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Abstract

This paper develops a microeconomic model of bitcoin production to demonstrate

that the boom and bust cycles evident in the bitcoin price path are the consequence

of a supply-side phenomenon arising from the Bitcoin protocol�s system of supply

management. After specifying the fundamental value of a bitcoin according to the

model, I apply the generalized supremum augmented Dickey-Fuller test to establish

that bitcoin is not a bubble. I also show that the di¢ culty adjustment mechanism

results in social welfare losses from March 2014 to January 2019 of 323.8 million USD,

which is about 9.3% of the miners�total electricity costs.
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"A lot of Bitcoin�s value derives from how we envision it within the depths of the internet."

�Bitcoin.com

1 Introduction

In this paper I view bitcoins as tradable commodities whose supply is managed by the

Bitcoin protocol.1 I contend that it makes no sense to value bitcoins as if they were a stock

because the Bitcoin network, as an institution, is not owned by anyone. And while it is a

digital currency, it cannot assume a value as do �at currencies, because no government has

declared it to be legal tender. Bitcoin is most analogous to a commodity such as co¤ee,

which is produced by �small�farmers who are uncoordinated in their production decisions.

While miners use electricity to produce bitcoins (instead of sunshine), the analogy is not

far-fetched, as evidenced by the fact that miners demonstrate a strong preference for joining

mining pools,2 which are similar in structure to co¤ee cooperatives since they are designed

to share the risk among their members.3 Also, co¤ee farmers once bene�ted from the now

defunct International Co¤ee Agreement (ICA), which was a system of quotas that resulted

in high and stable prices by organizing the supply of farmers worldwide.4 Encoded in the

Bitcoin protocol is a similar system of supply management that the Bitcoin network sustains

by its near-perfect monitoring of the rate of block formation (and thus the quantity of bitcoins

supplied) and enforces by regular adjustments in the level of di¢ culty of mining a bitcoin.

Bitcoin, however, has the additional feature of being a medium of exchange and a tradable
1I follow the convention of capitalizing the word �bitcoin�when referring to the protocol or network and

writing it in lowercase when referring to the unit of currency.
2According to hashrate distribution statistics provided by BTC.com, more than 95% of the Bitcoin

network hashrate for 2018 can be attributed to mining pools. See https://btc.com/stats/pool
3Mining pools enable miners to decrease the variance of their returns by sharing their processing power

over a network and splitting the reward according to the amount of work that each has contributed to the
probability of �nding a block.

4The ICA was a quota system that was in operation between 1962 and 1989. The system was suspended
because of failure to agree on the quota distribution and the increasing volume of co¤ee traded with non-
member importing countries at lower prices. See Talbot (2004).
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asset with numerous well-developed market exchanges, resulting in a unique class of asset

with characteristics that have never before been seen. I show that bitcoin�s volatile price

path and ine¢ ciency are related, as they both result from the protocol�s system of supply

management.

Bitcoin, the �rst cryptocurrency, was invented by an unknown individual who imple-

mented the software as open-source code. Cryptocurrencies such as Bitcoin are electronic

payment systems that permit transactions to be made with pseudo-anonymity5 and without

middlemen like banks. Bitcoin was launched on January 3, 2009. Until July 2010, the price

of a bitcoin was less than 0.01 USD. By the beginning of 2017, the price had risen astound-

ingly to a stable 1,000 USD and it reached a peak value of 19,783 USD in December 2017.

The price has been generally falling since that time, with the exception of a few resurgences.

Bitcoin�s price path is notoriously volatile and has evinced a multitude of boom-and-bust

cycles over its 10-year lifespan. While there are numerous historical examples of bubbles,

starting as far back as the Dutch tulipmania (1634�7),6 one is hard-pressed to identify an

asset price or an episode of market exuberance that exempli�es the ceaseless de�ations and

re-in�ations that are apparent in the price path of Bitcoin and similar cryptocurrencies.7

It is challenging to identify bubbles in market data because one needs to know an asset�s

fundamental value in order to identify a divergence between it and the asset�s price. More-

over, econometric tests of asset price bubbles do not do a good job of di¤erentiating between

misspeci�ed fundamentals and bubbles (Gurkaynak, 2005).

Mining is the process by which bitcoins are created. Bitcoin miners use electricity to solve

complex mathematical puzzles in order to verify the transactions added to the blockchain.

5Bitcoin addresses are not tied to the identity of their users but since all transactions over the Bitcoin
network are completely transparent and traceable, multiple Bitcoin addresses can be clustered together and
then associated with a particular user. See Meiklejohn et al. (2013).

6See Garber (1989; 1990) and Brunnermeier (2008) for a discussion of the history of price bubbles.
7It is theoretically possible, however, for rational bubbles to periodically collapse to a small nonzero value

and then to continue to increase. See Evans (1991).
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Solving this �proof of work�(PoW) problem requires tremendous computational power and

the �rst miner to succeed (�nd a correct hash) is rewarded with new bitcoins.8 The Bitcoin

protocol speci�es a target that a correct hash must fall below, which implies a level of

di¢ culty for the computational problem. A lower target corresponds to a greater level of

di¢ culty because it is less likely that a hash will fall within the correct range. Changes

in the target and hence the level of di¢ culty a¤ect the rate of block formation because an

increase (decrease) in di¢ culty decreases (increases) the probability that a miner will �nd

a correct hash. Since the production of a block increases the supply of bitcoins according

to the block reward,9 changes in the level of di¢ culty also determine the growth rate of the

supply of bitcoins over time.

Although the Bitcoin network is managed by peer-to-peer technology without a central

authority, it uses the level of di¢ culty as an instrument to enforce an in�exible system of

supply management. The protocol regulates the quantity of bitcoins that are mined by

adjusting the level of di¢ culty every 2016 blocks (approximately every two weeks). There

is an interval of time between adjustments in the level of di¢ culty, so that the network can

accurately estimate the waiting time to �nd a block. If the network detects that the time

required to �nd the last 2016 blocks di¤ers from 20,160 minutes, then the network uses the

estimated mining rate to adjust the level of di¢ culty proportionally in order to target a

ten-minute interval between successive blocks mined. Only when the mining rate is equal to

its target will the level of di¢ culty be unchanged.

To ascertain the value of a bitcoin, in Section 2 of the paper, I model the competitive

bitcoin mining industry with free entry of miners in response to pro�ts that are created in

accordance with the Bitcoin protocol. For simplicity, there is no secondary market for the

bitcoin and all input markets are held constant. I de�ne the fundamental value of the bitcoin

8The current block reward is 12.5 bitcoins.
9The block reward decreases by one-half only every 210,000 blocks, or approximately four years. See

https://en.bitcoin.it/wiki/Controlled_supply.
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to be the marginal cost of producing a bitcoin when the mining rate is equal to its target.

This is a natural de�nition since the value of a bitcoin is governed by the protocol�s system

of supply management, and it is the unique price that is consistent with its rules. The

model reveals that the fundamental value of a bitcoin is equal to the miners�equipment and

electricity costs, relative to their expected revenue (block reward and fees, multiplied by the

expected number of blocks mined). Also, the fundamental value of the bitcoin appreciates

by an amount that is equal to the rate of increase in the level of di¢ culty and, assuming a

constant-elasticity demand curve for bitcoin, the return on bitcoin is proportional to the rate

of increase in the level of di¢ culty. I establish how adjustments of the level of di¢ culty in

response to demand shocks result in exaggerated price movements that may be mistaken for

a bubble. The supply of bitcoins is upward sloping since a higher price of a bitcoin results

in a greater number of entrants (miners), which increases the network hashrate and thus

the number of blocks mined per day. If a positive demand shock results in a mining rate

that exceeds its target, then the Bitcoin protocol will stipulate an increase in the level of

di¢ culty. I show that an increase in di¢ culty decreases the supply of bitcoins (it rotates

the supply curve upward) since it results in greater marginal electricity costs for the miners.

This causes an exaggerated upward price movement since the initial price increase caused

by the demand shock is ampli�ed by the decrease in supply. Since the protocol aims at

maintaining a constant supply of bitcoins per day, prices are largely demand driven and thus

variations in demand are transformed by the process of adjusting the level of di¢ culty into

price volatility.

Interestingly, if the increase in demand is due to the optimistic beliefs of investors regard-

ing the future price of bitcoins, the subsequent increase in di¢ culty will work to validate

investor�s beliefs, encouraging another round of optimism. While I do not model beliefs

in this paper, it is intuitively clear how the protocol can interplay with investor�s beliefs,

resulting in the momentum of price movements over time: a greater demand for bitcoins
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causes higher bitcoin prices, which causes more miners to enter the industry, which results

in a mining rate that exceeds its target, which leads to intervention by the protocol and a

higher level of di¢ culty, which causes greater than laissez-faire prices, which leads to greater

demand for bitcoins by investors... and so on, until an exogenous unanticipated event (such

as a hack on a bitcoin exchange) breaks the cycle. The resulting sequence of positive demand

shocks ampli�ed by increases in the level of di¢ culty can result in an explosive price path

that may be mistaken for a bubble despite being based on marginal costs. The analysis of a

negative demand shock is analogous: a series of negative demand shocks may be mistaken

for a bursting bubble since the equilibrium price will fall rapidly as the di¢ culty decreases.

It follows that the economic functioning of the Bitcoin protocol can result in boom-and-bust

cycles in the price of the bitcoin. Unlike a bubble, however, the price is equal to marginal

cost all the while.

Next, I show that because the protocol intervenes in the market to control the supply of

bitcoins, welfare losses must occur as a result. An increase in di¢ culty works analogously

to a government�s placing an ad valorem tax on the price of the bitcoin since the supply

price increases in proportion to the di¢ culty adjustment. Instead of accruing tax revenue,

however, the increase in di¢ culty imposes additional electricity costs on the miners. While

a higher price for the bitcoin is obtained, the rents that would have arisen from limiting the

supply are wasted as they neither bene�t a government nor the miners. A decrease in the

level of di¢ culty works analogously to a government that provides an ad valorem subsidy (a

negative tax) to the miners, but I show that the welfare e¤ects of an increase in di¢ culty

are not o¤set by a decrease in di¢ culty by the same proportion since the absolute change

in electricity costs is greater under the increase, and a distortion loss must be experienced

under either. Ironically, while the bitcoin is esteemed for its nongovernmental design, it

follows that its system of supply management is far less e¢ cient than if a government were

to regulate the quantity of bitcoins by imposing a tax on its price.
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Bitcoin is a particularly advantageous choice of asset for studying price behavior since

the protocol�s rules are clearly stated and thus the functioning of the overall system is fully

transparent. Also, the entire population of data pertaining to the supply of bitcoins and

how the Bitcoin protocol is implemented over time are readily available from its blockchain

ledger.10 I parse the Bitcoin blockchain to obtain time series data for the network level

of di¢ culty, the number of blocks mined per day, the block reward and fees, and describe

the data in Section 3 along with data pertaining to bitcoin mining equipment speci�cations

and costs, and the average USD market price of the bitcoin across major bitcoin exchanges.

I examine model diagnostics and show that the data is largely consistent with the model

developed in Section 2.

Since prices are typically well approximated by a random walk in the absence of bubbles

but are characterized by an explosive path during periods of bubbles, recent econometric

techniques identify rational speculative bubbles by testing for a mildly explosive departure

from a random walk.11 ;12 Such tests were originally proposed by Phillips et al. (2011) and

further developed by Phillips and Yu (2011), Homm and Breitung (2012), and Phillips et al.

(2015a; 2015b). In Section 4, I outline the generalized version of the supremum augmented

Dickey�Fuller (GSADF) test based on Phillips et al. (2015a; 2015b), which delivers a con-

sistent date-stamping strategy for the origination and termination of multiple bubbles, and

apply it to determine whether the boom-and-bust cycles evident in bitcoin price data can

be explained by the fundamentals derived in Section 2. I also apply the model developed in

Section 2 to estimate the welfare losses that are due to adjustments in the level of di¢ culty

throughout the sample period. Since estimating welfare losses requires an estimate of the

price elasticity of demand for bitcoins, I exploit the timing of adjustments in the di¢ culty to

10The blockchain ledger also records all transactions between users with the exception of �o¤-chain�trans-
actions such as those occurring on bitcoin exchanges.
11These tests can detect rational bubbles as well as other bubble-generating mechanisms, such as intrinsic

bubbles, herd behavior and time-varying discount factor fundamentals.
12For a survey of the literature on bubbles see Brunnermeier and Oehmke (2012).
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isolate periods that are characterized by large supply shocks in order to identify the demand

curve.

I present the results in Section 5. I �nd that while the raw bitcoin price data demonstrates

evidence of bubble formation, the residuals after �tting the price to the fundamental value as

de�ned by the model do not. This provides strong evidence that the model can explain the

apparent bubbles since, after accounting for the protocol�s di¢ culty adjustment mechanism,

the price path reverts to a random walk. I obtain an estimate for the total welfare losses

from 17 March 2014 to 13 January 2019 of 323.82 million USD, which is about 9.3% of the

total electricity costs to power the Bitcoin network during this time.

Section 6 presents the conclusions.

There is a small but rapidly growing economics literature on the topic of Bitcoin and

cryptocurrencies. The comprehensive empirical analysis conducted in Liu and Tsyvinski

(2018) using price data for Bitcoin, Ethereum, and Ripple demonstrates that the mean and

standard deviation of returns for cryptocurrencies are an order of magnitude higher than

those for traditional asset classes. Also, with the exception of the exposure of Ethereum to

gold, cryptocurrencies have no exposure to most common stock market and macroeconomic

factors, and their returns can be best predicted by two factors speci�c to their markets: mo-

mentum and investor attention. Bianchi (2018) uses a large panel of prices, traded volumes,

and market capitalization on 14 actively quoted cryptocurrencies to empirically investigate

their relation with standard asset classes. The main empirical results suggest that, except

for a mild correlation with gold and crude oil, there is no signi�cant relation between returns

on cryptocurrencies and more traditional asset classes. Dong et al. (2018) �nd that bitcoin

price dynamics are signi�cantly sensitive to investor sentiment. The authors use sentiment

data to show that stricter regulations for Bitcoin predict a decrease in future returns and an

increase in the probability of a future price collapse, and that market sentiment positively

comoves with bitcoin prices.
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These empirical studies characterize features of Bitcoin returns that are consistent with

the main premise of this paper: the bitcoin is a tradable commodity whose supply is managed

by the Bitcoin protocol, which creates an asset that is radically di¤erent from those belonging

to traditional asset classes. As discussed above, since the protocol uses a di¢ culty adjustment

mechanism to target a constant supply of bitcoins per day, prices are in excess of their

laissez-faire counterparts and are demand driven. As such, it is intuitive that bitcoin returns

are supernormal and volatile, and that prices are highly sensitive to investor attention and

sentiment. Also, since the di¢ culty adjustment mechanism works to validate investor�s

beliefs regarding future price movements, it is natural that the bitcoin price path would

demonstrate momentum. While Dong et al. (2018) attribute the price responses to bubbles,

in this paper I show that it is the fundamental value of Bitcoin that manifests volatile and

potentially explosive behavior due to the e¤ect of di¢ culty adjustments on the miners�costs.

The papers most closely related to the present paper are Pagnotta and Buraschi (2018)

and Easley et al. (2017). Pagnotta and Buraschi (2018) study the general equilibrium of a

decentralized �nancial network and derive closed-form solutions linking the bitcoin price to

market fundamentals. The authors develop a theoretical model where the Bitcoin network�s

value is driven by the number of users and miners who provide computing resources that

a¤ect the network�s trustworthiness. They �nd that, counterintuitively, the price of the

bitcoin decreases whenever the marginal cost of mining increases since it will induce miners

to provide a lower hashrate, which reduces network trust and ultimately the equilibrium

price. Easley et al. (2017) develop a game theoretic model to explain the strategic behavior

of miners and users, and demonstrate that equilibrium in the bitcoin blockchain is a complex

balancing of user and miner participation. The authors �nd that transaction fees play a

crucial role in in�uencing the stability of the blockchain and that higher transaction fees are

driven by the queuing problems facing users, rather than by reductions in block rewards.

In contrast with Pagnotta and Buraschi (2018), the present paper considers a relatively
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unstructured demand side of the bitcoin market, focusing instead on the supply-side e¤ect

of the protocol. I treat network quality and security, in addition to investor�s beliefs, and

speci�c use cases that are mostly unobservable due to the pseudo-anonymity of bitcoin

transactions, as exogenous factors that may drive the demand for bitcoins. I show that

because the protocol adjusts the level of di¢ culty in response to changes in the equilibrium

mining rate detected by the network, which depends on the supply and demand for bitcoins,

the di¢ culty is a su¢ cient statistic for the determinants of demand. The model in this paper

predicts a positive relation between the rate of increase in the price of a bitcoin and the rate

of increase in the level of di¢ culty, a key determinant of the marginal cost of mining, and

I show that this prediction is strongly supported by the data. While Easley et al. (2017)

study how the Bitcoin protocol a¤ects the interaction between miners and users, and thus

the determination of fees, the present paper treats fees as exogenous and studies how the

protocol a¤ects the interaction between the miners and the purchasers of bitcoins (who may

either hold it or use it to make transactions), and thus the determination of the price of

the bitcoin in the market. By leveraging an understanding of the microeconomics of bitcoin

production, I develop a simple model that is amenable to empirical analysis to demonstrate

that the boom and bust cycles evident in the bitcoin price path are the consequence of a

supply-side phenomenon arising from the protocol�s di¢ culty adjustment mechanism.

2 The model

A miner must collect new transactions into a block and then hash the block header to form a

256-bit block hash value. If the value is below a target set by the protocol, which corresponds

to a given level of di¢ culty �, then other miners will con�rm the solution and agree that

the block can be added to the blockchain. Because the header contains a 32-bit nonce �eld

whose value is adjusted by the miners in an attempt to �nd an acceptable solution, the
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expected number of hashes per second needed to �nd a solution is �232: It follows that the

expected waiting time for a miner to �nd a block (in seconds) is �232

�109
, where � is the hashrate

employed by the miner measured in gigahashes per second.13 When a miner �solves a block,�

the miner earns the block reward ! (denominated in bitcoins) and may also earn fees f per

block (denominated in bitcoins) that senders of bitcoins can include in any transaction to

reduce their waiting time.

The protocol regulates the quantity of bitcoins that are mined by adjusting the di¢ culty

every 2016 blocks. It adjusts the di¢ culty in such a way that the current network hashrate

results in a ten-minute block interval.14 If the network detects that the time required to �nd

the last 2016 blocks di¤ers from 20,160 minutes, which is a daily mining rate that di¤ers

from 144 blocks per day, then the level of di¢ culty will be adjusted as follows:

�2
�1
=

20; 160 minutes
Actual time of last 2016 blocks in minutes

=
daily mining rate

144
(1)

where �2 is the new level of di¢ culty and �1 is the previous level of di¢ culty.15 If, for

instance, the actual time of the last 2016 blocks was only 10,080 minutes (7 days), then since

the daily mining rate is 2016
7
= 288; the network hashrate is such that twice as many blocks

are mined per day relative to the objective of 144 blocks, so that �2 will be set twice as high

as �1. Only when the average number of blocks discovered per day is equal to 144 will the

di¢ culty remain unchanged.

I assume that there are identical potential entrants (miners) to the bitcoin mining in-

dustry. Each miner is risk neutral, knows the rules of the Bitcoin protocol that govern the

network, and must pay a �xed cost F (thereafter sunk) to purchase mining equipment in

13There are 109 hashes in a gigahash.
14See Antonopoulos (2017).
15The second equality follows because 20;160 minutes

Actual time of last 2016 blocks in minutes =
2016 blocks

Actual time of last 2016 blocks in minutes� 144 b lo ck s p e r d ay
24�60 m inu t e s p e r d ay

= 2016 blocks
Actual time of last 2016 blocks in days�144 blocks per day =

daily mining rate (blocks per day)
144 blocks per day :
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order to enter. Upon entry, a miner�s daily expected bitcoin production is

x (�i) =
!�i60

2

�232

�109

(2)

where �i602 is the number of seconds spent mining per day. Hence if �109�i602 hashes are

created by a miner in one day, the expected number of blocks mined is �109�i60
2

�232
per day, at

a reward of ! bitcoins per block. A miner�s daily electricity cost is

���i
1000

pe (3)

where � is the energy e¢ ciency of the miner�s hardware measured in joules per gigahash

(and hence �� is the power usage measured in joules per second, or watts) and pe is the

dollar price of electricity per kilowatt hour (kWh). It follows from (2) and (3) that a miner�s

operating pro�t is linear in �i and if the dollar price of a bitcoin (the exchange rate) pb >

�232�pe
(!+f)(1000)602109

� pb; then it is optimal the miner to set �i = 24 and 0 otherwise.

Since hashing power scales linearly (doubling the number of miners doubles the network

hashrate), the total hashpower of the Bitcoin network is �M; where M is the total number

of miners who enter the industry. It follows that gross of investment costs, miners�aggregate

expected daily pro�ts are given by

� =

�
pb (! + f) 602109

�232
� �pe
1000

�
24�M (4)

where I assume pb > pb: Since 1
�232

is the probability that a miner will �nd a correct hash,

it is clear from (4) that mining is akin to a lottery: the payo¤ from playing is uncertain

while the cost of playing is not. Because an increase in the number of miners M increases

the network hashrate proportionally, each miner has the same expected pro�t �
M
regardless

of the number of entrants. Every 2016 blocks, however, the level of di¢ culty � is adjusted
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so that the average waiting time to �nd a block on the network is approximately 10 minutes

(600 seconds), so that �232

�M109
= 600 or

� =
600�M109

232
: (5)

Since the target waiting time to �nd a block on the network in (5) is encoded in the protocol

and known to the potential entrants, it pins down the number of miners M: From (4) and

(5) it follows that the expected daily pro�t for a miner is

� =
�

M
� �F (6)

=

�
pb (! + f) 602

600�M
� �pe
1000

�
24�� �F

where � is the daily depreciation rate of the miner�s equipment. Since there is free entry

to the bitcoin mining industry, miners have zero expected pro�ts and hence the number of

miners per day is given by � = 0 or

M� =
pb (! + f)

h
(24)602

600

i
�F + ��

1000
(24) pe

: (7)

From (7) it is clear that the number of miners is equal to the total size of the �pie�shared

among the miners each day (the dollar value of the block reward and fees, for each of the

144 possible blocks mined), divided by each miner�s daily equipment and electricity costs

�F +
��

1000
(24) pe: (8)

While the number of entrants adjusts immediately to changes in the price of a bitcoin pb;
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the level of di¢ culty adjusts only approximately every two weeks while the network learns

the network hashrate �M� from observing the average number of blocks mined per day (the

daily mining rate). The aggregate supply of bitcoins per day XS is equal to the block reward

multiplied by the daily mining rate, which is determined by the network hashrate �M� for

a given �: If pb > pb; it follows that

XS =
! (24) 602

�232

�M�109

(9)

=
pb (! + f)

h
(24)602�109

�232

i
�F + ��

1000
(24) pe

X

where the second line follows from M� of (7) and

X =
! (24) 602

600

= 144!

is the target supply of bitcoins per day since the protocol adjusts � so that one block is

created approximately every 10 minutes (600 seconds).16 ;17 The supply curve relates each

price pb to an optimal quantity of bitcoins supplied since we can alternatively use (2) and

(7) to express XS of (9) as XS = M�x�; where x� = x (� �i ) and �
�
i = 24: An increase in

the price pb results in a movement up along the aggregate supply curve since, from (7), a

greater number of miners M� will enter the industry, which increases the network hashrate

�M� since more equipment and electricity will be used to generate hashes, which results in

16To demonstrate that XS is equal to the block reward multiplied by the daily mining rate, we can express
XS of (9) as XS = ! 2016

�232

�M�109 �2016�
1

(24)602

= ! 2016 blocks
Actual time of last 2016 blocks in days :

17It follows from (8) and (9) that, for a given price of a bitcoin pb, an increase in the miners�hashrate �
results in an increase in the daily electricity costs ��

1000 (24) pe; which works to decrease the supply of bitcoins
XS . Since an increase in � also increases the expected number of blocks solved per day on the network
(24)602�109

�232 ; however, the net e¤ect of an increase in � is to increase the supply of bitcoins XS :

14



a greater number of blocks mined per day and thus a greater quantity of bitcoins supplied

per day. From (9) it follows that the supply curve is linear, because hashing power scales

linearly. Also, since the quantity supplied increases proportionally to the price, the price

elasticity of supply is unity.

Since the network�s choice of the level of di¢ culty depends on the network hashrate �M�;

the equilibrium level of di¢ culty �� will depend on M�. Hence it follows from substituting

(7) into (5) that the equilibrium level of di¢ culty is

�� =
pb (! + f)

h
(24)602�109

232

i
�F + ��

1000
(24) pe

: (10)

From (10) it is clear that, for a given price of a bitcoin pb; the di¢ culty will increase in

response to an increase in the hashrate of miners�equipment �; an improvement in the energy

e¢ ciency of the miners�equipment (a decrease in �), a decrease in the price of electricity pe;

or an increase in the Bitcoin block reward ! or fees f . It follows from (9) and (10) that we

can write XS =
��

�
X and hence XS = X if and only if � = ��: In other words, in the interim

between adjustments of the level of di¢ culty, the quantity of bitcoins supplied will not equal

its target. Once the di¢ culty is adjusted according to (10), however, the protocol will be in

equilibrium.18

I assume that the daily demand for bitcoins by individuals who buy bitcoins in the market

is given by the constant elasticity demand curve

XD = �p�"b (11)

where the elasticity of demand is " > 0: For simplicity, I assume that all bitcoins that have

been previously purchased are either held or transferred to another user. While miners may

18As we will see in Section 3, Figure 8 shows that the number of blocks mined per day frequently di¤ers
from its target.
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also hold or transfer the bitcoins they obtain from mining rather than selling them in the

market, the market price establishes their opportunity cost of doing so.

I de�ne a comprehensive equilibrium to be a four-tuple (X�; p�b ; �
�;M�) ; where the �rst

element is the equilibrium quantity of bitcoins supplied per day, the second element is the

equilibrium price, the third element is the equilibrium level of di¢ culty and the fourth

element is the equilibrium number of miners per day, which determines the equilibrium

hash rate. A comprehensive equilibrium is the unique solution to the system of equations

determined by the zero pro�t condition obtained from setting (4) equal to miners��xed

costs, the Bitcoin protocol�s speci�ed waiting time to �nd a block of (5), the supply curve

of (9) and the demand curve of (11).19 In a comprehensive equilibrium, since XS (p
�
b ; �

�) =

XD (p
�
b) = X� and XS = X if and only if � = ��; it follows that X� = X: We have seen

that since the level of di¢ culty � is adjusted only at intervals, an equilibrium in the market

(XS (p
�
b ; �) = XD (p

�
b) = X�) may not happen at the same time as an equilibrium in the

protocol (� = ��; M =M�).

Figure 1 depicts the aggregate daily supply of bitcoins by miners and the aggregate

daily demand for bitcoins by individuals. Starting from an initial comprehensive equilibrium

labeled 1 with price pb1; a level of output X1 = X; a mass of entrants M1, and a level

of di¢ culty �1, an increase in demand from XD to X 0
D leads to an increase in the price

of a bitcoin to pb2 and a movement along the supply curve consistent with an increase

in the number of entrants to M2. Because the probability of successfully mining a block

is determined by �1 and more hashpower �M2 is directed at the network, the quantity of

bitcoins supplied increases to X2 = XS (pb2; �1) per day in the market equilibrium labeled 2a.

The new equilibrium will be short-lived, however, since the mining rate exceeds the Bitcoin

protocol�s target mining rate of 144 blocks per day.

19See the preliminaries of the Appendix for a proof of the existence and uniqueness of a comprehensive
equilibrium.
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I assume that equilibrium 2a is representative of the daily mining rate during a 2016-block

period. As such, the Bitcoin protocol will choose the new level of di¢ culty �2 = �� (pb2) : It

follows from XS of (9) and �� of (10) that the protocol will choose the new level of di¢ culty

�2 in accordance with (1) since

�2 =
pb2 (! + f)

h
(24)602�109

232

i
�F + ��

1000
(24) pe

= �1
XS (pb2; �1)

X
(12)

and the daily mining and target mining rates are given by XS(pb2;�1)
!

and X
!
= 144; respectively.

It follows from XS of (9) that the increase in the level of di¢ culty from �1 to �2 results

in an upward rotation of the supply curve. Referring to Figure 1, the supply curve rotates

upward until XS = X at the price pb2; since pb2 gives rise to the network hashrate �M2:

The marginal cost of mining has increased because the greater di¢ culty causes miners to

expend more resources on electricity to mine a given number of blocks. Since the price pb2

is unchanged, it follows from (7) that an increase in di¢ culty does not result in an exit of

miners from the industry.20 At the point labeled 2b, the protocol is in equilibrium since

the mining rate is equal to its target given the network hashrate �M2; and the network has

no further incentive to change the level of di¢ culty. Since the protocol has no knowledge

of the demand curve, however, 2b is not, in general, a market equilibrium. At 2b there is

excess demand, which causes the price of a bitcoin to rise to pb3 and the number of miners to

increase to M3: At the market equilibrium labeled 3 with price pb3, the demand X 0
D is equal

to the supply of bitcoins given the new level of di¢ culty �2: While the protocol is no longer

in equilibrium, the mining rate is closer to its target than before the increase in di¢ culty.

More pertinently, however, since pb3 exceeds pb2; it is clear from Figure 1 that the decrease

in supply due to the greater di¢ culty results in an exaggerated price response relative to the

20Recall that the number of miners adjusts immediately to changes in the price of a bitcoin pb; and then
the di¢ culty adjusts in turn.
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price that would have prevailed had the di¢ culty not been adjusted. The resulting price,

however, is fully supported by marginal costs since the price is equal to the marginal cost in

the new equilibrium labeled 3.

Figure 1. Bitcoin price adjustment.

Figure 2 depicts successive positive demand shocks and demonstrates that they result

in a rapidly increasing price path that may be mistaken for a bubble despite being based

on marginal costs. While the increase in demand may be due to the optimistic beliefs of

investors regarding the future price of bitcoins, the protocol will work to increase the level

of di¢ culty correspondingly, validating investors�beliefs, and encouraging another round of

optimism! The analysis of a negative demand shock is analogous and a series of negative

demand shocks may be mistaken for a bursting bubble since the equilibrium price will fall

rapidly as the level of di¢ culty decreases. It follows that the interaction of the Bitcoin

protocol with investors�beliefs can manifest as momentum and boom-and-bust cycles in the
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price of bitcoins. Unlike a bubble, however, price is equal to marginal cost all the while.

Figure 2. Successive positive demand shocks.

I de�ne the fundamental value of a bitcoin pfb to be that price such that the protocol

is in equilibrium. For a given level of di¢ culty �; the fundamental value is given by the

inverse supply curve pb (X; �) evaluated at X = X: While the fundamental value is not

necessarily equal to the market price of a bitcoin, it provides an appropriate theoretical

benchmark since it is the protocol that governs its value. As shown in Figure 3, if a demand

shock is permanent, the market price will approach the fundamental value consistent with

a comprehensive equilibrium since successive adjustments of the di¢ culty will occur until

the mining rate is equal to its target in the limiting comprehensive equilibrium. Given that

the market is competitive, the protocol is constantly maneuvering the market price toward a

price consistent with equilibrium in the protocol, a process that is only temporarily disrupted

by shocks to demand. Referring to Figure 1, it is clear from the equilibrium labeled 1 that

because three curves intersect at the same point in a comprehensive equilibrium: the supply

XS, the demandXD; and the targetX = X, the fundamental value can be identi�ed by using
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the information contained in only the supply curve XS and the target X = X: The level of

di¢ culty can be viewed as a su¢ cient statistic for the demand parameters � and " since the

di¢ culty is adjusted by the protocol according to the equilibrium mining rate detected by

the network, which depends on both the supply and demand for bitcoins. The fundamental

value of a bitcoin pfb need not depend directly on the determinants of demand since the

same information is contained in the level of di¢ culty.21 Also, since the fundamental value

depends on the level of di¢ culty, it follows that the di¤erence between the market price and

the fundamental value at a given point in time can be represented by a shift in demand that

originated from a comprehensive equilibrium, along a constant supply curve. For instance,

referring to Figure 1, the di¤erence between the market price pb2 and the fundamental value

pb1 while � = �1, is due to the demand shock while holding the supply curve XS (�1) constant.

Figure 3. Limiting bitcoin price adjustment.

The following proposition characterizes the bitcoin�s fundamental value and uses it as a

21As we�ll see in Section 3, the fundamental value depicted in Figure 14 closely follows the market price
of a bitcoin without using any direct information about demand.
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benchmark to relate the return on bitcoins to the rate of increase in the level of di¢ culty.

Proposition 1 (i) The fundamental value of a bitcoin pfb is equal to the miners�costs relative

to their expected block reward and fees, and appreciates by an amount which is equal to the

rate of increase in the level of di¢ culty �. (ii) The market price of a bitcoin pb appreciates

by an amount which is equal to 1
1+"

times the rate of increase in the level of di¢ culty �.

Proof. See the Appendix.

From the supply curveXS of (9), it follows that the marginal cost of producingX bitcoins

at a given level of di¢ culty � is

pfb � pb
�
X; �

�
=

�
�F + ��

1000
(24) pe

�
M�

(! + f)
h
(24)602�M�109

�232

i : (13)

Proposition 1 demonstrates that since the fundamental value is found at the intersection of

the supply curve XS of (9) with the vertical line X = X; an increase in di¢ culty causes

the fundamental value to appreciate at a rate that is equal to the rate of increase in the

level of di¢ culty. Referring to Figure 1, an increase in di¢ culty from �1 to �2 results in

an increase in the fundamental value of a bitcoin from pb1 = pb
�
X; �1

�
to pb2 = pb

�
X; �2

�
;

where
pb(X;�2)
pb(X;�1)

= �2
�1
: An increase in di¢ culty causes the market price of bitcoins to appreciate

at a rate that is less than the rate of increase in the level of di¢ culty, however, because the

market price is found at the intersection of the supply curve XS of (9) with the demand

curve XD of (11), and hence an upward rotation of the supply curve results in an increase in

the market price that is less than the proportional increase in di¢ culty.22 This divergence

is even greater for higher elasticities of demand. Referring again to Figure 1, an increase in

the level of di¢ culty from �1 to �2 results in an increase in the market price from pb2 to pb3;

22As we will see in Section 3, Figure 13 depicts the relation between the market price of bitcoins and the
level of di¢ culty as predicted by Proposition 1(ii).
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which corresponds to a movement along the demand curve from point 2a to point 3. Since

pb(X2;�2)
pb(X2;�1)

= �2
�1
; it is clear from Figure 1 that pb3

pb2
< �2

�1
:

In summary, we have established that the supply of bitcoins is linear and upward sloping

through the origin. An increase (decrease) in the level of di¢ culty results in an upward

(downward) rotation of the supply curve. After 2016 blocks have been mined, if the Bitcoin

network detects that the mining rate di¤ers from the target of 144 blocks per day, the protocol

will adjust the di¢ culty in such a way that the existing network hashrate will result in a

10-minute interval between successive blocks mined. The protocol�s enforcement of a �xed

quantity of bitcoins supplied over time results in exaggerated price responses and successive

positive demand shocks result in a rapidly increasing price path that may be mistaken for a

bubble despite being based on marginal costs. Proposition 1 characterizes the fundamental

value of a bitcoin and establishes that the return on bitcoins is proportional to the rate of

increase in the level of di¢ culty.

2.1 E¢ ciency

We have seen that the Bitcoin protocol uses the level of di¢ culty as an instrument to

maintain a mining rate of 144 blocks per day. In this section we will see that an increase

in di¢ culty works in e¤ect like a government�s placing an ad valorem tax on the price of a

commodity. Hence, whenever the protocol increases the di¢ culty, a distortion loss results

because too few bitcoins are produced relative to the equilibrium quantity that would exist

in the absence of an intervention. Instead of accruing tax revenue, however, the increase

in di¢ culty imposes additional electricity costs on miners. Although a higher price for the

bitcoin is obtained, the rents that would have arisen from limiting the supply are wasted as

they neither bene�t a government nor the miners. An analogous scenario obtains whenever

the protocol decreases the level of di¢ culty.
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Recall that an increase in the level of di¢ culty rotates the supply curve upward so that,

for a given quantity of bitcoins supplied, the supply price under the new level of di¢ culty

is proportional to the supply price under the previous level of di¢ culty. When the protocol

increases the di¢ culty from �1 to �2; it follows from XS of (9) that

pb (X; �2)

pb (X; �1)
=
�2
�1
� 1 +  (14)

and hence an increase in di¢ culty is equivalent to a government�s imposing an ad valorem

tax on the price of bitcoins equal to the percentage increase in the level of di¢ culty  > 0:

Figure 4a extends Figure 1 to assess, employing a partial equilibrium framework, the

e¤ect on social welfare of an increase in di¢ culty. As shown in Figure 4a, after the increase

in di¢ culty, the price of a bitcoin rises to pb3 and the quantity of bitcoins produced per day

falls to X3. There is a wedge between the price consumers pay pb3 under the higher di¢ culty

level and the price miners receive p0b3; where pb3 = (1 +  ) p0b3; since a total of  p
0
b3 for each of

the X3 bitcoins that are produced per day is dissipated as additional electricity costs. Since

X2�X3 bitcoins are no longer traded in the market, the consumer and producer surplus that

occurs in market equilibrium 2 is reduced by the distortion or �deadweight�loss depicted by

the dotted triangular area. The consumer and producer surplus that occurred in equilibrium

2 is also reduced by the additional electricity costs depicted by the large hatched rectangular

area.

It follows that both consumers and miners that participate in equilibrium 2 are adversely

a¤ected by the increase in di¢ culty,23 and that an increase in di¢ culty is far less e¢ cient

than if a government were to impose an equivalent ad valorem tax on miners that would

yield the same equilibrium price pb3 and quantity X3. While the tax would result in the

same distortion loss as the di¢ culty adjustment, it would provide government revenue while

23The relative proportion of losses depends on the relative elasticities of supply and demand.
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the rents that go toward the additional electricity costs under the di¢ culty adjustment are

simply wasted.

Figure 4a. An increase in the level of di¢ culty.

The following proposition quanti�es the total welfare losses that result from an increase in

the Bitcoin level of di¢ culty as the sum of the additional electricity costs and the distortion

loss.

Proposition 2 (i) The welfare loss due to a percentage increase in the level of di¢ culty

given by  = �2��1
�1

> 0 is approximately

� ( ) =  pb (X3; �1)X3 +
1

2

"

1 + "
pb2X2 

2 (15)

where " is the elasticity of demand, pb2 and X2 are the equilibrium price and quantity before

the increase in di¢ culty from �1 to �2, and X3 is the equilibrium quantity after the increase

in di¢ culty. (ii) The equilibrium quantity X3 after the increase in di¢ culty is approximately

1+"�" 
1+"

X2:

Proof. See the Appendix.
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If instead there is a negative demand shock that leads to a mining rate that is less than

144 blocks per day, the operation of the Bitcoin protocol is symmetric in the sense that the

level of di¢ culty will decrease. Analogously to Proposition 2, we can express the welfare

gain due to a percentage decrease in di¢ culty given by ' = �2��1
�1

< 0 as approximately


 (') = �'pb (X3; �1)X3 �
1

2

"

1 + "
pb2X2'

2 (16)

where " is the elasticity of demand, pb2 and X2 are the equilibrium price and quantity before

the decrease in di¢ culty from �1 to �2, and X3 is the equilibrium quantity after the decrease

in di¢ culty. Figure 4b depicts an initial comprehensive equilibrium labeled 1, with price pb1;

quantity X and level of di¢ culty �1; and a negative demand shock that leads to a decrease

in the market price to pb2: Because some miners will exit the industry in response to the

lower price of bitcoins, in the subsequent equilibrium labeled 2, the mining rate is less than

144 blocks per day. Consequently, the protocol will decrease the level of di¢ culty from �1 to

�2: The supply curve rotates downward until the mining rate is equal to the target X given

the network hashrate associated with pb2: Consequently, the price falls to pb3 and the mining

rate increases to X3 in the equilibrium labeled 3. It follows from (14) that a decrease in

di¢ culty is equivalent to a government�s providing an ad valorem subsidy to miners equal to

the percentage decrease in the level of di¢ culty (i.e., when ' < 0). There is a wedge between

the price consumers pay pb3 under the lower level of di¢ culty �2 and the price that miners

receive p0b3, where pb3 = (1 + ') p
0
b3; since a total of �'p0b3 for each of the X3 bitcoins that

are produced per day is gifted by the protocol as lower electricity costs. As shown in Figure

4b, the reduction in costs results in a level of output X3 that is too large for consumers

and producers to capture the full bene�t, since the hatched rectangular area is reduced by a

distortion loss depicted by the dotted triangular area. A decrease in di¢ culty, however, is far

more e¢ cient than the equivalent ad valorem subsidy to the miners since it would result in
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the same distortion loss but there is no cost to the government due to providing the subsidy.

Figure 4b. A decrease in the level of di¢ culty.

The following proposition compares the loss due to an increase in the level of di¢ culty

with the gain that is due to an equivalent percentage decrease in the di¢ culty. It demon-

strates that the welfare cost of an increase in di¢ culty is larger than the welfare bene�t of

an equivalent proportional decrease in the di¢ culty.

Proposition 3 The welfare loss due to a percentage  increase in di¢ culty is greater in

absolute value than the gain in welfare due to a percentage decrease in the di¢ culty by the

same percentage.

Proof. See the Appendix.

Figure 4c depicts a decrease in di¢ culty and an increase in di¢ culty by the same pro-

portion. Since an increase in the di¢ culty occurs whenever the equilibrium quantity prior to

the change in di¢ culty is greater than the target supply of bitcoins X, whereas a decrease in

the di¢ culty occurs whenever the equilibrium quantity is lower than X; the wedge between
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the price consumers pay under the new level of di¢ culty and the price that miners receive is

larger under the di¢ culty increase. While the proportional change is the same, it is, under

the increase in di¢ culty, applied to a higher price, and over a greater quantity. Hence, as

shown in Figure 4c, because the supply curve is upward sloping, increases in di¢ culty are

not o¤set by commensurate proportional decreases in di¢ culty since their welfare e¤ects do

not have the same size. Moreover, the distortion losses that amass each time the level of

di¢ culty is changed reduce the welfare bene�ts and further increase the welfare costs.

Figure 4c. An equivalent proportional increase and decrease in di¢ culty.

In this section we have established that while Bitcoin is a decentralized peer-to-peer

payment network with no central authority, its protocol regularly intervenes in the market

by using the level of di¢ culty as an instrument to maintain a constant supply of bitcoins over

time. Consequently, demand shocks give rise to volatile prices and the price path may exhibit

momentum and boom-and-bust cycles. Proposition 1 establishes that the fundamental value

of the bitcoin is characterized by miners�equipment and electricity costs relative to their

expected block reward and fees. Using it as a benchmark, it follows that the market price of
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bitcoins appreciates in proportion to the rate of increase in the level of di¢ culty. While the

market is allocatively e¢ cient, since price is equal to marginal cost (and hence the bitcoin

is an e¢ cient store of value for the electricity costs used in its production), Proposition 2

establishes that losses are incurred by contemporaneous consumers and producers (miners)

of bitcoins whenever the level of di¢ culty rises. Moreover, Proposition 3 demonstrates that

the welfare costs that arise because of increases in the level of di¢ culty are not o¤set by

equivalent proportional decreases in the level of di¢ culty, and hence the protocol imposes

welfare losses on society that accumulate over time. While the bitcoin is esteemed for its

nongovernmental design, its system of supply management is far less e¢ cient than if a

government were to regulate the number of bitcoins by imposing a tax on its price.

3 Data description

In this section I describe the data and perform model diagnostics to assess how well the

theoretical model set out in Section 2 �ts the data.

The data was acquired from several sources. The daily average USD price of the bitcoin

across major bitcoin exchanges, daily data on the Bitcoin di¢ culty level, the Bitcoin block

reward and fee, and the number of blocks mined per day, were acquired by using Blocksci,

an open-source software platform for blockchain analysis.24 ;25 Daily USD price data for new

(unused) Antminer mining rigs (models S1, S2, S3, S4, S5, S7, S9 and S11) sold on Amazon

Marketplace by third party sellers, which is accessible from Amazon.com, was acquired by

using an API for the Amazon price tracker Keepa.com.26 The reported price is the lowest

of the prices available from the sellers and does not include shipping costs; missing data

24See Kalodner et al. (2017) and https://github.com/citp/BlockSci.
25Note that Blocksci utilizes an API for coindesk.com to provide the end of day price of a bitcoin.
26The Amazon standard identi�cation numbers (ASIN) that identify the models are: B00I0F4IMI,

B00KH9339O, B00NZDBWKG, B00NWHT18A, B00RCTIY4G, B014OGCP6W, B01MCZVPFE, and
B07KPF2DJJ.
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correspond to periods of time when all sellers are out of stock. The mining rig speci�ca-

tions regarding the hash rate and energy e¢ ciency were obtained directly from Amazon.com

and are provided in Table 1. Since several Antminer models may be sold in the Amazon

Marketplace at a given point in time, I constructed the daily average USD price by aver-

aging over the prices of all Antminer models that were available for sale on a given day.

Similarly, to obtain the daily average hashrate and the daily average energy e¢ ciency of

the Antminer rigs, I averaged over the gigahashes per second (GHash/s) and the joules per

gigahash (Joules/GHash) of all Antminer models that were available for sale on the given

day, respectively.

The sample period is 17 March 2014 to 13 January 2019. Although the �rst Antminer rig

(model S1) was available to the public from Amazon Marketplace on 30 December 2013, as

shown in Table 1, 17 March 2014 was the �rst day that price information on the Antminer

S1 rig was tracked by Keepa.com. While there are numerous brands of bitcoin mining rigs

available on the market (and it is possible for miners to build their own rig), Antminer rigs,

which are produced by the Chinese company Bitmain, are on the technological frontier in

terms of their power and energy e¢ ciency. Bitmain sells its hardware to the general public

and its market share is estimated to be 70%�80%.27

Mining typically takes place in countries where there is cheap electricity, such as the

People�s Republic of China, the Czech Republic, Iceland, Japan, the Republic of Georgia,

Russian Federation, Sweden, and the United States. However, by far the most mining takes

place in the People�s Republic of China.28 Bitmain, which owns one of the world�s largest

bitcoin mines, in Inner Mongolia, was known to be paying just 4 cents per kWh of electricity

(DeVries, 2018). Consequently, I conservatively estimate the average price of electricity used

27See https://coincentral.com/how-antminer-became-the-best-bitcoin-mining-hardware-in-less-than-two-
years/.
28It is estimated that Chinese mining pools control more than 70% of the Bitcoin network�s collective

hashrate. See https://www.buybitcoinworldwide.com/mining/china/.
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in mining to be 0.05 USD per kWh. Also, I estimate the expected lifespan of a mining rig

to be two years, so that the daily depreciation rate is 1/730.

Figure 5 depicts the bitcoin price path over the sample period in both levels and logs.

While the price has an exponential growth, since the logarithm of the price is approximately

linear, numerous boom-and-bust cycles are also evident, with the largest boom occurring in

late 2017. On 16 December 2017, bitcoin reached its maximum price of 19,343.04 USD,29

and the price has predominantly decreased since that time up to the end of the sample

period. Figure 6 depicts the daily level of di¢ culty over the sample period in both levels

and logs. It is clear that the level of di¢ culty has been increasing exponentially until 17

October 2018, which is about 10 months beyond the point at which the price of a bitcoin

began to fall. After 17 October 2018, the di¢ culty has predominantly decreased (4 of the

6 remaining di¢ culty adjustments were decreases). Over the sample period, the level of

di¢ culty was adjusted downward only 21 times, which is 15.9% of all di¢ culty adjustments.

Figure 7 depicts the sum of the Bitcoin block reward and fees over the sample period. It

is clear that the block reward was halved from 25 bitcoins to 12.5 bitcoins on 9 July 2016

and that fees were much more prevalent throughout 2017, probably due to congestion in

the Bitcoin blockchain. Figure 8 presents a standard plot and a boxplot of the number of

blocks mined per day (the daily mining rate), where a horizontal line is drawn at the target

mining rate of 144 blocks. It is clear that the mining rate frequently di¤ers from its target,

reaching a minimum of 80 blocks per day (on 11 and 12 November 2017) and a maximum of

216 blocks per day (on 10 December 2015) during the sample period. The mean and median

blocks mined per day are 151.6 and 151, respectively, indicating that the daily mining rate

typically exceeds the target during the sample period.

Figure 9 depicts the Antminer rig speci�cations over the sample period. We can see

29Recall that the price data is an average over the major bitcoin exchanges. As stated in the Introduction,
the highest price reached by Bitcoin on a single exchange was 19,783.21 USD.
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that, on average, Antminer rigs have become more powerful over time, since their hashrate

is increasing. While the energy e¢ ciency of the rigs is improving, as the rate of joules per

gigahash is decreasing over time, their greater power is large enough to result in greater

energy use since the number of watts used (joules per second) is increasing over time. Note

that the gaps in the Antminer rig speci�cation data from 12 October 2017 to 17 October

2017, from 19 October 2017 to 26 October 2017, from 13 November 2017 to 17 November

2017, from 24 November 2017 to 5 December 2017, from 9 December 2017 to 10 December

2017, and from 3 January 2018 to 4 January 2018 correspond to periods of time when none of

the sellers in the Amazon Marketplace had any of the Antminer rigs listed in Table 1 in stock.

This demonstrates that there was probably excess demand for mining equipment during this

time period, which was when the price of the bitcoin was quite high (approximately 5,500

USD) and rising rapidly. Figure 10 depicts the average price of Antminer rigs over the

sample period and their average price per gigahash per second. We can see that mining

equipment costs have generally increased in tandem with the market price of the bitcoin

(the correlation between the bitcoin�s price and the average price of Antminer rigs is .59).

The average price of Antminer rigs relative to their average gigahash per second, however,

has been steadily decreasing over time and reached a low of 0.03 USD by the end of the

sample period. Figure 11 depicts the miners�daily average equipment and electricity costs

as de�ned in (8) and the proportion of electricity in their daily costs over time.30 With

the exception of late 2017, when mining equipment was extraordinarily costly due to the

plausible excess demand, electricity costs were growing as a share of the miners�daily costs.

Electricity costs approached 80.2% of daily costs by the end of the sample period due to the

increasing energy usage of the mining equipment evident in Figure 9 and the falling price of

mining rigs evident in Figure 10.

30Which, from (8), is
��
1000 (24)pe

�F+ ��
1000 (24)pe

:
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3.1 Model diagnostics

Figure 12 assesses whether the Bitcoin network adjusts the di¢ culty according to Eq. (12).

The diagram plots the ratio of the new level of di¢ culty relative to the previous one against

the mining rate divided by the target mining rate of 144, where the mining rate is the average

number of blocks mined per day during the interval between di¢ culty adjustments. It is

clear that the data are consistent with (12) since the points line up on the 45 degree line

and the two variables have a correlation of .99.

To check Proposition 1, which states that the bitcoin�s market price pb appreciates at a

rate of 1
1+"

times the rate of increase of the level of di¢ culty �, Figure 13 plots the log of

the bitcoin�s market price against the log of the level of di¢ culty, where the price data have

been aggregated by taking the mean over the interval between adjustments of the level of

di¢ culty. We can see that the relation between the price and di¢ culty is remarkably strong

and, as predicted by the model, log-linear. Using least squares provides an estimate of the

slope equal to 0.58, where the regression line is drawn in Figure 13 along with the 45 degree

line. (The regression results are provided in Table 2.) In accordance with Proposition 1, the

rate of increase in the market price is estimated to be less than the rate of increase in the

level of di¢ culty. Also, it follows from Proposition 1 that we can then estimate the elasticity

of demand " to be equal to .72,31 which is close to the estimate of " I obtain directly through

identi�cation of the demand curve in Section 5.2 below.32

Next, I use the data to simulate the fundamental value of the bitcoin de�ned in (13)

and compare it with the market price of the bitcoin. As we have seen in Section 2, the

fundamental value is not necessarily equal to the market price. While the fundamental value

is independent of the demand parameters � and ", the level of di¢ culty � is a su¢ cient

statistic for them, since, as described in Section 2, adjustments in di¢ culty depend on the

31We have that 1
1+" = :58 or, equivalently, " = :72:

32We will see in Section 5.2 that I obtain an estimate of the price elasticity of demand equal to :73:
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equilibrium mining rate detected by the network, which depends on both the supply and

demand for bitcoins. Figure 14 depicts the simulated fundamental value and the actual price

of the bitcoin in both levels and logs. The fundamental value tracks variations in the market

price quite well since the correlation between them is .79. We can see that the fundamental

value rose sharply in July 2016 when the block reward was halved, since a decrease in the

block reward decreases the miners�expected block reward. It also fell sharply in July 2017

because of the introduction of the powerful Antminer S9,33 since an increase in the hashpower

of the miners�equipment increases the miners�expected block reward. It is plausible that

the market price of a bitcoin does not exhibit such sharp adjustments because both of these

events could have been anticipated by participants in the bitcoin market. From Figure 14 it

is clear that the fundamental value follows the general shape of the bitcoin price path since

it exhibits an exponential upward trend and a large boom and bust phase that started in

late 2017, albeit with a lag. As such, Figure 14 presents evidence that adjustments in the

level of di¢ culty by the protocol are in response to the level of market prices prior to the

new level of di¢ culty, during the interim between di¢ culty adjustments, as they incentivize

the network hashrate in accordance with the model set out in Section 2.34 Figure 15 plots

the di¤erence between the actual bitcoin price and the simulated fundamental value, in both

levels and logs. We can see that the market price was in line with the fundamental value

well up to late 2017, after which the actual price exceeded the fundamental value by 100%

to 185% until early 2018. After 17 August 2018, the price exceeded the fundamental value

by less than 35% in absolute value and was again in line with the fundamental value.

To better understand the discrepancy between the market price and the fundamental

value between 1 July 2017 and 31 December 2017, it is informative to compare the network

33We can see from Figure 9 that the Antminer S9 became the dominant Antminer rig in the market in
July 2017 since the average hashpower of the Antminer rigs approaches 14,000 GHash/s.
34From Figure 1 it is clear that after the di¢ culty adjustment to �2; the fundamental value is equal to

pb2, which is the price that incentivized the network hashrate during the interim between the di¢ culty
adjustments �1 and �2:
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hashrate �M� inferred from (7) as a function of the market price pb and the network hashrate

determined by solving for the target waiting time to �nd a block of (5) for �M as a function

of the level of di¢ culty �. The former network hashrate presumes the instantaneous free

entry of miners in response to expected pro�ts driven by the market price of bitcoin. Given

the network�s choice of di¢ culty, the latter network hashrate yields a ten-minute interval

between successive blocks mined. If the free entry of miners is an accurate assumption, then

both approaches must yield the same network hashrate when the level of di¢ culty is adjusted

since whenever M = M�; from (5) it follows that � = ��: As shown in Figure 16, however,

the network hashrate predicted by (7) was signi�cantly larger in late 2017 than the network

hashrate that yields a ten-minute block time of (5), indicating that there were probably

barriers to entry during this time period. Despite the soaring price of the bitcoin, it is clear

from Figure 8 that the average number of blocks mined per day (the mining rate) reached

its lowest values in the sample period during late 2017 and it is clear from Figure 6 that the

network decreased the level of di¢ culty four times between 1 July 2017 and 31 December

2017,35 which are consistent with insu¢ cient mining. It is plausible that entry was unable to

keep step with rapidly increasing prices due to a shortage of mining equipment, exacerbated

by the obsolescence of the mining equipment that was already in operation. As noted above,

during this six-month period, there were occasions when none of the sellers in the Amazon

Marketplace had an Antminer rig in their inventory, indicating that state-of-the-art rigs were

generally di¢ cult to acquire.36 Also, the introduction of the Antminer S9, whose hash power

is nearly three times that of the S7 and more than seven times that of the S5, could have

forced the exit of miners whose equipment was no longer pro�table. Moreover, signi�cant

time lags between higher bitcoin prices and the adoption of new equipment could have been

35This represents 19% of the total number of decreases in di¢ culty that were granted by the network in
a six-month period, during the almost �ve-year sample period.
36Massive demand for mining equipment is not unprecedented. For instance, the rise of bitcoin mining

was responsible for creating a global shortage of graphics cards, which were initially a pro�table way to mine
for bitcoins prior to the invention of application speci�c integrated circuits (ASICs).
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caused by requisite learning costs for miners. It follows that the anomalous 10 month period

between December 2017 and October 2018, during which the di¢ culty was increasing while

the price of a bitcoin was decreasing, could have occurred because the rate of mining was

catching up to the rate that was consistent with the incentives provided by market prices,

given the hashpower of the latest equipment.37

In summary, we have seen that the data is largely consistent with the model formulated

in Section 2. While there was a large discrepancy between the market price of the bitcoin

and its fundamental value in late 2017, this probably resulted from barriers to entry that are

not wholly captured by the model. It remains to test whether �uctuations in the price path

that are not explained by the model can be attributed to price bubbles caused by investor

behavior.

4 Econometric model

4.1 Testing for multiple bubbles

In this section I apply the bubble detection method developed in Phillips et al. (2015a; 2015b)

to determine whether deviations of the market price of the bitcoin from its fundamental value

as de�ned in Section 2 demonstrate evidence of explosive behavior.38 Phillips et al. (2015a;

2015b) extend Phillips et al. (2011), which develops a supremum augmented Dickey�Fuller

(SADF) test for the presence of a bubble based on a sequence of forward recursive right-tailed

ADF unit root tests, and a dating strategy that identi�es points of origin and termination

of a bubble based on a backward regression technique. The generalized supremum ADF

(GSADF) method developed in Phillips et al. (2015a; 2015b) also relies on recursive right-

37For a discussion of this anomalous time period, see the article in The Economist, available at
https://www.economist.com/graphic-detail/2019/02/07/will-bitcoins-price-crash-cut-into-its-energy-use.
38Note that in order to carry out the tests, gaps in the Antminer rig speci�cation and price data during

late 2017 were �lled by replacing each missing value with the most recent present value prior to it.

35



tailed ADF tests but uses �exible window widths in its implementation. Instead of �xing the

starting point of the recursion at the �rst observation, the GSADF test extends the sample

coverage by changing both the starting point and the endpoint of the recursion over a feasible

range of �exible windows. This enhanced approach is designed to outperform previous bubble

detection methods in detecting explosive behavior whenever multiple bubble episodes occur

in the data, since it covers more subsamples of the data and has greater window �exibility.

It also delivers a consistent dating mechanism whenever multiple bubbles occur.

Speci�cally, for a times series yt that has size T; the ADF test for a unit root against the

alternative of an explosive root (right-tailed) is undertaken by using least squares to estimate

the following autoregressive speci�cation

�yt = �r1;r2 + �r1;r2yt�1 +
kX
i=1

 ir1;r2�yt�i + �t; �t � NID
�
0; �2r1;r2

�
(17)

for a given lag order k, where NID denotes independent and normally distributed. Eq. (17)

is estimated repeatedly using subsets of the sample data. If we renormalize the indices of the

time series to lie within the interval [0; 1], then the total sample can be indexed by values of r

that range from 0 to 1. If r1 and r2 are the starting and ending points of a regression sample,

the ADF statistic calculated from the sample is the t-ratio for the estimate of �r1;r2 and is

denoted by ADF r2
r1
. The SADF statistic is de�ned as the supremum of the ADF statistics

over the range of r2

SADF (r0) = sup
r2�[r0;1]

ADF r2
0

where r0 is the minimum window size. In contrast with the SADF test, the GSADF test

varies the endpoint r2 from the minimum window size r0 to 1; and the starting point r1

also varies from 0 to r2� r0: The GSADF statistic is de�ned as the supremum of the ADF
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statistics in a double recursion over all feasible ranges of r1 and r2

GSADF (r0) = sup
r2�[r0;1]

r1�[0;r2�r0]

ADF r2
r1
:

Date stamping bubble episodes under the new approach of Phillips et al. (2015a; 2015b)

involves constructing a supremumADF test on a backward expanding sample sequence where

the endpoint of each sample is �xed at r2 and the start point r1 varies from 0 to r2�r0: (The

backward ADF test in Phillips et al. (2011) is a special case of the backward supremum

ADF test with r1 = 0.) The estimated origination date of a bubble is de�ned as the

�rst observation whose backward supremum ADF statistic exceeds its corresponding critical

value, which is based on r2T observations. The estimated termination date of a bubble is the

subsequent observation (that exceeds a speci�ed period of time) whose backward supremum

ADF statistic falls below its corresponding critical value. The date-stamping strategy may

be used as an ex ante real-time dating procedure, whereas the GSADF test is an ex post

statistic used for analyzing a given data set for bubble behavior.

As shown in the Appendix,39 from XS of (9) and XD of (11) it follows that the relation

between the market price of a bitcoin pb and its fundamental value p
f
b is log-linear:

log (pb) =
1

1 + "
log (�)� 1

1 + "
log
�
X
�
+

1

1 + "
log
�
pfb

�
: (18)

Treating demand shocks � as random, I use ordinary least squares (OLS) to estimate the

relation between the price of a bitcoin and its fundamental value

log pbt = �0 + �1 log p
f
bt + �t (19)

39See the proof of Proposition 1.
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for daily observations indexed by t.

The estimates obtained for �0 and �1 are reliable because serial correlation in the errors

will not a¤ect the unbiasedness or consistency of OLS estimators.40 Any departures of the

price of bitcoin from the marginal cost of mining must be evident in the residuals from the

regression b�t = log pbt� c�0�c�1 log pfbt: For this reason, I apply the SADF and GSADF tests
to the residuals to determine if there is any empirical evidence of explosive behavior to infer

the existence of bubbles.41 While this approach is consistent with the model of Section 2, as a

robustness check, I also test whether there is evidence of explosive behavior in the di¤erence

log pbt � log pfbt; which does not rely on performing least squares. Measuring the price of the

bitcoin relative to its fundamental value amounts to holding the supply curve constant for a

given level of di¢ culty, which isolates changes in the price of a bitcoin that are due to shifts

in the demand curve during the interim between adjustments of the di¢ culty, and removes

the e¤ects of the di¢ culty adjustment mechanism on the price.

4.2 Estimating e¢ ciency losses

In order to estimate the e¢ ciency losses net of gains established in (15) and (16), I �rst es-

timate the elasticity of demand " for bitcoins. The model set out in Section 2 indicates that

short intervals of time surrounding adjustments in the Bitcoin di¢ culty level will be charac-

terized by large supply shocks that are likely to swamp any shocks to demand, permitting

identi�cation of the demand curve.

After log linearizing XS of (9) and XD of (11), it follows that the structural supply and

demand equations are given by

XD = "pb + �d (20)
40Serial correlation in the errors will a¤ect the e¢ ciency of the estimates, however, and with positive serial

correlation, the OLS estimates of the standard errors will be smaller than the true standard errors. See
Pindyck and Rubinfeld (1997).
41I undertake both tests for the sake of completeness and to provide the reader with as much evidence as

possible.
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XS = 1pb + 2z + �s

where " is the parameter of interest and the exogenous supply shifters included in z (the

level of di¢ culty, block reward and fees, mining hashrate, energy e¢ ciency, and equipment

costs), enter only the supply equation and not the demand equation. The asymptotic bias

in the least squares estimate of " depends on the correlation of pb with the demand shocks

�d since

plim b"OLS = "+
cov (�d; pb)

var (pb)
:

It follows that if least squares is used to estimate " during a period in which supply shocks

are large relative to demand shocks, there will be large supply-induced changes in pb with

only small changes in �d: Least squares will not be very biased since the numerator of the

bias term will be small while the denominator will be large.

To distinguish periods of time in which di¢ culty adjustments have large e¤ects on the

supply, I choose intervals of sizes 7, 9, 11 and 13 days centered at the time of the di¢ culty

adjustment. This procedure uses about 50% to 93% of the data, since there are approximately

14 days between di¢ culty adjustments. The size of the interval trades o¤ the need to have

enough data to estimate the demand curve accurately with the need to hone in on a period

of time in which there is relatively more variation in supply than demand. After �xing the

length of the time interval, I use least squares to estimate Eq. (20) for each interval that

occurs during the sample period, and keep only those estimates of " that are signi�cant at

a 5% (or better) level. For each length of time interval (7, 9, 11 and 13 days), I obtain an

estimate of " by averaging over the retained estimates for that time interval, yielding an

estimate that has a lower variance than any estimate obtained from an interval around a

single di¢ culty adjustment. Since this procedure provides an estimate of " for each interval

length, the robustness of the method is indicated by the stability of the estimate over the

four window sizes. Finally, I derive a single estimate for " by averaging over these estimates,
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providing a further reduction in variance.

Next, I estimate � of (15) and 
 of (16) for each interval between di¢ culty adjustments,

to �nd the total e¢ ciency losses over the sample period.42 For each interval between di¢ culty

adjustments, I �nd the average number of blocks mined per day (the daily mining rate) to

determine the average quantity of bitcoins supplied per day X2 and then, holding the initial

level of di¢ culty �1 constant, use the inverse supply curve derived from (9) to estimate the

corresponding price pb2. I use the approximation for X3 provided in Proposition 2 to �nd

the average quantity of bitcoins supplied after the di¢ culty adjustment and then obtain

the corresponding price pb (X3; �1) from the inverse supply curve derived from (9). The

percentage change in the level of di¢ culty  is obtained by subtracting 1 from the ratio of

the level of di¢ culty at the end of the interval �2 to the level of di¢ culty at the beginning

of the interval �1 according to Eq. (14). I use the estimate of the elasticity of demand "

obtained from the procedure described above. Finally, if the percentage change in the level of

di¢ culty is positive, I calculate the average loss according to � of (15) and if it is negative,

I calculate the average bene�t according to 
 of (16). I estimate the total net e¢ ciency

loss due to adjustments in the Bitcoin di¢ culty level by multiplying each average loss or

bene�t by the length of the interval (the number of days between the respective di¢ culty

adjustments) and then aggregate the total losses net of the total bene�ts throughout the

sample period.

42Note that in order to include all intervals, gaps in the Antminer rig speci�cation and price data during
late 2017 were �lled by replacing each missing value with the most recent present value prior to it.
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5 Results

5.1 Testing for multiple bubbles

I �rst estimate Eq. (19) to obtain the regression residuals. The regression results are reported

in Table 3 and Figure 17 depicts the scatter plot of the log price of bitcoin versus the log of

its fundamental value, and plots the regression line in addition to the 45 degree line. It is

clear from Figure 17 that there is a strong, positive log-linear relation between the market

price of the bitcoin and its fundamental value. Also, the slope of the regression line is less

than 1, which, as shown in (18), is in accordance with the model.

I apply the summary SADF and GSADF tests to the log bitcoin price data, the OLS

residuals from the regression of the log bitcoin price on the log fundamental value, and

di¤erence between the log bitcoin price and the log fundamental value. Table 4 presents

the test statistics and the �nite sample critical values of the two tests obtained from Monte

Carlo simulations with 2,000 replications of 1764 observations. In performing the ADF

regressions and calculating the critical values, the smallest window contains 93 observations

of the sample, based on the rule r0 = :01 + 1:8=
p
1764:

In regard to the log price data series, from Table 4, the SADF and GSADF statistics are

3.7 and 3.9, which both exceed their 1% right-tailed critical values (3:7 > 2:2 and 3:9 > 2:9),

providing strong evidence of explosive subperiods in the raw bitcoin price data. Figure 18

depicts the backward ADF sequence (based on the SADF test) and the corresponding 95%

and 99% ADF critical values obtained from Monte Carlo simulations with 2,000 replications

for each observation of interest, for the log price data series (and, for the sake of completeness,

each time series in question). Figure 19 depicts the analogous information for the backward

SADF sequence (based on the GSADF test). From Figure 18 it is clear that there is one

identi�ed period of explosive behavior for the log price time series, when the recursive ADF

statistic exceeds the 95% critical value sequence, that is at least one week long. This is
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2017-05-01 to 2018-11-15. The recursive ADF statistic continues to exceed the 99% critical

value sequence for two subsets of this time period. These are 2017-05-20 to 2018-03-30; and

2018-04-08 to 2018-05-25. From Figure 19, there are seven identi�ed periods of explosive

behavior for the log price time series, when the recursive SADF statistic exceeds the 95%

critical value sequence, that are at least one week long. These are 2014-09-28 to 2014-10-08;

2015-01-13 to 2015-01-20; 2015-11-02 to 2015-11-09; 2016-05-28 to 2016-06-21; 2016-12-22 to

2017-01-05; 2017-03-01 to 2018-05-22; and 2018-11-19 to 2018-12-16. The recursive SADF

statistic continues to exceed the 99% critical value sequence for four subsets of these time

periods. These are 2016-06-03 to 2016-06-20; 2016-12-23 to 2017-01-04; 2017-05-19 to 2018-

03-06; and 2018-11-20 to 2018-12-08. It is clear from comparing Figures 18 and 19 that the

strategy based on the recursive SADF test statistic is more sensitive since, at the 5% level of

signi�cance, it identi�es periods of explosive behavior that are not detected by the strategy

based on the recursive ADF test statistic.

Once we take into account the fundamental value of the bitcoin, however, it is clear

from Table 4 that the SADF and GSADF statistics for the OLS residuals and the di¤erence

between the log price and the log fundamental value are well below their 10% right-tailed

critical values. There is no overwhelming evidence of bubbles in the price of the bitcoin since

we cannot reject the null hypothesis of no bubbles at even the 10% signi�cance level. It fol-

lows that once we take into account the Bitcoin protocol�s di¢ culty adjustment mechanism,

the explosive behavior that is apparent in the bitcoin price path is explained.

5.2 Estimating e¢ ciency losses

For each length of the intervals (7, 9, 11 and 13 days), centered at the time of the di¢ culty

adjustment, the estimates of the elasticity of demand " are 0:112; 1:16; 0:847; and 0:818,

respectively. The average estimate, then, is :73, which demonstrates that there is a fairly
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inelastic demand for the bitcoin. Using this estimate for the elasticity of demand, I estimate

the total net e¢ ciency losses from 17 March 2014 to 13 January 2019 to be 323.82 million

USD.43 Table 5 shows the breakdown of the net losses for each year in the sample period

and Figure 20 presents a plot of the net e¢ ciency losses for each year along with the unique

levels of di¢ culty over time.44 While the total net losses imply an average annual net loss

of approximately 66.39 million USD, as shown in Figure 20, the average is misleading as

a measure of the annual costs since the net e¢ ciency losses were increasing exponentially

throughout the majority of the sample period. Since, from � of (15), the losses are an

increasing function of the change in the level of di¢ culty �, this is due to the fact that the

level of di¢ culty was increasing exponentially during that time. To put these losses into

perspective, I estimate the total electricity used by the Bitcoin network in terawatt hours

(TWh), which is provided in the third column of Table 5.45 Assuming an electricity cost

of 0.05 USD per kWh, the net e¢ ciency losses due to adjustments in the level of di¢ culty

as a percentage of the total cost of electricity used to power the Bitcoin network are shown

in the fourth column of Table 5. Since the electricity used by the Bitcoin network also

has been increasing exponentially due to the fact that the level of di¢ culty was increasing

exponentially over the majority of the sample period, the e¢ ciency losses as a percentage of

total electricity costs have been fairly stable and are, on average, 9.3% of the total electricity

costs.

In this section we have seen that while both the SADF and GSADF tests provide ev-

idence of explosiveness in the bitcoin price path, applying the same tests after specifying

43I estimate the total e¢ ciency losses to be 390.73 million USD and the total e¢ ciency bene�ts to be 66.91
million USD. The large magnitude of losses relative to gains is in accordance with Proposition 3 and because
only 15.9% of the di¢ culty adjustments during the sample period were downward.
44Note that the �rst year is only approximately 10 months long due to the length of the sample period.
45Since the network hashrate is �M� gigahashes per second, the terawatt hours used by the network can

be estimated as �M�� 24
1012 per day, where M

� is given in (7). While using M� to estimate the hashrate
presumes the free entry of miners, it is consistent with the estimate of e¢ ciency losses � of (15) and bene�ts

 of (16), which also presume free entry.
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fundamentals in accordance with the model does not. While there was a signi�cant di¤er-

ence between the fundamental value of the bitcoin and its price during late 2017 (as shown in

Figure 15), the discrepancy does not provide evidence for explosive behavior and hence, even

during this time period, there is no evidence of bubble formation. As discussed in Section

3.1, this discrepancy is probably due to entry barriers not taken into account by the model.

It follows that the model is su¢ cient to explain any explosive behavior in bitcoin prices.

This result provides strong evidence that the boom and bust cycles apparent in the bitcoin

price data are not bubbles caused by investor behavior but rather are a consequence of the

economic functioning of the Bitcoin protocol. We have also seen that in order to maintain

a constant supply of bitcoins in the market, the protocol imposes e¢ ciency losses (bene�ts)

on contemporaneous consumers and miners of bitcoin whenever the level of di¢ culty rises

(falls). On average, net costs were about 9.3% of the total electricity costs to run the Bitcoin

network during the sample period.

6 Conclusion

This paper has developed a microeconomic model to analyze the economic functioning of

the Bitcoin protocol. The model established that the fundamental value of a bitcoin is

equal to the miners�equipment and electricity costs relative to their expected block reward

and fees. While Bitcoin is a decentralized peer-to-peer network with no central authority,

the mechanism for adjusting the level of di¢ culty encoded in its protocol amounts to an

in�exible system of supply management. Hence, demand shocks have an exaggerated e¤ect

on the price of the bitcoin and each adjustment in the level of di¢ culty of mining a bitcoin

results in social welfare losses. We have seen that once we specify the fundamentals, which

include the miners�costs and their expected block reward and fees, there is no evidence of

the formation of bubbles in the price of the bitcoin. Also, we have seen that the social welfare
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losses imposed by the protocol�s intervention in the market add up to over 320 million USD

from March 2014 to January 2019. While these costs were incurred by the contemporaneous

consumers and miners, it is the eventual holders of bitcoins who bene�t over time since

the price of the bitcoin appreciates by an amount proportional to the rate of increase in

the Bitcoin di¢ culty level. To the extent that bitcoin mining is not powered by renewable

resources, we should further take into consideration the external costs of bitcoin production,

since electricity generation is one of the leading sources of greenhouse gas emissions. I leave

a thorough analysis of this important issue for future research.
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Appendix

Preliminaries:
The existence and uniqueness of a comprehensive equilibrium follows from the fact that

there exists a unique equilibrium in the protocol for any given pb � 0 and a unique equilibrium
in the market for any given � � 0. (i) Since Eq. (4) set equal to miners�daily �xed costs
�MF and Eq. (5) are both linear in � andM; and Eq. (5) goes through the origin while the
free entry condition obtained from Eq. (4) results in a constant level of � for all M , there
is a unique solution (��;M�) for any given pb � 0 and set of parameters. (ii) Since Eq. (9)
is linear through the origin and Eq. (11) is convex to the origin, there is a unique solution
(X�; p�b) for any given � � 0 and set of parameters. (iii) It follows that there exists a unique
comprehensive equilibrium (X�; p�b ; �

�;M�) whenever � = �� and pb = p�b :
Proof of Proposition 1:
From the supply curveXS of (9), it follows that the marginal cost of producingX bitcoins

at a given level of di¢ culty � is

pfb � pb
�
X; �

�
=

�
�F + ��

1000
(24) pe

�
M�

(! + f)
h
(24)602�M�109

�232

i (A1)

where pb (X; �) is the inverse supply curve. From (A1) it follows that
d log(pfb )
d log(�)

= 1 and hence
the fundamental value of a bitcoin p�b appreciates at a rate equal to the rate of increase in
the level of di¢ culty �.
Also, from XS of (9) and XD of (11) it follows that

pb =

24 �
�
�F + ��

1000
(24) pe

�
(! + f)

h
(24)602�109

�232

i
X

35 1
1+"

=

�
�

X

� 1
1+"

pfb (�)
1

1+" :

Taking logs and then di¤erentiating with respect to � while holding the demand curve con-
stant yields

log (pb) =
1

1 + "
log (�)� 1

1 + "
log
�
X
�
+

1

1 + "
log
�
pfb (�)

�
and hence

d log (pb) =
1

1 + "
d log

�
pfb (�)

�
=

1

1 + "
d log (�) :



Proof of Proposition 2:
From Figure 4a it is clear that a total of pb3 � p0b3 =  p0b3 for each of the X3 bitcoins

that are produced per day is dissipated due to the additional electricity costs, given by
 pb (X3; �1)X3; where p0b3 = pb (X3; �1) : It remains to derive the deadweight (distortion) loss
DWL, or the second term of (15).
In equilibrium, we have

XS (pb) = XD (qb) (A2)

where the price paid by consumers is qb = pb ( ) (1 +  ) and the price received by producers
is pb ( ). Starting in an initial equilibrium such as equilibrium 2 depicted in Figure 4a, prior
to an increase in the level of di¢ culty, we have that  = 0 and qb = pb:

Di¤erentiating (A2) with respect to  yields @XS
@pb

dpb
d 

= @XD
@q

h
dpb
d 
(1 +  ) + pb

i
and it

follows that

dpb
d 

=

@XD
@q
pb

@XS
@pb

� @XD
@q
(1 +  )

pb
X
pb
X

(A3)

=

@XD
@q

pb
X
pb

@XS
@pb

pb
X
� @XD

@q
pb
X
(1 +  )

� � "

1 + "
pb

since  is small, where the elasticity of demand " = �@XD
@q

pb
X
> 0; and the elasticity of supply

@XS
@pb

pb
X
= 1 since the supply curve is linear through the origin. Hence �pb � dpb

d 
 = � "

1+"
pb .

Also,

dqb
d 

=
dpb
d 

(1 +  ) + pb

� � "

1 + "
pb + pb

=
1

1 + "
pb

where the second line follows from (A3) and the fact that  is small. Hence �qb � dqb
d 
 =

1
1+"

pb and we have j�pbj+ j�qbj = pb :
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The e¤ect of the adjustment on the equilibrium output is given by

dX

d 
=
@XS

@pb

dpb
d 

� �@XS

@pb

"

1 + "
pb

= � "

1 + "
X

where the second line follows from (A3) and the third line follows because @XS
@pb

pb
X
= 1. It

follows that �X � dx
d 
 = � " 

1+"
X and hence

DWL =
1

2
(j�pbj+ j�qbj) j�Xj

=
1

2

"

1 + "
pb2X2 

2

where pb2 and X2 are the equilibrium price and quantity supplied of bitcoins prior to the
di¢ culty adjustment.
Moreover, we can approximateX3; the equilibrium quantity of bitcoins after the di¢ culty

adjustment, by

X3 � X2 � j�Xj

=

�
1� " 

1 + "

�
X2:

Proof of Proposition 3:
Let  = �', X2 > X; and fX2 < X: From (15) and (16) we have that

� ( )� 
 (') =  pb (X3; �1)X3 +
1

2

"

1 + "
pb2X2 

2 �
�
�'pb

�fX3; �1

� fX3 �
1

2

"

1 + "
fpb2fX2'

2

�
=  

h
pb (X3; �1)X3 � pb

�fX3; �1

� fX3

i
+
1

2

"

1 + "
pb2X2 

2 +
1

2

"

1 + "
fpb2fX2 

2 > 0

where the second line is positive becauseX3 � X � fX3 and, since the supply curve is upward
sloping, pb (X3; �1) � pb

�fX3; �1

�
.
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	 Figure	17	 	 Figure	18	
	

	
	 Figure	19	 	 Figure	20	
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	 Tracking	
Since	

First	
Available	

GHash/s	 Joules/GHash	 Energy	
Use	

(Watts)	
Antminer	S1	 14-03-17	 13-12-30	 180	 2	 360	
Antminer	S2	 14-06-10	 14-05-21	 1,000	 1	 1,000	
Antminer	S3	 14-12-31	 14-09-27	 441	 .83	 366	
Antminer	S4	 14-11-18	 14-09-25	 2,000	 .725	 1,450	
Antminer	S5	 14-12-28	 14-12-22	 1,155	 .51	 590	
Antminer	S7	 15-09-06	 15-08-30	 4,860	 .25	 1,210	
Antminer	S9	 16-11-02	 18-01-16	 14,000	 .098	 1,372	
Antminer	S11	 18-11-21	 18-11-19	 20,500	 .064	 1,312	

	
Table	1.	Antminer	model	specifications.	

 
 
 
 
 
 
Constant	 	 –8.179***	
		 	 	 (.74)	
Log(Difficulty)	 	 .578***	
		 	 	 (.03)	
	
R-squared	 	 .763	
Adjusted	R-squared	 .7612	
No.	observations		 133	
	
Standard	errors	are	reported	in	parentheses.	
*,	**,	***	indicates	significance	at	the	95%,	99%,	and	100%	level,	
respectively.	
	
Table	2.	Regression	of	the	log	of	the	bitcoin’s	price	(averaged	over	the	
period	for	which	the	difficulty	is	constant)	on	the	log	of	the	difficulty.	
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Constant	 	 1.428***	
		 	 	 (.08)	
Log(FV)		 	 .819***	
		 	 	 (.01)	
	
R-squared	 	 .7467	
Adjusted	R-squared	 .7465	
No.	observations		 1729	
	
Standard	errors	are	reported	in	parentheses.	
*,	**,	***	indicates	significance	at	the	95%,	99%,	and	100%	level,	
respectively.	
	
Table	3.	Regression	of	the	log	of	the	bitcoin’s	price	on	the	log	of	the	

bitcoin’s	fundamental	value.	
	
	
	
	
	
	

	 	 Test	
Statistic	

Critical	Values	

	 	 	 90%	 95%	 99%	
Log	Price	 SADF	 3.725	 1.3064	 1.5806	 2.1779	

	 GSADF	 3.8879	 2.2066	 2.3842	 2.8776	
Residuals	 SADF	 –.077541	 1.3064	 1.5806	 2.1779	

	 GSADF	 1.5273	 2.2066	 2.3842	 2.8776	
Log	Price	
–	Log	FV	

SADF	 –.15092	 1.3064	 1.5806	 2.1779	

	 GSADF	 .96727	 2.2066	 2.3842	 2.8776	
	

Table	4.	The	SADF	and	GSADF	test	statistics	and	their	respective	critical	
values.	
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Year	 Net	Efficiency	

Losses	(USD)	
TWh	 Percent	of	

Total	
Electricity	
Costs	

2014-03-17	to	
2015-01-13	

17,770,948	 2.1	 17.1	

2015-01-14	to	
2016-01-13	

15,378,228	 3.9	 7.9	

2016-01-14	to	
2017-01-13	

36,294,891	 13.2	 5.5	

2017-01-14	to	
2018-01-13	

113,643,714	 18.8	 12.1	

2018-01-14	to	
2019-01-13	

140,735,693	 55.1	 5.1	

	
Table	5.	Net	efficiency	losses	due	to	difficulty	adjustments.	


