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Abstract

We analyze an epidemiological model where forward-looking individuals trade off the

costs and benefits of self-isolation while being uncertain about the dynamics of the epi-

demic. We characterize the interior symmetric equilibrium and we identify necessary

conditions of the optimal solution. We calibrate our model to the COVID-19 pandemic

and simulate the dynamics of the epidemic under various scenarios to illustrate the im-

pact of uncertainty on self-isolation behaviors. We show that uncertainty may cause a

second wave of infection and that the average level of social activity can decrease with

uncertainty. Finally, uncertainty about the epidemic dynamics may be welfare improving,

both in terms of fraction of deaths and average payoff.
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1 Introduction

It is now well-documented that the dynamics of an epidemic depend on the behavior of the

population in terms of social distancing and application of prophylactic measures.1 Conversely,

many papers have documented that individuals adapt their behaviors to epidemic variables

(incidence rate, level of hospitalizations, etc).2 For example, Fardoobi et al. (2020) show

that attendance in public places declined as soon as the WHO announced the existence of a

pandemic in March 2020, thus before the implementation of lockdown and closure policies. The

object of the growing strategic epi-economic literature is to analyze the two-sided interactions

between the dynamics of epidemic and the population behavior. In this literature, individuals

trade off the costs and benefits of preventive behaviors on the basis of their evaluation of

the risk of contracting the disease, which depends on the prevalence rate, i.e., the fraction of

infected individuals in the population. Typically, individuals are assumed to know the current

prevalence rate when they make their decisions. In reality, the presence of asymptomatic

individuals and the imperfect knowledge of the characteristics of the disease (contagiousness

rate, starting time of the epidemic, etc), make it difficult for individuals, if not impossible, to

infer the current prevalence rate from their private information. This is particularly true when

the disease is caused by a new virus or resurfaces at random times. Recent examples of such

situations abound: COVID-19 and its different mutants, influenza which returns every winter

in temperate zones, Ebola which has reappeared several times in DRC, but also in Guinea in

2021, etc...

The contribution of this paper is to analyze an epidemiological model where forward-

looking individuals are uncertain about some characteristics of the epidemic and are therefore

unable to infer the fraction of the population that is infected. Individuals form beliefs about
1Delamater et al. (2019) and Britton et al. (2020) show that the herd immunity level against COVID-19 is

reduced when the model encompasses the possibility that some social groups of individuals are more socially

active. Cowling et al. (2009) and Aiello et al. (2010) show that masks and hand washing can reduce household

transmission of respiratory infections in small areas. Cowling et al. (2020) show that border restrictions and

changes in individual behaviors are partly responsible for reduced transmission in Hong Kong in February

2020.
2For instance, Philipson and Posner (1993) show that the demand for measles, mumps and rubella vaccines

increases when there is a large increase in measles cases in a community. Ahituv et al. (1996) show that the

demand for condoms increases in regions where HIV is prevalent.
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the epidemic, that they continuously update on the basis of how much they might have been

exposed to the virus. Simultaneously, they decide their degree of exposure to the virus by

trading off the costs and benefits of self-isolation on the basis of their subjective beliefs.

Precisely, we amend the classical Susceptible-Infected-Recovered (SIR hereafter) model of

Kermack and McKendrick (1927). In its classical version, the SIR model divides an homoge-

neous population into three groups: {susceptible}, {infected} and {recovered}, with individ-

uals transiting from one group to another one at given, exogenous rates that depend on the

size of each group. As in Baril-Tremblay et al. (2021), we consider two possible types of in-

dividuals in the population: symptomatic and asymptomatic. Individuals of the symptomatic

type experience the symptoms of the disease immediately after being infected. In contrast,

individuals of the asymptomatic type do not have symptoms. Initially, individuals do not

know their type. We depart from Baril-Tremblay et al. (2021) by assuming that individuals

do not observe the prevalence rate and are uncertain about some parameters governing the

dynamics of the prevalence rate.

Individuals influence the transition rate from {susceptible} to {infected} by self-isolating,

i.e., strategically reducing social activity. How does an individual who never had symptoms

in the past tradeoff the costs and benefits of self-isolation? On the benefits side, self-isolation

prevents one from being infected by reducing the probability of being infected by a contagious

person. The costs side is more subtle. Indeed, an individual who does not get symptoms while

having social activity becomes more optimistic both on the prevalence rate and on being the

asymptomatic type. The costs of self-isolation are thus twofold: there is the direct cost of

confinement (boredom, opportunity cost of not working, or of working in poorer conditions,

lack of physical activity, etc..) and the opportunity cost of not learning about one’s type and

about the prevalence rate.

We characterize the symmetric equilibrium in which individuals partially self-isolate at

every time. At this equilibrium, the level of social activity is equal to the ratio between, on

the one hand, the direct cost of self-isolation, and on the other hand, the expected net cost of

the social activity, which is equal to the expected welfare loss in case of infection minus the

informational benefit.

We calibrate our model to the COVID-19 and we simulate the dynamics of the epidemic

when the population is aware of two possible epidemics with different initial penetration rates.

3



The impact of uncertainty is ambiguous. For any prior belief, individuals self-isolate drastically

after the epidemic announcement, which results in a drop in the fraction of infected; then, they

gradually increase the level of social interactions. The rate at which social activity increases

varies with the prior that the epidemic has a low initial penetration rate. When the prior

increases, individuals self-isolate less at the beginning of the epidemic and more at the end.

One reason for this reversal is that individuals believe they have been less exposed to the

disease at the beginning of the epidemic when the initial penetration rate is low. As a result,

they are less confident in being immune to the disease, and self-isolate more at the end of

the outbreak. In the more aggressive epidemic, for any prior, individuals self-isolate enough

to maintain the effective reproduction number below the value that accelerates the epidemic,

thus the epidemic curve continuously decreases until the arrival of the vaccine. In the less

aggressive epidemic, when the initial prior is small there is a second wave of infections with

a second peak that is higher the more erroneous the beliefs are. This second wave arises

because, for these priors, individuals choose a higher level of social activity from some date

on. This leads to an inadequate reaction to the true level of the epidemic that may induce

an effective rise of the cumulated fraction of infected individuals. Therefore, the social value

of information depends on the initial state of the epidemic. We find that transparency is

welfare improving only in the less aggressive epidemic, both in terms of fraction of deaths

and payoffs. For all the priors we consider, the ex-ante fraction of deaths is smaller when

individuals are uncertain about the state than without uncertainty, suggesting that opacity

can prevent deaths. In terms of payoffs, the information value is negative when the population

is relatively confident that the epidemic is initially aggressive.

Related literature Many papers in economics have documented that individuals adapt their

behavior when facing a risk of infection. Before COVID-19, concern was mainly on AIDS, thus

papers analyzed steady-states of Susceptible-Infected models (see for instance Kremer (1996),

Philipson and Posner (1993), Toxvaerd (2019)). To analyze an infectious disease like COVID-

19, recent papers are based on SIR models in continuous time with either forward-looking or

myopic individuals. Carnehl, Fukuda and Kos (2022.a) analyze a SIR model with infinite hori-

zon and myopic agents. The infection risk is linear in the average level of social interaction and

the isolation cost are quadratic. They show that there exists a unique symmetric equilibrium

and that a second wave is impossible. Surprisingly, if the initial faction of infected individuals
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is sufficiently small, an epidemic may not start if the virus is very contagious. In a companion

paper (Carnehl, Fukuda & Kos (2022.b)), they assume non stationary isolation cost to capture

the lockdown fatigue phenomenon, and give sufficient conditions for the existence of a second

wave. Dasaratha (2022) assumes that infected individuals do not observe their health status

but know when they are recovered. The infection risk is a quadratic function of the average

level of social activity. In the main part of the paper, agents are supposed to be myopic.

The author shows that, because agents adapt their behavior, an exogenous marginal increase

of the infected individuals can have a negative effect on the number of new cases. Phelan

& Toda (2022) analyze a model in which infected individuals can be asymptomatic with a

certain probability. The population is finite and agents ignore the effect of their choice on the

infection rate. A vaccine arrives at some random date. They show that there is a unique value

function that satisfies the Bellman Equation and that there exists a Markovian equilibrium.

They derive the optimal lockdown policy. Toxvaerd (2022) considers a model in which players

can be of two types: asymptomatic and symptomatic. An agent’s type determines whether

he will develop symptoms or not when infected. When an individual is infected and develops

symptoms, he chooses the maximal social interaction level. The author shows that when types

are not observable, the total number of infection cases is higher but the number of infected

with symptoms is lower. Consequently, the welfare is higher when types are not observable.

A comparison between the effect of infection and the immunity tests on the dynamic of the

epidemic reveals that, except in the early stages, the latter have a higher private value. Fi-

nally, our model generalizes Baril-Tremblay et al. (2021) by introducing uncertainty. In both

papers, we assume that each agent can be of two types, as in Toxvaerd (2022), the infection

risk is a quadratic function of the average level of social activity, the self-isolation costs are

linear and the horizon is finite (the underlying assumption is that a vaccine is available after

some date).

Several papers adopt a macroeconomics perspective and compare the competitive equilib-

rium with the confinement effectiveness. Farboodi, Jarosh & Shimer (2021) assume imperfect

observation of the health status. They compare the dynamics obtained at the decentralized

equilibrium with the one obtained under the optimal policy and show that the competitive

equilibrium is suboptimal. Brotherhood et al. (2020) assume that agents are heterogenous

with respect to age and the older people are more likely to die. Rachel (2020) considers a
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lockdown problem and provides analytical results.

Several papers put aside the question of individuals’ responses to an epidemic risk and focus

exclusively on optimal mitigation policies by assuming that a planner controls the transmission

rate (see for instance Kruse & Strack (2022), Alvarez et al (2020)...). Acemoglu et al assume

that agents are heterogenous. Giannitsarou et al analyze the dynamics of epidemics under

waning immunity.

It is well known that in SIR models without decentralized self-isolation choice and policy

intervention, a second wave cannot emerge. In Carnehl, Fukuda & Kos (2022.b) it arrises

because the self-isolation costs are not stationary. Rachel (2020) shows that a second wave

can occur after a lockdown. Giannitsarou et al (2021) show that waning immunity induces

oscillations. In our paper, the second wave is not due to non stationary self-isolation costs,

waning immunity or lockdown release but only to uncertainty.

The remainder of this paper is organized as follows. Section 2 sets up the model. In Section

3, we solve the best-response problem of a player, analyze some properties of the equilibrium

and characterize the symmetric equilibrium. In Section 4, we calibrate our model to fit the

COVID-19 pandemic, we simulate the dynamics of the epidemic in equilibrium and investigate

the impact of uncertainty. In Section 5, we analyze the problem of a government who must

decide upon the optimal isolation policy. Proofs are gathered in the Appendix.

2 An epidemiological model with uncertainty

The population. Time t ∈ [0,+∞) is continuous and discounted at a common rate r > 0.

There is a rampant disease in the population, against which a vaccine will arrive at time

T > 0. The population is a continuum of individuals j ∈ [0, 1] who must continuously choose

a level of social activity, which can be interpreted as the fraction of their time they do not

spend at home. An individual who stays home is protected from infection, while an individual

who goes out may be contaminated by contact with an infected individual.

Infection may be totally asymptomatic. Whether an individual develops symptoms or not

when she is infected is an idiosyncratic characteristic described by her type. There are two

types of individuals in the population: Individuals of type θs –the symptomatic type– who

experience the symptoms of the disease immediately after being infected, and individuals of
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type θa –the asymptomatic type– who do not have symptoms in case of infection, thus never

realize when they have been infected. Individuals do not know their type unless they are of

type θs and catch the disease. There is a proportion α ∈ (0, 1) of asymptomatic types in the

population. The infection period ends by recovery at rate γa for asymptomatic types, and by

either recovery or death for symptomatic types, at rates γs and ν. However, infection stops

for both types of individuals at the same rate, i.e., γa = ν + γs. Therefore, at each time

there is a proportion α of infected individuals who have no symptoms. Finally, individuals

are contagious as long as they are infected, and are immune to the disease after recovering.

We assume that an individual who gets symptoms self-isolates immediately until the end of

the symptoms, either to protect others, or simply because she is too sick to go out. Therefore,

a strategy for player j is a measurable function kj : R+ → [0, 1], with the interpretation that

kj(t) is the proportion of time spent outside at time t, absent symptoms by time t.3 Therefore,

the disease is spread in the population by asymptomatic infected individuals.

The epidemic. An epidemic is characterized by its initial penetration level in the population

(s̄, ā, r̄), where s̄ ∈ [0, 1] is the proportion of individuals who are not immune to the disease

at time 0, ā ∈ [0, 1] is the proportion of individuals infected without symptoms at time 0 and

r̄ ∈ [0, 1] the proportion of individuals who already recovered from the disease at time 0 and

are now immune to it. As the share of asymptomatic types in the general population is α, the

proportion of individuals infected with symptoms at time 0 is ī = 1−α
α , and the proportion of

dead individuals is d̄ = 1− s̄− ā− r̄ − ī ∈ [0, 1].4

We identify an epidemic ω with the tuple {s̄, ā, r̄} and we denote by Ω the finite set of possible

epidemics.

Dynamics of the epidemic. To model the spread of epidemic ω, we use the classical

Susceptible-Infected-Recovered (SIR) model by Kermack and McKendrick (1927), that we

amend to introduce individual behaviors and uncertainty.

At each time t, the population is divided into five groups: the group of susceptible in-

dividuals who have never been infected by the disease, denoted by S(t | ω) and of size
3The usual assumption in the literature is that infected individuals chose a constant social activity level k̄

during the symptomatic period. Assuming k̄ = 0 is without loss of generality for the purpose of this paper

and lightens the analytic expressions.
4By the law of large numbers, the initial proportion of infected individuals with symptoms represents a

share 1− α of the population of infected people, thus ī = (1− α)(̄i+ ā).
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s(t | ω) :=
∫
j∈S(t|ω) dj; the group of symptomatic infected individuals who are infected with

symptoms at time t, denoted by I(t | ω) and of size i(t | ω) :=
∫
j∈I(t|ω) dj; the group of

asymptomatic infected individuals who are infected without symptoms at time t, denoted

by A(t | ω) and of size a(t | ω) :=
∫
j∈A(t|ω) dj; the group of recovered individuals who al-

ready healed from the disease (with or without symptoms), denoted by R(t | ω) and of size

r(t | ω) :=
∫
j∈R(t|ω) dj and the group of dead individuals, denoted by D(t | ω) and of size

d(t | ω) = 1− s(t | ω)− i(t | ω)− a(t | ω)− r(t | ω).

The evolution of the epidemic penetration depends on the behavior of the population.

Here we explain how by using a probabilistic argument. What is the mass of individuals who

become infected in the interval [t, t + dt), in expectation? Fix some date t, some strategy

profile k := (kj)j∈[0,1] and some small dt > 0. The probability that a susceptible individual

s ∈ S(t | ω) meets and is infected by some infected asymptomatic individual a ∈ A(t | ω)

during the interval [t, t + dt) is ks(t)ka(t)βdt. Therefore, the probability that s becomes

infected in [t, t + dt) is ks(t)
(∫

j∈A(t|ω) kj(t)dj
)
βdt, and the expected mass of newly infected

individuals is
∫
s∈S(t|ω)

(
ks(t)

∫
a∈A(t|ω) ka(t)daβdt

)
ds. Therefore, the fraction of susceptible

individuals evolves as follows:5

ṡ(t | ω) = −βk̄S(t | ω)s(t | ω)k̄A(t | ω)a(t | ω), (1)

where k̄S(t | ω) = 1
s(t|ω)

∫
j∈S(t|ω) kj(t)dj and k̄A(t | ω) = 1

a(t|ω)

∫
j∈A(t|ω) kj(t)dj denote the

average behavior of susceptible and asymptomatic infected individuals, respectively. At each

time t, the fraction of newly infected −ṡ(t | ω) is split between A(t | ω) and I(t | ω), in

proportions α and 1 − α, respectively. The other groups of the population thus evolve as

follows:

ȧ(t | ω) = −αṡ(t | ω)− γaa(t | ω), (2)

i̇(t | ω) = −(1− α)ṡ(t | ω)− (γs + ν)i(t | ω), (3)

ṙ(t | ω) = γaa(t | ω) + γsi(t | ω), (4)

ḋ(t | ω) = νi(t | ω), (5)

with s(0 | ω) = s̄, i(0 | ω) = ī, a(0 | ω) = ā, r(0 | ω) = r̄ and d(0 | ω) = d̄. The assumptions

γa = ν + γs and ī = 1−α
α ā guarantee that i(t | ω) = 1−α

α a(t | ω) for every t.
5As s(t + dt | ω) − s(t | ω) = −

∫
j∈S(t|ω) kj(t)dj ×

∫
j∈A(t|ω) kj(t)dj × βdt. The result follows from the fact

that ṡ(t | ω) = limdt→0
s(t+dt|ω)−s(t|ω)

dt
.
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Uncertainty and beliefs. At time 0, individuals learn the existence of an epidemic, but do

not know their own type nor which epidemic they are facing. Moreover, they never observe

the current epidemic penetration, hence the only additional information they have at time t

is whether they had or did not have symptoms before t.6

We denote by pj(t) : Ω→ [0, 1] the subjective belief of individual j at time t that she is the

symptomatic type, with the interpretation that pj(t | ω) is the probability of player j being

type θs conditionally on the epidemic being ω and having experienced no symptom by time t.

Individual j continuously updates her belief on the basis of whether she is having symptoms,

conditionally on the strategy profile of the population and the dynamic system (1) and (2).

Precisely, the law of motion of the subjective belief of individual j is7

ṗj(t | ω) = −pj(t | ω)(1− pj(t | ω))kj(t)βk̄A(t | ω)a(t | ω), with pj(0 | ω) = 1− α. (6)

Moreover, we denote by µj(t) : Ω → [0, 1] the subjective belief of individual j at time t over

Ω, with the interpretation that µj(t, ω) is the probability at time t for individual j that the

epidemic is ω, conditional on having experienced no symptom by time t. At time 0, individuals

hold the common belief µ0 : Ω→ [0, 1]. The subjective belief that the epidemic is ω depends

on the subjective belief pj(t) as follows:8

µj(t, ω) =
µ0(ω)/(1− pj(t | ω))∑

ω′∈Ω µ
0(ω′)/(1− pj(t | ω′))

. (7)

Payoffs. Staying home prevents one from being infected, but comes at a cost (boredom,

opportunity cost of not working or working in poorer conditions, lack of physical activity,

etc.). Being infected is also costly for individuals of the symptomatic type because they suffer

from the symptoms, and, in the worst case, die from the disease. Therefore, at each time t,

individuals tradeoff the cost of self-isolating and the expected benefit of having no symptoms.

We denote by cS the flow cost of self-isolation, by cI the flow cost of having symptoms and
6In Section we describe a more general model where uncertainty pertains also to the epidemiological pa-

rameters β, α, γs, γa, ν. The analysis is similar with heavier notation.
7Fix ω ∈ Ω and a strategy profile k. A susceptible individual j develops symptoms in [t, t + dt) with

probability 0 when she is of type θa; when she is of type θs, she develops symptoms if she meets and is infected

by some asymptomatic individual, which occurs with instantaneous probability kj(t)k̄A(t | ω)a(t | ω) × βdt.

By Bayes’ rule, the law of motion of the subjective belief of individual j is thus (6).
8See Lemma 1 in the Appendix.
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by cD the flow cost of being dead. The flow payoff of having social activity and being healthy

is normalized to 0.

Uncertainty about her type is solved for an individual the first time she has symptoms. In

that event, she knows that she is the symptomatic type, thus that she will stay at home until

she heals or passes away, thereby incurring a total cost of
∫ min{τH ,τD}

0 e−rt(cS + cI)dt, with τH

and τD standing for the random times of healing and death, respectively. If she heals from the

disease (i.e., if τH < τD), she becomes immune to it, plays k(t) = 1 forever after, thus obtains

the continuation payoff 0. If she dies (i.e., if τD < τH), she incurs the flow cost cD forever after,

thus obtains the continuation payoff −cD/r. Therefore, the expected continuation payoff to

an individual the first time she has symptoms is:9

vI = −E
[∫ min{τH ,τD}

0
e−rt(cS + cI)dt+

cD
r
e−rτD1τD<τH

]
= − 1

r + γs + ν
(cS + cI + ν

cD
r

)

(8)

Let us express the payoff increment at time t ∈ (0, T ) in epidemic ω. Conditionally on

having no symptoms before t, player j obtains the continuation payoff vI if she has symptoms,

which occurs if she is the symptomatic type and gets infected, thus with probability pj(t |
ω)kj(t)βk̄A(t | ω)a(t | ω). She also bares the confinement cost per unit of time in self-

isolation, thus cS(1 − kj(t)). After getting vaccinated at time T , she has a probability 0 of

developing symptoms and plays kj(t) = 1 for every t ≥ T , which yields the continuation payoff

0. Finally, the subjective probability of having no symptom before t ∈ [0, T ] in epidemic ω is

1−pj(0 | ω)+pj(0 | ω)e−
∫ t
0 kj(s)βk̄A(s|ω)a(s|ω)]ds, which reduces to e−

∫ t
0 pj(s|ω)kj(s)βk̄A(s|ω)a(s|ω)ds

by integrating (6). After simplifications, the discounted expected payoff conditional on the

epidemic being ω is:10

v(kj | ω) =

∫ T

0

e−rt e−
∫ t
0
pj(s|ω)kj(s)βk̄A(s|ω)a(s|ω)ds

︸ ︷︷ ︸
Player j’s probability to

have no symptom before t.

(
pj(t | ω)kj(t)βk̄A(t | ω)a(t | ω)vI − cS(1− kj(t))

)
︸ ︷︷ ︸

Player j’s expected payoff increment at t con-

ditional on having no symptom before t.

dt.

(9)

9See Lemma 2 in the Appendix for the detailed calculations.
10See Appendix 5.1 for the detailed calculation.
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3 Equilibrium analysis

Fix a strategy profile k. Player j’s best-response problem is to maximize Eµ0 [v(kj ; .)],

where the fraction of asymptomatic infected at time t is given for each ω by the system of

o.d.e. {(1), (2)}. Formally, it is the solution of the optimal control problem:




max
kj∈K

Eµ0 [v(kj | .)]

s.t. ∀ ω ∈ Ω, pj(0 | ω) = 1− α and, ∀ t ∈ [0, T ],

ṗj(t | ω) = −pj(t | ω)(1− pj(t | ω))kj(t)βk̄A(t | ω)a(t | ω),

which we solve in the Appendix using Pontryagin’s principle. Here, we explain the intuition

of the solution with a heuristic dynamic programming argument, using the time and the

player’s current belief of being the symptomatic type p as the state variable. At time t, the

optimal social activity level of an individual maximizes the sum of her current expected payoff

increment and of her discounted continuation payoff, should no symptoms occur in the interval

[t, t + dt). Given the strategy profile k, the best-response payoff to a player at time t and

belief p satisfies the Bellman equation

V (t, p) = max
k∈[0,1]

{(
− (1− k)cS + vIP (S(t) | p)

)
dt+

(
1− P (S(t) | p)dt

)
e−rdtV (t+ dt, p+ dp | S̄(t))

}
,

(10)

where S(t) stands for the event “having symptoms between t and t + dt” and S̄(t) for the

complementary event. By Bayes’ rule, the probability of developing symptoms between t and

t+ dt is linear in the individual’s action k, with

P (S(t) | p) = k
∑

ω

µ(t, ω)p(t | ω)βk̄A(t | ω)a(t | ω).

Moreover,

V (t+ dt, p+ dp | S̄(t)) = V (t, p) + Vt(t, p)dt+
∑

ω

Vp(t|ω)(t, p)ṗ(t | ω)dt.

Using (6), eliminating terms to the order (dt)2 and simplifying, we can rewrite the Bellman

equation (10) as follows:

rV (t, p) = Vt(t, p)− cS

+ max
k∈[0,1]

k
(
cS − β

∑

ω

µ(t, ω)p(t | ω)k̄A(t | ω)a(t | ω)(V (t, p)− vI +
1− p(t | ω)

µ(t, ω)
Vp(t|ω)(t, p)

︸ ︷︷ ︸
expected net cost of social activity

)
.
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To interpret this expression, note that two things might happen for the individual at time

t: either she gets symptoms, or she does not. In the first case, she incurs a payoff loss of

V (t, p)− vI ; in the second case, she becomes more confident in being the asymptomatic type,

which increases her continuation payoff by −Vp(t|ω)(t, p). Therefore, the marginal benefit of

more social activities is the difference between the direct cost of self-isolation, cS , and the

expected net cost of social activity, composed of

• the expected cost of the jump to vI in case of symptoms: β
∑

ω µ(t, ω)p(t | ω)k̄A(t |
ω)a(t | ω)(V (t, p)− vI);

• the opportunity cost in terms of payoff of not becoming more optimistic about being

the asymptomatic type in the absence of symptoms: β
∑

ω p(t | ω)(1 − p(t | ω))k̄A(t |
ω)a(t | ω)Vp(t|ω)(t,p).

The next proposition gives the necessary conditions for a strategy of player j to be a best

response against a strategy profile (kj′)j′ 6=j := k−j :

Proposition 1 (Best response). If k∗j the best-response of player j against the strategy profile

k−j, then there exists functions ψj : R+ × Ω → R and pj : R+ × Ω → [0, 1], C1 in the first

argument and such that, such that, for all t ≤ T :

k∗j (t)





= 1 if cS > β
∑

ω

µj(t, ω)pj(t | ω)k̄A(t | ω)a(t | ω)(ψj(t | ω)− vI),

∈ [0, 1] if cS = β
∑

ω

µj(t, ω)pj(t | ω)k̄A(t | ω)a(t | ω)(ψj(t | ω)− vI),

= 0 if cS < β
∑

ω

µj(t, ω)pj(t | ω)k̄A(t | ω)a(t | ω)(ψj(t | ω)− vI),

(11)

where, for all ω ∈ Ω,

ψ̇j(t | ω)− rψj(t | ω) = k∗j (t)βk̄A(t | ω)a(t | ω)(ψj(t | ω)− vI) + (1− k∗j (t))cS , ψj(T | ω) = 0,

ṗj(t | ω) = −pj(t | ω)(1− pj(t | ω))k∗j (t)βk̄A(t | ω)a(t | ω), pj(0 | ω) = 1− α,

and µj(t, ω) is defined by (7).

Proof. See the Appendix.
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An immediate corollary of Proposition 1 is that all equilibria feature social interaction, in

the sense that, at every period, there is a mass of individuals who do not self-isolate. The

reason is simple: if the rest of the population stays at home, each individual can spare the

self-isolation cost cS by going out without risking infection. Therefore, in the symmetric

equilibrium, at each date individuals either partially self-isolate or do not self-isolate at all.

The strategy profile k is said to be symmetric interior if kj(t) = kj′(t) for all players j, j′ and

kj(t) ∈ (0, 1) for all t. The following lemma gives necessary and sufficient conditions for a

symmetric interior strategy profile to be an equilibrium.

Proposition 2 (The symmetric equilibrium). Let k̂ be the symmetric strategy profile where

all individuals play k̂ defined by

k̂(t) =
cS

β
∑

ω µ(t, ω)p(t | ω)a(t | ω)(ψ(t | ω)− vI)

where 



∀ t ∈ [0, T ], ∀ ω ∈ Ω,

ψ̇(t | ω)− rψ(t | ω) = k̂2(t)βa(t | ω)(ψ(t | ω)− vI) + (1− k̂(t))cS ,

ṗ(t | ω) = −p(t | ω)(1− p(t | ω))βk̂2(t)a(t | ω),

ṡ(t | ω) = −βk̂2(t)s(t | ω)a(t | ω),

ȧ(t | ω) = −αṡ(t | ω)− γaa(t | ω),

µ(t, ω) = µ0(ω)/(1−p(t|ω))∑
ω′ µ

0(ω′)/(1−p(t|ω′)) ,

(12)

and ψ(T | ω) = 0.

The strategy profile k̂ is a symmetric interior equilibrium if and only if k̂(t) ∈ (0, 1) for all t.

Proof. See the Appendix.

When the confinement cost cS is large relatively to the continuation payoff in case of

infection, individuals have less incentives to self-isolate. The next proposition gives a sufficient

condition such that there is no self-isolation at all in equilibrium.

Proposition 3. [The no self-isolation equilibrium] If (1−α)αβvI + cS > 0, the game admits

a unique equilibrium in dominant strategy, where all individuals play k̂(t) = 1 for every t. In

this equilibrium, the players’ payoff is

Eµ0 [v(k̂ | .)] = vI(1− α)β

∫ T

0
e−rt

∑

ω

µ0(ω)a(t | ω)e−
∫ t
0 βa(s|ω)dsdt,

13



where, for each ω, a(. | ω) is the unique solution of the system




∀ t ∈ [0, T ],

ṡ(t | ω) = −βs(t | ω)a(t | ω), s(0 | ω) = s̄,

ȧ(t | ω) = −αṡ(t | ω)− γaa(t | ω), a(0 | ω) = ā.

Proof. See the Appendix.

4 The effect of uncertainty

In this section we explore the role of uncertainty on the epidemic dynamics in the simplest

possible setting where the population is aware of two possible epidemics: Ω = {ωL, ωH}, and
has prior belief µ0(ωL) = 1−µ0(ωH) = µ̄. To do so, we simulate the dynamics of each epidemic

ω for several values of µ̄ when the population plays the symmetric equilibrium described in

Proposition 2. We denote by k̂µ̄ the symmetric interior equilibrium strategy when the prior

is µ̄. We compare them with the dynamics of each epidemic without uncertainty, i.e., when

µ̄ = 1 in epidemic ωL, and µ̄ = 0 in epidemic ωH . We calibrate the epidemiological parameters

β, γa, γs and ν to the COVID-19 pandemic and we chose the behavioral parameters cI , cS

and cD arbitrarily.

4.1 Simulation strategy and calibration

In any epidemic, the first cases go unnoticed. For SARS-COV2, the first case was reported

on December 11, 2019, whereas several phylodynamics studies date the onset of the epidemic

between late August and early December.11 Therefore, throughout our simulations we assume

that individuals are not aware of the epidemic until some time τ ∈ (0, T ), which can be

interpreted as the moment at which the government makes the epidemic common knowledge

in the population via a public announcement. Before time τ , individuals play k(t) = 1. After

time τ , they form beliefs about the epidemic state and adapt their behavior accordingly.

The system (12) is well defined for each ω by initial values p(0 | ω), a(0 | ω) and s(0 | ω).

However, the algorithm we construct to simulate (12) also requires the specification of ψ(0 | ω),

which cannot be taken arbitrarily since ψ is determined by the terminal condition ψ(T | ω) = 0.

To determine ψ(0 | ω), we use an adaptation of the Simulated Annealing algorithm, a stochastic
11See for instance van Dorp et al. (2020).
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search-based algorithm described by Lewis (2007), whose principle is to solve the system (12)

for several possible values of ψ(0 | ω) and to select the one that minimizes the distance between

ψ(T | ω) and 0 for each ω.12

In line with Fenichel et al. (2011), we set the discount rate to r = 0.014%.13. The

epidemiological parameters are calibrated to the SARS-COV-2:

• Absent an exhaustive testing campaign, the proportion of asymptomatic types in the

population is rather difficult to estimate. In a nationwide study of over 61 000 partici-

pants, Pollan et al. (2020) find that the proportion of asymptomatic individuals in the

Spanish population who developed antibodies to the SARS CoV-2 ranges from 21.9% to

35.8%. Therefore, we set α = 0.3.

• The recovery rate is usually estimated to two weeks, which implies γa = 1/15.14

• To calibrate the contagiousness rate of the disease β, we use the value of the basic

reproduction number R0, i.e., the average number of secondary infections produced by a

typical infected individual in a population where everyone is susceptible. In our model,

R0 = βα/γa. Indeed, as symptomatic individuals self-isolate, a randomly chosen infected

individual contaminates a susceptible individual only if she is the asymptomatic type and

if the virus is transmitted during contact, hence with probability αβ. As the individual

is contagious during a period of expected length 1/γa, the average number of infections

caused by an infected is βα/γa. For SARS-COV-2, the estimation of R0 ranges between

2.5 and 3.5, thus we set R0 = 3.2, and therefore set β = 3.2γa/α.

• There are various estimates of the Fatality-Infected ratio in the epidemiological lit-

erature. For instance, Verity et al. (2020) estimate this ratio to 0.7% percent and
12Precisely, at stage 1 a value ψ(0 | ω)[1] is uniformly drawn from an interval of reasonable values and is

temporarily designed “best candidate”. The final value of ψ given ψ(0 | ω)[1], i.e., ψ(T | ω)[1], is computed.

At stage 2, another value ψ(0 | ω)[2] is drawn at random. If the corresponding final value ψ(T | ω)[2] is closer

to 0 than ψ(T | ω)(1), then ψ(0 | ω)[2] becomes the new best candidate. The process does on iteratively and

stops after a deterministic number of rounds N , which is large enough to guarantee that ψ(T | ω)[N ] is almost

0 with the final best candidate.
13Precisely, Fenichel et al. (2011) study a discrete-time model in which they set the discount rate to

δ = 0.99986, which corresponds to a 5% annual discount rate. The analog of δ in a continuous-time model is

r = − ln(δ), thus we set r = − ln(0.99986).
14See e.g., Remuzzi and Remuzzi (2020).
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Gudbjartsson et al. (2020) to 0.3% We set a fatality rate ν/(ν + γs) = 0.5%.15

Finally, we arbitrarily set the costs to cS = 1, cI = 10 and cD = 100.

On day τ = 20, the population is informed that a virus has been spreading since day

0, and that a vaccine will be available on day T = 350. Individuals do not know whether

the initial penetration of the disease is low or high, that is if the epidemic is ωL or ωH with

a(0 | ωL) = 0.1% and a(0 | ωH) = 0.5%. They know that nobody has died or recovered from

the disease yet, thus that r(0 | ω) = d(0 | ω) = 0 and s(0 | ω) = 1 − 1
αa(0 | ω) for each

ω ∈ {ωL, ωH}. We shall focus on the following epidemic indicators:

Total deaths. The total fraction of deaths in epidemic ω is TDµ̄(ω) := limt→∞ d(t | ω). By

equation (5),
∫∞

0 ḋ(t | ω)dt + d̄ = d̄ + ν 1−α
α

∫∞
0 a(t | ω)dt. For all t ≥ T , ṡ(t | ω) = 0,

hence ȧ(t | ω) = −γaa(t | ω) and a(t | ω) = a(T | ω)e−γa(t−T ). It follows that
∫∞

0 a(t | ω)dt =
∫ T

0 a(t | ω)dt+ 1
γa
a(T | ω), thus the total fraction of deaths in epidemic

ω is

TDµ̄(ω) = d̄+ ν
1− α
α

(∫ T

0
a(t | ω)dt+

1

γa
a(T | ω)

)
.

Average transmission rate. The transmission rate of the disease is the rate at which a

susceptible individual is contaminated. In average, the transmission rate in epidemic ω

is TRµ̄(ω) := 1
T

∫ T
0 βa(t | ω)k̂2

µ̄(t)dt. By equation (1), βa(t | ω)k̂2
µ̄(t) = − ṡ(t|ω)

s(t|ω) hence

TRµ̄(ω) =
1

T
(ln(s̄)− ln(s(T | ω)) .

Effective reproduction number The effective reproduction number is the expected pro-

portion of the population contaminated by a randomly chosen infected individual. In our

model, only asymptomatic individuals can effectively contaminate others, hence the ef-

fective reproduction number at time t in epidemic ω isERNµ̄(t | ω) = 1
γa

a(t|ω)
a(t|ω)+i(t|ω)βs(t |

ω)k̂µ̄(t)2, which simplifies to ERN(t | ω) = 1
γa
αβs(t | ω)k̂µ̄(t)2.

15In our model, an infected of the symptomatic type dies if the event “Death” occurs for her before the event

“Healing”. Therefore, the probability of death (conditional on being infected and the symptomatic type) is

P (τD < τH), with τH and τD denoting the random times of healing and death, respectively. Straightforwardly,

P (τD < τH) =
∫∞
0
FτD (t)fτH (t)dt = ν/(γs + ν) since fτD (t) = νe−νt and fτH (t) = γse−γ

st.
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4.2 The dynamics of the epidemics and behaviors without uncertainty.

As a benchmark, we simulate the dynamics of both epidemics without uncertainty. Figure

1 exhibits the dynamics of the fraction of infected individuals at the equilibrium and the

equilibrium social activity level k̂µ̄(t) when individuals know the epidemic state (precisely,

when µ̄ = 1 individuals know that epidemic state is ωL, and when µ̄ = 0 they know it is ωH).
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Figure 1: Dynamics of each epidemic without uncertainty.

In both epidemics, the equilibrium social activity level drops to k̂1(20) = 0.042 and

k̂0(20) = 0.012 right after the announcement. Afterwards, the level of social activity in-

creases in both epidemics, first rapidly then at a slower pace, and remains smaller than 1 until

the arrival of the vaccine.

The initial risk of infection is larger in ωH than in ωL, this is why k̂0(t) is smaller than k̂1(t)

at the beginning of the epidemic. Interestingly, after time 90, individuals self-isolate more in

epidemic ωL than in epidemic ωH . Let us explain why. The subjective probability of having

symptoms depends on the fraction of infected individuals without symptoms a(t | ω) and the

subjective belief of being the symptomatic type p(t | ω). Individuals are more confident in

being of the asymptomatic type in epidemic ωH (i.e., p(t | ωH) < p(t | ωL)), because, at the

beginning, the virus circulated more intensively. Also, after date 100, the fraction of infected

individuals with symptoms is higher in ωL. Therefore, the subjective probability of having

symptoms is smaller ωH after date 90. Figure 2 illustrates this point.
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Figure 2: Dynamics of the epidemic and the subjective belief without uncertainty after date 90.

4.3 The dynamics of the epidemics and behaviors under uncertainty

We now simulate the dynamics of the two epidemics when the population has prior belief

µ̄ ∈ {0, 0.25, 1} that the epidemic is ωL. As illustrated in Figure 3, uncertainty has important

consequences on the spread of the disease in ωL but not in ωH .

Interestingly, there is a second wave of infection in epidemic ωL: for each prior µ̄ ∈
{0, 0.25}, the proportion of infected decreases from t = 50 to t = 150 before increasing again.

When µ̄ = 0, the peak of the second wave is reached at t = 325 approximately. When

µ̄ = 0.25, the peak has not been reached before T . This second wave arises because, after

t = 90, the social activity level is higher when µ̄ ∈ {0, 0.25} than when individuals form

correct anticipations on ωL. Note that the second wave is particularly high when agents

(mistakenly) believe that the epidemic is ωH with probability 1 (cf. the solid line), because

they continuously increase their level of social activity. On the other hand, when µ̄ = 0.25,

agents decrease their social activity after t = 100 because they anticipate that the fraction of

cases will increase again if ω = ωL, which results in a flattening of the curve. Surprisingly, the

second wave arises only in epidemic ωL. In epidemic ωH , uncertainty implies that individuals

are more cautious than when they know that ω = ωH for sure, because without uncertainty

they would have learned faster that they are likely to be the asymptomatic type and would

thus have self-isolate less.

This result is consistent with the dynamics of the ERN, which is interpreted as the fraction

of people an infected individual contaminates while infectious. Figure 4 suggests that without

uncertainty individuals behave in a such a way the ERN is close to one from date 80 to the
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Figure 3: Top right: Dynamics of the fraction of infected individuals in ωL when µ̄ ∈ {0, 0.25, 1}. Top left: Dynamics

of the fraction of infected individuals in ωH when µ̄ ∈ {0, 0.25, 1}. Below: Dynamics of the equilibrium social activity

level k̂(t).

end. For this reason, there is a single wave in this case. Under uncertainty, the ERN is above

one after date 80 when the epidemic is ωL: each infected individual contaminates more than

many individuals, which explains why the infection cases increase after date 80. In epidemic

ωH , the ERN stays below 1 under uncertainty, which is consistant with the fact that there is

a single wave for every value of the prior µ0.

The average social activity level over time, defined as k̄µ̄ = 1
T

∫ T
0 k̂µ̄(t)dt can be lower

under uncertainty than when individuals are confident about the epidemic. For instance,

when µ̄ = 0.6, k̄µ̄ = 0.502 while k̄µ̄ = 0.534 and k̄µ̄ = 0.504 when µ̄ = 0 and 1 respectively

(see Figure 5).

In epidemic ωL, the average transmission rate is TRµ̄(ωL) = 0.46 when µ̄ = 1 and

TRµ̄(ωL) = 0.14 when µ̄ = 0. This means that the disease is (much) more transmitted

when the population wrongly believes that the epidemic is ωH . Figure 6 suggests that there
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Figure 4: Dynamics of the ERN and average ERN in epidemics ωL and ωH .
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Figure 5: Average social activity at the symmetric equilibrium.

is a positive relationship between the average transmission rate and the prior in the epidemic

ωL. In contrast, in state ωH this relationship is non-monotonic in µ̄: the average transmission

rate is TRµ̄(ωH) = 0.35 when µ̄ = 0.4 and TRµ̄(ωH) = 0.38 and TRµ̄(ωH) = 0.37 in when

µ̄ = 0 and µ̄ = 1, respectively.

4.4 The value of information

In this section we investigate whether it is always a good idea for a government to give the

population all the information they have about the characteristic of an outbreak. We focus

on two possible welfare objectives: minimizing the fraction of deaths and maximizing payoffs.

Figure 7 describes the total fraction of deaths for different values of µ̄ in each epidemic.

In epidemic ωL, the fraction of deaths decreases with the prior belief µ̄ that the state is ωL.

When individuals believe that the epidemic is ωH with probability 1 (total delusion), the
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Figure 6: Average transmission rate in epidemics ωH and ωL.

fraction of deaths is twice higher than when they know that the state is ωL. In contrast, in

epidemic ωH the fraction of deaths decreases with uncertainty, since it is 0.112% when µ̄ = 0.4

and 0.12% and 0.115% when µ̄ = 0 and 1, respectively. In Figure 8 one can observe the same

pattern for equilibrium payoffs: in epidemic ωL, the payoffs increase with µ̄, while in ωH , the

payoffs are higher for µ̄ = 0.4 than for µ̄ ∈ {0, 1}. Therefore, transparency improves welfare

- both in terms of deaths and payoffs - when the epidemic is ωL, while it decreases welfare

when ω = ωH .

What if the government has to commit to a disclosure policy before knowing the state of

the epidemic?Recall that TDµ̄(ω) is the fraction of deaths in epidemic ω when the prior is µ̄.

The information value in terms of deaths is the fraction of deaths that can be avoided when

the government disclose information. It depends on the prior µ̄ and is defined by:

IV Dµ̄ = − µ̄TD1(ωL) + (1− µ̄)TD0(ωH)︸ ︷︷ ︸
Ex-ante fraction of deaths without uncertainty

+ µ̄TDµ̄(ωL) + (1− µ̄)TDµ̄(ωH)︸ ︷︷ ︸
Expected fraction of deaths with uncertainty

As one can see in Figure 7, IV Dµ̄ ≤ 0 for every µ̄ ∈ (0, 1), which suggests that, ex-ante, the

value of information is negative when the objective is to reduce the fraction of deaths.

We now address the same question in terms of payoffs. Recall that v(k̂µ̄ | ω) is the

equilibrium payoff in ω when the prior is µ̄. The information value in terms of payoffs is

ex-ante payoff gain from knowing whether the epidemic is ωL or ωH . It also depends on the
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Figure 7: Above: Total fraction of deaths in each epidemic. Below: information value in terms of deaths

prior µ̄ and is defined by:

IV Pµ̄ = µ̄v(k̂1 | ωL) + (1− µ̄)v(k̂0 | ωH)︸ ︷︷ ︸
Ex-ante payoff without uncertainty

− µ̄v(k̂µ̄ | ωL)− (1− µ̄)v(k̂µ̄ | ωH)︸ ︷︷ ︸
Expected payoff with uncertainty

In contrast with the information value in terms of deaths, IV Pµ̄ is positive for small values

of µ̄ and negative for large values of µ̄, as depicted by Figure 8. Transparency seems to be

ex-ante welfare improving for low prior probabilities but not otherwise.

5 The social planner problem

The problem of the social planner is to determine the level of social activity that max-

imizes the average payoff in the population over the infinite horizon. As the population is

homogenous, we restrict the attention to symmetric profiles, i.e., such that kj(t) = k(t) for

every j.

Let us determine the total average payoff of strategy k conditional on some epidemic
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Figure 8: Above: expected discounted payoff in epidemic ωL and ωH . Below: Information Value in terms of Payoffs

ω. After time T , every living individual without symptoms gets vaccinated and stops self-

isolating, thereby gets payoff 0. Sick individuals continue to bear the flow cost cS + cI as

long as they have symptoms, and dead individuals bear the cost cD. Therefore, the average

continuation payoff at T conditional on ω is

W (T | ω) =

∫ ∞

T
e−rt (−(cS + cI)i(t | ω)− cDd(t | ω)) dt.

After the arrival of the vaccine at time T , the contagiousness rate of the disease drops to

β = 0, hence ṡ(t | ω) = 0 ∀ t ≥ T . Plugging this into (3) and (5) and integrating between T

and t > T , we obtain:

i(t | ω) = i(T | ω)e−γa(t−T ),

d(t | ω) = d(T | ω) + ν
γa
i(T | ω)(1− e−γa(t−T )).

Plugging this into the latter expression, we obtain:

W (T | ω) = −e−rT
(
d(T | ω)

cD
r

+ i(T | ω)
1

r + γa

(cD
r
ν + cS + cI

))
. (13)
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At each time t before the arrival of the vaccine, the population can be divided into four

groups:

1. those who have never had symptoms before t, i.e., susceptible people, asymptomatic

infected people and asymptomatic recovered people. They represent a total fraction

s(t | ω) +α(1− s(t | ω)) of the population and, as they spend a fraction 1− k(t) of their

day home, bear the flow cost cS(1− k(t)).

2. those who are infected with symptoms. They represent a fraction i(t | ω) of the popu-

lation and bear the flow cost cS + cI .

3. those who had symptoms in the past and have healed from the disease before time t.

They represent a fraction (1−α)(1− s(t | ω))− i(t | ω)− d(t | ω) of the population and

bear no cost as they do not self-isolate anymore.

4. those who died from the disease before t. They represent a fraction d(t | ω) of the

population and bear the flow cost cD.

Therefore, the total average payoff conditional on ω is

W (k | ω) = W (T | ω)+

∫ T
0 e−rt (−cS(1− k(t))(α+ s(t | ω)(1− α))− (cS + cI)i(t | ω)− cDd(t | ω)) dt

Proposition 4 (The optimal strategy). The problem of the social planner has a unique sym-

metric solution ǩ defined by

ǩ(t) =





k̃(t) if k̃(t) ∈ (0, 1]

1, otherwise,

where

k̃(t) =
cS

2αβ

α+ (1− α)
∑

ω µ
0(ω)s(t | ω)

∑
ω s(t | ω)i(t | ω)

(
1

1−αψs(t | ω)− ψi(t | ω)
) ,

and ∀ t ∈ [0, T ], ∀ω ∈ Ω,




ṡ(t | ω) = −βǩ(t)2s(t | ω) α
1−α i(t | ω),

i̇(t | ω) = −(1− α)ṡ(t | ω)− γai(t | ω),

ḋ(t | ω) = νi(t | ω),
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



ψ̇s(t | ω)− rψs(t | ω) = −ǩ(t)2αβi(t | ω)(ψi(t | ω)− 1
1−αψs(t | ω)) + µ0(ω)cS(1− α)(1− k(t))),

ψ̇i(t | ω)− rψi(t | ω) = −ǩ(t)2αβs(t | ω)(ψi(t | ω)− 1
1−αψs(t | ω)) + µ0(ω) (cS + cI + γaψi(t | ω)− νψd(t | ω)) ,

ψ̇d(t | ω)− rψd(t | ω) = µ0(ω)cD,

and ψs(T | ω) = 0, ψi(T | ω) = −µ0(ω) 1
r+γa

(
cD
r ν + cS + cI

)
, and ψd(T | ω) = −µ0(ω) cDr .

Proof. See the Appendix.
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Appendix

5.1 Detailed derivation of 9

Fix ω ∈ Ω and a strategy kj for player j. If player j gets symptoms at time τ , her payoff

is:
e−rτvI −

∫ τ
0 e
−rs(1− kj(s))cSds if τ ≤ T,

−
∫ T

0 e−rs(1− kj(s))cSds if τ > T.

As τ is a random variable, player j’s expected payoff is:

v(kj | ω) = E[
(
e−rτvI − u(τ)

)
1τ≤T ]− u(T )P (τ > T ),

with u(t) :=
∫ t

0 e
−rs(1− kj(s))cSds.

For t ≤ T , P (τ > t) = 1− p0 + p0e
−

∫ t
0 kj(s)βk̄A(s|ω)a(s|ω)ds, which, by integrating (6), simplifies

to

P (τ > t) = e−
∫ t
0 pj(s|ω)kj(s)βk̄A(s|ω)a(s|ω)ds,

and implies that τ is distributed with density

fτ (t) = pj(t | ω)kj(t)βk̄A(t | ω)a(t | ω)P (τ > t).

Therefore,

v(kj | ω) =
∫ T

0

(
e−rtvI − u(t)

)
fτ (t)dt− u(T )P (τ > T ),

=
∫ T

0 e−rtvIfτ (t)dt−
∫ T

0 u(t)fτ (t)dt− u(T )P (τ > T ).

Integrating by parts and simplifying, we obtain:

v(kj | ω) =
∫ T

0 e−rτvIfτ (t)dt− [u(t)P (τ ≤ t)]T0 +
∫ T

0 u′(t)P (τ ≤ t)dt− u(T )P (τ > T ),

=
∫ T

0 e−rτvIfτ (t)dt− u(T )P (τ ≤ T ) +
∫ T

0 e−rt(1− kj(t))cSP (τ ≤ t)dt− u(T )P (τ > T ),

=
∫ T

0 e−rτvIfτ (t)dt− u(T ) +
∫ T

0 e−rt(1− kj(t))cS(1− P (τ > t))dt,

=
∫ T

0 e−rτvIfτ (t)dt− u(T ) + u(T )−
∫ T

0 e−rt(1− kj(t))cSP (τ > t)dt,

=
∫ T

0 e−rτP (τ > t)
[
vIpj(t | ω)kj(t)βk̄A(t | ω)a(t | ω)− (1− kj(t))cS

]
dt.

5.2 Proofs for Section 2 and Section 3

Lemma 1. For every ω ∈ Ω, t ∈ R+,

µj(t, ω) =
µ0(ω)/(1− pj(t | ω))∑
ω′ µ

0(ω′)/(1− pj(t | ω′))
.
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Proof. Let Sj(t) stands for the event “j has symptoms in t” and S̄j(t−) for the event “j never

had symptoms before t”. By definition, µj(t, ω) = P (ω | S̄j(t−)). By Bayes’s rule,

P (ω | S̄j(t−)) =
P (S̄j(t

−) | ω)P (ω)

P (S̄j(t−))
=

P (S̄j(t
−) | ω)µ0(ω)∑

ω′ P (S̄j(t−) | ω′)µ0(ω′)
.

As individuals of type θa never have symptoms,

P (S̄j(t
−) | ω) = 1− P (θs) + P (S̄j(t

−) | ω, θs)P (θs)

As P (θs) = 1− α and P (S̄j(t
−) | ω, θs) = e−

∫ t
0 kj(s)βk̄A(s|ω)a(s|ω)ds, we can write:

P (S̄j(t
−) | ω) = α+ (1− α)e−

∫ t
0 kj(s)βk̄A(s|ω)a(s|ω)ds.

Moreover, integrating (6) between 0 and t, we obtain:




p(0 | ω)e−
∫ t
0 kj(s)βk̄A(s|ω)a(s|ω)ds = pj(t | ω)e−

∫ t
0 kj(s)p(s|ω)βk̄A(s|ω)a(s|ω)ds

e−
∫ t
0 kj(s)p(s|ω)βk̄A(s|ω)a(s|ω)ds = 1−p(0|ω)

1−pj(t|ω)

Using the latter identities together with p(0 | ω) = 1− α, we obtain:

P (S̄j(t
−) | ω) =

α

1− pj(t | ω)
.

The result follows.

Lemma 2. Let τH and τD be independent random variables distributed according to f(t) =

γe−γt and f(t) = νe−νt, respectively. The following equality holds:

E

[∫ min{τH ,τD}

0
e−rt(cS + cI)dt+

cD
r
e−rτD1τD<τH

]
=

1

r + γ + ν
(cS + cI + ν

cD
r

).

Proof. Let g(τH , τD) :=
∫ min{τH ,τD}

0 e−rt(cS + cI)dt+ cD
r e
−rτD1τD<τH . Straightforwardly,

g(τH , τD) =
cS + cI

r
(1− e−rmin{τH ,τD}) +

cD
r
e−rτD1τD<τH .

The random variable min{τH , τD} is distributed according to f(t) = (γ + ν)e−(γ+ν)t. There-

fore,

E[e−rmin{τH ,τD}] =
γ + ν

r + γ + ν
.

Moreover,

E[e−rτD1τD<τH ] =

∫ ∞

0

(∫ τH

0
e−(r+ν)τDνdτD

)
γe−γτHdτH =

ν

r + γ + ν
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Therefore,

E[g(τH , τD)] = (cS + cI)
1

r + γ + ν
+
cD
r

ν

r + γ + ν
.

Proof of Proposition 1

The best-response problem of a player is to determine the strategy k that maximizes her

expected discounted payoff, with, for every ω ∈ Ω, the functions s(. | ω) and a(. | ω) being

fixed and defined by the dynamic system:




∀ t ∈ [0, T ],

ṡ(t | ω) = −βk̄S(t | ω)s(t | ω)k̄A(t | ω)a(t | ω), with s(0 | ω) = s̄ ∈ (0, 1),

ȧ(t | ω) = −αṡ(t | ω)− γaa(t | ω), with a(0 | ω) = ā ∈ (0, 1),

Formally, it is the solution of the optimal control problem




max
k∈K

∫ T
0
e−rt

∑

ω

µ0(ω)e−
∫ t
0
p(s|ω)k(s)βk̄A(s|ω)a(s|ω)ds

(
p(t | ω)k(t)βk̄A(t | ω)a(t | ω)vI − cS(1− k(t))

)
dt

w.r.t. ṗ(t | ω) = −p(t | ω)(1− p(t | ω))k(t)βk̄A(t | ω)a(t | ω) and p(0 | ω) = 1− α ∀ ω ∈ Ω,

where K denotes the set of piecewise continuous functions from R+ into [0, 1]. Making the

change of variable x(t | ω) := µ0(ω)e−
∫ t
0 p(s|ω)k(s)βk̄A(s|ω)a(s|ω)ds, with X(t) := (x(t | ω))ω, and

observing that16

e−
∫ t
0 p(s|ω)k(s)βk̄A(s|ω)a(s|ω)ds =

α

1− p(t | ω)
,

the player’s problem can be rewritten as follows:

P(k) :





max
k∈K

∫ +∞
0

e−rtF (t,X(t), k(t))dt

w.r.t. ẋ(t | ω) = −
(
x(t | ω)− µ0(ω)α

)
k(t)βk̄A(t | ω)a(t | ω) and x(0 | ω) = µ0(ω) ∀ ω ∈ Ω.

with

F (t,X(t), k(t)) :=
∑

ω

[
(x(t | ω)− µ0(ω)α)k(t)βk̄A(t | ω)a(t | ω)vI − x(t | ω)cS(1− k(t))

]
.

As F (t,X(t), k(t)) is negative and bounded below by vI , the objective is well defined. Further-

more, by standard results, the problem admits at least one solution. Applying Pontryagin’s
16See the proof of Lemma 1.
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maximum principle, the optimal control k∗ and the associated trajectory X∗ must satisfy the

following conditions:

Lemma 3 (Necessary conditions). If (X∗, k∗) is a solution of P(k), then there exists a

function ψ : R+ × Ω→ R, C1 in the first argument, such that:

(i) ∀ ω, ψ̇(t | ω)− rψ(t | ω) = −Hx(t|ω)(t,X
∗(t), k∗(t),Ψ(t)),

(ii) H(t,X∗(t), k(t),Ψ(t)) ≤ H(t,X∗(t), k∗(t),Ψ(t)) for every admissible control k,

(iii) ∀ ω, ψ(T | ω) = 0,

where Ψ(t) := (ψ(t | ω))ω and H(t,X(t), k(t),Ψ(t)) := F (t,X(t), k(t)) +
∑

ω ψ(t | ω)ẋ(t | ω)

is the discounted Hamiltonian of the problem.

The transversality condition (iii) comes from the fact that x(T | ω) is free for every ω.

Observing that

H(t,X(t), k(t),Ψ(t)) =

∑

ω

[
(x(t | ω)− µ0(ω)α)k(t)βk̄A(t | ω)a(t | ω)(vI − ψ(t | ω))− x(t | ω)cS(1− k(t))

]
,

the necessary conditions are rewritten as

(i) ∀ ω, ψ̇(t | ω)− rψ(t | ω) = k∗(t)βk̄A(t | ω)a(t | ω)(ψ(t | ω)− vI) + cS(1− k∗(t)),

(ii) for every admissible control k,

(k∗(t)− k(t))
∑

ω

[
x∗(t | ω)cS − (x∗(t | ω)− µ0(ω)α)βk̄A(t | ω)a(t | ω)(ψ(t | ω)− vI)

]
≥ 0.

As x(t | ω) = µ0(ω)α/(1 − p(t | ω)), the latter condition can be more conveniently rewritten

as:

(ii) (k∗(t)− k(t))
∑

ω

µ0(ω)

1− p(t | ω)

[
cS − p∗(t | ω)βk̄A(t | ω)a(t | ω)(ψ(t | ω)− vI)

]
≥ 0 ∀ k.

Dividing by
∑

ω µ
0(ω)/(1 − p(t | ω)) and using the identity µ(t, ω) = µ0(ω)(1−p(t|ω))∑

ω′ µ
0(ω′)(1−p(t|ω′)) ,

condition (ii) reduces to:
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(ii) k∗(t) =





1, if cS −
∑

ω

µ(t, ω)p∗(t | ω)βk̄A(t | ω)a(t | ω)(ψ(t | ω)− vI) > 0,

0, if cS −
∑

ω

µ(t, ω)p∗(t | ω)βk̄A(t | ω)a(t | ω)(ψ(t | ω)− vI) < 0,

∈ [0, 1], if cS −
∑

ω

µ(t, ω)p∗(t | ω)βk̄A(t | ω)a(t | ω)(ψ(t | ω)− vI) = 0.

Proof of Proposition 2

For all t; consider the strategy profile in which kj′(t) = k̂(t) ∀ j′ 6= j, t and kj(t)

is arbitrary. Suppose that k̂(t) ∈ (0, 1). Replacing k̂(t) in the Hamiltonian, we obtain:

H(t,X(t), kj(t),Ψ(t)) = −∑ω x(t | ω)cS . It is easy to see that the Hamiltonian is concave

with respect to the state variable X(t) and therefore the necessary conditions in Proposi-

tion 1 are also sufficient (see e.g. Arrow and Kurz (1970)). Therefore, any kj(t) ∈ (0, 1) is

a best response (and in particular k̂(t) since it belongs to (0, 1)). Consequently, k̂(t) is an

equilibrium.

Proof of Proposition 3

As a preliminary, let us prove the following lemma:

Lemma 4. If ψ : R+ × Ω → R satisfies the necessary conditions of Proposition 1, then

ψ(t | ω) ≤ 0 for every t ∈ [0, T ] and ω ∈ Ω.

Proof. Let ψ : R+ × Ω→ R such that, for every t and ω,

ψ̇(t | ω)− rψ(t | ω) = k(t)βk̄A(t | ω)a(t | ω)(ψ(t | ω)− vI) + cS(1− k(t)), (14)

and ψ(T | ω) = 0.

We work towards a contradiction. Fix some epidemic ω. Suppose that there exists t′ < t′′ ≤ T
such that ψ(t | ω) > 0 for every t ∈ [t′, t′′]. It follows that ψ(t | ω) − vI > 0 on [t′, t′′], thus

ψ′(t | ω) > 0 on [t′, t′′] by (14). As a consequence, ψ(t | ω) > 0 in the right neighborhood of

t′′, which implies ψ′(t | ω) is increasing on the right neighborhood of t′′. The argument can

be extended to prove that ψ(t | ω) > 0 and ψ′(t | ω) > 0 for every t ∈ [t′, T ]. This contradicts

ψ(T | ω) = 0.

Fix a player i, a date t and a value k̄A(t | ω) for each ω. As ψ(t | ω) < 0 by Lemma

4, ψ(t | ω) − vI < −vI . Moreover, k̄A(t | ω) ≤ 1 and a(t | ω) < α. Finally, p(t | ω) is non
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increasing in t, thus p(t | ω) ≤ 1− α. Therefore, for every t,

β
∑

ω

µ(t, ω)p(t | ω)k̄A(t | ω)a(t | ω)(ψ(t | ω)− vI) <
∑

ω

µ(t, ω)p(t | ω)βk̄A(t | ω)a(t | ω)(−vI),

< (−vI)
∑

ω

µ(t, ω)(1− α)βα,

< (−vI)(1− α)βα.

Suppose that the best response is such that, at some date t, k∗i (t) < 1. If (1−α)αβ(−vI) <
cS then β

∑
ω µ(t, ω)p(t | ω)k̄A(t | ω)a(t | ω)(ψ(t | ω) − vI) is smaller then cH . According

to Proposition ??, k∗i (t) < 1 cannot be a best response. Thus a contradiction. Therefore,

k∗i (t) = 1 for all t is a dominant strategy. This proves the result.

Finally, let us determine the players’ payoff in the equilibrium where k∗ = 1. Plugging

kj(t) = 1 and k̄A(t | ω) = 1 into the belief dynamics (3), we obtain the players’ belief function

conditional on ω as the solution of the ODE:

ṗ(t | ω) = −p(t | ω)(1− p(t | ω))βa(t | ω),

with initial condition p(0 | ω) = 1− α. Integrating between 0 and t, we obtain

p(t | ω)

1− p(t | ω)
=

1− α
α

e−
∫ t
0 βa(u|ω)du,

and
α

1− p(t | ω)
= e−

∫ t
0 βp(u|ω)a(u|ω)du.

Using the latter findings and plugging kj(t) = 1 into the payoff expression (5) then simplifying,

we obtain:

v(k∗ | ω) = vI(1− α)β

∫ T

0
e−rta(t | ω)e−β

∫ t
0 βa(u|ω)dudt.

The result is obtained by taking the expectation of the latter expression.

5.3 Proofs for Section 5

Proof of Proposition 4.

The problem of the social planner is to determine the strategy that maximizes E[W (k | .)]
subject to the evolution of the epidemic. As a(t | ω) = α

1−α i(t | ω), the problem depends

only on 3× | Ω | state variables represented by X(t) := ((s(t | ω))ω, (i(t | ω))ω, (d(t | ω))ω).

Formally, it is the solution of the optimal control problem
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PW (k) :





max
k∈K

∫ T
0 e−rtF (t,X(t), k(t))dt+ E[WT (k | .)]

w.r.t., ∀ ω ∈ Ω, ṡ(t | ω) = −βk(t)2s(t | ω) α
1−α i(t | ω), s(0 | ω) = s̄,

i̇(t | ω) = −(1− α)ṡ(t | ω)− γai(t | ω), i(0 | ω) = ī,

ḋ(t | ω) = νi(t | ω), d(0 | ω) = d̄,

with

F (t,X(t), k(t)) :=
∑

ω

µ0(ω) [−cS(1− k(t))(α+ (1− α)s(t | ω))− (cS + cI)i(t | ω)− cDd(t | ω)]

As F (t,X(t), k(t)) is negative and bounded below, the objective is well defined. Further-

more, by standard results, the problem admits at least one solution. Applying Pontryagin’s

maximum principle, the optimal control k∗ and the associated trajectory X∗ must satisfy the

following conditions:

Lemma 5 (Necessary conditions). If (X∗, k∗) is a solution of PW (k), then there exist

functions ψs, ψi, ψd : R+ × Ω→ R, C1 in the first argument, such that:

(i) ∀ ω ∈ Ω,

ψ̇s(t | ω)− rψs(t | ω) = −Hs(t|ω)(t,X
∗(t), k∗(t),Ψ(t)),

ψ̇i(t | ω)− rψi(t | ω) = −Hi(t|ω)(t,X
∗(t), k∗(t),Ψ(t)),

ψ̇d(t | ω)− rψd(t | ω) = −Hd(t|ω)(t,X
∗(t), k∗(t),Ψ(t)),

(ii) H(t,X∗(t), k(t),Ψ(t)) ≤ H(t,X∗(t), k∗(t),Ψ(t)) for every admissible control k,

(iii) ∀ ω ∈ Ω, ψs(T | ω) = ∂E[W (T |.)]
∂s(T |ω) , ψi(T | ω) = ∂E[W (T |.)]

∂i(T |ω) , ψd(T | ω) = ∂E[W (T |.)]
∂d(T |ω) ,

where Ψ(t) := ((ψs(t | ω))ω, (ψi(t | ω))ω, (ψd(t | ω))ω) and

H(t,X(t), k(t),Ψ(t)) := F (t,X(t), k(t))+
∑

ω

(
ψs(t | ω)ṡ(t | ω) + ψi(t | ω)i̇(t | ω) + ψd(t | ω)ḋ(t | ω)

)

is the discounted Hamiltonian of the problem.

After some simplifications, we observe that

32



H(t,X(t), k(t),Ψ(t)) = −αcS

+k(t)2αβ
∑

ω

s(t | ω)i(t | ω)

(
ψi(t | ω)− 1

1− αψs(t | ω)

)
+ k(t)cS

(
α+ (1− α)

∑

ω

µ0(ω)s(t | ω)

)

+
∑

ω

µ0(ω) [−cS(1− α)s(t | ω)− (cS + cI)i(t | ω)− cDd(t | ω)] + i(t | ω) [νψd(t | ω)− γaψi(t | ω)]

If Z :=
∑

ω s(t | ω)i(t | ω)
(
ψi(t | ω)− 1

1−αψs(t | ω)
)
> 0, then H(t,X(t), k(t),Ψ(t)) is

increasing in k(t), thus k∗(t) = 1. If Z < 0, then H(t,X(t), k(t),Ψ(t)) is concave in k(t),

hence a candidate for k∗ is the solution of ∂H(.)
∂k(t) = 0, i.e.,

k̃(t) = −cS
α+ (1− α)

∑
ω µ

0(ω)s(t | ω)

2αβZ
.

As Z < 0, k̃(t) > 0. If k̃(t) > 1, then k∗(t) = 1. If k̃(t) < 1, then k∗(t) = k̃(t). Therefore,

k∗(t) =





k̃(t), if k̃(t) ∈ [0, 1],

1, otherwise.

Proceeding as in the proof of Proposition 2, we obtain:

ψ̇s(t | ω)− rψs(t | ω) = −k(t)2αβi(t | ω)(ψi(t | ω)− 1
1−αψs(t | ω)) + µ0(ω)cS(1− α)(1− k(t)))

ψ̇i(t | ω)−rψi(t | ω) = −k(t)2αβs(t | ω)(ψi(t | ω)− 1
1−αψs(t | ω))+µ0(ω) (cS + cI + γaψi(t | ω)− νψd(t | ω))

ψ̇d(t | ω)− rψd(t | ω) = µ0(ω)cD

Finally, the transversality conditions are, ∀ω ∈ Ω:

ψs(T | ω) = 0;

ψi(T | ω) = −µ0(ω)e−rT 1
r+γa

(
cD
r ν + cS + cI

)
;

ψd(T | ω) = −µ0(ω)e−rT cDr .

6 More uncertainty

The epidemic is characterized by two features:

1) the initial epidemic penetration (s̄, ī, ā, r̄, d̄), where s̄ ∈ [0, 1] is the proportion of individuals

who are not immune to the disease at time 0, ī ∈ [0, 1] is the proportion of individuals infected

with symptoms at time 0, ā ∈ [0, 1] is the proportion of individuals infected without symptoms
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at time 0, r̄ ∈ [0, 1] is the proportion of individuals who already recovered from the disease

at time 0 and are now immune to it and d̄ = 1− s̄− ī− ā− r̄ ∈ [0, 1] the proportion of dead

individuals at time 0;

2) the medical parameters of the disease (α, β, γa, γs, ν), where α ∈ (0, 1) is the proportion

of asymptomatic types in the population, β > 0 is the contagiousness rate, γa > 0 is the

recovery rate of asymptomatic types, and γs > 0 and ν > 0 are the recovery and death rates

of symptomatic types, respectively.

The tuple ω = {s̄, ī, ā, r̄, d̄, α, β, γa, γs, ν} is the epidemic state, and we denote by Ω the finite

set of possible epidemic states.

The evolution of the epidemics is now:

ṡ(t | ω) = −βωk̄S(t | ω)s(t | ω)k̄A(t | ω)a(t | ω) (15)

ȧ(t | ω) = −αω ṡ(t | ω)− γωa a(t | ω), (16)

i̇(t | ω) = −(1− αω)ṡ(t | ω)− (γωs + νω)i(t | ω), (17)

ṙ(t | ω) = γωa a(t | ω) + γωs i(t | ω), (18)

ḋ(t | ω) = νωi(t | ω), (19)

The discounted expected payoff conditional on the epidemic being ω is thus:

v(kj | ω) =

∫ T

0

e−rte−
∫ t
0
pj(s|ω)kj(s)βω k̄A(s|ω)a(s|ω)ds

(
pj(t | ω)kj(t)β

ωk̄A(t | ω)a(t | ω)vωI − cS(1− kj(t))
)
dt.

where:

vωI = − 1

r + γωs + ν
(cS + cI + νω

cD
r

) (20)

The symmetric equilibrium is given by:

Proposition 5 (The symmetric equilibrium). The game has a unique symmetric equilibrium

where all individuals play k̂ defined by

k̂(t) = min

{
cS

βω
∑

ω µ(t, ω)p(t | ω)a(t | ω)(ψ(t | ω)− vI)
, 1

}
,
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where 



∀ t ∈ [0, T ], ∀ ω ∈ Ω,

ψ̇(t | ω)− rψ(t | ω) = k̂2(t)βωa(t | ω)(ψ(t | ω)− vI) + (1− k̂(t))cS ,

ṗ(t | ω) = −p(t | ω)(1− p(t | ω))βωk̂2(t)a(t | ω),

ṡ(t | ω) = −βωk̂2(t)s(t | ω)a(t | ω),

ȧ(t | ω) = −αω ṡ(t | ω)− γωa a(t | ω),

µ(t, ω) = µ0(ω)/(1−p(t|ω))∑
ω′ µ

0(ω′)/(1−p(t|ω′)) ,

(21)

and ψ(T | ω) = 0.
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