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Abstract

We provide a novel theory of fire sales based on liquidity-risk pricing. Fire-sale prices

of illiquid financial assets arise when financial intermediaries are in distress and do not

provide investors with full insurance against liquidity risk. This liquidity-risk pricing

does not rely on standard mechanisms used in the literature such as cash-in-the-market

pricing, second-best use, or asymmetric information. In particular, a single friction—

liquidity risk—plays a dual function in providing a role for financial intermediaries and

generating fire-sale prices. Our framework encompasses several classes of models, and

we provide two applications. First, we embed our mechanism in a standard bank runs

model. Second, we consider a model in which investors trade with dealers in OTC

markets. Policy implications differ substantially from those of other fire-sales models

in the literature: ex-ante interventions that alter investments in liquid and illiquid

assets—such as liquidity requirements—are counterproductive.
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1 Introduction

During several episodes of financial crises, many financial assets are traded at so-called fire-

sale prices, that is, prices that are somewhat lower than the fundamental value (Merrill

et al. 2021). Fire-sale prices are often problematic, as they might have a negative impact

on the balance sheet of leveraged financial and they might precipitate runs on banks and

other bank-like institutions such as money market mutual funds (Schmidt, Timmermann,

and Wermers 2016). Because of the importance of these events, academics and policymakers

have analyzed them in great details, and regulators have introduced several policies such as

liquidity requirements on banks and money market funds aimed at reducing these events and

their spillovers on the real economy.

Most theories of fire sales rely on either cash-in-the-market pricing (Allen and Gale,

1998), second-best use (Shleifer and Vishny, 1992; Kiyotaki and Moore, 1997; Lorenzoni,

2008), or asymmetric information (Kurlat, 2016). These theories differ from one to another,

but they all share a common feature. That is, while asset prices are in general equal to

expected discounted cash flows, fire-sale prices in these theories are typically the result of

the expectation part only, with little or no role played by fluctuations in discount rates (i.e.,

investors’ marginal utilities). Indeed, many of these theories can be derived in frameworks in

which marginal investors have linear utility (Allen and Gale, 1998; Kurlat, 2021). Yet, this

approach is in stark contrast with modern asset pricing, which emphasizes the importance

of fluctuations in discount rates to explain movements in asset prices (Cochrane, 2011).

This paper presents a novel theory of fire-sale pricing that fills this gap and studies the

resulting policy implications. We characterize a large class of models in which a fire-sale

price arises when financial intermediaries do not provide investors with full insurance against

liquidity risk, and investors are active traders in financial markets. When financial interme-

diaries are malfunctioning, investors are exposed to liquidity risk, resulting in a distortion to

their stochastic discount factor—that prices securities in equilibrium. In particular, exposure

to liquidity risk reduces investors’ demand for illiquid assets, and as long as asset supplies are
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not fully elastic, produces a low fire-sale price. We refer to this mechanism as liquidity-risk

pricing. Importantly, a single friction—liquidity risk—plays a dual function in providing a

role for financial intermediaries and generating fire-sale prices.

We first present our theory in a general framework that encompasses several classes of

models used in the financial intermediation literature. The framework is purposefully general

and includes only the key elements of the environment and the key features of the equilibrium

that are relevant to understand fire-sale prices driven by the liquidity-risk pricing mechanism

and derive the key policy results. We then provide two applications: (i) a banking model

in which financial intermediaries are subject to runs, and (ii) a model of over-the-counter

(OTC) trades in which investors trade with dealers in decentralized markets.

Our theory of fire sales based on liquidity-risk pricing has important policy implications.

In response to the 2008 and COVID- 19 crises, several new regulations have been imposed to

limit the risk and negative effects of fire sales, such as liquidity requirements on banks and

mutual funds. This has been in part motivated by the theoretical fire-sale literature, that

typically finds externalities associated with fire-sales (Dávila and Korinek 2017; Lorenzoni

2008; Kurlat 2021). Our policy implications, however, are very different. In our framework,

we show that ex-ante investments in liquid and illiquid assets are efficient, in the sense that

a regulator that internalizes the effects on prices would make the same decisions as price-

takers financial agents. Hence, liquidity requirements are counterproductive, in the sense that

they reduce welfare—by forcing investments in liquidity, this policy reduces investments in

more productive long-term projects. The result follows directly from the way fire sales work

in our framework. In contrast to, say, models of fire sales based on borrowing constraints

and second-best use (e.g., Lorenzoni (2008)), the fire-sale price here does not enter into

any binding borrowing constraint. Hence, the main channel that creates inefficiency and

amplifications is absent here. However—and stepping a bit outside the model—interventions

that increase liquidity in crisis times might be helpful to put upward pressure on the price

of long-term assets and, ultimately, redirect initial investments toward highly productive
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projects.

The relevance of our policy recommendations depends on whether our framework is a

good description of actual fire sales. In this sense, we note that a key element of our model

is that investors can hold not only deposits (or intermediaries’ debt more generally) but also

the same securities that intermediaries have in their balance sheets. Thus, the framework

could apply to e.g. certain money markets and bond mutual funds, such as those that target

institutional investors. Such investors might have the ability to not only hold the funds’

shares but also purchase e.g. commercial paper or corporate bonds. Hence, our theory

suggests that liquidity regulations imposed on these entities reduces welfare.

Let us now provide more details about our model. In our general framework, we consider

a discrete-time setting and focus on three periods: t, t + 1, and t + 2. At time t, investors

have access to a centralized market in which they can trade a short asset (i.e., liquidity)

and a long-term asset that pays off at t + 2. At t + 1, investors are subject to liquidity

shocks—modeled as preference shocks as in standard banking and OTC models (Diamond

and Dybvig, 1983; Weill, 2020). Crucially, when the liquidity risk is materialized, investors

have limited market access, and each of them can only meet a financial intermediary to

e.g. trade in an OTC market or withdraw deposits. When disruption in financial markets

impairs intermediaries’ ability to trade or pay out deposits, investors are exposed to liquidity

risk. Anticipating this possibility, investors tilt their time-t demand for investments toward

liquidity and away from the long-term asset. As long as the supply of liquidity and of the

long-term asset are somewhat rigid, the price at which the long-term asset trades at time

t drops to a fire-sale level in comparison to normal times (i.e., in comparison to a scenario

in which intermediaries are well-functioning and provide better insurance against liquidity

risk). Formally, the exposure to liquidity risk tilts the pricing kernel that investors use to

price the long-term asset, reducing the equilibrium price.

In our first application, we consider fire sales in a model of panic-based runs. We ex-

tend Diamond and Dybvig (1983) by introducing a centralized market in which banks and
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depositors can trade liquidity and a long-term asset before the realization of all the liquidity

risk, and we maintain the assumption that no trade is possible after. In the bad equilib-

rium, depositors run, and banks liquidate their long-term investments by selling them in

the centralized market at a fire-sale price. Crucially, depositors are on the other side of the

trade—they purchase the long-term assets that banks sell. To understand why a fire-sale

price arises, note that the runs are associated with bank failures, leaving depositors with no

insurance against liquidity risk. Hence, depositors are willing to pay a low price for the the

long-term asset, as they tilt their demand toward liquidity. The low price leads to banks’

insolvencies, making runs a self-fulfilling event. In contrast, in the good equilibrium, the

liquidity risk is fully offset by intermediaries through demand deposits, leading to a high

price for the long-term asset and a safe and stable banking sector.

In our second application, we study a simple model of OTC trades. The market structure

is somewhat similar to that of the bank runs application—investors have first access to

a centralized market where they can trade liquidity and a long-term asset, and are then

exposed to liquidity shocks in the form of heterogeneous consumption needs. As discussed by

Weill (2020), this type of liquidity shocks—when embedded in a model of OTC trade—can

translate into the more commonly used indirect utility for financial assets. In our model,

after the realization of the liquidity shocks, investors can meet dealers and engage in OTC

trade to either get more liquidity (if they are subject to a liquidity shock) or purchase more of

the long-term asset (if they are not subject to the liquidity shock). We consider two extreme

cases—one in which dealers are met with certainty and the terms of trade generate little

spreads, and another one in which OTC trades are exogenously shut down—the latter case

could arise if dealers are not willing to engage in any trade because of severe distress. When

OTC trades are shut down, investors preemptively try to tilt their portfolio toward liquidity

and away from the long-term asset before the realization of the liquidity risk. However, as

long as asset supplies are somewhat rigid, the outcome is a reduction in the price of the

long-term asset.
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2 General framework

We begin by providing a general framework in which we show how investors’ liquidity risk

generates fire sales when financial intermediaries are not well-functioning. The framework

is purposefully general, and Sections 3 and 4 provide applications to bank runs and OTC

markets in which we provide the full details of the environment and fully characterize the

equilibrium. The objective of this section is to sketch only the key elements of the envi-

ronment that are common to the various applications that we will analyze, as well as the

features of the equilibrium related to asset pricing and, in particular, fire sales. Section 2.1

present the environment and the main result. Section 2.2 characterizes the efficiency proper-

ties of the equilibrium and show that ex-ante regulatory intervention that alter investments

in liquid and illiquid assets—such as liquidity requirements—are counterproductive in our

environment.

2.1 Environment and main result

Consider an economy where time is discrete. The analysis here applies to both a finite or

infinite horizon model, with our focus being on period t, t+ 1, and t+ 2.

Investors have preferences

U ({ct+1, ct+2, ...} ; ε) (1)

where ε is a preference shock with distribution F (ε) that affects the marginal utility of

consumption at time t+ 1:

∂ U ({ct+1, ct+2, ...} ; ε′)
∂ct+1

>
∂ U ({ct+1, ct+2, ...} ; ε)

∂ct+1

for ε′ > ε.

In words, higher values of ε are associated with higher marginal utility at time t+ 1. Thus,

ε captures standard liquidity shocks that are used to motivate trades in models of OTC

markets or demand-deposit contracts in banking models.
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We assume that the utility function U(·) in (1) is strictly concave in ct+1, and that

∂U(·)/∂ct+1 is convex in ct+1. We also impose the sufficient condition that U(·) exhibits

constant marginal utility from time-2 consumption:

∂ U ({ct+1, ct+2, ...} ; ε)
∂ct+2

= β, (2)

where 0 < β < 1. That is, U(·) is linear in ct+2, and β denotes the discount factor. This is

again in line with several OTC models as well as infinite-horizon models that use quasi-linear

preference to obtain a linear continuation utility (Lagos and Wright, 2005). The linearity

assumption can be relaxed, but it is important that, in equilibrium, investors’ marginal

utilities at t+ 2 do not strongly co-move with marginal utilities at t+ 1.

From a planner perspective, a Pareto-optimal allocation equalizes marginal utilities at

t+ 1, that is,

∂ U ({ct+1(ε), ct+2, ...} ; ε)
∂ct+1

=
∂ U ({ct+1(ε

′), ct+2, ...} ; ε)
∂ct+1

for all ε, ε′. (3)

Without loss of generality, we normalize such marginal utilities to one—an assumption that

simplifies the exposition.

The market structure plays a crucial role in our results. At time t, there is a centralized

market.1 At t + 1, there are some frictions that limit investors’ ability to trade and contact

financial intermediaries. For instance, investors might have the possibility to trade only

with dealers in decentralized OTC markets. Or, investors might have no market access at

all but the ability to contact an intermediary, with the choice to roll over their deposits or

to withdraw them. To this end, we introduce the notation ct+1 (ε, ωt+1) where ω denotes

the investor’s relation with the intermediary, such as whether or not the investor is able to

contact an intermediary and trade, or the state-contingent features of the banking contract.

1In some of our applications, only a fraction of the investors have access to the market, so the discussion
that follows applies to agents who have the ability to trade at time t.
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Investors that have access to the time-t centralized market can trade a short-term asset

(i.e., liquidity) and a long-term security. The long-term security has a payoff Rt+2 > 1 at

t + 2 and the short-term asset can be consumed at t + 1 or stored and carried to t + 2. To

simplify the exposition, we assume that the payoff Rt+2 is deterministic, but the analysis can

be extended to the case with a stochastic payoff.

Consider now an investor that is allocating an amount It of wealth to liquidity st and the

long-term asset kt by trading in the time-t centralized market. The investor is subject to the

budget constraint

st + ktqt ≤ It (4)

where qt is the price of the long-term security.

The investor’s optimization implies the stochastic discount factor (SDF) that is used to

price, at time t, the long-term security with payoff at t+ 2:

SDF =
∂U/∂ct+2

Eε,ω {∂U/∂ct+1(ε,ω)}
. (5)

The denominator of the SDF includes the marginal utility of consumption at time t + 1

(as opposed to the time-t marginal utility as in standard asset pricing models) because the

investor is trading off the investments in the long-term asset—that pays off at time t + 2—

with the investment in liquidity—that can be used for consumption at t+1. In addition, the

time-t + 1 marginal utility is weighted with respect to the preference shock ε and, possibly,

investors relationship with the intermediary ω, because of the uncertainty associated with

these events. We also note that, in the banking application of Section 3, the investor might not

always trade in the time-t market—a bank that pools investors’ resources and offer demand

deposits might be doing the trades. However, as long as the bank acts in the depositors’

interest, the bank uses the same SDF in (5).
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Using (5), we obtain the asset pricing equation:

1 =
∂U/∂ct+2

Eε,ω {∂U/∂ct+1(ε,ω)}
Rt+2

qt
(6)

(where Rt+2/qt is the equilibrium gross return on the long-term asset), or, using the linearity

assumption in (2), and rearranging:

qt = βRt+2
1

Eε,ω {∂U/∂ct+1(ε,ω)}
. (7)

This expression states that the marginal utility of consumption at t + 1 crucially affects

the way the cash-flow Rt+2 is discounted. First, it is crucial that U (·) is a strictly concave

function in ct+1—with linear utility at t + 1, the price qt would be just the present-value of

the cash-flow, no matter what the distribution of t+1 consumption is. Second, the dispersion

in marginal utilities at t + 1 crucially affects discounting. To see this point, consider first

the extreme case in which investors’ marginal utilities at t + 1 are equalized for all agents.

This is the case if investors are able to trade very easily with intermediaries or are able to

withdraw the desired amount of deposits, and it corresponds to the Pareto-optimal allocation

described in (3). In this case, the price qt is given by

qt = βRt+2, (8)

where we have use the assumption that the Pareto-optimal allocation has unitary marginal

utility at t + 1. In words, the price of the long-term asset is simply the discounted payoff,

where the discount rate is given by β. This is the price of the financial asset that prevails in

normal times, that is, when intermediaries are well-functioning.

Consider next the case in which investors face difficulties, at time t + 1 in trading or re-

deeming their own deposits—because financial intermediaries or financial markets are some-
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what impaired.2 We show next that, in this case, a fire-sale price emerges, that is, the price

of the long-term asset is lower than in (8).

The fire-sale price is the result of the malfunctioning financial system, which exposes

investors to liquidity risk. More precisely, investors are concerned about facing a liquidity

shock ε in states ω in which financial intermediaries are unable to trade or provide liquidity—

or more generally, in which the terms of trade or those of the demand-deposit contract are

not advantageous. As a result, investors increase their time-t demand for liquidity st—to

provide self insurance against liquidity shocks, albeit partial—and reduce their demand for

the long-term illiquid asset. Provided that the supply of the liquid and long-term illiquid

assets are somewhat rigid, these changes in demands reduce the relative price qt of the illiquid

asset, thereby generating a fire-sale price.

To establish the results formally, we impose two sufficient conditions: (i) the economy-

wide supply of liquidity st and of the long-term asset kt at time t are fixed (i.e., independent of

qt); and (ii) the malfunctioning in the financial system is extreme, so that no intermediation

takes place at t + 1—investors’ only source of consumption at t + 1 is their own holding of

liquidity st. Let us stress that these conditions are sufficient, and the results can be derived

under somewhat weaker assumptions.

We can then discuss the choices of investors at time t. Investors choose how to allocate

their wealth It between liquidity st and investments in the long-term asset kt to maximize

their utility

max
st,kt,ct+1(ε),ct+2

Eε {U (ct+1(ε), ct+2, . . . ; ε)}

subject to the budget constraint (4), the feasibility constraint for time-t + 1 consumption,

ct+1(ε) ≤ st for all ε (i.e., they cannot consume more than what they stored at time t), and

the feasibility constraint for time-t+ 2 consumption,

ct+2 ≤ Rt+2kt + [st − ct+1(ε)] .

2These impairments are correctly anticipated as of time t.
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Note that the problem is not indexed by ω because we assumed that the malfunctioning in

the financial system is extreme (i.e., item (ii) above) so that investors are not able to interact

with financial intermediaries at t + 1 at all. For an investor with a preference shock ε that

is sufficiently low, the constraint ct+1(ε) ≤ st is not binding, and using (2), the first-order

condition is
∂ U (ct+1(ε), ct+2, . . . ; ε)

∂ct+1(ε)
= β. (9)

This result leads to two observations. First, (9) implies that investors for which the con-

straint ct+1(ε) ≤ st is not binding consume more than in the first-best allocation or more

than in normal times—recall that marginal utilities at t+ 1 are normalized to one, whereas

the marginal utility in (9) is equal to β, and β < 1. As a result, fixing total consumption

at t + 1, the other investors—those for which the constraint ct+1(ε) ≤ st is binding—must

be consuming less than in normal times. Second, because the investors with non-binding

ct+1(ε) ≤ st constraint are actually storing some of their liquidity holdings, and liquidity

holdings are instead entirely used for consumption in normal times, total consumption is ac-

tually less than in normal times. Because ∂U(·)/∂ct+1 is convex in ct+1, the two observations

lead to the conclusion that

Eε

{
∂ U (ct+1(ε), ct+2, . . . ; ε)

∂ct+1(ε)

}
> 1. (10)

That is, the increase in marginal utility dispersion together with a reduction in total con-

sumption unambiguously leads to an increase in the average marginal utility in comparison

to its normal time value—which is normalized to one.

We can now return to the pricing condition in (7), which implies

qt = βRt+2
1

Eε,ω {∂U/∂ct+1(ε,ω)}
< βRt+2,

where the inequality follows from (10). Thus, the price of the long-term asset is now less

than the normal-time value βRt+2 because of the distortion in the pricing kernel that arise
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from the investors’ exposure to liquidity risk.

Sections 3 and 4 present two applications in which the liquidity-risk pricing that generates

fire sales is used in the context of panic-based bank runs and a market freeze in OTC trades

Before turning to such applications, however, we analyze the efficiency of ex-ante investments

in liquid and long-term assets.

2.2 Efficiency of ex-ante investments

We now introduce a t − 1 choice of investment in the liquid and long-term asset and study

whether the investment choice is efficient or if a regulatory intervention can improve welfare.

We show that the t − 1 investment is efficient and, thus, any regulatory intervention that

alter such investment decisions backfires, in the sense that it reduces welfare.

At t − 1, investors have one unit of endowment that can be either invested in liquidity

(i.e., stored) or invested in the long-term asset. We denote st−1 to be the investor’s choice of

liquidity and kt−1 the investor’s choice of the long-term asset. Because the investor has one

unit of endowment, we have kt−1 = 1− st−1, and in what follows, we focus just on the choice

of st−1. The investor solves the problem

max
0≤st−1≤1

Et−1 {Vt (st−1; qt)} (11)

where Vt (st−1; qt) is the indirect utility function of the investor evaluated at time t, when

the market price of the long-term asset is qt. The investor choice of st−1 solve the first-order

condition
∂Et−1 {Vt (st−1; qt)}

∂st−1

= 0.

A regulator that has access to policy tools to alter investors’ choice of st−1 maximizes the

same objective function as the investor, that is, (11), but with a crucial difference. That is,

the regulator internalizes that her choices affect prices—and in particular, the time-t price
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of the long-term asset, qt. Hence, the regulator’s optimal choice of st−1 solves3

∂Et−1 {Vt (st−1; qt)}
∂st−1

+ Et−1

{
∂Vt (st−1; qt)

∂qt

∂qt
∂st−1

}
= 0. (12)

To establish that the regulator’s choice is the same as the one made by the investor, we need

to show that the second term in (12) is zero. To this end, we can write the indirect utility

Vt (st−1; qt) as

Vt (st−1; qt) = U ({ct+1, ct+2, ...} ; ε) + λt [It − st − qtkt] . (13)

The indirect utility depends on two standard element. The first element is the expected

utility Et−1 {U (·)} from the consumption allocation {ct+1, ct+2, ...}. The second element is

the product of the time-t budget constraint (4)—evaluated with equality—and the relative

Lagrange multiplier λt. The wealth It that the investor allocates to investments in liquidity

and long-term assets is given by It = st−1 + qtkt−1 − xt, where st−1 and kt−1 are the ex-ante

investments in liquidity and long-term assets, and xt denotes other possible uses of liquidity

at time t—in one of our application, investors might use xt to finance some consumption at

time t. In the banking application of Section 3, investors might not trade directly and a bank

might manage the resources of many investors, but (13) is unchanged because the banks’

budget set is obtained by summing over the budget sets of the individual investors that have

a relationship with the bank, and because of the linearity of the budget constraints in its

entries.

We now have all the elements to show that the second term in (12) is zero. Focusing on

the term ∂Vt (st−1; qt) /∂qt, we have

Et−1

{
∂Vt (st−1; qt)

∂qt

}
= Et−1 {λt [kt−1 − kt]}

= 0.

3We assume that the indirect utility function is a well-behaved function and we can interchange the
derivative with respect to st−1 with the expectation operator.
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The second line follows from the time-t market clearing condition for capital kt = kt−1—the

assumption introduced in Section 2.1 about the fixed supply of the assets traded at time t

implies that the supply of the long-term asset is determined at time t− 1.4

When our framework is compared with other models in the fire sale literature, a key

difference is that the price of the long-term asset qt does not enter any borrowing constraint.

As a result, the pecuniary externalities that are at work when such constraint is present

(Dávila and Korinek 2017) are absent here. We summarize this result in the next proposition.

Proposition 2.1 The choice of liquidity st−1 and investments in the long-term assets kt−1 =

1−st−1 made by price-taking agents at time t−1 is the same as the choice made by a regulator

that internalizes the effects on prices.

The result of this section has important policy implications. The ex-ante investment

decisions of price-taking agents that face possible fire-sale prices are efficient, and regulation

aimed at changing such decisions is counterproductive, in the sense that reduces welfare. For

instance, in the context of the banking application of Section 3, the result of Proposition 2.1

implies that regulatory interventions in the form of liquidity requirements are not needed,

and if implemented, are welfare reducing, when fire sales and fire-sale prices are driven by

the liquidity-risk pricing mechanism studied in this paper.

3 First Application: Bank Runs

We now present our first application. We extend the framework of Diamond and Dybvig

(1983) (DD) to endogenize the fire-sale price at which banks sell their long-term assets in

the event of a run according to the mechanism proposed in Section 2. We try to keep the

model as close as possible to DD to highlight the similarities and differences and to simplify

the exposition by building on what has become a standard framework in the literature. We

4It is straightforward to extend the framework to introduce a technology that allows to liquidate the
capital at t. As long as there are liquidation costs, our results are unchanged.
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first present the results in a framework in which the demand deposit banking contract is

imposed exogenously, and then provide extensions in which we endogenize some elements of

the contract.

3.1 Environment

The economy lasts four periods denoted by t ∈ {0, 1, 2, 3}. As the rest of the discussion will

clarify, the structure and assumption of time t = 0, t = 2, and t = 3 are very similar to the

original DD paper, whereas time t = 1 represents a departure that we use to model our novel

fire-sale mechanism described in Section 2.

There is a continuum of agents that are ex-ante identical (i.e., identical at t = 0) and

are subject to preference shocks. At t = 1, some of the uncertainty related to the preference

shocks is realized, and the ex-ante identical agents are split into two groups: a fraction θ of

them become impatient and the remaining 1 − θ become non-impatient. Impatient agents

enjoy only utility from consumption at t = 1 according to u (c1) . Non-impatient agents face

additional preference shocks at t = 1, as in Diamond and Dybvig (1983). In particular,

a non-impatient agent becomes normal with probability γ
1−θ

and patient with probability

1−γ−θ
1−θ

, with utility function

u (c1, c2; type) =

u(c1) + βc2 if type = {normal}

βc2 if type = {patient}.

We assume throughout the analysis that

u (c) = log c. (14)

While the formulation of preferences is slightly different from Diamond and Dybvig (1983),

the logic and implications are very similar. That is, impatient and normal agents have urgent

needs to consume at t = 1 and t = 2, respectively.
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All the preference shocks are i.i.d. across households, and the law of large numbers holds.

As a result, the overall mass of impatient, normal, and patient agents is θ, γ, and (1− γ − θ),

respectively. We assume throughout the analysis that

u (c) = log c. (15)

At t = 0, each agent is endowed with 1 unit of the economy’s single good at time 0. These

goods can either be stored or invested in a long-term technology—each unit of investment

is referred to as “capital.” The storage technology is standard and allows agents to transfer

goods from time t to t+1 with a gross return of one. The long-term technology allows agents

to invest at t = 0, in projects that produce outputs at t = 3. Each unit of the endowment

invested produces R > 1 units of output at t = 3, with the normalization R = 1/β. We

depart from Diamond and Dybvig (1983) by assuming that there is no liquidation technology

to transform the long-term investments into consumption goods after the time-0 decision has

been made.

A key element of our environment is that agents have access to a centralized location at

t = 1 where they can trade capital against stored goods. More precisely, we assume that a

fraction p of agents have access to the time-1 centralized market, and the remaining fraction

1 − p do not. We denote q1 to be the price of capital in this market. We also assume that

there is no market at t = 2. The assumptions of limited market participation at t = 1 and

absence of centralized markets at t = 2 prevent agents from using trading in financial markets

as a way to obtain liquidity in the event of preference shocks, and opens up a role for banks

(Jacklin, 1987).

Banks can be formed at t = 0 and liquidated at t = 3. After banks are formed at

t = 0, each agent can contact her bank at all t ∈ {1, 2, 3}. In particular, in keeping with

the assumption that there is no centralized market at t = 2, we assume that only bilateral

meetings between each depositor and her bank are possible in that time period, so that

depositors cannot meet with each other but only with their own bank at t = 2.
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3.2 Pareto optimal allocation

We first present the Pareto optimal allocation in the absence of any information friction.

That is, we consider a social planner who can observe individuals’ realized types at t = 1

and t = 2. At t = 0, the planner stores s0 and invests 1 − s0 in the long-term technology.

The planner let each impatient agent consume c1 at t = 1, each normal agent consume c2 at

t = 2, and each patient agent consume c3 at t = 3. Hence, the planner solves

max
s0,c1,c2,c3

θu(c1) +

[
γ

1− θ
u(c2) +

1− γ − θ

1− θ
βc3

]

subject to the resource constraints at t = 1 and t = 2:

θc1 + (1− θ) γc2 ≤ s0,

(1− θ) (1− γ) c3 ≤ (1− s0)R.

The optimal consumption c∗1 and c∗2 satisfy

u′(c∗1) = u′(c∗2) = 1

and the assumption of log utility in (14) implies

s∗0 = θ + γ, c∗1 = 1, c∗2 = 1, c∗3 = R.

The next proposition summarizes this result.

Proposition 3.1 (Pareto optimal allocation) The Pareto optimal allocation features

s∗0 = θ + γ, c∗1 = c∗2 = 1, and c∗3 = R.
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3.3 Decentralized economy with restricted banking contracts

We study a decentralized equilibrium, beginning with the analysis of a banking contract

that implements the Pareto optimal allocation of Section 3.2. This is a standard “good

equilibrium” of banking model in the tradition of Diamond and Dybvig (1983). That is, the

bank collects endowments from agents and invest 1 − s0 in the long-term technology, and

offers a deposit contract that provides full insurance against preference shocks. We then turn

to the analysis of the bad equilibrium in Section 3.3.2.

In this section, we focus on the case in which all agents have market access at t = 1 (i.e.,

p = 1) and restrict the set of contracts that banks can offer to provide a simple exposition

that focuses on our novel contribution. In particular, We assume that banks are set up at

t = 0 and offer a contract that allow agents to withdraw at t = 1 or t = 2 or t = 3. In

other words, we ignore that the preference shocks realized at t = 1 can be self-insured by

accessing the time-1 centralized market (Jacklin, 1987). We extend the analysis in Section

3.4, in which we consider p < 1 (i.e., limited market participation) and the possibility to set

up banks not only at t = 0 but also at t = 1, showing that the main results are unchanged.

As an additional restriction on contracts, we assume that tools such as suspension of

convertibility or deposit insurance are not available. This is again made to better convey

our intuition, and builds on well-established results in the literature that highlight how these

tools are not necessarily optimal if e.g. banks cannot commit to suspend convertibility (Ennis

and Keister, 2009) or if deposit insurance leads to moral hazard (Cooper and Ross, 1998).

An equilibrium with banks is defined as a contract that specifies banks’ investments in

storage ŝ0 and in the long-term technology 1− ŝ0, and withdrawals ĉ1, ĉ2, and ĉ3 for agents

that report their type to be impatient, normal, or patient, respectively; agents’ and banks’

decisions about the quantity of storage and long-term assets that each of them want to trade

at t = 1; and a price q1 that clears the market at t = 1.
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3.3.1 Good equilibrium

The good equilibrium is standard. Banks offer a contract in which they collect endowments

at t = 0 and allow agents to withdraw at t = 1, or t = 2, or t = 3. In equilibrium, impatient

agents withdraw at t = 1, normal agents withdraw at t = 2, and patient ones wait until t = 3

and receive an equal share of the funds that are available at that time. The Pareto optimal

allocation presented in Section 3.2 is implemented, as summarized by the next proposition.

Proposition 3.2 (Good equilibrium) There exists an equilibrium in which banks offer

a contract that implements the Pareto optimal allocation of Prop 3.1, that is, ŝ0 = θ + γ,

ĉ1 = ĉ2 = 1, and ĉ3 = R; no trading takes place at t = 1; and the price of capital is q1 = 1.

The proof (in Appendix A) is based on two steps. The first one is the standard argument

that depositors prefer to truthfully report the realization of their preference shock. The other

steps deal with trading decisions and the time-1 market, which is novel in our environment,

so we elaborate more on it.

To show that the time-1 market clears at the price q1 = 1, we need to solve for banks’ and

agents’ trading decisions. For impatient agents, consuming all their withdrawal leads to a

marginal utility of one at t = 1, which is equal to the marginal utility of investing a dollar in

the long-term asset and using the proceeds for consumption at t = 3. Non-impatient agents

do not withdraw at t = 1 and, thus, have no resources to trade. We then need to show that

banks do not want to adjust the composition of their holdings of storage and illiquid capital

at t = 1. After withdrawals by impatient agents took place, banks’ have the option to adjust

their holdings of liquidity, s1, and capital, k1, by engaging in trades. Their objective is to

maximize the utility of non-impatient agents:

max
s1,k1,ĉ2,ĉ3

γ

1− θ
u (ĉ2) +

1− γ − θ

1− θ
βĉ3

subject to

s1 + q1k1 ≤ s0 − θ + q1 (1− s0) (16)
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γĉ2 ≤ s1

(1− γ − θ) ĉ3 ≤ Rk1.

That is, a bank trades with the objective of improving the terms of the contract, subject to

the budget constraint at t = 1, (16), the constraint that time-2 withdrawals ĉ2 to the mass

γ of normal agents must be paid using the goods s1 stored at t = 1, and the constraint that

time-3 consumption to patient agents is paid using the output produced by the capital k1

that the bank has after trading at t = 1.

Under the equilibrium price q = 1, banks’ maximization problem implies

s1 = γ, k1 = 1− ŝ0.

That is, banks optimal holdings of capital, k1, do not change in comparison to the time-0

holdings 1− ŝ0. In other words, banks do not want to engage in any trade at t = 1.

To further clarify the result, it is useful to restate the optimality condition of banks’

trading decisions as

1 = β

[
v′ (ĉ2)

u′ (ĉ1)
(1 + r)

]
(17)

where v (c) = c is agents’ utility at t = 2 and 1 + r ≡ R
q
is the return on purchasing a unit

of capital. This is the same asset pricing condition derived in Section 2, and when evaluated

at the equilibrium level of consumption, it implies

q1 = βR. (18)

Because of the normalization R = 1/β, the result q1 = 1 follows.

3.3.2 Bad equilibrium

As in the DD paper, there can be another equilibrium in which bank runs become self-

fulfilling prophecies. In this equilibrium, banks are subject to a run at t = 1 and sell their
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holdings of the long-term assets to repay the withdrawals. Crucially, the long-term asset is

sold by banks at a fire-sale price q < 1 (i.e., lower than the good equilibrium price). The fire

sale price arises here because, as banks are subject to runs and fail at t = 1, they are unable

to provide insurance against the liquidity risk at t = 2. Hence, agents’ increased demand

for liquidity and decreased demand for the long-term illiquid asset at t = 1 put downward

pressure on the price q1. This lower price, in turn, implies that banks are insolvent at t = 1,

making runs a self-fulfilling outcome.

In this equilibrium, the bank still collects endowments from agents and invests 1− s0 in

the long-term technology and provides the same deposit contract. At t = 1, all agents go to

the bank and withdraw. The amount each agent is able withdraw from the bank is

w(q1) = s0 + (1− s0)q1.

Agents adjust their portfolio at the same time when they withdraw. For an impatient type,

let ci be the amount she consumes out of w(q), which solves

max
ci

log(ci) + β
w(q1)− ci

q1
R.

The FOC gives

c∗i = q1.

If q1 < 1, we have c∗i < 1 = c∗1. Accordingly, an impatient type consumes less than she

does in the efficient equilibrium and purchases capital if she observe a lower price. For a

non-impatient agent, let sn be the amount of storage goods she carries (which she does not

consume immediately), which solves

max
sn

(1− µ)

[
log(s∗n) + β

(w(q1)− sn)R

q1

]
+ µβ

[
sn +

(w(q)− sn)R

q1

]
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where µ ≡ 1−θ−γ
1−θ

. With probability 1−µ, the non-impatient agent becomes normal at time 1;

with probability µ she turns out being patient. The storage sn is determined by the following

FOC

1− µ

s∗n
=

1

q1
− µβ,

or

s∗n =
1− µ
1
q1
− βµ

.

In equilibrium, the storage goods market and the capital market must clear. By Walras’

Law, we only need to check the storage goods market. The clearing condition for this market

writes as

θc∗i + (1− θ)s∗n = s0 (19)

which determines the market price q1. We now show that q1 < 1 in this equilibrium.

Proposition 3.3 In the bank run equilibrium, there is fire sale: q1 < 1.

Proof: The market clearing condition (19) simplifies as

θq1 +
γ

1
q1
− βµ

= θ + γ

Suppose q1 ≥ 1, then θq1 +
γ

1
q1

−βµ
> θ + γ, the market cannot clear, a contradiction. □

3.4 Extension: limited market participation

The previous section has shown the existence of a bad equilibrium in which the fire-sale price

at which banks sell their investments is endogenously determined according to a standard

consumption-based asset pricing formulation. However, the results are derived in a setting

in which agents can gather in a centralized market at time t = 1 in which their only option
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is to trade. In practice, however, when a run takes place, some depositors who run might

move their resources to other parts of the financial sector that allows them to receive full

or almost-full insurance against their liquidity risk. This possibility would affect depositors’

pricing kernel and limit the fire-sale mechanism that we have analyzed. Nonetheless, we

show that as long as some agents face frictions in their ability to allocate their financial

investments, the bad equilibrium with fire sale exists. In particular, we assume that some

depositors face trading frictions or other costs that limit their ability to trade and to move

their resources to other financial intermediaries.

We capture this idea by assuming a form of limited participation in centralized market.

That is, only a fraction p ≤ 1 of agents can access the market, and the remaining 1− p have

only access to the bank established at t = 0.

Appendix B analyzes the case in which all agents can participate in the market at t = 1

(i.e., p = 1) and pool their resources to create new banks. In that case, the bad equilibrium

does not exist. Here, we analyze the case in which p < 1 and, thus, some agents can only,

at t = 1 withdraw from their pre-existing bank and store liquidity. In this case, a bad

equilibrium with a fire-sale price still exists.

Assume that agents enter the time-1 centralized market (hence are able to trade or create

a bank) with probability p ≤ 1. With probability 1− p, agents are in an autarky situation.

Note that in any case, all agents would be able to withdraw from the bank that was set up

at t = 0.

The introduction of the additional layer of decentralization does not change the Pareto

optimal allocations. In the good equilibrium in which the Pareto optimal allocations are

implemented, if a non-impatient type deviates and withdraws c∗1 = 1 at time 1. With

probability p, she is able to adjust her stock of storage goods to s∗n = 1−µ
1−βµ

. With probability

1− p, she is isolated from trading. In this autarky case, she does not consume any goods at

time 1 but carries c∗1 = 1 to time 2. If, at time 2, she becomes a normal type, she chooses can
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to consume at t = 2, and 1− can to store. Her maximization problem at t = 2 is

max
cai

log(can) + β(1− can)

and she chooses can = 1 at the corner because 1 < 1
β
. If she becomes patient at time 2, she

will just consume 1 at time 3. So the expected utility of an isolated non-impatient type at

t = 1 is

(1− µ) log(c∗1) + βµc∗1

The incentive constraint for non-impatient types to not withdraw at time 1 becomes

(1− µ) log(c∗2) + µβR ≥ p

(
(1− µ) log(s∗n) + β

(
µs∗n + (c∗1 − s∗n)R

))
+(1− p)

(
(1− µ) log(c∗1) + βµc∗1

)
(20)

The expected utility of a non-impatient type under autarky is lower than under free trading,

hence a non-impatient agent will have lower incentive to deviate when she knows that she

may not be able to reallocate any capital. We have

Proposition 3.4 The good equilibrium always exists with limits on market participation.

Proof: The old incentive constraint (27) holds implies that (20) holds. The result follows.

□

The bad equilibrium with bank run differs from the one in the previous discussion. In

autarky, an agent who withdraws w(q) from the old bank can only adjust intertemporal

consumption. Namely, an impatient type at t = 1 chooses cai to consume at t = 1 and stores

the rest w(q)− cai until t = 3. The consumption cai solves

max
cai

log(cai ) + β(w(q)− cai )
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which has the following formula

cai =

 1
β

if 1
β
≤ w(q)

w(q) if 1
β
≥ w(q)

When w(q) is greater than 1
β
, the FOC implies cai = 1

β
. When w(q) is below 1

β
, the solution

is at the corner. Similarly, at t = 1, a normal type chooses can to consume at t = 2, and

w(q)− can to store. The solution of can is identical to cai

can =

 1
β

if 1
β
≤ w(q)

w(q) if 1
β
≥ w(q)

A patient type at t = 2 will consume zero at time 2 and w(q) at time 3. Here when q ≤ 1,

w(q) ≤ 1, and cai = can = w(q).

Non-impatient agents that successfully access to the centralized market create a new bank

that provides insurance against liquidity risk at t = 2. The bank, collecting p(1 − θ)w(q)

from those non-impatient agents will stick to a investment plan in storage goods

s1 =
γ

p(1− θ)w(q)

The deposit contract remains the same, with c′2 = 1 and c′3 = R.

In sum, at t = 1, an impatient-type agent: with probability p, she consumes q and invests

w(q)−q
q

in capital; and with probability 1 − p, she withdraws w(q) and consumes cai at t = 1

and the rest at t = 3. And a non-impatient type: with probability p, she is able to create a

bank with other non-impatient agents, which invests s1p(1 − θ)w(q) in storage goods; with

probability 1−p, she withdraws w(q) and consumes can at t = 2 if she is normal and consumes

w(q) at t = 3 if she is patient.

The demand for liquidity of an autarky agent at t = 1 is just w(q). By LLN, the market
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clearing condition for storage goods now writes as

pθq + pγ + (1− p)(s0 + (1− s0)q) = θ + γ (21)

The first term in (21) is the aggregate demand from impatient types who are able to adjust

portfolios. The second term is the demand from the new bank created, which is just γ. The

third term is the total amount of withdrawals by autarky agents. The equilibrium capital

price is

q =
pθ

pθ + (1− p)(1− θ − γ)

As long as p < 1, q is smaller than one, implying there is fire sale.

Proposition 3.5 In the bank run equilibrium, there is fire sale: q < 1.

4 Second Application: Trading in OTC Markets

As a second application, we consider a very simple stylized model of OTC trades. A fire

sale here is generated by an exogenous shock that changes the fundamentals, as opposed to

a panic as in the previous example. In this sense, this second application highlights the fact

that our theory of fire-sale price applies not just to financial crises driven by panics but also

to disruptions in the financial sectors that are caused by so-called fundamental shocks.

For this application, we employ a simple three-period model t = 1, 2, 3. The economy is

populated by investors endowed, at t = 1, with liquidity s—–that can be stored and used for

consumption at t = 2 or t = 3—and a long-term illiquid asset k—that produces a return R

in the last period, that is, t = 3. Investors have preferences

εu(c2) + βc3, (22)
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where c2 and c3 are consumption at t = 2 and t = 3, respectively, and ε is a preference shock

that capture the notion that investors have different liquidity needs—see e.g. the discussion

in Lagos, Rocheteau, and Weill (2011). To keep the analysis simple, we assume that ε can

take two values: ε = 0 with probability 1 − θ and ε = 1 with probability θ. We impose the

normalization that the endowment of storage is s = θ per investor, and that R = 1/β. We

also assume that u(·) = log(·).

At t = 1, there is a centralized market in which the asset k can be traded at price q1.

At t = 2, there is no centralized market, and investors can only trade with dealers in an

OTC market. We assume that each investor is able to contact one dealer with probability

α ∈ [0, 1]. Dealers can trade with each other in an interdealer market at price q2, similar to

Duffie, Gârleanu, and Pedersen (2005). Dealers have no utility from holding the asset, but

they only have linear utility cd2 from consuming liquidity. We make the assumption that, in

a meeting between an investor and the dealer, the investor gets all the surplus (i.e., investors

make a take-it-or-leave-it offer).

4.1 Equilibrium with a well-functioning OTC market

We now characterize the equilibrium—and in particular, the price q1 of the long-term asset—

when dealers are well-functioning. We consider the limiting case in which α = 1, so that

investors are able to meet a dealer with certainty.

Because investors extract all the surplus from the meeting, it is as if investors were able

to trade the long-term asset in the interdealer market at price q2. We thus solve the problem,

for an investor that enter time t = 2 with holdings k1 and s1:

max
k2≥0,c2≥0,c3≥0

εu (c2) + c3 (23)

subject to the budget constraint c2 + q2k2 ≤ q2k1 + s1 and to c3 = Rk2.
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For an investor with preference shock ε = 1, we have

u′ (c2) = β
R

q2
. (24)

In equilibrium, all the storage is consumed by investors with realized preference shock ε =

1—the other investors have no utility from consumption at t = 1. Hence, (24) and the

normalization that the overall supply of liquidity is s = θ and that Rβ = 1 imply q2 = 1.

Stepping back to t = 1, we observe that the price of the long-term satisfy q1 = q2 and,

thus, q1 = 1. This is because no matter what the realization of the preference shock is,

investors at t = 2 have unitary marginal utility from wealth.

Note that the result is quite similar to our bank run application. Indeed, the well-

functioning market at t = 2 essentially provides investors with full insurance against liquidity

risk—a well-known result derived by Jacklin (1987).

4.2 Equilibrium with disruptions in the OTC market

Next, we consider the other extreme case in which the OTC market is plagued by extreme

frictions. In particular, we study the case α = 0, that is, investors are unable to meet dealers

to trade at t = 2.

The framework maps directly in the bad equilibrium analyzed for the banking application

in Section 3.3.2—with a small distinction driven by the fact that there are no impatient

consumers here that carry some liquidity to t = 3. Indeed, both cases are characterized by

the absence of markets at t = 2.

At t = 1, investors choose the optimal holdings of liquidity s1 and long-term asset k1 to

solve

max
k1,s1

(1− θ) β [s1 +Rk1] + θ [εu (s1) + βRk1] (25)

subject to s1 + q1k1 ≤ s + q1k. The first-order condition, together with the market clearing
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s1 = θ, imply

q1 =
1

(1− θ) β + θ × (1/θ)
< 1. (26)

Equation (26) implies that the price of the long-term asset at t = 1 is less than one, that is,

a fire-sale price arises.

5 Conclusion

This paper provides a novel theory of fire sales in which liquidity risk both justifies the

existence of financial intermediaries and generates a fire-sale price when the financial sector

is in distress. The approach is quite general and can be applied to several settings, such

as traditional models of bank runs as well as models of OTC trade. Crucially, the policy

implications differ substantially from those derived in models that use traditional approaches

to generate fire sales such as cash-in-the-market pricing, second-best use, and asymmetric

information. While ex-ante investments are typically inefficient in those settings, they are

efficient here, in the sense that a regulator does not want to impose liquidity requirements

because of the costs associated with reducing investments in assets that are more productive—

albeit illiquid.
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Merrill, Craig B, Taylor D Nadauld, René M Stulz, and Shane M Sherlun. 2021. “Were there

fire sales in the RMBS market?” Journal of Monetary Economics 122:17–37.

Schmidt, Lawrence, Allan Timmermann, and Russ Wermers. 2016. “Runs on money market

mutual funds.” The American Economic Review 106 (9):2625–2657.

Shleifer, Andrei and Robert W Vishny. 1992. “Liquidation values and debt capacity: A

market equilibrium approach.” The Journal of Finance 47 (4):1343–1366.

Weill, Pierre-Olivier. 2020. “The search theory of over-the-counter markets.” Annual Review

of Economics 12:747–773.

31



A Appendix: Proofs

Proposition A.1 The good equilibrium (with restricted banking contract) always exists.

Proof: We first claim that the price of capital at t = 1 has to be q = 1.

Lemma A.1 The equilibrium capital market price is q = 1.

Proof: At q = 1, impatient agents will withdraw and consume c∗1 at t = 1 without

purchasing any capital. To see this, let ci be the amount of goods an impatient type consumes,

hence she purchases c∗1 − ci as capital that will deliver R in the future. Then, ci solves the

expected utility of an impatient agent

max
ci

u(ci) + β(c∗1 − ci)R

The FOC derives as u′(ci) = 1, implying c∗i = c∗1 = 1. □

In equilibrium, the incentive compatibility of non-impatient types has to be satisfied. At

q = 1, suppose a non-impatient type deviates and withdraws c∗1 at time t = 1. She can use a

portion of the goods to purchase capital in the market and carry the rest to the future. Let

sn be the amount she stores, and c∗1 − sn be the amount of capital she purchases at the price

of 1. At time 2, if she becomes a normal type, she consumes sn and will consume (c∗1 − sn)R

at time 3; if she becomes patient, she will consume sn + (c∗1 − sn)R at time 3. Hence, at

t = 1, the non-impatient agent is choosing sn to solve

max
sn

γ

1− θ

[
log(sn) + β(c∗1 − sn)R

]
+

1− θ − γ

1− θ
β
[
sn + (c∗1 − sn)R

]
where γ

1−θ
is the conditional probability of being a normal type at time 2 conditioning on being

non-impatient at time 1. Let µ ≡ 1−θ−γ
1−θ

as in the main text, the optimal s∗n is determined
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by the following FOC

(1− µ)

(
1

s∗n
− 1

)
= 1− β,

or s∗n = 1−µ
1−βµ

. If the non-impatient type follows the equilibrium path, she will receive and

consume c∗2 at t = 2 if she turns out to be of normal type and consume (1−s0)R
1−θ−γ

at t = 3 if

she becomes patient. The final realization of the investment technology, (1 − s0)R, will be

evenly distributed among the patient agents. Since s0 = θ + γ, each patient agent receives

R. The incentive constraint hence writes as

(1− µ) log(c∗1) + µβR ≥ (1− µ) log(s∗n) + β
[
µs∗n + (c∗1

2
− s∗n)R

]
(27)

which becomes

0 ≥ (1− µ) log

(
1− µ

1− βµ

)

after simplification. This condition always holds because β < 1.

Moreover, the equilibrium allocations must guarantee that patient type incentive com-

patibility is met at time 2. If a patient agent goes to the bank at t = 2 to withdraw early, she

receives c∗2 amount of goods and stores them until time 3 because there is no market at t = 2.

By deviation, she is unable to receive the investment payoff she could have obtained at t = 3,

which amounts to R. The denominator is the fraction of agents who have not withdrawn at

time 3. The IC thus writes as

c∗2 ≤ R. (28)

Since c∗2 = 1, (28) always holds as well.
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B Appendix: Full market participation and new banks

at t = 1

This appendix shows that, when all agents can access the market at t = 1 and pool their

resources to create new banks, there are no fire sales and the allocation is the same as in the

good equilibrium.

The new bank established by the 1 − θ non-impatient agents will collect (1 − θ)w(q) in

total amount of the goods. The bank adjusts its portfolio at the same time. Let s1 be the

fraction the bank carries in storage goods and 1 − s1 be the fraction of purchasing capital.

The new bank also provides a deposit contract that allows agents to withdraw c′2 at time 2

and c′3 at time 3 if the agent has not withdrawn yet. The new bank is solving

max
s1

γ log(c′2) + β(1− θ − γ)c′3

subject to

γc′2 = s1(1− θ)w(q)

(1− θ − γ)c′3 = (1− s1)(1− θ)w(q)R

The investment plan of the bank is

s1 =
γ

(1− θ)w(q)

Impatient type agents each withdraws c∗1 from the initial bank and consumes c∗i = q, as shown

in the main part of the paper. The market clearing condition for the storage goods market

is hence

θq + (1− θ)s1w(q) = s0 (29)

34



implying that the market price has to be q = 1. In this case, c∗1 = c′2 = 1, c′3 = R. The ex

ante expected payoff of an agent is the same as in the good equilibrium. In other words, the

two equilibria are isomorphic in regard with welfare.
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