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Abstract
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1 Introduction

The U.S. unsecured credit market has experienced extraordinary transformation in recent decades,
with credit balances and bankruptcies increasing substantially.1 A growing literature has found that
households, particularly those with low income and wealth, rely heavily on unsecured credit, and a
rich body of quantitative research has made significant advancements in understanding this markets
in environments with household heterogeneity.2 A particular focus of this existing work has been
on how loan size choices and the evolution of idiosyncratic and aggregate states map into borrower
risk, i.e. probabilities of default. Such theories generally deliver a linear relationship between loan
prices and default probabilities (yellow line, Figure 1) in which default risk premia account fully for
the spread between the benchmark interest rate and the loan rate.

In stark contrast, using administrative data, we document that the slope of interest rate spreads
on credit card loans with respect to default probability is much smaller than such models predict
(black dashed line, Figure 1). This implies the presence of large borrowing premia – interest rate
spreads in excess of those required to compensate for default risk – in the unsecured credit market.
For example, we estimate that these premia averaged 11.3 percentage points (pp) in 2019 and vary
significantly across borrowers. These premia point to key pricing frictions which are absent from
existing quantitative models of unsecured credit. How do these borrowing premia shape borrowing,
saving, and default behavior in the cross-section and through time?

To address this question, we embed empirically consistent borrowing premia into an otherwise
standard heterogeneous agent model with defaultable debt. By incorporating these premia, the
relationship between interest rates and default probabilities in our model matches its empirical
counterpart exactly (blue line, Figure 1). This involves striking a balance in terms of the slope of
the interest rate schedule: a model in which default risk alone drives spreads yields too high a slope
(yellow line), but a model with no default risk premia and a pure fixed cost of borrowing delivers
too low a slope (red line). We use our quantitative model to analyze the effects of the cross-sectional
incidence and dynamic evolution of borrowing premia on credit outcomes.

Our empirical analysis delivers four main takeaways. First, borrowing premia in the data: (i)
are large on average; (ii) decline with borrower risk; (iii) cannot be explained by other borrower-,
account-, or bank-specific factors; and (iv) increase in downturns, especially for high risk borrowers.
Second, we demonstrate that incorporating these premia into our model allows it to match not only
standard aggregate credit moments, but also an important set of granular moments, such as the
distribution of loan balances across levels of borrower risk and income. An alternative model which
captures the average level but not the cross-sectional incidence of these borrowing premia performs

1See, for example, Livshits et al. (2010).
2For example, Gross and Souleles (2002) and Sullivan (2008) find that unsecured credit is used to smooth con-

sumption: households whose income declines accumulate more debt and declare bankruptcy more often. Furthermore,
Herkenhoff et al. (2016) find that self-employment increases with credit scores and limits. After bankruptcy, indi-
viduals are more likely to start a new business and borrow. For quantitative work in stationary settings, see, for
example, Athreya (2002), Athreya et al. (2009), Livshits et al. (2007, 2010), Chatterjee et al. (2007), Chatterjee et
al. (2020). For work in non-stationary settings, see Nakajima and Ríos-Rull (2019).
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Figure 1: Interest rate spreads in the data and alternative models

Notes: The black line uses the Y-14M / Equifax sample described in Section 2.2. The blue line is our model’s
schedule of spreads. The yellow line uses the workhorse framework described in Section 2.1, and the red line
imposes a fixed interest rate spread that does not depend on default risk.

worse with respect to these disaggregated features, despite matching aggregate moments just as well
by construction. Third, we show that both the cross-sectional incidence of borrowing premia and
their response to aggregate shocks play a crucial role in shaping aggregate credit market dynamics.
For example, in response to a negative aggregate shock, we show that the tightening of borrowing
premia induces a more pronounced drop in total borrowing, while the declining relationship between
borrowing premia and default risk promotes borrowing among riskier agents. Fourth, we show that
an extension of our model allows us to use observed shifts in borrowing premia to infer a measure
of lending standards. This provides a more concrete, quantitative interpretation of survey evidence
that is widely used to proxy credit supply. Using this approach, we find that standards were
essentially unchanged for all but the highest risk borrowers at the outset of the Covid-19 recession
in 2020:Q2. We proceed as follows.

In Section 2 we combine two large administrative data sets – Y-14M and the FRBNY Consumer
Credit Panel (Equifax) – to document the relatively flat relationship between interest rate spreads
and default probability in Figure 1. Using a “wedge” measurement approach adapted to workhorse
unsecured credit pricing theories,3 we measure borrowing premia which are large on average – far
exceeding pure default risk premia – and decline with borrower risk. We estimate a balance-weighted
average borrowing premium of 11.3 pp, with a range from 14.5 pp for FICO scores near 800 to 0.5
pp for FICO scores near 620. This declining pattern is puzzling because it implies a relatively small
difference between credit prices faced by low and high risk borrowers. In this paper, we do not solve
this puzzle in the sense of determining why these premia arise; rather, we document it empirically

3This wedge approach was developed in the context of business cycle accounting in Chari et al. (2007).
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and measure its impact on borrower behavior.4 Notably, though, we establish that systematic
differences by credit score in loan recovery rates – a common free parameter in the literature –
cannot explain our results. We show further that this pattern is robust to controlling for income
and other borrower or account characteristics, allowing for bank-specific effects, and comparing
“normal” and “crisis” periods. Furthermore, we demonstrate that the schedule of borrowing premia
across borrow risk obtained using the Y-14M data set only is the same as the one in Figure 1.5

In Section 3 we augment a standard quantitative model of unsecured credit to include borrowing
premia in a flexible way. Our model economy closely resembles Chatterjee et al. (2007). In this
workhorse model, borrowers’ idiosyncratic states and loan choices determine repayment probabil-
ities, which in turn pin down loan prices via simple discounting. In our model, states and loan
choices determine repayment probabilities in the exact same way, but the mapping from repayment
probabilities into loan prices is changed to reflect a given schedule of borrowing premia.

We consider two versions of this model. The first captures the heterogeneous incidence of
borrowing premia estimated in Section 2 exactly; we call this our baseline or “heterogeneous premia”
(HP) economy. The resulting pricing system implies higher costs for low risk loans and lower costs
for high risk loans than in Chatterjee et al. (2007) because borrowing premia decline as default
risk premia increase, leading to a relatively flat profile of interest rates. The second version is a
“fixed premium” (FP) economy which matches the average level of borrowing premia but not their
incidence; all loans bear the same premium in excess of default risk. This economy features one-
for-one drops in loan discount prices (increases in loan rates) with default probabilities, yielding the
familiar steep profile of interest rates from the literature.

In Section 4 we calibrate both versions of the model to a standard set of aggregate unsecured
credit moments. Comparing these two models under the same parameterization is illustrative, but
we calibrate each version to emphasize how the HP model adds additional explanatory power even
conditional on matching key aggregates. Both calibrated economies have the exact same average
interest rate spread and borrowing premium by construction. This implies that the differences
between these two economies stem from cross-sectional variation in credit prices, not differences in
their overall level. To match U.S. credit data, the FP model requires an implausibly high degree of
impatience, as well as lower default costs than the HP model does.

We compare key dis-aggregated, cross-sectional properties of these two model economies in
Section 5. The primary insight from this analysis is that the HP model closely matches the empirical
joint distribution of credit balances and default risk, whereas the FP model overstates the riskiness
of the safest 75% of loans in the economy. Moreover, the HP model more closely captures the profile
of average loan spreads and leverage by income quartile, especially outperforming the FP model
for the highest and lowest earners. The mechanism underlying these findings is straightforward: by

4We address this important question empirically in an ongoing companion paper, Castro et al. (2020).
5This approach uses predicted default probabilities obtained from Y-14M (as opposed to from Equifax) and directly

links borrowing premia to these predicted default probabilities at the account level. While findings are similar across
the two approaches, our preferred baseline uses the combined data approach for reasons that we detail in Section 2.
Details for each of the approaches are discussed in the Appendix.
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accurately capturing the marginal costs of borrowers’ loan choices on loan prices, the HP model
more accurately explains their actual loan choices.

We study aggregate dynamics in Section 6. To fix ideas, in Section 6.1 we simulate an impulse
response to a negative aggregate shock. The relatively high costs of increasing leverage in the FP
economy dampen agents’ ability to smooth consumption, leading to a 0.7 pp larger drop in total
debt, 4.8 pp larger rise in bankruptcies, and a 9.1% larger drop in aggregate consumption relative
to the HP economy. We then study the effect of the upward shift in borrowing premia we observe
on impact of a recession. Since borrowing premia increase most for high risk loans, and high risk
loans comprise a higher share of total loans in a recession, credit usage declines 0.2 pp more and
bankruptcies increase 2.6 pp more than in the case in which premia do not shift in response to the
shock. Section 6.2 expands these analyses to study business cycles. We show that the HP model
more closely matches key cyclical properties of the unsecured credit market than the FP model, and
that accounting for cyclical shifts in borrowing premia explains the high volatility of interest rate
spreads over the cycle.

We conclude our analysis in Section 7 by introducing a simple extension of our baseline model
which endogenizes borrowing premia as the product of two components. The first component
varies endogenously with overall credit market tightness, and the second exogenously proxies banks’
pricing decisions via a weighting function. We consider this function a measure of lending standards,
allowing us to relate difficult-to-quantify changes in “standards” to observed changes in prices,
augmenting our understanding of this widely used proxy for credit supply. Specifically, we impose
that the model matches observed shifts in borrowing premia in response to a (negative) aggregate
shock, and use the model to control for the associated shift in aggregate credit demand, allowing
us to infer changes in standards. Our analysis delivers two key results, both consistent with survey
evidence. First, the increase in the level of borrowing premia is driven by aggregate credit market
tightening, i.e. the increase in demand for credit relative to the supply of savings. Second, controlling
for this first effect, lending standards only become tighter for the riskiest borrowers, those with credit
scores below approximately 680.6

Related literature We contribute to two broad areas in the literature: quantitative studies of
unsecured credit and empirical studies of loan supply frictions. Our contribution to the former
is both empirical and methodological. To our knowledge we are the first to incorporate pricing
data from Y-14M into a quantitative unsecured consumer credit model. Methodologically, it is
useful to think of loan pricing in two stages: how do borrower states and choices map into default
probabilities, and how do default probabilities map into loan prices? Our paper focuses on the latter
question and nests workhorse models with regards to the former.7 Correctly capturing the prices

6We apply our method to the Covid-19 shock in the second quarter of 2020 due to the short history of Y-14M
data, but our approach is generalizable to any episode given data on borrowing premia.

7Examples of workhorse models in this literature include Athreya (2002), Livshits et al. (2007, 2010), Chatterjee
et al. (2007), and Nakajima and Ríos-Rull (2019).
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consumers face is critical, and we help reconcile existing theory with data on this front.8

Several recent papers have examined the role of specific pricing and market features to ex-
plain key trends in credit markets. For example, Raveendranathan (2020), Herkenhoff and Raveen-
dranathan (2020), and Greenwald et al. (2020) all depart from the standard pricing paradigm and
model credit contracts explicitly as long-term lines of credit. The former two papers yield pric-
ing relationships that are relatively flat with respect to default risk, consistent with our findings.9

Another example is Drozd and Kowalik (2019), which uses account-level supervisory data to study
promotional pricing, linking credit card deleveraging to the collapse in promotional activity. Lastly,
our pricing scheme is in line with that generated in models of sovereign default with long-term debt
(e.g. Chatterjee and Eyigungor (2012) and Hatchondo and Martinez (2009)), where debt prices are
less sensitive to predicted default next period.

Our work also provides further insights into recurring questions in the consumer credit literature.
Since the pricing relationships in our model induce persistently larger, riskier debts for borrowers, we
offer an additional channel explaining the persistence of financial distress (Athreya et al. (2018)). In
the spirit of Nakajima and Ríos-Rull (2019), we find that cyclical properties of interest rate spreads
shape credit outcomes over the cycle, but we introduce the notion that not all spread variation
is attributable to default risk. Symmetrically, we complement recent studies on how credit access
shapes individual outcomes over the cycle (e.g. Herkenhoff (2019)) by demonstrating how borrowing
premia influence such access.

Lastly, our paper contributes to the empirical literature on loan supply frictions linked to lending
standards (e.g. Bassett et al. (2014) at the bank level and Lown and Morgan (2006), Schreft and
Owens (1991) in the aggregate). For example, in line with our model, Bassett et al. (2014) find
that tightening of credit supply is associated with a substantial decline in the ability of households
to borrow from banks.10 We contribute to these studies by using our model to link lending stan-
dards and borrowing premia and to assess the impacts of observed changes in lending standards on
credit outcomes. We remain silent on the drivers of these changes beyond aggregate credit market
tightness.11

8Several studies have found similar pricing phenomena. For example, Agarwal et al. (2015) and Galenianos and
Gavazza (2020) document related pricing patterns on credit cards in the US, with a focus on the effects of regulatory
interventions, such as the 2009 CARD Act. Furthermore, Agarwal et al. (2018) also document high interest rates
for borrowers with high credit scores in a study focusing on monetary policy transmission. In the same vein, Davis
et al. (2006) document a similar pattern of credit card interest rates in a study focused on the role of credit card
borrowing on stock investments over the life-cycle. Lastly, Allen et al. (2014) and Allen et al. (2019) document and
explore price dispersion in the Canadian mortgage market.

9Herkenhoff and Raveendranathan (2020) also documents extensive markups in the U.S. credit card industry. Our
borrowing premia are consistent with such markups, and we measure how they vary across borrowers. Greenwald
et al. (2020) uses Y-14Q data (the counterpart of Y-14M for business loans) to show that credit lines reproduce the
observed flow of credit toward less constrained firms after adverse shocks.

10In related research, Chen et al. (2021) find that uncertainty in macroeconomic outlook rather than banks’ balance
sheet positions led banks to tighten standards during the financial crisis. They build a DSGE model consistent with
this fact, arguing that credit supply shocks drive cyclical movements of lending standards.

11Our empirical companion paper Castro et al. (2020) fills this gap by combining SLOOS data with bank- and
loan-level data from Y-14M and Call Reports to investigate why and how banks change standards.
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2 Measuring Borrowing Premia

In this section, we document the relationship between loan rates and borrower risk in the U.S. credit
card market. We describe our borrowing premium measure in Section 2.1 and our data in Section
2.2. Section 2.3 reports our main empirical results.

2.1 Measurement approach

Standard unsecured credit pricing To fix ideas, we highlight the key elements of workhorse
unsecured loan pricing models.12 Consider an economy with competitive lenders that offer a variety
of one-period loan contracts to households.13 Lenders can borrow at the equilibrium interest rate
i(s), where s is the aggregate state. A loan contract specifies a size ℓ < 0 and a discount price
q; the household pays the lender qℓ today in order to receive ℓ tomorrow. Lenders choose how
many contracts of size ℓ to issue to households with individual state x in aggregate state s. Next
period, households may choose to repay the loan or default. In default, the lender recovers a fraction
ξ ∈ [0, 1] of the principal ℓ. This canonical framework delivers the loan pricing equation

q(ℓ;x, s) =
p(ℓ;x, s) + ξ(1− p(ℓ;x, s))

1 + i(s)
, where p(ℓ;x, s) = P (repay ℓ tomorrow|x, s) (1)

is the expected probability of repayment. Expected repayment probabilities fully determine loan
prices, which are linear in p with slope governed by ξ and i, and low risk (high p) loans have lower
interest rates (higher prices). In light of this, much of the literature focuses on how loan size choices
and the evolution of idiosyncratic and aggregate states drive default decisions, assuming that prices
are determined according to (1).

Comparing model-implied and empirical loan rate spreads How, though, do default prob-
abilities 1 − p map into loan prices in the data? The literature has been silent on this front. We
attempt to fill this gap using a simple approach motivated by the workhorse theory above. In this
framework, the spread that a borrower pays over the equilibrium interest rate (i.e. the one implied
by default risk only) is computed using equation (1):

R̃(ℓ;x, s) =
q−1(ℓ;x, s)

1 + i(s)
=

1

ξ + (1− ξ)p(ℓ;x, s)
=⇒ R̃(p) =

1

ξ + (1− ξ)p
, (2)

where q−1(ℓ;x, s) is the gross interest rate on the loan. This representation makes clear that the
spread depends on individual characteristics only through the repayment probability; that is, p is a
“sufficient statistic” for borrower characteristics x, the choice of ℓ, and aggregate conditions s. For
now, assume we directly observe interest rate spreads and repayment probabilities (Rit, pit) for each

12See, for example, Athreya (2002); Chatterjee et al. (2007); Livshits et al. (2007).
13It is straightforward to extend our measurement framework to include long-term debt by appropriately accounting

for delinquency and late payments in our definition of “default.” We choose the short term approach for transparency
and ease of interpretation.

6



borrower i and period t; the data description below provides details on how these are measured.
We define the “borrowing premium” bit as the percentage difference between the observed spread

Rit and the theory-implied spread R̃(pit) from equation (2):14

bit =
Rit

R̃(pit)
− 1. (3)

This measure captures all additional costs of borrowing in excess of those implied by measurable
default risk.15 While these costs likely arise at least in part from supply frictions, such as lender
market power or constraints on loanable funds, we do not attempt to determine the origin of these
additional costs in the present paper, but leave this topic for future work. Rather, we measure
these costs and replicate them in a model to assess their impacts on individuals’ behavior in the
unsecured credit market.

2.2 Data and implementation

Our preferred approach to measuring the key objects in equation (3) combines two data sources:
(i) Y-14M, a detailed account-level panel data set built from the portfolios of large bank holding
companies in the United States; and (ii) the FRBNY Consumer Credit Panel (Equifax), a nationally
representative five percent sample of all credit files for U.S. borrowers. This “baseline approach”
provides the most complete picture possible of how terms of credit, borrower characteristics, and
borrowing and default behavior vary across the universe of borrowers in the U.S.16

An alternative approach is to use only the Y-14M data (henceforth “Y-14M only approach”).
Using a single data source has the obvious advantages of not relying on a common identifier (in our
case the credit score) for combining two data sources and allowing all relevant measurements to be
made at the account level. However, as we discuss below and more extensively in Appendix A.2,
this approach has an important caveat: default measures in Y-14M are not provided directly, but
rather obtained indirectly from banks’ responses about reasons for account closure. Nevertheless,
as we demonstrate in Appendix A.2, borrowing premia measurements in the Y-14M only approach
yield a very similar pattern across borrower risk to the one obtained in our baseline approach.

We now briefly describe the key features of each data set and how we combine them to construct
borrowing premia per equation (3), with additional details on sample and variable construction

14We measure spreads in ratio terms (as opposed to simple differences) for ease of comparison with the extended
model presented in Section 7. We describe our measurement of p in the next section. Our empirical approach could
in principle be generalized to allow borrower choices, borrower states, and the aggregate state to matter separately
from their impact on p.

15This “wedge” measurement is similar in approach and interpretation to that presented in Chari et al. (2007), and
the notion of excess premium is consistent with Gilchrist and Zakrajsek (2012). The latter constructs a credit spread
index based on two components, one that captures firm-specific information on expected defaults and a residual
component (the excess bond premium), and uses it to predict economic activity and credit supply. Although different
in scope, our study builds on the same principle of recognizing the importance of both risk and borrowing premia in
movements in spreads on consumer loans.

16Focusing on terms of credit set by U.S. banks does not meaningfully limit our analysis. According to the FRB
G.19 release, the bank share of total revolving unsecured consumer credit is about 90%. Within the banking sector,
the Y-14M sample includes the largest and most representative issuers of credit card loans.

7



provided in Appendix A.1.

Y-14M Y-14M is a monthly, account-level data set built from the portfolios of large bank holding
companies in the United States, collected by the Federal Reserve Board as part of the Comprehensive
Capital Analysis and Review, the Federal Reserve’s annually run stress tests of the largest banks.
Specifically, Y-14M covers banks with at least $50 billion in total consolidated assets. Schedule D
of the Y-14M provides monthly data on banks’ entire credit card portfolio. This data is available
starting in 2012 and covers the 35 largest U.S. banks.

A major advantage of this data set is that it includes detailed borrower characteristics and loan
terms not available in other data sets used in the literature; in particular, it contains terms of credit
(e.g. interest rates, credit limits) and measures of both the extensive and intensive margins of
credit usage that can be dis-aggregated by borrower characteristics such as credit score and income.
Y-14M’s main shortcoming for our purposes is that it contains insufficient information on default
behavior.17 Still, in Appendix A.2 we use a Y-14M only approach and show that our empirical
findings are robust to this alternative analysis.

Equifax Consumer Credit Panel We supplement Y-14M with the Equifax Consumer Credit
Panel (henceforth “Equifax”) because it contains richer and more reliable measures of default than
Y-14M. Equifax is a nationally representative anonymous random sample from Equifax credit files,
collected quarterly dating back to 1999. It contains rich descriptions of consumer credit behavior,
including various measures of default and outstanding balances by loan type. Its main shortcoming
for our purposes is that it lacks information on income and terms of credit.

Combining the data sets To compute average borrowing premia by probability of default as
in (3), in our baseline approach we combine Y-14M and Equifax using measures of borrower credit
scores in the two data sets as the common identifier. Our procedure cannot match individual
borrowers across the two data sets. Instead, we aggregate borrowers into bins and appeal to the
huge samples in both data sets to match information at the bin level. We proceed in four steps.

First, we group borrowers in each data set by vigintiles (5% bins) based on their credit scores
in 2019.18 The credit score measure is the Equifax Risk Score (ranging from 280 to 850) in Equifax
and the FICO score (ranging from 300 to 850) in Y-14M.19

Second, we compute the average likelihood of default for each of these 20 groups using Equifax.
Our measure of default includes bankruptcy and severe derogatory, both of which affect access to

17While the Y-14M data set contains direct responses about bankruptcy, it does not contain direct responses on
charge-offs. This information can be indirectly obtained though from banks’ responses on reasons for account closures.
Lastly, while information about banks’ assessment of each account’s probability of default is collected in Y-14M, this
is an optional reporting item for most banks (except those subject to the “advanced approaches” rule). As a result,
the variable is quite sparse, with less than 20% of banks reporting it.

18Our results are robust to finer partitions, for example into 2% bins.
19FICO scores come from the Y-14M data at the account level.
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credit and interest rates on credit card loans.20 Importantly, both imply that the lender has removed
the debt from its books and thus represents the best counterpart to the model definition of default,
as opposed to including delinquent loans, even with longer term past due.

Third, we compute average interest rates conditional on the median range of debt levels for each
borrower risk group using Y-14M. We control for debt level in order to control for the effects of loan
sizes on loan prices.21 We use the statutory rate, as opposed to computing an effective rate from
Y-14M, given that the retail APR represents a better measure for issuer pricing strategies. While
levels between statutory and effective rates are slightly different, the patterns across borrower risk
are the same.22 We transform raw interest rates into spreads using an average prime rate of 5.28%
for 2019.23

Fourth, we map borrowing premia from Y-14M to likelihood of default from Equifax. This
mapping requires two underlying assumptions. First, the population of borrowers in the two data
sets is the same. Given the dominance of the largest banks in the credit card market, Y-14M captures
almost the entire universe of credit card loans and borrowers (as represented by Equifax), and so
we view this assumption as reasonable. Second, Equifax’s Risk Score and Y-14M’s FICO score
assess borrowers’ likelihood of default in equivalent ways. There is ample evidence that this latter
assumption holds as well.24 Of note, our alternative approach that replicates the analysis using the
Y-14M data set only delivers very similar pricing schedules across borrower risk, reinforcing the fact
that these two assumptions are reasonable.

Remark: recovery rates Following standard consumer credit theories, our borrowing premia
specification (3) assumes that the recovery rate ξ does not vary systematically with borrower char-
acteristics. Our data does not allow us to observe recovery rates conditional on default at the
borrower level.25 However, one may think about how recovery rates could depend on borrower
characteristics, not just the loan size. To alleviate this potential concern, we run the following tests,
both in the data and in our model. First, using Call Report data, we document that there is no

20“Severe derogatory” refers to any delinquency paired with a repossession, foreclosure, or charge-off. As described
in Appendix A.1, our results are robust to both broader and narrower definitions of default, but this definition most
closely matches the default institution in our model in Section 3.

21This is an economically important step for consistency between our model and the data since credit card contracts
take the form of credit lines, not full loan-specific rate schedules. For excellent examples of quantitative models using
the credit line paradigm, see Raveendranathan (2020) and Herkenhoff and Raveendranathan (2020).

22See, for example, the 2019 CFPB Report on The Consumer Credit Card Market. In fact, our finding that rates
flatten quite a lot for the high probability of default which holds across effective and statutory rate measures, suggests
that non-price terms seem to drive that portion of the market, justifying our censoring of the data below the 4th
credit score vigintile. Of course, the interaction between price and non-price terms is important, but is it outside of
the scope of this paper.

23This number is the evenly-weighted average of end-of-month prime rates for 2019.
24Given that multiple scoring models are used in determining applicant’s creditworthiness, one might argue that the

algorithm used to compute different credit scores might not produce identical measures for the same consumer. How-
ever, findings in a 2012 CFPB report reveal that the scores produced by different models provide similar information
about consumers’ relative creditworthiness.

25While Y-14M data contains information on recovery from a previously charged-off account, it collects this infor-
mation for the amount of any balance recovery during the reported month. At the same time, account information
is reported 12 months after the account’s closure or charge-off. As such, the recovery rate based on these variables
may not reflect the full recovery rate.
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correlation between recovery and charge-off rates at the bank level. This suggests that lenders do
not experience systematically different recovery rates from borrowers of different risk levels (See
Appendix Figure A.6).26 Second, we use our measurement system (1) - (3) to run an experiment
in which we assume a fixed borrowing premium (bit = bt for all i) to try to uncover a schedule of
recovery rates that would rationalize observed interest rate spreads by borrower risk. As Appendix
Figure A.7 shows, there is no such viable schedule of recovery rates. Details of these empirical and
model-based tests of recovery rates are provided in Appendix A.4.

2.3 Empirical results

Borrowing premia by default risk Figure 1 documents the stark divergence between interest
rate spreads observed in our baseline approach – combined Y-14M / Equifax data set – and those
implied by workhorse unsecured credit models. As default probability increases, loan rates increase
in both settings, but this rise is far steeper in standard models than in the data and is fully driven
by risk premia. Applying our measurement scheme to data from 2019 and the onset of the Covid-19
pandemic in 2020, panel (a) of Figure 2 confirms the presence of large borrowing premia in excess
of these risk premia in the unsecured credit market. The solid lines show our bin-specific borrowing
premia, and the dashed lines correspond to the balance-weighted average, b.

Figure 2 contains four primary findings. First, there is a large wedge between the risk-free rate
and the loan rate even for risk-free loans. Borrowing premia for loans with no default risk face
an average borrowing premium of 11.4%. This figure reaches as high as 14.6% for the highest-
premium bin, whose default probability is a mere 0.65%. This distorts credit usage along the
extensive margin, since there is a discrete jump in interest rates from savings to even the safest
loan. Second, borrowing premia are (statistically significantly) different across credit score bins and
are non-monotone and non-linear in default probability. For all but the lowest risk bins, borrowing
premia dissipate as risk premia increase. This distorts credit usage along the intensive margin since
the pricing penalty for a higher risk loan is much smaller in the data than in standard models. As
default risk premia rise, borrowing premia tend to decline to offset them. Third, this pattern is
preserved at the onset of the recession in 2020, despite an upward shift in premia across the board.
Premia increased most in proportional terms for high risk borrowers with this shift. Fourth, panel
(b) highlights that these patterns are preserved across income quartiles. Small shifts in default
probability correspond to much larger differences in borrowing premia than even large differences in
income. Conditional on default risk bin, the differences in premia in the top three income quartiles
relative to the bottom are below 1 percentage point (pp). In contrast, the difference between low
risk and high risk borrowers is just under 14 pps.

Remark: the alternative Y-14M only approach Our findings are not specific to the baseline
approach. Appendix Figure A.5 shows that the borrowing premia schedule across predicted default
probabilities obtained from Y-14M in our alternative Y-14M only approach is very similar to the one

26Section 4 provides further details on how we compute recovery rates in our data.
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Figure 2: Borrowing premia by default probability and income quartile

Notes: This figure is constructed using the combined Equifax and Y-14M sample described in Section 2.2, with
b(p) defined in (3). The balance-weighted average premium is b = 11.3%. for 2019 and 11.8% for 2020.

illustrated in Figure 2, featuring the same key takeaways as our baseline schedule. Furthermore,
these findings hold regardless of whether we: (i) use a credit score binning approach in Y-14M,
similar to the one used in our baseline; or (ii) directly link borrowing premia to predicted default
probabilities at the account level and then compute the average borrowing premia for each 5% bin
of these probabilities. Furthermore, we show that predicted default probabilities are very close to
realized default rates for our base year (2019) in Y-14M, which is unsurprising given the very large
sample sizes involved. Lastly, these predictions present a similar pattern across credit score bins to
the default rates from Equifax, despite exhibiting lower values, which are the result of the caveats
discussed before (see Appendix Figure A.4).27

Determinants of borrowing premia A crucial assumption in our measurement approach is
that the benchmark spread (2) is summarized completely by default risk, which we map from credit
scores. Therefore, variation in borrowing premia (3) must also be explainable by variation in credit
score. Is this assumption valid? Our income-specific measures from panel (b) of Figure 2 address
this question to some extent, suggesting that indeed default probability is the central determinant
of borrowing premia for credit card loans. Here we conduct a more formal regression analysis to
document the relative importance of default risk, income, and other observable factors in explaining
variation in interest rate spreads and borrowing premia.

27Actual or realized default is computed at the monthly frequency as the sum of the observed bankruptcy flag
and the charge-off reason for accounts that closed in 2019. These accounts are required to be included up to twelve
months after they are closed. Predicted default for 2019 is estimated via probit regressions that include account
characteristics such as one year lagged FICO score, income at origination or whether the borrower has multiple
relationships with the bank, in the spirit of Dempsey, Ionescu, Raveendranathan (2022). Details on this analysis are
available upon request.
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dependent variable: borrowing premium
[1] [2] [3] [4] [5]

FICO score 0.909 0.913 0.918 0.918 0.913
(2e-4) (2e-4) (2e-4) (2e-4) (2e-4)

income -0.004 -0.005 -0.005 -0.006
(2e-5) (3e-5) (3e-5) (3e-5)

revolver X X X
multiple relationships X X X
new account X X X
quarter FE X X
bank FE X

R2 0.607 0.608 0.610 0.610 0.621

Table 1: Determinants of borrowing premia: regression analysis

Notes: Number of observations is 14,426,760. All estimates are significant at 1 percent level. All specifications are
variations on estimating equation (4). Column [1] imposes β2 = γ1 = γ2 = γ3 = 0; [2] imposes γ1 = γ2 = γ3 = 0; [3]
imposes β2 = γ2 = γ3 = 0; [4] imposes γ2 = γ3 = 0; [5] imposes γ3 = 0; and [6] estimates all coefficients. All
continuous variables are in logs. Details of variable and sample construction, as well as alternative specifications,
may be found in Appendix A.1.

Specifically, we estimate regressions of the following form via OLS:28

bit = α+ β1FICOit + β2incomeit0 + γ1Xit + γ2Yt + γ3Zj(i,t) + εit (4)

where: bit and FICOit are the borrowing premium and credit score in logs, for account i in quarter
t; incomeit0 is the account’s log income at origination (hence t0); Xit is a vector of other borrower
or account characteristics; Yt is a quarter fixed effect; Zj(i,t) is a bank fixed effect for the bank j at
which account i is held at time t; and εit is an error term. Examples of characteristics included in
Xit are: (i) whether the account is a revolver; (ii) whether the borrower holding the account has
multiple relationships with the same lender; and (iii) whether the account is newly originated. Our
primary objects of interest from these regression analyses are the coefficients β1 and β2, as well as
the increase in explanatory power from including income, other account-specific characteristics Xit,
and bank and time fixed effects.

Table 1 presents our estimates for a range of sub-specifications from equation (4), providing
three main takeaways. First, FICO scores explain most of the variation in borrowing premia. Our
simplest specification with FICO only and no controls (column [1]) explains 60.7% of the variation
of borrowing premia. When adding income (column [2]), the explanatory power increases by only
0.1 pp. This finding is robust across alternative sets of controls, such as when additional account

28Details on sample and variable construction are in Appendix A.
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characteristics like revolver status and multiple relationships are included (column [3]).29 Addition-
ally, the coefficients on FICO and income are all statistically significant at the 1% level and have
the expected signs.30 Second, other borrower and account characteristics have little independent
contribution to borrowing premia, as evidenced by the small gain in explanatory power in columns
[3] relative to [1]. These first two findings suggest that borrower risk indeed encapsulates all the rel-
evant observable borrower-level (i.e. idiosyncratic) information that determines borrowing premia
in excess of risk premia. Third, macroeconomic and bank-specific (i.e. aggregate) characteristics –
captured via quarter and bank fixed effects in columns [4] and [5] – add little explanatory power.

Robustness One cause for concern for our estimates might be the linearity of equation (4) in FICO
score, given the shape of the borrowing premium schedule in Figure 2. An alternative quadratic
formulation estimated in Panel A of Appendix Table A.1, however, highlights that our findings are
robust to this alternative specification.

A second potential concern might be that contemporaneous FICO scores in our regressions may
already reflect default outcomes as they account for updates in borrower’s financial situation and
thus may represent endogenous equilibrium objects themselves. To alleviate this concern, Panel B
of Appendix Table A.1 considers an alternative formulation where we use one year lagged FICO
scores; again, our findings are robust to this alternative.31

Another concern might be that the results in Table 1 are mechanical, since our binning procedure
already uses FICO to construct our borrowing premia estimates. To assuage this concern, we repeat
the analysis of equation (4) and Table 1 with APR (in spread terms, Rit) as the dependent variable,
rather than borrowing premium (bit). Results for this analysis are in Panel A of Appendix Table A.2.
Consistent with our baseline analysis, we find that borrower risk explains far more of the variation
in APRs than any other borrower- or account-level characteristics, though the total amount of
variation explained declines in this case. Notably, we find that bank fixed effects add appreciable
explanatory power to these regressions.

Lastly, we run the same analysis using measurements from our Y-14M only approach, thus com-
puting theoretical spreads and borrowing premia using our predicted default probabilities obtained
from the account level probit models. As shown in Panel B of Appendix Table A.2, our Y-14M only
approach delivers the same findings as our combined baseline approach in Table 1.

29Alternatively, one could imagine starting with income and adding in FICO; in that exercise, the explanatory
power of the income-only analog of column [1] from Table 1 is only 0.7%.

30The significance is unsurprising given the large sample size. A positive β1 indicates that higher FICO scores (i.e.
lower default probabilities) correspond to higher borrowing premia on average. A negative β2 implies that higher
income corresponds to a lower borrowing premium.

31We use one year lagged FICO scores and also run a specification with two year lagged FICO scores, as opposed
to FICO at origination, as the former measures are more informative of the probability of default in the following
period. Some of the accounts are originated more than 10 years ago and so credit scores at origination have little
information value for setting terms of credit so many years later. Lenders typically use the most recent updated
scores when deciding on loan terms.
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Summary We find empirical evidence for borrowing premia in excess of pure default risk premia
that are large on average and vary with borrower risk, tending to decline as borrower risk increases.
Borrower risk is a sufficient statistic for these premia; other characteristics like income and the
relationship between the borrower and the lender, as well as macroeconomic and bank-specific
factors, are secondary. The model we build in Section 3 is designed to incorporate this evidence
into existing theory, delivering empirically consistent terms for consumer credit.

3 A Model of Unsecured Credit with Borrowing Premia

The model adapts Chatterjee et al. (2007) to match empirically observed interest rates by probability
of default. Time is discrete, and there are no aggregate shocks. There is a single good used for
consumption and investment and a single asset available for saving and borrowing. All quantities are
measured in real terms. There are three types of agents. First, there is a unit mass of infinitely lived
households who decide each period how much to consume, how much to borrow or save, and whether
or not to default on existing debt. Second, there is a representative firm which produces according
to a constant returns to scale production function and hires capital and labor in competitive factor
markets. Third, there is a representative, competitive lender who offers menus of borrowing and
saving contracts to households.

3.1 Legal environment and market arrangements

Bankruptcy Following Chatterjee et al. (2007), the bankruptcy procedure in the model captures
Chapter 7 bankruptcy in the U.S. A household’s credit history is summarized by a “bankruptcy flag”
f ∈ {0, 1}. A status of f = 1 (f = 0) indicates the presence (lack of) default in the household’s
recent credit history. A household without a bankruptcy flag has access to the credit market and
may borrow or save, choosing wealth tomorrow a′ ⋚ 0; in contrast, a household with a bankruptcy
flag cannot borrow and must choose a′ ≥ 0.

A household who enters the current period with debt must choose whether to file for bankruptcy
(BK) or repay (R). In the event of a bankruptcy, the household: (i) cannot borrow or save in the
current period (a′ = 0); (ii) begins the next period with a bankruptcy flag (f ′ = 1); (iii) incurs
a fixed pecuniary cost κ > 0; (iv) incurs a fixed non-pecuniary utility cost (“stigma”) χ > 0; and
(v) pays back only a fraction ξ ∈ [0, 1] of its debt. A household with a bankruptcy flag loses the
flag and regains access to the credit market with i.i.d. probability θ ∈ [0, 1], yielding an average
duration of bad credit standing of 1/θ. The institution of bankruptcy implies that competitive,
profit-maximizing lenders must price loans today to reflect the probability of default tomorrow. In
the case of default, lenders receive the fraction ξ of the loan that is repaid.32

32Including this partial recovery is important for consistency with the data, since empirically a bankrupt or severely
derogatory account does not imply a zero return for the lender.
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Production and factor markets The single good is produced by the representative firm accord-
ing to the constant returns production function Y = F (K,N) = KαN1−α, where: Y is aggregate
output; K is aggregate capital; N is aggregate labor supply (in effective units); and α ∈ (0, 1) is
a parameter measuring the capital share in production. Since there are no government expendi-
tures, all production must be channeled toward: aggregate consumption, C; aggregate investment,
I = K ′ − (1− δ)K, where δ ∈ [0, 1] is the depreciation rate on capital; and aggregate default costs.
The rental rate on capital r and the wage rate w are determined competitively, delivering standard
factor prices r = α

(
K
N

)α−1 and w = (1− α)
(
K
N

)α. The equilibrium interest rate is i = r − δ.

Lending and saving markets The competitive, representative lender offers a variety of contracts
to households to maximize expected profits. A contract specifies a size ℓ and a discount price q,
whereby the household pays the lender qℓ today in order to receive ℓ tomorrow. The appropriate
sign convention thus defines contracts with ℓ < 0 as loans and those with ℓ > 0 as savings. In the
current period, the lender must choose a mass of contracts, m′(ℓ;x), of size ℓ to issue to households
with state x. Lenders can borrow at the equilibrium risk-free interest rate i and are fully diversified
against individual risk given the assumption of a continuum of households.

3.2 Households

Preferences Households are risk averse, value consumption flows according to the CRRA utility
function u(c) = c1−γ−1

1−γ , and supply their full labor productivity inelastically. They discount the
future at rate β ∈ [0, 1), which evolves stochastically according to Γβ . Furthermore, households
receive a pair of additively separable i.i.d. shocks, ν = {νBK , νR}, which are attached to the
options to declare bankruptcy or repay and are drawn from a type one extreme value distribution
with scale parameter ζ and location parameter ν. These shocks serve three purposes. First, they
capture the fact that many defaults are associated not with income shocks, but with events such as
marital disruptions and medical expenses which we do not model explicitly. Second, these shocks
imply a positive probability of default on even the safest loans, consistent with data. Third, they
smooth out individuals’ repayment probability functions – and therefore loan price schedules –,
which eases computation of the model.

Endowments and states Households begin the current period with net worth a ∈ R. Each
household has labor productivity ϵ1ϵ2ϵ3, where ϵ1 ∈ R+ is a permanent component or type, ϵ2 ∈ R+

is a persistent AR(1) component with persistence ρϵ2 and innovation variance σϵ2 , and ϵ3 ∈ R+ is
a transitory component. We denote the transition process over labor productivity by Γϵ.33 The
full idiosyncratic state of the household is x = (a, β, f, ϵ = (ϵ1, ϵ2, ϵ3), ν), and the endogenous
distribution of households over x is µ(x).

33This earnings process is tailored to accommodate the implementation of Storesletten et al. (2004), but of course
it may be extended to other processes.
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Decision problem A household in good credit standing (f = 0) who is in debt (a < 0) first
decides whether or not to default, solving:

V0(a, β, ϵ, ν) = max
{
V BK
0 (a, β, ϵ) + νBK , V R

0 (a, β, ϵ) + νR
}
, (5)

where V BK
0 and V R

0 are the values associated with bankruptcy and repaying, respectively:

V BK
0 (a, β, ϵ) = u (ξa+ wϵ1ϵ2ϵ3 − κ)− χ+ βE

[
V1(0, β

′, ϵ′)
]

(6)

V R
0 (a, β, ϵ) = max

a′∈F0(β,a,ϵ)
u
(
c(a′;β, ϵ)

)
+ βE

[
V0(a

′, β′, ϵ′, ν ′)
]

(7)

The bankruptcy value (6) reflects the fact that a defaulting household can neither borrow nor save,
incurs pecuniary and non-pecuniary default costs, loses good credit standing, and must still pay back
a fraction ξ of the loan. The value of not defaulting (7) reflects the fact that the household can either
borrow or save, choosing a′ from the set of feasible choices F0(a, β, ϵ) = {a′ ∈ A : c(a′; a, β, ϵ) ≥ 0},
which accounts for equilibrium prices via the budget constraint:

c(a′; a, β, ϵ) =

a+ wϵ1ϵ2ϵ3 − q(a′;β, ϵ)a′ if a′ < 0

a+ wϵ1ϵ2ϵ3 − qa′ if a′ ≥ 0
(8)

The equilibrium price of a loan, q(a′; a, β, ϵ), depends on the household state and loan size, whereas
the equilibrium price of a savings contract q is a scalar.

Since ν follows a type one extreme value distribution, the probability of a bankruptcy is

gBK(a, β, ϵ) ≡ P (d = BK|a, β, ϵ) =

0 if a ≥ 0[
1 + exp

{
V R
0 (a,β,ϵ)−V BK

0 (β,ϵ)
ζ

}]−1
if a < 0

(9)

The same analysis shows that the ex-ante value of being in good credit standing is

V 0(a, β, ϵ) =

V R
0 (a, β, ϵ) if a ≥ 0

ζ log
[
exp

{
V BK
0 (β,ϵ)

ζ

}
+ exp

{
V R
0 (a,β,ϵ)

ζ

}]
− ζ log(2) if a < 0

(10)

where the branching reflects that agents not in debt do not receive the extreme value shocks asso-
ciated with the default decision.34

A household in bad credit standing (f = 1) can neither default nor borrow. Therefore, such a
34These results are standard in discrete choice. For recent applications to macroeconomic models with default, see

Chatterjee et al. (2020); Dvorkin et al. (2019). It can be shown that for the case when a < 0

V 0(a, β, ϵ) =

∫
V
V0(a, β, ϵ, ν)dF (ν) = ν + ζγE + ζ log

[
exp

{
V D
0 (β, ϵ)

ζ

}
+ exp

{
V ND
0 (a, β, ϵ)

ζ

}]
where γE is the Euler-Mascheroni constant and ν = −ζ(γE + log 2) is the location parameter for F (ν). This
normalization of ν insures that, a priori, there is no additional value to being in debt associated with the option
value of receiving the extreme value shocks.
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household decides only how much to save:

V1(a, β, ϵ) = max
a′∈F1(β,a,ϵ)

u(c(a′; a, β, ϵ)) + βE
[
(1− θ)V1(a

′, β′, ϵ′) + θV 0(a
′, β′, ϵ′)

]
(11)

The feasible set F1(a, β, ϵ) = {a′ ∈ A+|c(a′; a, β, ϵ) ≥ 0}, with c(a′; a, β, ϵ) given by the bottom
expression in (8), reflects that borrowing is forbidden. The optimal savings policy is ga(x).

3.3 Loan pricing

To determine the price of a loan, the lender must determine the probability that a loan of size ℓ to
a borrower in state x will be repaid tomorrow. Taking into account decision rules and transitions
over exogenous idiosyncratic states, this probability is

p(ℓ;β, ϵ) =

∫
B×E

[
1− gBK(ℓ, β′, ϵ′)

]
Γβ(dβ′|β)Γϵ(dϵ′|ϵ). (12)

In order to determine loan price schedules given the repayment probability (12), the lender must:
(i) account for the recovery rate, ξ; (ii) discount at the equilibrium rate of return, i (the discount
price of a riskless savings contract is q = (1 + i)−1); and (iii) incorporate any borrowing premia.
In our baseline version of the model, these borrowing premia are modeled as exogenous wedges.
Combining these three facets, the loan price schedule is

q(ℓ;β, ϵ) =
p(ℓ;β, ϵ) + ξ(1− p(ℓ;β, ϵ))

(1 + i) (1 + b(p(ℓ;β, ϵ)))
(13)

The numerator is the expected repayment per unit of principal (adjusting for default risk and the
recovery rate in the case of default), and the denominator reflects that borrowers pay an additional
premium b above and beyond the base cost of funds adjusted for expected repayment. Inverting (13)
and filtering out the interest rate confirms that this wedge maps exactly into our measurements from
Section 2. Consistent with our empirical analysis, we assume that the borrowing premium depends
on the size of the loan and the idiosyncratic state of the borrower only insofar as these objects affect
the repayment probability p.

3.4 Equilibrium

A stationary recursive competitive equilibrium in this model is a list of: (i) value functions V (x)

for households, with associated default and savings policies gBK(x) and ga(x); (ii) factor prices
r, w, and i; (iii) contract prices q and q(ℓ;x); (v) aggregate quantities N , K, and Y ; and (vi) a
distribution of households over idiosyncratic states µ(x) such that

1. Households optimize: The value function and associated optimal policies are consistent
with the household problem represented by equations (5) through (11);

2. Firms optimize: r, w, and i are consistent with the firm’s optimization problem;
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Figure 3: An illustration of price schedules in the model

3. Lenders optimize: q(ℓ;x) satisfies (13), and q = (1 + i)−1;

4. Consistency: the distribution µ(x) is stationary and consistent with household decisions;

5. Markets clear for: (i) labor: N =
∫
ϵ1ϵ2ϵ3µ(dx); (ii) capital: K =

∫
aµ(dx); and (iii)

contracts: m′(ℓ;x) =
∫
1[ℓ = ga(x)]µ(dx). (Goods clear via Walras’ Law.)

3.5 An illustration of pricing and borrowing premia in the model

Panel (a) of Figure 3 plots the empirical borrowing premium schedule against default probability
(estimated in Section 2), as well as the fit to that schedule which we use in our baseline model.35

We call this baseline a heterogeneous premia model (HP) because the level of the borrowing pre-
mium varies with default risk. We compare our baseline HP model to two common versions in the
literature: a fixed borrowing premium model (FP), and no borrowing premium model (NP). Both
the FP and NP models are special cases with b(p) = b for all p: the fixed premium case has b > 0,
while the no premia case imposes b = 0. Both the HP and FP models feature more expensive credit
for all borrowers than the NP model. Low risk borrowers face higher borrowing premia in the HP
economy than in the FP economy, but high risk borrowers face lower premia.

Of course, no borrower cares solely about borrowing premia; rather, she cares about the all-in
cost of a loan. Therefore, panel (b) of Figure 3 plots the loan price schedule against default risk,
q(p), which includes both risk premia and borrowing premia. The conclusion is straightforward:
borrowers face lower marginal penalties for taking on high risk loans in our baseline HP model than
either alternative. The HP price schedule is nearly flat in default risk, while the cost of a loan
increases sharply as risk increases in both the FP and NP economies.

Panel (c) presents panel (b) using the typical convention from the literature, charting a specific
individual’s price schedule q(ℓ;x). This panel illustrates the effect of leverage choices alone on
prices by fixing the individual’s state x as well as the repayment probability function p(ℓ;x) across
all three model variants. We highlight two main features. First, both the HP and FP economies
feature large wedges between the return on savings and the rate on a riskless loan. Second, our

35See Section 4.1 for details.
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baseline HP model features a price schedule that closely – but not exactly – approximates linear
pricing, with interest rates rising only slightly as leverage and default risk increase from zero. By
contrast, both alternative models feature sharp increases in interest rates as leverage increases. This
property is critical to our quantitative analysis.

4 Mapping Models to Data

This section describes our calibration approach. We proceed in three phases. First, we directly
estimate the schedule of borrowing premia over default risk from our Y-14M / Equifax data. Sec-
ond, we assign a set of standard parameters reflecting with technology, the legal environment, and
idiosyncratic labor productivity shocks. Third, we calibrate the remaining parameters via simu-
lated method of moments (SMM) to match a set of credit market moments widely targeted in the
literature. Notably, in this third phase, we calibrate both our baseline model with heterogeneous
borrowing premia (HP) and an alternative with a fixed borrowing premium (FP). These two cal-
ibrated models allow us to demonstrate how the empirical incidence of borrowing premia shapes
credit market outcomes. We re-calibrate the FP model – rather than simply apply the parameters
from our baseline – so that the differences we highlight cannot be explained by aggregate differences
between the credit markets in the two economies.

4.1 Borrowing premia estimation

The goal of our borrowing premia estimation is to match the empirical schedule as closely as possible
since borrowing premia are exogenous in our baseline model. To construct the borrowing premium
schedule for our baseline HP model, we seek a smooth function defined for all p (interpolated between
the measured bins). To achieve this, we fit a 20th-order polynomial to the schedule for FY2019
in Figure 2. A high order polynomial is required to match the sharp curvature in the schedule at
very low levels of default risk. The resulting premium schedule matches the empirical one almost
exactly. For details on fit and parameter estimates, see Figure B.1 and Table B.1 in Appendix B.1.

4.2 Parameters assigned outside the model

Technology Panel A of Table 2 describes the key parameters which we specify outside the model.
Risk aversion, capital share, and depreciation parameters are standard from the literature. The
direct cost of default κ is set to 1.52% of median earnings as in Chatterjee et al. (2020). The
probability of regaining access to the credit market, θ = 1/7, is consistent with an average duration
of limited credit access upon default of seven years. The recovery rate, ξ = 16%, matches estimates
from Call Report data between 1990 and 2020.36

36Recall from Section 2 that we find no evidence that borrowers of different risk levels have systematically different
recovery rates. See Appendix A.4 for details on how we compute recovery rates.
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Labor productivity The individual labor productivity process is taken from Storesletten et al.
(2004). We choose this process since it captures the rich heterogeneity in earnings across individuals
and allows for countercyclical earnings variance, which is useful in later experiments with aggregate
dynamics. The permanent and transitory components of this process are distributed log-normally
around zero, with variances σϵ1 = 0.448 and σϵ3 = 0.351, respectively. The persistent component
of the process follows an AR(1) process in logs, where the standard deviation of shocks is σϵ2 =
0.129 and the persistence coefficient is ρϵ2 = 0.957.37 Appendix Figure B.2 shows that our earnings
process yields an economy-wide earnings distribution which closely matches the one observed in
Y-14M data.

4.3 Parameters estimated within the model

Conditional on these externally assigned parameters, we estimate the remaining ones by iteratively
searching the parameter space using the Nelder-Mead simplex approach.38 We target a set of
statistics widely used in the unsecured credit literature: bankruptcy and charge-off rates, debt to
income ratio, fraction of households in debt, and the average loan rate. Given the general equilibrium
nature of the model, we target the capital-output ratio as well. Lastly, following Herkenhoff and
Raveendranathan (2020), we use the share of default coming from events other than job loss or
income shocks from the Panel Survey of Income Dynamics (PSID) to capture defaults not driven
purely by income shocks in our model.

Our approach yields an overidentified system with six parameters and seven targets. When
reporting out estimates, we provide intuition for how these parameters shape model moments and,
in turn, how our empirical targets determine our parameter estimates. We also describe the overall
fit of the model and precision of our estimates to the extent possible. After performing this analysis
for the baseline HP model, we compare our estimates to the FP case in the next subsection. See
Appendix B.2 for an extended discussion of these issues.

Discount factors Following Athreya et al. (2018) and Krusell and Smith (1998), we assume
there are two β levels governed by transition matrix Γβ .39 The discount factor process has four
parameters: (i) the average β level, β = 0.876; (ii) the difference between high and low β levels,
∆β ≡ βH − βL = 0.379; (iii) the ergodic share of the population with high β, µH = 0.704; and (iv)
the transition probability from βL to βH , Γβ

LH′ = 0.077. This process implies high and low β levels
of βH = 0.988 and βL = 0.609, and a more persistent high β, Γβ

HL′ = 0.032.

37The number for σϵ2 comes from averaging the estimates for recessions and expansions in Storesletten et al. (2004).
The permanent and transitory components are discretized with 5 points. The persistent component is discretized
into a 10-state Markov chain using the Tauchen method, which allows the grid points for ϵ2 to remain the same as
the transition matrix changes over the cycle by manipulating the “step size.”

38Given the many nonlinearities and complexity of solving our model, a derivative-based approach is infeasible.
The Nelder-Mead method (attempted for many sets of initial conditions) yields consistent, stable results.

39Athreya et al. (2018) find that discount factor heterogeneity is crucial to capture the persistence of financial
distress at the borrower level. Krusell and Smith (1998) (and others since) find that this heterogeneity also helps
replicate the empirical distribution of wealth in the U.S. economy. We find this as well; see Appendix Figure B.2.
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Panel A: parameters assigned directly and common across models
Parameter Value Notes

(i) technology and legal
capital share α 0.360 standard
depreciation rate δ 0.072 standard, annual model
risk aversion γ 3.0 CRRA preferences
bankruptcy filing cost κ 0.0152 author’s calculations
prob. regain credit access θ 0.143 7-yr avg. exclusion
recovery rate ξ 0.160 midpoint of estimates [0.157 - 0.163]

(ii) labor productivity
standard deviation, ϵ1 σϵ1 0.448 permanent component, log-normal
persistence, ϵ2 ρϵ2 0.957 persistent component, AR(1) in logs
standard deviation, ϵ2 σϵ2 0.129 std. dev. of innovations
standard deviation, ϵ3 σϵ3 0.351 transitory component, log-normal

Panel B: parameters estimated internally for each model
Parameter HP FP Notes

average discount factor β 0.876 0.871 βL = β − µH∆β = βH −∆β
difference, high to low β ∆β 0.379 0.531 (βV P

L , βV P
H ) = (0.609, 0.988)

high β share µβH
0.704 0.831 (βFP

L , βFP
H ) = (0.430, 0.961)

low to high β trans. prob. Γβ
LH′ 0.077 0.052 Γβ

HL′ = Γβ
LH′(µ

−1
H − 1)

utility cost of default χ 0.727 0.548
extreme value scale ζ 0.123 0.104

Panel C: target moments for model calibration
Moment (pp) Data HP FP Source

bankruptcy rate 0.404 0.374 0.390 US Bankruptcy Courts
fraction in debt 11.7 12.3 12.2 Equifax
debt to income 4.30 4.34 4.32 Y-14M
average loan rate 19.6 21.1 21.1 Y-14M
capital-output ratio 3.00 3.09 3.09 BEA
charge-off rate 3.70 3.79 3.69 Call Reports
suboptimal bankrupt share 44.8 45.5 45.7 PSID

SSE - 3.07 3.15

Table 2: Baseline and fixed premium model: parameterization and targets

Notes: The model period is annual. The labor productivity process is taken from Storesletten et al. (2004), Table
2 Row B. All moments are evenly weighted, and the sum of squared errors (SSE) is computed using absolute
deviations. Section 4.1 descibes the calibration of the borrowing premium schedule for the HP model; the fixed
borrowing premium for the FP model is the balance-weighted average from the HP model, 12.2%.

The average level of discounting describes overall patience in the economy and therefore has first
order effects on the capital-output ratio and bankruptcy statistics. Conditional on this average level,
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the other three parameters describe higher order moments of the discount factor process. While
all model parameters are jointly determined, they are closely tied to the fraction of households in
debt and the debt to income ratio. Intuitively, credit quantity moments (along both the extensive
and intensive margins) help inform the distance between and population shares of the two β levels
because our model is a closed economy and we target the average level of wealth via the capital-
output ratio.

Other preference parameters We estimate a non-pecuniary cost of default, or “stigma,” of χ
= 0.727. The extreme value scale parameter is ζ = 0.123. Both parameters are sensitive to the size
of the debt market and determine the bankruptcy rate. In addition, both parameters are pinned
down by the charge-off rate and the suboptimal bankruptcy share.40 Our model matches empirical
bankruptcy and charge-off rates, and is also consistent with the empirical fact that around 45% of
bankruptcies have a primary cause other than income or job loss.

Model fit and quality of estimates We obtain a close fit of the model to our empirical targets,
with a sum of squared errors of 3.07. While our parameter estimates are consistent with related
estimates in the literature, one would ideally evaluate the precision of our estimates by obtaining
standard errors. We face two difficulties in calculating these. First, since our empirical moments
come from several different data sources, obtaining an empirical variance-covariance matrix requires
strong assumptions on the correlations between moments computed from different data sets. Second,
some of our moments (e.g. bankruptcy and average interest rates) are computed from almost the
full “universe” of observations, suggesting that there is essentially no variation in the calculated
“sample” moment.

Still, to provide insight into both the precision of our estimates and into what features of the
data drive our estimates, we conduct two analyses in Appendix B.2 which we summarize here. First,
we compute the Jacobian matrix around our estimated parameters in order to measure the elasticity
of each model moment with respect to a deviation in each estimated parameter. This reveals which
parameters drive the largest changes in particular moments as discussed above.

Second, we compute the sensitivity matrix Λ from Andrews et al. (2017) around our estimates
to measure the elasticity of each parameter estimate with respect to each empirical moment. This
analysis reveals which moments drive the estimates of each parameter. We highlight three main
findings. First, the average discount factor is the most precisely estimated of our parameters.
Second, the other three parameters of the discount factor process are sensitive to measures of the
fraction of households in debt and the debt to income ratio. Since we have no reason to believe
that there is substantial mismeasurement in these moments, we are confident in the precision of
our estimates of these parameters. Third, the stigma and extreme value scale parameters are the
parameters most strongly affected by the share of suboptimal default and the charge-off rate. While

40The suboptimal bankruptcy share is the share of bankruptcies accounted for by agents for whom bankruptcy is
not the action delivering the highest “fundamental” value. See Appendix A.6 for a formal description of this and
other model moments.
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this speaks to the merit of targeting both these moments, it is reasonable to suspect that these
are less precisely measured and therefore that the default preference parameters are less precisely
estimated than the others.41

4.4 Parameter differences between HP and FP economies

We re-calibrate the FP model so that any differences we document with respect to our baseline HP
model are not attributable to gaps in aggregate targets. We keep all externally assigned parameters
(besides borrowing premia) the same in the baseline and FP economies and set the fixed borrowing
premium, b, equal to 12.2% so that the two economies have the exact same balance-weighted average
borrowing premium.42 This feature insures that all differences we document stem from differences
in the incidence of borrowing premia, not in their average level. We focus on two main differences
between the estimated parameters for these model economies.

First, while we find very similar average discount factors across the two economies, the discount
factor processes differ meaningfully. Relative to the baseline, the FP economy features: (i) lower
β’s for both high and low levels; (ii) a 40% larger difference between the high and low levels; (iii)
an 18% higher ergodic share of high β; and (iv) more persistence in β overall (68% lower transition
probability for βH , 33% lower for βL). Second, the utility cost of default and extreme value scale
parameters are 25% and 16% lower in the FP economy, respectively.

These findings have a common economic driver which is central to our analysis. As highlighted
in Figure 3, a key difference is that loans with high default probabilities are much more expensive in
the FP economy than the baseline, while loans with low default probabilities are modestly cheaper.
This has two important corollaries. First, across households, those whose idiosyncratic states make
them fundamentally less risky – i.e. those with higher discount factors or higher levels of labor
productivity – face lower borrowing costs in the FP economy. By contrast, households in riskier
states face higher borrowing costs in the FP economy. Second, for a given household, the FP
economy features a higher elasticity of the loan rate to leverage: that is, marginal increases in the
size of the debt have a larger effect on credit prices than in the baseline.43

How do these forces manifest in our estimates? In order to replicate the share of agents in debt
and their leverage, the FP economy features implausibly more impatient borrowers who are willing
to bear these higher costs, explaining the downward shift in both βH and βL. By construction,
though, the FP economy must deliver the same average wealth, and so the gap between β levels
and the share of high β households increase to preserve the average level of discounting.

41The share of suboptimal bankruptcies is a necessarily difficult object to measure since there can be many reasons
operative simultaneously in a household’s decision to file. Moreover, we measure this moment using survey, rather
than administrative, data. Charge-off rates have the potential to be noisy since recovery is a lengthy and idiosyncratic
process.

42While exogenous in the FP model, this average is endogenous in our baseline HP economy because the borrowing
premium on a given loan depends on the default risk of that loan, which is endogenous.

43Of course, both effects are relevant for all agents. We systematically find, though, that agents with low discount
factors and low labor productivities face significant default risk on any loans they might take, and so they never
benefit in practice from the cheapness of low risk debt in the FP economy.
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While these discount factor adjustments bring the FP model in line with debt quantity moments,
they also increase the riskiness of borrowing in the economy ceteris paribus. As a result, there must
be offsetting adjustments in the utility cost of default and extreme value scale parameter to match
loan rate spreads and our bankruptcy and charge-off targets. The discount factor shifts, however,
must be considered in tandem with the fundamental decrease in riskiness implied by households’
responses to the additional steepness of interest rate schedules in the FP economy. This makes the
required changes in χ and ζ ambiguous ex ante. Our findings suggest that striking the right balance
requires that both these parameters be reduced relative to the baseline. Reducing stigma lowers the
costs of default, increasing the riskiness of borrowing all else equal. Reducing the variance of the
taste shocks on default lowers bankruptcies and charge-offs on average, but also makes the default
decision more predictable.

5 Credit Composition and Borrowing Premia

To this point, we have shown that both the heterogeneous premia and fixed premium economies can
match key credit aggregates equally well, though each requires meaningfully different parameteri-
zations. We now analyze how the incidence of borrowing premia shapes key cross-sectional features
of the unsecured credit market by comparing a set of untargeted moments across the HP and FP
economies. We consider two ways of disaggregating the market: by default risk (Section 5.1) and
by income (Section 5.2). These two sets of model-to-data comparisons allow us to further illustrate
the differences between the HP and FP models, and also provide us a set of untargeted empirical
tests which are useful for weighing the relative merits of each model.

5.1 The distribution of debt with respect to default risk

As discussed in Section 4.4, the key difference between the HP and FP economies is how default
risk is reflected in credit prices. An immediate question arises: how do these prices translate into
shifts in the composition of credit balances? Figure 4 provides insights into this by plotting the
cumulative share of total debt balances by default probability for three versions of the model: (i)
our baseline HP model; (ii) the re-calibrated FP model; and (iii) an FP economy solved under our
baseline HP parameterization. This set of moments provides a straightforward way to summarize
the joint distribution of credit quantities and riskiness in the model, just as Figure 3 does for credit
prices and riskiness.

First, we compare the baseline HP model to the FP model with the same parameter values.
This latter economy differs only due to the shape of loan price schedules and not parameter values.
As such, this FP economy is sharply tilted towards low risk debt because households respond to the
high costs of risky borrowing. The cumulative shares of debt with default probability less than 1%,
5%, and 10% are 21.2%, 12.6%, and 7.6% higher, respectively, in this “naive” (i.e. not re-calibrated)
FP model compared to the baseline.44

44Appendix Table B.3 reports the target moments of the FP model under HP parameters, as well as their deviations
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Figure 4: Share of debt balances by default risk, models and data

Notes: This figure plots the cumulative share of total debt balances (y-axis) up to each level of default probability
(x-axis) in several model variants and in the data. The data are from our Y-14M sample, with default risk bins
determined by credit score.

Second, we compare the baseline HP and re-estimated FP models in order to account simulta-
neously for the shape of price schedules and estimated parameter differences. In this case, the CDF
for the FP economy gathers mass more quickly than its counterpart for the baseline for all but very
low risk levels, with much lower cumulative shares at low risk levels (32.4% lower at 1% default
probability), higher cumulative shares at high risk levels (2.7% higher at 15%), and very similar
shares at intermediate levels (0.45% at 5%). The differences at low default probabilities stem from
the lower discount factors and stigma costs in the FP economy: agents are riskier across the board.
In the middle of the range of riskiness, though, the fundamental pricing force takes over, and agents
begin to respond to incentives by staying away from high risk loans, leading to a thinner right tail
in the FP model than in the baseline.

How do these models compare to the data with respect to this key metric? Even though the set
of moments in Figure 4 is untargeted, our baseline model closely matches the empirical distribution
from our merged Y-14M / Equifax data. By contrast, the FP model does not. This is intuitive:
households’ debt choices respond to prices, and our baseline model accurately captures how these
prices respond to risk. Therefore, our baseline model also more accurately captures the distribution
of debt balances with respect to risk. This offers an important additional reason for unsecured
credit models to account for empirically correct borrowing premia.

from the HP model. The differences are consistent with the results reported here: agents ration their borrowing
primarily along the intensive margin, opting for lower risk, smaller loans than in the baseline model.
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Figure 5: Untargeted moments by income quartile: data vs HP and FP models

Notes: Each figure plots the indicated moment by income quartile in several model variants and in the data. The
data are from our merged Y-14M / Equifax sample, using income at origination as the income measure. Empirical
rates are raw APRs scaled by the prime rate. The sums of squared errors between model and data for the average
loan rate / share of total debt / debt to income ratio / total, evenly weighted across quartiles and moments, are
0.45 / 54.5 / 9.99 / 65.0 for the baseline model and 14.9 / 96.5 / 20.5 / 131.9 for the FP model.

5.2 Moments by income

Our unique data set allows us to construct key moments by conditioning directly on default risk.
Since many widely-used data sets preclude this, most existing studies turn to a more readily available
measure for cross-sectional analysis: borrower income. For comparability, Figure 5 plots key data
moments by income quartile together with their counterparts in our baseline HP and FP models.
Again, we find that our baseline model outperforms the FP model. First, panel (a) shows that our
baseline delivers the observed modest decline in loan rates as income increases. The FP model,
by contrast, delivers a much steeper profile, particularly overstating the interest rates paid by the
bottom income quartile. Second, consistent with the share of debt by default risk from Figure 4,
panel (b) demonstrates that, in line with the data, our baseline model features the lowest (highest)
income quartiles taking on a larger (smaller) share of total debt than the FP model. Finally, panel
(c) highlights that our baseline is also more consistent with the observed sharp decline in average
individual leverage with respect to income, though neither model hits the high level of indebtedness
for the lowest income quartile.

Summary of cross-sectional comparisons Motivated by our empirical analysis in Section 2,
borrowing premia in our baseline HP model decline with borrower risk. The flat price schedules
induced by these borrowing premia alter households’ budget sets relative to the standard FP model,
dampening their disincentives to take on high risk loans. While both the HP and FP models
match key aggregate credit market features by construction, the HP model outperforms the main
alternative in terms of matching untargeted disaggregated empirical patterns for key credit variables
by both borrower income and default risk. We view this as strong evidence in favor of incorporating
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empirically consistent borrowing premia in unsecured credit models.

6 Aggregate Dynamics and Borrowing Premia

Our analysis so far has examined the steady state of the HP and FP models to highlight cross-
sectional effects of incorporating the variable incidence of borrowing premia we observe in the data.
In this section, we use the model to study aggregate dynamics with a particular focus on two areas.
First, we examine the differences between our baseline heterogeneous premia and fixed premium
economies to highlight how the incidence of borrowing premia shape aggregate dynamics. Second,
using data from our Y-14M / Equifax sample from the second quarter of 2020 – corresponding to
the beginning of the Covid-19 pandemic –, we analyze how the response of borrowing premia to a
negative shock affects aggregate dynamics. Our aggregate shock omits several salient features of
the Covid-19 recession, but it is the only recession available in our Y-14M sample period, and so
we use it for illustrative purposes.

6.1 Impulse response to a negative shock

The aggregate shock and borrowing premia We simulate a negative aggregate shock with
two exogenous components: a 1% reduction in TFP and an increase in labor productivity risk.45

This latter feature is important: income risk is critical for determining default risk, and therefore
both default risk premia and borrowing premia. On impact, the variance of earnings increases from
σϵ2 = 0.129 to σR

ϵ2 = 0.163, following Storesletten et al. (2004). The persistence of the shock, ρz =
1/3, is consistent with a three-year recession.

In addition to these standard components, we consider two possible scenarios for the schedule
of borrowing premia b(p). In the first, there is no response: the schedule remains unchanged from
its steady state level, which matches the average for the year 2019 as described in Section 4.1. In
the second, the schedule shifts up on impact of the shock to the average observed on impact of
the Covid-19 crisis (March to June 2020).46 This upward shift raises the level of borrowing premia
across the board, but does so more in relative terms for high risk borrowers. We term the first
scenario “no response,” and we term the second “tightening.”

Results Table 3 presents our main aggregate results from simulations of this shock. The first
three columns summarize the impulse responses by presenting the percentage difference relative to
steady state for the indicated moment on impact of the shock.47 We treat the results in column
[1] as our benchmark, corresponding to the model with heterogeneous incidence and no response of

45Formally, we assume Y = zKαN1−α, with z = z = 1 in the steady state model. On impact of the shock, we have
z1 = 0.99, and then zt+1 = ρzzt + (1− ρz)z thereafter over the course of the recovery.

46We use the exact same estimation procedure for the shock impact schedule as for the steady state schedule;
polynomial estimates may be found in Table B.1, and a fit of the model to the empirical borrowing premium schedule
may be found in Figure B.1.

47Full paths for these variables are presented in Appendix Figure B.3.
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Incidence of premia Heterogeneous Fixed Heterog. Fixed
Response of premia on impact None Tighten None Tighten None
Moment % diff, impact v steady state pp diff, [j] − [1]
Column [1] [2] [3] [2] − [1] [3] − [1]

total debt -0.06 -0.30 -0.80 -0.24 -0.74
debt to income 0.77 0.54 0.15 -0.23 -0.63
fraction in debt 0.43 0.30 -0.05 -0.13 -0.47
bankruptcy rate 11.8 14.4 16.6 2.58 4.79
average loan rate spread 0.13 4.36 0.89 4.23 0.76
average borrowing premium -0.55 3.75 0.00 4.30 0.55
aggregate consumption -0.21 -0.22 -0.23 -0.01 -0.02

Table 3: IRF: peak responses across model variants

Notes: Columns [1] through [3] show the percentage difference in each row’s moment at impact of the shock to the
pre-shock steady state for the indicated model variant. The rightmost columns compare the indicated model variant
to the version with variable premia and no response of premia to the impact of the shock, showing the percentage
point difference in the max percentage difference moments from the leftmost columns. Full paths for the variables
in this table are depicted in Figure B.3.

premia on impact. Column [2] corresponds to the HP model in which premia shift up on impact,
and column [3] corresponds to the FP model with no response.

Focusing first on commonalities across our simulations, the directional responses on impact for
most variables reported in Table 3 are the same in each variant: the debt to income ratio, the
bankruptcy rate, and average loan spreads all increase, while total debt and aggregate consumption
decrease. The exceptions are: (i) the average borrowing premium, which declines in the benchmark
model, increases in the version in which premia tighten, and remains flat (by construction) in the
fixed premium model; and (ii) the fraction of households in debt, which increases in both HP models
but decreases slightly in the FP model. In all cases, there is an increase in demand for credit coming
from a decline in real incomes (via the equilibrium wage) and an increase in earnings risk. This
increase in credit demand is offset somewhat by a surge in bankruptcies, since those who file cannot
take on debt by construction. Offsetting the demand side, though, increases in individual-level
default probabilities limit credit supply, shifting up interest rate schedules all else equal. Combining
these forces, we see drops in both total debt and total consumption on impact.

We next extend the analysis from Section 4.4, comparing how our baseline HP and FP economies
(columns [1] and [3]) differ in terms of aggregate dynamics. Outcomes are more severe across the
board in the FP model, with the shifts in aggregate moments looking qualitatively similar to the
case with tighter premia described below. As discussed above, a key difference between the HP and
FP models is that increases in default premia associated with riskier loans are not offset by decreases
in borrowing premia in the FP model. Therefore, marginal increases in risk lead to steep increases
in spreads, and so generally borrowers choose loans with only small increases in risk relative to
steady state.

How do these forces shape aggregate results? While the increase in loan spreads is only 0.76
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pps larger in the FP model than in our benchmark, declines in credit quantities are much sharper:
the debt to income ratio rises by 0.63 pps less, the fraction in debt rises by 0.47 pps less (actually
declining relative to steady state), and total debt rises by 0.74 pps less (a drop over 10 times as
large as the benchmark). Facing worse credit prospects, households default more and consume less:
bankruptcies increase by nearly 5 pp more, and the drop in aggregate consumption is 9% larger in
the FP model.

Finally, we analyze how the upward shift in the schedule of borrowing premia shapes the aggre-
gate response of the credit market to the shock by comparing columns [1] and [2] in Table 3. In
the benchmark model, individuals – particularly those with higher risk – face better terms of credit
since borrowing premia do not increase; by adjusting their borrowing choices, they actually pay 0.55
pp lower borrowing premia on average than in steady state, which leaves average spreads virtually
unchanged from their steady state level (+0.13 pps only) despite the increase in individual-level
risk outlined above. By contrast, the tightening of the schedule of borrowing premia rules out such
adjustments, and borrowing premia and spreads increase sharply on impact (+3.75 and +4.36 pps,
respectively). These fundamental pricing shifts are reflected in all key credit market quantities. The
average increase in borrower leverage and the share of debtors are both 30% lower when premia
increase, and as a result the drop in total debt on impact is five times as large. Since tighter premia
make future access to credit less valuable, we also observe a 22% larger initial surge in bankruptcy
filings. The drop in aggregate consumption is just over 2% larger with tightening.

6.2 Summary of business cycles

In this section, we explore aggregate dynamics further and include business cycle moments in our
empirical comparisons. Specifically, we augment our baseline model to consider stochastic equilibria,
featuring persistent shocks to aggregate TFP. We calibrate these shocks to match the frequency and
duration of recessions and the cyclical volatility of aggregate output, and link both the riskiness of
the persistent component of labor productivity (following Storesletten et al. (2004)) and the schedule
of borrowing premia (following the estimation described above) to the level of TFP.48 Given our
rich household heterogeneity and the endogenous aggregate evolution of the distribution µ(x), we
solve the model using the method of Krusell and Smith (1998). Details of the extension, calibration,
and computation of the model, as well as a full set of the results referenced in this subsection, are
available in Appendix B.4.

While all three variants of the model from Table 3 are broadly consistent with key business
cycle moments of the credit market, our heterogeneous premia models: (i) more closely match the
data than the FP version; and (ii) demonstrate that including the response of borrowing premia
in a downturn is crucial for matching the volatility of interest rate spreads. Along the former
dimension, the HP model performs particularly better than the FP model with regards to credit

48Given that we only have reliable Y-14M data dating back to 2014, we are unable to measure borrowing premia
in historical recessions outside the current one, which limits our ability to perform a richer estimation of the b(·)
function over the cycle.
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quantity moments such as total debt, the average debt to income ratio, and bankruptcy filings. In
particular, total debt in the FP model overpredicts the countercyclicality we observe in the data
and underpredicts volatility. Our HP models correct this by more accurately capturing the prices
faced by the crucial high-risk segment of the credit market. Along the latter dimension, the HP
model with borrowing premia that do not shift over the cycle yields implausibly low volatility in
average spreads. This suggests that movements in borrowing premia, rather than pure risk premia,
drive cyclical movements in unsecured credit prices.

7 Lending Standards and Borrowing Premia

Our focus so far has been on capturing the empirically accurate incidence and response of borrowing
premia to measure their cross-sectional and dynamic impacts on the unsecured credit market. This
analysis has been intentionally agnostic about the sources of borrowing premia. While an exhaustive
study of the drivers of these borrowing premia is out of scope for the present paper, they are
necessarily linked the commonly cited but less well-understood concept of lending standards. These
are related to such factors as the economic outlook, competitive landscape of the credit market,
banks’ risk tolerances, and many more. In this section we extend our model to include a notion of
lending standards and endogenize one likely driver: credit market tightness.

We preserve virtually all of the structure from our baseline model, but enrich it in one key
dimension: we allow the level of borrowing premia to be endogenous. This level effect is determined
by the endogenous aggregate demand for credit and supply of loanable funds in the economy.
Meanwhile, the incidence of borrowing premia – i.e. the shape of the schedule – is exogenous. We
argue that this exogenous component of borrowing premia offers a useful, quantitative formalization
of the portion of bank lending standards that is supply-driven. This component is little understood
but quantitatively significant, as documented in Bassett et al. (2014) and ? for example. We
proceed by first describing existing measurements of lending standards and their shortcomings. We
then present our extended model and conduct our main quantitative experiment: an estimate of
shifts in lending standards.

7.1 Overview of lending standards

Each quarter, the Senior Loan Officer Opinion Survey (SLOOS) conducted by the Federal Reserve
surveys a representative sample of U.S. banks about changes in their lending standards along many
dimensions (e.g. approvals, limits, spreads, etc.). Typically, these qualitative responses are aggre-
gated into diffusion indices intended to measure the extent to which lending standards have tightened
or eased in the aggregate. These indices show that standards tighten sharply during recessions, ease
gradually during recoveries, and remain largely unchanged during expansions.49 Notably, measures

49See Appendix A.5 for additional details on the SLOOS and the corresponding construction of diffusion indices.
Broadly, this index takes the responses of banks on changes in lending standards and weights them by banks’ shares
of total credit card lending. The patterns we document hold broadly for all categories of bank loans. See Figure A.8a
for trends in standards and terms diffusion indices for the U.S. credit card market.
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of lending standards constructed in this way necessarily describe quarterly changes as opposed to
levels, making comparisons across time difficult.50

While many theories use tightness in lending standards measured by these diffusion indices
as justification for modeling a restricted supply of credit, these papers do not readily point to a
common type of change in credit supply.51 Why do banks tighten standards, and how are tightened
standards reflected in interest rate spreads, credit limits, or other terms of credit? Our goal in this
section is to combine our model, our empirical estimates of borrowing premia, and survey-based
evidence to provide a more concrete understanding of lending standards.

It is worth noting that several existing empirical studies shed light on some of the nuances of
lending standards.52 In addition, certain editions of the SLOOS ask special questions about these
issues. For example, in the October 2019 SLOOS, banks cited as main reasons for reduced willingness
to approve credit card applications: (i) concerns related to borrowers’ ability to consistently make
payments; (ii) expected deterioration in portfolio quality; (iii) a less favorable or more uncertain
economic outlook; and (iv) a reduced tolerance for risk. These responses support two key facets of
the framework we now outline: that lending standards are closely related to borrower risk, and that
they respond to aggregate conditions.

7.2 Extending the model

Overview We augment our baseline model with a constraint on lenders’ loan supply which dictates
the maximum fraction of loanable funds (savings) in the current period that lenders can allocate to
credit provision (loans): that is, for a given standards weighting function λ(·),

total standards-weighted funds borrowed today ≤ total funds saved today (14)

Consistent with our empirical approach, we assume that the weight on a given loan varies with
both the riskiness of the loan and time (or the aggregate state). Equation (17) below adapts (14)
into model notation. While this specification is admittedly ad hoc, as demonstrated below it has
two features of first order importance to our exercise: (i) it allows borrowing premia to have an
endogenous component which depends on overall credit market tightness; and (ii) it preserves the
pricing functions from our baseline model.

Since households in the model behave competitively – taking the savings price q and loan price
schedules q(ℓ;x) as given –, this change in the lender problem has no direct impact on the specifica-
tion of the household block of the model. In particular, equations (5) through (12) are unchanged.

50While the July SLOOS inquires about the levels of standards relative to the midpoint of the range since 2005,
levels are still difficult to compare across time in general.

51See, for example, Dell’Ariccia and Marquez (2006), Darst et al. (2020), and Fishman et al. (2019). Most related
in spirit to our paper is Chen et al. (2021), who build and estimate a DSGE model with credit fictions. The authors
here argue that a shock to credit supply accounts for a significant portion of cyclical changes in lending standards.
Shocks to credit supply in their framework originate from moral hazard; in our framework, there are no direct shocks
to credit supply, just shifts in the quantity of loanable funds relative to loan demand.

52See, for example, Bassett et al. (2014) and Castro et al. (2020).
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All the differences in this extended model come from how prices are determined on the lender side,
and so we turn our attention there.

Modified lender problem As in our baseline model, competitive lenders maximize expected dis-
counted flow profits, but now this profit maximization problem is subject to an additional constraint
of the form (14). Flow profits π for a lender are the sum of net capital returns and repayments on
old contracts, net of issuances for new contracts:

π(K ′,M′;K,M) = (1 + r − δ)K −K ′︸ ︷︷ ︸
net return on capital

+

∫
X×L

q(ℓ;x)ℓdm′(ℓ;x)︸ ︷︷ ︸
issuances, new contracts

−
∫
X−1,X ,L

(1− gBK(ℓ;x) + ξgBK(ℓ;x)) ℓdm(ℓ;x−1)dP(x|x−1)︸ ︷︷ ︸
repayments, last period contracts

(15)

The first term in this profit equation is the return on aggregate capital (rK), net of investment
(K ′−(1−δ)K). The second term reflects payments from households for contracts issued today, M′ ≡
{m′(ℓ;x)}, at discount prices {q(ℓ;x)}. The third term reflects repayments from households on last
period’s contracts, M ≡ {m(ℓ;x)}. The gBK(·) term in this expression accounts for bankruptcies
declared on loans made in the previous period, while P(x|x−1) accounts for exogenous transitions
of individual states between periods. The ex ante repayment probability for a loan of size ℓ to a
borrower in state x, p(ℓ;x), is calculated exactly as in equation (12). Therefore, the lender problem
is

W (K,M) = max
K′,M′

π(K ′,M′;K,M) +
1

1 + i
E
[
W (K ′,M′)

]
(16)

subject to −
∫
X×L−

λ(p(ℓ;x))q(ℓ;x)ℓdm′(ℓ;x) ≤
∫
X×L+

q(ℓ;x)ℓdm′(ℓ;x) (17)

The objective function (16) is the recursive formulation of the discounted sum of the flow profits
defined in (15), with lenders discounting at the equilibrium interest rate. The expectation operator
in this expression accounts for all individual-level transitions. The key addition in our model is
constraint (17), which implements the generic version (14). The summation on both sides of (17) is
over all idiosyncratic states, but the summation on the left (right) side of the equation is only over
loans, L− = {ℓ|ℓ < 0} (savings, L+ = {ℓ|ℓ > 0}).

Analyzing this problem using standard techniques and placing a multiplier η ≥ 0 on constraint
(17) delivers the following two pricing equations:53

q =
1

(1 + i)(1 + η)
(18)

q(ℓ;x) =
p(ℓ;x) + ξ(1− p(ℓ;x))

(1 + i) (1 + ηλ(p(ℓ;x)))
if ℓ < 0 (19)

53Details and derivations may be found in Appendix C. Note that q(ℓ;x) = q when ℓ ≥ 0.

32



Equation (18) defines the common price on all savings contracts. Since there is no default risk,
individual states x do not affect this price, but lending standards still have an indirect, general
equilibrium effect via the tightness of the loan supply constraint. If the constraint binds so that
η > 0, then q < (1 + i)−1, and savers earn a premium relative to our baseline model, easing the
constraint by promoting savings among households. Equation (19) is the price of a loan. The
numerator is the expected repayment per unit, and the denominator reflects that borrowers pay an
additional premium above and beyond the base cost of funds, both exactly as in the loan pricing
equation (13) from the baseline model.

The key difference between equations (13) and (19), then, is that the borrowing premium now
has an endogenous component (via η) in addition to the exogenous one (via λ(·)). Applying the
definition of the borrowing premium as in our empirical analysis, we obtain

b(p) = ηλ(p) (20)

When the supply of savings is low relative to the demand for credit, the multiplier η increases
to ease constraint (17) by raising loan and savings rates to discourage borrowing on the margin.
Importantly, this increase in borrowing costs is accomplished purely through borrowing premia
(separately from risk premia), and this effect is more pronounced for loans which have high λ-
weights in constraint (17). Note that the shape of the borrowing premium schedule with respect to
default probability is entirely determined by the exogenously specified λ(·) function, while its level is
endogenously determined via the equilibrium value of the multiplier η. This multiplier summarizes
the endogenous effect of credit market tightness, that is, the demand for debt relative to the supply
of savings.

7.3 Estimating lending standards

Approach Since lending standards are inherently dynamic, our approach to inferring them com-
bines the steady state of the extended model with the endogenous response to a negative shock. The
former element delivers a baseline lending standards function, λ0(p), and equilibrium multiplier, η0,
while the latter yields the shifted versions, λ1(p) and η1. Comparing these two λ(·) functions offers
a well-defined notion of “tightening” or “easing” standards, both in the aggregate (summing across
all risk levels) and in the cross-section (considering each risk level). We require that our endogenous
borrowing premia schedules (20) match exactly those in the data, using the FY2019 schedule as our
baseline schedule, b0(p), and the March - June 2020 schedule as our on-impact schedule, b1(p).54 In
our modified environment, this implies that the parameters of the lending standards function λt(·)
are identical to those of the borrowing premia function bt(·) from Table B.1, up to an endogenous
level shift from the multiplier ηt. We use the same parameterization as our baseline (heterogeneous
premia) model from Table 2.55

54This is the extended model’s analog of the approach from the impulse response analysis in Section 6.1.
55The only differences between the steady states of our baseline and extended models come from the additional

return on savings associated with a positive η per equation (18). Since the value of η is small (it increases the return
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In order to bring our model environment closer to the empirical setting of the Covid shock
observed in early 2020, we use a slightly different aggregate shock relative to the one from Section
6.1, whose primary purpose was to illustrate aggregate dynamics with borrowing premia in a general
sense. We maintain the assumptions that the shock has an expected duration of 3 years and that
earnings risk increases (consistent with Storesletten et al. (2004)) on impact, but we assume a larger
initial drop in TFP of 9.8%. This generates the drop in output observed in the first quarter of the
pandemic recession.56

From the perspective of our inference on lending standards, the impact of the shock has two main
consequences: (i) demand for credit increases, driving up η; and (ii) borrowing premia shift out,
changing b(p). Recall that our calibration ensures that ηtλt(p) = bt(p) for t = 0, 1. The estimated
proportional shift in lending standards, then, adjusts observed shifts in borrowing premia for shifts
in credit demand:

λ1(p)/λ0(p)︸ ︷︷ ︸
estimated shift in standards

= b1(p)/b0(p)︸ ︷︷ ︸
observed shift in premia

/
η1/η0︸ ︷︷ ︸

endogenous change in multiplier

(21)

Equation (21) offers a clean summation of how our approach links standards, credit demand, and
borrowing premia. Our estimated proportional shift in lending standards scales observed shifts in
borrowing premia at each level of risk by the endogenous response of aggregate credit demand,
summarized by the change in the multiplier on constraint (17). An important feature of equation
(21) is that while it holds p-by-p, the scale factor for aggregate demand is independent of p. As
a result, even if borrowing premia increase for all risk levels, our model reveals that this does not
automatically imply that lending standards increase for all risk levels.

Results Figure 6 presents the results of this analysis. Panel (a) plots the estimated standards
functions in steady state and on impact of the shock. By construction, the shapes of these schedules
and their corresponding borrowing premia schedules match exactly, but their levels vary because
the equilibrium value of the multiplier on impact, η∗1 = 6.08e-4, is 7.1% higher than its steady state
level, η∗0 = 5.68e-4. Panel (b) plots the percentage difference in the standards function as in equation
(21), as well as the observed shift in borrowing premia. The latter change confirms that borrowing
premia shifted up across all levels of risk, but particularly so for high risk borrowers; for example,
no borrower with a default probability lower than 10% saw an increase in borrowing premium of
more than 8.9%, while a borrower with a default probability of 15% saw their borrowing premium
increase by 23.0%.

The estimated shifts represented by the blue line in panel (b) imply that standards moved against
higher risk borrowers. In particular, we observe “tightening” – a positive shift in the λ(·) function –
for all default probabilities above 8.2%. Using our empirical mapping from default probabilities to

on savings by less than 6 bps), the differences between these economies are negligible.
56With better earnings data from the Covid-19 crisis it could be possible to match this component of the shock more

closely to the empirical episode as well. Absent this data, though, and recognizing that other policy interventions
played a role in shaping the response to the crisis, we maintain our initial assumption for transparency.
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Figure 6: Estimated lending standards

Notes: This figure shows the inferred lending standards schedules for pre-Covid and Covid periods, respectively.
Percentage differences are computed with 2019 (“pre-Covid”) as the base year. The equilibrium values of the loan
constraint multiplier are η∗

0 = 5.68e-4 in steady state and η∗
1 = 6.08e-4 on impact of the shock. In panel (c), the

balance-weighted average lending standards is computed using the distribution of borrowing choices within the
period as in Figure 4.

credit scores, this corresponds to borrowers with credit scores of approximately 670-690 or below.
For very high risk borrowers – for example, those with default probability in excess of 14.1% or
a credit score lower than about 640 – the effect is especially stark, with estimated λ(·)-weights
increasing by more than 10%. By contrast, intermediate and low risk borrowers faced little change
in standards with estimated shifts in λ(·)-weights in the range of -2.7% to -0.1%. The modest
increases in borrowing premia these borrowers faced, then, were entirely attributable to the general
equilibrium effect of increased demand for credit.

Validation: how do standards in our model compare to survey evidence? We now
compare our results to survey evidence from the Senior Loan Officer Opinion Survey (SLOOS). As
discussed above, it is difficult to incorporate qualitative survey data directly into a quantitative
model, and quantitative diffusion indices have no direct analog in the model. However, by delving
deeper into the details of these surveys we can gain insight into how the model’s interpretation of
standards compares to real world outcomes.

Broadly, SLOOS data suggest that lending standards and key terms for credit card loans are
tighter in recessions than expansions.57 Banks start tightening standards in the lead-up to down-
turns and subsequently ease gradually after recessions. Panel (c) of Figure 6 shows that our model
reflects this pattern. On impact of the shock, the balance-weighted average of lending standards
increases 1.57%. This is consistent with a modest tightening of standards on average. Subsequently
this average declines into negative (easing) territory, gradually returning to steady state thereafter.
This pattern is consistent with the dynamics of standards during the pandemic presented in Ap-

57See Figure A.8 for details.
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pendix Figure A.8a. Why does our model deliver a short-lived tightening followed by a persistent
easing of standards, despite the fact that borrowing premia remain elevated over the entire course
of the recovery? The dynamics of the multiplier ηt in panel (c) highlight that net demand for credit
remains persistently elevated. This raises the endogenous component of borrowing premia, and so
inferred lending standards must ease to offset this effect.

What about borrower-specific factors? In our model, premia tighten for all borrowers in response
to the shock, but standards tighten only for high risk borrowers and loans. This suggests that, in
a sense, credit supply has shifted to the low risk segment of the market from the high risk. We
find evidence for this differential shift in the October 2019 SLOOS as well.58 Banks reported that
they were less likely to approve loans for borrowers with FICO scores of 620 in comparison with
the beginning of the year, while they were about as likely to approve such loans for borrowers with
FICO scores of 720 over this same period. While this partition of scores is relatively coarse, the
pattern is well within the ranges reported in Figure 6.

8 Conclusion

This paper uses administrative data from Y-14M and Equifax to document borrowing premia in
excess of default risk premia in the U.S. credit card market. These premia are large, varying
systematically and tending to decline with default probability. This pattern holds conditional on
borrower income and across time. Borrowing premia rise across the board in crises, but rise the
most for high risk loans. Our findings reveal that borrower risk is a sufficient statistic for these
premia, while other borrower characteristics and bank-specific factors, are secondary.

Notably, these premia have been absent from standard unsecured credit models. This is a
crucial omission because these premia sharply alter the relationship between loan prices and loan
risk, implying a much flatter slope of interest rate spreads with respect to default probability than
in existing models. This flat schedule dampens households’ disincentives to take on riskier loans.
Therefore, embedding this simple feature changes the quantitative implications of standard credit
models in a first order way. In the cross-section, capturing the empirical incidence of borrowing
premia allows the model to match the joint distribution of debt and credit risk very closely, whereas
a model with a fixed premium independent of default risk cannot. Furthermore, empirically correct
borrowing premia play a crucial role in shaping aggregate credit market dynamics. In response to
a negative aggregate shock, the relatively low cost of high risk loans facilitates borrowing for very
constrained agents, though the tightening of borrowing premia dampens this effect. Extending our
model to endogenize borrowing premia allows us to relate them to lending standards, supporting
survey evidence that credit supply tightens only for the riskiest portion of the borrower population.

Our analysis presents three main limitations, which we view as avenues worth pursuing in future
research. First, we interpret additional costs of borrowing in excess of those implied by measurable
default risk as arising from supply frictions which we model exogenously. While sufficient for the

58This vintage of the survey included a set of special questions asking banks to assess the likelihood of approving
credit card applications by borrower FICO score in comparison with the beginning of the year.
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measurement purposes in this paper, this approach is silent about the origin of these costs. Future
research accounting for regulatory constraints, search frictions, or price discrimination strategies,
for example, would provide further insights on the mechanics underlying lending policies.59 Second,
non-price terms of credit, such as credit limits, are also an important part of lending policies in
the unsecured credit market. These terms also vary widely across borrower risk, akin to what we
emphasize for spreads.60 While our model can deliver some measures of credit limits, it is mostly
silent on non-price terms of credit. Third, the limited time span of Y-14M hinders our ability to
consider recession episodes before the 2020 recession, constraining our business cycle analysis and
estimation of standards. Related, the particularities of the Covid crisis – government support via
stimulus checks, expanded unemployment benefits, specific income shocks, etc. – are likely to change
households’ borrowing and saving behavior. We hope to tackle these facets of our analysis as more
data become available.
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FOR ONLINE PUBLICATION:
Appendix for “Borrowing Premia in Unsecured Credit Markets”

A Data Appendix

A.1 Main data sources, sample construction, and additional facts

As described in Section 2, we combine two data sources to gain insights into credit terms and usage:
Y-14M and the FRBNY Consumer Credit Panel (Equifax). This is feasible given that the population
of borrowers in the two data sets is the same. Given the dominance of the largest banks in the
credit card market, almost the entire universe of credit card loans and borrowers (as represented by
Equifax) is in Y-14M.

Equifax This quarterly panel data set beginning in 1999 is a nationally representative anonymous
random sample from Equifax credit files, with snapshots of consumers’ credit profiles at the end of
each quarter. Since January 2020, the data is available at a monthly frequency. We drop observations
missing either Risk Score or raw delinquency data. Given the low frequency of transactions for the
three lowest Risk Score bins, we trim these bins from our sample.

For robustness, we compute three default measures as follows: (i) baseline, which includes
bankruptcy or severe derogatory; (ii) narrow, which includes only bankruptcy; and (iii) broad,
which includes bankruptcy, severe derogatory, or 120 days past due. Equifax contains additional
information for account payment or delinquency status including (in increasing order of severity):
30 days past due (DPD); 60 DPD; 90 DPD; 120+ DPD; in collections; severe derogatory; and
bankruptcy. The patterns we find are the same with only slight differences in levels.61

We use all four quarters in 2019 and compute the average probability of default for each credit
score bin for this period. The baseline and broad definitions are quite similar, while the narrow
measure preserves the pattern with a downward level shift (Figure A.1, right panel). When recom-
puting data moments for the Covid period, we keep our measure of probability of default unchanged
since there is little difference in default probabilities across credit scores of borrowers (Equifax Risk
Score) between 2019 and March-June 2020 (Figure A.1, left panel) for all but the three lowest Risk
Score bins, which we drop as described above.

Y-14M We construct our sample as follows. First, we take a 5 percent sub-sample and restrict
attention to general purpose credit cards that are not securitized, secured or under promotion for
accounts that are open (active or inactive) in each month. We focus on consumer bank cards which
are general purpose credit cards, and we exclude non-consumer / business cards and private label /
proprietary cards, since these can only be used in the stores of the retailer issuing the card. We drop
observations missing FICO score, APR, or end-of-cycle balance. Additionally, we drop observations
for which: (i) the Vantage score is reported; (ii) FICO scores are below 300 or over 850; (iii) APR is
below 5 percent. All these are very rare. We use the most recently updated credit score available for
the primary account holder using a commercially available credit score unless it is missing, in which

61In principle, one could construct the same exact narrow definition of default using the bankruptcy flag variable
in Y-14M data or the broader definition using information on DPD. However, severe derogatory is not reported in
Y-14M, and default information is generally unreliable in Y-14M.
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Figure A.1: Probability of default across periods and alternative measures

Notes: The left panel plots the probability of default by 5% credit score bin using our baseline (severe derogatory
plus bankruptcy) measure for 2019 and 2020. The right panel plots the three measures (baseline, broad, and
narrow) for the year 2019.

case we replace this with the credit score at origination. About 10% of the sample is replaced by the
score at origination. Furthermore, we truncate the sample to eliminate the highest risk borrowers
in the three lowest FICO score vigintiles. This keeps consumers with probabilities of default up to
just under 20% on average in our sample, which we take as a high upper bound for our measure
of default and representative of the economic behavior our model captures. This truncated sample
still covers more than 90% of credit card balances.

Using this data set we compute for the 17 groups of borrowers: (i) average interest rates (un-
conditional on debt and conditional on the population-wide median level of debt, which we proxy
by the middle quintile); (ii) share of total debt by income level and default risk; (iii) average debt
(unconditional and conditional on having a balance); and (iv) debt to income. Again, we average
over all 12 months of 2019. We compute the share of debt held by each bin as the ratio of the total
balances in that bin to the total balances across all accounts. The construction of model moments
is described in Section A.6. For robustness, we also compute these moments by income quartiles.
Lastly, we recompute these objects for the March-June 2020 period.

For interest rates, we use the purchase APR for accounts that are not in default / workout, for
which the default / workout APR is used. To average, we weight this APR by the total outstanding
balance for the account at the end of each month’s cycle. We also recompute this average interest rate
conditional on observations with balances near the median level of debt (40th to 60th percentile).
For robustness, we compute interest rates controlling for smaller debt levels with more borrowing:
patterns look similar. Aggregation is over FICO score bins and then over time. Figure A.2 shows
the interest rate schedule across bins. Note that figures here are reported in raw percentage points,
not spreads as in the main text.

Borrower credit risk We use borrowers’ credit risk bin (as measured by the jth vigintile (5%
bin) of credit scores, j = 1, ...20) as the common identifier. For our analysis, we use the proprietary
credit score developed by Equifax (“Risk Score”) and the FICO score available in Y-14M. The Risk
Score has been used extensively in household finance research by academics and policymakers given
its inclusion in the Equifax data set. The FICO score is the most commonly used credit score by
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Figure A.2: Interest rates by FICO scores

Notes: This figure shows the interest rate schedule across bins. Note that figures here are reported in raw
percentage points, not spreads as in the main text.

lenders when providing and setting terms of credit. We map each vigintile of Risk Score in Equifax
into its corresponding vigintile of FICO score in Y-14M. As argued in Section 2, this is reasonable
because the two measures are equivalent in assessing likelihood of default.

Both credit ratings integrate several common sources of information about consumers into a
single score. Debt payment history is the most important determinant of one’s credit score, but
other factors matter as well: levels of indebtedness, length of credit history, and credit limit uti-
lization, among others. This information is collected by Credit Reporting Agencies (CRA) such
as TransUnion, Experian, and Equifax in order to create detailed credit reports. Second, while
numerous credit scoring models have been constructed in the past decades, they all use the CRA
data to generate credit scores that can be queried by lenders and borrowers. Previous research has
documented that these different credit scoring models provide largely similar information about the
creditworthiness of consumers. For example, as the 2012 Consumer Financial Protection Bureau
(CFPB) report shows, correlations across different credit scores are high (over 0.9), especially for
consumers with lower credit scores.

Moments conditional on income In Figure A.3, we recompute interest rates across credit scores
controlling for income. This shows that the patterns in Figure A.2 are preserved when controlling
for income. While borrowers with higher earnings generally face lower rates, the differences across
income groups are small. Unlike credit variables, income is self-reported. Y-14M includes both
income at origination and updated income at the end of the cycle for each month. While the latter
variable is more desirable to use all else equal, it is not well-populated and so we use the former.
We restrict attention to accounts originated after 2005 to keep a reasonable level of informational
value for borrowers’ reported income. This trims only 7% of the sample and covers 90% percent of
balances. We winsorize the income variable at 2% at the bottom and 1% at the top, and use CPI to
convert income into 2019 dollars. For the remaining variables used for model validation, we proceed
in the same way. Lastly, we recompute patterns using March-June 2020 in Y-14M. Figure A.3b
reports the schedules of interest rates and credit limits in the crisis period conditional on income.
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Figure A.3: Interest rates conditional on income

In general, interest rate schedules shift upward and credit limit schedule downward across credit
score and income groups by small amounts.

A.2 Alternative approach: Y-14M only

This Appendix presents our alternative approach using only Y-14M data and shows that our findings
are not specific to our baseline approach described above and in the main text.

We proceed as follows: we use our preferred measure of default that sums up bankruptcy and
charge-offs (the baseline measure). For the former, we directly use a bankruptcy flag, a mandatory
variable in the data. For the latter, which has no direct entry in the data, we indirectly obtain
this information from banks’ answers about the status of the account: banks are required to report
whether an account has been closed, and, if closed, the reason for closure. Charge-off is an example
of a reason for closure. Closed accounts are required to be included for twelve months after the
month of closure. By construction, accounts in our sample are open in 2018 and may be open or
closed in 2019. As a result, the sample size is lower.

Using this sample, we compute both the predicted probability of default and the actual or
realized default. Predicted default for 2019 is estimated via probit regressions that include account
characteristics such as one year lagged FICO score (e.g. in 2018), income at origination, or whether
the borrower has multiple relationships with the bank. We use these estimated probabilities of
default at the account level to compute theoretical spreads and borrowing premia. Actual default
indicates if the observed bankruptcy flag is one or the reason for closure is charge-off in any month
during 2019. We use the actual default measures as a check on our estimated probabilities. In
addition, we also compute a broader definition of realized default to include delinquency as well, as
in our “broad” measure from Equifax.

First, as shown in Figure A.4, measures of predicted default probabilities are very close to the
actual, realized default measures for our base (2019) year in Y-14M (the violet and blue bars in panel
a). Second, the baseline and broad measures of default in Y-14M illustrated in panel b (the yellow
and the red bars, respectively) feature similar patterns and third, Y-14M measures present a similar
pattern across bins of credit scores to that of default measures from Equifax, albeit exhibiting lower
values given the caveats discussed before (the yellow and the blue bars in panel b).
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Figure A.4: Default probability: Y-14M vs. Equifax

Notes: The left panel plots the probability of default by 5% credit score bin using Y-14M only approach for our
baseline (charge-off plus bankruptcy) measure, realized in 2019 and for our baseline measure predicted for 2019.
The right panel plots the three measures (baseline in Equifax, broad and baseline in Y-14M) for the year 2019.

Figure A.5: Borrowing premia by default: Y-14M only vs. combined approach

Notes: The blue line in this figure is constructed using the combined Equifax and Y-14M sample described in
Section 2.2, with b(p) defined in (3). The red line uses the Y-14M only approach linking premia to predicted default
probabilities through FICO bins and the yellow line uses the Y-14M only approach directly against bins of default
probabilities.

Importantly, as shown Figure A.5, the borrowing premia schedule across predicted default prob-
abilities obtained from Y-14M (red and yellow lines) is very similar to the one illustrated in Figure 2,
featuring the same key takeaways as our baseline schedule (blue line). Furthermore, these findings
hold regardless of whether we use a credit score binning approach in Y-14M, similar to the one
used in our combined baseline approach (the yellow line), or we directly link borrowing premia to
predicted default probabilities at the account level and compute the average borrowing premia for
each 5% bin of these probabilities (the red line). The close proximity of the two lines reassures us
that using credit scores bins as a basis for computing default probabilities is not restrictive.
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A.3 Alternative regression specifications

We run five alternative sets of regressions to complement Section 2.3. First, we run the specification
of column [1] from Table 1 using income as the only independent variable to drive home the point
that income itself has little explanatory power; the R2 of this regression is 0.007. Adding FICO to
this specification returns us to the specification in column [2] in Table 1.62

Second, in Panel A of Table A.1, we run a specification in which we include a quadratic FICO
term to capture the curvature in the borrowing premium schedule in Figure 2. While this increases
the explanatory power by 14.6% (R2 increases from 60.7% to 69.6% in our baseline specification
from column [1]), the key findings from the main text are unchanged.

Third, in Panel B of Table A.1, we run a specification in which we use one year lagged FICO
scores instead of contemporaneous FICO scores to alleviate concerns regarding potential endogene-
ity issues that contemporaneous FICO already reflects repayment/default behavior in response to
terms of credit. While this specification decreases the explanatory power (R2 decreases from 60.7%
to 35.6% in our baseline specification from column [1]), the key findings from the main text are
unchanged. We also run a specification with two year lagged FICO scores and results hold. One
can in principle run a specification with FICO scores at account origination. However, some of
the accounts are originated more than 10 years ago and so credit scores at origination have little
information value for setting terms of credit so many years later. Furthermore, lenders typically use
the most recent updated scores when deciding on loan terms.

Fourth, in Panel A of Table A.2 we repeat our analysis replacing the borrowing premium bit
with the interest rate Rit in our regression equation (4) to provide a more comprehensive view of
evidence regarding credit card pricing. Our primary takeaways go through in this modified analysis
with three caveats. First, overall explanatory power is much lower, with R2 declining by about 75%
overall relative to the analogous specifications in Table 1. Second, adding borrower and account
controls has a slightly larger contribution to overall explanatory power, increasing the R2 by over
2 pp as opposed to under 0.1 pp. Third, bank fixed effects explain a lot of the residual variation in
interest rates unexplained by the other variables of interest.

Lastly, in Panel B of Table A.2, we run the same analysis using the Y-14M data only, thus com-
puting theoretical spreads and borrowing premia using our predicted default probabilities obtained
from the account level probit models. In this analysis we first consider all open account in 2018
and estimate their probability of default in 2019 via account level probit regressions using 1 year
lagged FICO scores as well as other borrower and account characteristics. We use our preferred
measure for default that sums up bankruptcy and charge-offs. By construction, accounts in our
sample may be open or closed in 2019. Second, we use these estimated probabilities of default to
compute theoretical spreads and borrowing premia used in our OLS regressions. This construction
will limit our sample size beyond that in the other sets of robustness checks. Nevertheless, the size
is still quite large and pertinent to the analysis. As shown in Panel B of Table A.2, our Y-14M
only approach delivers very similar results to our baseline specification, albeit the magnitude of
the explanatory power declines a bit (R2 in the simplest formulation [1] decreases from 60.7% to
37.2%). Importantly, as income or other account and borrower controls are added, R2 increases
insignificantly to only 39.2% and with bank fixed effects it increases to 45.6%. As in our combined
Equifax and Y-14M approach, FICO scores explain most of the variation in borrowing premia with
other controls adding little to no explanatory power.

62Full results for this specification are available upon request; we omit them here for brevity.

vi



Panel A: dependent variable: borrowing premium (quadratic)
[1] [2] [3] [4] [5]

FICO score 0.642 0.645 0.632 0.632 0.634
(2e-4) (2e-4) (2e-4) (2e-4) (2e-4)

FICO2 -5.2e-6 -5.2e-6 -05.2e-6 -5.2e-6 -5.2e-6
(2e-9) (2e-9) (2e-9) (2e-9) (2e-9)

income -0.002 -0.003 -0.003 -0.004
(2e-5) (3e-5) (3e-5) (3e-5)

revolver X X X
multiple relationships X X X
new account X X X
quarter FE X X
bank FE X

R2 0.696 0.697 0.699 0.699 0.710

Panel B: dependent variable: borrowing premia (lagged FICO)

lag FICO score 0.619 0.623 0.576 0.576 0.565
(1e-4) (1e-4) (1e-4) (1e-4) (1e-4)

income -0.004 -0.005 -0.005 -0.006
(1e-5) (1e-5) (1e-5) (1e-5)

revolver X X X
multiple relationships X X X
new account X X X
quarter FE X X
bank FE X

R2 0.356 0.356 0.367 0.367 0.390

Table A.1: Additional regression specifications I

Notes: Number of observations is 14,426,760. Results are significant at 1 percent level. All specifications are
variations on estimating equation (4). Column [1] imposes β2 = γ1 = γ2 = γ3 = 0; [2] imposes γ1 = γ2 = γ3 = 0; [3]
imposes β2 = γ2 = γ3 = 0; [4] imposes γ2 = γ3 = 0; and [5] estimates all coefficients.
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Panel A: dependent variable: interest rate
[1] [2] [3] [4] [5]

FICO score -0.141 -0.139 -0.143 -0.143 -0.137
(1e-4) (1e-4) (1e-4) (1e-4) (1e-4)

income -0.001 -0.002 -0.002 -0.003
(2e-5) (2e-5) (2e-5) (2e-5)

revolver X X X
multiple relationships X X X
new account X X X
quarter FE X X
bank FE X

R2 0.146 0.147 0.170 0.170 0.283

Panel B: dependent variable: borrowing premia (Y-14M only)

FICO score 0.056 0.057 0.063 0.063 0.063
(2e-4) (2e-4) (2e-4) (2e-4) (2e-4)

income -0.005 -0.005 -0.005 -0.007
2e-4) (2e-4) (2e-4) (2e-4)

revolver X X X
multiple relationships X X X
new account X X X
quarter FE X X
bank FE X

R2 0.372 0.374 0.392 0.393 0.456

Table A.2: Additional regression specifications II

Notes: Number of observations is 14,426,760 in panel A. In panel B there are about 892 740 observations. Results
are significant at 1 percent level. All specifications are variations on estimating equation (4). Column [1] imposes
β2 = γ1 = γ2 = γ3 = 0; [2] imposes γ1 = γ2 = γ3 = 0; [3] imposes β2 = γ2 = γ3 = 0; [4] imposes γ2 = γ3 = 0; and [5]
estimates all coefficients.

A.4 Recovery rates

Empirical measure and data We compute recovery rates for each bank-quarter pair for the top
25 banks by assets (98 percent of credit card assets in 2019) as the ratio of total recoveries to gross
charge-offs using Call Report data. We then weight across banks using the bank’s share of credit
card assets in the quarter, and then average across all quarters in the sample. Since recoveries may
lag charge-offs, we also compute the recovery rate in two additional ways for robustness. First, we
use an annual rather than quarterly basis, comparing the sum of recoveries to the sum of charge-offs
for each year. Second, we use a 3 period right-aligned rolling quarterly sum for recoveries and a
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Figure A.6: Recovery and charge-off rates across banks

Notes: This figure plots recovery rates against charge-off rates for the 25 banks comprising our sample from the
Call Reports which we use to estimate recovery rates.

3 period left-aligned rolling sum for charge offs. In all these exercises we find values ranging from
15.7% to 16.3%, and our chosen ξ parameter is the midpoint of this range.

Our borrowing premia calculations assume that the recovery rate does not vary with borrower
risk. While borrower-level recovery rate data is not available, we use the Call Reports to document
that there is no correlation between recovery and charge-off rates at the bank level (see Figure
A.6). This lack of correlation suggests that banks that might have credit card portfolios with
systematically different risk levels do not experience systematically different levels of recoveries,
which is consistent with our (stronger) borrower- or bin-level assumption.

Could different recovery rates deliver a fixed borrowing premium? Our measurement
approach in Section 2.1 assumes a fixed recovery rate across all loans, and as a result we obtain
the heterogeneous schedule of borrowing premia depicted in Figure 2. While we have argued using
data available to us that the assumption of a fixed recovery rate is a reasonable one, we would like
to examine the question further given its centrality to our paper. To this end, in this section we
present two analyses which help address this question.

Our first analysis asks: are our borrowing premia results explainable by omitted differences in
recovery rates across credit score bins? We can formalize this question in a slightly different way by
asking if there is a set of recovery rates (ξi for all bins i) for which our measurements would imply
a fixed borrowing premium (bi = b for all bins i). For completeness, we require that this borrowing
premium match the balance-weighted average we obtain in the data, b =

∑
i sibi, where si is bin i’s

share of total credit balances. Using equations (2) and (3), we can summarize these restrictions by
the system of linear equations

bi = Ri [pi + (1− pi)ξi]− 1 for all i

b =
∑
i

sibi

bi = b for all i =⇒ 0 =
∑
i

(1− si)Ri [pi + (1− pi)ξi] for all i

where N is the number of bins. This is a system of N equations in N unknowns, {ξi}Ni=1 which
eliminates bi. Therefore, we can use data on interest rates, repayment probabilities, and shares
{Ri, pi, si}Ni=1 to solve this system. The results of this exercise are plotted in the left panel of Figure
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Figure A.7: Recovery rates and borrowing premia

Notes: This figure is constructed according to the analyses described in Appendix A.4.

A.7. Immediately, we see that the implied recovery rates are completely implausible, far exceeding
the natural upper bound of 1 for all but the highest risk loans. We can further test this possibility by
comparing the balance-weighted average borrowing premium implied by this inferred set of recovery
rates to its empirical counterpart; the former is 416%, while the latter is 11.3%. Both findings lead
us to reject the possibility that all variation in borrowing premia is explainable by recovery rates.

Second, we can ask a more specific question targeting the especially puzzling portion of our
borrowing premium schedule: does there exist a schedule of recovery rates that explains the low
borrowing premia for high risk borrowers? To address this question, we can consider the following
exercise. First, assume the borrowing premium for the lowest risk bin is effectively independent of
the recovery rate, since pi ≈ 1 for this group. To be as conservative as possible in this exercise,
assume further that these agents have full recovery in default so that their loans are riskless. Then,
their borrowing premium is b ≡ Ri − 1 by equation (3), since R̃(pi) = 1 for them by equation (2).
Second, we can ask what ξi would rationalize bi = b for each bin i? Rearranging equation (3), it
must be

ξi =
1 + b−Ripi
Ri(1− pi)

The results of this analysis are presented in the right panel of Figure A.7. Since the first portion
of this algorithm is in principle optional, we report a baseline set of estimates corresponding to
the empirical b = 11.4%, and two additional sets corresponding to lower alternatives, b = 10% and
b = 5%. For default probabilities below 5%, the implied recovery rate would have to be negative to
rationalize observed borrowing premia. Furthermore, for higher risk loans, we’d need implausibly
high recovery rates, on the order of 30-50%, which our Call Report analysis rules out. For these
reasons, we also reject that recovery rates can explain our estimates of borrowing premia.

A.5 Senior Loan Officer Opinion Survey (SLOOS)

A.5.1 Construction of diffusion indices

To construct an index for changes in standards and terms of credit we follow the methodology
in Bassett et al. (2014) and use questions that ask participating banks to report whether they
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(a) Lending standards

(b) Terms (limits and spreads)

Figure A.8: Diffusion indices for credit card loans

have changed their standards, or changed terms during the survey period.63 Specifically, questions
about changes in standards follow the general pattern of “Over the past three months, how have
your bank’s credit standards for approving credit card loans changed?” The possible answers, on
a 1-5 scale, are: (i) eased considerably; (ii) eased somewhat; (iii) about unchanged; (iv) tightened
somewhat; and (v) tightened considerably.

Similar questions are asked for credit terms (interest rate spreads, credit limits), and the ap-
proach we describe below can be replicated for these specific terms as opposed to standards more
broadly. Historically, SLOOS respondents rarely characterize their standards as having changed
“considerably.” Therefore, we collapse the scale as follows: Si

t = −1 , if bank i reported easing
63In constructing our indexes, we revisit the method used in Bassett et al. (2014) in two directions: first, we use

more granular data by loan types when we compute the share for each loan category on banks balance sheet; second,
when computing weights associated with each type of loan, we expand the universe of banks beyond respondents in
the SLOOS in line with the Call Reports data.
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standards in quarter t, Si
t = 0, if bank i left standards unchanged in quarter t, and Si

t = +1 if bank
i reported tightening standards in quarter t.

We weight a bank’s responses by that bank’s share of total consumer loans in the previous period
(wi,t−1) to obtain the aggregate measure of changes in lending standards, ∆St =

∑
iwi,t−1S

i
t . These

weights are computed using the Call Reports. These indices reflect the net percent of consumer loans
subject to tightened standards: positive (negative) values indicate eased (tightened) standards. We
normalize these aggregate measures by their historical average to create an overall lending standards
index, ISt , which measures standard deviations in each quarter t from its historical average. Figure
A.8a in the main text shows the index for lending standards for consumer loans, and Figure A.8b
shows the indices for spreads and limits as well. The changes in standards for consumer loans and
for credit card loans are quite similar, since credit card loans represent the largest category of loans
included.

A.6 Moment definitions

In this section, we define key moments and metrics used throughout the paper, mainly model
moments used in our model versus data comparison, that are not described in the main text. To
ease notation, we express the individual state vector as x and describe a specific element of the
state vector as a function of x. Except where necessary, we suppress explicit dependence on the
time period t or the aggregate state s.

Macro moments The macro moments we use throughout the paper are standard. For business
cycle moments, we take logs of the data and apply the HP filter with an annual smoothing parameter
of 6.25. We use Equifax for all credit quantities for which we present cyclical properties, except for
debt to income for which we use Y-14M. For interest rates on all credit card loans we use schedule
G19 from the Flow of Funds and for interest rates on risk free loans we use Y-14M. We use 1999-2019
for series constructed from Equifax and G19, given that 1999 is the first year available in Equifax,
whereas for series constructed from the Y14M data, we start only in 2014, the first year available.

Fraction in debt, volume of debt, and share of total debt The total volume of debt is:
−
∑

x µ(x)ga(x)(1−gd(x))1[ga(x) < 0]. The share of total debt accounted for by a subgroup applies
the above metric to the subgroup, then weights by the total. In the data, we define credit as the
total credit card debt balances in Equifax, excluding bankruptcy, the exact counterpart of our
model. Recall that in the event of a bankruptcy, the household cannot borrow or save in the current
period.64 We define the fraction of agents in debt to be the fraction of agents choosing debt, a′ < 0.
For a given period t, this fraction is

∑
x µ(x)(1− gd(x))1[ga(x) < 0]. In the data, we compute this

fraction in Equifax as the fraction of consumers that hold positive credit card debt.

Debt to income ratio We compute the debt to income ratio conditional on borrowing: the ratio
of an agent’s total debt (−ga(x)1[ga(x) < 0]) divided by total labor income (wϵ1ϵ2ϵ3). We normalize

64Alternatively, one can use Total Real Revolving Consumer Credit Outstanding from the Flow of Funds/G.19
data, Federal Reserve Board (FRB)), case in which credit cannot be adjusted for bankruptcy at the individual level
as Equifax data allow us to do. If the stock of revolving credit is adjusted using the credit card bankruptcy or
charge-off rate, the correlation with GDP is negative, otherwise it is positive. Furthermore, while the large volatility
is robust relative to the time periods used, this is not the case for the correlation. For instance, in the subperiod
1980-2018 the correlation is 0.33 as noted by Nakajima and Ríos-Rull (2019). Fieldhouse et al. (2016) point out
that over the 1993-2006 period, such correlation was negative. In line with our paper, they also point out that this
correlation is even more negative when adjusted for charge-offs.
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by the fraction in debt, defined above. In the data, we use Y-14M at the account level on credit
card debt outstanding at the end of balance and income at origination (recall that income at the
end of balance is an optional reporting variable in the data and quite sparse and so we are limited to
using income at origination). Although imperfect, given that income is highly persistent we believe
that the properties of this series represent a reasonable proxy for current debt to income measure.

Bankruptcy and charge-off rates The bankruptcy rate is
∑

x gd(x)µ(x); the charge-off rate is∑
x−agd(x)µ(x), normalized by the total debt in the economy. To compute a conditional metric (ei-

ther on being in debt or by income group), we normalize the distribution by the desired population.
In the data, we use the exact same definition of default rate from Equifax used for default probabil-
ity in the model as described in Section 2 (bankruptcy and severe derogatory) as well as using only
the bankruptcy flag in these data to compute cyclical properties for default and bankruptcy rates
in Section 6. Constructed variables in this way are based on the universe of consumers modeled
in our paper.65 The share of suboptimal bankruptcy is the total mass of bankruptcy coming from
agents for whom bankruptcy is not the modal action,

∑
x gd(x)µ(x)1[gd(x) < 0.5], divided by the

total bankruptcy rate.

Average interest rate and borrowing premium We compute the loan-weighted average in-
terest rate spread conditional on borrowing as∑

x ga(x)(1− gd(x))1[ga(x) < 0]
(

q
q(ga(x);x)

− 1
)
µ(x)∑

x ga(x)(1− gd(x))1[ga(x) < 0]µ(x)

In steady state, the denominator is equal to the (constant) total debt, but this is not in general true
when aggregate shocks are present in the environment. For business cycle calculations, we use G19
data from FRB for interest rates of all credit card accounts which we adjust for the federal funds
rate. As in the case of the interest rate on all loans, we adjust for the prime rate. The loan-weighted
average borrowing premium is computed exactly as in the expression above, with the spread term
q/q(ga(x);x) replaced by the borrowing premium b(p(ga(x);x)).

B Quantitative Appendix

B.1 Estimating the schedules of borrowing premia

Figure B.1 depicts the fit of our model borrowing premia to the data for our baseline steady state
model (data corresponding to FY 2019) and for our dynamic analysis (impact of shock corresponding
to 2020 March to June). As described in the main text, the fit is nearly exact for both schedules
for a 20th order polynomial. We choose 20th order because lower orders struggle to match the
curvature for very low levels of default risk, and higher orders do not increase the fit by much. The
polynomial specification for N = 20 is

b(p) =

{∑N
n=0 xn

(
p−m0

m1

)n
if p ≥ p

0 if p < p
(B.1)

65Alternatively, one can use the number of bankruptcies (obtained from U.S. Courts) normalized by the number
of households (from the Census), as in Nakajima and Ríos-Rull (2019), with properties of these objects presenting
similar patterns. In particular, bankruptcy filings are also highly volatile and countercyclical. Specifically, they find
that for all bankruptcies relative volatility is 8.5 and correlation with GDP is -0.47.
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Figure B.1: Model fit to observed borrowing premia schedules

coef. 20 19 18 17 16 15 14 13 12 11
FY2019 -0.002 -0.002 0.030 0.028 -0.176 -0.153 0.565 0.459 -1.088 -0.811
2020Q2 -0.003 -0.002 0.035 0.023 -0.204 -0.126 0.653 0.375 -1.251 -0.657

coef. 10 9 8 7 6 5 4 3 2 1
FY2019 1.279 0.855 -0.895 -0.517 0.346 0.160 -0.063 -0.019 0.002 0.048
2020Q2 1.464 0.686 -1.022 -0.408 0.395 0.121 -0.072 -0.013 0.002 0.047

coef. intcpt. m0 m1 p

FY2019 0.083 0.907 0.053 0.815
2020Q2 0.089 0.907 0.053 0.815

Table B.1: Polynomial fits to borrowing premia data

Notes: The polynomial specification is given by equation (B.1).

The coefficients xi (as well as normalization constants m0 and m1 and the threshold p) for these
polynomials are presented in Table B.1. The truncation at p accounts for scarcity of data at high
levels of default risk. The m coefficients allow for higher precision in the polynomial fitting by
rescaling the probabilities of default, which cluster near 0. As described in the main text, the fixed
premium is chosen to be equal to the balance-weighted average from the variable premium model,
which is 12.3% for the steady state and 12.9% on impact of the shock.

B.2 Sensitivity and Jacobian Analysis

This subsection complements Section 4.3 by providing quantitative results in Table B.2 and a fuller
discussion of the mappings: (i) from model parameters to model moments (Jacobian analysis);
and (ii) from empirical moments to estimated parameters (sensitivity analysis). We conduct these
analyses for both the baseline (HP) and fixed premium (FP) economies, focusing on the former and
highlighting key differences of the latter with respect to the former. We begin with the Jacobian
analysis and then move to sensitivity.

B.2.1 Jacobian analysis

Overview Each column of panels A.2 and B.2 shows the elasticity of the indicated model moment
(column) with respect to the indicated model parameter (row), computed as the ratio of log dif-
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ferences between moment and parameter. Each elasticity is computed by perturbing the indicated
model moment by 0.1% from its estimated value in Table 2.

By column: which model parameters affect each model moment? First, consider panel
A.2 of Table B.2 column-by-column to assess which model moments are most affected by which
parameters in the baseline model. The bankruptcy rate (BKR) is most sensitive to the average
discount factor: a 1% increase in β yields nearly a 7.5% lower bankruptcy rate. The default
preference parameters χ and ζ and the share of high beta types µβH

also impact this moment. The
fraction in debt (FID) is sensitive to parameters describing the extent of differences between types
and the switching process between them, with the largest elasticities being with respect to µβH

and the low-to-high transition or “churn” parameter, Γβ
LH′ . This follows from the GE nature of the

model as described in the main text. A bigger gap between the types increase FID, while a lower
share of βH or more churn in types decreases it. The debt to income ratio (DTI) is quite sensitive
to β (more patience means borrowers can credibly take on more leverage with similar repayment
probabilities) and Γβ

LH′ (more churn means current type is a worse signal of future type, leading
to rationing). Average spreads depend negatively on β since less default implies lower rates and
positively on µβH

since more high types means more borrowing is accounted for by low types. The
capital-output ratio is driven largely by β process in intuitive ways. The charge-off rate (COR)
responds negatively to increases in overall type quality (β and µβH

) and the default preference
parameters; an increase in the utility cost of default χ lowers COR by limiting filings on the margin,
while an increase in the extreme value scale parameter ζ increases COR by increasing the likelihood
that agents with relatively low values attached to default will choose to do so anyway. The share
of suboptimal bankruptcies (SoBKR) responds in the same way to χ and ζ, while increases in the
average level of β strongly increase the SoBKR. This last effect arises because it increases the weight
on continuation values in individual value functions, which are in general the part of V BK

0 (·) that
depresses V BK

0 (·) relative to the repayment value V R
0 (·).

By row: which model moments are most affected by each model parameter? Next,
consider panel A.2 once more, this time looking row-by-row to highlight which moments are most
affected by a given parameter. The average discount factor plays a central role in determining
nearly every model moment. Beyond that, µβH

and the gap between types ∆β have big impacts
on all three default moments and the capital-output ratio. The churn parameter Γβ

LH′ has the
biggest impacts on the credit quantity moments FID and DTI. The stigma and extreme value scale,
unsurprisingly, exert their largest influences on all three default moments.
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Moment BKR FID DTI IRS K/Y COR SoBKR

Panel A: Heterogeneous Premia (Baseline, HP) Model

A.1: Sensitivity Matrix (AGS 2017)
avg discount factor β -0.00 -0.03 0.02 0.09 -0.02 -0.02 -0.01
diff in disc. factor ∆β -0.01 1.91 -1.33 -0.40 0.44 0.83 0.09
high β share µβH

0.02 -1.88 1.20 -0.20 -0.31 -0.52 -0.17
low to high β prob Γβ

LH′ 0.01 1.54 -0.05 0.19 0.36 0.78 0.08
utility cost of def. χ -0.03 2.77 -1.79 -0.09 0.05 0.05 0.17
EV scale ζ -0.05 2.47 -1.76 -0.51 -0.48 -1.31 -0.02

A.2: Jacobian Matrix
avg discount factor β -7.42 -0.02 4.13 -7.16 9.43 -7.42 37.8
diff in disc. factor ∆β -0.72 0.11 0.64 0.36 -0.88 -0.80 5.40
high β share µβH

-2.29 -0.35 -0.20 0.61 -1.26 -2.50 3.97
low to high β prob Γβ

LH′ -0.34 -0.70 -1.06 0.08 0.00 0.27 0.53
utility cost of def. χ -0.99 -0.09 0.24 -0.12 -0.06 -2.61 -2.17
EV scale ζ 1.04 -0.21 -0.23 0.18 -0.05 1.41 1.36

Panel B: Fixed Premium (FP) Model

B.1: Sensitivity Matrix (AGS 2017)
avg discount factor β -0.03 0.14 -0.06 0.29 0.10 -0.05 -0.01
diff in disc. factor ∆β -0.27 0.97 -0.33 -1.61 -1.31 0.02 0.37
high β share µβH

-0.09 0.30 0.09 -0.50 -0.38 0.13 0.08
low to high β prob Γβ

LH′ -0.46 -1.01 1.53 -2.25 -2.05 0.82 0.21
utility cost of def. χ 0.60 -0.26 -1.05 2.69 2.82 -0.18 -0.53
EV scale ζ 0.66 -0.07 -1.14 3.22 3.00 -0.67 -0.57

B.2: Jacobian Matrix
avg discount factor β -14.8 -0.53 5.29 -6.02 8.46 -4.43 18.3
diff in disc. factor ∆β 20.0 0.32 4.34 -0.39 1.03 0.75 17.1
high β share µβ

H -4.08 -3.70 -5.03 2.35 -3.61 0.16 -0.25
low to high β prob Γβ

LH′ 19.3 0.06 3.06 -0.42 0.98 0.63 18.5
utility cost of def. χ -1.86 0.47 0.87 -0.51 -0.03 -2.55 -4.03
EV scale ζ 21.1 -0.70 2.27 0.54 0.26 3.24 22.7

Table B.2: Sensitivity and Jacobian for Baseline and Fixed Premium Estimations

Notes: Notation: BKR = bankruptcy rate; FID = fraction in debt; DTI = debt to income ratio; IRS = average interest rate
spread; K

Y
= capital-output ratio; COR = charge-off rate; and SoBKR = share of suboptimal bankruptcy. The sensitivity

measure is a transformation of the Λ matrix from Andrews et al. (2017). All figures are numerical elasticities, d log x/d log y.
For panels A.1 and B.1, each cell is the elasticity of the estimated parameter (row) with respect to a 1% increase in the
indicated empirical moment (column), filtered through the Λ matrix. For panels A.2 and B.2, each cell is the elasticity of the
indicated model moment (column) with respect to the indicated parameter (row).

Comparing the FP model to the HP model Finally, compare panel A.2 (for the HP model)
to panel B.2 (for the FP model). For this analysis, it is useful to recall that the HP and FP
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calibrations differ in important ways described in Section 4.3. The average discount factor plays the
same centrally important role in both models. Furthermore, the two default preference parameters
and the share of high β types affect model moments in much the same way across the two models.
There are, however, two important differences. First, all default moments in the model are far
more sensitive to the scale parameter ζ in the HP model than the FP model because (i) the scale
parameter is already 15% lower in the FP model, so a 0.1% increase in ζ is a larger increase
in actual “noisiness” and (ii) the types are worse in the FP model, leading them to downweight
continuation values relative to the baseline model and therefore be more “susceptible” to noise from
the extreme value shocks. Second, the gap between types, share of high types, and low-to-high
transition probability have slightly different and generally much larger affects on model moments in
the FP model than the baseline. For example, while the elasticity of DTI and FID with respect to
∆β is positive in both models, the analogous elasticities of IRS are positive for the HP model and
negative for the HP model. This is because predominant effect of making low types worse in the
baseline model is that the pay higher spreads in equilibrium, while in the FP model the predominant
effect is that these types are priced out on the margin, improving the pool of borrowers.

B.2.2 Sensitivity analysis

Overview Given a J-vector of target moments m and a P -vector of parameters θ to estimate,
Andrews et al. (2017) show that: (i) the P × J sensitivity matrix Λ = −(G′WG)−1G′W may
be computed using only the J × P Jacobian matrix G and the J × J weighting matrix W from
the initial estimation; (ii) given Λ and a J × J empirical variance-covariance matrix Ω, one may
compute standard errors as the diagonals of the P × P matrix V = ΛΩΛ′; and (iii) for a J-vector
of constants c corresponding to possible “mismeasurements” in m, the first-order asymptotic bias
in the estimator of θ is B(c,Λ) = Λc. For a given Ω, then, small values of Λ correspond to more
precise parameter estimates. A small value of Λij indicates that even if empirical moment j (mj)
were quite different, the model’s estimate of parameter i (θi) would change little. Therefore, if
the (appropriately-weighted, squared) sum across all mj of Λij for θi is small, then θi is precisely
estimated given the set of targets {mj}. By contrast, a large value of Λij suggests that the estimate
of θi is quite sensitive to a change in mj . This implies that: (i) variation in mj is critical for
determining the value of θi; and (ii) the empirical variance of mj and its covariances with other
moments must be relatively low in order for θi to be estimated precisely.

Panels A.1 and B.1 of Table B.2 present a transformation of the Λ matrix described above
for the baseline and FP models, respectively. Specifically, we posit a 1% mismeasurement in each
empirical moment (i.e. c = 0.01 ×m). Then, using the Jacobian matrix G (whose computation is
described above), we compute the bias matrix B(c,Λ). Then for each moment mj and parameter
θi, we compute the numerical elasticity [log(θ̂i +Bij)− log θ̂i]/[log(1.01mj)− log(mj)].

By column: how do parameter estimates change with each empirical moment? First,
consider panel A.1 column-by-column. For this analysis, it is useful to consider all parameter
changes induced by the change in measured empirical moment simultaneously. For example, a 1%
increase in interest rate spreads would lead us to estimate a slightly higher β, which is perhaps
counterintuitive since households are on average more patient. Tracing through the calculations,
though, this would be achieved by modestly lowering both βL and βH (βL more so than βH) while
increasing the share of βH types, the persistence of the βL type, and the likelihood of transition
from βH to βL. This last effect is quite large and makes high types fundamentally riskier, increasing
the spreads they pay when they borrow. Importantly, this analysis reflects how parameters would
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adjust to the mismeasurement in spreads while still matching the other moments at their targeted
levels.

All bankruptcy rate elasticities are 5 bps or below, with the largest magnitudes unsurprisingly for
the default preference parameters χ and ζ. Increasing FID would suggest a wider gap between the
types and also a lower share of high types, as well as revising up both default parameters. Increasing
DTI would have the exact opposite directional effects, suggesting that targeting both moments is
useful in pinning down this set of parameters. One of the most important things learned comes
from comparing the effects of changes in the charge-off and suboptimal bankruptcy rates on χ and
ζ; an increase in COR has a large downward effect on the EV scale parameter and little effect on
stigma, while and increase in SoBKR has a large positive effect on stigma and little effect on ζ.
These competing forces underscore how these moments combine to separately pin down these two
crucial parameters.

By row: which empirical moments drive the largest parameter changes? The average
discount factor is not very sensitive to small perturbations of any model moment. Most parameters
that we calibrate are more sensitive to the fraction in debt and the debt to income ratio than any
other model moments. This is consistent with how these moments pin down the balance between
borrowers and savers in our general equilibrium context. Notably, while all our parameters are not
very sensitive to the bankruptcy rate – a frequency measure of default –, many are sensitive to
the charge-off rate – a dollar-weighted measure. This suggests that there is important additional
information from the set of loans on which borrowers default above and beyond the raw share.

Comparing the FP model to the HP model We now compare panels A.1 and B.1, the
sensitivity matrices for the baseline and FP models, respectively. While some of the same principles
apply (e.g. the average level of β is the least sensitive parameter to virtually all moments), we see
considerable differences across these matrices owing to the different parameter estimates and the
different economic mechanisms at play in the two models. For example, an increase in FID in the
baseline model leads to: a lower share of high β types, more frequent βL to βH transitions, and
higher stigma and EV scale parameters. By contrast, in the FP model an analogous increase leads
to an increase in the high β share, less frequent transitions, and modestly lower stigma and scale
parameters. While the FID moment offers a particularly stark example, there are other, smaller
differences across the models as well.

B.3 Additional quantitative results

Equilibrium distributions of wealth and income We compare our models’ distributions of
wealth (panel (a)) and labor income (panel (b)) to those in the data (Survey of Consumer Finances
(SCF) 2019 for wealth and income and Y-14M for income) in Figure B.2.66 While broadly replicating
the shapes of these distributions, our model does not capture the extreme skewness or concentration
at the top of the distribution in either metric, particularly wealth. Notably, the model-implied
distribution of income – which is identical across the HP and FP models by construction – matches
quite closely with that implied by Y-14M data, which is less skewed than the SCF, with a sum
of squared errors for the depicted moments of 0.002. Furthermore, the distribution of wealth in
our baseline model matches the distribution of wealth from the SCF more closely than the FP
model (SSE 0.155 vs 0.208), another set of untargeted moments in favor of the baseline model to
complement those presented in Section 4.4.

66SCF wealth and earnings calculations come from Moritz Kuhn and José-Víctor Ríos-Rull,
https://sites.google.com/site/kuhnecon/home/us-inequality?authuser=0.

xviii



Figure B.2: Distribution of wealth and labor earnings

Notes: This figure reports the steady distributions of wealth and labor income in the baseline (HP) and fixed
premium (FP) models and in the data (2019 SCF). We also report the empirical distribution from Y-14M in 2019
for labor earnings. Since labor productivity is exogenous in the model and the HP and FP model have the same
equilibrium wage by construction, the distribution of labor earnings in these economies is identical. The SSE of the
HP (FP) model relative to the data for the wealth moments shown in panel (a) is 0.155 (0.208). The wealth Gini
coefficient for the HP (FP) model is 0.655 (0.616). The SSE of the model relative to the Y-14M (SCF) data for the
labor earnings moments shown in panel (b) is 0.002 (0.018).

Additional cross-sectional moments and the “naive” FP model Table B.3 presents addi-
tional cross-sectional results to augment Section 5. We report our target moments not only for the
HP and FP models considered in the main text, but also for the FP model evaluated under the pa-
rameters of the HP model. This exercise highlights how the aggregate credit market changes under
a different incidence of borrowing premia without re-estimating the parameters of the model. To
complement Figure 4, we also provide in Panel B a selection of moments describing the cumulative
share of total debt balances with respect to default risk.

The differences between the “naive” FP economy and the HP and FP economies in the aggregate
are quite stark. Agents in this economy self-ration their borrowing choices sharply along the intensive
margin: the average debt to income ratio is 57% lower than in our baseline economy. Notably, the
extensive margin is largely unchanged, with the share of debtors declining less than 2%. This result
is intuitive: the cost of a riskless loan is quite similar in all these economies, but the FP economies
feature a sharp increase in spreads for high levels of default risk. Without adjusting the parameters
of the model as described in Section 4.4, agents shy away from these riskier loans and borrow only
small amounts when they borrow. As a result, the bankruptcy and charge-off rates decline by 43%
and 50%, respectively, relatively to the baseline economy, and the level of spreads declines.

Full paths for IRF analysis Figure B.3 presents the full paths from impact of the shock to
recovery from the shock for the variables included in Table 3. This analysis places the “on-impact”
results in context of the full recovery from the shock.

There are two striking points beyond those observable in Table 3. First, panel (a) shows that
while total debt drops slightly on impact in our baseline model, it actually remains elevated relative
to steady state for 5 periods, before dipping down again and gradually returning to steady state.
This makes the implied cyclicality of debt in this model ambiguous ex ante. This is not the case
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Incidence of premia Heterog. Fixed
Parameterization HP FP HP FP HP
Moment level % diff, [j] − [1]
Column [1] [2] [3] [2] − [1] [3] − [1]

Panel A: empirical targets (pp)
bankruptcy rate 0.374 0.390 0.213 +4.53 -43.0
fraction in debt 12.3 12.2 12.1 -1.36 -1.73
debt to income 4.34 4.32 1.87 -0.52 -57.0
average loan rate spread 21.1 21.1 19.1 +0.01 -9.25
capital-output ratio 3.09 3.09 3.09 -0.10 +0.01
charge-off rate 3.79 3.69 1.90 -2.69 -50.0
suboptimal bankrupt share 45.5 45.7 53.1 +0.37 +16.8

Panel B: other moments (pp)
average borrowing premium 12.2 12.2 12.2 0.00 0.00
cumulative share of total debt, def. prob ≤

1% 54.8 37.1 66.4 -32.4 +21.2
2% 64.4 53.0 76.9 -17.7 +19.5
5% 81.2 80.8 91.4 -0.45 +12.6
10% 90.5 92.9 97.4 +2.59 +7.61
15% 96.9 99.5 99.8 +2.68 +2.97

Table B.3: Additional cross-sectional moments

Notes: The entries in columns [1] and [2] of Panel A correspond exactly to Panel C of Table 2. Column [3] reports
moments for the FP model solved for the parameters of the HP model. The two rightmost columns present the
percentage difference for each version of the FP model relative to the baseline HP model.

for either alternative model, for which the level of debt remains below its steady state level for the
entirety of the recovery. Second, panels (b), (c), and (e) show that the rates of recovery in debt to
income, fraction in debt, and the average loan spread differ sharply across our model economies.
For example, while the debt to income ratio increases on impact in all three economies, it remains
elevated for 8 periods in our baseline, 4 in the case when premia tighten, and only 1 in the FP case.
A similar pattern holds for the fraction of households in debt. For loan spreads, average spreads
return to their steady state levels in no more than 3 periods in either our baseline, no tightening
economy or the FP economy. By contrast, spreads remain above steady state levels for at least 6
periods in the case with tightening borrowing premia.

B.4 Business cycle model

Extending the model We make three main assumptions. First, the production function now
has an aggregate TFP term, z, which follows an AR(1) process; that is, Y = zKαN1−α, with z
following a transition process Γz. TFP is the fundamental exogenous shock to the economy which
drives aggregate dynamics. Second, consistent with empirical evidence on the cyclical properties
of earnings risk, we assume that the transition matrix which governs the persistent component of
individuals’ labor productivity varies with aggregate TFP; that is, Γϵ is now Γϵ(z′). Third, the
schedule of borrowing premia may be linked to the level of TFP; that is, b(p) is now b(p; z).

We summarize the aggregate state of the economy by s = (z, µ), which includes the exogenous
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Figure B.3: Full IRF paths for simulations and variables in Table 3

Notes: This figure reports the full impulse response path to the shock described in Section 6.1 for the variables
highlighted in Table 3.

level of TFP and the endogenous distribution of households over idiosyncratic states. All equilibrium
value functions, decision rules, and pricing functions, now depend not only individual states x but
also the aggregate state s. Furthermore, the equilibrium distribution µ(x) is no longer stationary,
but evolves in the aggregate in a manner still consistent with households’ decision rules. Aside from
these changes, everything else from our baseline model is unchanged.

Computation The distribution µ(x) has a very high dimensionality, which makes solving the
model using finite state space approximation difficult. We tackle this issue using the well-known
approach of Krusell and Smith (1998). Specifically, competitive households must be able to correctly
forecast future aggregate equilibrium prices – r′, w′, and i′ – state-by-state given currently available
information. Given the pricing equations implied by firm optimality and the aggregate resource
constraint, households need only know aggregate capital, K ′, and aggregate labor productivity in
each possible future state N ′(z′).

The results of these forecasts for the calibrated model are presented in Table B.4. Panel A
is for our baseline model with heterogeneous incidence of borrowing premia and no tightening of
borrowing premia in recessions; Panel B is for the version with heterogeneous premia and tightening
in recessions; and Panel C is for the fixed premium model. The results in Table B.4 show that
households are able to (almost) perfectly forecast the parts of the approximate aggregate state
required to compute equilibrium prices at each date and in each state. The overall standard errors
of each forecasting regression are vanishingly small, and the (adjusted) R2 of each regression exceeds
0.999.

Calibration The TFP process is discretized into two states: zE (expansion) and zR (recession),
with transition matrix Γz. We set zR = 0.99 so that recessions in the full business cycle model are of
a similar magnitude (-1%) as our impulse response experiment from Section 6.1. We parameterize
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agg. TFP
forecast var. z z′ intercept logK logN adj. R2 s.e. N

Panel A: Heterogeneous premia (HP) without tightening (Benchmark)
logK ′ zH - 0.204 0.895 0.000 0.999 1.9e-4 1564
logK ′ zL - 0.090 0.939 0.125 1.000 1.8e-5 436
logN ′ zH zH 0.039 - 0.783 1.000 2.0e-5 1280
logN ′ zL zH 0.040 - 0.776 1.000 7.4e-6 284
logN ′ zH zL 0.074 - 0.610 1.000 2.3e-5 284
logN ′ zL zL 0.076 - 0.602 1.000 8.2e-6 152

Panel B: Heterogeneous premia (HP) with tightening
logK ′ zH - 0.205 0.895 0.000 0.999 2.0e-4 1564
logK ′ zL - 0.088 0.940 0.127 1.000 1.8e-5 436
logN ′ zH zH 0.039 - 0.783 1.000 2.0e-5 1280
logN ′ zL zH 0.040 - 0.776 1.000 7.4e-6 284
logN ′ zH zL 0.074 - 0.610 1.000 2.3e-5 284
logN ′ zL zL 0.076 - 0.602 1.000 8.2e-6 152

Panel C: Fixed premium (FP)
logK ′ zH - 0.185 0.905 0.000 0.999 1.9e-4 1564
logK ′ zL - 0.079 0.946 0.118 1.000 2.2e-5 436
logN ′ zH zH 0.039 - 0.783 1.000 2.0e-5 1280
logN ′ zL zH 0.040 - 0.776 1.000 7.4e-6 284
logN ′ zH zL 0.074 - 0.610 1.000 2.3e-5 284
logN ′ zL zL 0.076 - 0.602 1.000 8.2e-6 152

Table B.4: Forecasting rules for model with aggregate uncertainty

Notes: This table reports estimates and regression statistics for the forecasting equations for the business cycle
model, logK′ = α0(z) + α1(z) logK + α2(z) logN and logN ′ = β0(z, z

′) + β1(z, z
′) logN . “s.e.” denotes the

standard error of the regression. The last column presents the number of observations for each subsample of the
total simulation of T = T1 + T0 − T0 = 2500− 500 = 2000 sample periods.

Γz by setting the share of recession periods, µzR , equal to 0.211, the share of years with a recession
in the postwar U.S. The probability of exiting a recession, Γz

RE′ , is set to 2/3 to match an average
duration of a recession of 1.5 years. We then calibrate the expansion TFP level, zE , to match
the standard deviation of (logged, HP-filtered) aggregate output in U.S. data, 1.20%. Under our
assumption that average TFP is equal to one (z = µz

EzE+µz
RzR = 1), maintained for comparability

with our steady state model, this pins down the last remaining parameter, the probability of entering
a recession, Γz

ER′ . This is achieved with zE = 1.0027, which implies Γz
ER′ = 0.178.

Given the TFP process, we link the labor productivity and borrowing premia processes as follows.
For labor productivity, we assume that the transition matrix for the persistent component, ϵ2, has
standard deviation σE

ϵ2 = 0.094 in expansions and σR
ϵ2 = 0.163 in recessions, taking estimates directly

from Storesletten et al. (2004). The persistence of ϵ2 and the other parameters of the ϵ process
are unchanged relative to the baseline. For borrowing premia, given data scarcity considerations
described in the main text, we assume that the schedule of borrowing premia for expansions is the
same as our baseline (2019) schedule, and that the analogous schedule in recessions is the same as
our shock impact (2020) schedule. Estimates of these processes are discussed in Section B.1.
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Premia Incidence [Data] Heterogeneous Fixed
Tighten in Rec.? N Y -
Moment σX/σY ρXY σX/σY ρXY σX/σY ρXY σX/σY ρXY

Column [1] [2] [3] [4] [5] [6] [7] [8]

Panel A: Macro aggregates
output 1.20% 1.00 1.20% 1.00 1.20% 1.00 1.20% 1.00
consumption 0.81 0.92 0.14 0.78 0.15 0.79 0.16 0.81

Panel B: Credit quantities
total debt 3.20 -0.29 0.83 -0.78 0.82 -0.80 0.34 -0.92
bankruptcy filings 17.9 -0.11 1.51 -0.94 1.52 -0.95 1.14 -0.99
debt to income 5.23 -0.27 8.51 -0.99 8.85 -1.00 10.7 -1.00
fraction in debt 6.62 0.48 0.94 -0.94 0.96 -0.94 0.15 -0.82

Panel C: Interest rates
avg IR, all loans 0.90 -0.88 0.10 -0.98 1.18 -1.00 0.55 -1.00
avg BP, all loans 0.19 -0.56 0.29 0.98 0.90 -1.00 0.00 0.00

Table B.5: Business cycles: data, baseline, HP with tightening, and FP economies

Notes: Business cycle moments are computed using the cyclical component of Hodrick-Prescott filtered logs of the
data, with annual smoothing parameter of 6.25. σX/σY is the standard deviation of variable X normalized by the
standard deviation of GDP, and ρXY is the correlation of X with GDP. Data are for 1999-2019 except for risk free
loan rate and debt to income for which we use Y-14M data. Details of data sources are provided in the Appendix.
For the measure of default used in Section 2, the relative volatility and cyclicality are 5.11 and -0.29.

Results Table B.5 presents our business cycle results for the data (cols. [1] and [2]) and the three
model variants (baseline: cols. [3] and [4]; HP with tightening: [5] and [6]; and FP: [7] and [8])
presented in the IRF analysis in Section 6.1.

Panel A highlights two key macro aggregates: output and consumption. By construction, the
standard deviation of output is identical across all three model economies and matches the data
exactly. In all cases of the model and in the data, consumption is highly procyclical and less volatile
than output. One of the shortcomings of our model is that the relative volatility of consumption in
our model is only about 1/6 of what it is in the data. Comparing across model variants, though, we
find corroboration for the aggregate consumption results in our IRF analysis: the relative volatility
is lowest in our baseline model, followed by the HP model with tightening of premia in recessions,
followed last by the fixed premium model. Our (steady state) calibration insures that agents’ ability
to smooth consumption on average (or, in the cross-section) across all model variants is the same,
and so these results pick up purely cyclical differences.

Panel B presents key credit quantity moments. Perhaps surprisingly given our IRF analysis in
Section 6.1, we find that total debt is countercyclical across all our models and in the data, though
the magnitude of this effect is larger in our model than the data (about -0.8 vs. -0.3). This “flip”
comes from the larger assumed swing in the earnings risk in our business cycle model.67 Total
debt is significantly less volatile in our models than the data (about 3.2 vs. 0.8 / 0.3 HP / FP).
Importantly, the variable premia case brings both the relative volatility and cyclicality of total more

67Specifically, our IRFs assume that on impact σϵ2 goes from 0.129 to 0.163, while our business cycle model assumes
that this same variable goes from 0.094 in expansions to 0.163 in recessions. The reduction in risk in expansions
dampens credit demand in expansions, driving the countercyclicality we observe here.
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in line with their empirical values. Similarly, all our models capture that bankruptcies and the debt
to income ratio are more volatile than output and countercyclical as in the data, and our baseline
model outperforms the FP case across the board. All our models fail to capture the procyclicality
and excess volatility of the fraction of households in debt, the former effect likely driving the gaps
between models and data for total debt.

Finally, panel C presents two key credit pricing metrics: the average interest rate spread and
average borrowing premium on all loans. Of course, the FP model (with no tightening) has no
volatility or cyclicality in borrowing premia. All models capture the strong countercyclicality of
loan spreads that we observe in the data. Notably, the HP model with tightening in recessions
comes closest to matching the relative volatility of spreads we observe in the data, suggesting that
the cyclical response of borrowing premia is important for matching this moment.

C Details of the Extended Model with Lending Standards

C.1 Theory

Pricing conditions The first order conditions of maximizing the bank objective (16) subject to
(17) are

1 =
1

1 + i
E
[
WK(K ′,M′)

]
(C.1)

q(ℓ;x)ℓ (1 + η1[ℓ > 0] + ηλ(p(ℓ;x))1[ℓ < 0]) =
1

1 + i
E
[
Wm(ℓ;x)(K

′,M′)
]

(C.2)

and the corresponding envelope conditions are

WK(K,M) = 1 + r − δ (C.3)

Wm(ℓ;x−1)(K,M) = −
∫
B×E

(1− gBK(ℓ; dx) + ξgBK(ℓ; dx)) ℓP(dx|x−1). (C.4)

Combining expressions (C.1) and (C.3) yields i = r − δ as in the baseline model. Applying the
definition of expected repayment probability from equation (12) and combining equations (C.2) and
(C.4) delivers equations (18) and (19) from the main text.

Modified equilibrium definition Most of the equilibrium definition in Section 3.4 for the base-
line model with exogenous borrowing premia extends to the model with endogenous borrowing
premia. In particular, household optimization (i), firm optimization (ii), distribution consistency
(iv), and the market clearing conditions (v) remain the same. However, the lender optimality condi-
tion (iii) is subject to three changes. First, the loan price schedule must be given by (19) rather than
(13). Second, the savings price must be given by (18) rather than (1+ i)−1. Third, the multiplier η
must be consistent with the aggregate loan supply constraint (17); that is, if η = 0, then the right
hand side of this constraint must be strictly greater than the left hand side, and if η > 0, then the
right and left hand sides of the constraint must be exactly equal.

C.2 Computation

The algorithm for solving the baseline model with exogenous borrowing premia is completely stan-
dard, and so we do not include it here. The same applies to the impulse response and business cycle
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analyses for this version of the model. The former is solved using a perfect foresight transition, back-
solving the household decision problem given a vector of equilibrium prices, then forward-solving
the sequence of endogenous distributions over idiosyncratic states, then updating the equilibrium
price vector until convergence. The latter is solved as described in Appendix B.4.

The version of the model with endogenous premia in Section 7, though, requires modifications to
this algorithm, and so we describe our computational method here. The key insight of our algorithm
is that we require the converged equilibrium to match a given schedule of borrowing premia, and
so we do not need to assume a particular λ(·) in our solution; rather, we can solve the model until
the value of the multiplier η has converged, then infer λ(·) from the borrowing premia schedule.
We go through the details for the steady state, then describe the adaptation to solving an impulse
response to an aggregate shock.

1. Make a guess of the equilibrium capital stock K0 and the multiplier on the loan supply
constraint η0.

2. Compute the implied set of factor prices r(K0) and w(K0), interest rate i(K0), and return on
savings q(K0, η0) = [(1 + i(K0))(1 + η0)]

−1.

3. Make a guess of the bankruptcy decision rule, gBK(x), for all x. Use this to define the
repayment probability function p0(ℓ;x,K0, η0) according to (12).

4. Impose the desired borrowing premium schedule on the loan price schedule. That is, given an
empirical schedule b̂(p), specify the loan price schedule

q(ℓ;x, p0,K0, η0) =
p0(ℓ;x,K0, η0) + ξ (1− p0(ℓ;x,K0, η0))

(1 + i(K0))
(
1 + b̂(p0(ℓ;x,K0, η0))

) (C.5)

Note that the lending standards function λ(·) does not appear in equation (C.5).

5. Solve for household decision rules ga(x; p0,K0, η0) and gBK(x; p0,K0, η0) given the equilibrium
prices assumed in the preceding steps.

6. Use equation (12) and the new bankruptcy decision rule to compute an updated guess of the
repayment probability, p1(ℓ;x,K0, η0). If maxℓ,x |p1(ℓ;x,K0, η0)−p0(ℓ;x,K0, η0)| < εp, where
εp is a tolerance level, proceed to step 7. Otherwise, set p0(ℓ;x,K0, η0) = χpp1(ℓ;x,K0, η0) +
(1− χp)p0(ℓ;x,K0, η0), where χp ∈ (0, 1] is a relaxation parameter, and return to step 4.

7. Assess aggregate market clearing.

(a) Using pricing conditions (18), (19), and (20), rewrite constraint (17) as

−
∫
X×L−

b(p(ℓ;x))
p(ℓ;x) + ξ(1− p(ℓ;x))

1 + b(p(ℓ;x))
ℓdm(ℓ;x)︸ ︷︷ ︸

≡A−

≤ η

1 + η

∫
X×L+

ℓdm(ℓ;x)︸ ︷︷ ︸
≡A+

(C.6)

Use equation (C.6) to compute A−(K0, η0) and A+(K0, η0).

(b) Compute the implied aggregate capital K1(K0, η0) =
∫
X adµ(x).
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(c) Define the following convergence metrics for η and K:

∆η =
∣∣∣ η0
1 + η0

A+(K0, η0)−A−(K0, η0)
∣∣∣

∆K =
∣∣∣K1(K0, η0)−K1

∣∣∣
(d) If ∆ ≡ max{∆η,∆K} < ε, where ε is a tolerance parameter, proceed to step 8. Otherwise,

define
η1(K0, η0) =

A−(K0, η0)

A+(K0, η0)−A−(K0, η0)
,

update η0 = χηη1(K0, η0) + (1 − χη)η0 and K0 = χKK1(K0, η0) + (1 − χK)K0, where
χη ∈ (0, 1] and χK ∈ (0, 1] are relaxation parameters, and return to step 2.

8. Use equation (20) to back out an implied lending standards function, λ̂(p) = b̂(p)/η0.

Solving for impulse responses simply adapts this algorithm to a perfect foresight transition path.
The main departure is that rather than assuming a single empirical borrowing premia target b̂(p)
as in the steady state, we must assume a series of targets, {b̂t(p)}Tt=1, where T is the terminal date
at which we assume the economy has returned to steady state. Given a steady state schedule b̂0(p)
and an impact schedule b̂1(p), we define this sequence recursively via

b̂t+1(p) = ρz b̂t(p) + (1− ρz)b̂0(p) for all t = 1, ..., T − 1 and all p

Given this, we can nest the algorithm above neatly into a standard structure in which the decision
rules are back-solved, distributions are forward-solved, and equilibrium price sequences are gradually
updated to convergence.
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