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Abstract

Vector autoregression is an essential tool in empirical macroeconomics and finance
for understanding the dynamic interdependencies among multivariate time series. In
this study, we expand the scope of vector autoregression by incorporating a multivariate
distributional regression framework and introducing a distributional impulse response
function, providing a comprehensive view of dynamic heterogeneity. We propose a
straightforward yet flexible estimation method and establish its asymptotic properties
under weak dependence assumptions. Our empirical analysis examines the conditional
joint distribution of GDP growth and financial conditions in the United States, with
a focus on the global financial crisis. Our results show that tight financial conditions
lead to a multimodal conditional joint distribution of GDP growth and financial con-
ditions, and easing financial conditions significantly impacts long-term GDP growth,
while improving the GDP growth during the global financial crisis has limited effect on
financial conditions.
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1 Introduction

Since the seminal work of Sims (1980), vector autoregression (VAR) has emerged as an

essential tool in empirical macroeconomics and finance to facilitate the basic quantitative

description, forecasting, and structural analysis of multivariate time series (see Litterman,

1986; Stock and Watson, 2001). The standard VAR is built upon the mean regression for

multivariate systems, often with multivariate Gaussian errors. It enables insightful struc-

tural analysis, most notably through impulse response functions (IRFs). However, sharp

macroeconomic downturns triggered by the recent financial crisis and the pandemic have led

to increasing interest in exploring the distributional features of multivariate time series. This

line of research moves beyond the traditional focus on mean estimation and studies the the

distributional effect of a shock, such as the growth-at-risk of economic activity.

This study proposes a semiparametric distributional VAR model that serves as a flex-

ible alternative for analyzing the distributional properties of multivariate time series. We

introduce an estimation method that combines the distribution factorization and the distri-

butional regression (DR) approach. Unlike traditional parametric models, our approach does

not impose a global parametric assumption on either the marginal or joint distributions of

the variables, conditional on their past values. The framework employs regression models

that can incorporate a moderate number of conditional variables, capturing the influence of

past events on the entire response distribution. Additionally, we introduce a distributional

counterpart to the commonly used IRFs to examine how the conditional distributions evolve

after a perturbation in the distribution of a variable in the system at a specific point in time.

This enables us to identify the heterogeneity and nonlinearity in the response dynamics.

Our work builds on and contributes to several strands of literature. Firstly, the funda-

mental basis of our estimation method is DR, which is a semiparametric method for marginal

conditional distributions. Williams and Grizzle (1972) first introduced DR to analyze ordered

categorical outcomes using multiple binary regressions. It was later extended by Foresi and

Peracchi (1995) to characterize any conditional distribution, and a local version was proposed

by Hall et al. (1999). Chernozhukov et al. (2013) established the uniform validity of the in-
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ference for the entire conditional distribution. The DR approach has also been explored by

Rothe and Wied (2013) and Chernozhukov et al. (2020), among others. More recently, the

DR method has been extended to the conditional multivariate distributions of independent

cross-sectional data. Meier (2020) considered the direct application of the DR method to es-

timate the joint conditional distribution, while Wang et al. (2022) proposed a method based

on the DR and distribution factorization, which addressed a possible computational issue

arising from the direct DR application. Our study further extends the scope of the DR ap-

proach to analyze the multivariate time-series data and their dynamic interdependencies. We

also provide asymptotic properties of the proposed estimator under the β-mixing condition.

Our paper also contributes to the literature on the structural vector autoregression

(SVAR) model. Structural interpretations of VAR models require additional identifying as-

sumptions based on institutional knowledge, economic theory, or other external constraints

on the model responses (Blanchard and Quah, 1989; Rubio-Ramirez et al., 2010; Kilian and

Lütkepohl, 2017). One standard identification scheme is the recursive short-run restrictions,

which assumes a lower triangular contemporaneous matrix with ones on the main diagonal

and a diagonal matrix for the covariance of the shocks (Sims, 1980; Primiceri, 2005). We

apply a similar structural identification scheme based on a triangular assumption. When es-

timating the multiperiod conditional forecasting distributions for impulse responses analysis,

the concepts of local projection (Jordà, 2005) and direct multistep forecasting (McCracken

and McGillicuddy, 2019) are adopted to estimate a distinct multivariate distribution at each

forecast horizon rather than an iterative forecast. Recently, (Plagborg-Møller and Wolf, 2021)

proved that the local projection and VAR models are conceptually equivalent on estimating

the impulse response functions.

This paper also contributes to the growing literature on extending the quantile regression

(QR) framework to VAR models, building on previous works by Koenker and Bassett (1978);

Koenker and Xiao (2004, 2006). More specifically, White et al. (2015) developed a multivari-

ate autoregression model of the quantiles to directly study the degree of tail interdependence

among multivariate time series. Montes-Rojas (2019) suggested a reduced form quantile

VAR model based on the directional quantiles framework and estimated a quantile impulse
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response function (QIRF) to explore the dynamic effects for a fixed collection of quantile

indices. Chavleishvili and Manganelli (2019) proposed a quantile SVAR model and analyzed

QIRFs based on fixed sample paths. Our proposed approach differs from existing Quan-

tile VAR models in that we target the joint conditional distribution, while Quantile VAR

is modeled by a system of multiple QR equations, similar to mean VAR models. In some

applications, our approach provides a straightforward way to analyze joint distributional

features and dynamic propagation of shocks on the entire joint distribution conditional on

past events. However, it should be noted that the conditional quantile and distribution of a

continuous random variable are equivalent up to an inverse transformation. Therefore, both

quantile and distributional VAR can extract similar information from multivariate time series

and can be used depending on the research goal.

This paper applies the proposed framework to analyze the joint distribution of the real

GDP growth rate and the national financial condition index (NFCI) of the United States

(U.S.), conditional upon past lagged variables. Insightful works by Adrian et al. (2019)

and Adrian et al. (2021) previously studied the same dataset, using a nonparametric kernel

framework to estimate the joint conditional distribution and a density IRF. The key findings

from these works suggest that the conditional marginal distribution of GDP exhibits much

more variation over time in the median and lower tail compared to the upper tail, and that

that the joint distribution is unimodal during normal times but exhibits clear multimodality

during the Great Recession. Our approach complements theirs by allowing for more lagged

variables as conditional regressors, which is not possible in nonparametric approaches due

to the curse of dimensionality. Our empirical results confirm their key findings even after

conditioning more lagged variables. We also find multimodality only appears in short-term

forecasts and resolves within a few quarters with relatively mild tightness.

We further investigate the DIRFs for the possible policy effect on the moments, quantiles,

and entire distributions of all variables during the Great Recession. Our findings indicate that

if the policies implemented in 2008:Q3 had been successful in preventing financial tightening

in 2008:Q4, the likelihood of adverse real GDP growth and tight NFCI would have been

improved in 2009:Q1-Q2 and reduced in 2009:Q3-Q4, which is consistent with the findings of
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Adrian et al. (2021). Additional evidence from the mixed-frequency model suggests that an

impulse on the NFCI has a long-term effect on the NFCI and real GDP growth. However, our

analysis of a distributional impulse on the real GDP growth suggests a different result that

limiting the likelihood of negative real GDP growth in 2008:Q4 only increases the likelihood

of positive economic activity in the short run but has almost no effect on the NFCI even in

the subsequent quarter.

The remainder of this paper is organized as follows. Section 2 introduces the proposed

multivariate model and DIRF. Section 3 explains the estimation procedures and presents

the estimators’ asymptotic results. In Section 4, we apply our approach to study the U.S.

time series data on macroeconomic and financial conditions. Section 5 concludes the paper.

The proofs of the theoritical results and additional empirical analysis are provided in the

Appendix.

2 Multivariate Distributional Regression

We introduce a semiparametric regression approach for conditional multivariate distributions

and explain the DIRF, which describes the dynamic effect of a shock on the entire distribution

of a multivariate time series. In what follows, R denotes the the set of real numbers, and

1l{·} denotes the indicator function taking the value 1 if the condition inside {·} is satisfied

and 0 otherwise. We use `∞(D) to refer to the collection of all real-valued bounded functions

defined on an arbitrary set D, and we denote by ‖ · ‖ the Euclidean norm for vectors.

2.1 Model

Suppose that we observe a stationary time series {(Yt, Zt)}Tt=1 with a sample size of T ,

where Yt = (Y1t, . . . , YJt)
> is a J-dimensional outcome variables and Zt is a k × 1 vector

of conditioning variables. We denote supports Y := ×Jj=1Yj ⊂ RJ and Z ⊂ Rk for Yt and

Zt, respectively, where Yj denotes the support of Yjt. Given the multivariate time series,

the objective is to estimate the conditional joint distribution FYt|Zt(y|z) of Yt given Zt = z,

for (y, z) ∈ Y×Z. This study mainly focuses on the VAR setup wherein Zt comprises only
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lagged dependent variables, while our framework can also be applied to other cases, such as

VAR models with proxy or instrumental variables (Bloom, 2009; Jurado et al., 2015).

We propose a semiparametric estimation method for joint conditional distributions. We

first apply distribution factorization, which expresses the joint conditional distribution using

a collection of marginal conditional distributions through a hierarchical structure, and then

estimate conditional marginal distributions. Specifically, we define

X1t := (1, Z>t )> and Xjt := (1, Z>t , Y1t, . . . , Yj−1,t)
> for j = 2, . . . , J,

with supports Xj ⊂ Rk+j for j = 1, . . . , J . Let FYjt|Xjt
be the marginal conditional distribu-

tion of Yjt given Xjt. Subsequently, the distribution factorization yields the existence of a

transformation ρ : ×Jj=1`
∞(Yj×Xj)→ `∞(Y×Z), given by

FYt|Zt = ρ(FY1t|X1t , . . . , FYJt|XJt
). (1)

This expression is useful because a multivariate joint distribution can be obtained by sepa-

rately modeling these J marginal conditional distributions. There are many different transfor-

mations for the distribution factorization, each of which is mathematically valid and relevant

depending on its empirical applications. This is because the transformation ρ(·) in (1) de-

pends on the ordering of Yt coordinates. Selecting a different permutation-based ordering

yields an alternative transformation. We shall discuss this ordering issue later in Section 2.2

for the purpose of structural analysis. In the following example, we illustrate the transfor-

mation in the bivariate outcome case.

Example 1. Let Yt = (Y1t, Y2t)
> and the predetermined variables be up to two lags or

Zt = (Y >t−1, Y
>
t−2)>. The conditional joint distribution of Yt given Zt is then characterized via

the following distribution factorization:

FYt|Zt =

∫
FY2t|X2tdFY1t|X1t ,
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where FY1t|X1t and FY2t|X2t are conditional marginal distributions with X1t = (1, Z>t )> and

X2t = (1, Z>t , Y1t)
>.

When studying an univariate conditional distribution, a common method is to assume an

appropriate parametric distribution based on sample information, often with the conditioning

variables affecting only its location or scale parameters. However, when observations exhibit

complex statistical features, such as long-tails and extreme skewness, selecting an appropriate

parametric model becomes challenging. In this study, we apply the DR method, which does

not impose restrictive global parametric assumptions.

The DR approach characterizes the entire conditional distribution of an outcome variable,

conditional upon a vector of covariates, by fitting a collection of parametric linear-index

models over the outcome locations. Specifically, for the estimation of the j-th conditional

distribution FYjt|Xjt
, we consider, for any (yj, xj) ∈ Yj×Xj,

FYjt|Xjt
(yj|xj) = Λ

(
φj(xj)

>θj(yj)
)
, (2)

where Λ : R→ [0, 1] is a known link function such as a logistic or probit function1, φj : Xj 7→

Rdj is a transformation and θj(yj) is a dj × 1 vector of unknown parameters specific to the

location yj. The entire conditional distribution of Yjt is estimated by considering different

locations over the support Yj, and the set of marginal conditional distributions results in a

joint conditional distribution by the hierarchical representation in (1). The proposed model

is sufficiently general given its flexibility in the manner of incorporating covariates and the

choice of link functions.

2.2 Distributional Impulse Response Function

IRFs are standard structural analysis tools that characterize the dynamic propagation of

contemporaneous shocks on multivariate time series in empirical macroeconomics and fi-

nance. Sims (1980) originally proposed IRFs using the moving average representation of

1In practice, for each Yjt, one can choose different link functions, while we use the same notation for
simplification. For sufficiently rich transformation of the covariates, one can approximate the conditional
distribution function arbitrarily well without extra concern about the choice of the link function.
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VAR, whereas Jordà (2005) introduced the local projection approach, which evaluates the

dynamic effects of shocks under the multistep ahead forecast framework. Plagborg-Møller and

Wolf (2021) recently proved that the local projections and VARs estimate the same impulse

responses in population but differ in their finite-sample properties. Unlike the VAR literature,

which has traditionally considered mean IFRs, the recent literature explores the dynamic ef-

fect of a shock on the entire distribution using QIRFs (Montes-Rojas, 2019; Chavleishvili

and Manganelli, 2019) and density IRF (Adrian et al., 2021).

We consider a local projection approach by integrating the conditional distribution of

observable variables with respect to a counterfactual distribution to develop the DIRFs. The

proposed approach can be viewed as a dynamic extension of Chernozhukov et al. (2013), who

considered the counterfactual unconditional distributions for program evaluation with cross-

sectional observations. Given a non-negative integer h, first, the (baseline) joint distribution

FYt+h|Zt of h-ahead outcomes Yt+h conditional on Zt is written as

FYt+h|Zt =

∫
FYt+h|Yt,ZtdFYt|Zt ,

where FYt|Zt and FYt+h|Yt,Zt are two different conditional distributions of the observed variables

that are identified from the data and characterized in a manner similar to the proposed

semiparametric approach. When estimating FYt+h|Yt,Zt , the concept of local projection is

adopted, that is, we estimate different models for different horizons h by regressing Yt+h on

(Yt, Zt) with the DR approach.

We consider a scenario where an alternative conditional distribution, GYt|Zt , is used in-

stead of the actual distribution FYt|Zt . Throughout the paper, we assume that the counter-

factual distribution GYt|Zt is supported by a subset of Yt for identification purposes. Under

the scenario with the distribution GYt|Zt , the counterfactual conditional joint distribution is

defined as

F ∗Yt+h|Zt
:=

∫
FYt+h|Yt,ZtdGYt|Zt .

We consider a distributional change of only one element of Yt, which benefits the analysis
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and interpretation in empirical applications, to set up the counterfactual joint distribution

GYt|Zt . For instance, we replace the actual i-th marginal distribution FYit|Xit
with a coun-

terfactual marginal distribution GYit|Xit
; thus, the counterfactual joint distribution is given

by GYt|Zt = ρ(FY1t|X1t , . . . , GYit|Xit
, . . . , FYJt|XJt

) under (1). When applying the proposed

semiparametric approach to characterize GYt|Zt , the ordering of the observables is required

for distribution factorization to identify the shock. Under the SVAR setting, one standard

identification scheme is the short-run restriction, which assumes a lower triangular contem-

poraneous matrix with ones on the main diagonal and a diagonal matrix for the covariance of

the shocks (Sims, 1980). Our triangular assumption is similar to that of the structural iden-

tification scheme. Other identification strategies in the SVAR literature include the long-run

restriction (Blanchard and Quah, 1989), sign restriction (Antoĺın-Dı́az and Rubio-Ramı́rez,

2018), and identification using instrumental variables (Jurado et al., 2015).

We formally define the DIRF as follows.

Definition 1. Let FYj,t+h|Zt and F ∗Yj,t+h|Zt
be the marginal conditional distributions of the

j-th outcome variable for the joint distributions FYt+h|Zt and F ∗Yt+h|Zt
conditional on Zt, re-

spectively. The distribution impulse response function of the j-th variable after h periods is

defined as

DIRj,h := F ∗Yj,t+h|Zt
− FYj,t+h|Zt . (3)

The proposed framework is general in several ways. First, standard impulse response

analysis is often conducted by evaluating the effects of a one-unit change on h-ahead out-

comes. This is a special case of the counterfactual scenarios in which the counterfactual

joint distribution GYt|Zt can take a degenerate distribution or a point mass at one value for a

variable of interest. Subsequently, regarding the two joint conditional distributions evolved

in the integration when estimating the DIRF, our identification restriction is only required to

characterize the counterfactual distribution GYt|Zt to identify the shock; this is unnecessary

for FYt+h|Yt,Zt . Finally, given distributional information, other statistics of interest, such as

the mean, standard deviation, quantiles, can be easily obtained. Therefore, the proposed

DIRF is sufficiently flexible for researchers to investigate other impulse response functions
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generally considered in the literature. Specifically, the mean IRF for the j-th variable is given

by

MIRFj,h :=

∫
yj,t+hdF

∗
Yj,t+h|Zt

(yj,t+h)−
∫
yj,t+hdFYj,t+h|Zt(yj,t+h),

and the τ -th quantile IRF of the j-th element for τ ∈ (0, 1) is given by

QIRFj,h(τ) := F ∗−1
Yj,t+h|Zt

(τ)− F−1
Yj,t+h|Zt

(τ),

where F ∗−1
Yj,t+h|Zt

(·) and F−1
Yj,t+h|Zt

(·) are the quantile functions as inverse of the j-th variable’s

distribution functions F ∗Yj,t+h|Zt
(·) and FYj,t+h|Zt(·), respectively.

Example 1 (continued). We illustrate how the proposed framework works in the bivariate

case. First, the joint baseline distribution FYt+h|Zt is written as

FYt+h|Zt(yt+h|zt) =

∫
FYt+h|Yt,Zt(yt+h|yt, zt)dFYt|Zt(yt|zt).

Letting GY2t|X2t be a counterfactual marginal distribution for Y2t given X2t, we obtain the

counterfactual joint distribution at time t:

GYt|Zt = ρ(FY1t|X1t , GY2t|X2t),

where ρ(·) is the transformation defined in (1). The joint counterfactual distribution after h

periods is given by

F ∗Yt+h|Zt
(yt+h|zt) =

∫
FYt+h|Yt,Zt(yt+h|yt, zt)dGYt|Zt(yt|zt).

The difference between the j-th marginals of FYt+h|F∗t−1
and FYt+h|Ft−1 leads to DIRj,h in (3).

As a special case, we can set the counterfactual marginal distribution to be a degenerate

distribution with Pr(Y2t = y∗2t|X2t) = 1. In this case, the counterfactual distribution can be

reduced to
∫
FYt+h|Y1t,Y2t,Zt(yt+h|y1t, y

∗
2t, zt)dFY1t|X1t(y1t|x1t).
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3 Estimation and Asymptotic Properties

We introduce the estimation procedures of the conditional distribution and the DIRF and

provide the asymptotic properties for the estimators of conditional distribution functions and

their transformations.

3.1 Estimation

For estimating the multivariate joint distributions, the primary step is to estimate a collection

of univariate conditional distributions using the DR approach. In this study, we estimate

Model (2) using a binary choice model for the binary outcome 1l{Yjt ≤ yj} under the max-

imum likelihood framework. The estimators of the unknown parameters are defined as the

maximizer of a log-likelihood function as follows:

θ̂j(yj) = arg max
θj∈Θj

̂̀
y,j(θj), (4)

where Θj ⊂ Rdj is the parameter space and

̂̀
y,j(θj) :=

1

T

T∑
t=1

[
1l{Yjt ≤ yj} ln Λ

(
φj(Xjt)

>θj
)

+ 1l{Yjt > yj} ln
(
1− Λ

(
φj(Xjt)

>θj
))]

.

The conditional distribution estimator of Yjt given Xjt = xj is given by

F̂Yjt|Xjt
(yj|xj) := Λ

(
φj(xj)

>θ̂j(yj)
)
. (5)

In practice, a sufficient number of discrete points of the support Yj can be selected to estimate

the estimator F̂Yjt|Xjt
(yj|xj). One important property is that the map yj 7→ FYjt|Xjt

(yj|xj) is

non-decreasing by definition. However, the estimated distribution function F̂Yjt|Xjt
(·|xj) does

not necessarily satisfy monotonicity in finite samples. We monotonize the conditional distri-

bution estimators at different locations using the rearrangement method proposed by Cher-

nozhukov et al. (2009). This procedure can yield finite-sample improvement (for instance,

see Chetverikov et al., 2018) and permit a straightforward application of the functional delta
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method when transforming the estimated distributions using Hadamard differentiable maps.

Given the estimators of marginal conditional distributions, the conditional joint distribu-

tion FYt|Zt in (1) can then be estimated as

F̂Yt|Zt = ρ(F̂Y1t|X1t , F̂Y2t|X2t , . . . F̂YJt|XJt
). (6)

For different horizons h, we estimate the conditional joint distribution FYt+h|Yt,Zt in the similar

way and denote the estimator denoted by F̂Yt+h|Yt,Zt . If we consider a marginal counterfactual

distribution GYit|Xit
for the i-th element Yit, the joint counterfactual distribution GYt|Zt can be

estimated with ĜYt|Zt = ρ(F̂Y1t|X1t , . . . , GYit|Xit
, . . . , F̂YJt|XJt

). These estimated distributions

enable us to obtain the estimator of the actual and conterfactual joint distributions:2

F̂Yt+h|Zt =

∫
F̂Yt+h|Yt,ZtdF̂Yt|Zt , and F̂ ∗Yt+h|Zt

=

∫
F̂Yt+h|Yt,ZtdĜYt|Zt .

The actual and conterfactual marginal distributions of Yjt can be estimated in the similar

way by substituting the integrands in both integrals with F̂Yj,t+h|Yt,Xjt
. Finally, the estimator

of DIRj,h is given by their difference, i.e.,

D̂IRj,h := F̂ ∗Yj,t+h|Zt
− F̂Yj,t+h|Zt . (7)

3.2 Asymptotic Properties

We provide the asymptotic properties of the conditional joint distribution estimators and the

estimator of DIRFs.

Let `y,j(·) be the population log-likelihood; we define the true parameters θj(yj) as the

solution to the following maximization problem:

θj(yj) = arg max
θj∈Θj

`y,j(θj). (8)

2An alternative method for estimating the actual distribution F̂Yt+h|Zt
, is by using the transformation in

(6) directly. To maintain comparability between the actual and counterfactual distributions, we utilize the
estimators described in the main text for our empirical analysis in Section 4.
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A vector of the true parameters related to J conditional marginal distributions and a vector

of the corresponding estimators are respectively given by

θ(y) :=
(
θ1(y1)>, θ2(y2)>, . . . , θJ(yJ)>

)>
and θ̂(y) :=

(
θ̂1(y1)>, θ̂2(y2)>, . . . , θ̂J(yJ)>

)>
.

Also, let Θ := ×Jj=1Θj be the parameter space for θ(y) and θ̂(y).

We denote the second derivative of the population log-likelihood at the true parameters

by Hj(yj) := ∇2`y,j
(
θj(yj)

)
. For the maximum likelihood estimation in (4), we use the

first derivative of the objective function ∇̂̀y,j(θj) for each j = 1, . . . , J to define Ψ̂y,j(θj) :=
√
T∇̂̀y,j(θj). Then, we have

Ψ̂y,j(θj) =
1√
T

T∑
t=1

[
Λ
(
φj(Xjt)

>θj
)
− 1l{Yjt ≤ yj}

]
R
(
φj(Xjt)

>θj
)
φj(Xjt),

where R(u) := λ(u)/
{

Λ(u)[1− Λ(u)]
}

and λ(·) is the first derivative of Λ(·).

We define, for (θ, y) ∈ Θ×Y ,

Ψ̂y(θ) :=
[
Ψ̂y,1(θ1)> . . . , Ψ̂y,J(θJ)>

]>
.

The following assumptions are imposed to obtain the asymptotic results:

Assumptions

A1. The time series {(Yt, Zt)}Tt=1 is strictly stationary β-mixing or absolutely regular pro-

cess, with β-mixing coefficients {βk} satisfying the condition that
∑

k>0 βk < ∞. The

supports Y and Z of Yt and Zt respectively, are compact subsets of RJ and Rk respec-

tively.

A2. The log-likelihood function θj 7→ ̂̀
y,j(θj) is concave for any yj ∈ Yj with j = 1, 2, . . . , J .

The link function Λ(·) is twice continuously differentiable with its first derivative λ(·).

A3. The true parameters θj(·) uniquely maximize the population log-likelihood in (8) for

12



every j ∈ {1, 2, . . . , J} and are contained in the interior of the compact parameter space

Θj.

A4. The maximum eigenvalue of Hj(yj) is strictly negative uniformly over yj ∈ Yj with

j ∈ {1, 2, . . . , J}.

A5. The conditional density function fYjt|Xjt
(yj|xj) is uniformly bounded in Yj×Xj and

continuous in Yj for every j ∈ {1, 2, . . . , J}.

Assumption A1 first requires that the summands of the score function evaluated at the

true parameters to be a β-mixing sequence and ensures that the sequence is uncorrelated

but allowed to be heteroscedastic and serially dependent. Additionaly, it ensures that, for

each j ∈ {1, 2, . . . , J}, the covariate sequence Xjt satisfies E‖Xjt‖2 < ∞. Both the logit

and probit links satisfy the Assumption A2, which ensures that derivatives-based standard

optimization procedures can easily yield the maximum likelihood estimators. Assumption

A3 guarantees the existence of the true parameters. Even when Model (2) is misspecified,

under assumptions A2 and A3, the true parameters can be considered as pseudo-parameters

satisfying the first-order condition, ∇`y,j(θj(yj)) = 0; thus, the parameter estimators can be

interpreted under the quasi-likelihood framework for each yj ∈ Yj (see Huber, 1967; White,

1982). Assumption A4 is required to ensure that the information matrices are invertible over

the supports. Assumption A5 is necessary to obtain the limit process of the estimators over

the supports for statistical inference.

Theorem 1. Suppose that Assumptions A1-A5 hold. Then, we have

√
T
(
θ̂(·)− θ(·)

)
 B(·) in ×Jj=1 `

∞(Yj)dj

where B(·) is a m-dimensional tight mean-zero Gaussian process over Y. For any y, y′ ∈ Y,

the covariance kernel of B(·) is given by H(y)−1Σ(y, y′)H(y′)−1, where H(y) := diag
(
{Hj(yj)}Jj=1

)
and Σ(y, y′) := limT→∞ E[Ψ̂y

(
θ(y)

)
Ψ̂y′
(
θ(y′)

)>
].
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The result in Theorem 1 shows that the covariance kernel exhibits a sandwich form owing

to possible miss-specification under the quasi-likelihood framework. Additionally, the covari-

ance kernel depends on the long-run covariance matrix in the presence of serial dependence.

Since the limit process depends on unknown nuisance parameters, a moving block bootstrap

(Kunsch, 1989; Liu and Singh, 1992), stationary bootstrap (Politis and Romano, 1994) or

sub-sampling (Politis et al., 1997) can be used for practical inference.

We define a map ϕj : Dϕj
⊂ Dj := `∞(Yj)dj 7→ Sϕj

⊂ `∞(Xj×Yj) for j = 1, . . . , J , as

ϕj(bj)(xj, yj) := Λ
(
φj(xj)

>bj(yj)
)
.

Let ϕ(b) :=
[
ϕ1(b1), . . . , ϕJ(bJ)

]>
for b = (b1, . . . , bJ) ∈ Dϕ ⊂ D, where Dϕ := ×Jj=1Dϕj

,

D := ×Jj=1Dj. Then, using the map ϕ : Dϕ 7→ Sϕ := ×Jj=1Sϕj
, we can write

ϕ(θ̂) = (F̂Y1t|X1t , F̂Y2t|X2t , . . . , F̂YJt|XJt
)> and ϕ(θ) = (FY1t|X1t , FY2t|X2t , . . . , FYJt|XJt

)>.

The map ϕ is Hadamard differentiable at θ ∈ Dϕ tangentially to D with its Hadamard

derivative, given by,

ϕ′θ(·)(b) :=
[
ϕ′1,θ1(·)(b1), . . . , ϕ′J,θJ (·)(bJ)

]>
,

where ϕ′j,θj(·)(bj)(xj, yj) := λ
(
φj(xj)

>θj(yj)
)
φj(xj)

>bj(yj) for j = 1, . . . , J .

Theorem 2 provides the joint asymptotic distribution of the J univariate distribution

function estimators, applying the functional delta method with the Hadamard derivative in

the above display. Furthermore, we can derive the asymptotic distribution of the estimator

of any distributional characteristic that can be obtained through Hadamard differentiable

maps.

Theorem 2. Suppose that Assumptions A1-A5 hold. Then,
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(a) we have

√
T


F̂Y1t|X1t − FY1t|X1t

...

F̂YJt|XJt
− FYJt|XJt

 ϕ′θ(·)(B) in ×Jj=1 `
∞(Yj×Xj),

where B is the tight mean-zero Gaussian process defined in Theorem 1.

(b) additionally, if a map ν : Sϕ 7→ `∞(Z×Y) is Hadamard differentiable at (FY1t|X1t , . . . , FYJt|XJt
)

tangentially to ϕ′θ(·)(D) with the Hadamard derative ν ′FY1t|X1t
,...,FYJt|XJt

, then

√
T
{
ν(F̂Y1t|X1t , . . . , F̂YJt|XJt

)− ν(FY1t|X1t , . . . , FYJt|XJt
)
}
 ν ′FY1t|X1t

,...,FYJt|XJt
◦ ϕ′θ(·)(B)

in `∞(Z×Y).

As demonstrated in Section 3.1, the conditional distributions FYt|Zt , FYt+h|Yt,Zt and GYt|Zt

can be obtained via Hadamard differentiable transformations of several univariate conditional

distributions. Furthermore, the DIRF, DIRj,h, is a Hadamard differentiable transformation

of these conditional distributions. As the composition of Hadamard differentiable transfor-

mations remains Hadamard differentiable (Lemma 3.9.3, van der Vaart and Wellner, 1996),

Theorem 2 can be applied to all these distributional characteristics of interest. The detailed

proofs of all theorems are provided in Appendix A.

4 Macroeconomic and Financial Dependence

We apply the proposed approach to examine the time series data of macroeconomic and

financial conditions in the U.S. The real GDP growth and the NFCI are used as indicators

to measure the state of the economy and financial sector. A growing body of research has

attempted to investigate the macro-financial interactions during recessions via VAR models

of the GDP growth and NFCI (Carriero et al., 2020; Clark et al., 2021; Gertler and Gilchrist,

2018). The present empirical study extends this direction to conduct a more comprehensive
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distributional analysis. We address two main questions in this section. First, does the joint

distribution of the GDP growth and NFCI conditional on past lagged information change

during financial stress? Secondly, how does their joint distribution respond to a distributional

shock in macro and financial conditions?

4.1 Data and Modeling Specification

The real GDP growth is computed using quarterly real GDP data from the Bureau of Eco-

nomic Analysis3. The NFCI is a weighted average of 105 measures of national financial

activity, each expressed relative to their sample averages and scaled by their sample stan-

dard deviations, which are released weekly by the Federal Reserve Bank of Chicago4. A

positive NFCI suggests that the financial conditions are tighter than average. We use data

from these two indices for the period 1973:Q1 to 2019:Q1, for analysis. These time series are

released at different frequencies. Following Adrian et al. (2021), we convert the NFCI data

into quarterly observations by averaging each quarter’s weekly observations. We consider a

bivariate model for the outcome Yt = (Y1t, Y2t)
>, with Y1t representing the quarterly NFCI

and Y2t representing the real GDP growth.

We apply the proposed multivariate DR approach to estimate horizon-specific multiperiod

forecasting distributions for each variable. Specifically, we consider two-lag information Zt =

(Y >t−1, Y
>
t−2)> to estimate the joint conditional distribution FYt|Zt and three-lag information

to develop the h-ahead forecasting distribution FYt+h|Yt,Zt for different h. DIRFs can then

be estimated based on these conditional distributions, which enables the design of different

counterfactual scenarios to investigate the possible policy effect on the entire distributions of

both the NFCI and real GDP growth over time.

4.2 Multiperiod Ahead Conditional Distribution Forecast

Focusing on the one-quarter and one-year ahead horizons, we present the out-of-sample per-

formance of the multivariate DR approach in estimating the multiperiod ahead forecasting

3The data is downloaded from FRED https://fred.stlouisfed.org/series/A191RL1Q225SBEA
4More details about NFCI are available at https://www.chicagofed.org/publications/nfci/index
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distributions of the NFCI and real GDP growth.

Figure 1: Empirical CDF of the Out-of-sample PITs

(a) GDP
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Notes: This figure reports the empirical CDF of the PITs by the DR approach for one-quarter-
ahead (red solid line), and one-year-ahead (blue dotdash line), plus the CDF of the PITs under the
null hypothesis of correct calibration (the 45-degree line) and the 95% confidence bands (dashed
line) of the Rossi and Sekhposyan (2019) PITs test.

First, using the expanding window beginning with the estimation of the sample ranging

from 1973:Q1 to 1982:Q3, we evaluate the out-of-sample performance of the distribution

forecasts by analyzing the probability integral transform (PIT), which reflects the percentage

of observations below any given quantile. In a perfectly calibrated model, the fraction of

realizations below any given quantile of the predictive distribution exactly equals the quantile

probability, thus the cumulative distribution of the PITs is a 45-degree line. The closer the

empirical cumulative distribution of the PITs is to the 45-degree line, the better the model is

calibrated. For different forecast horizons, the empirical distribution of PITs together with

95% confidence bands of Rossi and Sekhposyan (2019) PITs test5 for the predicted marginals

of the real GDP growth and NFCI are shown in Figure 1. This illustrates that the empirical

distributions of the PITs by the proposed approach are all well within the confidence intervals.

5Under the null of uniformity and independence of the PITs, we use the asymptotic critical value for a
5% significance level, 1.34, suggested by Rossi and Sekhposyan (2019) to construct the confidence bands.
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Figure 2: Out-of-sample Predicted Distributions

(a) GDP: one-quarter-ahead
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(b) GDP: one-year-ahead
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(c) NFCI: one-quarter-ahead
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(d) NFCI: one-year-ahead
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Notes: Each panel displays the predicted marginal distributions over time. The
light gray area represents the 5th-95th percentile intervals, the dark gray area in-
dicates the 25th-75th percentile intervals, and the solid line represents the median
of the distribution. The actual observations are illustrated with dotted lines.

Additionally, we examine the estimated one-quarter and one-year ahead marginal dis-

tributions of the real GDP growth and NFCI using the expanding window (out-of-sample).

Based on the predicted distributions, the 5th to 95th and 25th to 75th percentile intervals,

the median, along with the data realizations are plotted in Figure 2. The distribution evo-

lution of the real GDP growth shows that the median and lower tail (downside risk) exhibit

significant time-series variation compared to the upper tail (upside risk). Comparing the

predicted quantiles to the realizations reveals that the possibilities of adverse GDP growth

and tight financial conditions can be detected by the predicted distributions in real time.

Based on the realizations of the real GDP growth and the NFCI, we find that when the

NFCI is relatively loose, the economy evolves as usual. Simultaneously, extreme tightening of

the NFCI coincides with extremely adverse GDP growth. In Figure 3, we plot the in-sample
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conditional correlation coefficients between the real GDP growth and NFCI. The correlation

coefficient fluctuates around 0 during the normal times but becomes significantly negative

during recession periods. This suggests a nonlinear relationship between financial conditions

and real activity, with their conditional joint distribution behaving very differently during

normal times and recessions.

Figure 3: In-sample Conditional Correlation between NFCI and real GDP Growth
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Notes: The figure plots the correlation coefficients computed based on the
one-step-ahead forecasting distributions. Shaded areas indicate U.S. reces-
sions.

4.3 Multimodality in Macro-Financial Dynamics During the Great

Recession

We further study how the joint distribution of the real GDP growth and NFCI evolved

during the Great Recession. The joint distribution dynamics of the out-of-sample forecasting

distributions, with different columns corresponding to forecast horizons from one (leftmost

column, h = 1) to four (rightmost column, h = 4) quarters and rows corresponding to

different conditioning information from 2008:Q1-Q3 (top row) to 2009:Q1-Q3 (bottom row),

are illustrated in Figure 4.

The joint distributions of the real GDP growth and NFCI predicted using the data up
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to 2008:Q1-Q3, displayed in the top row of Figure 4, are characterized by a single mode for

all forecasting horizons. As the forecasting horizon increases, there is an increased likelihood

of higher growth and looser financial conditions. However, with the inclusion of information

from 2008:Q4, the predicted distributions exhibit multimodality. As depicted in the second

row of Figure 4, the one-quarter-ahead predicted distribution displays two distinct modes,

both centered around low GDP growth of approximately −2 and tight financial conditions

(one around 1 and the other around 2). As the forecasting horizon extends, the predicted

distribution gradually shifts its weight towards higher GDP growth and looser financial condi-

tions. Finally, the one-year-ahead distribution resolves into a unimodal distribution centered

near 2 for real GDP growth and average financial conditions (the NFCI is approximately

0). As additional information from 2009:Q1 and 2009:Q2 becomes available, the predicted

distributions in the third and fourth rows evolve similarly to those shown in the second

row. However, given the more recent information, the multimodality resolves more quickly.

Notably, the predicted distributions conditional on information as of 2009:Q1-Q3 are approx-

imately unimodal for all horizons, as shown in the last row of Figure 4. It is noteworthy that

the multimodality in the distributions primarily stems from the shift in the distribution of

the NFCI.

Therefore, the distributional behavior depicted in Figure 4 implies that during normal

periods, the joint distribution of the real GDP growth and NFCI is characterized by a single

mode. During periods of tight financial conditions, however, there is a marked change in the

distribution’s shape, with the emergence of multiple modes. When financial conditions are

less severe, the multimodality is observed only in short-term forecasts and is usually resolved

within a couple of quarters. Additionally, the plots indicate that as the forecasting horizon

extends, both variables become increasingly volatile, with the real GDP growth exhibiting a

greater degree of uncertainty.
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Figure 4: Contour Plots of the Joint Distribution during the Great Recession

(a) Yt+h given (Yt, Zt) for t=2008:Q3
h = 1 h = 2 h = 3 h = 4

(b) Yt+h given (Yt, Zt) for t=2008:Q4
h = 1 h = 2 h = 3 h = 4

(c) Yt+h given (Yt, Zt) for t=2009:Q1
h = 1 h = 2 h = 3 h = 4

(d) Yt+h given (Yt, Zt) for t=2009:Q2
h = 1 h = 2 h = 3 h = 4

(e) Yt+h given (Yt, Zt) for t=2009:Q3
h = 1 h = 2 h = 3 h = 4

Notes: Each contour plot (with NFCI in x-axis and GDP in y-axis) is estimated using bivariate kernel
density estimation with a bandwidth of (0.25, 0.8) based on samples generated from the multistep
forecasting distribution. Different columns correspond to forecast horizons h = 1, 2, 3, 4, and different
rows correspond to different conditioning information from 2008:Q1-Q3 to 2009:Q1-Q3.
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4.4 Counterfactual Analysis During the Great Recession

Assuming that the information available about the economic and financial conditions is up

to 2008:Q3, based on the out-of-sample forecasting distributions, we use the DIRF to explore

the potential policy effects during the Great Recession. Specifically, we investigate the impact

of the policy intervention aimed at limiting the possibility of tightening financial conditions

or worsening GDP growth during 2008:Q4 on the predicted distributions in the following

quarters.

4.4.1 Counterfactual Analysis of Distributional Impulse on the NFCI

Figure 5: Distributional Impulse on NFCI in 2008:Q4

Distribution of Yt given Zt for t equals to 2008:Q4 (h = 0)
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Notes: Based on samples of the real GDP growth and NFCI generated from the joint distribution of
2008:Q4, conditional on 2008:Q1-Q3, the marginal densities and the joint contour plot are estimated
using kernel density estimation with ‘rule-of-thumb’ bandwidths. The baseline distributions are plotted
with blue dotdash lines, and counterfactual distributions are plotted with red solid lines.

We first explore the effect of the policy intervention in 2008:Q3, which could limit the pos-

sibility of tightening financial conditions during 2008:Q4. A counterfactual distribution,

truncated normal distribution with mean of 0 and standard deviation of 0.2 on (−1.5, 2),

is considered for the NFCI in 2008:Q4. In Figure 5, we provide the initial one-step-ahead

(baseline) joint and marginal distributions in 2008:Q4, together with their counterfactual

counterparts under the distributional impulse on Y1t. Additionally, their differences in dif-

ferent quantiles over the distribution and moments, including the mean, standard deviation,

skewness and kurtosis, are presented in Table 1, with h = 0. The distributional impulse

significantly reduces the 95% quantiles, skewness, and kurtosis of the NFCI, thereby also
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lowering other quantiles and moments. Simultaneously, it increases the 95% quantiles of

GDP by approximately 1 and kurtosis by approximately 0.65; however, it has a minor influ-

ence on other quantiles and moments. The results suggest a minor contemporaneous effect

of the NFCI shock on the GDP.

With the distributional impulse on the NFCI in 2008:Q4, we estimate DIRFs as in (7)

for the following year, which ranges from 2009:Q1 to 2009:Q4 corresponding to the horizons

h = 1, 2, 3 and 4 quarters, respectively. Figure 6 presents a complete picture of how the entire

joint and marginal distributions of the real GDP growth and NFCI respond to the impulse

on the NFCI in the following year. Table 1 presents the results for the quantile and moment

IRFs. From Figure 6, in the following two quarters, the right tail of the NFCI is greatly

reduced, the left tail of the GDP becomes much thinner, and the left tail of the NFCI and

right tail of the GDP become slightly fatter. Such an effect continues but decays at more

distant horizons.

Table 1: QIR and MIR to NFCI Impulse

Variables NFCI GDP
h 0 1 2 3 4 0 1 2 3 4

Quantiles

0.05
Base 0.01 -0.36 -0.36 -0.41 -0.49 -1.77 -3.03 -3.03 -2.10 -3.03
Diff -0.34 -0.09 -0.09 -0.08 -0.16 0.00 0.93 1.26 0.80 0.93

0.25
Base 0.15 -0.09 -0.11 -0.23 -0.37 0.68 0.40 0.34 1.20 1.36
Diff -0.28 -0.29 -0.25 -0.16 -0.05 0.02 0.96 1.11 0.80 0.09

0.5
Base 0.55 0.18 0.17 -0.09 -0.14 2.03 1.96 1.96 2.90 3.00
Diff -0.55 -0.45 -0.48 -0.23 -0.22 0.00 0.94 0.94 0.20 0.10

0.75
Base 1.00 0.68 0.62 0.56 0.40 3.20 3.60 3.60 4.67 4.94
Diff -0.87 -0.57 -0.51 -0.69 -0.42 0.00 0.60 0.60 0.17 0.17

0.95
Base 2.40 2.72 2.55 2.47 2.72 6.26 7.06 7.44 8.10 8.10
Diff -2.08 -1.63 -1.68 -0.06 -0.32 -0.88 0.38 0.00 0.00 0.00

Moments

Mean
Base 0.71 0.52 0.46 0.35 0.27 1.86 1.85 1.84 2.81 2.91
Diff -0.71 -0.53 -0.50 -0.34 -0.28 0.05 0.88 0.92 0.54 0.17

Std
Base 0.77 0.89 0.88 0.94 1.00 2.50 2.90 3.00 3.12 3.25
Diff -0.56 -0.22 -0.23 -0.10 -0.14 -0.23 -0.16 -0.30 -0.43 -0.18

Skewess
Base 1.53 1.55 1.70 1.66 1.70 -0.20 -0.06 -0.03 -0.41 -0.59
Diff -1.52 1.52 1.54 1.00 0.71 -0.02 -0.22 -0.22 0.16 0.10

Kurtosis
Base 4.83 4.70 5.14 4.66 4.72 4.90 3.07 3.16 3.90 3.92
Diff -1.79 8.49 9.43 4.40 3.44 0.65 0.53 0.72 0.59 0.03

Notes: This table presents different quantiles and moments for the baseline distributions FYj,t+h|Zt

(Base) and the quantile and moments differences from the counterfactual distributions F ∗Yj,t+h|Zt
to the

baseline distributions (Diff) of NFCI and real GDP growth from 2008:Q4 (h = 0) to 2009:Q4 (h = 4).
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Figure 6: Distributional Response to the NFCI Impulse

Distributions of Yt+h given Zt for t=2008:Q4
h = 1
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h = 2
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h = 3
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h = 4

-10 -5 0 5 10

GDP

0

0.05

0.1

0.15

0.2

-1 0 1 2 3

NFCI

-10

-5

0

5

10

G
D

P

-1 0 1 2 3

NFCI

0

0.5

1

1.5

Notes: Different rows corresponding to forecasting distributions for forecast horizons from one (first
row, h = 1) to four (last raw, h = 4) quarters, conditional on 2008:Q3-Q4. Refer to Figure 5 for details
of the plots in each row.
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This observation is further confirmed by investigating quantile IRFs. All quantiles of the

NFCI decreases; however, the differences lessen over time. For the GDP, the impulse effect

on the 95% quantile is negligible from 2009:Q2. All other quantiles, specifically the 5%,

25% and 75% quantiles, increase significantly in the following two quarters. The difference

becomes smaller at further horizons but remains significant. Moreover, the exploration of

the moments IRFs reveals that the mean of NFCI at all horizons decreases to approximately

0, driven by the significant impulse effect on the upper tail. A more substantial impact on

the lower tail for GDP increases its mean to 2∼3 for all horizons. The impulse significantly

changes the skewness and kurtosis of the NFCI, and the results for the other moments also

demonstrate significant long-run effects of both variables. Finally, we conclude that if the

policies in 2008:Q3 had been able to limit the possibility of financial tightening in 2008:Q4,

the likelihood of adverse GDP growth (left tail) and tight financial conditions (right tail)

would have been largely eliminated in 2009:Q1-Q2 and reduced in 2009:Q3-Q4.

4.4.2 Counterfactual Analysis of Distributional Impulse on GDP

Figure 7: Distributional Impulse to real GDP growth in 2008:Q4

Distribution of Yt given Zt for t equals to 2008:Q4 (h = 0)
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Notes: Refer to Figure 5.

We explore the effect of the policy in 2008:Q3 that could have limited the possibility of

low economic activity during 2008:Q4. Specifically, as shown in Figure 7, we maintain the

conditional distribution of the NFCI in 2008:Q4 as it is, and a counterfactual distribution,

truncated gamma distribution on (0, 11) with scale parameter of 6 and shape parameter of

0.6 is considered for the GDP. Figure 8 shows the joint and marginal distributions of Yt
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given Zt and their counterfactual counterparts; their differences in quantiles and moments

are presented in Table 2, with h = 0. The distributional impulse on GDP increases the 5%

quantile significantly from -2.1 to 1.5, and the other quantiles increases by approximately

1∼2. This impulse also significantly changes different moments of the GDP.

Using the distributional impulse on real GDP growth in 2008:Q4, we estimate the DIRFs

as in (7) for the following year from 2009:Q1 to 2009:Q4, which corresponds to the horizons

h = 1, 2, 3, and 4 quarters, respectively. The dynamic effect of this impulse on the entire

distributions of the NFCI and real GDP growth is illustrated in Figure 8, where the baseline

distributions and the counterfactual distributions are plotted in blue and red, respectively.

A slight difference between the baseline and counterfactual distributions for the NFCI and

real GDP growth is observed for all horizons.

Table 2: QIR and MIR to GDP Impulse

Variables NFCI GDP
h 0 1 2 3 4 0 1 2 3 4

Quantiles

0.05
Base 0.01 -0.37 -0.36 -0.41 -0.50 -2.10 -3.03 -3.03 -2.10 -3.03
Diff 0.00 0.02 0.00 0.00 0.03 3.64 0.00 -0.59 0.00 0.00

0.25
Base 0.15 -0.10 -0.12 -0.24 -0.37 0.68 0.40 0.11 1.20 1.36
Diff 0.00 0.01 0.02 0.08 0.02 1.84 0.11 0.00 0.10 -0.06

0.5
Base 0.55 0.18 0.17 -0.10 -0.14 2.03 2.00 2.00 2.90 3.04
Diff 0.00 0.06 0.01 0.08 0.02 1.39 0.10 0.10 0.10 0.00

0.75
Base 1.00 0.68 0.62 0.55 0.31 3.20 3.60 3.80 4.67 5.11
Diff 0.00 0.00 0.00 0.07 0.09 1.25 0.30 0.10 0.17 0.00

0.95
Base 2.47 2.55 2.55 2.55 2.55 5.50 7.06 7.44 8.10 7.78
Diff 0.00 0.00 -0.08 0.00 0.00 0.81 0.38 0.34 0.00 0.32

Moments

Mean
Base 0.70 0.50 0.46 0.35 0.24 1.84 1.88 1.87 2.79 2.99
Diff 0.00 0.01 0.00 0.05 0.05 1.77 0.17 0.16 0.17 -0.05

Std
Base 0.77 0.87 0.88 0.95 0.98 2.46 2.91 3.02 3.10 3.23
Diff 0.00 -0.01 -0.01 0.01 0.00 -0.99 0.08 0.15 -0.03 0.06

Skewess
Base 1.59 1.56 1.69 1.66 1.77 -0.22 -0.09 -0.02 -0.39 -0.58
Diff 0.00 0.00 -0.02 -0.10 -0.07 1.00 0.00 -0.09 -0.07 0.06

Kurtosis
Base 5.03 4.77 5.10 4.64 5.03 4.87 3.14 3.11 3.85 3.86
Diff 0.00 0.07 -0.07 -0.33 -0.18 -1.11 -0.27 -0.13 0.20 -0.17

Notes: Refer to Table 1.
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Figure 8: Distributional Response to the GDP Impulse

Distributions of Yt+h given Zt for t=2008:Q4
h = 1
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Notes: Refer to Figure 6.

We further explore the quantile and moment IRFs presented in Table 2 to draw a more
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concrete comparison. First, the quantile and moment IRFs of the NFCI at one- to four-

quarters ahead are all close to 0. Regarding real GDP growth, the one- and two-quarters-

ahead counterfactual distributions have a slightly fatter right tail and a larger mean than

the baseline distributions. However, the counterfactual and baseline distributions are almost

identical for more distant horizons. Thus, in the absence of a corresponding improvement

in the distribution of NFCI, limiting the likelihood of negative real GDP growth in 2008:Q4

only increases the likelihood of positive economic activity in the short run and does not

significantly affect the NFCI, even in the subsequent quarter.

We provide more exploration of this empirical application in Appendix B. Section B.1

introduces the simulation of samples of the outcome variables from the multiperiod forecasting

distributions. The same model specification but with an alternative order is considered in

Section B.2, where Y1t represents the real GDP growth and Y2t represents the quarterly

NFCI. The results suggest that the order does not significantly affect the estimation of

multiperiod forecasting distributions. We compare the proposed approach with the kernel

regression method introduced by Adrian et al. (2021) in Section B.3. The results indicate

that the performance of the kernel regression approach is sensitive to bandwidths, whereas

the proposed DR approach demonstrats superior performance in eliciting this conditional

distribution, specifically for the NFCI distribution. In Section B.4, we explore the use of the

monthly NFCI in the system and a four-dimensional mixed-frequency model conditional on

two lags by treating the three monthly NFCI series as separate observations within a quarter.

Based on this model, we revisit the distribution forecasting and counterfactual analysis. For

each scenario, 95% confidence bands for the entire distribution as well as density impulse

responses are estimated using the moving block bootstrap approach, the results of which are

presented in Section B.5.

5 Conclusion

This study develops a flexible and robust semi-parametric approach for characterizing the

conditional joint distribution of a time series based on a multivariate DR method. The
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resulting DIRF provides a more comprehensive picture of the dynamic heterogeneity. The

asymptotic properties of the conditional distribution estimators and their transformations are

also derived. Based on an analysis of the real GDP growth and NFCI in U.S., the empirical

results confirm some existing findings in the literature: First, the tight financial conditions

create multimodality in the conditional joint distribution. Second, restricting the upper tail

of financial conditions has a noticeable impact on long-term GDP growth. However, with

the inclusion of additional lag information, the extracted results of the proposed model on

the effect of restricting the lower tail of the GDP during the global financial crisis suggest a

negligible impact on the financial conditions.
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Appendix

A Theoretical Results

We will use some notation and results from the literature on empirical process. For more

details we refer to van der Vaart (1994) and Pollard (1984). Let F denote a class of real-valued

(measurable) functions with envelope F . Given ε ∈ (0, 1) and p ≥ 1, the covering number

N
(
ε‖F‖Q,p,F , Lp(Q)

)
of F with respect to some probability measure Q is defined as the

smallest cardinality of ε‖F‖Q,p-cover of F with respect to the Lp(Q)-norm ‖·‖Q,p := (Q|·|p)1/p.

The class F is said to be Euclidean for the envelop F if there exist constants A and V such

that

N
(
ε‖F‖Q,1,F , L1(Q)

)
≤ Aε−V ,

for all ε ∈ (0, 1] and all measures Q whenever QF ∈ (0,∞) . It can be shown that if F is

Euclidean, then for each p > 1,

N
(
ε‖F‖Q,p,F , Lp(Q)

)
≤ A2pV ε−pV , (A.1)

whenever QF p ∈ (0,∞). See Nolan and Pollard (1987) for instance.

We define ψy(θ) :=
[
ψy,1(θ1)>, . . . , ψy,J(θJ)>

]>
for (θ, y) ∈ Θ× Y , where

ψy,j(θj) :=
[
Λ
(
φj(Xjt)

>θj
)
− 1l{Yjt ≤ yj}

]
R
(
φj(Xjt)

>θj
)
φj(Xjt).

The lemma blow shows the Donskerness of the class of functions {ψy
(
θ(y)

)
: y ∈ Y}

Lemma A.1. Suppose that Assumptions A1-A2 hold. Then, the function class
{
ψy
(
θ(y)

)
:

y ∈ Y
}

is Donsker with a square-integrable envelope.

Proof. We define the function classes, for each j = 1, . . . , J ,

Hj :=
{
xj 7→ φj(xj)

>θj : θj ∈ Θj

}
and Ij :=

{
vj 7→ 1l{vj ≤ yj} : yj ∈ Yj

}
.

Lemma 2.6.15 of van der Vaart and Wellner (1996) shows that Hj and Ij are VC-subgraph

classes. Letting Gj :=
{
xj 7→ φj(xj)

>θj(yj) : yj ∈ Yj
}

for j = 1, . . . , J , we can write
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Gj = Hj ◦ θ(·). Then, the class Gj and its monotonic transformation Λ(Gj) are VC-subgraph

classes by Lemma 2.6.18 (vii) and (viii) of van der Vaart and Wellner (1996), respectively.

Given that the transformation φj : Xj → Rdj , we can write φj(xj) ≡ [φ
(1)
j (xj), . . . , φ

(dj)
j (xj)]

>.

Lemma 2.6.18 (vi) of van der Vaart and Wellner (1996) shows that Λ(Gj) · φ(`)
j and Ij · φ(`)

j

are VC-subgraph.

Because all VC-classes are Euclidean by Lemma II.25 of Pollard (1984), the classes Λ(Gj) ·
φ

(`)
j and Ij · φ(`)

j are Euclidean with envelop |φ(`)
j |. Also, under Assumptions A1-A5, R(·)

is continuously differentiable and has uniformly bounded derivative, so that |R′(·)| ≤ M

uniformly for some constant M . It follows that, for any g1, g2 ∈ Gj with ‖g2− g1‖Q,1 < ε/M ,

we can show that

‖R(g2)−R(g1)‖Q,1 ≤M‖g2 − g1‖Q,1 ≤ ε.

Since Gj is Euclidean, we have that, for some constants Aj and Vj,

N
(
ε‖R̄j‖Q,1, R(Gj), L1(Q)

)
≤ N

(
(ε/M)‖Gj‖Q,1,Gj, L1(Q)

)
≤ (AjM

Vj)ε−Vj ,

Thus, R(Gj) is Euclidean with envelop R̄j := R(gj,0)+c(|gj,0|+Gj) for some gj,0 ∈ Gj. Lemma

19 and Corollary 17 of Nolan and Pollard (1987) show that addition of Euclidean classes is

Euclidean and Lemma 2.14 (ii) of Pakes and Pollard (1989) shows that multiplication of

Euclidean classes is Euclidean. Thus, function class F (`)
j := {

{
[Λ(Gj) − Ij]R(Gj)φ(`)

j } is

Euclidean with envelop F
(`)
j := |φ(`)

j | · R̄j for each j = 1, . . . , J and ` = 1, . . . , dj. Then, each

entry of vector ψy
(
θ(y)

)
is an element in the following Euclidean classes of functions:

F := ∪Jj=1 ∪
dj
`=1 F

(`)
j .

It follows from (A.1) that, for some constants A
(`)
j and V

(`)
j ,

N
(
ε‖F̄ (`)

j ‖Q,2,F
(`)
j , L2(Q)

)
≤ A

(`)
j 22V

(`)
j ε−2V

(`)
j ,

for every j = 1, . . . , J and ` = 1, . . . , dj, and thus we can show that

∫ 1

0

(
sup
Q

logN(ε‖F (`)
j ‖Q,2,F

(`)
j , L2(Q)) log(1/ε)

)1/2

dε <∞.
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This together with Theorem 1 of Rio (1998) implies that the class F is Donsker. �

Proof of Theorem 1. Fist, we shall obtain the asymptotic linear representation for the

DR estimator under the β-mixing condition. That is, we will show that, uniformly in y ∈ Y ,

√
T
{
θ̂(y)− θ(y)

}
= −

(
H(y)

)−1
Ψ̂y

(
θ(y)

)
+ op(1). (A.2)

Since θ̂(y) and θ(y) respectively consists of subvectors {θ̂j(yj)}Jj=1 and {θj(yj)}Jj=1 with finite

J , it suffices to prove that, for each j = 1, . . . , J , uniformly in y ∈ Y ,

√
T
{
θ̂j(yj)− θj(yj)

}
= −

(
Hj(yj)

)−1
Ψ̂y,j

(
θj(yj)

)
+ op(1). (A.3)

Fix j ∈ {1, . . . , J} and let M be a finite positive constant. For notational simplicity, we

define a localized objective function given δj ∈ Rdj

Q̂y,j(δj) := ̂̀
y,j

(
θj(yj) + T−1/2δj

)
− ̂̀y,j(θj(yj)).

Then, the estimator δ̂j(yj) :=
√
T
(
θ̂j(yj)− θj(yj)

)
is the solution to maxδj∈Rdj Q̂y,j(δj).

Under Assumption A.2, the map δj 7→ Q̂y,j(δj) is twice continuously differentiable, which

shows that

TQ̂y,j(δj) = δ>j Ψ̂y,j

(
θj(yj)

)
+

1

2
δ>j Ĥj(yj)

(
θj(yj)

)
δj + o(T−1‖δj‖2),

uniformly in yj ∈ Yj, for each fixed δj with ‖δj‖ ≤ M . Also, we can show that Ĥj(yj) →p

Hj(yj) uniformly in yj ∈ Yj, by the uniform law of large numbers. Thus, for each δj with

‖δj‖ ≤M , we can show that supyj∈Yj
∣∣Q̂y,j(δj)− Q̃y,j(δj)

∣∣ = op(T
−1), where

TQ̃y,j(δj) := δ>j Ψ̂y,j

(
θj(yj)

)
+

1

2
δ>j Hj(yj)δj.

The convexity lemma (see Pollard, 1991; Kato, 2009) extends the point-wise convergence

with respect δj to the uniform converges and thus, under Assumption A2,

sup
yj∈Yj

sup
δj :‖δj‖≤M

∣∣Q̂y,j(δj)− Q̃y,j(δj)
∣∣ = op(T

−1). (A.4)
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Let δ̃j(yj) := −
(
Hj(yj)

)−1
Ψ̂y,j

(
θj(yj)

)
, which maximizes Q̃y,j(δj). Then, simple algebra

can show that, for any δj and for some constant c > 0,

Q̃y,j

(
δ̃j(yj)

)
− Q̃y,j

(
δj
)

= − 1

2T

(
δ̃j(yj)− δj

)>
Hj(yj)

(
δ̃j(yj)− δj

)
≥ c

2T
‖δ̃j(yj)− δj‖2, (A.5)

where the last inequality is due to that Hj(yj) is negative definite under Assumption A4. For

any subset D ⊆ Rdj including δ̃j(yj), an application of the triangle inequality obtains

2 sup
δj∈D
|Q̂y,j(δj)− Q̃y,j(δj)| ≥ sup

δj∈D

{
Q̃y,j

(
δ̃j(yj)

)
− Q̃y,j

(
δj
)}

− sup
δj∈D

{
Q̂y,j

(
δ̃j(yj)

)
− Q̂y,j(δj)

}
. (A.6)

Let η > 0 be an arbitrary constant. Because of the concavity under Assumption A2,

difference quotients satisfy that, for any ζ > η and for any v ∈ Sd1 with the unit sphere Sd1

in Rd1 ,

Q̂y,j

(
δ̃j(yj) + ηv

)
− Q̂y,j

(
δ̃j(yj)

)
η

≥
Q̂y,j

(
δ̃j(yj) + ζv

)
− Q̂y,j

(
δ̃j(yj)

)
ζ

.

This inequality with a set D̃j(η) :=
{
δj ∈ Rdj : ‖δj − δ̃j(yj)‖ ≤ η

}
implies that, given the

event
{

supy∈Yj ‖δ̂j(yj)− δ̃j(yj)‖ ≥ η
}

, we have, for any yj ∈ Yj,

sup
δj∈D̃j(η)

Q̂y,j(δj)− Q̂y,j

(
δ̃j(yj)

)
≥ 0, (A.7)

where the last inequality is due to that Q̂y,j

(
δ̂j(yj)

)
−Q̂y,j

(
δ̃j(yj)

)
≥ 0, by definition of δ̂j(yj).

It follows from (A.5)-(A.7) that, given the event
{

supy∈Yj ‖δ̂j(yj)− δ̃j(yj)‖ ≥ η
}

,

sup
δj∈D̃j(η)

∣∣Q̂y,j(δj)− Q̃y,j(δj)
∣∣ ≥ c

4T
η2.

Because Ψ̂y,j

(
θ(yj)

)
is Donsker by Lemma A.1, we can show that, for any ξ > 0, there exists

a constant C such that Pr
(

supyj∈Yj ‖δ̃j(yj)‖ ≥ C
)
≤ ξ for a sufficiently large T . Thus, the

above display implies that

Pr

(
sup
yj∈Yj

‖δ̂j(yj)− δ̃j(yj)‖ ≥ η

)
≤ Pr

(
sup
yj∈Yj

sup
δj :‖δj‖≤η+C

∣∣Q̂y,j(δj)− Q̃y,j(δj)
∣∣ > c

4T
η2

)
+ ξ,
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for a sufficiently large T . It follows from (A.4) that the first term on the right side of the

above equation converges to 0 as T →∞. Thus, we obtain (A.3), which implies (A.2).

Now, Lemma A.1 shows that the empirical process Ψ̂y

(
θ(y)

)
is stochastically equicontin-

uous over Y . The finite dimensional convergence follows from the central limit theorem for

β-mixing processes (Theorem 4, Bradley, 1985). This with the stochastic equicontinuity of

the map y 7→ Ψ̂
(
θ(y)

)
implies that Ψ̂(·)  B(·) in ×Jj=1`

∞(Yj)dj where B(·) is a zero-mean

Gaussian process with covariance function defined in Theorem 1. �

Proof of Theorem 2. (a) Under Assumptions A1-A3, the map ϕ(·) is shown to be Hadamard

differentiable at θ(·) tangentially to D with the derivative map b := (b1, . . . , bJ) 7→ ϕ′θ(·)(b),

given by

ϕ′θ(·)(b)(x, y) =


λ
(
φ1(x1)>θ1(y1)

)
φ1(x1)>b1(y1)

...

λ
(
φJ(x1)>θJ(yJ)

)
φJ(xJ)>bJ(yJ)

 .
Then, we can write

(
F̂Y1t|X1t , . . . , F̂Y1t|X1t

)>
= ϕ

(
θ̂(·)
)

and
(
FY1t|X1t , . . . , FY1t|X1t

)>
= ϕ

(
θ(·)
)
.

Applying the functional delta method with the result in Theorem 1, we can show that

√
T


F̂Y1t|X1t − FY1t|X1t

...

F̂YJt|XJt
− FYJt|XJt

 ϕ′θ(·)(B) in ×Jj=1 `
∞(Xj×Yj).

(b) The chain rule for Hadamard differentiable maps (Lemma 3.9.3, van der Vaart and Well-

ner, 1996) shows that ν ◦ ϕ : Dϕ → `∞(X×Y×) is Hadamard differntiable at θ tangentially

to D with derivative ν ′ϕ(θ(·)) ◦ ϕ′θ(·). An application of the functional delta method yields the

desired conclusion. �
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B Additional Results for Empirical Application

We provide more results of the empirical application. Section B.1 introduces a simulation of

samples of the outcome variables from the multiperiod forecasting distributions. In Section

B.2, we consider the same model specification as in Section4, but with an alternative order

where Y1t represents the real GDP growth and Y2t represents the quarterly NFCI. We compare

the proposed approach with the kernel regression method introduced by Adrian et al. (2021)

in Section B.3. In Section B.4, we explore the use of the monthly NFCI in the system

and a four-dimensional mixed-frequency model conditional on two lags by treating the three

monthly NFCI series as separate observations within a quarter. Based on this model, we

revisit the distribution forecasting and counterfactual analysis. Finally, in Section B.5, we

estimate 95% confidence bands for the distribution as well as density impulse responses using

the moving block bootstrap approach for each scenario, and present the results.

B.1 Sample from Joint Conditional Distributions

Given Zt = z, we show how to generate samples of Yt from the estimated joint conditional

distribution FYt|Zt=z based on Model (6). We assume that for the j-th element Yjt, the

conditional CDF FYjt|Xjt=xj is estimated at a sequence of discrete points {y(1)
j , y

(2)
j , . . . , y

(nj)
j }

over its support Yj by DR approach.

Algorithm 1 An algorithm for generating N samples from the estimated Yt|Zt = z distri-
bution
Initialization: set the covariate of every sample: xi1 = z for all i = 1, ..., N .
For j = 1, ..., dim(Yt),

1. Generate N samples ui, i = 1, . . . , N from the standard uniform distribution.

2. For each ui, set yij = y
(k∗ij)

j

k∗ij = inf{k = 1, ..., nj : FYjt|Xjt
(y

(k)
j |xij) < ui}

3. Incorporate yij into xi,j+1 for i = 1, ..., N .
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B.2 Joint Conditional Distribution with Alternative order

Figure B.1: Contour Plots of the Joint Distribution during the Great Recession

(a) Yt+h given (Yt, Zt) for t=2008:Q3
h = 1 h = 2 h = 3 h = 4

(b) Yt+h given (Yt, Zt) for t=2008:Q4
h = 1 h = 2 h = 3 h = 4

(c) Yt+h given (Yt, Zt) for t=2009:Q1
h = 1 h = 2 h = 3 h = 4

(d) Yt+h given (Yt, Zt) for t=2009:Q2
h = 1 h = 2 h = 3 h = 4

(e) Yt+h given (Yt, Zt) for t=2009:Q3
h = 1 h = 2 h = 3 h = 4

Notes: Refer to Figure B.1. These plots are constructed based on the same model in Section 4
but with Y1t representing GDP and Y2t representing NFCI.
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B.3 Comparison with Kernel Regression

Recently, Adrian et al. (2021) attempted to construct the joint distribution of the financial

conditions and real GDP growth by the kernel regression method. We compare our DR ap-

proach with the kernel regression on estimating the forecasting distributions. Following their

work, we parameterize the bandwidths as being proportional to the in-sample unconditional

standard deviation of the corresponding variable with the single proportionally constant c.

Figure B.2: Empirical CDF of the Out-of-sample PITs

(a) GDP: One quarter ahead

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) GDP: One year ahead
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(c) NFCI: One quarter ahead
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(d) NFCI: One year ahead
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Notes: This figure reports the empirical CDF of the PITs by the DR approach (red), the
Kernel Regression approach with optimal multiperiod forecasing performance (green)
and optimal model calibration (blue), plus the CDF of the PITs under the null hypothe-
sis of correct calibration (the 45-degree line) and the 5% confidence bands (dashed-line)
of the Rossi and Sekhposyan (2019) PITs test.

Given a sequence of values of c, we figure out the one that maximizes the predictive accu-
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racy of the resultant multiperiod conditional joint distribution (measured by log predictive

score) and the one that optimizes the out-of-sample calibration of the model (measured by

PITs). We compare the PITs of kernel regression in these two cases with our approach in

Figure B.2. The results show that the kernel regression model can be a correct specification

with appropriate bandwidths, while the bandwidths that maximize the predictive accuracy

are likely to result in miss-specification.

B.4 Mixed Frequency Model

We further explore the use of monthly financial conditions in the system considering that

converting the monthly available financial conditions into quarterly series often results in

information loss.

Spefically, we convert NFCI into monthly frequency by averaging weekly observations. We

use three monthly NFCI data instead of the aggregate quarterly NFCI data used before to

provide an updated view of the real GDP growth. A 4-dimensional mixed frequency model

is developed by treating the three monthly NFCI series as separate observations within a

quarter. We let Yjt, j = 1, 2, 3 be the NFCI of the j-th month in quarter t, and Y4t be

the real GDP growth in this model. As in Section 4, we consider Zt = {Yt−1, Yt−2} as the

covariates to characterise the joint conditional distribution FYt|Zt and FYt+h|Yt,Zt . With such

model specification, there are 8 conditional variables for the joint distribution. It is known

that kernel-based methods suffer from the so-called ‘curse-of-dimensionality’ when applied

to multivariate data. However, taking into account overparameterization and collinearity

among the covariates, the DR approach allows us to adapt popular regularization techniques

easily to enhance the prediction accuracy. In this application, we apply the lasso regression

when we estimate the model (2).

The out-of-sample calibration of the distribution forecasts is evaluated via the PITs test

and presented in Figure B.3. The empirical CDF of PITs for all variables at both the one-

quarter and one-year ahead horizons are all well within the 95% confidence bands. Comparing

the results of real GDP growth with Model 1 (see Figure 1) shows that using higher-frequency

financial conditions data leads to improvement, especially for one quarter ahead of forecast.
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Figure B.3: Empirical CDF of the Out-of-sample PITs

(a) 1st Month NFCI
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(b) 2nd Month NFCI
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(c) 3rd Month NFCI
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(d) Real GDP Growth
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Notes: This figure reports the empirical CDF of the PITs for the three monthly financial
conditions and the real GDP growth. In each panel specific to different variables, the
empirical CDF of the PITs for both one-quarter-ahead (red) and one-year-ahead (blue),
plus the CDF of the PITs under the null hypothesis of correct calibration (the 45-degree
line) and the 5% confidence bands (dashed-line) of the Rossi and Sekhposyan (2019)
PITs test are plotted.

Now, we reinvestigate the counterfactual analysis under this model specification. First,

we consider the same counterfactual distribution for Y1t in the first month of 2008:Q4. We

provide the impulse responses results on the entire distributions of each variable in the

following one year in Figure B.4. While the same conclusion can be reached as in Section 4,

there is more evidence for the persistence of the impulse effect that the perturbation in the

first month of 2008:Q4 still affects the distributions of both the financial conditions and real

GDP growth in 2009:Q4.
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Figure B.4: Distributional Response to NFCI Impulse

Distributions of Yt+h given Zt for t=2008:Q4
h = 1
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Notes: Different rows correspond to different variables, and for each variable, different columns corre-
spond to forecast horizons from one (first row, h = 1) to four (last raw, h = 4) quarters, given all the
information available in 2008:Q4. The marginal densities are constructed using kernel density estima-
tion with bandwidths of 0.25 for the three monthly NFCI and 0.8 for GDP. The baseline distributions
are in blue, and counterfactual distributions are in red.
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Table 3: QIR to NFCI Impulse

Quantiles (τ) 0.05 0.25 0.5 0.75 0.95
h Base Diff Base Diff Base Diff Base Diff Base Diff

NFCI1 0 0.62 -0.96 0.82 -0.96 1.03 -1.03 1.08 -0.96 2.31 -1.94
1 -0.16 -0.26 0.25 -0.60 0.52 -0.70 1.47 -1.26 2.96 -2.41
2 -0.36 -0.11 -0.19 -0.26 0.18 -0.51 1.03 -1.20 2.71 -1.24
3 -0.45 -0.08 -0.21 -0.25 0.00 -0.41 0.82 -0.88 3.18 -0.87
4 -0.51 -0.10 -0.41 -0.09 -0.06 -0.31 0.37 -0.39 2.71 -0.89

NFCI2 0 0.20 -0.58 0.45 -0.72 0.82 -0.96 1.89 -1.91 2.46 -2.04
1 -0.30 -0.22 0.07 -0.45 0.45 -0.64 1.08 -0.71 2.71 -2.08
2 -0.46 -0.07 -0.36 -0.11 0.07 -0.45 0.72 -0.93 2.46 -0.99
3 -0.50 -0.09 -0.22 -0.21 -0.02 -0.34 0.72 -0.74 2.46 -0.57
4 -0.66 -0.16 -0.41 -0.16 -0.08 -0.22 0.18 -0.06 2.46 -1.43

NFCI3 0 -0.02 -0.43 0.42 -0.76 0.55 -0.73 1.89 -1.90 3.18 -2.73
1 -0.41 -0.13 -0.02 -0.43 0.55 -0.80 1.31 -0.79 2.71 -1.40
2 -0.38 -0.16 -0.32 -0.06 0.00 -0.34 0.82 -1.01 2.96 -1.66
3 -0.56 0.00 -0.32 -0.10 -0.02 -0.28 0.52 -0.52 2.46 -0.64
4 -0.67 -0.09 -0.36 -0.18 -0.06 -0.16 0.08 -0.01 2.31 -1.49

GDP 0 -3.20 1.45 0.50 0.30 1.90 0.10 3.10 0.00 6.48 -0.98
1 -3.60 1.85 -0.55 1.63 1.15 1.75 2.80 1.30 6.88 0.35
2 -3.20 2.65 0.50 1.60 2.30 0.90 4.50 0.18 7.60 0.42
3 -3.20 1.45 1.40 0.60 3.10 0.10 4.75 0.43 8.15 0.00
4 -2.70 0.95 1.15 0.15 2.45 0.25 4.10 0.20 8.15 0.00

Notes: This table presents quantiles Qτ (Yi,t+h|Ft−1) for the baseline distributions (Base) and the
quantile differences QIRh,i,j(τ) from the counterfactual distributions to the baseline distributions
(Diff) of three monthly financial conditions within each quarter (NFCI1, NFCI2, NFCI3) and real
GDP growth from 2008:Q4 (h = 0) to 2009:Q4 (h = 4).
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Table 4: MIR to NFCI Impulse

Moments Mean Std Skewess Kurtosis
h Base Diff Base Diff Base Diff Base Diff

NFCI1 0 1.17 -1.17 0.48 -0.28 1.62 -1.62 5.60 -2.59
1 0.94 -0.97 1.01 -0.56 1.05 1.82 2.86 14.39
2 0.53 -0.64 0.97 -0.27 1.40 2.02 4.24 11.00
3 0.47 -0.51 1.03 -0.16 1.52 1.30 4.44 5.99
4 0.26 -0.35 0.97 -0.20 1.85 1.12 5.56 6.64

NFCI2 0 1.09 -1.17 0.78 -0.46 0.76 2.73 2.42 19.61
1 0.75 -0.76 0.97 -0.44 1.08 1.25 2.95 8.62
2 0.43 -0.60 0.99 -0.36 1.28 1.98 3.51 10.28
3 0.35 -0.43 0.97 -0.25 1.57 1.17 4.60 5.80
4 0.17 -0.31 0.93 -0.25 1.99 0.78 6.23 7.04

NFCI3 0 1.05 -1.17 0.98 -0.59 0.87 3.14 2.68 24.43
1 0.76 -0.70 0.97 -0.28 0.97 0.90 3.21 4.28
2 0.46 -0.59 1.02 -0.42 1.44 1.94 4.20 11.23
3 0.29 -0.36 0.94 -0.26 1.69 1.21 5.22 6.89
4 0.15 -0.28 0.88 -0.26 1.97 0.53 6.32 5.66

GDP 0 1.77 0.24 2.68 -0.49 0.06 0.05 4.33 1.10
1 1.22 1.52 2.81 -0.03 0.33 -0.25 3.83 -0.56
2 2.27 1.17 3.17 -0.73 -0.43 0.04 3.48 1.95
3 2.95 0.39 3.08 -0.27 -0.49 0.14 3.92 -0.21
4 2.61 0.26 2.99 -0.18 -0.16 0.05 3.76 0.39

Notes: This table presents moments for the baseline distributions (Base) and the
moments differences from the counterfactual distributions to the baseline distri-
butions (Diff) of three monthly financial conditions within each quarter (NFCI1,
NFCI2, NFCI3) and real GDP growth from 2008:Q4 (h = 0) to 2009:Q4 (h = 4).

To explore the impulse effect of GDP, we keep the conditional distribution of the three

monthly financial conditions Yit, i = 1, 2, 3 in 2008:Q4 as it is, and the same gamma counter-

factual distribution is considered for real GDP growth Y4t. The impulse response results for

the entire distribution are presented in Figure B.5. Under this model, more evidence shows

that the counterfactual distributions of real GDP growth at one and two quarters ahead

exhibit a fatter right tail and somewhat thinner left tail. Still, the final conclusion derived

from these results is consistent with those in Model 1.
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Figure B.5: Distributional Response to GDP Impulse

Distributions of Yt+h given Zt for t=2008:Q4
h = 1
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Notes: Refer to Figure B.4.
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Table 5: QIR to GDP Impulse

Quantiles 0.05 0.25 0.5 0.75 0.95
h Base Diff Base Diff Base Diff Base Diff Base Diff

NFCI1 0 0.62 0.00 0.82 0.00 1.03 0.00 1.08 0.00 2.31 0.00
1 -0.16 -0.02 0.25 0.00 0.52 0.00 1.47 -0.16 2.96 0.00
2 -0.36 0.01 -0.19 0.01 0.18 0.00 1.03 0.00 2.71 0.00
3 -0.45 0.00 -0.21 0.05 0.00 0.06 0.82 0.26 3.18 0.00
4 -0.51 0.02 -0.41 0.11 -0.06 0.04 0.37 0.05 2.71 0.25

NFCI2 0 0.20 0.00 0.45 0.00 0.82 0.00 1.89 0.00 2.46 0.00
1 -0.30 0.00 0.07 0.00 0.45 0.00 1.08 -0.05 2.71 0.00
2 -0.46 0.04 -0.36 0.09 0.07 0.00 0.72 0.26 2.46 0.00
3 -0.50 0.03 -0.22 0.04 -0.02 0.01 0.72 0.00 2.46 0.00
4 -0.66 0.07 -0.41 0.07 -0.08 0.06 0.18 0.00 2.46 0.00

NFCI3 0 -0.02 0.00 0.42 0.00 0.55 0.00 1.89 0.00 3.18 0.00
1 -0.41 0.05 -0.02 0.01 0.55 0.00 1.31 -0.23 2.71 0.00
2 -0.38 0.00 -0.32 0.02 0.00 0.00 0.82 0.21 2.96 0.00
3 -0.56 0.03 -0.32 0.09 -0.02 0.01 0.52 -0.10 2.46 0.00
4 -0.67 0.05 -0.36 0.08 -0.06 0.00 0.08 0.09 2.31 0.00

GDP 0 -3.20 4.65 0.50 1.95 1.90 1.45 3.10 1.40 6.48 0.00
1 -3.60 0.40 -0.55 0.58 1.15 0.25 2.80 0.40 6.88 1.15
2 -3.20 0.00 0.50 0.73 2.30 0.90 4.50 0.25 7.60 0.42
3 -3.20 0.00 1.40 0.10 3.10 0.00 4.75 0.00 8.15 0.00
4 -2.70 0.00 1.15 0.00 2.45 0.00 4.10 0.00 8.15 0.00

Notes: Refer to Table 3.

Table 6: MIR to GDP Impulse

Quantiles Mean Std Skewess Kurtosis
h Base Diff Base Diff Base Diff Base Diff

NFCI1 0 1.17 0.00 0.48 0.00 1.62 -0.02 5.60 -0.08
1 0.94 -0.02 1.01 0.00 1.05 0.06 2.86 0.03
2 0.53 0.01 0.97 -0.01 1.40 0.02 4.24 0.10
3 0.47 0.00 1.03 -0.03 1.52 0.03 4.44 0.19
4 0.26 0.06 0.97 0.02 1.85 -0.05 5.56 -0.32

NFCI2 0 1.09 0.00 0.78 0.01 0.76 0.01 2.42 0.01
1 0.75 -0.01 0.97 -0.02 1.08 0.07 2.95 0.21
2 0.43 0.07 0.99 0.02 1.28 -0.15 3.51 -0.39
3 0.35 0.01 0.97 -0.02 1.57 0.10 4.60 0.35
4 0.17 0.05 0.93 0.01 1.99 -0.07 6.23 -0.40

NFCI3 0 1.05 0.01 0.98 0.02 0.87 0.01 2.68 -0.01
1 0.76 -0.01 0.97 -0.03 0.97 0.07 3.21 0.26
2 0.46 0.06 1.02 0.03 1.44 -0.13 4.20 -0.48
3 0.29 0.01 0.94 -0.01 1.69 0.17 5.22 0.54
4 0.15 0.04 0.88 -0.02 1.97 -0.11 6.32 -0.55

GDP 0 1.77 3.93 2.68 -1.04 0.06 0.91 4.33 -1.06
1 1.22 0.45 2.81 0.34 0.33 -0.05 3.83 -0.75
2 2.27 0.59 3.17 -0.11 -0.43 -0.17 3.48 0.46
3 2.95 0.10 3.08 -0.06 -0.49 -0.03 3.92 0.18
4 2.61 0.01 2.99 -0.02 -0.16 0.00 3.76 0.09

Notes: Refer to Table 4.
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B.5 Confidence Bands based on Moving Block Bootstrap

Moving block bootstrap is a nonparametric bootstrap procedure that can be applied to

dependent time series observations. It consists in drawing blocks of fixed length randomly

with replacement from the blocks of consecutive data, which can thus accounts for conditional

heteroskedasticity. In this application, setting the length for each block is 8, we use 500

bootstrap replications to construct 95% pointwise confidence intervals of the contempreneous

correlation coefficients and DIRFs.

B.5.1 Distribution and Density IRFs

Figure B.6: Confidence Intervals of DIRF for NFCI Impulse (Bivariate Model)
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Figure B.7: Confidence Intervals of Density IRF for NFCI Impulse (Bivariate Model)
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Figure B.8: Confidence Intervals of DIRFs for NFCI Impulse (Mixed-Frequency Model)
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(b) Density IRFs
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Figure B.9: Confidence Intervals of DIRFs for GDP Impulse (Bivariate Model)

(a) Distribution IRFs
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(b) Density IRFs

NFCI

-1 0 1 2 3

-0.4

0

0.4
GDP

-10 -5 0 5 10

-0.2

0

0.2

-1 0 1 2 3

-0.4

0

0.4

-10 -5 0 5 10

-0.05

0

0.05

-1 0 1 2 3

-0.4

0

0.4

-10 -5 0 5 10

-0.05

0

0.05

-1 0 1 2 3

-0.4

0

0.4

-10 -5 0 5 10

-0.05

0

0.05

-1 0 1 2 3

-0.4

0

0.4

-10 -5 0 5 10

-0.05

0

0.05

B-14



Figure B.10: Confidence Intervals of DIRFs for GDP Impulse (Mixed-Frequency Model)

(a) Distribution IRFs
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B.5.2 Contempreneous Correlation Coefficient

Figure B.11: In-sample Contempreneous Correlation between NFCI and real GDP Growth
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Notes: The figure plots the correlation coeficients based on the one-step-
ahead forecasting distributions. The vertical shaded areas indicate U.S. re-
cessions, and horizontal shaded area represents the 95% interval.
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