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Abstract

This paper characterizes the short and long-run Cournot equilibrium with heterogeneous
firms and stochastic technological change. We consider that firms have different technologies
with heterogeneous fixed and variable costs and various degrees of market power in the prod-
uct market. In a framework with homogeneous firms, Mankiw and Whinston (1986) showed
that the long-run Cournot equilibrium may be inefficient due to too many entries. We extend
their result to the case of heterogeneous firms and show that higher industrial concentration
of production is welfare improving. Empirically, using data for manufacturing firms in France,
we found a wide degree of heterogeneity in technologies, and we are able to identify the tech-
nology parameters which reproduce the observed distribution of firms size. We characterize
the type of fixed and variable cost functions which allow to generate the observed level of cost
and profit. We investigate empirically whether profit maximization is compatible with welfare
maximisation, and find substantial levels of inefficiency. Imperfect competition, however, con-
tributes modestly to the inefficiency, which is mainly explained by firms’ use of heterogeneous
and often inefficient technologies.
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1 Introduction
One of the unfortunate consequence of most firm level cost function specifications is their difficulty
to yield plausible (optimal) output levels. In this context, empirical studies are often not suited
to address issues related to the size distribution of firms and their determinants, and produce
biased results and inference. The reasons beyond these shortcomings are related to their restric-
tive functional forms and the difficulty of considering unobserved heterogeneity adequately. With
cost functions, unobserved heterogeneity has multiple dimensions. It cannot be simply additive:
Heterogeneity in the fixed costs vanish in the derivation of the profit maximizing condition and is
useless to generate heterogeneous firm size. Conversely, heterogeneity in the variable cost function
is unable to explain why so many small firms make positive profits while others do not. One
objective of this paper is to propose a setup allowing for joint heterogeneities in fixed and vari-
able costs, and enabling to reproduce the observed distribution of firms sizes. Heterogeneous cost
functions yield firm and time specific break even points and minimum efficient scale. This in turn
characterizes which technologies allow generating positive profits, and identifies those firms which
are likely to exit the market as well as potential entrants and survivors. We adopt the Cournot
model, with heterogeneous firms interacting strategically and choosing their optimal output level
given aggregate output, and further cost and demand parameters.

While the literature on the existence and unicity of Cournot equilibrium often considers in-
dustries with identical firms and symmetric equilibrium, there are some interesting exceptions.
Novshek (1985) showed that a short-run Cournot equilibrium exists under weak conditions on
firms’ cost function. Unicity of the short-run Cournot equilibrium with heterogeneous firms was
derived by Gaudet and Salant (1991). In the long-run, when firms’ entry and exit occurs, Ace-
moglu and Jensen (2013) and Okumura (2015) proved that existence of the Cournot equilibrium
still holds (but is no longer unique in general). We contribute to this literature and amend the
homogeneous firm Cournot model and investigate differences in technologies and their interplay
with firm size. While our purpose is mainly empirical, we also describe the theoretical implications
of heterogeneous technologies at the firm level, both on the short- and the long-run Cournot equi-
librium. Interestingly, we show that there is an ordered relationship between firm size (in terms of
output) and their type of heterogeneous technology.

It is well known that the short-run Cournot equilibrium is generally not welfare maximizing.
Mankiw and Whinston (1986) have shown that even in the long-run, firms’ entry and exit do not
necessarily contribute to reduce this inefficiency. We extend their result to the case of heteroge-
neous firms and empirically investigate whether redistributing output over firms allows to increase
industry output, reduce total cost and increase efficiency. Especially for France, the stylized facts
document that there are many very small firms but a lack of medium sized and large firms. In
manufacturing industries, Table ?? illustrates that in comparison to Germany, there is roughly the
same number of firms with 0 to 9 employees, but only 54% of the number of small firms (with
10 to 49 employees). This rate decreases to about 35% for larger firms with 50 employees and
more. Garicano et al. (2016) attribute the lack of medium sized firms in France to laws specific to
firms with 50 employees and more, and which prevent firms’ to grow above this threshold. This
explanation is not sufficient to describe the lack a medium sized and large firms in France and we
investigate whether the low number of firms is related to the nature of the market structure and
competition in the manufacturing industries. Starting from a long-run Cournot equilibrium, we
study whether total industry output is efficiently allocated over firms, and perform simulations to
evaluate the welfare loss due to markups, output misallocation and technological inefficiencies.

We use fiscal data for firms which are available for France for the years 1994 to 2016 (FICUS
and FARE data). The data comprises the universe of active firms, but we consider only those
belonging to the manufacturing industry. We consider 184 industries at the 4-digit aggregation
level, within which firms are assumed to produce an homogeneous output and to compete à la
Cournot. Especially for France, the stylized facts document that there are many very small firms
but a lack of medium sized and few but influential large firms. In a typical 4-digit industry, 0.5 %
of all firms hire about 39 % of the employees working in this industry, and produce 56 % of total
industry output. The concentration ratio of the 3 and 10 biggest firms are respectively C3 ≃ 53%
and C10 ≃ 70%. These figures document that there are few actors which must have strong market
power, and a large competitive fringe of smaller firms. This seems compatible with the theoretical
Cournot model adopted here, allowing for technological differences between firms.

Empirically we have to deal with the incidental parameter problem occurring when taking into
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account heterogeneity over firms and across time in fixed and variable costs: new observations
carry with them new heterogeneity terms and do not contribute identifying the model in an obvi-
ous way. Moreover, when heterogeneity is unobserved but correlated with decision variables (the
optimal level of output) least squares estimates are inconsistent. We solve this problem by param-
eterizing the unobserved heterogeneity, and estimating both the inverse output demand function
addressed to an industry, and the firm level output supply, which depends both upon observed
market characteristics and unobserved technological parameters. This approach allows to reveal
the distribution of unobserved heterogeneity in both the fixed and variable cost. We contribute to
the existing empirical literature by introducing explicitly joint heterogeneity in the fixed cost and
in the variable cost of production, and studying the interplay between both types of heterogeneity.
The existing literature mainly focuses on univariate heterogeneity, either in the variable cost func-
tion (Davis, 2006) or in the fixed cost function (Berry, 1992) or in total cost (Esponda and Pouzo,
2019). While these specifications all entail unidimensional heterogeneity in the total cost function,
we allow for separate heterogeneity in both the fixed and the variable cost functions. While the
theoretical framework for the occurrence of joint heterogeneity and their interdependence is stud-
ied by Chen and Koebel (2017), we are not aware of any empirical contributions at the firm level.
Another part of the literature tackling the issue of productivity and technological change bases its
identification strategy on the production function (Ericson and Pakes, 1995). Adding a firm and
time specific effect to the production function, however, imposes strong restrictions on fixed and
variable costs. Our cost function based approach allows more flexibility and is compatible with
more general specifications of technological heterogeneity.

Section 2 presents the heterogeneous firm setup and describes the short-run Cournot equilib-
rium. Section 3 characterizes the long-run equilibrium. The theoretical results pertaining to the
inefficiency of the Cournot equilibrium are discussed in Section 4, which also describes the welfare
maximizing allocation of production over firms. The data and descriptive statistics are presented
Section 5. Section 6 and 7 discuss the empirical model along with the estimation strategy and
presents the results, and Section 9 concludes.

2 Short-run Cournot equilibrium with heterogeneous quadratic
cost functions

Within each industry firms are competing à la Cournot. In the short-run, there are N active firms
facing the same inverse demand function

p = P (yn +

N∑
j ̸=n

yj), (1)

where p denotes the output price, yn the production of firm n and Y−n ≡
∑N

j ̸=n yj the total output
of firms’ n competitors. We do not introduce subscripts for the industry yet, but it is important
to realize that the inverse demand is specific to industry i.

We assume that the total cost function of each firm is the sum of a firm specific fixed cost and
a variable cost function:

cn(wn, yn) = un(wn) + vn(wn, yn), (2)

where the fixed cost of production un depends upon input prices wn but also upon technological
choices and constraints which are specific to firm n. The variable cost function vn satisfies, by
definition, the condition vn(wn, 0) = 0.

Each firm is profit maximizing and chooses its output level according to the first order optimality
condition:

P (Y ) + P ′(Y )yn =
∂cn
∂yn

(wn, yn) (3)

where Y denotes the aggregate output level of the industry.
Note that if the fixed cost function un is heterogeneous but the variable cost function vn is

the same over all firms, then (3) implies identical output levels over all firms with the same in-
put prices. Such a model would attribute differences in firm sizes to difference in input prices.
Here, heterogeneity in variable costs is helpful to yield optimal individual production levels able
to approximate the empirical distribution of firm sizes. The second main advantage of our hetero-
geneous firm framework, is that it can explain why bigger firms have increasing returns to scale
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while smaller firms have decreasing returns. In the homogeneous case with U-shaped average cost
functions, returns to scale are increasing for production levels smaller than the efficient scale of
production and decreasing for larger production levels. This is not necessarily the case here.

We assume the following regularity conditions (that will be empirically investigated later on):

Assumption 1. The inverse demand function P is nonnegative, continuous, differentiable and
decreasing in Y .

Assumption 2. The cost function is continuous in wn and yn, nonnegative, differentiable and
increasing in wn and yn.

Assumption 3. There exist firm-level and aggregate production levels y and Y such that

(i) the marginal revenue is lower than the marginal cost:

P (Y ) + P ′ (Y ) y < ∂cn/∂yn (wn, y) , (4)

for any y > y and Y > Y , and any firm n = 1, ..., N ;

(ii) the cost function is not too concave:

P ′ (Y ) < ∂2cn/∂y
2
n (wn, y) , (5)

for any y < y and Y < Y , and any firm n = 1, ..., N .

Assumptions 1 and 2 are quite common in microeconomics. Assumption 3(i), implies that
there is an upper threshold y to individual production (because marginal cost is always higher
than marginal revenue for y > y). A3(ii) forbids the occurrence of highly nonconvex cost func-
tions. Condition A3(ii) is common in the literature on Cournot oligopoly, see Amir and Lambson
(2000) for instance. Cournot equilibrium exists under relatively mild conditions, we follow Novshek
(1985) who showed existence provided that:

Assumption 4. The marginal revenue function satisfies:

P
′
(Y ) + ynP

′′
(Y ) ≤ 0, (6)

for any value of yn ≤ Y < Ny.

A1 and A4 imply that the marginal revenue function is decreasing. A3(ii) and A4 ensure that
the profit function is concave, without requiring convexity of the cost function in y. A4 together
with the second order condition for profit maximization imply that firms’ reaction functions are
downward sloping. Gaudet and Salant (1991) have shown that A1-A4 imply the uniqueness of
Cournot equilibrium. Amir (1996, Corollary 2.2) used another condition implying the existence of
Cournot equilibrium which is not equivalent to A4. A4, however, was found to be more useful for
deriving some results below.

We follow Novshek (1984) and consider the backward reaction functions as the solution in
yn ≥ 0 to the system of N equations (3), for given values of aggregate output Y and input prices
wn:

ybn(wn, Y ). (7)

Assumptions 3(ii) and 4 guarantee that the backward reaction functions are nonincreasing in Y .
Given existence, we then characterize Cournot’s equilibrium as the solution to the equation

Y =

N∑
n=1

ybn(wn, Y ), (8)

which guarantees that all firms projections about aggregate output are fulfilled at equilibrium.
We denote the equilibrium by Y N , and yNn = ybn(wn, Y

N ) and note that these functions depend
upon the characteristics of all firms active in the industry.1 We have the following interesting

1The superscript N denotes both Nash equilibrium, and the fact that the number of firms is kept constant (no
entry, no exit) here.
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implications:

Proposition 1. Under A1-A4, at the Cournot equilibrium with fixed number of firms,
(i) The elasticity of inverse demand ϵ(P, Y ) satisfies −N < ϵ(P, Y ) < 0
(ii) Firm’s n market share satisfies yNn /Y < −1/ϵ(P, Y )
(iii) The value of the marginal cost of production decreases with firm size
(iv) The price markup increases with firm size.
(v) For a subset of N ′ < N active firms, Y N ′

< Y N and yN
′

n > yNn .

Proposition 1 restates several claims that are well known to researchers working in the field of
Cournot equilibrium with heterogeneous firms, but often not to be found in textbooks considering
mainly homogeneous firms. It follows from Proposition 1, that if we order firms by size (say
from the smallest to the biggest), this implies that the same order carry over to the markup and
the reverse ordering applies to marginal cost. P1(v) corresponds to what Mankiw and Whinston
(1986) refers to as the business-stealing: new entries contribute to increase total output but reduce
individual production levels of incumbents. In the context of heterogeneous firms, this result is
derived by Acemoglu and Jensen (2013) and Okumura (2015, Lemma 1).

Equality (3) also implies an interesting relationship between firms’ profit rate, the inverse
demand elasticity and the rate of returns to scale:

pyNn − cn
cn

=
1

1 + ϵ (P ;Y ) yn/Y
ϵ (cn; yn)− 1. (9)

Ceteris paribus, the higher the rate of return to scale 1/ϵ (cn; yn), the lower the profit rate; the
higher the market share yn/Y , the higher the profit rate. Equation (9) also implies that for a firm
with positive profit there is a lower bound for its market share given by

yNn
Y N

≥ ϵ (cn; yn)− 1

ϵ (P ;Y )
.

Hence, firms with increasing returns to scale must have sufficient market share in order to have
positive profits.

We rewrite the cost function in order to highlight the two parameters γu
n and γv

n which deform
the conditional mean functions u and v that are common to all firms:

cn(wn, yn) = γu
nu(wn) + γv

nv(wn, yn), (10)
u(wn) = E[un(wn)|wn] (11)

v(wn, yn) = E[vn(wn, yn)|wn, yn] (12)

The definitions of u and v imply that E[γu] = E[γv] = 1. These heterogeneity parameter
can, however, be correlated with wn, yn (just as in linear fixed effects models for instance). While
actually any cost function (2) can be written this way, we now restrict firm heterogeneity to be
stochastic and exogenous:

Assumption 5.
(i) The parameters γu

n and γv
n are stochastic and their realisations are given to the firm.

(ii) Firms know their technology γn = (γu
n , γ

v
n) before producing and competing à la Cournot.

A5 ensures that the heterogeneity terms are not a function of further explanatory variables of
the cost function, that they are exogenous to the firm, in the sense that they do not (systematically)
change with wn, yn. This assumption can be justified by the fact that the choice of the technology is
made just before the firm first entered the market, and the current value of γu

n and γv
n are considered

as (conditionally) random technological shocks. Note that an increase in γu
n or γv

n corresponds
to a negative technological shock while a decrease in these parameters represents technological
progress. More restrictive versions of A5 are found in the literature, assuming either that γu

n = 0
(Jovanovic, 1982), V [γu

n ] = 0 (Hopenhayn, 1992), γv
n iid (Jovanovic, 1982), γv

n independent of γu
n

(Bresnahan and Reiss, 1991). We aim to stay general in following our purpose of estimating the
joint distribution of γ.

The variable cost heterogeneity parameter γv
n is related to the additive "total factor produc-

tivity" term ωn often considered in the context of production functions. When y = ωnf(x) where
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x denotes a vector of inputs, and the production function is linearly homogeneous in x (which
is equivalent to v being linearly homogeneous in y) then γv

n = 1/ exp(ωn). Production functions
compatible with the bi-dimensional heterogeneity like (10) in the cost function are described by
Chen and Koebel (2017).

Figure 1 represents five zones in which different types of firms can be locked in. In zone I, firms
exhibit higher than average variable costs and relative low fixed costs. These type of firms can
enter or exit the market without bearing high sunk cost. Zone II corresponds to a zone of general-
ized inefficiency: firms exhibit both higher fixed and variable costs. Firms located in zone III are
extremely efficient and able to produce with fixed and variable costs lower than average. Zone IV
comprises firms producing with lower than average variable costs and higher fixed costs. In zone
V, firms operate with an average technology and are similar to a representative firm characterized
by E[γu] = E[γv] = 1.

γu

γv

E[γu]

E[γv]

I II

III IV

V

Figure 1: Five technological zones

In each different zone depicted on Figure 1, firms are not only different with respect to their
technology, but we also expect to see difference in the levels of the endogenous variables.

Proposition 2. Under A1-A5, at the short-run Cournot equilibrium with fixed number of
firms,
(i) firm i individual production level decreases with γv

i ,
(ii) firm i production level increases with γv

j ,
(iii) the aggregate equilibrium level of production decreases with γv

i ,
(iv) individual and aggregate production levels are unaffected by a change in γu

i .
(v) firm i profit decreases with γv

i and γu
i ;

(vi) firm i profit increases with γv
j .

This result, proven (for completeness) in Appendix A, follows (as usual) from the first and
second order optimality conditions and the fact that the marginal cost function is positive. It has
been generalized by Acemoglu and Jensen (2013) to cases with multiple equilibria. Related results
for input demands have been derived by Koebel and Laisney (2014). For output supply, Février
and Linnemer (2004) derive a similar result, but for the case of constant marginal costs. It is
intuitive that an increase in firm i’s marginal cost (through higher γv

i ) decreases its output, but
quite messy to prove due to firm heterogeneity and the existence of aggregate Cournot effects in the
backward reaction functions. According to this result, we expect to see bigger firms located in zone
III or IV of Figure 1. It is noteworthy (P2ii) that despite the output level of all competing firms
decreases after a favorable productivity shock on i, the aggregate Cournot output is increasing,
too (P2iii). This means, cost reducing technological change hurts firms that are not affected by
it, which loose market shares, but aggregate production in the industry increases. The increase in
market size outweighs the redistributional effect in the market shares.

Assumption A5 does not introduce any restriction about the relationship between γu
n and γv

n,
and we considered in P2 that both variables could be shifted independently the one from the other.
We now introduce a form of interrelation between them. The parameter γv

n reflects the efficiency
of the variable cost function, the lower it is, the better for the firm. Conversely, the parameter γu

n
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is often considered as an inefficiency, increasing the level fixed cost. However, from microeconomic
theory, we know that it is likely that a higher fixed cost usually allows a firm to produce at a lower
marginal cost, at least for some range of the output level. See for instance Chen and Koebel (2017)
for the theoretical foundations and an empirical investigation. Let us restate this relationship
explicitly:

Assumption 6. The variable cost efficiency is a transformation of the fixed cost efficiency:

γv = e(γu) + η, (13)

with function e decreasing and strictly convex, and the random term η iid, with an expectation
equal to zero, constant variance and uncorrelated with γu.

Function e transforms the firm specific fixed cost efficiency γu
n into a variable cost efficiency

γv
n characterizing firm n’s production technology. It is identical for all firms (within an industry),

because e represents the mean technological frontier between the different types of production
possibilities. A6 implies that, on average, technological progress is not transmitted through simul-
taneous reductions in both cost parameters γu

n and γv
n, but there is a trade-off characterized by e.

A6 has an interesting empirical implication:

cov(γu
n , γ

v
n) < 0. (14)

This inverse relationship between fixed and variable costs is often neglected in international trade
(compare with Melitz (2003) or industrial economics (see for instance Bresnahan and Reiss (1991)),
where fixed costs are often considered as a pure inefficiency. We will test whether this assumption
or instead our more general version stated in A6 is satisfied or not.

For our empirical investigation, we need still more unobserved heterogeneity than introduced so
far, and some more restrictive cost functions. We assume that firms have quadratic cost functions:

Assumption 7. The variable cost function vn is quadratic in production and exhibits hetero-
geneity in slope and curvature:

vn(wn, yn) = γv
1nv1(wn)yn +

1

2
γv
2nv2(wn)y

2
n, (15)

and the heterogeneity terms γv
1n, γ

v
2n are stochastic and satisfy A5 and E[γv

1n] = E[γv
2n] = 1.

The quadratic specification of the cost function stated in A7 is compatible with the criteria
of local flexibility of the cost function, which is shown to be important for empirical investiga-
tions (Diewert and Wales, 1988). The family of cost functions defined by (2) and (15) is able to
approximate a variety of cost functions usually considered in the literature. We introduce three
multiplicative firm specific terms γu

n , γ
v
1n and γv

2n to capture heterogeneity over firms, in both the
levels of fixed and variable costs and in the slope of the variable and marginal costs. This is
more general than the uni-dimensional cost heterogeneity considered by Panzar and Willig (1978).
Specification (2), (15) generalizes the heterogeneous fixed cost specification of Spulber (1995) (who
sticks to the constant marginal cost assumption). It also extends the heterogeneous (but constant)
marginal cost specification of Bergstrom and Varian (1985) and of Salant and Shaffer (1999). While
uni-dimensional heterogeneity in marginal cost is useful to allow for unobserved heterogeneity in
the level of firms’ output, bi-dimensional heterogeneity is important to explain why the growth
rate of firms with the same output levels can be different.

The specification of heterogeneity given in (15) is compatible with the former version given in
(10) if we define overall variable cost heterogeneity γv as a weighted average of γv

1n, γ
v
2n as

γv
n =

γv
1nv1(wn)yn + 1

2γ
v
2nv2(wn)y

2
n

v(wn, yn)
, (16)

where the variable cost function v is identical for all firms and defined by evaluating vn at the
mean values E[γv

1n] = E[γv
2n] = 1, that is

v(wn, yn) = v1(wn)yn +
1

2
v2(wn)y

2
n. (17)
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While the three-dimensional technological heterogeneity in (γu
n , γ

v
1n, γ

v
2n) is important from an

empirical viewpoint, the two-dimensional representation of (γu
n , γ

v
n) based on (16) is helpful for

economic interpretation as well as for drawing (two-dimensional) plots and figures.
For γ2n > 0, the firm specific average cost function is U-shaped if un > 0 and v2n > 0 and

reaches its minimum for production level y
n

=
√

2γu
nu/(γ

v
2nv2). The efficient scale of produc-

tion can therefore be different from one firm to the other (for unobserved technological reasons).
The quadratic specification is convenient as it allows to obtain an explicit solution for Cournot’s
equilibrium in terms of (nonnegative) individual and aggregate production levels:

ybn(wn, Y ) =
P (Y )− γv

1nv1(wn)

γv
2nv2(wn)− P ′(Y )

, (18)

Y N =

N∑
n=1

ybn(wn, Y
N ). (19)

This highlights that the firm level of production at the equilibrium yNn = ybn(wn, Y
N ) does not

only depend upon aggregate output and input prices, but also upon the technological parameters
γn. Equation (18) also illustrates that ceteris paribus, the higher the variable cost the lower the
production level yNn (see P2iii) if both γv

1n ≥ 0, γv
2n ≥ 0.

Averaging the first order optimality conditions over firms yields

P (Y N ) + P ′(Y N )yN = v1 +
1

N

N∑
n=1

v2ny
N
n . (20)

The Cournot equilibrium is fully characterized by the average marginal cost. Firms do not
need to precisely know the values of (v1n, v2n) of each of their competitors to figure out the
Cournot equilibrium: some distributional statistics are sufficient, as the number N of competitors,
the sample averages of the marginal cost terms v1, v2, and the covariance cov(v2n, y

N
n ) between

the slopes of the marginal cost and the elementary production levels. Contrary to the case with
constant marginal costs, considered by Bergstrom and Varian (1985), the way production and slope
characteristics are jointly distributed over firms matters at the equilibrium. This extension also
allows firms to respond heterogeneously to exogenous changes in costs and demand.

In order to derive further interesting results, we consider a more restrictive form of heterogene-
ity characterized by:

Assumption 8. The variable cost heterogeneity is unidimensional the sense that:

γv
1n = γv

2n > 0. (21)

A8 reduces the dimension on heterogeneity and allows us to focus only on marginal cost hetero-
geneity instead of having to discuss the first and second derivative of the cost function explicitly.
Under A8, γv

n defined in (16) is independent of (w, y). The restriction (21) could be weakened and
is not necessary for the empirical part of the paper, but it is interesting for giving further intuition
on the drivers behind our empirical findings which can hold (by continuity) in cases where A8 is
not satisfied.

Proposition 3. Under A1-A8, we consider two firms at Cournot equilibrium, both with similar
input prices w and random term η. The Nash equilibrium production levels of firms i and j satisfy
yNi < yNj iff
(i) the biggest firm is more productive: γv

i > γv
j

(ii) the biggest firm has a lower variable cost for each unit produced: vi
(
w, yNi

)
/yNi > vj

(
w, yNj

)
/yNj

(iii) the biggest firm has higher fixed costs: γu
i < γu

j and ui (w) < uj (w);
(iv) the biggest firm has a larger efficient scale of production.

P3 implies that when firms are heterogeneous in their technologies, these differences induce
them to choose different operating sizes, yielding a relationship between firms’ production levels
and their technological characteristics. If we order firms along their output level (from the smallest
to the biggest), there is equivalently a corresponding ordering of the technological parameters γv
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and the variable unit cost of production. For the fixed costs and the efficient scale of production,
the ordering is not perfect, but subject to random errors in the relationship between fixed and
variable costs. On average, however, the order is preserved.

The aggregate production Y N implicitly defined in (19) also depends upon the number N of
active firms, we now study entry and exit and how adjustment in N affects the main results of this
section.

3 The long-run Cournot equilibrium
We now characterize a long-run Cournot equilibrium (LRCE) as a short-run Cournot equilibrium
in which the number of active firms adjusts to exhaust expected profit opportunities. Firms choose
either to enter or exit the market using available information. We denote by N the set of firms
indices which are active, and by M the set of firms’ indices which are inactive. The LRCE
corresponds to a game in which firms choose their activity and production levels simultaneously,
see Lopez-Cuñat et al. (1999) who also compares the simultaneous game with the one where entry
and production choices are sequential. Active firms incur a fixed cost cn (wn, 0

+, γn) = un (wn)
and inactive firms have cn (wn, 0, γn) = 0.

Active firms expect nonnegative profits and all potential entrants expect nonpositive profits. We
introduce the superscript C to characterize long-run Cournot outcomes yCn and Y C . Conditionally
on observables, the cost function is subject to randomness due to unknown technological progress at
the beginning of the period (see A5). It turns out that aggregate production, individual production,
and profits are also random, hence, the entry/exit condition defining the LRCE is given by:

E
[
P
(
Y C
)
yCn − cn

(
wn, y

C
n

)]
≥ 0, (22)

E
[
P
(
Y C + ym

)
ym − cm (wm, ym)

]
≤ 0, (23)

for any n ∈ N and m ∈ M. The expectation operator E denotes the (rational) expectation with
respect to the technological shocks γn which are random (and whose distribution is conditional to
information available to the firm at the time of decision). We assume that conditions (22) and
(23) are satisfied by the data generating process. Acemoglu and Jensen (2013, Theorem 1) or
Okumura (2015, Theorem 1) showed that under A1-A4 the LRCE with heterogeneous firms exists.
The equilibrium is not unique however: different histories condition the expectations in (22) and
(23). The distribution of the technological shocks are conditioned by the firms’ specific history:
entering firms draw γnt from a different distribution than firms which have already experienced 20
or 40 years of activity and which have reached some size. We follow Novshek (1984) and Acemoglu
and Jensen (2013) and consider that firms cannot change their technology without further cost.
Conditionally on observables, differences in the technology over firms (and time) is random (see
A5). This is different from Götz (2005), Acemoglu and Jensen (2013) (section 5.4) and Ledezma
(2021) who consider that firms can choose their production technology optimally. In this context,
only the more efficient technologies are chosen, with the consequence that, at equilibrium, firms
tend to be similar in technology and firm size. It would be quite a challenge with this approach
to endogenously generate a distribution of firms’ sizes close to those usually observed in a given
industry.2

4 Welfare and LRCE
We now consider the welfare implications of the observed distribution of output and investigate,
following Mankiw and Whinston (1986) the welfare loss at LRCE. In a setup with identical firms,
Mankiw and Whinston have shown that under business stealing (see P1v), the free entry equilib-
rium leads too many firms to enter the market in comparison to what is optimal from the welfare
viewpoint. This result has been extended by Amir et al. (2014) to a setup where the planer controls
either entry (but not production) or entry and production. In our situation with heterogeneous
firms, the central planer has to carefully consider technological differences when deciding which
firm is allowed to produce and how much. We assume that she knows the technological parameters

2We are aware that even in a setup with homogeneous firms, we can end up with asymmetric Cournot equilibrium,
see for instance Novshek (1984). The corresponding distribution of firm sizes is very restrictive, however.
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γn of each firm. The welfare function is similar to the one of Mankiw and Whinston (1986):

W
(
{yn}Mn=1, {γn}Mn=1

)
=

∫ ∑M
m=1 ym

0

P (s) ds−
M∑

m=1

c (wm, ym, γm) (24)

Note that all M firms are considered as potential contributor to economic activity in W .

4.1 Short-run optimal welfare / The optimal distribution of production
In the short run, the planer has to decide whether firm m is entitled to produce or not, and how
much each firm produces, for given firm level technological choices (there is neither entry nor exit).
In this context, the welfare maximizer is able to remove some inefficiencies that are introduced by
markups and imperfect competition. Technological characteristics are exogeneous, and the output
levels at set such that:

WS ≡ max
{yn}M

n=1

{
W
(
{yn}Mn=1, {γn}Mn=1

)
: {yn ≥ 0}Mn=1

}
.

The Short-Run Optimal Welfare (SROW) is characterized by the first order Kuhn and Tucker
necessary conditions for an inner maximum for W :

P

(
M∑

m=1

ym

)
=

∂cn
∂yn

(wn, yn)− λn, yn ≥ 0, λn ≥ 0, λnyn = 0, (25)

for n = 1, . . . ,M. The welfare optimizing individual and aggregate productions are denoted by ySn
and Y S . It follows that a welfare maximizer:
(i) sets the production level of active firms to equalize price and marginal cost (ySn > 0 ⇒ λS

n = 0).
(ii) shuts down any firm with a marginal cost above the price: if ∂cm/∂ym (wm, ym) > P (Y−m + ym)
for any ym then ySm = 0 and λS

m = ∂cm/∂ym (wm, 0)− P (Y−m) > 0.
A3(ii) ensures that W is concave in yn at ySn > 0, and that the above first order conditions

are sufficient for ySn to maximize W . Condition (25) requires that at the optimum, all active
firms produce with the same marginal cost, which contrasts with LRCE at which active firms are
characterized by a price above their firms’ marginal cost. Some firms active at the LRCE will no
longer be active at the SROW: a lower price P

(
Y S
)
< P

(
Y C
)

calls for lower marginal cost by
(25), but firms producing less and having little market power, will typically have difficulties to
cope with this requirement. It also follows from (25) that at the social optimum, active firms with
positive profits exhibit (local) decreasing returns to scale: Pynt/c > 1 ⇔ ε (c; y) > 1 (and firms
with negative profits have increasing returns). We state a result extending the one of Mankiw and
Whinston (1986) to a setup with heterogeneous firms.

Proposition 4. Assume A1-A5 and A8. In comparison to the SROW, the LRCE is character-
ized by
(i) a lower aggregate production and a higher price: Y C < Y S and P

(
Y C
)
> P

(
Y S
)
;

(ii) Welfare is too low: WC ≤ WS , and profits are too high: πC
n > πS

n

(iii) big firms which produce too little, yCn < ySn
(iv) small firms with global decreasing returns which produce too much: yCn > ySn , and some of
them should be shut down
(v) small firms with increasing returns which either produce too little, or should be shut down
(vi) a subset of the firms active at LRCE is still active at the SROW: NC ≥ NW .

The proof of P4 (see Appendix A) is constructive in the sense that it characterizes which firm
is producing more and which one will be inactive at SROW. It also defines a big firm as a firm
with a level of production at LRCE such that its marginal cost of production is too low for welfare
maximizing:

∂cn
∂y

(
wn, y

C
n

)
< P

(
Y S
)
,

and conversely for a small firms. This result is also useful for our empirical purpose of simulating
firms’ size distribution at the SROW. We use P4 to code the algorithm calculating the increase
in aggregate production and the corresponding reallocation of output over firms at the SROW.
Contrary to Mankiw and Whinston (1986), firms are differently affected by the new pricing rule,
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however, most results they obtain in the homogeneous firms case carry over to an economy with
heterogeneous firms. Instead of centralizing all production decisions, the central planer can equiv-
alently introduce a tax and subvention scheme for inciting firms to produce at the socially optimal
level. Comparing the conditions (25) and (3) we see that the aggregate production level of Y S can
be decentralized through the introduction of a sale tax τ specific to each firm and given by:

τn (y) =

∣∣∣∣1− P (Y S)

P (Y C
−n + y)

∣∣∣∣ .
Note that the sale tax rate is decreasing in y at LRCE and takes a value of zero at the SROW. See
Guesnerie and Laffont (1978) for related results. An interesting consequence of P4 is the following:

Proposition 5. Under A1-A8, we consider firms with similar input prices w at Cournot
equilibrium. Assume that the cost functions are convex. Then NS ≤ NC and the Hirschman-
Herfindahl index of concentration is higher at the SROW than at LRCE.

P5 means that an efficient industrial policy should not try to minimize industry concentration
at all costs. Actually, the opposite policy would improve welfare in the case of Cournot competition.
A related corollary has been proposed by Salant and Shaffer (1999, Corollary 2), but for a situation
where aggregate production stays constant. We generalize their result to the comparison of two
situations with different levels of aggregate output since Y S ≥ Y N . The economic intuition behind
the result is as follows: for given N the Cournot equilibrium price is too high, P

(
Y N
)
≥ P

(
Y S
)
,

and incites small and inefficient firms to enter the market, while for welfare maximization the planer
prefers to increase the production of the technologically more efficient firms. Free entry decreases
the long run Cournot prices such that at the LRCE there is no incentives for an efficient and
potentially big firm to enter the market. The proof of P5 is provided in Appendix A, and is both
a consequence of the properties of the Hirschman-Herfindahl index, than of P4, which states that
the SROW is achieved through redistribution of output from the socially inefficient and smaller
firms to the efficient and bigger firms. We, however, need to focus on convex technologies in order
to exclude the occurrence of P4(v). We also reduce the dimension of heterogeneity sources and
assume identical input prices. By continuity in w, P5 still applies if input prices are close enough
but not strictly identical for firms n and m.

4.2 Long-run optimal welfare / The optimal technology
In the long-run, the planer also has an entrepreneurial duty and selects the production technologies
that will be active at Long-Run Optimal Welfare (LROW). The planer can replicate some produc-
tion technologies in order to maximize welfare. In a decentralized economy, in contrast, the type
of technology is private knowledge of the entrepreneurs. Although there is a financial incentive
to adopt most efficient technologies, both the firm size distribution and productivity distribution
provide evidence for large differences in technologies.

While at SROW, a firm producing nothing bears the fixed cost un, in the LROW, the cost of
inactivity is zero (the planer forbids entrance of such a firm). The resulting discontinuity of the
cost function at ym = 0 has now to be treated more carefully. A second difficulty is that the planer
now has to decide which technologies to activate and to replicate in the long-run. Formally:

WL ≡ max
{yn,γn}M

n=1

{
W
(
{yn}Mn=1, {γn}Mn=1

)
: {yn ≥ 0}Mn=1 ∧ {γn}Mn=1 ∈ Γ

}
. (26)

The technological set Γ ⊂ R2 denotes the set of all technologies active at LRCE. The long run
optimal value satisfies WL ≥ WS . The main difficulty if we solve this problem by evaluating
W over all discrete elements of Γ, is that it is time consuming: for a given industry there are
MM ordered arrangements of all elements in Γ. For each arrangement it is necessary to compute
the optimal individual and aggregate output levels by solving (25) which is computationally not
feasible. Fortunately, a useful property for reducing the set of candidate technologies for optimal
welfare are available. Under A1 to A7, the SROW individual output quantities ySn are nonincreasing
in γv

n, and the same applies to the aggregate optimal production Y S . This implies that all LROW
optimal γ parameters belong to the technological frontier, defined as the lower (nonconvex) hull of
the technological parameters as:

ΓL = {γn ∈ Γ : ∄γm ∈ Γ ∧ γm < γn} . (27)
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While the LRCE is an equilibrium with free entry, there not with free technological choice.
These choices are constrained by firm specific histories, which explains why at LRCE the cost
functions are heterogeneous (it is a long-run equilibrium in the sense that free entry and exit
occurs). The SROW is an optimum at which inefficiencies of imperfect competition are removed
by the planer, but there is neither entry nor exit and firms specific technologies are given to the
planer. This last constraint is removed at the LROW, where the planer can freely choose the same
technology for new and more experienced firms. At LRCE and at the SROW, cost functions are
heterogeneous, which is compatible both with the literature on existence and uniqueness of Cournot
equilibrium and the recent literature on productivity and industrial organization. There is also a
long tradition considering the technological long-run, in which the cost function is homogeneous
over all firms (see for instance Mankiw and Whinston (1986)). Both traditions can be related using
the long-run cost function, defined as:

cL(w, y) = c(w, y, γL), (28)

where the long-run technological parameters γL are fixed at their optimal level (which varies with
w, y in general). This notation allows to restate some textbook results, which are later useful to
assess the gap between actual data and this benchmark, as well as for coding numerical simulations.

Proposition 6. Under A1-A8, we consider firms with similar input prices w, and ignore the
integer constraint on N . Then
(i) the LROW exists and is unique;
(ii) at LROW all firms have zero profit and local constant returns to scale;
(iii) WL ≥ WS ;
(iv) the fixed cost is zero at LROW if e′(γuL) < u(w)/v(w, yL);
(v) It is equivalent to maximize the central planer problem WL or decentralized profits wrt (yn, γn),
for given price level which clears the product market with free entry;

P6 connects the literature on heterogeneous and homogeneous technologies: at LROW the
optimal technological choice is unique, all active firms use the same technology. The distribution
of firm sizes degenerates to a mass point at yL. This implies that the Hirschman-Herfindahl index
of concentration is 1/NL. (If we consider the integer constraint, then a further technologies could
be used at LROW in order to produce the residual output level.) At LROW, firms produce at
the minimum of the average cost functions, which characterizes local CRTS. It is not surprising,
given that the planer maximizes welfare with less technological constraints than in the short run,
that WL ≥ WS . Less common is (iv) compatible with the use in the long-run of a technology
with positive fixed costs. If yL is small enough, however, the threshold u(w)/v(w, yL) in P6(iv)
decreases, and the planer switches to a technology with no fixed cost, in which case γvL = e(0).
See also Chen and Koebel (2017) for further details on such technologies.

It is not possible to conclude that at LROW cL/yL ≤ cSn/y
S
n , because lower average cost

functions are achieved a the price of a higher fixed cost, which is not necessarily efficient if the
increase in total output enabled by the change in technology is too small. It is neither true that
Y L ≥ Y S , nor NL ≤ NS (or the converse) are necessarily satisfied. Regarding the total number of
firms active at LROW: the planer closes all firms producing nothing at SROW (and avoid bearing
the fixed cost), and replicates the most efficient firm. In the long-run, the number of active firms
crucially depends upon the shape of e(γu), which is an empirical issue. As a corollary, in the same
vein as P5 (comparing SROW and LRCE), it is possible that the Hirschman-Herfindahl index of
concentration is higher at LROW than at SROW.

In the empirical part of the paper, we do not observe but estimate γn = (γu
n , γ

v
1n, γ

v
2n), and

refrain to identify most efficient technologies using (27) to avoid the selection of too efficient tech-
nologies. Instead, a more robust procedure (to extreme values and outliers) consists in estimating
the technological frontier nonparametrically as the locus of all γ ∈ R3 satisfying:

Pr[γn ≤ γ] = 0.2. (29)

We choose the 0.20th quantile of the distribution of γn, because the planer has to achieve a sufficient
level of efficiency on the technological frontier to justify its existence. In order both to represent
and simplify the solution, we project the 3-dimensional heterogeneity onto the two dimensional
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space: using (16) we consider the LR efficiency frontier to be defined as the set of technologies
{γu, γv} satisfying:

Pr[γu
n ≤ γu, γv

n ≤ γv] = 0.2. (30)

When the CDF is strictly monotonic, we can rewrite equivalently the technological frontier (30)
as:

γv
n = e(γu

n), (31)

where e is nonincreasing. Substituting this constraint into the long-run social welfare function
allows us to characterize the LROW first order conditions, given by (25) and

u(wn) + e′(γu
n)v(wn, yn) = κn, γu

n ≥ 0, κn ≥ 0, κnγ
u
n = 0, (32)

where κn denotes the Lagrange multiplier associated to γu
n ≥ 0. The planer obtains a specific

optimal technological choice for each firm as a function of its observed characteristics. All solutions
can be grouped into two sets: either the firm is inactive at LROW in which case yn = 0, and so
γu
n = 0, or the firm is active. An inner solution (yn > 0, γu

n > 0) is characterized by the equality
between the elasticity of variable cost heterogeneity wrt fixed cost heterogeneity and the share of
fixed to variable cost:

− γu
n

γv
n

e′(γu
n) =

γu
nu(wn)

γv
nv(wn, yn)

. (33)

Active firms can operate without fixed cost if the fixed cost is too expensive, and the reduction
in variable cost not high enough. In this case, κn > 0, and γv

n = e(0). The social planer shuts
down or upscales those inefficient firms whose technological parameters are not located on the
efficient frontier. These firms are now able to produce more output than before (just as in P2(i),
the individual optimal output levels increase when the γv

n decrease). Total output Y S increases to
Y L, the price decreases from PS = P

(
Y S
)

to PL and the welfare increases.
It is not clear, in general, how the number of firms and the Hirschman-Herfindahl index of concen-
tration varies, this depends upon the slope of e. If the frontier is flat, investment in fixed cost does
not reduce the variable cost of production and it is rational for a social planer to run the economy
with many small firms with no fixed cost. If instead e decreases steeply, the social planer will
close most small firms and upscale some of them. In this case concentration may either increase
or decrease. The characterization of the LROW given in this section considerably reduces the
computational burden of optimizing W jointly over yn and γn and will be used in the empirical
part.

Whether and by how much free entry leads to an excessive number of firms and a too low
aggregate production is an empirical question which is studied below. With heterogeneous firms,
we expect that free entry to be socially less beneficial than in both perfect and imperfect competitive
models. The entry of inefficient firms prevents more efficient firms to reach the optimal scale of
production.

5 Data and descriptive statistics
We use French fiscal data available at the firm-level for the years 1994 to 2017 (FICUS and FARE
data).3 The data comprises the universe of active firms, but we consider only those belonging
to the manufacturing industry.4 The observations contain information on firms’ balance sheet
and income statements, where each firm is identified by a specific identification number, which
is constant over time. Table 1 lists the manufacturing sectors considered with the corresponding
number of firms and observations.

A basic data cleaning consisted to exclude observations with negative values for sales, labour
cost, material cost and capital cost. We also find several extreme values for the profit rates,

3FICUS and FARE refer to "fichier de comptabilité unifié dans SUSE" and "fichier approché des résultats
d’Esane", respectively. That is, FICUS was part of the French firm-level database SUSE and was replaced in 2008
by FARE that, in turn, belongs to the current database Esane.

4We exclude the industry for food processing (10), the manufacture of tobacco products (12), and the manufacture
of coke and refined petroleum products (19). The industry 10 is excluded as it comprises the overwhelming part of
the total number of firms and should, in our view, be treated separately. The industries 12 and 19 are excluded for
the reason of a very low number of observations. See Appendix B for more details.
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and decided to consider only observations with a profit rate included between -90% and 500%,
which corresponds to 95.2% of the sample. This leaves us with 1,366,608 observations and 158,769
different firms.
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Figure 2: The density of profit rates
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Figure 3: The density of log-levels of
production

Profit rates are defined as (py/c−1)×100, and actually represent pure profit rates, as the user
cost of capital is included in the cost of production. The empirical distribution of the observed
profit rates cost is given on Figure 2 and illustrates that the data are fundamentally heterogeneous.
The density of the profit rates mimics the distribution of the average cost since by definition
py/c − 1 = p/(c/y) − 1. The density is not normal, but asymmetric and exhibits a large tail for
values below the median (of 0.4%) and a thin tail above. The density of the log-levels of production
is drawn on Figure 3 (over all firms and years).

Table 1: Description of two-digit industries

Industrya Description # Firmsb # Obs.c

11 Beverages 3,031 26,049
13 Manufacture of tobacco products 7,012 59,299
14 Manufacture of wearing apparel 15,658 82,221
15 Manufacture of leather and related products 3,054 22,220
16 Manufacture of wood and of products of wood 13,220 109,643
17 Manufacture of paper and paper products 2,825 28,447
18 Printing and reproduction of recorded media 21,799 174,024
20 Manufacture of chemicals and chemical products 5,204 47,581
21 Manufacture of basic pharm. products and pharm. preparations 979 8,522
22 Manufacture of rubber and plastic products 8,801 86,595
23 Manufacture of other non-metallic mineral products 11,668 95,613
24 Manufacture of basic metals 2,042 18,767
25 Manufacture of fabricated metal products 34,397 326,264
26 Manufacture of computer, electronic and optical products 7,388 57,119
27 Manufacture of electrical equipment 5,033 42,623
28 Manufacture of machinery and equipment 13,362 111,735
29 Manufacture of motor vehicles, trailers and semi-trailers 4,013 35,857
30 Manufacture of other transport equipment 1,799 12,852
31 Manufacture of furniture 15,355 109,952

Total 176,640 1,455,383
a) Statistical classification of economic activities in the European Community, Rev. 2 (2008)
b) # Firms describes the number of firms which were active over the period (it is computed as
the total number of different firms identifiers).

c) # Obs. describes the total number of observations.

Variables
Firm specific data are mainly nominal values and cover the value of production, total labor costs,
the value of intermediate inputs, as well as the capital stock. Firms’ nominal production is mea-
sured by the sum of firms’ sales, stocked production, and production for own use. The value
of intermediate inputs is given by firms’ expenditures for raw materials and other intermediary
goods. As proxy for firms’ capital stock we use the amount of tangible assets reported in the
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balance sheet. We use industry specific price indices (at a two-digit aggregation level) in order
to convert the nominal values in real terms.5 The wage level is firm specific and is obtained by
dividing the labor costs by the number of employees. These calculations yield the firms’ total
production ynt, and input vector xnt = (xk,nt, xl,nt, xm,nt)

⊤ as well as price indices pnt for output
and inputs wnt = (wk,nt, wl,nt, wm,nt)

⊤. In order to calculate the user cost of capital, wk,nt, we
follow Hall and Jorgenson (1967) and set wk,t = wi,nt(1+rt)−wi,n,t+1(1−δnt), with wi,nt denoting
the price index for investment (available at the industry level), rt is the long-run rate of interest
and δnt the annual rate of capital depreciation.6 Note that, for our purpose, we only keep those
firm observations with values larger than zero in capital stock, number of employees, intermediate
inputs, and production.

Descriptive statistics
Table 2 shows the average number of firms active in a typical 4-digit industry, as well as the
distribution of firm sizes over the 1994-2016 period. In our cleaned sample, over all industries and
years, there are about 176,640 firms active in the French manufacturing, which represent 1,455,383
observations. At the 4-digit level the number firms is obtained by dividing the total number of
observations by 184×23 (the number of 4-digit industries times the number of years), which yields
an average number of 340 active firms. See Appendix B for further details on the data cleaning.
The table also reports the average number of firms by different firm size (measured by the number
of employees). It shows that the number of firms globally is decreasing in firm size. On average,
most firms have between 2 to 4 employees, representing a share of about 24% of all firms. Table
2 also informs about market concentration in a typical 4-digit industry: firms with less than 20
employees represent about 75% of all firms, and produce only 7% of total production, whereas the
few firms with 500 employees and more produce about 53.1% of the aggregate (4-digit) production.
These figures not only document that there are few actors detaining strong market power, but also
that there is a large competitive fringe of smaller firms. In our view, this seems compatible with
the theoretical Cournot model adopted here, which allows for unobserved technological differences
between firms. This unobserved heterogeneity is important for yielding a size distribution of firms
endogenously, and comparable with the observed distribution reported on Table 2.7

Table 2: Statistics by firm size in a typical 4-digit manufacturing industrya

Firm sizeb # of firms Share of
firms

Share of
employees

Share of
production

1 50 14.71 0.40 0.28
2-4 82 24.12 1.86 1.05
5-9 73 21.47 3.93 2.19
10-19 52 15.29 5.67 3.56
20-49 49 14.41 12.29 9.14
50-99 16 4.71 8.83 6.91
100-199 9 2.65 10.76 9.28
200-499 6 1.76 14.83 14.47
500+ 3 0.88 41.43 53.11
Total 340 100.00 100.00 100.00
a All figures represent averages over all 4-digit industries and years (1994-2016).

Shares are given in %.
b Firm sizes are measured by the number of employees.

5The sectoral price data are available at https://www.insee.fr/fr/statistiques/2832666?sommaire=2832834
6The interest rate was provided by the Banque de France at: https://www.banque-

france.fr/statistiques/taux-et-cours/taux-indicatifs-des-bons-du-tresor-et-oat. We calculate δnt at the in-
dustry level by considering the ratio between the consumption of fixed capital and fixed capital, see
www.insee.fr/fr/statistiques/2383652?sommaire=2383694

7See also Table B4 in Appendix B, which is complementary to Table 2, and shows the same statistics but for
each 2-digit industries.
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6 Inverse output demand estimates
This section studies the output demand addressed to an industry i = 1, . . . , I, and estimates the
elasticity of output demand wrt its price. It corresponds to the inverse function of (1). The output
price index is available at the two-digit industry level, for I = 22 industries, and for the same time
range of 24 years as in our firm level data. For the estimation, 2 years are lost due to differencing
(and so T = 22 years).

We consider the following parametric specification for the output demand to industry i:

lnYit = αi + αY lnYi,t−1 + αp lnPit + αIM lnP IM
it + ϵit, (34)

In addition to the (domestic) product price Pit, we include as regressor the price index P IM
it for

the imports of the corresponding goods which are close substitutes to domestic products. Industry
fixed effects αi are included, and, as adjustment of demand to the prices may not be instantaneous
but under the influence of the lagged level of aggregate quantities, the variable lnYi,t−1 is also taken
in account. Further variables influencing demand are the economy wide GDP, unemployment rate
and demographic variables. All these variables are not industry specific and could be captured by
the time dummies (as in Koebel and Laisney (2016)). With only a 484 observations however, we
choose not to overparameterize our model and consider the more parsimonious specification with
22 industry specific fixed effects and 3 parameters. The elasticity of demand wrt domestic product
price is then given by αp.

The industry specific effect can be correlated with the explanatory variables and the random
term ϵit is correlated with lnPit since in the aggregate product price adjusts to shocks. We eliminate
the industry specific effect by differencing over time:

∆ lnYit = αY ∆ lnYi,t−1 + αp∆ lnPit + αIM∆ lnP IM
it + ηit, (35)

with ηit = ∆ϵit.
Several variables that shift the output supply (but not directly output demand) can be con-

sidered as instruments: they are correlated with lnPit and uncorrelated with the random term
ηit, so that E[ηitzit] = 0. The (L× 1) vector zit of instruments includes industry labour cost, the
price of intermediate consumption, of exports and the price index of imports. Lagged values of the
endogenous variables are also considered as exogenous. For each period, we include up to 3 lag
values of lnPit and lnYi,t−1 in the list of instruments. This gives us a total of L = 130 instruments.
Given a (L× L) weighting matrix W, the GMM estimator is defined by minimizing in α:(

I∑
i=1

T∑
t=1

ηitz
⊤
it

)
W

(
I∑

i=1

T∑
t=1

zitηit

)
= η⊤ZWZ⊤η (36)

The random terms ηit and ηjs are likely to be correlated, both between industries (which are
interdependent) in a given year, and within a given industry over two consecutive time periods.
So we use two-ways clustering and allow for heteroscedasticity, for contemporaneous dependence
between residuals of different industries, and for temporal dependence within a given industry and
consecutive time periods. See for instance Cameron and Miller (2015) for details about multi-
ways clustering and Cameron et al. (2011) for a detailed discussion in the context of GMM. More
formally, we assume that

E [ηisηit] = σiist for |s− t| ≤ 1,
E [ηitηjt] = σijtt,
E [ηisηjt] = σijst = 0, for i = j and |s− t| ≥ 2 and for i ̸= j and |s− t| ≥ 1.

As there is no possibility to consistently estimate these parameters, we are instead looking to
consistently estimate the variance matrix V [α̂] of dimension K ×K. It is convenient to define the
set S of indices of the dependent random terms:

S = {i, j, s, t : (i = j, |s− t| ≤ 1) ∨ (i ̸= j, s = t)} .

The cardinality of this set is I(3T −2)+I(I−1)T = 11572 and increases with I and T . The GMM
weighting matrix is estimated in a first step (using IV estimates η̂it) by the inverse of

B̂ =

I∑
i=1

I∑
j=1

T∑
s=1

T∑
t=1

zisz
⊤
jtη̂isη̂jt1[i,j,s,t∈S],
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where the dummy variable 1[i,j,s,t∈S] = 1 if the indices are included in the set S and 0 otherwise.
An alternative (and easier to code) version of matrix B̂ is:

B̂ = Z⊤(η̂η̂⊤ ◦ S)Z,

where the IT × IT selection matrix S has an entry (h, j) equal to one if the random terms ηh and
ηj are correlated, and zero otherwise. In our case, only about 5% of the elements of S are nonzero.
The Hadamard (term by term) multiplication is denoted by ◦. One difficulty comes from the fact
that B̂ is not necessarily positive definite. The same applies to our estimated parameters’ variance
matrix:

V [α̂] = (X⊤ZB̂−1Z⊤X)−1,

where the matrices X and Z are respectively of dimension (IT ×K) and (IT ×J) with the number
of instruments not smaller than the number of regressors L ≥ K. We follow Cameron et al. (2011)
and impose positive definiteness on the parameters variance matrix by setting negative eigenvalues
to zero in the eigendecomposition.8

Table 3 reports the estimated values of the parameters along with their standard deviations.
The estimates of the fixed-effects and first difference specifications of the output demands are
given for the purpose of comparison in columns 1 and 2. Our preferred specification relies on
GMM and the corresponding estimated parameter values are included in the range of the Fixed
effects (FE) and the first difference (FD) estimates. The test for overidentification does not reject
the validity of our instruments. Tests for the occurrence of autocorrelation in the ηit of order two
and higher lead to rejecting this hypothesis. This rejection (together with the the high p-value
of the over-identification test) supports the use of endogenous variables as instruments (with a
lag of two periods and more). According to the GMM estimation results, the estimated short-
run elasticity of demand with respect to price is −0.64 and is statistically significant at the 1%
threshold. Domestic products and imports are substitutable with a cross price elasticity of 0.49.
The coefficient of lagged output is estimated at 0.76 and found to be significant. This introduces a
gap between short- and long-run price elasticities. The clustered standard errors are substantially
smaller than the HAC-robust standard errors, probably because additional independence over
spaced time periods is assumed when clustering.

Table 3: Output demand estimates

FE FD FD-GMM
αY 0.92

(0.02)
0.05
(0.05)

0.76
(0.06), [0.03]

αP −0.12
(0.07)

−0.67
(0.17)

−0.64
(0.18), [0.08]

αIM 0.04
(0.07)

0.55
(0.16)

0.49
(0.18), [0.07]

OIT - - 0.99

Notes. HAC robust standard errors
are given in parenthesis, clustered
standard errors are in brackets. OIT :
p-value of the over-identification test,
for the validity of the 130 orthogonal-
ity conditions.

These estimates are useful to calculate the inverse demand elasticity which is central in our
model, and also for computing the long-run elasticities, characterized by Yi,t−1 = Yit. These
corresponding estimates are provided in Table 4. The inverse demand elasticity is obtained by
ε
(
P d, Y

)
= 1/ε

(
Y d, p

)
and is estimated to −1.56 in the short-run and −0.37 in the long-run.

Standard errors are obtained using the delta-method (with the HAC variance matrix).
8We actually compare different methods for imposing positive definiteness, by either restricting matrix S, B,

η̂η̂⊤ ◦S or V [α̂] to be positive definite, the results were different but in all cases, the diagonal terms of the restricted
variance matrix were much lower than the HAC variance matrix.
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Table 4: Industry short- and long-run elasticities of output demand

Short-run Long-run
ε
(
Y d, p

)
ε
(
P d, Y

)
ε
(
Y d, p

)
ε
(
P d, Y

)
Estimate -0.64 -1.56 -2.67 -0.37
s.e. 0.18 0.44 0.87 0.12

The short-run inverse price elasticity is substantial. With Cournot competition, there is an
interesting relationship between the markup and the market share y/Y , parameterized by the
inverse demand elasticity:

p

∂c/∂y(w, y)
=

1

1 + ε (P d, Y ) y/Y
. (37)

Using the estimates of Table 4, we draw the estimated short- and long-run relationship between
markup and market-share on Figure 4. Firms in the competitive fringe have a markup of 1. In
conformity with point (iv) of Proposition 1, for which Figure 4 provides an illustration, the markup
is monotonically increasing in market share. While in the short-run there is substantial markup
for a firm having a market share of 20 to 30%, in the long-run this markup falls to the interval
1.08 - 1.12, which is quite small. However, in the short-run, sluggish adjustment toward market
equilibrium price and quantity, according to the dynamic relationship (34) with strong anchoring
to the lagged aggregate output level, confers substantial market power and a markup of 1.45 - 1.88
to the few firms with the biggest market share.

Our estimate of the inverse demand elasticity satisfies A1 and is also broadly compatible with
A4. Indeed, when the inverse demand elasticity ϵ is constant,

P ′ (Y ) + yhP
′′ (Y ) = ϵ

P (Y )

Y

[
1 + (ϵ− 1)

yh
Y

]
,

which is negative for any individual market share satisfying yh/Y ≤ 1/ (1− ϵ) . Our estimate of
this upper bound is a market-share of 39.1% in the short-run, and 73.0% in the long run. It turns
out that the inequalities are respectively satisfied by 98.6% and 100% of the observations.
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Figure 4: The markup and firms’ market share

We also use these parameter estimates to build the instrumental variable Ŷ d
nt. This predicted

demand to the market is correlated with individual output ynt and orthogonal to the individual
supply random term.

7 Cost function estimation with heterogeneity in fixed and
variable costs

It is well known that unobserved heterogeneity causes estimation biases when it is neglected and
correlated with the explanatory variables, see for instance Gouriéroux and Peaucelle (1990) or
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Wooldridge (2010) for a detailed overview of the linear model. Unobserved heterogeneity also
rises concerns about the incidental parameters, precluding consistent estimation of parameters and
statistics of interest. Martin (2017) and Wooldridge (2019) consider unobserved multiplicative het-
erogeneity. When additive and multiplicative unobserved heterogeneity appears in the econometric
specification, as is the case with our cost function, some specificities have to be considered. Then,
the statistics of interest can be consistently estimated under some assumptions which are outlined
below.

7.1 Empirical specification of the cost function
Given the quite long time dimension of our data, we now include a deterministic time trend, t, as
a further argument of the cost function.

The first type of unobserved heterogeneity is specific to the production technologies and the
cost functions characterizing a given industry. We deal with this difficulty, by estimating the cost
specifications over all firms belonging to a given 2-digit industry (there are 19 different 2-digit
manufacturing industries). Within a given industry, a further type of unobserved heterogeneity in
the fixed and variable costs characterizes firms, and introduces correlation between their production
and the random term. We propose a method for dealing with this endogeneity problem and avoiding
estimation bias. As heterogeneity is unobserved it is subsumed in the additive random term and
the cost function satisfies:

cnt = u(wnt, t) + v(wnt, t, ynt) + ϵnt (38)
ϵnt ≡ unt(wnt, t)− u(wnt, t) + vnt(wnt, t, ynt)− v(wnt, t, ynt) + ηcnt. (39)

We assume that the random term ηcnt is such that E[ηcnt|wnt, t, ynt] = 0. Its variance can exhibit
heteroscedasticity and correlation. We use the reparameterization unt = γu

ntu and vj,nt = γ
vj
ntvj .

For the sake of identification, we impose

E[γj
nt] = 1, j = u, v1, v2. (40)

Cost heterogeneity is known by the firm, but unobserved by the econometrician. If we were
able to control for unobservable heterogeneity, the condition E[ϵnt|wnt, t, ynt, γnt] = 0 would be
useful for parameter estimation. However, E[ϵnt|wnt, t, ynt] ̸= 0 due to the fact that ϵnt includes
the unobserved heterogeneity terms of the fixed and variable cost function and the optimal optimal
production level is decreasing in γ

vj
nt by (18) and Proposition 2. So E[ϵntynt] ̸= 0 in (38) in general.

Moreover, a firm can choose a high level of fixed cost if it allows to decrease its variable cost for
(indirectly) achieving a higher production; in this case E[ϵntynt] ≤ 0.

We are interested in identifying the cost functions u and v1, v2 which are common to all firms
and time periods as well as the deforming weights γnt = (γu

nt, γ
v1
nt , γ

v2
nt). As there are three times

more γnt parameters than observations, we will not be able to estimate them, but we will be able
to approximate their joint and marginal distributions. Firm and time specific heterogeneity is
interesting in order to account for technological differences between firms and over time.

We specify the parametric forms for u and v. We consider that u and v belong to the family of
quadratic cost functions:

u (w, t; θu) = θ⊤ww + θ⊤wtwt+
1

2

w⊤Θwww

ζ⊤w
, (41)

v1 (w, t; θ1) y =

(
θ⊤1ww + θ⊤1twt+

1

2

w⊤Θ1www

ζ⊤w

)
y (42)

v2 (w; θ2) y
2 =

(
θ⊤2ww

)
y2 (43)

The vectors of parameters θw, θwt, θ1w, θ1t and θ2w have dimension (J × 1), whereas the symmetric
matrices Θww and Θ1ww are (J × J) . In order to identify the terms in the linear and quadratic
fonctions of w, we impose that

Θww = Θ⊤
ww, Θ1ww = Θ⊤

1ww, (44)
ι⊤Θww = ι⊤Θ1ww = 0 (45)

where ι denotes a (J × 1) vector of ones. We use the a Laspeyres price index ζ⊤w for normalization
in order to impose linear homogeneity in w on the cost function. Both fixed and variable cost
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functions are flexible, in the sense that they provide a second order approximation to an arbitrary
fixed and variable cost function; see Chen and Koebel (2017), on this point. There is a total of
5J + J(J − 1) free parameters. In our case, J = 3 and there are 21 free parameters in the cost
function.

7.2 Unobserved heterogeneity
We still need to specify how unobserved heterogeneity can be identified and estimated. The main
reason for which we have to take care about unobserved heterogeneity, is that neglecting it produces
biased estimates. We are also economically interested in the distribution, because according to
sections 2-4, it explains an important part of observed heterogeneity in firms size, size distribution,
returns to scale, welfare loss. The cost function with unobserved heterogeneity:

cnt = γu
ntu(wnt, t; θ

u) + γv1
ntv1(wnt, t; θ

v1)ynt +
1

2
γv2
ntv2(wnt, t; θ

v2)y2nt + ηcnt (46)

Let wn ≡ {wns}s∈Tn , yn ≡ {yns}s∈Tn and Tn represents the set of all time indices for which firm n
is observed. This definition allows us to interpret the functions u, vj as the fixed and variable cost
function of a representative firm, characterized by γu

nt = γv1
nt = γv2

nt = 1. We assume that, given γ,
the additive random term satisfies strict exogeneity:

E(ηcnt|wn, t, yn, γnt) = 0. (47)

When cost heterogeneity is known by the firm, but unobserved by the econometrician, the firm
knows γu

nt, γ
v1
nt , γ

v2
nt when deciding about its output level, which is set to equalize marginal revenue

and marginal cost:

pt

(
1 + ε

ynt
Yt

)
= γv1

ntv1(wnt, t; θ
v1) + γv2

ntv2(wnt, t; θ
v2)ynt + ηpnt (48)

with the random term ηpnt such that E(ηpnt|wn, t, yn, γ
v
nt) = 0.

This first order condition (??) can be solved in ynt to yield the optimal output supply function:

ynt =
pt − γv1

ntv1(wnt, t; θ
v1)

γv2
ntv2(wnt, t; θv2)− ε pt

Yt

+ ηynt. (49)

The random term ηynt is related to ηpnt and satisfies

E(ηynt|wn, t, yn, γ
v
nt) = 0. (50)

The main difficulty we are confronted with in this section, is that the γj
nt are unobserved and

correlated with wnt, ynt, and in our empirical part, we cannot control for it as we do in (47)
and (50). This prevents consistent estimation of the parameters of interest when simply ignoring
unobserved heterogeneity.

We try to capture unobserved heterogeneity, and follow a proxy variable approach similar to
Olley and Pakes (1996) and Levinsohn and Petrin (2003) in context of production functions. For
this purpose, we rely on plausible assumptions to identify the values taken by these functions. We
begin to note that unobserved γj

nt values capture the relative state of firm n’s technology at time
t in comparison to a reference technology (denoted by u and vj) that is identical for all firms and
time periods. These relative efficiency levels may depend upon input prices and the production
level, on unobserved firm specific effects, time specific affect, lagged efficiency level achieved at
t− 1. As these relative efficiency levels are known to the firm, it will invest more intensively and
produce more when both efficiency indicators are good. Like Olley and Pakes (1996) we consider
past investment, the age of the firm, and as recommended by Wooldridge (2019) we consider the
number of firms’ occurrences in the survey, to capture selection effects.9 Let us gather all these
variables into the vector znt, and consider the following version of a (conditional) strict exogeneity
assumption:

9See Appendix B, Table B5, for some descriptive statistics for these variables.
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Assumption 9. Conditionally to znt the random terms satisfy:

E[ηcnt|wn, t, yn, znt] = 0, (51)
E[ηynt|wn, t, yn, znt] = 0, (52)

E[γj
nt|wn, t, yn, znt] = γj(znt), j = u, v1, v2 (53)

The first two conditions of Assumption 9 (A9) correspond to strict exogeneity of the additive
random terms conditionally to znt. The vector znt includes variables which are correlated with
unobserved heterogeneity and uncorrelated with the random terms ηnt = (ηcnt, η

p
nt)

⊤. This allows
us to replace the condition E[ηcnt|wn, yn, γnt] = 0, which is not useful when the γnt are unknown,
by E[ηcnt|wn, t, yn, γnt] = 0, provided that the instruments znt are sufficiently comprehensive. Then
the conditions in A9 are a good proxy and informative about the data generating process. The
flexibility of A9 allows us to nest different models and to test the validity of different specifications
or sets of instruments.

Applying A9 to our parametric model, implies that we can replace γj
nt by γj(znt) in the ex-

pression of the cost and marginal cost function (46) and (48), as well as in the output supply
(49).

Several estimation strategies can be followed. With Cobb-Douglas type production functions,
a semi-parametric two-stage approach is often adopted (see Ackerberg et al. (2015) for references).
The first stage consists in a nonparametric estimation of the technology. In a second stage, the
parameters of interest are identified. In contrast, we rely on a full (but quite flexible) parametric
specification. In our context, many variables are included in znt and the curse of dimensionality
prevents us from using a nonparametric setup. Another advantage of a parametric specification, is
that it is computationally less burdensome in face of a large number of observations. We can also
quite easily estimate the system of equations while imposing cross equations identifying restrictions.
These advantages may outweight issues related to misspecifications of the functional form for γ.
The third advantage of a parametric specification is that it allows for correlated random γ terms
when including, as advocated by Wooldridge (2019), firm (and time) specific means into znt. The
last advantage of our parametric approach, and also highlighted by Wooldridge (2009), is that a
single estimation step is sufficient to provide most statistics of interest.

For simplicity, we specify the γj in A9 as linear functions in the parameters and in the explana-
tory variables for j = u, v1, v2:

E[γj
nt|wn, yn, znt] = 1 + (znt − z)

⊤
βj , (54)

where the constant vector of empirical means z is subtracted to ensure that the unconditional
expectations satisfy E[γj

nt] = 1.

8 Estimation results

8.1 Returns to scale and rate of technological change
This subsection evaluates the rate of Returns to Scale (RTS) defined by

∂ ln c

∂ ln y
(w, t, y), (55)

over our observations. When the estimated statistic is lower than one, the observation exhibits
increasing RTS, while RTS are constant or decreasing when the statistic is equal to or greater
than one. The cost function also comprises a time trend as argument, and allows us to compute
estimates for the Rate of Technological Change (RTC):

∂ ln c

∂t
(w, t, y). (56)

These statistics depend upon the explanatory variables (both observed and unobserved) and are
different for each observation in our sample.

Table 5 summarizes the elasticity of total cost with respect to output, which corresponds to
our measure of the rate of return to scale. While the estimated values depend somewhat on the
model specification, the broad conclusions are the same over all models: there is evidence for a
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variety of rate of returns: about 40% of the observations exhibit increasing returns to scale, 25%
have almost constant returns to scale, while about 35 % of the observations have decreasing RTS.
Our baseline Model 1 (without correlated unobserved heterogeneity) is already compatible with
some heterogeneity in RTS over observations, and the distribution of the rates of RTS are broadly
compatible with those obtained for the more general Models 2 to 4.

Table 5: Distribution of firms’ returns to scale

Model 1 Model 2 Model 3 Model 4
P25 0.89 0.86 0.83 0.83
P50 1.04 1.01 0.98 0.98
P75 1.16 1.11 1.09 1.09
MAD 0.13 0.12 0.12 0.12

Note: P25, P50, and P75 report the 25th, the 50th,
and the 75th percentile of the respective distribution.
MAD denotes the Median Absolute Deviation.

Estimates for increasing returns are quite common for cost functions, and this result contrasts
with the estimates usually found with a production function approach which often make a case
for decreasing returns to scale. See for instance Diewert and Fox (2008) for a discussion. These
contradictory empirical results are often attributed to the endogeneity of the production level in the
cost function, which is expected to be correlated with unobserved heterogeneity. As our approach
controls for unobserved heterogeneity, we expect no endogeneity bias to occur in our estimates. The
finding that increasing RTS do not disappear in Model 4, despite the strong statistical rejection of
Model 1 (see Table ??), supports the hypothesis according to which increasing RTS are not due
to endogeneity of output.

The quartiles of the estimates for the RTC are given in Table 6. The median value of the RTC is
negative, and indicates that for given values of (w, y), costs tend to decrease over time, by a median
value of 0.71% (Model 1) or 0.24% (Model 4). This measure of technological change, however, varies
quite importantly over the 4 specifications considered. This quite important difference between
Model 1, neglecting unobserved heterogeneity, and Model 4, which is the most flexible specification,
is not surprising. Indeed, Model 2-4 allow for correlated technological progress (mediated through
changes in γu, γv), while Model 1 only considers the deterministic and exogenous time trend as
source of technological change. Overall, we conclude that about 50% of technological change is
endogeneous and reallocates output over firms.

Table 6: Distribution of firms’ rate of technological change

Model 1 Model 2 Model 3 Model 4
P25 -3.29 -1.81 -1.36 -1.77
P50 -0.71 -0.01 -0.08 -0.24
P75 0.67 1.49 0.77 0.89
MAD 1.80 1.66 1.06 1.33

Note: P25, P50, and P75 report the 25th, the 50th,
and the 75th percentile of the respective distribution.
MAD denotes the Median Absolute Deviation.

For about 40% of the estimated total cost tend to increase over time, this means that many
firms have to compensate this positive trend by lower values of (γu, γv) if they want to keep their
cost efficiency unchanged or improved.

8.2 Unobserved heterogeneity
We first provide some insights in the distribution of estimated values of the unobserved fixed and
variable cost efficiency, γ̂u

nt and γ̂v
nt. Table 7 presents the quartiles of their respective distribution

and allows comparing different specifications of unobserved heterogeneity. As already discussed,
Model 1 does not take any unobserved heterogeneity into account, which is equivalent to γ̂u

nt =
γ̂v
nt = 1, for all n, t. Comparing the other models, we find a wide degree of unobserved heterogeneity

especially in firms’ fixed cost parameter. Considering Panel A, it can be seen that distribution of
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γ̂u
nt changes somewhat by increasing the number of z-variables contained the function of γ̂u and γ̂v.

Instead, Panel B shows that the distribution of γ̂v is much more stable over the different models,
and highly concentrated around one, which is also indicated by the small MAD.

Table 7: Distribution of γ̂u
nt and γ̂v

nt

Panel A: Distribution of γ̂u

Model 1 Model 2 Model 3 Model 4
P25 1.00 -0.33 -0.31 -0.33
P50 1.00 0.31 0.30 0.26
P75 1.00 1.20 1.07 1.06
MAD 0.00 0.75 0.68 0.68

Panel B: Distribution of γ̂v

Model 1 Model 2 Model 3 Model 4
P25 1.00 0.94 0.90 0.90
P50 1.00 0.98 0.99 0.99
P75 1.00 1.01 1.08 1.07
MAD 0.00 0.04 0.09 0.09

Note: P25, P50, and P75 report the 25th, the 50th,
and the 75th percentile of the respective distribution.
MAD denotes the Median Absolute Deviation.

The parameters respectively represent fixed and variable cost unobserved heterogeneity, so that
we can conclude from these figures that about 60% of all firms operate with virtually zero or very
small fixed cost. The other firms have a positive fixed cost, and there is considerable heterogeneity
about the size of these fixed cost. The parameter γv represents variable cost heterogeneity. We
conclude from panel B, that while about 25% of the firms have a variable cost of 10% below average
(for which γv = 1), there are also 25% of the firms with average costs higher than average by 7% or
more. This unobserved heterogeneity is economically relevant, and strongly influences firms’ size,
according to Proposition 3.

As the Fisher test (Table ??) supports the specification of Model 4, we report below only results
based on that model. Table 8 summarizes the percentage of estimates corresponding to 4 possible
families of cost functions according to the estimated values of v1nt and v2nt. In almost all cases,
predicted marginal cost are positive and convex (94.8% of the observations). In 5.2% of the cases,
we find evidence for decreasing marginal cost. Such a result is only economically sustainable if
firms are able to charge a markup over their marginal cost. Table 8 gives an crude overview of the
joint distribution of the v1n, v2n values.

Table 8: Share of observations for different type of heterogeneity in v1n, v2n in %

v1n ≤ 0 v1n > 0
v2n ≤ 0 0.0 5.2
v2n > 0 0.2 94.6

Note: .

Figure 5 shows kernel density estimates of the distribution of γ̂u (on the left) and γ̂v (on the
right).10 Both densities are single peaked, and show that there is a high probability mass around
γu = 0 and around γv = 1. For completeness, we also report on Figure 7 and 6 the joint density of
γ̂u and γ̂v as well as the corresponding contour plot. From this figure, there is a priori no strong
dependence between both random variables, and the existence of a relationship like (13) is not
supported by our estimates.

10The densities are estimated using a second-order Gaussian kernel and likelihood cross-validation to obtain
optimal bandwidths.
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8.2.1 Heterogeneity by firm size and years

One of the main conclusion of the Cournot model is that there is an ordering of unobserved
heterogeneity and firm size. We investigate these relationship further and report the above statistics
by firm size.

Table 9 completes the information given in Tables 5 and 6 and reports, among other, the median
value of fixed and variable cost, together with RTS and RTC over firm size. Surprisingly, we find
that the fixed costs represent 80% of total cost for firms with one employee, and this falls to 23%
for firms with 2 to 4 employees. This value is below 5% for most sizes, but suddenly increases to 8
% for the biggest firms with 500 employees and more. The median value is γu is globally increasing
with firm size, while this of γv is almost constant, close to 1, but falls to 0.88 for the biggest firms
in our sample. This means that these firms are more efficient than average, in conformity with
Proposition 3(i). These findings also highlight the shortcomings of usual specifications for cost
functions, as the Cobb-Douglas or the translog, which exclude by construction the occurrence of
fixed costs.

Table 9 shows that increasing returns are mainly prevalent for big firms in the upper tail of
the size distribution. Some small firms also exhibit increasing RTS, in relation with higher than
average fixed costs, and the difficulty to achieve a positive profit. For all small and medium
size classes the median RTS is close to 1 (constant RTS). For the largest firms, however, we
find the strongest median RTS with a value of 0.91, which is related to their market power and
conform to Proposition 1(iii). Regarding technological change, the estimated median value of
∂ ln c/∂t is almost monotonically decreasing with firm size. For the smallest firms, the RTC
is very important and represents a cost reduction of 0.72% by year, ceteris paribus. This rate
rapidly decreases with firm size (in absolute value), and is close to 0 for the largest firms. This
empirical evidence strongly supports Arrow’s view about the virtue of competition for innovation,
against Schumpeter’s argument. (We are aware though that cost reduction is only one aspect of
innovation.)

25



Table 9: Median statistics by firm sizea,b

Firm
size

γ̂u
ntû

cnt
γ̂u
nt γ̂v

nt
∂ ln c
∂ ln y ynt/Yt Markup ∂ ln c

∂t
cor(cnt, ĉnt) cor(mrnt, m̂cnt)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
1 0.80 0.18 0.99 1.00 0.00 1.00 -0.72 0.77 0.52
2-4 0.23 0.17 0.98 0.97 0.01 1.00 -0.53 0.75 0.63
5-9 0.08 0.24 0.98 0.97 0.02 1.00 -0.34 0.86 0.68
10-19 0.04 0.31 0.98 0.98 0.04 1.00 -0.13 0.90 0.69
20-49 0.03 0.41 1.01 0.99 0.10 1.00 -0.06 0.98 0.71
50-99 0.02 0.62 1.02 0.98 0.26 1.00 -0.05 0.94 0.72
100-199 0.02 0.84 1.03 0.97 0.59 1.01 -0.04 0.92 0.66
200-499 0.03 1.25 1.02 0.95 1.35 1.02 -0.08 0.93 0.59
500+ 0.08 2.30 0.88 0.91 4.82 1.08 0.03 1.00 0.33
Total 0.08 0.26 0.99 0.98 0.02 1.00 -0.24 1.00 0.63
a Firm sizes are measured by the number of employees.
b Column (1) reports the share of fixed costs over total costs, (4) reports returns to scale, (5) reports 4-digit
market shares, (7) reports the rate of technological progress, (8) reports the correlation between firms’
observed costs and the fitted values from the cost regression, and (9) reports the correlation between
firms’ (computed) marginal revenues and the fitted values of the marginal cost.

The last two columns of Table 9 give an indication of the fit obtained by our model, for both
regressions and different firm sizes. While our cost function fits the cost data quite well for all size
groups, the marginal cost function is farther away from the marginal revenue function, especially
for the smallest and biggest firm sizes.

We also illustrate how some key estimates change over the entire sample period from 1994 to
2016. In particular, Figure 8 shows the evolution of the median of γ̂u, which fluctuates around 0.25
over the period. Instead, the evolution of the median value of γ̂v, depicted on Figure 8, reveals a
clearly decreasing pattern in a quite narrow range, from about 1.04 in 1994 to 0.94 in 2016. This
implies that, at the median, firms produce with a lower variable cost over time. The decrease is
not continuous, however, and γv remains almost constant around 0.95 from 2008 onwards.

Figure 10 depicts the evolution of returns to scale over time and illustrate that this value varies
little over time and remains close to 1. Regarding technological change, Figure 11 reports the
median value of the RTC, i.e. the change in costs wrt time, for constant γu, γv. For most periods,
we estimate a negative median RTC, indicating that firms generally become more cost efficient over
time. However, we also see that the median RTC slows down from 2008 forward and stabilizes to
a value around 0 in 2012 and after.
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Figure 8: Median evolution of unobserved fixed cost efficiency γ̂u
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Figure 9: Median evolution of unobserved fixed cost efficiency γ̂v
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Figure 10: Median value of the rate of returns to scale over time
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Figure 11: Median value of the rate of technological change over time

8.2.2 Firm size distribution

One of our objectives was to propose a theoretical and empirical model able to cope with unobserved
heterogeneity and able to endogenously reproduce the distribution of output levels over firms.
Econometric models neglecting unobserved heterogeneity fail in this respect. Additive unobserved
heterogeneity in the cost function only will miss the point, because this type of heterogeneity
disappears in the marginal cost function. Hence our specification with bivariate joint heterogeneity
in fixed and variable (or marginal) cost. We now evaluate our econometric approach by comparing
the actual distribution of firms’ output levels with the one endogenously predicted by our model.
We predict the optimal production level ŷCnt for each firm (at Cournot equilibrium) using (18),
and report the corresponding density on Figure 12. We also consider the Cournot model without
unobserved heterogeneity (Model 1) and compute firms’ optimal output level ŷC,sym

nt by (18) after
setting γu = γv = 1. It is convenient to represent the density for the logarithm of the output level
to avoid having a large support with paucity of observations when output is measured in level.
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Figure 12: Firms’ size distributions, observed and predicted

Figure 12 is informative both about the strengths and shortcomings of our approach. All three
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distributions have a similar shape but quite a different support. Our model including unobserved
heterogeneity is closer to the observed log-output distribution than the model neglecting it (or
considering it as random and uncorrelated with output). The three densities reach a peak at
respectively ln y = 1, ln y = 5 and ln y = 7, which represents a sizable gap between observed and
predicted production values. The main reason for this discrepancy is that our model targets the
cost and the marginal cost function, but not the production level of our firms. Our objective is to
extend our model to include this additional criteria into the econometric framework, either by using
a moment fitting or simulated maximum likelihood approach. A further reason for the lack of fit
between the log-output distributions is that we have included only two unobserved heterogeneity
terms, which respectively affect the fixed cost and the first derivative of the cost function. A
third unobserved heterogeneity term is actually needed to allow for heterogeneous second order
derivatives of the cost function wrt y, and which determines the optimal (and heterogeneous) firm
size. Such extensions are part of our future research agenda.

8.3 Production reallocation
Some evidence for productive inefficiency is straightly available from the descriptive statistics.
There is a huge heterogeneity in the level of average cost cnt/ynt over firms, which is compatible
both with technological heterogeneity and inefficient output allocation over firms. About 10% of the
firms have an average cost which is three times the median average cost in manufacturing. Output
reallocation spontaneously occurs, but at a very slow pace. Over the 184 four digit industries,
the inter-quartile range of cor(cnt/ynt, ynt/Y4t) goes from -0.047 to -0.017. Moreover, the average
(over firms) average cost, is always much higher than the production share weighted average cost,
which means that their is a negative correlation between average cost and market share ynt/Y4t.

Starting from the observed output allocation over firms (see Fig. 12 ), which we assume to
correspond to a long-run Cournot equilibrium, we compute the values of the aggregate output,
price, welfare, Hirschman-Herfindahl index, concentration ratio and number of firms. Table 10
reports the median value of these numbers over all 4-digit industries. We then redistribute indi-
vidual outputs over firms in order to resolve the inefficiency due to market power. This new and
regulated optimum correspond to the SROW described in Section 4.1, whose properties are given
by P4 and P5. At the SROW all firms producing at SRCE are still active (some firms produce
zero output though), so there is still a technological inefficiency due to too many occurrences of
inefficient firms. We then allow the social planer to pick up those firms allowed to produce at
LROW and exit other firms according to Section 4.2. The numerical results of these simulations
are summarized in Table xy.

Table 10: Welfare and output distribution at LRCE, SROW and LROW

Y P C Π W HH C10 1− C50% N
LRCE 100 100
SROW 110 90
LROW 2 120 80
LROW 1 130 70

In order to built a bridge with the homogeneous firm setup of Mankiw and Whinston, we define
the firm level average cost at Cournot equilibrium as:

cC ≡ 1

NC

NC∑
m=1

c
(
wm, yCm, γm

)
. (57)

This allows to recast our heterogeneous firms Cournot equilibrium into a virtual homogeneous
firms Cournot equilibrium with the same total number of firms and the same total production
level. Using the formulas for the welfare level at Cournot equilibrium and at the optimal point, we
decompose the total inefficiency of Cournot competition into three terms. The first term on the
RHS of (58) reflects inefficiency due to too low output and too high price at Cournot equilibrium.
The second term corresponds to the inefficient big number of firms and the last term is due to the
inefficient way of producing at too high costs. This last term is zero if firms are homogeneous.
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WS −WC =

∫ Y S

Y C

P (s) ds+ (NC −NS)cC +

(
NScC −

∑
m∈NS

c (wm, ym, γm)

)
(58)

Our estimates show that at the welfare maximizing point, output redistribution would improve
welfare by about xx%. A quite important part of welfare gain is achieved by increasing output and
reducing its price (xy%). A reduction in the number of firms, due to an homogeneous optimization
of the production scale represents about xz% of welfare gain. The total cost of production can also
be reduced through redistribution of output to more cost efficient firms, and this represents about
xx% of the welfare gain.

9 Conclusion
This paper investigates Cournot competition with heterogeneous firms, and highlights the regular-
ities emerging in this context between firm size, market shares, marginal cost and market power.
While greater firm size is a good indicator of cost efficiency, it is at the same time an indicator of
welfare inefficiency due to market power. Whereas most competition policies limit the overall in-
efficiency by constraining firms’ admissible market shares, we emphasize that an alternative policy
could be to promote firms’ cost efficiency while limiting their market power.

Our empirical contribution consists to develop an estimation strategy able to identify the dis-
tribution of two multiplicative correlated random terms: one affecting the fixed cost and one
associated with the variable cost of production. In this context, standard estimation procedures
yield inconsistent estimates. We extended a technique available for the estimation of one additive
productivity term occurring with a production function to two multiplicative terms affecting the
cost function.

Our empirical results highlight the importance of both observed and unobserved heterogeneity
for explaining firms’ cost and marginal revenues. Fixed costs are often very small, but found to
be significant for the smallest and largest firm sizes, which may have policy implications, both for
increasing the survival probability of small firms, than for fighting inefficiencies (or market power)
of bigger firms. Unobserved heterogeneity in variable costs give a competitive advantage to bigger
firms by lowering their variable cost function (ceteris paribus). However, we also estimate that this
type of cost efficiency is compensated by lack of technological improvement over time for bigger
firms.

One important theoretical result is the generalization of Mankiw and Whinston (1986)’s the-
orem about excess entry at Cournot equilibrium to the case of heterogeneous firms. It would be
interesting in a further paper to evaluate quantitatively the size of the inefficiencies due to too
many small firms producing with fixed cost and high variable cost, and to evaluate the welfare
gains of redistributing their production to bigger firms producing with lower marginal cost. For
this purpose, Proposition 4 would be helpful to characterize the different configurations, and guide
us for writing the computer code for redistributing market shares. We could then compute the
optimal degree of concentration together with the optimal number of firms active in each market.
Before to be able to tackle this issue, however, we have to amend our model and estimation ap-
proach towards still more flexibility, so that our models’ predictions still improve and catch more
stylized facts of the industrial structure.
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A Proof of the propositions
Proof of Proposition 1.
(i) and (ii). By A1 it follows that ϵ (P, Y ) ≡ P ′ (Y )Y/P (Y ) < 0. By A2, at equilibrium P (Y ) +
P ′ (Y ) yNn > 0 hence P (Y )

(
1 + ϵ (P, Y ) yNn /Y

)
> 0. Summing these inequalities over N gives (i).

The inequality also implies that individual market shares are bounded above: yNn /Y < −1/ϵ (P, Y ).
(iii) From the first order condition ∂cn/∂y = P (Y )(1+ϵ (P, Y ) yNn /Y ) it turns out that at Cournot
equilibrium

yNi > yNj ⇔ ∂ci
∂y

(
wi, y

N
i

)
<

∂cj
∂y

(
wj , y

N
j

)
.

Claim (iv) directly follows from (iii) and the definition of the price markup P/(∂cn/∂y).
Claim (v) corresponds to Okumura (2015, Lemma 1). □

Proof of Proposition 2.
Input prices could be heterogeneous over firms, but without affecting the result, so we use notation
w instead of wn. The Cournot equilibrium is characterized by N individual production levels
yNn

(
w, {γv

n}
N
n=1

)
and Y N

(
w, {γv

n}
N
n=1

)
such that the first and second order optimality conditions

are satisfied. We find it convenient to omit the arguments
(
w, {γv

n}
N
n=1

)
of Y N and yNn in the

equations below. At Cournot equilibrium, individual and aggregate output levels satisfy:

P
(
Y N
)
+ P ′ (Y N

)
yNi = γv

i

∂v

∂y

(
w, yNi

)
Y N =

N∑
n=1

yNn

Differentiating the first order optimality condition with respect to γv
i for two different firms, i and

n, gives

(
P ′ (Y N

)
+ P ′′ (Y N

)
yNi
) ∂Y N

∂γv
i

+ P ′ (Y N
) ∂yNi
∂γv

i

=
∂v

∂y

(
w, yNi

)
+ γv

i

∂v2

∂y2
(w, yi)

∂yNi
∂γv

i(
P ′ (Y N

)
+ P ′′ (Y N

)
yNn
) ∂Y N

∂γv
i

+ P ′ (Y N
) ∂yNn
∂γv

i

= γv
n

∂v2

∂y2
(
w, yNn

) ∂yNn
∂γv

i

.

Let us define

aNn ≡
[
P ′ (Y N

)
− γv

n

∂v2

∂y2
(
w, yNn

)]−1

,

which is negative by A3(ii), and write

∂yNi
∂γv

i

= aNi ·
(
∂v

∂y

(
w, yNi

)
−
(
P ′ (Y N

)
+ P ′′ (Y N

)
yNi
) ∂Y N

∂γv
i

)
∂yNn
∂γv

i

= −aNn ·
(
P ′ (Y N

)
+ P ′′ (Y N

)
yNn
) ∂Y N

∂γv
i

If we sum all partial effects ∂yNn /∂γv
i over all n = 1 to N this gives

∂Y N

∂γv
i

= −
N∑

n=1

aNn ·
((

P ′ (Y N
)
+ P ′′ (Y N

)
yNn
) ∂Y N

∂γv
i

)
+ aNi

∂v

∂y

(
w, yNi

)
⇒ ∂Y N

∂γv
i

=
aNi

1 +
∑N

n=1 (P
′ (Y N ) + P ′′ (Y N ) yNn ) aNn

∂v

∂y

(
w, yNi

)
.

Then A1 guarantees that ∂v/∂y
(
w, yNi

)
≥ 0, by A3 aNi < 0, and A4 implies that the denominator

is positive, so
∂Y N

∂γv
i

≤ 0.
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Replacing this term in the individual output supply reaction, shows that for n ̸= i,

∂yNn
∂γv

i

≥ 0

so that necessarily
∂yNi
∂γv

i

≤ 0.

We also see, that a marginal change in the fixed cost parameter γu
i , holding the parameter γv

i

constant, has not effect on the Nash equilibrium. Claim (v) follows from the definition of the profit
function

πN
i

(
w, {γv

n}
N
n=1

)
= P

(
Y N
)
yNi

(
w, {γv

n}
N
n=1

)
− γu

i u (w)− γv
i v
(
w, yNi

(
w, {γv

n}
N
n=1

))
which is impacted by a change in γu

i and γv
i as follow

πN
i

∂γu
i

(
w, {γv

n}
N
n=1

)
= −u (w) ≤ 0

πN
i

∂γv
i

(
w, {γv

n}
N
n=1

)
= P

(
Y N
) ∂yNi
∂γv

i

+ P ′ (Y N
)
yNi

∂Y N

∂γv
i

− vi − γv
i

∂v

∂yi

∂yNi
∂γv

i

= P ′ (Y N
)
yNi

∂Y N
−i

∂γv
i

− vi < 0,

where the last simplification is obtained by using firm’s i first order condition for optimality.
Similarly:

πN
i

∂γv
j

(
w,
{
γv
j

}N
j=1

)
= P ′ (Y N

)
yNi

∂Y N
−i

∂γv
j

≥ 0.

□

Proof of Proposition 3.
(i) As input prices are identical for both firms we skip w from most of our notations and write for
instance v1 instead of v1 (w). When the cost functions are quadratic, marginal costs are linear,
and for yNi < yNj at Nash equilibrium, we also have

∂ci
∂y

(
w, yNi

)
>

∂cj
∂y

(
w, yNj

)
(59)

⇔ γv
i ·
(
v1 + v2y

N
i

)
> γv

j ·
(
v1 + v2y

N
j

)
.

By convexity, v2 ≥ 0, we use the fact that γv
i > 0, γv

j > 0 and yNj > yNi , to conclude that this
inequality is equivalent to γv

i > γv
j .

(ii) We use the fact that for two numbers a ≥ 0 and b such that a+b ≥ 0, we also have a+b/2 ≥ 0.
We identify

a ≡
(
γv
i − γv

j

)
v1

b ≡ v2 ·
(
γv
i y

N
i − γv

j y
N
j

)
The term a is nonnegative by (i) and A2 implies that v1 ≥ 0. The condition a+ b ≥ 0 corresponds
to (59). The implied inequality a+ b/2 ≥ 0 is equivalent to claim (ii).
(iii) For γv

i > γv
j , and same technological shock η, relationship A7 implies that γu

i < γu
j and

ui (w) < uj (w) .
(iv) From γv

i > γv
j > 0 and A7 with ηi = ηj we have γu

i < γu
j and so

γu
i

γv
i

<
γu
j

γv
j

⇔
(
2γu

i u

γv
i v2

)1/2

<

(
2γu

j u

γv
j v2

)1/2

.

□
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Proof of Proposition 4.
(i) At the LRCE characterized by (3), it turns out that for any active firm,

P (Y C
−n + yn)−

∂cn
∂yn

(wn, yn) ≥ 0. (60)

By A1 and A3(ii) this function is decreasing in yn at the LRCE for any active firm. At SROW, for
maximizing W, the social planer chooses {ym}Mm=1 in order to satisfy P

(∑M
m=1 ym

)
−∂cn/∂yn (wn, yn) =

0 for any active firm, which requires that
∑M

m=1 y
S
m ≥

∑M
m=1 y

C
m. Equivalently, by A1, we have

P
(
Y S
)
≤ P

(
Y C
)
.

(ii) By definition, WS maximizes welfare by choosing the optimal level of production over all firms
active at LRCE, hence WS ≥ WC . It follows directly from (i) and profit maximization, that:

πS
n = P (Y S)ySn − cn

(
wn, y

S
n

)
< P (Y C)ySn − cn

(
wn, y

S
n

)
≤ P (Y C)yCn − cn

(
wn, y

C
n

)
= πC

n .

(iii)-(v) At the aggregate production level Y S ≥ Y C the firms’ production plans have to satisfy:

∂cm
∂ym

(wm, ySm) =
∂cn
∂yn

(wn, y
S
n ) = P

(
Y S
)
, (61)

for active firms. At the LRCE, firms’ marginal costs are related by:

∂cn
∂yn

(wn, y
C
n ) = P ′(Y C)

(
yCn − yCm

)
+

∂cm
∂ym

(wm, yCm),

so that bigger firms have lower marginal cost at the LRCE (just as in P1). This equation also
shows how each firm n has to adjust yCn in order to achieve ySn satisfying (61). Let us order firms
from lower to higher marginal cost, and define "bigger firms" as those having at LRCE a marginal
cost lower than P

(
Y S
)
, and "smaller firms" the other group with ∂cn/∂yn (wn, yn) ≥ P

(
Y S
)
.

Starting from the LRCE, the social planer requires that:

• bigger firms produce more output: ySn > yCn . Bigger firms with lower but increasing marginal
costs, increase their production up to the point where (61) is satisfied (A3 ensures that
such a point exists). Bigger firms with decreasing marginal cost at yCn cannot have globally
decreasing marginal cost by A3, so their production can be increased to met (61).

• smaller firms with decreasing marginal cost produce more if this allows to sufficiently decrease
their marginal cost and reach P

(
Y S
)
. If this is not possible, they are shut down.

• smaller firms with increasing marginal costs have to produce less and reduce their marginal
cost in order to satisfy (61). If this is not possible, they should stop their activity.

(vi) In points (iii)-(v) we have identified either firms which should continue to produce at SROW,
or firms which should be shut down. So that NC ≥ NS . □

Proof of Proposition 5. We use the fact that the Hirschman-Herfindahl index of concen-
tration H

(
Y,
∑N

n=1 y
2
n

)
is nonincreasing in N and increasing when individual outputs are redis-

tributed from smaller to bigger firms. Under decreasing returns to scale, point P4(v) vanishes, and
point (vi) can be sharpen to NS ≤ NC . Let us define κ ≡ Y S/Y C ≥ 1 and starting from LRCE,
let us scale all individual output levels up to κyCn . This leaves the value of Hirschman-Herfindahl
index unchanged as

H

Y C ,

NC∑
n=1

(
yCn
)2 =

NC∑
n=1

(
yCn
Y C

)2

=

NC∑
n=1

(
κyCn
Y S

)2

= H

Y S ,

NC∑
n=1

(
κyCn

)2 .

Individual firms have now seen their production arbitrarily scaled up by κyCn , so that aggregate
production is equal to Y S . However, in order to produce Y S optimally, such as characterized in
P4, the social planer still has to redistribute the individual output levels κyCn while keeping the
aggregate level fixed at Y S . We will show that this is achieved by redistributing output from
smaller to bigger firms, which increases the value taken by H at SROW. We know that at LRCE

∂cn
∂y

(w, yCn ) = P ′(Y C)
(
yCn − yCm

)
+

∂cm
∂y

(w, yCm)
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and so yCn ≥ yCm iff ∂cn/∂y(w, y
C
n ) ≤ ∂cm/∂y(w, yCm) as in P1. By A7, A8 and convexity, using

also P3(i), we have for any value of y

0 ≤ ∂2cn
∂y2

(w, yn) = γv
nv2 (w) < γv

mv2 (w) =
∂2cm
∂y2

(w, ym).

This inequality implies that marginal costs increase more strongly in small firms; so that if we
inflate all individual outputs by multiplication with κ ≥ 1 then,

∂cn
∂y

(w, κyCn ) ≤
∂cm
∂y

(w, κyCm),

which means that bigger firms have still lower marginal costs at
{
κyCn

}M
n=1

than smaller firms. The
social planer wants to implement the equality:

∂cn
∂y

(w, ySn ) = P (Y S)

which she can achieve from individual production levels
{
κyCn

}M
n=1

, by increasing further the output
of the bigger firms (with lowest marginal cost), and decreasing the output of the smaller firms
characterized by

∂cm
∂y

(wm, κyCn ) > P (Y S).

This redistribution of constant aggregate output from small to bigger firms increases the value of
H achieved at SROW. □

Proof of proposition 6.
(i) Under the above assumptions, W is continuous and the set of values taken by the welfare
function over ΓL is closed and bounded from above, and so it admits a maximum. The maximum
of W on Γ is reached on ΓL ⊆ Γ. The points on the technological frontier satisfy γv = e(γu), a
function which under A6 is strictly convex. For any (w, y) function W has straight line isoquants
in (γu, γv), and so reaches a unique maximum in (γu, γv) on the technological set.
(ii) From (i) it follows that at the LROW point, that the planer adopts the same technology γL

for all active firms, and so all firms produce the same quantity y = Y/N. Under this constraint,
the welfare function (24) becomes:

WL (Ny) =

∫ Ny

0

P (s) ds−NcL (w, y) , (62)

with cL defined in (28). Differentiation wrt y and N then yield the first order conditions for a
maximum, which states the zero profit condition, and the equality between price and average cost.
Together they imply that cL(w, yL)/yL = ∂cL/∂y(w, yL) = P (Y L), returns to scale are constant
locally. (If N is restricted to be an integer, then this condition is approximately valid for small
values of y in comparison to Y .)
(iii) Both optimization problems (26) and (25) have the same objective function, but there are
fewer constraints in (26), hence WL ≥ WS .
(iv) If the inequality holds, then the Kuhn and Tucker complementary slackness condition implies
that γu = 0.
(v) The claim follows because the first and second order conditions to both problems are identical.

□

B Further information on the data and descriptive statistics

B.1 Merging of the datasets FICUS and FARE
For the analysis we merge the two fiscal firm-level data sets FICUS and FARE, covering the periods
from 1994 to 2007, and 2008 to 2016, respectively. Both in FICUS and FARE firms are classified
by a 4-digit sector nomenclature "NAF" (nomenclature d’activité française). However, from 2008
onward, the FARE sectoral nomenclature changed: new sectors appeared (some FICUS sectors
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were split), some FICUS sectors disappeared (were merged into a FARE sector). In FICUS, the
nomenclature was organized according to "NAF 1", while in FARE the nomenclature is organized
according to "NAF 2". In this study we construct a single data set, 1994 - 2016, by extending the
sector nomenclature NAF 2 throughout the whole period. That is, we assign the current 4-digit
sector nomenclature NAF 2 retrospectively to all firms observed in FICUS. For firms that are
observed both in FICUS and FARE or only in FARE their 4-digit sector according to NAF 2 is
known. However, for firms that have exited the market before 2008 we do not know to which NAF
2 4-digit sector they would have belonged to if they had continued their activity. To also classify
these firms by the NAF 2 4-digit nomenclature we use the following methodology. We first only
look at firms that are observed in both data sets FICUS and FARE. From these observations we
build a transition matrix where each row represents a 4-digit sector according to NAF 1 and each
column represents a 4-digit sector according to NAF 2. Each cell of the transition matrix contains
the number of firms transiting from a specific 4-digit sector in FICUS (NAF 1) to the new 4-digit
sector in FARE (NAF 2). Table B1 shows an exemplifying transition matrix, where we chose the
NAF 1 4-digit sectors 201A - 205C, i.e. the manufacture of wood and products of wood. For
instance it can be seen that there are 2060 firms observed that were classified in FICUS in 201A
(first row) and in FARE in the sector 1610 (third column), while there are only 46 observations
that were classified in 201A and in FICUS in 0220 (first column). From these observed transition
frequencies we then calculate the transition probabilities by simply dividing each element of the
matrix by the sum of its corresponding row. That is, the NAF 1 - NAF 2 transition probabilities
are calculated by

pIJ =

∑NJ

n∈I,J 1[n∈I and n∈J]∑NI

n∈I 1[n∈I]

, (63)

where n is a firm observed in both FICUS and FARE, I and J are specific 4-digit sectors according
to NAF 1 and NAF 2, respectively. 1 is an index variable equal to 1 if the condition in parenthesis
is fulfilled. Table B2 contains the transition probabilities according to the observed transitions
Table B1. It can be seen that those 4-digit transitions between FICUS and FARE that were more
frequently observed obtain accordingly higher probabilities. In a second step, firms only observed
in FICUS belonging to a specific NAF 1 4-digit sector, are assigned to a NAF 2 (at the 4-digit
level), by a random draw with transition probabilities given the row of Table B2.
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B.2 Data cleaning
As mentioned in the main text, the industry for food processing (10), the manufacture of tobacco
products (12), and the manufacture of coke and refined petroleum products (19) are excluded from
the treated sample. Further, we only keep observations reporting values larger than zero in capital
stock (tangible assets), number of employees, materials, and production. Table B3 illustrates
summary statistics of a typical four-digit industry if no data cleaning at all was made. The table
shows that, compared to the case with data cleaning (Table 2), the average number of firms is more
than doubled, given by 765. This is mainly induced by the inclusion in Table B3 of industry 10 and
to a smaller extend by keeping firms reporting zero and missing values in the number of employees.
However, the table also shows that firms with less than 10 (500 or more) employees account for
about 6.2% (53.9%), which is very close to the figures presented based on the cleaned sample.
Hence, our sample generally matches the main characteristics of the French manufacturing.

Table B3: Average statistics of a typical four-digit manufacturing industry without data cleaninga

Firm
sizeb # of firms Share

of firms
Share of
employees

Share of
production

0 156 20.39 0.04 2.77
1 96 12.55 0.72 0.34
2-4 161 21.05 3.33 1.15
5-9 110 14.38 5.36 1.99
10-19 60 7.84 6.02 3.01
20-49 52 6.80 12.03 7.94
50-99 16 2.09 8.56 6.20
100-199 10 1.31 10.55 8.58
200-499 6 0.78 14.66 13.61
500+ 3 0.39 38.71 53.91
NA 95 12.42 0.00 0.48
Total 765 100.00 100.00 100.00
a All figures represent averages over all four-digit industries and years

(1994-2016). Shares are given in %.
b Firm sizes are measured by the number of employees. The group NA

represents those firms with missing values in the number of employees.

B.3 Further descriptive statistics
Table B4 shows shares of firms, employees, and production w.r.t. each considered two-digit indus-
try. The table shows that the manufacture of metal products (25) represents the biggest industry
in terms of the average number of firms and average employment, representing about 22.4% of all
firms and 13.4% of total employment. Instead, the manufacturing for motor vehicles represents the
biggest industry in terms of production, accounting for about 14.6% of total production. See also
De Monte (2021) for more descriptive statistics using the same data, with a particular attention
on firm dynamics (entry and exit).
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Table B4: Average statistics by 2-digit manufacturing industrya

Industryb # of firms Share
of firms

Share of
employees

Share of
production

11 1,132 1.79 1.75 4.04
13 2,578 4.07 2.93 1.94
14 3,574 5.65 3.36 1.76
15 966 1.53 1.39 0.84
16 4,767 7.53 2.91 1.94
17 1,236 1.95 3.33 3.32
18 7,566 11.96 3.77 1.90
20 2,068 3.27 7.49 13.52
21 370 0.58 3.62 4.56
22 3,765 5.95 8.40 6.01
23 4,157 6.57 5.50 4.87
24 815 1.29 3.84 5.41
25 14,185 22.42 13.40 9.14
26 2,483 3.92 6.60 4.49
27 1,853 2.93 5.93 5.16
28 4,858 7.68 7.93 6.78
29 1,559 2.46 10.15 14.58
30 558 0.88 5.06 8.30
31 4,780 7.55 2.63 1.44
Total 63,270 100.00 100.00 100.00
a All figures are based on the cleaned dataset and represent averages over the

period 1994-2016. Shares are given in %.
b 11-beverages, 13-textiles, 14-wearing apparel, 15-leather/related prod-

ucts, 16-wood/products of wood and cork, 17-paper/paper products, 18-
printing/reproduction of recorded media, 20-chemicals/chemical products,
21-pharmaceutical products/preparations, 22-rubber/plastic products, 23-
other non-metallic mineral products, 24-basic metals, 25-fabricated metal
products, 26-computer, electronic, and optical products, 27-electrical equip-
ment, 28-machinery and equipment, 29-motor vehicles/(semi-) trailers, 30-
other transport equipment, 31-furniture.

Table B5 illustrates the distribution of some variables included in znt to capture unobserved
heterogeneity for the estimation of the cost function (Section 7.2). As in the descriptive statistics
section, the table reports averages in a typical 4-digit industry, as well as the distribution of firm
sizes over the 1994-2016 period. Beside the average number and the average share of firms, the
table reports the share of investing firms, the investment-to-labor ratio, the average firm age as
well as the average number of observed periods (denoted by Tn in the main text). Note that firms’
investment, int, are given by expenditures in intangible assets, reported in the balance sheets,
deflated by the corresponding 2-digit investment price index. Unfortunately, firms’ investments
are not observed for the specific year 2008. We replace the largest part of these missing values
by computing in2008 = Kn2009 − (1 − δ2008)Kn2008, where Knt represents firms’ intangible assets
from the balance sheet, deflated by a corresponding 2-digit price index, and δt denotes the capital
depreciation rate, likewise calculated at the 2-digit level. It can be seen that the share of investing
firms is increasing in firm size, where the share of investing firms with only one employee is given
by 57.6 %, whereas almost all firms with 500 and more employees report investments in capital
(99.1 %). Regarding the investment-to-labor ratio there seems to be two clusters: one with an
investment level of about 6000e (or 0.06) per worker and another cluster with average investment
around 10000e. Considering firms’ average age and average number of observed periods, it can be
seen that, as expected, both variables are increasing in firm size. That is, while the average age
(number of observed periods) of firms with only one employee is given by 12.4 years (5 periods),
the largest size group, firms reporting 500 and more employees, are on average 29.1 years old (and
observed on average for 12.7 periods). Firms’ age, ant, is calculated as the difference between the
current year and the date of creation of the firm. So, firms’ age does not necessarily correspond
to the number of observed periods as especially small firms often show temporal inactivity and/or
drop out of the sample because of missing values. Both variables should represent good proxies to
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capture unobserved heterogeneity.

Table B5: Further average statistics by 4-digit manufacturing industrya

Firm
sizeb # of firms Share

of firms

Share of
investing

firms

Investment-
to-labor

ratio

Firm
age

# of obs.
periods

1 50 14.71 57.63 0.11 12.37 5.04
2-4 82 24.12 68.63 0.07 13.83 7.48
5-9 73 21.47 81.95 0.06 16.79 9.51
10-19 52 15.29 90.91 0.06 19.73 10.91
20-49 49 14.41 95.42 0.06 22.98 11.56
50-99 16 4.71 97.35 0.06 25.83 11.96
100-199 9 2.65 98.14 0.08 27.14 12.29
200-499 6 1.76 98.83 0.10 27.65 12.83
500+ 3 0.88 99.14 0.12 29.13 12.68
Total 340 100.00 80.07 0.07 17.77 9.15
a All figures are based on the cleaned dataset and represent averages over the period 1994-2016.

Shares are given in %.
b Firm size is measured by the number of employees.
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