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Abstract

We propose a theory of responsible investing under conditions of ambiguity in-

duced by climate uncertainty. We take steps from studying the portfolio allocation

problem solved by a smoothly ambiguity averse representative agent. This new theory

delivers three new insights. First, within this setting, we find that the returns am-

biguity degree is a strictly increasing function of the environmental pollution scores

of the assets in the menu of choice. Second, ambiguity-averse investors behave as

environmentally motivated agents who allocate their wealth according to a mean-

variance-ambiguity efficient frontier as well as their attitude towards risk and ambi-

guity. Third, the agents rationally choose "green" portfolios in order to reduce their

exposition towards ambiguity and maximize their ambiguity-adjusted Sharpe ratio.

Our theoretical predictions are consistent with the empirical literature on the realized

rewards-to-risks trade-off of responsible investment.
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1 Introduction

The growing concerns about climate change and the ensuing worldwide plans to transi-
tion to more sustainable economies have motivated two recent streams of research, i.e.,
responsible investing and the economics of climate uncertainty1. In a broad definition, re-
sponsible investing refers to the practice of considering, in the evaluation of the investment
opportunities available in the equity (and increasingly so also in the bond) markets, the
attitudes and the manifested behavior by each issuing firm toward environmental, social,
and governance (henceforth, ESG) issues. The literature on climate uncertainty focuses on
the impact of the uncertainty about the parameters that rule climate change phenomena
on financial markets and their connections to the real economy (see, for instance, Giglio,
Kelly, and Stroebel, 2021). Our paper gives a contribution at the intersection of these two
streams of literature and builds on their results to investigate the implications of respon-
sible investing to an ambiguity-averse investor who optimizes her portfolio in a regime of
ambiguity induced by climate change. In a model of risk- and ambiguity-averse investors,
we prove that an agent should rationally sacrifice a portion of the maximum attainable
reward-to-risk (Sharpe) ratio if and only if it is averse toward ambiguity and for the sole
purpose of increasing his or her ambiguity-adjusted reward-to-risk performance. The exis-
tence of such a trade-off is a novel insight that is made possible by a framework in which
climate uncertainty matters because it adds ambiguity to the economy.

The recent literature on responsible investing broadly agrees on the idea that the practice
of seeking (or at least, weighting for) the ESG inclinations/practical performance of firms
may have costs and benefits that need to be carefully assessed by rational decision-makers.
In particular, the benefits are typically represented as being of a non-pecuniary type, such
as the good feelings perceived by holding stocks issued by ESG-compliant firms (see, e.g.,
Baker et al., 2018, Pedersen, Fitzgibbons, and Pomorsky, 2021, Pastor, Stambaugh, and
Taylor, 2021, Avramov et al., 2021), or the potential, indirect presumption that assets that
score highly in a ESG dimension may offer a hedge against climate change shocks and
the ensuing social tensions and required costly, structural transformation (see, e.g., Pastor,
Stambaugh, and Taylor, 2021). To the contrary, the costs are directly associated with an
immediate reduction in the Sharpe ratio of the holdings that include responsible investing-

1For reviews on these topics see e.g. Giglio, Kelly, and Stroebel (2021), and Hong, Karolyi, and
Scheinkman (2021)
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related assets. In fact, the dominant approach towards modeling the benefits of responsible
investing consists of extending the utility function of the (representative) investor to in-
clude a non-pecuniary factor which measures any additional utility obtained from holding
securities characterized by (relatively) high ESG scores. The immediate implication of in-
troducing this non-monetary argument in the utility function of the agents is that those
with a positive derivative of their utility function to the ESG scores of the securities in their
portfolios will be willing to sacrifice higher risk premia in exchange for more responsible
investing decisions. As a result, a "responsible" investor is likely to restrict her invest-
ment universe to include only assets that satisfy some lower bound constraint in terms of
ESG scores or, at least, to steeply penalize their chances to enter any optimal portfolio.
Therefore, she will allocate her wealth to portfolios that may be sub-optimal in the short-
to-medium term (see, for instance, Pedersen, Fitzgibbons, and Pomorsky 2021, Fig. 1) and
optimal only when the long-term, non-pecuniary aspects are duly taken into account.

This delicate balance between potential benefits and actual costs is crucial to under-
stand why agents actually invest and, even more importantly, should invest in "green",
socially-responsible assets. In particular, the arguments above naturally put on the table
the question of whether agents who hold relatively "greener" portfolios may appear to be
irrational in the short-medium term, and whether this seemingly sub-optimal behavior may
find a rational explanation when further layers of uncertainty, such as climate-induced am-
biguity, are considered. To address these issues, in this paper, we assume the presence of
climate-induced ambiguity and take the perspective of a rational, ambiguity-averse agent.
By introducing this assumption, we adopt an approach that, to the best of our knowledge,
has been ignored so far in the responsible investing literature: that climate uncertainty
is likely to create considerable uncertainty on the future path of the economy. Moreover,
we avoid the issues arising from introducing non-monetary arguments in the utility that
may naturally generate violations of first-order stochastic dominance and of the utility
(over money or consumption) maximization principle2. This approach allows us to review
the costs and benefits of responsible investing through the lenses of a model of rational,
ambiguity-averse, utility-maximizing behavior.

Under the simplifying (yet, not critical) assumption that climate uncertainty represents
the only source of ambiguity, our model has the following main implications for responsible

2In Section 3.2 we provide an example which proves that responsible investing preferences does not
satisfy first order stochastic dominance.
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investing. First, there exists a link between ambiguity in the probability distributions of
returns and their associated environmental pollution rating (called EP score in what fol-
lows).3 In particular, the higher the EP score, the higher the ambiguity of an asset. Second,
a preference for less ambiguous assets (i.e., ambiguity aversion) coincides with a preference
for greener assets. Therefore, in this setting, ambiguity averse investors are environmen-
tally motivated agents and viceversa. Third, in the presence of climate uncertainty, all the
assets in the economy, even those are individually not exposed to climate change uncer-
tainty, share a minimum level of ambiguity that turns out to be a function of the global
component of the consumption damage caused by climate change. This result is consistent
with the intuition that when the effects of climate change materialize, all of the agents in
the economy are likely to suffer a portion of the ensuing consumption damages, regardless
of their specific asset holdings. Finally, ambiguity-averse investors are willing to sacrifice
their standard (risk-based) Sharpe ratio to increase their ambiguity Sharpe ratio. There-
fore, because it reflects ambiguity aversion, the behavior of an environmentally motivated
agent is fully rational in our setting. Hence, the ambiguity concerning the effects of climate
change seems to provide a powerful micro-foundation to the environmental motivations al-
ready featured in a growing body of applied literature, for instance, Pedersen, Fitzgibbons,
and Pomorsky (2021).

Figure 1 graphically summarizes the main results described above with a stylized exam-
ple. The picture on top plots the three dimensional efficient surface and color-differentiates
the areas according to the EP score of the portfolios that lies on it. The picture below
is obtained by projecting the efficient surface onto a standard two-dimensional risk-return
plane. In the plot at the top, we highlight in red the portfolios with high EP scores (and
hence, according to our results, most ambiguous) and in green those with low EP scores
(low ambiguity). By assuming that the point M on the surface is the market portfolio, with
an associated EP score of bM , and Rf is the risk-free rate, the gray surface represents the
plane tangent to the point M on the surface. This identifies the red risk-return frontier FbM

in the plot below. Note that each risk-return frontier that belongs on the surface is efficient.
Hence, the agent locates herself on the frontier according to her risk and ambiguity aversion
propensities. In particular, as we shall formally prove in Section 3.2, any ambiguity-averse

3If s denotes the environmental pillar score, we define the environmental pollution rating as 1− s. The
choice of working with environmental pollution rather than with environmental pillar ratings is exclusively
for reasons of mathematical convenience. There is no influence of this choice on the results of the paper.
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Figure 1
Graphical summary of the main results. In the top panel, we plot is the efficient surface determined
by the ambiguity-risk-return trade-off. In the bottom panel, we plot its projection on the bi-
dimensional risk-return plane. In the top panel, the different shadings represent the EP scores of
the portfolios on the surface. Red areas represent portfolios with higher EP scores, green areas
show portfolios with lower EP scores. Rf is the risk-free rate. M is the market portfolio, that
lies on the red risk-return frontier identified by FbM . P ∗ is the tangency portfolio that lies on
the green risk-return frontier identified by Fb∗ , obtained by constraining the desired EP score to
b∗ < bM . In the bottom panel, SR(bM ) and SR(b∗) are the Sharpe ratio measured at bM and b∗,
respectively.
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agent will choose a portfolio located on a "greener" frontier (e.g., Fb∗) in order to reduce
her exposure to climate change-induced ambiguity. Indeed, the Sharpe ratio contraction
visible in the bottom plot is then justified by an increase in the ambiguity Sharpe ratio, as
one can see in the plot at the top.

The predictions delivered by our theory are consistent with the evidence presented in
related empirical studies. Engle et al. (2020) build a mimicking portfolio based on the
Sustainalytics E-Scores that can dynamically hedge climate uncertainty. They report evi-
dence that green assets effectively provide a hedge against climate change innovations. This
result is consistent with our theory in which, by including green assets in their portfolios,
investors reduce their exposure towards climate-induced ambiguity. Bolton and Kacperczyk
(2021) study the cross-section of U.S. stock returns and find a persistent and significant
"carbon premium" that would be priced by the agents at a firm level. Therefore, their
evidence is consistent with the hypothesis that the carbon premium is idiosyncratic. Mac-
cheroni, Marinacci, and Ruffino (2013) show that the idiosyncratic alpha left unexplained
by a single-factor equilibrium asset pricing model under the hypothesis of market efficiency
reflects the ambiguity premia of the assets. Therefore, in this light, the existence of a
carbon premium is consistent with the predictions of our theory. Indeed, in our model,
portfolios composed of stocks with an above average carbon footprint would imply lower
environmental scores, which also lead to a higher ambiguity (idiosyncratic) premium. Ilhan,
Sautner, and Vilkov (2021) analyze options data to find that equity options price climate
policy uncertainty. Also in this perspective, because climate policy uncertainty is one of
the manifestations of climate-induced ambiguity, this is consistent with our the predictions
from our model. Finally, Bauer, Ruof, and Smeets (2021) analyze households’ preferences
toward responsible investments and show that, when facing uncertainty about the expected
returns of stocks with different sustainability scores, the majority selects the most sustain-
able assets. In our framework, because we reconcile this result with the empirical evidence
that individuals are ambiguity averse, this is consistent with the hypothesis that ambiguity
averse investors behave as agents who are environmentally motivated.

In summary, our paper contributes to the literature on responsible investing in at least
two ways. First, we build a rational model of sustainable investing under conditions of
climate-induced ambiguity, which, to the best of our knowledge, had not been developed
before. Second, we provide a rational explanation to the empirical regularity that investors
tend to invest or should invest responsibly even when this imposes short-run sacrifices
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to their realized reward-to-risk ratios, possibly due to the apparent over-pricing of green
assets. In particular, our conclusions can be interpreted in two alternative ways. On the one
hand, in our set up, responsible investors are ambiguity averse. In this sense, they sacrifice
expected returns not because of a sentimental goodwill of theirs, but mainly to reduce
their portfolio exposure to ambiguity. On the other hand, according to our model, every
ambiguity-averse agent should invest responsibly to hedge against shocks to the uncertainty
generated by climate change.

The remainder of the paper proceeds as follows. Section 2 presents the set up of the
model. Section 3 reports our main theoretical results, while Section 4 concludes by pre-
senting a few suggestions for additional research.

2 Setup

2.1 The Economy

Let (Ω,F , P ) be a probability space, L2 = L2(Ω,F , P ) be the space of square integrable
random variables on Ω, and L∞ = L∞(Ω,F , P ) be the subset of L2 consisting of its almost
surely bounded elements. With respect to an interval I ⊂ R, we define the subset of L∞

given by
L∞(I) = {p ∈ L∞ : essinf(p), esssup(p) ∈ I}.

We take the space L∞(I) as our reference set of investment alternatives because it can
capture the potential ambiguity in asset returns whilst retaining the advantages of being
mathematically tractable.

Next, let T = [0, t + 1] denote a continuous time interval, where t ∈ T denotes the
present date, t+1 denotes some future date in which divestment occurs, while any element
of [0, ..., t) ⊂ T refers to a past date. We are interested in the portfolio allocation problem
of an agent between time t and t + 1. The economy is assumed to be characterized by n

risky assets. With reference to the discrete time interval {t, t + 1}, the set of risky assets
is represented by a vector of gross returns R = (R1, ..., Rn)

′, with Ri ∈ L∞(I) for all
i = 1, ..., n, and a vector of EP scores b = (b1, ..., bn)

′, with bi ∈ [0, 1] for all i = 1, ..., n.
Therefore, the set of assets available in the economy is defined by V = {{Ri, bi}, i =

1, ..., n} ⊂ L∞(I) × b, where the pair {Ri, bi} uniquely identifies asset i in the economy.
Without loss of generality, we assume that V is sufficiently large to allow for the existence
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of assets with identical expectation and variance of returns but with different EP scores.
For each firm i = 1, ..., n, the EP score measures how much its activity harms the

environment. Therefore, each EP score bi is assumed to be determined as a function of the
contribution of firm i to the average emissions in the economy.4 In particular, for any firm
i, let Ei,t be the value of emissions at time t and Gi,t =

1
t

∫ t

0
Ei,sds be its average over the

interval [0, t]. In formal terms, we provide the following definition of the EP score.

Definition 1 (Asset EP score). Let ψ : R+ → [0, 1] be a continuously differentiable
function such that ψ(G) = 0 if and only if G = 0, is strictly increasing for 0 ≤ G ≤ Ḡ, and
ψ(G) = 1 for all G ≥ Ḡ, for a certain upper threshold Ḡ > 0. We define the EP score of
firm i at time t+ 1 as

bi = ψ(Gi,t+1), (1)

where for simplicity of notation we drop the time subscript of bi from its formal definition.

While our definition in Equation 1 is highly stylized, it shares the same intuition behind
the methodology employed by ESG rating agencies to determine the score assigned to the
environmental pillar.5 For instance, MSCI determines the environmental pillar score by
computing the average of different kinds of pollution factors, including carbon emissions,
toxic waste, and electricity usage, weighted according to the expected time frame over which
climate uncertainty is expected to materialize (MSCI Technical Report, 2020). Note that
our choice of working with EP scores (which measure a "bad", i.e., an externality) instead
of the separate environmental pillar scores (which capture how virtuous a firm may be), as
traditionally done in most of the literature (see e.g. Pedersen, Fitzgibbons, and Pomorski
(2021), Pastor, Stambaugh, and Taylor (2021), and Avramov et al. (2021)), is for pure
analytical convenience. Indeed, all of the results presented in this paper can be also derived
in terms of environmental pillar scores by considering instead si = 1−bi for any i = 1, ..., n,
where si denotes the "E" component of the ESG score associated to firm i.

Next, we characterize the uncertainty about the probability distributions of the returns
by following Maccheroni, Marinacci, and Ruffino (2013). We denote as ∆ the subset of L2

4Here, for emissions, we mean every pollutant substance that can contribute to global warming. These
include CO2 emissions, deforestation, toxic waste emissions, etc.

5The ESG (Environmental, Social, and Governance) score is typically computed through the aggrega-
tion of three individual scores named pillars.
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containing all the square integrable probability density functions with respect to P :

∆ =

{
q ∈ L2

+ :

∫
Ω

q(ω)dP (ω) = 1

}
.

The corresponding probability measures Q on F are identified from the densities q via
Radon-Nikodym derivative as q = dQ

dP
. By assuming that ∆ is the set of probability distri-

butions faced by a representative agent, we have that the expected return E(.) and variance
∼

VAR (.) are random functions defined by

E({R̃i, bi}) : q →
∫
Ω

R̃i(ω)q(ω)dP (ω),

and
∼

VAR ({R̃i, bi}) : q →
∫
Ω

R̃i(ω)
2q(ω)dP (ω)−

(∫
Ω

R̃i(ω)q(ω)dP (ω)

)2

,

respectively.
As in Maccheroni, Marinacci and Ruffino (2013), we assume that there exists a second

order probability distribution (prior) that the agent associates to the first order probabil-
ity distributions in the posited set ∆. Therefore, it is possible to compute a measure of
the ambiguity faced by the agent as the variance of the random expected return function
weighted by the prior. Formally, we define

VARµ(E({R̃i, bi})) =
∫
∆

(∫
Ω

R̃i(ω)q(ω)dP (ω)

)2

dµ(q)−
(∫

∆

(∫
Ω

R̃i(ω)q(ω)dP (ω)

)
dµ(q)

)2

.

This measure quantifies, for each of the assets and at each point of time, how much the
return is affected by ambiguity. In fact, Maccheroni, Marinacci and Ruffino (2013) prove
the following:

Proposition 1. The following statements are equivalent:

1. An asset {Ri, bi} ∈ V is approximately unambiguous

2. VARµ(E({R̃i, bi})) = 0.

Proof : The proof is in Maccheroni, Marinacci, and Ruffino (2013), Proposition 5 and
Definition 4 for the set L∞(I). By considering that R ⊂ L∞(I) and that each asset has a
uniquely associated EP score bi, the proof extends trivially to V . ■
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Next, we assume there exists a representative agent with an initial level of wealth de-
noted by Wt, who at t + 1 consumes a single composite good in the amount Ct+1. The
investor trades in combinations of the the risky assets to assemble a portfolio characterized
by asset commitments (i.e., these are fractions of monetary wealth invested in each of the
n assets) collected in the vector x = (x1, ..., xn), whose return is R̃ = x′R

x′1
. Therefore, the

future level of wealth guaranteed by this portfolio at t + 1 is W̃t+1 = x′R̃ and the budget
constraint can be written as Ct = Wt − x′1, where 1 ≡ (1, ..., 1)n. Finally, to characterize
the EP score associated with a given portfolio, we provide the following definition.

Definition 2 (EP score of a portfolio). Let b̄ denote a portfolio EP score and φ : R+ →
[0, 1] be a function such that φ(x

′Gi,t+1

x′1
) = x′b

x′1
. The composite portfolio EP score is given

by

b̄ = φ

(
x′Gi,t+1

x′1

)
= φ

(
x′ψ−1(b)

x′1

)
=

x′b

x′1
, (2)

where, Gi,t+1 = {G1,t+1, G2,t+1, ..., Gn,t+1}, b = [b1, ..., bn], and, by Definition 1, φ(.) is
strictly increasing in x′Gi,t+1

x′1
∈ [0, Ḡ], bounded, and differentiable.

This definition implies that the EP score of a portfolio is defined by a transformation
that simply equates the weighted average of the EP scores of the assets included in the
portfolio, where the weights are represented by the portfolio weights in the vector x

x′1

2.2 Damages from Climate Change

In the same spirit as the current literature on climate finance, we conjecture the existence of
damages to future consumption caused by climate change events. Following Barnett, Brock,
and Hansen (2020), we model consumption damages as a function Γ̃ of the temperature
changes induced by environmental pollution, plus an exogenous shock. The temperature is
assumed to evolve by following Matthews et al.’s (2009) approximation, where emissions
at time t permanently impact future temperatures. This model is obviously just a styl-
ized approximation of the actual climate system, which should also consider, for instance,
transient components in the temperature change dynamics. However, for the purposes of
this paper, i.e., to emphasize the link between financial and climate uncertainty, such an
approximation provides a suitable choice (See e.g. Barnett, Brock and Hansen, 2018, 2020
and 2022). Let Tt be the temperature at time t, Ft be the cumulative emissions in the econ-
omy, and ζ̃ be the (ambiguous) parameter that measures climate sensitivity to emissions.
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Matthews et al. (2009) model propose that

Tt − T0 ≃ ζ̃

∫ t

0

Esds = ζ̃Ft.

Then, similarly to Denning et al. (2015), Dietz, Gollier and Kessler (2018), and Barnett,
Brock, and Hansen (2020), we formalize the process followed by consumption damages as
follows

Dt+1 = Γ̃(ζ̃Ft+1) + ξ̃f
x′

Wt

Fi,t+1 + ξ, (3)

where Fi,t+1 = (F1,t+1, ..., Fn,t+1) is the vector of the cumulative emissions of each firm, ξ̃f,t+1

is the dimension of the exogenous shift associated to cumulative environmental pollution
relative to the firm in the agent’s portfolio, and ξ is a further exogenous shift that captures
the direct and indirect effects of transient changes in temperature and other technological
contributions that can affect damages. The damage function Γ̃ has been formalized in
various ways in the literature. We adopt the functional form proposed by Barnett, Brock
and Hansen (2020) in which Γ̃ is defined as

Γ̃(y) =

γ1y + 1
2
γ2y

2 if 0 ≤ y < γ̄,

γ1y +
1
2
γ2y

2 + 1
2
γ̃+(y − γ̄)2 if y ≥ γ̄,

(4)

where γ1, γ̃+ ∈ R+, the parameter γ̃+ ≥ 0 measures the difference between a low-damage
and a high-damage specification of the same function Γ̃, while γ̄ takes the meaning of a
“tipping point” after which the consequences of higher cumulative emissions become more
severe.

The second term in Equation 3, which is new vs. the formalization by Barnett, Brock,
and Hansen (2020), captures the local damage to consumption which is strictly linked
with the portfolio held by the agent when the damage occurs. We deliberately introduce
a component that depends on the agent’s portfolio to accommodate the observed hetero-
geneity in emissions and, therefore, in estimated consumption damages (see, for instance,
Chakravarty et al., 2009). Intuitively, the introduction of such heterogeneity finds motiva-
tion in observing that some climate events produce more significant damages to the agent’s
consumption when he or she holds stocks of the firms that contributed most to generate
such an event. An example that we may consider is the case of an agent with a portfolio
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that includes stocks of high carbon footprint firms. When a bad climate event happens
(e.g., the acceptable limit of emissions in the environment is approached), the consequences
are suffered from all of the agents in the economy (global damage). However, an investor
who holds the high carbon footprint portfolio undergoes a further reduction in wealth due
to, for instance, the introduction of policies to curb carbon emissions (local damage caused
by realized transition risk). While we take equation (3) as the benchmark damage spec-
ification for developing our theory, in Section 4, we discuss whether assuming alternative
specifications for damages may influence the predictions of our model.

Barnett, Brock, and Hansen (2020) argue that two interconnected sources of uncertainty
affect the evolution of damages. First, there is substantial uncertainty about the climate
sensitivity parameter ζ̃ as documented by MacDougall, Swart, and Knutti (2017). In partic-
ular, their empirical analysis shows that the estimated range of values at which ζ̃ lies using a
95% confidence interval is extensive and fails to deliver predictions with sufficient precision
on the evolution of temperature. Second, there is uncertainty about the damage function
Γ̃ specification, and in particular about the parameter γ̃+. This is carefully analyzed in
Barnett, Brock, and Hansen (2020, Figure 3, p. 1035), where they compare the shapes of
the damage function for different hypothesized values of γ̃+, showing significant departures
in terms of reduction in economic welfare of a representative agent. Consistently, we assume
parameter uncertainty on the exogenous shifter ξf,t+1. Next, by considering that local and
global damages are linked to the same parameter (i.e., emissions) in this framework, we can
plausibly assume that, in most scenarios, global damages are higher when local damages
are higher, and vice versa. Therefore, we impose

COVµ(E(Γ̃(ζ̃)),E(ξ̃f )) > 0. (5)

Finally, because of the existence of consumption damages we have that the net level of
consumption at time t+ 1 is given by

C̄t+1 = Ct+1 − D̃t+1, (6)

where Ct+1 is the baseline future consumption level in the absence of climate change dam-
ages.
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2.3 Preferences

We equip our representative agent with the smooth intertemporal preferences that account
for ambiguity proposed by Klibanoff, Marinacci, and Mukerji (2009). In their framework,
they consider the space of all observable paths generated by an event tree where each
node ktj branches out into a vector of immediate successor nodes. Formally, at time t, if
Kt+1 is the set of possible observations at time t + 1, the possible successor nodes are all
the kt+1

j ∈ Kt+1. The agent chooses between future consumption plans c each of which
associates a payoff to a node ktj on the event tree. The preferences are then represented
recursively as

Vktj(c) = u(c(ktj)) + βϕ−1

[ ∫
∆

ϕ

(∫
Kt+1

Vktj ,k
t+1
j

(c)q(kt+1
j |ktj)dP

)
dµ(ktj)

]
,

where Vstj(c) is the recursive value function, u(.) and ϕ(.) characterize the attitudes of the
agent toward risk and ambiguity, respectively, and β is a time discount factor. q(kt+1

j |ktj)
denotes the conditional probability density function associated with a node kt+1

j ∈ Kt+1,
provided that node ktj is reached. Finally, µ(ktj) denotes the second order probability
associated to the scenario kt+1

j ∈ Kt+1, defined as the successor node that is reached after
ktj. In this setting, each scenario kt+1

j associates to the function V (.) a probability density
function q(kt+1

j |ktj) and a value to the parameters γ̃+, ζ̃ and ξ̃f in the damage function.
Therefore, the prior µ(ktj) represents the probability associated to each climate scenario as
well as to the probabilistic models of the returns on the available stocks.

Since in our setting we take t as the present date and assume that the agent di-vest
and consumes everything at t + 1, the recursive value function is truncated at t + 1 and
Vstj ,s

t+1
j

(c) = u(C̃t+1) = u(W̃t+1). Hence, we have

V (W̃t+1) = u(Ct) + β

∫
∆

ϕ

(∫
Ω

u(W̃t+1(ω))q(ω)dP (ω)

)
dµ. (7)

Note that, as shown by Klibanoff, Marinacci, and Mukerji (2009), the recursive model in
equation (7) embeds the atemporal smooth model of preferences in Klibanoff, Marinacci,
and Mukerji (2005). In particular, let γ and θ denote the coefficients of absolute risk
aversion and ambiguity aversion, respectively. As proven by Maccheroni, Marinacci, and
Ruffino (2013), (7) implies that the agent ranks the assets in V according to the certainty
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equivalent function

Ca(W̃t+1) = E[W̃t+1|Q̄]−
γ

2
VAR[W̃t+1|Q̄]−

θ

2
VARµ(E(W̃t+1)), (8)

where Q̄ is the ambiguity neutral probability measure6, λ = −u′′(W )
u′(W )

, and θ = − (ϕ◦u)′′(W )
(ϕ◦u)′(W )

−λ.
It follows that the function in equation (8) represents a preference relationship ≿a on V
that satisfies the axioms of the smooth model of preferences under ambiguity.7

In our derivation of the main theoretical results, we use both the intertemporal and the
atemporal smooth models in equations (7) and (8), respectively. In particular, we employ
the intertemporal model to derive the implicit link between ambiguity and EP scores in
the presence of climate uncertainty, whereas such results naturally hold in the atemporal
setting. Next, we use the atemporal model to elicit first the connection between preferences
over ambiguity and preferences over EP scores and, second, the implications of the existence
of climate uncertainty for optimal portfolio choices.

3 Main Results

We begin the presentation of our results by deriving first the equilibrium pricing kernels.
In a setting similar to ours, Klibanoff, Marinacci, and Mukerji (2009) and Collard et al.
(2018) have shown that the maximization problem of the agent can be described in terms
of the following recursive Bellman equation:

J(Wt, µt) = max
Ct,x

u(Ct) + βϕ−1[Eµt(ϕEq(J(W̃t+1, µt+1)))],

where J(Wt, µt) indicates a recursively defined indirect value function, and the optimiza-
tion is solved subject to the consumption budget constraint. We therefore follow Klibanoff,
Marinacci and Mukerji and assume, just for the sake of tractability the specifications
u(Ct) = logCt and ϕ(x) = −exp(−θx), where θ is the ambiguity aversion coefficient.

6The ambiguity neutral probability measure is defined as the measure Q̄ such that, for any p̃ ∈
L2,Eµ(E(p̃)) = E(p̃|Q̄). Maccheroni, Marinacci and Ruffino (2013, Lemma 1) discuss the existence and
uniqueness of such a probability measure.

7A binary preference relationship ≿a on V is represented by a function Ca(.) if and only if for any
{R1, b1}, {R2, b2} ∈ V, {R1, b1} ≿a {R2, b2} ⇔ Ca({R1, b1}) ≥ Ca({R2, b2}).
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The first-order condition under this specification delivers the following Euler equation

δEµ∗
t
[E(R̃)u′(C̄t+1))] = u′(Ct), (9)

where R̃ is the return on the portfolio and µ∗ is the posterior second-order probability
measure obtained as ϵt × µt, where

ϵt =
ϕ′(Eq(J(Wt+1, µt+1)))

Eµt [ϕ
′(Eq(J(Wt+1, µt+1)))]

. (10)

Finally, by equation (9), we define the stochastic discount factor mt+1 (henceforth, SDF)
as identified by

1 = Eµ∗[E(R̃mt+1)]. (11)

As pointed out by Klibanoff, Marinacci and Mukerji (2009), under the assumed specifica-
tions for u(.) and ϕ(.), the SDF takes the same functional form as that derived in standard
Bayesian frameworks. This allows the comparison with previous results in the literature
(see e.g., Ju and Miao (2007, 2012), and Collard et al., 2018) and, hence, motivates our
choice to prefer the tractability imposed by our specifications over full generality.

3.1 Climate-induced ambiguity and environmental pollution scores

This first set of results uncovers a relationship between ambiguity in returns and the firms’
EP scores. To this purpose, we make the following identifying assumption:

Assumption 1. Assets prices are affected by the uncertainty induced by climate change
only.

The intent of Assumption 1 is to switch off the ambiguity arising from sources different
from climate uncertainty that in reality will naturally affect asset prices. In particular,
it allows us to isolate the ambiguity strictly induced by climate uncertainty and, hence,
reflected by the EP scores. Because the primary objective of this paper is to study the
existing link between the ambiguity in asset returns and climate uncertainty, all the main
results in this paper are derived under this assumption. Nevertheless, in Section 4, we
discuss the consequences of removing this assumption and how our results are likely to be
affected. As we shall argue, in case we were to remove Assumption 1, the substance of our
main results remain unaltered.
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Proposition 2. In the economy built in Section 2, the stochastic discount factor is given
by

m̃t+1 =
u′(Ct+1 − D̃t+1)

u′(Ct)
, (12)

where

D̃t+1 = Γ̃

(
ζ̃(t+ 1)

n∑
i=1

ψ−1(bi)

)
+ ξ̃f (t+ 1)φ−1(b̄) + ξ. (13)

Proof : The proof follows immediately by substituting in equation (11) the definition
of net consumption in equation (6), and by substitution in the definition of consumption
damages in equation (3) of the definitions of asset EP score and of portfolio EP score
from equations (1) and (2), respectively. Finally, by considering that Ft+1 =

∑n
i=1 Fi,t+1 =∑n

i=1(t+ 1)Gi,t+1, equation (13) follows. ■

Proposition 2 shows that, in our setting, the SDF is a function of the EP scores associated
with each of the assets and of the portfolio EP score b̄. Moreover, since ζ̃, Γ̃ and ξ̃f are all
affected by parameter uncertainty, it is immediate to see that if there is at least one i such
that bi > 0, the stochastic discount factor will be ambiguous as well. As argued earlier, in
our intertemporal asset pricing model, an asset return is ambiguous if and only if it derives
in equilibrium from a SDF that is ambiguous. It follows that, under Assumption 1, the
return on the composite portfolio is ambiguous if and only if bi > 0 for some i, i.e., if there
exists at least an asset with negative environmental impact.

Although the connection established by Proposition 2 may seem far from surprising
(portfolios will reflect ambiguity if and only if they contain at least one ambiguous asset),
it is the following proposition that further explores this connection by analyzing the link
between ambiguity in the probability distributions of the assets returns and the associated
EP scores.

Proposition 3. Under Assumption 1, the following statements hold:

1. All the assets traded in the economy are approximately unambiguous if and only if
bi = 0 for all i = 1, ..., n.

2. For any {Rj, b+} and {Rh, b−} ∈ V, b+ > b− if and only if VARµ(E({Rj, b+})) >
VARµ(E({Rh, b−})).
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3. For any {Ri, bi} ∈ V with bi = 0, VARµ(E({Ri, bi})) = VARµ(E(Γ̃(ζ̃Ft+1)). Moreover
VARµ(E(Γ̃(ζ̃Ft+1))) is the minimum obtainable ambiguity.

Proof: See Appendix B.1. ■

Propositions 3 uncovers the relationship existing between ambiguity in returns and EP
scores. In particular, Proposition 3.1 states that any firm with a non-zero environmental
impact induces the presence of ambiguity in the economy as a whole and hence in all
portfolios of traded assets. Indeed the claim in the theorem stresses that the absence of
climate change risk loadings in all assets is not only sufficient but also necessary for the
whole economy to escape the ambiguity caused by climate uncertainty. The economic
intuition behind this conclusion is straightforward. Climate uncertainty is implicitly linked
with the presence in the economy of firms with a positive EP score. The presence of climate
uncertainty, among the other effects, naturally fosters the proposal of political measures
the penalize brown assets, which therefore incur the risk of abrupt changes in their future
expected returns, what is often called transition risk. Hence, the existence of even one
single asset with positive EP score is sufficient to propagate the climate change-induced
ambiguity throughout the entire economy and to make each individual asset exposed to
such uncertainty source.8

The second claim in Proposition 3 shows that the ambiguity exposure and the individual
EP score of each asset are positively related. In particular, under Assumption 1, assets
characterized by a higher EP score (say, brown stocks) are more ambiguous than assets
with lower EP scores (green stocks). Again, the intuition lies in the fact that firms with
a relatively high EP score are more exposed to climate uncertainty and, therefore, more
exposed to the effects of climate uncertainty on the probability distributions of their payoffs.
Finally, Proposition 3.3 presents evidence that, in the presence of climate uncertainty, all
the assets in the economy, even those are individually not directly exposed to climate change
uncertainty, do share a minimum level of ambiguity that turns out to be a function of the
global component of the consumption damage caused by climate change. This result is
consistent with the intuition that when the effects of climate change materialize, all of the
agents in the economy are likely to suffer a portion of the ensuing consumption damages,

8This is similar to the case in which even the stock with the minimum, but positive variance among
all stocks, in a portfolio may end up having a large and positive exposure to risk because of its beta, its
covariance with the overall portfolio risk
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regardless of their specific asset holdings.9

3.2 The relationship between ambiguity aversion and environ-

mental motivation

In this section, we further advance our analysis and demonstrate that ambiguity aversion
and preferences for lower EP scores, i.e. responsible behavior, are connected. With this
purpose, we consider an alternative representative agent equipped with a revised version of
the ESG-adjusted expected utility function (here expressed in terms of certainty equivalent
function) proposed by Pedersen, Fitzgibbons, and Pomorski (2021). In particular, let f :

[0, 1] → R+ be a continuous strictly increasing function such that f(0) = 0. We define

Cb({R̃i, bi}) = E[{R̃i, bi}|Q̄]−
γb
2
VAR[{R̃i, bi}|Q̄]− f(b), {R̃i, bi} ∈ V , (14)

as the continuous certainty equivalent function of the environmentally motivated agent,
where Q̄ is the ambiguity-neutral probability measure, γb is the risk aversion coefficient
and f(b) is the EP preference function that captures any environmental motivations char-
acterizing this representative investor. The preferences expressed by (14) incorporate three
differences with respect to the function proposed by Pedersen, Fitzgibbons, and Pomorski
(2021). First, we define the ESG preference function on the EP score, i.e. the complement
to one of the environmental pillar, for consistency with our analysis, which explains the
negative sign in front of f(b). Second, and consistently with the purposes of our study, we
also elect not to consider the social and governance pillars, which are instead accounted
for in the original specification by Pedersen, Fitzgibbons, and Pomorski. Note that, from
a mathematical perspective, the introduction of these two adjustments would not alter the
nature of the results obtained by Pedersen, Fitzgibbons, and Pomorski (2021), as we demon-
strate in Appendix A.1. Third, to extend the model proposed by Pedersen, Fitzgibbons,
and Pomorski, which is defined over purely risky alternatives of investment, to an envi-
ronment where the returns of the assets might be affected by ambiguity, the two moments
featured in equation (14) are computed under the ambiguity neutral probability measure Q̄.
The intuition of this step is that an environmentally aware agent (14) is a decision-maker
who cares only about expected returns, risk, and EP scores while not accounting for the

9Of course, stocks characterized by bi > 0 are likely to carry a level of ambiguity that exceeds the
minimum VARµ(E(Γ̃(ζ̃Ft+1))).
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uncertainty about the probability distributions of the returns. Therefore, the assumption
that the agent evaluates the alternatives at Q̄ is a natural choice. Notice that, in a setting
with naturally ambiguous stocks and no climate uncertainty, this creates a natural wedge
between the representative investor represented by equation 8 and the agent described by
equation (14).

As discussed in the introduction, the preferences represented by the function in (14)
violate first order stochastic dominance. Whilst Borch (1969) and Blavatskyy (2010) doc-
umented that standard mean-variance preferences allows as well for violations of F.O.S.D.,
adding a non-pecuniary argument to a mean-variance objective function increases the num-
ber of such violations. To see this, the next example provides a stylized proof of this
statement.

Example 1. Consider two lotteries, l1 and l2, defined as follows.

l1 =

1 with prob. 0.5

0 with prob. 0.5
l2 =

1 with prob. 0.5

0.5 with prob. 0.5

Clearly, l2 statewise (and hence F.O.S.) dominates l1, and E[l2] − γ
2
VAR[l2] = 0.75 −

γ
2
0.0625 > 0.5− γ

2
0.25 = E[l1]− γ

2
VAR[l1] for any γ > 0. Next, assume γ = 1, f(b) = 10b

and that l1 and l2 are paired with b1 = 0 and b2 = 0.04, respectively. We have Cb(l1) ≃
0.375 > 0.32 ≃ Cb(l2), proving the claim.

Let ≿b be the ranking on V induced by the certainty equivalent function in equation 14.
For simplicity, and in order to allow the comparison in the rankings between the responsible
agent and the ambiguity-averse agent, in what follows we assume that ≿b is complete on
V .10 Next, consider again our rational agent equipped with the smooth ambiguity model
we have introduced in Section 2 and recall that we denote by ≿a the order of preferences
represented by the certainty equivalent function in equation (8). The following proposition
compares ≿b with the preferences induced by the smooth ambiguity model ≿a. With this
purpose, we make the following, technical assumption.

Assumption 2. For any {Ri, bi}, {Rj, bj} ∈ V, {Ri, bi} ≿b {Rj, bj} if and only if {Ri, bi} ≿a

{Rj, bj}.
10While we make this assumption for simplicity, it is possible to show that ≿b satisfies weak order, and

hence completeness, on L∞(I) × b ⊃ V. Indeed, by assuming the continuity of the certainty equivalent
function in (14) on L∞(I)× b, weak order follows immediately.
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Assumption 2 simply states that the two agents rank any assets in the asset menu they
face, in the same way. Note that this assumption is simply instrumental in the study of
the attitude towards ambiguity that is implicit in the ranking of the investment alterna-
tives according to environmentally motivated preferences. Consequently, we maintain this
hypothesis only throughout this section and we will remove it in the portfolio analysis that
follows in Section 3.3.

Proposition 4. Let ≿a and ≿b be the rankings on V induced by the preferences in equation
(8) and (14), respectively. If ≿b is complete, and assumptions 1 and 2 are satisfied, then
≿a is ambiguity averse.

Proof: See Appendix B.2. ■

Proposition 4 states that if an agent has a preference for lower EP scores, i.e., f(b) > 0

for b > 0, then he or she behaves as an ambiguity averse agent, i.e., it prefers all else
equal assets characterized by lower ambiguity over assets characterized by higher ambiguity.
Note that this is consistent with the results in Proposition 3, where we show that, under
Assumption 1, assets with higher EP score are characterized by higher ambiguity. An
immediate consequence of this is that non-strictly rational (in the sense that these are
lacking axiomatic foundations) preferences for lower environmental impact, such as those
employed by Pedersen, Fitzgibbons, and Pomorski (2021) and Pastor, Stambaugh, and
Taylor (2021), can be reinterpreted as rational in the light of the ambiguity implied by
climate uncertainty.11 In fact, in our setting, ambiguity averse agents rationally choose
greener assets because of their lower uncertainty by obtaining a concrete benefit in terms
of the exposition of their portfolio to climate uncertainty-induced ambiguity. Hence, they
always act by maximizing their expected utility according to their tastes over risk and
uncertainty but end up featuring environmental motivations similar to those featured in
equation (14).

To complete this line of reasoning, we next proceed to formally compare the attitudes
toward EP scores and ambiguity and show that agents who are comparatively more averse
toward EP scores need also to be comparatively more averse toward ambiguity. First, we
provide a definition of comparatively higher EP score aversion.

11Technically, for non-rational, we mean choices that allows for violation of first-order stochastic domi-
nance and profit maximization principles

19



Definition 3. Let ≿b and ≿′
b be two binary relations over V induced by the certainty

equivalent function in equation (14) that shares the same risk aversion. We say that ≿′
b is

more EP score averse than ≿b if, for any {Ri, b}, {Rj, 0} ∈ V with b>0,

{Ri, b} ≿′
b {Rj, 0} =⇒ {Ri, b} ≿b {Rj, 0}. (15)

The definition of comparatively higher EP score aversion is inspired after the definition
of comparative higher ambiguity aversion by Klibanoff, Marinacci, and Mukerji (2005, Def-
inition 5). The intuition is that if two agents identified by ≿b and ≿′

b, respectively, share
the same risk aversion but ≿b prefers a lower EP scores asset over a green asset whenever
≿′

b does, then this must be because ≿b is less EP score averse than ≿′
b.

Proposition 5. Consider two pairs of alternative preference orderings ≿a, ≿′
a, that sat-

isfy the smooth ambiguity model axioms and share the same prior µ, and ≿b, ≿′
b, with

same risk aversion and represented by the function in equation (14). Assume that, for any
{Ri, b}, {Rj, 0} ∈ V with b > 0, {Ri, b} ≿′

b {Rj, 0} if and only if {Ri, b} ≿′
a {Rj, 0}. Un-

der assumptions 1 and 2, ≿′
b is more EP score averse than ≿b if and only if ≿′

a is more
ambiguity averse than ≿a.

Proof: See Appendix B.3. ■

Therefore, the consistency in the choices between EP score preferences and smooth
ambiguity preferences holds both in absolute terms and when comparing different degrees
of aversion toward environmental pollution and ambiguity. In particular, Proposition 5
states that, under Assumption 1, comparatively more ambiguity averse agents behave as
comparatively more environmentally motivated agents and viceversa. This establishes that,
even though it always acts by maximizing its expected utility according to tastes over risk
and uncertainty, the representative investor that is driven by (8) always ends up featuring
environmental motivations similar to those featured by the investors driven by the certainty
equivalent function in (14). Hence, the ambiguity concerning the effects of climate change
seems to provide a powerful micro-foundation to the environmental motivations already
featured in a growing body of applied literature.
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3.3 Portfolio allocation

We now proceed with the last step of our analysis and draw a number of logical deductions
concerning the link between EP scores and ambiguity derived from the portfolio allocation
problem of our smooth ambiguity averse representative agent. Next, we compare our results
to those by Pedersen, Fitzgibbons, and Pomorski (2021) and show that environmentally
motivated agents rationally choose sub-optimal positions in a mean-variance setting but
are efficient in an extended mean-variance-ambiguity setup.

Consider again the certainty equivalent function in equation (8), and recall that W̃t+1 =

x′R. We can write the maximization problem solved by the smooth ambiguity-averse
representative agent as

max
x∈X

Ca(W̃t+1) = max
x∈X

{
x′m− γ

2
x′Σx− θ

2
σ2
µ(b̄)

}
. (16)

where the a in Ca stands for (smooth preferences under) ambiguity our agent is equipped
with, m = E[R|b], Σ = VAR[R|b], b̄ is the portfolio aggregate EP score, and σ2

µ(b̄) =

VARµ(E({x′R, b̄})) is the portfolio ambiguity level. By splitting the maximization problem
in parts, (16) can be re-written as

max
x∈X

Ca(Wt+1) = max
b

{
max

σ

[
max
x∈X
b̄=x′b

x′1
σ2=x′Σx

(
x′m− γ

2
σ2 − θ

2
σ2
µ(b̄)

)]}
. (17)

At this point, for a given portfolio EP score, b̄, we define the maximum Sharpe ratio as

SR(b̄) = max
x∈X
b̄=x′b

x′1

{
x′m√
x′Σx

}
, (18)

which can be used to re-write the maximization problem in equation (17) as

max
x∈X

Ca(Wt+1) = max
b

{
max

σ

[(
SR(b̄)σ − γ

2
σ2 − θ

2
σ2
µ(b̄)

)]}
. (19)

Finally, following Mukerji, Ozsoylev and Tallon (2020), we define the ambiguity Sharpe
ratio as:

SRa(b̄) = max
x∈X

(
x′m

σµ(b̄)

)
. (20)
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Intuitively, in the same way in which the conventional Sharpe ratio measures the premium
for unit of risk, the ambiguity Sharpe ratio measures the return premium required by the
agent to hold a certain position in uncertain (and risky) assets per unit of ambiguity,
as measured by σµ(b̄). Within this setting, the theorem that follows presents our main
result concerning the portfolio allocation for an ambiguity-averse representative agent in an
economy characterized by climate change uncertainty:

Theorem 1. Consider a representative agent with preferences represented by (8). Under
Assumption 1, the following statements hold:

1. The agent optimization problem is equivalent to

max
b̄

{
SR(b̄)2

2γ
− θ

2
σ2
µ(b̄)

}
. (21)

2. The maximum Sharpe ratio that can be achieved for a given, desired portfolio EP score
b̄ is

SR(b̄) =

√
cmm − (cbm − b̄c1m)2

cbb − 2b̄c1b + b̄2c11
, (22)

where cxy = x′Σy, i.e., the covariance of the returns of portfolios defined by x and y,
and where the maximum potential Sharpe ratio,

√
cmm, is achieved at an EP score of

b̄N = cbm/c1m.

3. The maximum ambiguity Sharpe ratio is

SRa(b̄) =
SR(b̄)2

γσµ(b̄)
. (23)

4. The optimal portfolio is

x =
1

ρ
Σ−1

(
m− cbm − c1mb̄

cbb − 2c1bb̄+ c11b̄2
(b− 1b̄)

)
. (24)

Proof: See Appendix B.4. ■

We can compare these results with those reported in Pedersen, Fitzgibbons, and Po-
morski (2021) for an environmentally motivated agent, recalled in Theorem 2, Appendix

22



A.1 for a Reader’s convenience. It is immediate to see that the conventional Sharpe ratio
and the optimal portfolio composition for the agent are the same as those of the envi-
ronmentally motivated agent. However, if the optimal allocation for the environmentally
motivated agent results from a trade-off between risk and preference for higher environ-
mental scores, here it comes from a tradeoff between risk and ambiguity, represented by
equation (21). In particular, (21) defines the efficient frontier faced by the agent, which is
a function of the portfolio return, risk, and ambiguity. Note that this is consistent with the
theoretical results on standard portfolio analysis under ambiguity (see, e.g., Maccheroni,
Marinacci, and Ruffino, 2013; and Mukerji, Ozsoylev, and Tallon, 2020).

Next, we compare our ambiguity-averse investor’s willingness to sacrifice a higher Sharpe
ratio to maximize its ambiguity Sharpe ratio with that displayed by an environmentally
motivated agent. In particular, recall that in Pedersen, Fitzgibbons, and Pomorski’s model,
the environmentally motivated agent chooses a portfolio with a lower Sharpe ratio to obtain
a higher, desirable average environmental score. The two propositions that follow show that,
in our framework, the agent sacrifices a higher Sharpe ratio if and only if it is averse toward
ambiguity and for the sole purpose of increasing his or her ambiguity Sharpe ratio. The
existence of such a trade-off is a novel insight that is made possible by our novel framework
in which climate change matters because it adds ambiguity in the economy.

Proposition 6. Consider a representative agent with preferences represented by equation
(8). Let b̄∗ be the optimal EP score, i.e., the EP score associated to the optimal portfolio
allocation displayed in equation (24). Under Assumption 1, the following statements hold:

1. b̄∗ < b̄N if and only if the agent is ambiguity averse.

2. b̄∗ = b̄N if and only if the agent is ambiguity neutral.

3. b̄∗ > b̄N if and only if the agent is ambiguity lover.

Proof: See Appendix B.5. ■

Proposition 7. Under Assumption 1, the following statements hold:

1. For any b̄∗ > b̄N , SR(b̄∗) < SR(b̄N) and SRa(b̄∗) < SRa(b̄N).

2. For any b̄∗ < b̄N , SR(b̄∗) < SR(b̄N) and SRa(b̄∗) > SRa(b̄N). In particular, the
maximum obtainable ambiguity Sharpe ratio is achieved at b̄∗ = 0.
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Proof: See Appendix B.6. ■

Proposition 7 completes our portfolio analysis. It shows that, in a mean-variance-
ambiguity setting, EP scores higher than the threshold b̄N are always inefficient and only
selected by ambiguity-seeking agents. Regarding the EP scores lower than b̄N , these are
chosen by ambiguity averse agents to maximize their ambiguity Sharpe ratio, although
this implies the cost of having to partially sacrifice their conventional risk Sharpe ratio.
Therefore, choosing lower EP scores is rationally justified in our setting by the goal of
reducing the exposition to ambiguity.

4 Discussion and Conclusions

In this paper, we have developed a theory of responsible investing under conditions of
ambiguity induced by climate change uncertainty. By considering this novel feature, our
paper differs from the existing literature by providing four, key findings. First, we find
that the ambiguity in the distribution of returns is a strictly increasing function of the
environmental pollution scores of the assets. Next, we consider an ambiguity-averse agent
and show that, ceteris paribus, she behaves as an environmentally motivated agent who
benefits from holding green(er) assets. Third, investors allocate their wealth according to a
mean-variance-ambiguity efficient frontier and to their attitude towards risk and ambiguity.
Finally, investors rationally choose to invest in less environmentally damaging firms with
the purpose of reducing their exposure to ambiguity.

In developing our theory, we employ some simplifications that could, in principle, be
removed to broaden the generality and range of applicability of the results presented in the
paper. This remainder of this section briefly discusses the consequences of removing such
simplifications/restrictive hypotheses to provide a flavor on how our results are most likely
to change as a result of employing alternative assumptions or of introducing variations in
the framework assumed.

First, we have deliberately limited our attention to the study of the link between en-
vironmental scores and ambiguity. However, a complete analysis would require extending
our investigation to also include the S and G factors of the ESG phenomenon. Indeed, the
social and governance dimensions may plausibly influence the uncertainty of the assets, as
climate change does. Nevertheless, while to explicitly entertain such an analysis is beyond
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the scope of this paper, we focus on the E scores also because of the current unavailability of
commonly accepted theoretical models and empirical evidence that would link governance
and social scores to assets return ambiguity.

Second, we explicitly rule out other sources of uncertainty that are likely to affect
asset prices. These include the natural ambiguity affecting returns distributions (see, e.g.,
Collard et al., 2020) and the very ESG scores (Avramov et al., 2021). By considering other
sources of uncertainty, it should be straightforward to verify that some of the results will
be weakened, while others will need some more structure to be added in the present setting
to hold. For instance, the first claim in Proposition 1 will continue to hold, but only in
one direction. Indeed, if there is no ambiguity, then, necessarily, there must be no climate
change uncertainty. However, in the presence of other sources, the absence of climate
uncertainty does not imply the absence of ambiguity. As for all of the other results, these
continue to hold but only with respect to one source of ambiguity, i.e. climate change, and
not in general terms. To see this, consider that, for instance, it is possible to substitute the
assumed smooth model with the source-dependent preferences under ambiguity introduced
by Cappelli et al. (2021). In such a setting, for each source of uncertainty z ∈ Z, with Z
denoting the collection of all sources, there exists an intra-source ranking ≿z on Vz and an
associated certainty equivalent function Cz that represents ≿z, where Vz is the subset of V
containing all of the prospects affected by source z. In this setting, it is straightforward to
demonstrate that the substance of our result remains unaltered, although at the cost of the
introduction of little more structure in preferences.12

Finally, we must acknowledge that alternative specifications of the damage function in
equation (3) have been proposed in the literature. Among the others, Barnett, Brock, and
Hansen (2020) propose a damage function that includes only the global damages borne by
all the agents in the economy. Specifically, the specification they adopt is the following:

Dt+1 = Γ̃(ζ̃Ft+1) + ξ̃fFt+1 + ξ. (25)

Using the damage specification in (25) instead of that in equation (3) implies that the
ambiguity induced by climate change is shared equally by all of the assets in the economy.
Obviously, this does not allow to discriminate between assets that are in principle more

12For instance, within this setting we would get that environmentally motivated agent are averse to
climate change induced ambiguity, but not necessarily ambiguity averse with respect to all the uncertainty
sources (i.e., w.r.t. to all z ∈ Z]).
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sensitive to climate uncertainty than others. Nevertheless, such simpler global damage
specifications may still be useful in models that include ambiguity and that, for instance,
are geared towards studying households’ participation in the stock market during spells of
climate change. Again, this is beyond the immediate objectives of our paper and therefore
left for future research.

APPENDIX: PROOFS AND RELATED ANALYSIS

A Preliminaries: environmental motivated preferences

A.1 Optimal portfolio allocation

Let s = (s1, ..., sn) be the vector of environmental pillar scores associated to the n assets
in the economy, where si = 1 − bi. We denote by s̄ the average environmental pillar score
of the composite portfolio chose by the agent, i.e. s̄ = x′s

x′1
. In this first appendix we show

that the results in terms of portfolio allocation obtained by Pedersen, Fitzgibbons, and
Pomorski (2021) through the certainty equivalent function

Cs(Wt+1) = E[Wt+1|s]−
γ

2
VAR[Wt+1|s] +Wtfs(s̄), (26)

where fs : [0, 1] → R+, continuous and strictly increasing, coincides with those obtained by
equipping the agent with preferences represented by

Cb(Wt+1) = E[Wt+1|b]−
γ

2
VAR[Wt+1|b]−Wtf(b̄). (27)

Throughout the rest of this subsection we assume there is no uncertainty. Let m =

E[R|s] and Σ = VAR[R|s]. First, next theorem recalls the results on the portfolio allocation
obtained by Pedersen, Fitzgibbons, and Pomorski (2021). Then, Theorem 3 shows the
equivalence between the two sets of results.

Theorem 2. Consider an agent with preferences represented by Equation (26). The fol-
lowing statements are true:
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1. The agent optimization problem coincide with maxs̄{SR(s̄)2 +2ρf(s̄)}, where ρ is the
coefficient of relative risk aversion.

2. The maximum Sharpe ratio that can be achieved for a desired score s̄ is

SR(s̄) =

√
cmm − (csm − s̄c1m)2

css − 2s̄c1s + s̄2c11
,

where cxy = xΣy, and where the maximum potential Sharpe ratio, cmm, is achieved at
s∗ = csm/c1m.

3. The optimal portfolio for a given environmental pillar score s̄ is

xs =
1

ρ
Σ−1(m+ λ1,s(s− 1s̄)),

where
λ1,s = − (s− 1s̄)Σ−1m

(s− 1s̄)Σ−1(s− 1s̄)
.

Proof : The proof for all of the statements is provided by Pedersen, Fitzgibbons, and
Pomorsky (2021, propositions 1-3). ■

Theorem 3. Consider an agent with preferences represented by equation (27). The follow-
ing are true:

1. The agent optimization problem coincides with maxb̄{SR(b̄)2−2ρf(b̄)}, where ρ is the
coefficient of relative risk aversion.

2. The maximum Sharpe ratio that can be achieved for a desired score b̄ is

SR(b̄) =

√
cmm − (cbm − b̄c1m)2

cbb − 2b̄c1b + b̄2c11
,

where the maximum potential Sharpe ratio, cmm, is achieved at b̄N = cbm/c1m = 1−s̄N .

3. The optimal portfolio for a given EP-score is

xb =
1

ρ
Σ−1(m− λ1,b(b− 1b̄)) =

1

ρ
Σ−1(m+ λ1,s(s− 1s̄)) = xs.
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Proof : First note that, for a given s, m = E[r|b] = E[r|s] and Σ = VAR[r|b] = VAR[r|s].
For statement (1), by equation (27) the optimization problem is given by

max
x∈X

{
x′m− ρ

2
x′Σx− f

(
x′b

x′1

)}
. (28)

Define
SR(b̄) = max

x∈X
x′1=1
x′b=b̄

{
x′m√
x′Σx

}
, (29)

where, clearly, SR(b̄) = SR(s̄). Equation (28) can be rewritten as

max
b

{
max

σ

[
max
x∈X
b̄=x′b

x′1
σ2=x′Σx

(
x′m− ρ

2
σ2 − f(b̄)

)]}
. (30)

where, by Pedersen, Fitzgibbons, and Pomorsky (2021, equation 35), SR(b̄) is independent
from σ. Hence, we have

max
b

{
max

σ

[
SR(b̄)σ − ρ

2
σ2 − f(b̄)

]}
, (31)

that is solved for σ = SR(b̄)/ρ. By substituting σ in equation (31) we have

max
b

{
1

2

SR(b̄)2

ρ
− f(b̄)

}
, (32)

which by multiplying for 2ρ proves the first statement.
For statement (2), consider the Lagrangian

L = x′m− ρ

2
σ2 − f(b̄)− λ1,b(x

′b)− λ2,b(x
′Σx− σ2),

where we denote by λ1,b and λ2,b the Lagrange multipliers. The first order condition delivers

xb =
1

λ2,b
Σ−1(m− λ1,bb̂), (33)
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where b̂ = b− 1b̄. By looking at the constraints, the first one delivers

0 =
1

λ2,b
b̂′Σ−1(m− λ1,bb̂), (34)

from which the first multiplier is

λ1,b =
(b− 1b̄)Σ−1m

(b− 1b̄)′Σ−1(b− 1b̄)
=

cbm − c1mb̄

cbb − 2c1bb̄+ c11b̄2
. (35)

The second constraint delivers

σ2 =

[
1

λ2,b
Σ−1(m−λ1,bb̂)

]′
Σ

[
1

λ2,b
Σ−1(m−λ1,bb̂)

]
=

1

λ22,b
(m−λ1,bb̂)′Σ−1(m−λ1,bb̂), (36)

that by employing the first constraint defined in equation (35) can be simplified as

σ2 =
1

λ22,b
m′Σ−1(m− λ1,bb̂). (37)

Then, by substituting λ1,b in equation (37) we get

λ2,b =
1

σ

√
cmm −

(
cbm − c1mb̄

cbb − 2c1bb̄+ c11b̄2

)
. (38)

Next, by considering that

SR(b̄) =
m′x

σ
=

m′Σ−1(m− λ1,bb̂)

λ2,bσ
= σλ2,b, (39)

we have

SR(b̄) =

√
cmm − (cbm − c1mb̄)2

cbb − 2c1bb̄+ c11b̄2
, (40)

where b̄N = cbm
c1m

= c1m−csm
c1m

= 1 − s̄N is obtained by taking the first order condition with
respect to b.

For statement (3), starting from equation (33) and recalling that λ2,b = SR(b̄)/σ, σ =

SR(b̄)/ρ, and b̂ = b− 1b̄, we have

xb =
1

ρ
Σ−1(m− λ1,b(b− 1b̄)). (41)
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Finally, by considering that −λ1,b = λ1,s we have xb = xs, which completes the proof of the
theorem. ■

B Proofs of the main results

B.1 Proof of Proposition 3

Proof of Statement (1). First, we prove that (1) ⇒ (2). By Proposition 1, an asset
{Ri, bi} is approximately unambiguous if VARµ(E({R̃i, bi})) = 0. It follows that, if all
of the assets in the economy are approximately unambiguous, the composite portfolio is
approximately unambiguous. Therefore, VARµ(E({ ˜̄R, b̄})) = 0. Next, since the agent
consumes everything at time t+ 1 and, by Assumption 1, there is no uncertainty affecting
baseline consumption, we must have

VARµ(E({ ˜̄R, b})) = VARµ(E(Ct+1 − D̃t+1)) = VARµ(E(D̃t+1)) = 0.

that, by equation (3), coincides with

VARµ(E(D̃t+1) =VARµ

(
E(Γ̃(ζ̃Ft+1)) + E

(
ξ̃f

x

Wt

Fi,t+1

))
=VARµ(E(Γ̃(ζ̃Ft+1)) + VARµ

(
E
(
ξ̃f

x

Wt

Fi,t+1

))
+2COVµ

(
E(Γ̃(ζ̃Ft+1),E

(
ξ̃f

x

Wt

Fi,t+1

))
= 0. (42)

Since by equation (5) all the three terms in equation (42) are not negative, the condition
is satisfied if and only if, respectively,

VARµ(E(Γ̃(ζ̃Ft+1)) = 0, (43)

VARµ

(
E
(
ξ̃f

x

Wt

Fi,t+1

))
= 0, (44)

and
2COVµ

(
E(Γ̃(ζ̃Ft+1),E

(
ξ̃f

x

Wt

Fi,t+1

))
= 0. (45)
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Consider equation (44). We have that

VARµ

(
E
(
ξ̃f

x

Wt

Fi,t+1

))
= VARµ(E(ξ̃f ))

1

W 2
t

( n∑
i=1

xiFi,t+1

)2

= 0,

for any xi if and only if Fi,t+1 = 0 = bi for all i = 1, ..., n. Such condition trivially satisfies
equations (44) and (45), and therefore equation (42), completing the proof. For the other
direction the proof is trivial and hence omitted. ■

Proof of Statement (2). For any pair of assets {Rj, b+} and {Rh, b−} consider the two
investment decisions Ij : {xj = Wt, xi = 0 ∀ i ̸= j} and Ih : {xh = Wt, xi = 0 ∀ i ̸= h}.
We have,

VARµ(E({Rj, b+})) > VARµ(E({Rh, b−})) ⇐⇒ (46)

VARµ(E(Wt+1|Ij)) > VARµ(E(Wt+1|Ih)) ⇐⇒

VARµ(E((Ct+1 − D̃t+1)|Ij) > VARµ(E((Ct+1 − D̃t+1)|Ih) ⇐⇒

VARµ(E(D̃t+1|Ij)) > VARµ(E(D̃t+1|Ih)). (47)

By plugging the specifications of D̃t+1 considering the two alternative investments op-
portunities we have

VARµ(E(Γ̃(ζ̃Ft+1)) + VARµ(E(ξ̃fFj,t+1)) + 2COVµ

(
E(Γ̃(ζ̃Ft+1),E(ξ̃fFj,t+1)

)
>

VARµ(E(Γ̃(ζ̃Ft+1)) + VARµ(E(ξ̃fFh,t+1)) + 2COVµ

(
E(Γ̃(ζ̃Ft+1),E(ξ̃fFh,t+1)

)
, (48)

that can be rearranged as

(F 2
j,t+1 − F 2

h,t+1)VARµ(E(ξ̃f )) + 2(Fj,t+1 − Fh,t+1)COVµ

(
E(Γ̃(ζ̃Ft+1),E(ξ̃f )

)
> 0 (49)

which is satisfied if and only if Fj,t+1 > Fh,t+1, and therefore b+ > b−. ■

Proof of Statement (3). Fix bi = 0 and consider the investment opportunity Ii : {xi =
Wt, xj = 0 ∀ j ̸= i}. By Definition 1, we have that Gi,t+1 = Fi,t+1 = 0. Hence, by following
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the same steps in the proof of Statement 2 we have

VARµ(E(Dt+1|Ii) = VARµ(E(Γ̃(ζ̃Ft+1)).

Since by Proposition 3 VARµ(E(.)) is strictly increasing in b, VARµ(E(Γ̃(ζ̃Ft+1)) is the
minimum obtainable ambiguity, completing the proof. ■

B.2 Proof of Proposition 4

First, recall that by Klibanoff, Marinacci and Mukerji (2005) and Maccheroni, Marinacci
and Ruffino (2013), ≿a is ambiguity averse if and only if θ > 0. Next, consider two alterna-
tive investment opportunities {Ri, 0} and {Rj, bj} with bj > 0, EQ̄({Ri, 0}) = EQ̄({Rj, bj}),
and VARQ̄({Ri, 0}) = VARQ̄({Rj, bj}). By equation (14) we have that {Ri, 0} ≻b {Rj, bj}
and, by Assumption 2, {Ri, 0} ≻a {Rj, bj}. Therefore, by Equation 8 we must have

Ca({Ri, 0}) > Ca({Rj, bj}) ⇐⇒

EQ̄({Ri, 0})−
γ

2
VARQ̄({Ri, 0})−

θ

2
VARµ(E({Ri, 0})) >

EQ̄({Rj, bj})−
γ

2
VARQ̄({Rj, bj})−

θ

2
VARµ(E({Rj, bj})) ⇐⇒

θ

2

(
VARµ(E({Rj, bj}))− VARµ(E({Ri, 0}))

)
> 0.

By Assumption 1 and Proposition 3, VARµ(E({Rj, bj})) > VARµ(E({Ri, 0})). Hence, last
equation is satisfied if and only if θ > 0, completing the proof. ■

B.3 Proof of Proposition 5

First, recall that by Statement 3 of Proposition 3 VARµ(E{R̃, 0}) ≤ VARµ(E{R̃, b}) for any
b > 0. Therefore, by Klibanoff, Marinacci and Mukerji (2005, Definition 5) a decision-maker
with ranking ≿′

a and same prior of a decision-maker with ranking ≿a is more ambiguity
averse than ≿a if {R̃i, b} ≿′

a {Rj, 0} =⇒ {R̃i, b} ≿a {Rj, 0} for all {R̃i, b}∈ V .
Next, assume that ≿′

b is more EP score averse than ≿b and consider {R̃i, b} and {R̃j, 0}
such that {R̃i, b} ≿′

b {R̃j, 0}. By assumption, {R̃i, b} ≿′
a {R̃j, 0} and {R̃i, b} ≿b {R̃j, 0}.

Finally, assume that {R̃i, b} ≿′
a {R̃j, 0} does not imply {R̃i, b} ≿a {R̃j, 0}. We would

have that there exist some {R̃i, b} and {R̃j, 0} ∈ V such that {R̃j, 0} ≻a {R̃i, b} and, by
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Assumption 2, {R̃j, 0} ≻b {R̃i, b}, a contradiction. A similar argument proves the result
for the other direction. ■

B.4 Proof of Theorem 1

Proof of Statement (1). By starting from Equation (19) and deriving the first order
condition with respect to σ, we find that σ = SR(b̄)/γ. By substituting σ in equation (19)
we have

max
b

{
1

2

SR(b̄)2

γ
− θ

2
σ2
µ(b̄)

}
, (50)

which by multiplying for 2γ proves the first statement. ■

Proof of Statement (2). Consider the Lagrangian

L = x′m− γ

2
σ2 − θ

2
σ2
µ(b̄)− λ1,a(x

′b̂)− λ2,a(x
′Σx− σ2),

where b̂ = 1− b and where we denote by λ1,a and λ2,a the Lagrange multipliers. The first
order condition delivers

x =
1

λ2,a
Σ−1(m− λ1,ab̂). (51)

By looking at the constraints, the first one delivers

0 =
1

λ2,a
b̂′Σ−1(m− λ1,ab̂), (52)

from which the first multiplier is

λ1,a =
(b− 1b̄)Σ−1m

(b− 1b̄)′Σ−1(b− 1b̄)
=

cbm − c1mb̄

cbb − 2c1bb̄+ c11b̄2
. (53)

The second constraint delivers

σ2 =

[
1

λ2,a
Σ−1(m− λ1,ab̂)

]′
Σ

[
1

λ2,a
Σ−1(m− λ1,ab̂)

]
=

1

λ22,a
(m− λ1,ab̂)

′Σ−1(m− λ1,ab̂),

(54)
that by employing the first constraint can be simplified as

σ2 =
1

λ22,a
m′Σ−1(m− λ1,ab̂). (55)
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Then, by substituting λ1,a in equation (55) we get

λ2,a =
1

σ

√
cmm −

(
cbm − c1mb̄

cbb − 2c1bb̄+ c11b̄2

)
. (56)

Next, by considering that

SR(b̄) =
m′x

σ
=

m′Σ−1(m− λ1,ab̂)

λ2,bσ
= σλ2,a, (57)

we have

SR(b̄) =

√
cmm − (cbm − c1mb̄)2

cbb − 2c1bb̄+ c11b̄2
, (58)

where SR(b̄N) =
√
cmm is the maximum potential Sharpe ratio, and b̄N = cbm

c1m
is obtained

by taking the first order condition with respect to b. completing the proof of Statement 2.
■

Proof of Statement (3). By equation (23) we have

SRa(b̄) =
m′x

σµ(b̄)
=
σ2λ2,a
σµ(b̄)

=
SR(b̄)2

γσµ(b̄)
. (59)

■

Proof of Statement (4). Starting from equation (51) and recalling that λ2,a = SR(b̄)/σ,
σ = SR(b̄)/γ, and b̂ = b− 1b̄, we have

xa =
1

γ
Σ−1(m− λ1,a(b− 1b̄)). (60)

The substitution of λ1,a from equation (53) completes the proof of the theorem. ■

34



B.5 Proof of Proposition 6

Let b̄∗ be the optimal portfolio EP score resulting from the optimization in equation (21).
We have

Ca(Wt+1|b̄ = b̄∗) > Ca(Wt+1|b̄ = b̄N) ⇐⇒
SR(b̄∗)2

2γ
− θ

2
σ2
µ(b̄

∗) >
cmm

2γ
− θ

2
σ2
µ(b̄

N) ⇐⇒

θ

2
(σ2

µ(b̄
N)− σ2

µ(b̄
∗)) >

cmm − SR(b̄∗)2

2γ
> 0, (61)

since cmm > SR(b̄∗)2. By the second statement of Proposition 3, b̄∗ < bN if and only if
σ2
µ(b̄

N)− σ2
µ(b̄

∗), and by equation (61) θ > 0. Statements 2 and 3 follow trivially from the
previous considerations, as well as the other direction of each statement. ■

B.6 Proof of Proposition 7

Proof of Statement (1). Assume that b̄∗ > b̄N . By Statement 2 of Theorem 1 SR(b̄∗) <
√
cmm = SR(b̄N). Next, consider Equation 23 and recall that by Proposition 3 σ2

µ(b̄
∗) >

σ2
µ(b̄

N). Therefore, we have

b̄∗ > b̄N =⇒ SR(b̄∗)2

γσµ(b̄∗)
<

SR(b̄N)2

γσµ(b̄N)
⇐⇒ SRa(b̄∗) < SRa(b̄N). (62)

■

Proof of Statement (2). Consider the first order condition of the function SRa(.) with
respect to b̄. We have,

(SR(b̄)2)′σµ(b̄)− σµ(b̄)
′(SR(b̄)2)

γσµ(b̄)2
> 0 ⇐⇒ (63)

(SR(b̄)2)′

(SR(b̄)2)
>
σµ(b̄)

′

σµ(b̄)
> 0. (64)

by Proposition 3. Since SR(b̄) is strictly increasing in b̄ ∈ [0, b̄N ], (64) is always satisfied
and the function SRa(.) is continuous and strictly decreasing in b̄. The rest is trivial. ■
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