have the same sign, i.e. de(ũ) = d0(ũ).
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critical utility is of the same sign as the average utility but with a lower magnitude,

and it coincides with the sincere rule otherwise. The continuation payoff is the

minimum needed to provide incentives to the critical voter to vote against her will

when the prescribed decision is inefficient and insincere, it is the lowest possible

payoff otherwise. The punishment payoff is always the lowest possible.

Clearly, by construction, the the triplet (dmin, vmin
+ , vmin

− ) satisfies the rationality con-

dition (7). Now, suppose that there is a triplet (d′, v′+, v
′
−) which generates a lower

payoff w′ < wmin, where wmin is the expected payoff generated by (dmin, vmin
+ , vmin

− ).

Then, there must exist ũ such that the following condition holds:

(1− δ)d′(ũ)u+ δv′+(ũ) < (1− δ)dmin(ũ)u+ δvmin
+ (ũ). (9)

Condition (9) may only hold if either dmin(ũ) = de(ũ) or vmin
+ (ũ) > w. We thus

consider two cases:

• if vmin
+ (ũ) > w, then by construction of dmin and vmin

+ , we have |uc| < b, uc ∈
(0, u) and dmin(ũ) = 1− de(ũ) = 1− d0(ũ). We thus have d′(ũ)u ≥ dmin(ũ)u, so

that condition (9) implies that v′+(ũ) < vmin
+ (ũ) = w + 1−δ

δ
|uc|. There are two

subcases to consider:

– if d′(ũ) = dmin(ũ) = 1 − d0(ũ), we obtain a contradiction by observing

that, since v′+(ũ) < vmin
+ (ũ) and v′−(ũ) ≥ w, the triplet (dmin, vmin

+ , vmin
− )

cannot satisfy the rationality condition (7) at ũ (recall that by construc-

tion, vmin
+ (ũ) is the smallest continuation payoff that can incentivize a

deviation, given the lowest possible punishment of w).

– if d′(ũ) = d0(ũ) = de(ũ), we obtain a contradiction with (9), as since

uc ∈ (0, u), we have:

(1− δ)d′(ũ)u+ δv′+(ũ) ≥ (1− δ)de(ũ)u+ δw

> (1− δ) ((1− de(ũ))u+ |uc|) + δw = (1− δ)dmin(ũ)u+ δvmin
+ (ũ).

• if dmin(ũ) = de(ũ), then we have (by construction) vmin+ (ũ) = w. For (9) to

hold, as v′+(ũ) ≥ w, we must have d′(ũ) = 1−de(ũ). We consider two subcases:
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– if |uc| ≤ b, then we also have (by construction) uc /∈ (0, u). For the

triplet (d′, v′+, v
′
−) to satisfy the rationality condition (7), we must have

v′+(ũ) − v′−(ũ) ≥ 1−δ
δ
|uc|, and thus v′+(ũ) ≥ w + 1−δ

δ
|uc|. We obtain a

contradiction with (9), as since uc /∈ (0, u), we have:

(1− δ)d′(ũ)u+ δv′+(ũ) ≥ (1− δ) (de(ũ)u+ |uc|) + δw

> (1− δ)(1− de(ũ))u+ δw = (1− δ)dmin(ũ)u+ δvmin
+ (ũ).

– if |uc| > b, then we obtain a contradiction by observing that, since v′+(ũ)−
v′−(ũ) ≤ w−w = 1−δ

δ
b, the triplet (d′, v′+, v

′
−) cannot satisfy the rationality

condition (7) at ũ.

We conclude that wmin is the lowest payoff that can be decomposed on W .

Claim 3: If a bounded interval I is self-generating, then its closure I is also

self-generating.

If I is self-generating, then any payoff in I is decomposable on I, and thus also

on I. The set of payoffs that can be decomposed on I is thus a compact interval

(by Claim 2) which contains I. Thus any payoff in I can be decomposed on I, i.e.

I is self-generating.

To conclude, we know that the set of equilibrium payoffs E contains U 0. As E

is self-generating, it must be a (bounded) interval by Claim 1. As E is the largest

self-generating set by the previous lemma, it must be closed by Claim 3, and thus

compact.

Before stating the next lemma, we introduce the functions U(b) and U(b) which

correspond respectively to the highest and lowest payoffs that can be achieved at

equilibrium given a maximum difference of b between continuation promises and

punishments (b reflects the power of intertemporal incentives):

U(b) =

(∫
|uc|≤b

de(ũ)udG̃(ũ) +

∫
|uc|>b

d0(ũ)udG̃(ũ)

)
and

U(b) =

∫
|uc|≤b,uc∈(0,u)

((1− de(ũ))u+ |uc|) dG̃(ũ) +

∫
|uc|>b or uc /∈(0,u)

d0(ũ)udG̃(ũ).
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Note that U is increasing while U is decreasing.

Lemma 4. The set of equilibrium payoff can be written as E = [U(b∗), U(b∗)] where b∗

is characterized by:

b∗ = max{b ≥ 0 | (1− δ)b = δ(U(b)− U(b))}.

Proof. We know from the previous lemma that E = [w,w]. Let wmax the maximal

payoff that can be decomposed on E. As E is self-generating, we have that wmax ≥
w. Now, if wmax > w, then this would contradict the fact that E must be the

largest self-generating set. Hence, we must have wmax = w. Similarly, if we note

wmin the minimal payoff that can be decomposed on E, we have wmin = w.

Following the proof of the previous lemma, noting b = δ
1−δ (w −w) we have:

wmax = (1− δ)
(∫
|uc|≤b

de(ũ)udG̃(ũ) +

∫
|uc|>b

d0(ũ)udG̃(ũ)

)
+ δw

=

(∫
|uc|≤b

de(ũ)udG̃(ũ) +

∫
|uc|>b

d0(ũ)udG̃(ũ)

)
= U(b).

Similarly, the expected payoff associated to the triplet (dmin, vmin
+ , vmin

− ) can be writ-

ten:

wmin =

∫
|uc|≤b,uc∈(0,u)

(
(1− δ)(1− de(ũ))u+ δ(w +

1− δ
δ
|uc|)

)
dG̃(ũ)

+

∫
|uc|>b or uc /∈(0,u)

((1− δ)d0(ũ)u+ δw) dG̃(ũ)

= (1− δ)
(∫
|uc|≤b,uc∈(0,u)

((1− de(ũ))u+ |uc|) dG̃(ũ) +

∫
|uc|>b or uc /∈(0,u)

d0(ũ)udG̃(ũ)

)
+ δw.

=

∫
|uc|≤b,uc∈(0,u)

((1− de(ũ))u+ |uc|) dG̃(ũ) +

∫
|uc|>b or uc /∈(0,u)

d0(ũ)udG̃(ũ)

= U(b).

We thus obtained that E = [U(b), U(b)] for b ≥ 0 such that (1−δ)b = δ(U(b)−U(b)).

To finish, suppose that there is b′ > b such that (1−δ)b′ = δ(U(b′)−U(b′). Following

the arguments in the proof of the previous lemma, we obtain that [U(b′), U(b′)] is
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self-generating, but this set strictly contains E, this provides a contradiction with

the fact that E is the largest self-generating set.

�

�

A.2 Proof for the Optimal Voting Rule (to be updated)

Proof. First, note that since e[1/2] < 0, we have that ∆(m) = |e[1−m]| is increasing in

m. The argument relies on a few preliminary observations:

• the partial and full cooperation thresholds, i.e. δP (m) and δF (m), are both

decreasing in ∆(m) and thus in m. Indeed, we have δP (m) =
1

1 + ∆(m)
and

δF (m) =
1

1 + 3∆(m)

4

.

• the optimal utility under partial cooperation is increasing in δ and in ∆(m),

and thus in m. Indeed, for δP (m) < δ < δF (m), we have

U ∗(δ,m) = U e − 4

(
1

δ
− 1

δF (m)

)2

.

As δ < δF (m), this function is clearly increasing in δ, decreasing in δF (m)

and thus increasing in m.

• the utility of the stage-game equilibrium is decreasing in ∆(m) and thus in

m. Indeed,

U 0(m) = U e − 4

(
1

δP (m)
− 1

δF (m)

)2

= U e − ∆(m)2

4
.

• the threshold δO is such that δP (1) < δO < δF (1) and δO < δP (1/2). The

former inequalities are true by definition, and the latter one is obtained by

observing that U(δ0, 1) = U 0(1/2) implies 1−δ0
δ0
− 1−δF (1)

δF (1)
=

∆(1/2)2

4
, which

gives:
1− δO

δO
=

3∆(1) + ∆(1/2)

4
> ∆(1/2) =

1− δP (1/2)

δP (1/2)
.
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To conclude, we distinguish three cases:

• If δ ≥ δF (1), m = 1 achieves full cooperation. As a result, a majority rule m

is optimal if and only if it achieves full cooperation, i.e. δ ≥ δF (m).

• If δ ∈ (δO, δF (1)), unanimity achieves partial cooperation, and reaches utility

U ∗(δ, 1). Consider any other rule m < 1. If it achieves no cooperation,

it cannot be better than unanimity since U 0(m) ≤ U 0(1/2) = U ∗(δO, 1) <

U ∗(δ, 1). If it achieves partial cooperation, it cannot be better than unanimity

since U ∗(δ,m) < U ∗(δ, 1).

• If δ < δO, there is no cooperation under simple majority, and the utility is

U 0(1/2). Consider any other rule m > 1/2. If it achieves no cooperation,

then we have U 0(m) < U 0(1/2), so that m cannot be optimal. If it achieves

partial cooperation, then we have U ∗(δ,m) ≤ U ∗(δ, 1) < U ∗(δO, 1) = U 0(1/2),

so that m cannot be optimal.

�
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