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Abstract: We revisit the problem of estimating the local average treatment effect (LATE) and the
local average treatment effect on the treated (LATT) when control variables are available, either to
render the instrumental variable (IV) suitably exogenous or to improve precision. Unlike previous
approaches, our doubly robust (DR) estimation procedures use quasi-likelihood methods weighted
by the inverse of the IV propensity score – so-called inverse probability weighted regression ad-
justment (IPWRA) estimators. By properly choosing models for the propensity score and outcome
models, fitted values are ensured to be in the logical range determined by the response variable,
producing DR estimators of LATE and LATT with appealing small sample properties. Inference is
relatively straightforward both analytically and using the nonparametric bootstrap. Our DR LATE
and DR LATT estimators work well in simulations. We also propose a DR version of the Hausman
test that can be used to assess the unconfoundedness assumption through a comparison of different
estimates of the average treatment effect on the treated (ATT) under one-sided noncompliance.
Unlike the usual test that compares OLS and IV estimates, this procedure is robust to treatment
effect heterogeneity.
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1 Introduction

Instrumental variables estimation of causal effects has a long history in applied econometrics. In

introductory econometrics courses, the properties of the instrumental variables (IV) estimator are

often taught within the framework of a linear model with a constant coefficient. When applied in a

treatment effects setting, the constant coefficient assumption is equivalent to assuming a constant

treatment effect in the population. In their pioneering work, Imbens and Angrist (1994) [IA (1994)]

used a potential outcomes framework to study the probability limit of the simple IV estimator in

the setting of a binary treatment and binary instrumental variable. IA (1994) showed that, under

reasonable assumptions, the IV estimator consistently estimates a parameter now known as the

local average treatment effect (LATE), which is the average treatment effect over the subpopulation

of units that comply with their randomized eligibility. Angrist, Imbens and Rubin (1996) explicitly

embedded the LATE setup within the setting of the Rubin Causal Model, showed how the IV

estimand identifies a causal parameter under certain assumptions, and discussed the consequences

of violations of those assumptions. Vytlacil (2002) demonstrated that the LATE framework is

equivalent to a nonparametric selection model with a weakly separable selection equation.

In many applications of IV, the instrument is not randomly assigned, in which case the simple

IV estimator – also known as the Wald estimator – is no longer consistent for LATE. In some

cases, conditioning on observed covariates, or controls, can render the IV as good as randomly

assigned within subpopulations defined by the covariate values. In effect, the IV is assumed to

satisfy an unconfoundedness assumption conditional on observables. In most textbook treatments

of instrumental variables that include control variables X , these are added linearly and then they

act as their own instruments. In the treatment effects context, it may seem appealing to include

interactions of the binary treatment variable, W , with the (suitably centered) covariates X . If Z is

the instrument for W , a natural instrument for W ·X is Z ·X . Wooldridge (2010, Procedure 21.2)

describes an IV procedure that exploits the binary nature of W by using a binary response model

for p (Z,X) ≡ P (W = 1|Z,X) and then using p̂ (Zi, Xi) and p̂ (Zi, Xi) ·Xi as instruments in the

linear equation that includes Wi and Wi ·Xi.
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Adding covariates to a linear equation and interacting them with the treatment indicator seems

like a natural way to account for nonrandom assignment of the instrument while allowing for

heterogeneous treatment effects. Unfortunately, no results imply that this procedure generally

uncovers the LATE. By contrast, Tan (2006) and Frölich (2007) independently obtained a useful

identification result for LATE when covariates are needed in order to render the IVs ignorable.

Frölich (2007) used his identification result to obtain consistent, asymptotically normal estimators

of LATE. As a practical matter, however, the need to estimate four conditional mean functions

nonparametrically makes Frölich’s estimator difficult to implement, even with just a small number

of covariates. Plus, issues of how to handle discrete, continuous, and mixed control variables need

to be addressed.

On the other hand, the estimation approach proposed by Tan (2006) is based on so-called

augmented inverse probability weighting (AIPW) estimators. AIPW is a standard class of doubly

robust (DR) estimators, that is, estimators that remain consistent under misspecification of either

of the two (sets of) parametric working models on which they are based. However, as discussed in

Kang and Schafer (2007), AIPW estimators, as commonly applied, are often unstable in practice,

as is standard inverse probability weighting (IPW). One reason is that these estimators are often

based on weights in the weighted averages that do not sum to unity; in other words, the weights

are not normalized.

Following Tan (2006) and Frölich (2007), many other estimation approaches for LATE have

been proposed, some of which are doubly robust and some are not. For example, Donald, Hsu

and Lieli (2014) [DHL (2014)] studied the aforementioned IPW estimators, which are consistent

when the instrument propensity score is correctly specified but not otherwise. Admittedly, DHL

(2014) suggested nonparametric series estimators, which in theory resolves the issues of misspec-

ification, but in practice their approach would be applied in a flexible parametric framework by

most practitioners. Similar to Tan (2006), other DR estimators have also been based on the AIPW

approach, and this includes both those proposed in Ogburn, Rotnitzky and Robins (2015) and sev-

eral estimators that employ high-dimensional selection, including those in Belloni et al. (2017),
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Chernozhukov et al. (2018), and Sun and Tan (2022), which often also rely on sample splitting to

allow for high-dimensional covariates. In recent work, Heiler (2022) discussed a DR extension of

a particular balancing estimator of LATE while Singh and Sun (2022) combined “kappa weight-

ing” (Abadie, 2003) and high-dimensional selection to obtain DR estimators of LATE and related

parameters.

Our primary purpose in this paper is to propose a new class of doubly robust estimators of

LATE that are simple to implement and avoid the shortcomings of nonparametric conditional mean

estimation and AIPW methods. In particular, using the identification result in Frölich (2007) and

building also on Wooldridge (2007) and Słoczyński and Wooldridge (2018), we show how estima-

tors that use the inverse of the instrument propensity score to weight the objective functions for

estimating the treatment propensity score and the conditional mean of the response allow consis-

tent estimation of LATE. These estimators, now commonly labeled inverse probability weighted

regression adjustment (IPWRA) estimators, have the same double robustness property of AIPW

estimators. An advantage of IPWRA estimators is that one can choose functional forms so that

the estimated conditional probability and conditional mean functions are guaranteed to produce

predictions within the logical range of the outcomes. This feature of IPWRA makes the result-

ing estimators of LATE have good finite sample properties. Moreover, the estimators are easy to

obtain and inference is relatively straightforward. Using a similar approach, we also propose DR

estimators for the local average treatment effect on the treated (LATT).

In Section 2 we provide the setting, define the LATE parameter, and summarize the identifi-

cation result in Frölich (2007). We also study identification of LATT, beginning with a result due

to Frölich and Lechner (2010) but modifying it to obtain a simple representation of this parameter

that leads naturally to DR estimation.

Section 3 shows how the IPWRA approach can be used to identify the four expectations ap-

pearing in LATE when conditioning on covariates. We modify existing arguments to account for

the fact that the conditional means we need to estimate for the outcome are not of the potential

outcomes. Nevertheless, the IPWRA approach still identifies the required unconditional means.
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This section carries out a similar analysis for LATT where we are able to relax the assumptions

used to identify LATE.

Section 4 shows how to obtain standard errors for the DR LATE and DR LATT estimators

that account for the sampling error in all estimation steps. Section 5 shows how to modify the

Hausman-type test proposed by DHL (2014) to allow for DR estimation. In the case with one-sided

noncompliance, if assignment is unconfounded then LATT is the same as the average treatment ef-

fect on the treated (ATT). Therefore, we can obtain two DR estimators using IPWRA estimation

schemes: one that uses an instrumental variable and another that employs unconfoundedness con-

ditional on covariates. We show how to test the null hypothesis that the two estimators consistently

estimate the same parameter.

Section 6 revisits two empirical studies. First, we use the data in Abadie (2003) to produce

LATE and LATT estimates for the effect of participating in a 401(k) pension plan on net financial

wealth. We also look at the causal effect of participating in a 401(k) plan on participation in indi-

vidual retirement accounts (IRAs). In this case, we compare IV estimates of a linear probability

model with our DR estimates that recognize the binary nature of the IRA participation decision.

Using our proposed method, we find that 401(k) participation has a positive effect on net finan-

cial assets and the probability of IRA participation. This is despite the fact that the corresponding

AIPW (for net financial assets) and IPW estimates (for both outcomes) are much smaller and im-

precise. Even though both AIPW and IPWRA are doubly robust, they lead to different conclusions

about the LATE on net financial assets.

Second, we also revisit Finkelstein et al. (2012) and Taubman et al. (2014), and use the data

from the Oregon Health Insurance Experiment to study the effects of Medicaid on emergency

room visits. Like in previous work, our estimates are positive, which suggests, perhaps counter-

intuitively, that access to health insurance may increase the utilization of emergency rooms. Our

novel empirical contribution is that LATT, the effect on the treated compliers, is larger than the

usual LATE, at least along the extensive margin. This is because treatment effects appear to be

more pronounced in larger households (cf. Denteh and Liebert, 2022), which are also more likely
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to be treated.

Section 7 presents simulation evidence on the performance of several estimators of LATE,

including IV, regression adjustment (RA), IPW, AIPW, and IPWRA. The performance of our pro-

posed method, IPWRA, is very satisfying. It is never substantially more biased than the competing

estimators while its precision is better than that of AIPW, which is the only alternative that shares

the double robustness property of IPWRA. Finally, Section 8 concludes.

2 Identification of LATE and LATT

The potential outcomes setting in this paper is the one pioneered by IA (1994). Eventually, we will

assume access to a random sample from the population, and so all assumptions can be stated in

terms of random variables representing the population of interest.

For a binary intervention, let Y (0) be the potential outcome in the control state and Y (1) the

potential outcome in the treated state. The observed binary treatment indicator isW , whereW = 1

denotes treatment and W = 0 denotes control. We have access to a binary instrumental variable,

Z. As in IA (1994), there are potential treatment statuses based on the assignment of the instrument

(which is often eligibility): W (1) is participation status when a unit is made “eligible” andW (0) is

participation status in the “ineligible” state. This framework allows for the possibility that units do

not comply with their assigned “eligibility.” For example, some workers, if selected to participate

in a job training program (Z = 1), may choose not to participate [W (1) = 0].

The observed outcome Y is a function of the observed treatment variable and the potential

outcomes corresponding to the treatment and control status:

Y = WY (1) + (1−W )Y (0).

Further, the realized treatment status can be written in terms of the instrument Z and the potential

treatment statuses:

W = ZW (1) + (1− Z)W (0). (1)
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According to the relationship between the potential treatment status and the binary instrument, the

population can be divided into four subpopulations: compliers, always-takers, never-takers, and

defiers. From the observed dataset one cannot identify the group to which an individual belongs

since only the pair (W,Z) is observed. For example, if Z = 1 and W = 1, the individual is

either a complier or an always-taker. Always-takers and never-takers do not change their treatment

behavior when the assignment of the IV changes. The only subpopulations that can be induced

into changing W through a variation in Z are the defiers and compliers.

Generally, the treatment effect of interest can be defined either as the impact of the treatment on

the outcome for the defiers [W (1) < W (0)] or for the compliers [W (1) > W (0)]. Following the

literature, we focus on average treatment effects on compliers under the assumption that defiers

do not exist. The local average treatment effect (LATE) is the expected difference between the

potential outcomes for the subpopulation of compliers:

τLATE = E[Y (1)− Y (0)|W (1) > W (0)]. (2)

Compliers are members of a hypothetically defined subpopulation and cannot be identified from

observed data without further assumptions.

As in much of the literature since IA (1994) – including several papers discussed in the in-

troduction – we assume that we have (pre-treatment) covariates, X , that render the instrumental

variable suitably exogenous when conditioned on. The support of X is indicated by X . With these

covariates, identification of τLATE is possible if certain assumptions are met.

The first assumption is that, conditional on X , the instrumental variable has no direct effect

on the potential outcomes; its effect can come only through the treatment assignment. The formal

statement requires indicating two arguments in the potential outcomes, Y (w, z) for w, z ∈ {0, 1}.

Assumption 1 (Exclusion Restriction). For w ∈ {0, 1} and almost all x ∈ X ,

P [Y (w, 1) = Y (w, 0) | X = x] = 1. � (3)

Assumption 1 justifies labeling the potential outcomes using a single index that indicates actual
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treatment status because we condition on X in stating ignorability of the instruments. In what

follows, we use Y (w) as the potential outcome for treatment status w ∈ {0, 1}.

Assumption 2 (Ignorability of Instrument). Conditional on X , the potential outcomes are jointly

independent of Z:

[Y (0), Y (1),W (0),W (1)] ⊥ Z | X. � (4)

Assumption 2 requires that, conditional on observed confounders, the instrument can be regarded

as random.

Assumption 3 (Monotonicity).

P[W (1) ≥ W (0)] = 1. �

This monotonicity assumption is standard in the literature: it says that there are no defiers in the

population (or that the group is so small it has probability zero). It is equivalent to a conditional

statement, namely, P[W (1) ≥ W (0)|X = x] = 1 for almost all x ∈ X . In other words, if

Assumption 3 holds, P[W (1) ≥ W (0)|X = x] < 1 is possible only on a subset of x ∈ X with

measure zero. Formally, this claim is equivalent to the proposition that for a random variable

R ≥ 0, E (R) = 0 if and only if P (R = 0) = 1.

The next assumption requires the existence of compliers in the population.

Assumption 4 (Existence of Compliers).

P[W (1) > W (0)] > 0. �

When we partition the population on the basis of the covariates X , Assumption 4 implies that,

for some subset C ⊂ X with P (C) > 0, P[W (1) > W (0)|X = x] > 0 if x ∈ C. This follows

by iterated expectations: If 1l [W (1) > W (0)] has positive expectation then its expectation condi-

tional on X must be positive with nonzero probability. The subset C defines the subpopulation of

compliers based on the values of X .
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The requisite overlap assumption is stated in terms of the propensity score involving the instru-

mental variable, sometimes referred to as the instrument propensity score.

Assumption 5 (Overlap for LATE). For almost all x ∈ X ,

0 < P (Z = 1|X = x) < 1. �

IA (1994) show that if Assumptions 1–5 hold without conditioning on X , then τLATE is identified

as

τLATE =
E[Y |Z = 1]− E[Y |Z = 0]

E[W |Z = 1]− E[W |Z = 0]
. (5)

In that case, given a random sample from the population, τLATE can be consistently estimated by

replacing the expectations in (5) with the corresponding sample averages. This simple estimator

is the well-known Wald estimator; it is also obtained by estimating the simple linear equation

Y = α+βW+U by instrumental variables using instruments (1, Z). In other words, β̂IV = τ̂LATE .

In some cases, one cannot participate (W = 1) unless assigned to the treatment (Z = 1), in which

case the second term in the denominator of τLATE is zero: E[W |Z = 0] = P[W = 1|Z = 0] = 0.

This is the case in the application in Abadie (2003) (also used in several subsequent studies), where

an employee cannot participate in an employer-sponsored pension plan unless the employer offers

such a plan. In other applications, Z = 1 implies W = 1 (no never-takers), in which case the

first term in the denominator of τLATE is unity. This situation arises in Angrist and Evans (1998)

when, in a population of women with at least two children, the “treatment” is having more than

two children and the binary instrument indicates whether the second birth was a multiple birth.

In many cases the instrumental variable candidate, Z, is not truly randomized, but we might be

willing to assume it is as good as randomized conditional onX . Then, Assumptions 1–5 imply that

we can identify τLATE . The following theorem is due to Frölich (2007, Theorem 1). Frölich and

Lechner (2010) relax the assumptions somewhat but not in a way that makes the theorem clearly

more applicable.
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Theorem 1 (Identification of LATE). Under Assumptions 1–5,

τLATE =
E [E (Y |X,Z = 1)− E (Y |X,Z = 0)]

E [E (W |X,Z = 1)− E (W |X,Z = 0)]
=

E[µ1(X)− µ0(X)]

E[ρ1(X)− ρ0(X)]
, (6)

where

µ0(X) ≡ E (Y |X,Z = 0) (7)

µ1(X) ≡ E (Y |X,Z = 1) (8)

and

E (W |X,Z = 0) = E[W (0)|X] = ρ0(X) (9)

E (W |X,Z = 1) = E[W (1)|X] = ρ1(X). � (10)

As discussed in Frölich (2007), the result in equation (6) suggests that one can estimate each

of the four conditional mean functions, E (Y |X,Z = 0), E (Y |X,Z = 1), E (W |X,Z = 0), and

E (W |X,Z = 1), using nonparametric methods, and then average the estimates across i to estimate

the unconditional means. Especially when the dimension of X is large, nonparametric estimation

is not attractive, and inference is also complicated. One of the estimators considered by Tan (2006)

estimates the numerator and denominator in (6) using augmented inverse probability weighting

(AIPW) estimators. AIPW estimators are popular in the case of unconfounded assignment but

simulations show they are not always well behaved even in somewhat large samples (e.g., Kang

and Schafer, 2007). Słoczyński and Wooldridge (2018) provide a recent overview of the debate on

the merits of AIPW approaches. One issue that apparently has not been noted is that commonly

used AIPW estimators – like those in Tan (2006) – implicitly use weights in the weighted averages

that do not sum to unity; in other words, the weights are not normalized. Because many of the

estimators summarized in the introduction have an AIPW flavor, they suffer from the same problem

– whether they are based on parametric approaches or machine learning algorithms. In the next

section we show how to use a class of DR estimators based on weighted quasi-maximum likelihood

estimation (QMLE) to estimate the four means that appear in (6). This possibility was already
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indicated by Słoczyński and Wooldridge (2018) but without any of the details that we consider

here.

There is also some interest in estimating the local average treatment effect on the treated

(LATT), formally defined as

τLATT = E[Y (1)− Y (0) | W (1) > W (0),W = 1]. (11)

Frölich and Lechner (2010) study identification of this parameter and show that, under the assump-

tions in Theorem 1,

τLATT =
E {[µ1(X)− µ0(X)]η(X)}
E {[ρ1(X)− ρ0(X)]η(X)}

, (12)

where η(x) is the instrument propensity score:

η(x) ≡ P (Z = 1|X = x) , x ∈ X . (13)

For our purposes, we use a different representation of τLATT . We state this theorem under the

exclusion and ignorability assumptions in Theorem 1 even though we could relax some of the

assumptions. It is useful to explicitly relax the overlap assumption.

Assumption 6 (Overlap for LATT). For almost all x ∈ X ,

P (Z = 1|X = x) < 1. �

The overlap assumption for LATT means that there can be subsets of the population, based on the

values of the control variables X , where units are not eligible for the treatment.

Theorem 2 (Identification of LATT). Under Assumptions 1–4 and Assumption 6,

τLATT =
E (Y |Z = 1)− E[µ0(X)|Z = 1]

E (W |Z = 1)− E[ρ0(X)|Z = 1]
. � (14)

Proof. By iterated expectations and (12),

τLATT =
E {[µ1(X)− µ0(X)]Z}
E {[ρ1(X)− ρ0(X)]Z}
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and so, dividing the numerator and the denominator by P (Z = 1) > 0,

τLATT =
E {[µ1(X)− µ0(X)]|Z = 1}
E {[ρ1(X)− ρ0(X)]|Z = 1}

.

By definition of µ0(x) and µ1(x), we can write

Y = (1− Z)µ0(X) + Zµ1(X) + U, E (U |X,Z) = 0.

It follows that

E (Y |Z = 1) = E [µ1(X)|Z = 1] .

Also, W = (1− Z)W (0) + ZW (1) and so, by ignorability,

E (W |X,Z = 1) = E [W (1)|X,Z = 1] = E [W (1)|X] = ρ1(X).

Iterated expectations implies E (W |Z = 1) = E [ρ1(X)|Z = 1]. Therefore, we can write τLATT as

in (14). The overlap assumption ensures that E[µ0(X)|Z = 1] is identified and ignorability and

overlap ensure E[ρ0(X)|Z = 1] is identified.

As we show in the next section, the representations in (6) and (14) permit doubly robust estimation

of τLATE and τLATT using IPWRA estimators, providing a unification that makes the estimation

approaches transparent and simple.

3 Doubly Robust Estimation of LATE and LATT

We now turn to estimation of τLATE and τLATT using a particular class of doubly robust (DR) esti-

mators, starting with the former. The approach we take allows us to tailor the analysis based on the

nature of the observed outcome, Y , by choosing a suitable conditional mean function. In partic-

ular, using the identification results in Słoczyński and Wooldridge (2018), we extend Wooldridge

(2007)’s approach of combining inverse probability weighting (IPW) and regression adjustment

(RA) using a particular quasi-maximum likelihood estimator. These estimators are commonly
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referred to as IPWRA estimators.

3.1 Estimation of LATE

The identification result in equation (6) shows that, in order to consistently estimate τLATE , we

need to consistently estimate the following four quantities:

θ1 = E[µ1(X)], θ0 = E[µ0(X)], (15)

π1 = E[ρ1(X)], π0 = E[ρ0(X)]. (16)

Because of the representation of W in equation (1), we can immediately apply the DR results on

IPWRA estimation from Wooldridge (2007) and Słoczyński and Wooldridge (2018). The approach

first requires estimating a binary response model for the instrument propensity score defined in

(13). By the overlap assumption (Assumption 5), 0 < η(x) < 1 for all x ∈ X . The proposal here

is to use a standard parametric model for η(x), as is common in the literature when estimating a

propensity score function. Probably most popular is a flexible logit model, but it could be a probit

model, heteroskedastic probit model, or something else. Let G(x, γ) denote the parametric model

for η(x). Under very general assumptions, the Bernoulli quasi-maximum likelihood estimator,

γ̂, converges in probability to some value, γ∗, which is sometimes called the quasi-true value or

pseudo-true value. If the model for η(x) is correctly specified then G(x, γ∗) = P(Z = 1|X = x).

At this point, one would use the fitted probabilities, G(Xi, γ̂), to study the LATE overlap condition

using standard methods; for a detailed discussion, see Imbens and Rubin (2015, Chapter 14).

After estimating the model for P(Z = 1|X), next we estimate models for ρ0(x) and ρ1(x), as

defined in (9) and (10). These are estimated by separate logit models for W for the Zi = 0 and

Zi = 1 subgroups, applying the inverse probability weights 1/ [1−G(Xi, γ̂)] and 1/G(Xi, γ̂),

respectively. The reason for using logit models for ρ0(x) and ρ1(x) is to ensure that the resulting

estimators of the expected probabilities, π0 and π1, are doubly robust, as discussed in Wooldridge

(2007) and Słoczyński and Wooldridge (2018). The logit function is the canonical link function for

the Bernoulli distribution, and that ensures the DR property. Let Λ(ω̂0 + Xiδ̂0) and Λ(ω̂1 + Xiδ̂1)
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be the logit fitted values, where the estimated parameters are obtained from the Zi = 0 and Zi = 1

subsamples, respectively. For notational ease we show the indexes as linear functions of Xi but,

naturally, any functions of the covariates may appear in the logit models. In principle, one could

use different functions of Xi, say h0(Xi) and h1(Xi), inside the logistic function, but that seems to

be rare in practice.

Having estimated the separate logit models by weighted Bernoulli QMLE, the DR estimates of

π0 and π1 are

π̂0 = N−1
N∑
i=1

Λ(ω̂0 +Xiδ̂0), π̂1 = N−1
N∑
i=1

Λ(ω̂1 +Xiδ̂1).

From Wooldridge (2007), under standard regularity conditions, π̂z is consistent for πz if the model

for P(Z = 1|X) is correct or if the models for P(W = 1|X,Z = 0) and P(W = 1|X,Z = 1) are

correct. Naturally, if we know P(W = 1|Z = 1) = 1 then π̂1 is replaced with one and if we know

P(W = 1|Z = 0) = 0 then π̂0 is replaced with zero (the more likely scenario when Z is eligibility

and W is participation).

Next, we show how to obtain DR estimators of θ0 and θ1. In doing so, it is useful to write Y

with a zero conditional mean error term:

Y = (1− Z)µ0(X) + Zµ1(X) + U, E (U |X,Z) = 0,

where µ0(X) and µ1(X) are defined in (7) and (8). Note that this is not the usual representation

that leads to DR estimation because µ0(X) and µ1(X) are not the potential outcome conditional

means; rather, these are the conditional mean functions for the (observed) Z = 0 and Z = 1

subpopulations, respectively. Therefore, we must modify the usual double robustness argument.

Let m(α0 + Xβ0) and m(α1 + Xβ1) be the parametric models for µ0(X) and µ1(X). Again,

for notational ease we show these depending on an index linear in X , whereas they could depend

on (different) transformations of X inside the function m (·). We assume that the function m (·)

is based on the canonical link function for the chosen quasi-log likelihood (QLL) in the linear

exponential family – which is why we show the mean function to have the index form. If Y is a
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binary or fractional response then we couple the Bernoulli QLL with the logistic mean function –

just as when we estimate ρ0(x) and ρ1(x). If Y ≥ 0, the appropriate combination ism (·) = exp (·)

with the Poisson QLL. When Y has no particular features worth exploiting, one commonly uses

m (α + xβ) = α + xβ and the least squares objective function (which corresponds to the normal

QLL).

As in the case of estimating the parametric models for ρ0(x) and ρ1(x), the objective functions

for estimating (α0, β0) and (α1, β1) are weighted by 1/ [1−G(Xi, γ̂)] and 1/G(Xi, γ̂) for the

Zi = 0 and Zi = 1 subsamples, respectively. When the mean function corresponds to the canonical

link function in the chosen linear exponential family (LEF), the first-order conditions for (α̂1, β̂1)

can be written as

N∑
i=1

{
Zi

G(Xi, γ̂)

[
Yi −m(α̂1 +Xiβ̂1)

]}
= 0 (17)

N∑
i=1

{
Zi

G(Xi, γ̂)
X ′i

[
Yi −m(α̂1 +Xiβ̂1)

]}
= 0. (18)

Under general conditions, (α̂1, β̂1) converge in probability to the (unique) solutions (α∗1, β
∗
1) to the

weighted population moment conditions

E
{

Z

G(X, γ∗)
[Y −m(α∗1 +Xβ∗1)]

}
= 0 (19)

E
{

Z

G(X, γ∗)
X ′ [Y −m(α∗1 +Xβ∗1)]

}
= 0. (20)

We now show that the solutions to these FOCs result in doubly robust estimators of θ0 and θ1. We

show the argument for the latter with an almost identical argument for θ0.

As discussed in Wooldridge (2007), when the weights depend on conditioning variables – in

this case, X – and the relevant feature of the conditional distribution is correctly specified – in

this case, the conditional mean µ1(X) ≡ E (Y |X,Z = 1) – weighting a suitably chosen objective

function does not alter consistency of the estimators. We can see this directly from the population
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FOCs. Assume there are values (α∗1, β
∗
1) such that

E (Y |X,Z = 1) = m(α∗1 +Xβ∗1),

so that the conditional mean is correctly specified. Then ZY = Zm(α∗1 + Xβ∗1) + ZU and, since

E (ZU |X,Z) = 0, it follows immediately that

E {Z [Y −m(α∗1 +Xβ∗1)] |X} = 0.

Because G(X, γ∗) > 0 is a function of X , it follows that

E
{

Z

G(X, γ∗)
[Y −m(α∗1 +Xβ∗1)]

∣∣∣∣X} = 0.

Given G(X, γ∗) > 0 and sufficient variability in X when Z = 1, the solutions to (19) and (20),

(α∗1, β
∗
1), are unique. By iterated expectations,

θ1 = E [m(α∗1 +Xβ∗1)] .

Similarly, θ0 = E[m(α∗0 + Xβ∗0)] when E (Y |X,Z = 0) = m(α∗0 + Xβ∗0). This is the first half of

the double robustness result, which does not actually use the assumption of a canonical link in the

linear exponential family.

For the other part of DR, it is useful to express the population FOCs somewhat differently. Plug

in for Y and use ZY = Zµ1(X) + ZU to get

E
[

Z

G(X, γ∗)
[µ1(X) + U −m(α∗1 +Xβ∗1)]

]
= 0

E
[

Z

G(X, γ∗)
X ′[µ1(X) + U −m(α∗1 +Xβ∗1)]

]
= 0

or, because E (U |X,Z) = 0,

E
[

Z

G(X, γ∗)
[µ1(X)−m(α∗1 +Xβ∗1)]

]
= 0 (21)

E
[

Z

G(X, γ∗)
X ′[µ1(X)−m(α∗1 +Xβ∗1)]

]
= 0. (22)
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By iterated expectations, these equations are equivalent to

E
[

η(X)

G(X, γ∗)
[µ1(X)−m(α∗1 +Xβ∗1)]

]
= 0 (23)

E
[

η(X)

G(X, γ∗)
X ′[µ1(X)−m(α∗1 +Xβ∗1)]

]
= 0. (24)

When G(x, γ) is correctly specified, η(X) = G(X, γ∗), and the first population moment condition

becomes

E [µ1(X)−m(α∗1 +Xβ∗1)] = 0.

It follows immediately that θ1 = E[m(α∗1 + Xβ∗1)], even though the conditional mean function

need not be correctly specified. This part of the DR result uses the assumption that we have chosen

the canonical link function for the chosen LEF density. The same argument holds for θ0. Except

for adding standard regularity conditions, we have established consistency of the DR estimators

that combine inverse probability weighting (IPW) and regression adjustment (RA), where RA is

defined generally to include QMLEs in the LEF with a canonical link function.

Because the LEF/canonical link combinations play an important role in DR estimation, we

summarize the common choices for the quasi-likelihoods and mean functions in Table 1.

The first entry in Table 1 simply means using weighted least squares with linear conditional

mean functions, but the weights here are based on the instrument propensity score, chosen to

achieve double robustness, and have nothing to do with heteroskedasticity. When Y is binary or

fractional (the second entry), a logistic conditional mean function is more attractive because it

ensures fitted values are in the unit interval. For example, Yi could be the fraction of retirement

savings held in the stock market or the fraction of students passing a standardized test. The third

entry allows for corners at zero and some unit-specific, known upper bound, Bi. This Bi should be

a conditioning variable – like the elements of Xi. For example, Yi could be the amount of income

put into retirement with Bi being an individual-specific bound determined by legal restrictions.

The final entry is important across many kinds of response variables that are nonnegative but have

no natural upper bound. These outcomes could be count variables but they could be roughly
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continuous or have an atom at zero.

In what follows, we summarize the steps for doubly robust estimation of τLATE using IPWRA.

Procedure DR LATE.

1. Estimate a flexible binary response model for the instrument propensity score, η (x) =

P (Z = 1|X = x); denote the fitted probabilities G (Xi, γ̂). In many cases, one would use a

flexible logit. Overlap needs to be studied at this step.

2. Use weighted Bernoulli QMLE to estimate separate (flexible) logit models for P(W =

1|X,Z = 0) and P(W = 1|X,Z = 1) (i.e., only using the units with Zi = 0 and Zi = 1, re-

spectively), where the weights in the former case are 1/ [1−G (Xi, γ̂)], and in the latter case,

1/G (Xi, γ̂). These produce
(
ω̂0, δ̂0

)
,
(
ω̂1, δ̂1

)
, and the fitted probabilities Λ(ω̂0+Xiδ̂0) and

Λ(ω̂1 +Xiδ̂1).

3. Choose conditional mean models for E(Y |X,Z = 0) and E(Y |X,Z = 1) that reflect the

nature of Y . These should correspond to the canonical link functions for the chosen LEF

quasi-log likelihood. Use weights 1/ [1−G (Xi, γ̂)] to obtain the weighted QMLEs of

(α0, β0) and weights 1/G (Xi, γ̂) to obtain the weighted QMLEs of (α1, β1). (As above,

this only uses the units with Zi = 0 and then Zi = 1, respectively.) These produce the fitted

mean functions m(α̂0 +Xiβ̂0) and m(α̂1 +Xiβ̂1).

4. Obtain the DR estimator of τLATE as

τ̂DRLATE =
N−1

∑N
i=1

[
m(α̂1 +Xiβ̂1)−m(α̂0 +Xiβ̂0)

]
N−1

∑N
i=1

[
Λ(ω̂1 +Xiδ̂1)− Λ(ω̂0 +Xiδ̂0)

] . � (25)

The DR LATE estimator has the same form as Frölich (2007), but we use parametric models that

can exploit the nature of Y and we estimate the parameters in the numerator and denominator using

inverse probability weighting in order to achieve double robustness. Consequently, the numerator

of τ̂DRLATE is a DR ATE estimator where Z (the instrument) is taken as the “treatment” and

the outcome Y is the response. The denominator is a DR ATE estimator where, again, Z is the
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“treatment” and the actual treatment indicator, W , is the response. Obtaining the estimate for a

given sample is very easy using software packages that support IPWRA estimation.

3.2 Estimation of LATT

The IPWRA doubly robust estimators of τLATT require a different weighting scheme. First, there

is no need to model µ1(X) = E(Y |X,Z = 1) or ρ1(X) = E(W |X,Z = 1) because, as shown

in (14), we only need to estimate E(Y |Z = 1) and E(W |Z = 1). But we need DR estimators

of E[µ0(X)|Z = 1] and E[ρ0(X)|Z = 1]. Following, for example, Słoczyński and Wooldridge

(2018), we now show that the following population FOC provides DR estimators of E[µ0(X)|Z =

1]:

E
{

(1− Z)G(X, γ∗)

[1−G(X, γ∗)]
[Y −m(α∗0 +Xβ∗0)]

}
= 0. (26)

Using the same argument as for τLATE , E (Y |X,Z = 0) = m(α∗0 +Xβ∗0) ensures that

E {(1− Z) [Y −m(α∗0 +Xβ∗0)] |X} = 0,

and then (26) holds by iterated expectations. Again, the weights are nonnegative functions of X

and so this does not change that the solutions to the FOCs are the conditional mean parameters.

For the second half of DR, we use an argument similar to the case of LATE and write the FOC

as

E
{

(1− Z)G(X, γ∗)

[1−G(X, γ∗)]
[µ0 (X)−m(α∗0 +Xβ∗0)]

}
= 0.

By iterated expectations, this FOC is equivalent to

E
{

[1− η (X)]G(X, γ∗)

[1−G(X, γ∗)]
[µ0 (X)−m(α∗0 +Xβ∗0)]

}
= 0,

where η (X) = P (Z = 1|X). When the instrument propensity score is correctly specified, η (X) =

G(X, γ∗), this equation becomes

E {η (X) [µ0 (X)−m(α∗0 +Xβ∗0)]} = 0,
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and by iterated expectations, this is equivalent to

E {Z [µ0 (X)−m(α∗0 +Xβ∗0)]} = 0.

It now follows that

E [µ0 (X) |Z = 1] = E [m(α∗0 +Xβ∗0)|Z = 1]

even though the mean function is arbitrarily misspecified. This is the second half of the DR result

for τLATT .

Procedure DR LATT.

1. Using all of the data, estimate a flexible binary response model for the instrument propensity

score, η (x) = P (Z = 1|X = x); denote the fitted probabilities G (Xi, γ̂). In many cases,

one would use a flexible logit. The LATT overlap assumption needs to be studied at this

step.

2. Use the units with Zi = 0 and weighted Bernoulli QMLE to estimate a (flexible) logit model

for ρ0(X) = P(W = 1|X,Z = 0), where the weights are G(Xi, γ̂)/ [1−G (Xi, γ̂)]. This

produces
(
ω̂0, δ̂0

)
and the fitted probabilities Λ(ω̂0 +Xiδ̂0).

3. Choose a conditional mean model for µ0(X) = E(Y |X,Z = 0) that reflects the nature

of Y . This should correspond to the canonical link function for the chosen LEF quasi-log

likelihood. Use the units with Zi = 0 and weights G(Xi, γ̂)/ [1−G (Xi, γ̂)] to obtain the

weighted QMLEs of (α0, β0). This produces the fitted mean, m(α̂0 +Xiβ̂0).

4. Obtain the DR estimator of τLATT as

τ̂DRLATT =
Ȳ1 −N−11

∑N
i=1 Zim(α̂0 +Xiβ̂0)

W̄1 −N−11

∑N
i=1 ZiΛ(ω̂0 +Xiδ̂0)

, (27)

where Ȳ1 = N−11

∑N
i=1 ZiYi and W̄1 = N−11

∑N
i=1 ZiWi. �

The numerator of τ̂DRLATT is a DR estimator of ATT where Z is taken as the “treatment” and
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Y is the outcome. Similarly, the denominator is a DR estimator of ATT where Z is taken as the

treatment and the actual treatment status, W , is the outcome.

4 Inference

To perform valid inference on τLATE and τLATT , such as obtaining confidence intervals, we need

to obtain standard errors for τ̂DRLATE and τ̂DRLATT that account for the sampling error in all of

the estimators and also the sample averages in (25) and (27). One possibility is to use a resampling

scheme. The most convenient is the nonparametric bootstrap, which resamples all variables (and so

accounts for sampling error in the estimators and in the averages). Given a bootstrapped standard

error we can easily obtain asymptotically valid confidence intervals for τLATE and τLATT .

Because bootstrapping is not always desirable, we summarize a method of obtaining a valid

standard error that stacks the first-order conditions for all estimation problems and then obtains a

proper standard error from the resulting generalized method of moments framework. We explicitly

consider how to do this for τ̂DRLATE .

To allow one to choose the treatment binary response models and the conditional mean models

in a way that does not (theoretically) lead to DR estimation, letm0(X,α0, β0) andm1(X,α1, β1) be

the parametric models for µ0(X) and µ1(X), respectively, and let p0(X,ω0, δ0) and p1(X,ω1, δ1)

be the parametric models for ρ0(X) and ρ1(X), respectively. G(X, γ) is the parametric model for

P (Z = 1|X). Let τY |Z and τW |Z be the numerator and denominator of the LATE, respectively, that

is,

τY |Z = θ1 − θ0,

τW |Z = π1 − π0.

Let φ = (α0, β0, α1, β1, ω0, δ0, ω1, δ1, γ, τY |Z , τW |Z) and S = (Y,X,W,Z). The estimators can be
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defined as a solution for the following sample moment equation:

N∑
i=1

ψ(Si, φ̂) = 0. (28)

By standard results for estimators that solve a first-order condition, it follows that:

√
N(φ̂− φ)

a∼ Normal
(
0, A−1V A−1

)
, (29)

where

A ≡ E
[
∂ψ(Si, φ)

∂φ′

]
,

V ≡ V[ψ(Si, φ)] = E[ψ(Si, φ)ψ(Si, φ)′].

Using the moment functions related to each parameter, the moment function ψ(Si, φ̂) in equation

(28) can be written explicitly in the following way:

ψ(Si, φ) =



ψ1(Si, φ)

ψ2(Si, φ)

ψ3(Si, φ)

ψ4(Si, φ)

ψ5(Si, φ)

ψ6(Si, φ)

ψ7(Si, φ)



=



Zi

G(Xi,γ)

∂qy1 (Yi,Xi;α1,β1)

∂(α1,β1)

1−Zi

1−G(Xi,γ)

∂qy0 (Yi,Xi;α0,β0)

∂(α0,β0)

Zi

G(Xi,γ)

∂qw1 (Wi,Xi;ω1,δ1)

∂(ω1,δ1)

1−Zi

1−G(Xi,γ)

∂qw0 (Wi,Xi;ω0,δ0)

∂(ω0,δ0)

Zi−G(Xi,γ)
G(Xi,γ)(1−G(Xi,γ))

∂G(Xi,γ)
∂γ

m1(Xi, α1, β1)−m0(Xi, α0, β0)− τY |Z

p1(Xi, ω1, δ1)− p0(Xi, ω0, δ0)− τW |Z



,

where qyz (·) and qwz (·) are the objective functions for the estimation problems involving Y and W ,

respectively. The moment condition ψ1(Si, φ) corresponds to the FOCs given in equations (19)

and (20). Similarly, ψ2(Si, φ) is the FOC for the estimation of (α0, β0), and so on. The moment

conditions ψ6(Si, φ) and ψ7(Si, φ) account for the sampling variation in Xi in obtaining τ̂Y |Z and

τ̂W |Z .

The asymptotic distribution of any parametric LATE estimator that uses consistent estimators

of τY |Z and τW |Z can be derived for a known joint asymptotic distribution of these estimators τ̂Y |Z
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and τ̂W |Z , which satisfy:

√
N


 τ̂Y |Z
τ̂W |Z

−
τY |Z
τW |Z


 d→ Normal(0,Ω),

where Ω is the 2×2 variance-covariance matrix corresponding to the lower right block ofA−1V A−1.

Given τ̂LATE = τ̂Y |Z/τ̂W |Z , we can apply the delta method to obtain

AVAR (τ̂DRLATE) =

(
1

τ 2W |Z

)
AVAR

(
τ̂Y |Z

)
+

(
τY |Z

(τW |Z)2

)2

AVAR
(
τ̂Y |Z

)
−
(

2τY |Z
(τW |Z)3

)
ACOV

(
τ̂Y |Z , τ̂W |Z

)
. (30)

The three asymptotic variance terms are available from Ω̂/N , and the other terms are easily esti-

mated by plugging in τ̂Y |Z and τ̂W |Z .

5 A Test Comparing LATT and ATT Estimators

In textbook treatment of instrumental variables, where the treatment effect is taken to be constant,

it is fairly common to construct a Hausman (1978) test for comparing the IV estimator with the

OLS estimator of the coefficients on the endogenous explanatory variable, W . The idea is that,

with good controls in X , maybe W is unconfounded conditional on X , and the instrumental vari-

ables are not needed. In practice, with cross-sectional data one uses a heteroskedasticity-robust

version of the Hausman test that is easily implemented using a control function regression; see,

for example, Wooldridge (2010, Section 6.3.1). In the traditional setting, efficiency considerations

are the primary reason for preferring OLS if the Hausman test does not reject the null that W is

unconfounded: the OLS estimator is typically much more precise than the IV estimator.

Efficiency remains a valid consideration when treatment effects are heterogeneous, as in the

current setting, but the usual Hausman test is no longer valid because OLS and IV estimands con-

stitute different weighted averages of heterogeneous treatment effects even under the null. Instead,

if W is unconfounded conditional on X then, with sufficient overlap, one can identify the aver-
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age treatment effect on the treated (ATT) without requiring an instrumental variable. As shown

by DHL (2014), under one-sided noncompliance, LATT is the same as ATT. Therefore, it makes

sense to use doubly robust estimators of the ATT (DR ATT) that do not use an instrument and

compare that with the DR LATT estimates.

The ATT parameter is

τATT = E [Y (1)− Y (0) | W = 1] . (31)

Following Słoczyński and Wooldridge (2018), we use DR estimators of τATT that are natural given

the form of the DR LATT estimators in Section 3. We no longer need an instrument propensity

score. Instead, let F (x, γ) be a model of the treatment propensity score, P (W = 1|X = x). Given

a random sample of size N , let γ̂ be the (quasi-) MLE based on the Bernoulli log likelihood. As

before, a typical choice of F (x, γ) is a flexible logistic function.

Under the assumption that W is independent of Y (0) conditional on X and the overlap as-

sumption

P (W = 1|X = x) < 1 for almost all x ∈ X , (32)

we can obtain DR estimators of ATT using quasi-MLE in the LEF with a canonical link function.

The conditional mean we need to estimate is E [Y (0)|X = x], and we again take the model to

have the index form,m(α0+xβ0) (reusing earlier notation). As before, we can choosem(α0+xβ0)

to reflect the nature of the outcome variable Y (0). To stay within the DR class of estimators

using IPWRA, m(·) will be the identity, logistic, or exponential function in the vast majority of

applications.

For consistent estimation of τATT we can get by with the conditional mean version of uncon-

foundedness of W conditional on X ,

E [Y (0)|W,X] = E [Y (0) |X] .
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Under this assumption, if the mean is correctly specified then α0 and β0 are identified by

E (Y |W = 0, X) = E [Y (0)|X] = m(α0 +Xβ0).

Letting q (y,m) be the quasi-log likelihood function, α̂0 and β̂0 solve the weighted QMLE problem

max
a0,b0

N∑
i=1

F (Xiγ̂)

1− F (Xiγ̂)
(1−Wi) q (Yi,m(a0 +Xib0)) ,

where the estimation is done on the control sample and the weighting ensures the DR property; see

Słoczyński and Wooldridge (2018). Given the estimates, the DR estimator of τATT is

τ̂DRATT = Ȳ1 −N−11

N∑
i=1

Wi ·m(α̂0 +Xiβ̂0), (33)

where Ȳ1 is the average outcome over the treated units and N1 is now the number of treated (not

eligible) units. The estimator in (33) has a simple interpretation as an imputation estimator, as the

second term is a DR estimator of E [Y (0)|W = 1] obtained by first imputing E [Yi (0) |Wi = 1, Xi]

using the mean function estimated from the Wi = 0 units. This DR estimator is pre-programmed

in popular statistics and econometrics packages.

Given τ̂DRLATT from Section 3 and τ̂DRATT in (33), we can test the null hypothesis that treat-

ment is unconfounded given X , provided the instrument Z is such that one-sided noncompliance

holds so that τLATT = τATT . A formal comparison is based on the statistic

τ̂DRLATT − τ̂DRATT
se (τ̂DRLATT − τ̂DRATT )

. (34)

Under the null hypothesis, we cannot say that τ̂DRATT is the efficient estimator in a suitable class

that includes τ̂DRLATT , and so the standard error se (τ̂DRLATT − τ̂DRATT ) does not simplify. Nev-

ertheless, bootstrapping is computationally feasible, or one can extend the calculations in Section

4 to obtain an analytical standard error. Even without one-sided noncompliance, a similar test

can also be constructed to assess treatment effect heterogeneity by comparing DR LATE and DR

LATT, or IV and DR LATE, or IV and DR LATT estimates.
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6 Empirical Applications

In this section we reanalyze the data in Abadie (2003) and Taubman et al. (2014) to illustrate our

new doubly robust estimators.

6.1 The Effects of 401(k) Retirement Plans

The 401(k) retirement plans were introduced in the US to increase saving for retirement by allow-

ing tax advantages for the contributions to the retirement account. The policy-relevant empirical

question is whether the 401(k) program is effective for increasing savings or only crowds out other

personal saving. Since the individuals who participate in 401(k) plans are likely to have different

saving preferences than non-participating individuals, a simple comparison of savings of the two

groups is likely to provide an upward-biased estimate of the true effect. Different from other sav-

ing plans, 401(k) participation requires eligibility which, in turn, is determined by the employer.

Abadie (2003) argues, following Poterba, Venti and Wise (1994, 1995), that 401(k) eligibility can

be used as a conditionally independent instrument to estimate the effects of 401(k) participation on

savings. Several recent papers have revisited this empirical question and estimated the LATE using

the same instrument by different methods (e.g., Belloni et al., 2017; Chernozhukov et al., 2018;

Heiler, 2022; Sant’Anna, Song and Xu, 2022). Since our new doubly robust estimator relies on the

same identifying assumptions, we also choose to reanalyze the effect of 401(k) participation. We

use the same dataset as Abadie (2003). The data consists of a sample of 9,275 households from

the Survey of Income and Program Participation (SIPP) of 1991. As outcomes, we consider net fi-

nancial assets (in US dollars) and participation in an individual retirement account (IRA), which is

another popular tax-deferred saving plan in the US. The treatment is an indicator for participation

in a 401(k) plan. The set of control variables consists of family income, age, marital status, and

family size. Age enters the conditional mean functions quadratically.

Table 2 reports the estimates of the parameters of interest together with asymptotic standard

errors for both outcome variables. The first two rows display the coefficient estimates for 401(k)
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participation from OLS and IV estimation, respectively. OLS estimates of the participation co-

efficient for both regressions are positive and significant. However, as mentioned above, due to

unobserved preferences for saving, it is likely that these overestimate the true effect even after con-

ditioning on various individual characteristics. The usual IV estimates are indeed much smaller

than the OLS estimates, although they are still positive and significant. Moreover, the Hausman

test for the absence of endogeneity strongly rejects for both outcomes.

Next, we report the average treatment effect (ATE) of the participation in a 401(k) plan, as

estimated by IPWRA. The ATE is identified if there are no unmeasured confounders. If this is

not the case, similar to the OLS coefficient, we also expect the ATE estimates to be biased. The

ATE estimate of 401(k) participation on total net financial assets is smaller than the OLS estimate

and slightly larger than the IV estimate. The ATE on having an IRA account is also larger than

the corresponding IV estimate but closer to the OLS estimate. Following the estimated ATEs, the

LATE estimates are also reported. Specifically, we estimate the LATE using IPW, RA, AIPW, and

our proposed IPWRA estimator. The LATE is identified if the assumptions discussed in Section 2

are satisfied. IPW and AIPW estimates of the LATE on net financial assets are small in magnitude

and very imprecisely estimated. On the other hand, the RA and IPWRA estimates are closer to

the IV estimates and relatively very precise. The IPW estimate of the LATE on IRA participation

is insignificant while the estimates based on RA, IPWRA, and AIPW are significant and rather

similar in magnitude. Additionally, we estimate the ATT and LATT of participation in a 401(k)

plan. Since there is one-sided noncompliance, we can test the equality of ATT and LATT as

discussed in Section 5. For net financial assets, we cannot reject the equality of the two treatment

effects, ATT and LATT. This suggests that participation in a 401(k) plan might be unconfounded

conditional on the set of variables that we control for, following Abadie (2003). However, the ATT

and LATT for the probability of having an IRA are statistically different from each other based

on our proposed test, which underscores the importance of IV estimation under the maintained

assumptions of Section 2.

The results of this application are reassuring given that our proposed DR method provides
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estimates in a reasonable range with good precision. At the same time, the AIPW estimate of the

LATE on net financial assets – that is, the other doubly robust estimate – is very imprecise, which

is in line with previous criticism of AIPW estimation in other contexts (Kang and Schafer, 2007).

The RA estimate of the LATE has a smaller standard error but does not enjoy the double robustness

property. The differences between the LATE estimates for the binary outcome, IRA participation,

are minor, with the exception of the small and insignificant IPW estimate.

6.2 The Effects of Medicaid

In our second empirical application, we revisit Taubman et al. (2014)’s analysis of the data from

the Oregon Health Insurance Experiment. In 2008, the state of Oregon decided to offer about

10,000 spots in Medicaid using a lottery that randomly selected eligible households from a larger

pool of applicants. Finkelstein et al. (2012), Taubman et al. (2014), Denteh and Liebert (2022),

and Johnson, Cao and Kang (2022), among others, used Oregon’s lottery assignment as a binary

instrument to assess the effects of Medicaid on various outcomes related to health and healthcare

utilization. Here, following much of the previous work, we focus on emergency room (ER) visits

at the extensive and intensive margins. In other words, we use our proposed method to analyze the

effects of Medicaid on a binary outcome indicating any ER visits in the study period as well as on

a count outcome indicating the number of visits.

In what follows, we use Taubman et al. (2014)’s administrative data with over 24,000 observa-

tional units. The endogenous treatment variable is defined as “ever enrolled in Medicaid” during

the study period. Table 3 reports a number of estimates together with their associated standard

errors. OLS refers to the coefficient estimates for the endogenous treatment variable. ATE and

ATT refer to the IPWRA estimates of these parameters. IV refers to the coefficient estimates for

the endogenous treatment variable, which use the binary lottery instrument. Finally, LATE and

LATT are estimated using our proposed estimators. Following Taubman et al. (2014), all regres-

sions include indicators for different numbers of household members on the lottery list, which is

necessary for instrument validity, and past outcome data, which should improve the precision of
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the final estimates.

It turns out that the OLS, ATE, and ATT estimates (and their standard errors) are almost iden-

tical for the binary outcome and quite similar for the count outcome, although in the latter case

the OLS estimates are smaller than those of the ATE and ATT. In any case, the estimates show

a significant positive correlation between Medicaid and ER utilization both on the extensive and

intensive margins. Due to treatment endogeneity, however, these estimates cannot be interpreted

as causal effects. The last three columns of Table 3 take this endogeneity into account and rely on

the instrumental variable for the identification of causal effects. It turns out that these estimates are

much smaller than the OLS, ATE, and ATT estimates, especially in the case of the binary outcome,

where the estimates are now roughly half as large. Like in Taubman et al. (2014), and unlike in

an earlier analysis by Finkelstein et al. (2012) that relied on mail survey data, these estimates are

also significantly different from zero. Our analysis, however, also reveals an interesting dimension

of treatment effect heterogeneity: LATT, the effect on the treated compliers, appears to be larger

than the usual LATE. A formal comparison of the two objects yields a p-value of about 0.04 for

the binary outcome and 0.47 for the count outcome. The fact that the LATT may be larger than the

LATE is likely due to treatment effect heterogeneity across households of different sizes: effects

of Medicaid on ER utilization are more pronounced in larger households (cf. Denteh and Liebert,

2022), which are also more likely to be treated given the lottery design.

7 Simulations

In this section, we conduct a Monte Carlo study to assess the bias and precision of our DR LATE

estimator in comparison with other existing estimators. In particular, we focus on the effect of

certain types of misspecification on the bias and precision. To eliminate to some extent the arbi-

trariness in choosing the data-generating process, we generate our Monte Carlo samples to mimic

some statistical features of the 401(k) dataset we used in Section 6.1. We draw 1,000 samples

with N = 1,000 and the same number of samples with N = 4,000 observations. Each sample
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is constructed in the following steps. First, we draw two random variables from a bivariate nor-

mal distribution. The parameters of the bivariate normal distribution are set equal to the empirical

means and covariances of age and log income in the 401(k) data. The simulated log income is then

exponentiated to generate the income variable. As an additional covariate, we take the square of

the simulated age variable. Thus, our full set of covariates, X , includes three variables: income,

age, and age squared. The instrumental variable Z is generated according to

Z = 1l (Λ (γ0 +Xγx) > Uz) , (35)

where γ = (γ0, γx) corresponds to the estimated coefficient vector from a logit regression of 401(k)

eligibility on a constant, income, age, and age squared using the original data (see column (1) of

Table 6 in the Appendix). The random variable Uz is drawn from the standard uniform distribution

and Λ(·) is the logistic cdf. Then, we construct D(1) as follows:

D(1) = 1l (Λ (ω0 +Xδ0) > U1) , (36)

where the coefficients are from a logit regression using observations with Zi = 1 (column (2) of

Table 6 in the Appendix) in the original data and U1 is drawn from the standard uniform distribu-

tion. Finally, we generate two outcome variables. One mimics the continuous outcome variable,

net financial assets, and the other mimics the binary outcome variable, participation in IRA. The

continuous outcome Y (z) is generated using the following linear model:

Y (z) = αz +Xβz + εz for z = 0, 1. (37)

We use the coefficients from two separate regressions of the outcome variable on the set of covari-

ates for Zi = 1 and Zi = 0 subsamples in the original data (columns (3) and (4) of Table 6 in the

Appendix). The error terms εz are drawn from a normal distribution with mean zero and variance

σ2
z , where σ2

z is the mean squared residual from the regression for Zi = z. The binary outcome
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variable is constructed similarly to the potential treatment variable using logit link:

Y (z) = 1l (Λ (αz +Xβ0) > Uy) for z = 0, 1, (38)

with coefficients from two separate logistic regressions of the binary indicator of IRA participation

on the set of covariates (columns (5) and (6) of Table 6 in the Appendix) and Uy drawn from the

standard uniform distribution. For the simulated data, the “true” values of the LATE are $8,816.5

for net financial assets and 0.036 for the probability of IRA participation.

For each simulated sample, in addition to our proposed method, we estimate the LATE using

IV, RA, IPW, and AIPW. The RA estimator of the LATE is constructed similarly to our proposed

estimator with the crucial difference that the objective functions are not weighted. The IPW and

AIPW estimators of the LATE are the ratios of two IPW and AIPW estimators of ATEs of Z on Y

and W , respectively.

In general, the LATE estimators based on the identification result in (5) require estimation of

four conditional means. However, as mentioned earlier, since in the original 401(k) data and in our

simulation design Z = 0 implies D = 0, the second term in the denominator of (5) is zero and we

do not need to estimate (9). Thus, for the RA approach, we estimate the two conditional means in

the numerator of (5) by two separate linear (logistic) regressions of continuous (binary) Y (z) using

observations from subsamples with Zi = 1 and Zi = 0, respectively. Similarly, the first conditional

mean in the denominator is estimated by a logistic regression for the subsample with Zi = 1. On

the other hand, the IPW approach requires estimating a binary response model for the instrument

propensity score defined in (13). Thus, we estimate the instrument propensity score by a logistic

regression. Our proposed IPWRA method requires the same conditional mean specifications as the

RA approach and additionally the specification of (13) to construct the weights. For IPWRA, we

estimate the conditional means in the numerator of (5) by two separate weighted linear (logistic)

regressions of continuous (binary) Y (z) with the weight equal to the inverse of the estimated

probability of being eligible or not, using the subsample with Zi = 1 or Zi = 0, respectively.

Finally, AIPW requires the same set of model specifications as our proposed method, although the
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regressions are not weighted.

In our Monte Carlo study, we consider estimators (i) when the required models are all cor-

rectly specified, (ii) when models for (7)–(10) are misspecified, and (iii) when the model for (13)

is misspecified. Correct specifications for these estimators mean that we use the correct set of co-

variates for all the regressions, namely simulated income, age, and age squared. Misspecification

of a certain model means that the set of regressors does not include age squared.

Tables 4 and 5 present the biases, root mean squared errors of the LATE estimators, and the

empirical coverage rates for nominal 95% confidence intervals under the different model specifi-

cations for the dependent variables net financial assets and IRA participation, respectively.

Table 4 suggests that, when the relevant models are correctly specified, that is, all the confound-

ing factors are controlled for, the bias is highest for the linear IV estimates. This coincides with

the fact that the IV estimand is not equal to the LATE in the case of a conditionally independent

instrument (e.g., Słoczyński, 2021; Blandhol et al., 2022). The RA estimator has the smallest bias

and RMSE when all the models are correctly specified. For the smaller sample size, our proposed

estimator has the second smallest bias and RMSE. For the larger sample size, the bias estimates

are very close for IPWRA and AIPW but the precision of our estimator is better than that of IPW

and AIPW.

The second block of Table 4 presents the results for the first type of misspecification. The IV

estimator becomes heavily biased when we do not control for age squared. The effect of omit-

ting this variable when estimating the conditional mean functions in (7)–(10) is similar for the RA

estimator, which is also very biased. The IPW estimator is not affected by this type of misspeci-

fication since it only requires the correct specification of the model for the instrument propensity

score. The doubly robust estimators, IPWRA and AIPW, are not seriously affected by this type

of misspecification either, as predicted by theory. Our proposed method has the smallest bias and

RMSE for sample size N = 1,000, and a slightly larger bias – but still the smallest RMSE – for

sample size N = 4,000.

Finally, we investigate the bias and RMSE for the case where the instrument propensity score
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in (13) is estimated without the squared term. As expected, the only estimator that is severely

affected by this misspecification is IPW. The doubly robust methods continue to have reasonably

small biases. IPWRA has the smaller bias and RMSE for N = 1,000 and the smaller RMSE for

N = 4,000, as in other cases. The results demonstrate that the double robustness of our proposed

method is achieved without significant sacrifices in terms of precision. Coverage rates are close to

the nominal coverage rate for both DR estimators in all cases. For IV, RA, and IPW, coverage rates

are sometimes substantially lower than 95% when the estimators are otherwise biased.

Table 5 revisits the same measures of estimator performance as Table 4 while focusing on the

binary outcome. Unlike in Table 4, the differences between the estimators that we consider are

very minor, even in cases when one of the underlying models is misspecified. This is likely due

to the fact that, as shown in Table 6 in the Appendix, age squared is insignificant in the logit

regressions of the binary outcome, IRA participation. It follows that omitting this variable should

have a smaller effect on estimator performance, relative to Table 4.

In any case, even though the differences in estimator performance, as reported in Table 5, are

very minor, it is also clear that the performance of RA, IPWRA, and AIPW is better overall than

that of IV and IPW. This is again reassuring, given our general preference for IPWRA estimation.

8 Conclusion

In this paper we develop a framework for doubly robust (DR) estimation of local average treatment

effects, which uses quasi-likelihood methods weighted by the inverse of the instrument propensity

score. These estimators are commonly referred to as inverse probability weighted regression ad-

justment (IPWRA). We argue that our estimators have appealing small sample properties relative

to competing methods, such as augmented inverse probability weighting (AIPW). We discuss in-

ference for IPWRA estimators and propose a DR version of a Hausman test previously suggested

by DHL (2014), which compares two estimates of the average treatment effect on the treated (ATT)

in settings with one-sided noncompliance.
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We discuss two empirical applications. First, we revisit Abadie (2003)’s study of the effects

of 401(k) retirement plans, and demonstrate that some of the conclusions are different dependent

on whether one uses AIPW or IPWRA, which are the two major classes of DR estimators. While

we obviously do not know which estimate is closer to the true effect of interest, we note that our

preferred estimate is much more precise. Second, we reanalyze Taubman et al. (2014)’s sample

from the Oregon Health Insurance Experiment. Focusing on the effect of Medicaid on emergency

room visits, we provide evidence that the local average treatment effect on the treated (LATT) is

larger than the usual local average treatment effect (LATE), at least along the extensive margin.

We conclude the paper with a Monte Carlo study that demonstrates the very good finite sample

properties of our proposed IPWRA estimator.
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Appendix

Table 1: Combinations of QLLFs and Canonical Link Functions

Support Restrictions Mean Function Quasi-LLF
None Linear Gaussian

Y (w) ∈ [0, 1] (binary, fractional) Logistic Bernoulli
Y (w) ∈ [0, B] (count, corner) Logistic Binomial

Y (w) ≥ 0 (count, continuous, corner) Exponential Poisson

1



Table 2: Estimates of the Effects of 401(k) Participation

(A) (B)
Net financial assets IRA
Estimate Std. err. Estimate Std. err.

OLS 13,527 (1,810) 0.0569 (0.0103)
IV 9,419 (2,152) 0.0274 (0.0132)

Hausman test
H0: OLS = IV p = 0.0004 p = 0.0004

ATE ATE
IPWRA 10,767 (1,772) 0.0554 (0.0096)

LATE LATE
IPW 3,994 (4,891) 0.0165 (0.0135)
RA 8,467 (1,991) 0.0338 (0.0128)

IPWRA 8,046 (2,587) 0.0361 (0.0128)
AIPW 5,416 (4,176) 0.0404 (0.0131)

ATT ATT
IPWRA 12,673 (3,329) 0.0697 (0.0110)

LATT LATT
IPWRA 10,918 (3,709) 0.0413 (0.0143)

Hausman test
H0: ATT = LATT p = 0.457 p = 0.001

Notes: The data are Abadie (2003)’s subsample of the Survey of Income and Pro-
gram Participation (SIPP) of 1991. The sample size is 9,275. The outcomes are
net financial assets (Panel A) and a binary indicator for participation in IRAs (Panel
B). The treatment is an indicator for 401(k) participation. The instrument is an in-
dicator for 401(k) eligibility. The set of covariates consists of family income, age,
age squared, marital status, and family size. “OLS” and “IV” are the estimates of
the coefficient on the endogenous treatment with covariates (and instrument) listed
above. The remaining estimators are defined in the main text. Standard errors are in
parentheses. For OLS and IV, we report robust standard errors. For the remaining
estimators, our standard errors follow from the GMM framework in Section 4.
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Table 3: Estimates of the Effects of Medicaid

OLS ATE ATT IV LATE LATT
Outcome: ER visits (any)

Estimate 0.1355 0.1348 0.1360 0.0697 0.0696 0.0812
Std. err. (0.0068) (0.0069) (0.0069) (0.0239) (0.0238) (0.0246)

Outcome: ER visits (#)
Estimate 0.4611 0.5320 0.5622 0.3880 0.4508 0.4701
Std. err. (0.0340) (0.0346) (0.0385) (0.1070) (0.1254) (0.1141)

Notes: The data are Taubman et al. (2014)’s sample from the Oregon Health Insurance Exper-
iment. The sample sizes are 24,646 (top panel) and 24,615 (bottom panel). The outcomes are
an indicator for any ER visits (top panel) and the (censored) number of ER visits (bottom panel)
in the study period. The treatment is an indicator for Medicaid coverage. The instrument is an
indicator for whether a given household was selected by the Medicaid lottery. The set of covari-
ates consists of indicators for different numbers of household members on the lottery list (both
panels), an indicator for any ER visits before the randomization (top panel), and the number of
ER visits before the randomization (bottom panel). “OLS” and “IV” are the estimates of the coef-
ficient on the endogenous treatment with covariates (and instrument) listed above. The remaining
estimators are defined in the main text. Standard errors, clustered on the household identifier,
are in parentheses. For OLS and IV, we report cluster-robust standard errors. For the remaining
estimators, our standard errors follow from the GMM framework in Section 4.
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Table 4: Simulation Results for the Continuous Outcome Variable

All Correct (7)–(10) misspecified (13) misspecified
Bias RMSE Cov. Bias RMSE Cov. Bias RMSE Cov.

N=1,000
IV 271.43 6,163.19 95.3 –1,544.41 6,395.32 94.5 271.43 6,163.19 95.3
RA 127.69 6,169.94 95.5 –1,724.20 6,445.16 94.2 127.69 6,169.94 95.5

IPW 162.49 6,958.60 95.8 162.49 6,958.60 95.8 –1,549.48 7,033.47 94.1
IPWRA 159.24 6,300.47 95.4 103.68 6,306.11 95.3 140.70 6,258.49 95.3
AIPW 195.36 6,418.33 95.6 170.13 6,439.62 95.4 170.75 6,304.15 95.4

N=4,000
IV 114.57 3,097.13 94.8 –1,734.22 3,565.59 89.7 114.57 3,097.13 94.8
RA –45.16 3,119.43 94.4 –1,907.94 3,662.62 89.2 –45.16 3,119.43 94.4

IPW –60.69 3,381.29 94.4 –60.69 3,381.29 94.4 –1738.43 3,782.54 91.2
IPWRA –74.71 3,155.63 94.8 –102.96 3,161.44 94.8 –69.52 3,152.04 94.6
AIPW –74.41 3,174.61 94.8 –95.49 3,183.18 94.8 –67.71 3,160.11 94.7

Notes: The details of the simulation design are provided in Section 7. Results are based on 1,000 replications. “RMSE” is
the root mean squared error of an estimator. “Cov.” is the coverage rate for a nominal 95% confidence interval. “IV” is the IV
estimate of the coefficient on the endogenous treatment, controlling for X . The remaining estimators are defined in the main
text. To calculate the coverage rate, we use robust standard errors (IV) or standard errors that follow from the GMM framework
in Section 4 (remaining estimators).

Table 5: Simulation Results for the Binary Outcome Variable

All Correct (7)–(10) misspecified (13) misspecified
Bias RMSE Cov. Bias RMSE Cov. Bias RMSE Cov.

N=1,000
IV –0.0005 0.0421 93.5 –0.0048 0.0423 93.6 –0.0005 0.0421 93.5
RA –0.0031 0.0408 94.0 –0.0030 0.0407 93.3 –0.0031 0.0408 94.0

IPW –0.0031 0.0441 94.0 –0.0072 0.0438 93.4 –0.0072 0.0438 93.4
IPWRA –0.0033 0.0410 93.5 –0.0034 0.0411 93.9 –0.0033 0.0409 93.7
AIPW –0.0033 0.0411 93.6 –0.0033 0.0411 93.8 –0.0032 0.0409 93.8

N=4,000
IV 0.0028 0.0199 95.0 –0.0017 0.0198 95.6 0.0028 0.0199 95.0
RA –0.0001 0.0191 95.1 0.0000 0.0192 95.5 –0.0001 0.0191 95.1

IPW –0.0001 0.0199 95.6 –0.0042 0.0203 95.1 –0.0042 0.0203 95.1
IPWRA –0.0002 0.0192 95.7 –0.0002 0.0192 95.6 –0.0002 0.0192 95.2
AIPW –0.0002 0.0192 95.6 –0.0002 0.0191 95.6 –0.0002 0.0192 95.3

Notes: The details of the simulation design are provided in Section 7. Results are based on 1,000 replications. “RMSE”
is the root mean squared error of an estimator. “Cov.” is the coverage rate for a nominal 95% confidence interval. “IV” is
the IV estimate of the coefficient on the endogenous treatment, controlling for X . The remaining estimators are defined
in the main text. To calculate the coverage rate, we use robust standard errors (IV) or standard errors that follow from
the GMM framework in Section 4 (remaining estimators).
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Table 6: Coefficient Values for the Data-Generating Process in Section 7

401(k) 401(k) Net total IRA
eligibility participation financial assets participation

(1) (2) (3) (4) (5) (6)
Household income 0.0000232 0.0000154 1.134 0.762 0.0000318 0.0000342

(23.00) (9.18) (25.67) (23.92) (18.87) (20.87)
Age (minus 25) 0.0581 –0.0285 –106.6 –557.4 0.0420 0.0665

(7.25) (–2.03) (–0.25) (–2.42) (2.63) (4.99)
Age (minus 25) squared –0.00158 0.000699 41.36 38.28 0.000211 –0.000267

(–7.45) (1.88) (3.68) (6.32) (0.52) (–0.82)
Constant –1.727 0.387 –36377.2 –19452.5 –3.148 –3.653

(–24.55) (3.08) (–9.68) (–10.03) (–20.02) (–28.04)

Observations 9,275 3,637 3,637 5,638 3,637 5,638
Sample Full Z = 1 Z = 1 Z = 0 Z = 1 Z = 0
Method Logit Logit OLS OLS Logit Logit

Notes: The table presents coefficient estimates obtained using Abadie (2003)’s subsample of the Survey of Income and Program
Participation (SIPP) of 1991, as previously analyzed in Table 2. The instrument, Z, is an indicator for 401(k) eligibility. The estimates
in column (1) are used as coefficient values for equation (35). The estimates in column (2) are used as coefficient values for equation
(36). The estimates in columns (3) and (4) are used as coefficient values for equation (37). The estimates in columns (5) and (6) are
used as coefficient values for equation (38). t statistics are in parentheses.
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