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Abstract

This paper studies the effect of releasing exogenous public information in rational

social-learning models that predicts informational cascades and incomplete learning. De-

spite the fact that informational cascades can be triggered by incorrect early actions, we

show that, to improve social learning, it is better to postpone the disclosure of public in-

formation in a canonical setting with binary states and actions. More importantly, it is

suboptimal to ever release public information less precise than people’s private informa-

tion even through contingent disclosure strategies, since noisy public signals crowd out

more informative private signals and thus harm information aggregation. In other words,

anti-transparency turns out to be the correct public information policy for social learning

when public information is relatively coarse.

JEL classification: D83.

Keywords: Anti-Transparency, Public Information, Social Learning

1 Introduction

As important as the rationalization of herd behavior, one contribution of the theoretical liter-

ature on social learning is the prediction of incomplete learning, i.e., inefficient information
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aggregation among the population, when people have boundedly accurate private information.

In the canonical model due to Bikhchandani et al. (1992), agents make binary choices between

A and B sequentially over an infinite time horizon, and before taking her action, each agent

receives a private binary signal indicating which option is better with identical precision and

observes all the past actions. Eventually rational agents herd without fully learning the truth

and informational cascade arises.1

Like every other economic model that predicts inefficient outcomes, we naturally ask our-

selves of potential ways to improve efficiency in such environments. In fact, as Bikhchandani

et al. (1992) pointed out, informational cascades are fragile: since information stops to aggre-

gate, the cascades and hence the herds are vulnerable to new pieces of information. Hence it

is of interest to investigate whether and how disclosure of exogenous public information can

improve social learning.

For such purpose, we introduce a social planner to the canonical binary model, who has

access to an exogenous piece of information and decides whether and when to release it to the

public to maximize the asymptotic efficiency of the population. It can be interpreted that the

social planner is actively looking for the optimal timing (if any) of running a public experi-

mentation that provides informative evidence about the underlying state with given precision,

which maximizes the expected payoff of the long-run agents.2

We first provide an anti-transparency result: the social planner should never release a noisy

public signal that is less precise than people’s private signals. An informational cascade arises

when one action, say A, has been chosen at least twice more than B, and agents start to herd on

A.3 Releasing a noisy public signal then cannot break down the informational cascade as agents

will continue to herd on A even when the public signal suggests B: combining the history and the

public signal, future agents still find action A sufficiently attractive. Hence a noisy public signal

has no effect on the limiting expected payoff if it is released after an informational cascade

has arisen. On the other hand, when a cascade has not yet formed, releasing a noisy public

signal may induce a wrong cascade in the future more likely than people’s own private signals

1Strictly speaking, incomplete learning does not necessarily imply informational cascades when private signals are continuous rather
than discrete. See Herrera and Hörner (2012) for a discussion about a necessary and sufficient condition on the distribution of private signals
for informational cascades.

2Due to the presence of herd behavior, the expected payoff of the long-run agents is equivalent to the average expected payoff of the
population, hence it has a welfare interpretation as well. This is in fact a common objective of interest in the literature of social learning. In
Section 3 we will discuss an alternative objective function of the social planner by introducing time preference.

3We assume each agent follows her private signal when indifferent.
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due to its lower precision, hence lowers the limiting expected payoff. Therefore overall to

release a noisy public signal is a bad idea for the social planner. Moreover, this result is robust

when sophisticated releasing strategies are allowed, i.e., a noisy public signal should never be

released even if the social planner can make the timing of disclosure contingent on the history

of past actions.4

The other finding in company with the anti-transparency result is a monotonicity result: the

expected payoff of long-run agents is (weakly) increasing in the period at which the public

signal is released, regardless of its precision. In other words, the social planner should always

postpone the disclosure of any public information, despite the fact that informational cascades

can be triggered by incorrect early actions.5 The intuition behind this result is that the benefit

of releasing a public signal is greater when an informational cascade has arisen than when it

has not. Before a cascade starts the information aggregation of private signals is still going on,

so a public signal released then may crowd out the next private signal(s) in terms of updating

people’s belief. Hence the “net” informational contribution of the public signal is lower than

when it is released after a cascade has started, in which case the information content of the

public signal is fully absorbed into the public belief. Since the probability of entering an infor-

mational cascade is weakly increasing over time, the benefit of releasing a public signal is, as a

result, also weakly increasing over time.

Nevertheless the monotonicity result seems not compelling especially for extremely precise

public signals: if the social planner holds a public signal that perfectly reveals the truth, then

she should naturally release it as early as possible so that everyone can learn the truth from it

and choose the right action. This thought experiment casts doubt on whether the asymptotic

efficiency is a proper objective for the social planner, and we reconsider the whole problem

assuming that the social planner has time preference and thus wants to maximize the discounted

sum of people’s expected payoffs instead. Although the optimal timing of disclosure is not yet

clear to us (but definitely finite), we can expect that the monotonicity result no longer holds. In

particular, if the social planner is indifferent between two periods to release the public signal

before, now she strictly prefers the earlier period of the two due to her impatience.

4In general numerous Bayesian Nash equilibria exist with contingent releasing strategies, so we focus on a selection of equilibria to make
meaningful prediction. See Subsection 2.3 for details.

5Note that the monotonicity result is true even for noisy public signals, but does not contradict with the anti-transparency result: releasing
a noisy public signal is bad, but if the social planner were forced to release one, she should postpone as much as possible.
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We also present an alternative setting with three states and three actions, and show that the

monotonicity result does not hold either, however through a totally different channel. In this

setting, at some point in the history an action could be excluded by all the agents afterwards:

e.g., an agent observing history (A,B,A,B,A,B) would not choose C regardless of her private signal

and neither would all her successors. We call this situation a trap away from action C, and unlike

a herd, the informational “depth” of a trap can increase over time; hence a public signal could

fail to break down a wrong trap when released too late and therefore the social planner would

not always prefer a postponed disclosure even if she is infinitely patient as in the benchmark

setting.

Related literature. This paper is clearly related to the social learning literature initiated

by Banerjee (1992), Bikhchandani et al. (1992), and Smith and Sørensen (2000). Nevertheless

few papers talked about disclosure of public information in social-learning models. Bikhchan-

dani et al. (1992) pointed out the fragility of informational cascades and only briefly discussed

the effect of releasing extra information, while this work further looks into this issue and in-

vestigates the optimal timing of release. Gill and Sgroi (2008) also augmented the standard

model to allow a principal to provide public information to the agents by subjecting herself

to a test of certain toughness at the beginning.6 On the other hand, as discussed before, the

monotonicity result in this paper might question the plausibility of limiting efficiency, which is

the common objective of interest in most of the literature, as a good measure of social welfare

in social-learning models.

It is also related to a stream of papers on anti-transparency of information disclosure. Morris

and Shin (2002) presented a model where every agent wants to minimize a loss function made

up of two components: loss in the distance between her action and the underlying state, and

loss in the distance between her action and the average action in the population, i.e., a “beauty-

contest” term.7 With later comments by Svensson (2006) and Morris et al. (2006), it can

be shown that in such a model the welfare with noisy public information could indeed be

worse than the welfare without.8 Demertzis and Hoeberichts (2007) further explored this anti-

transparency result by introducing costly information acquisition to the model, where people

6Essentially the outcome of the test is like a public signal with certain precision (based on the toughness) that is released at the beginning.
Note that the principal in Gill and Sgroi (2008) does not have the same objective of the social planner in this paper though.

7See Keynes (1936).
8In that model, public information serves as a coordination device for the second loss term, and people could overlook their private

signals when they put a sufficiently high weight on the second loss term.
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might free-ride on public information and abandon private information acquisitions. In this

paper we get an anti-transparency result as well, though without payoff interdependence or

costs of obtaining information.9

The remainder of the paper is structured as follows. Section 2 sets up the canonical binary

model and provides the main result. Section 3 discusses alternative settings with impatient

social planner and with ternary states/actions. Section 4 concludes.

2 The Binary Model

2.1 Setup and Preliminaries

There is a population of countably infinite agents who are exogenously ordered to make a

binary choice sequentially. Each agent is labelled by the period of her turn, t ∈ T = {1,2,3, ...}.

The state of the world θ is realized out of a binary state space Θ ≡ {1,−1} before anyone

makes the choice, with Pr{θ = 1}= 1/2. After the realization of θ , every agent t receives a private

signal st ∈ {1,−1} and the private signals are conditionally i.i.d. with

Pr{st = 1|θ = 1}= Pr{st =−1|θ =−1}= q ∈ (
1
2
,1),

where the precision q is common knowledge to the whole population.

Before exerting her action at ∈ A = {1,−1}, agent t is allowed to observe the history of all her

predecessors’ choices, hhht ∈ Ht ≡ { /0}∪At−1, where hhh1 ≡ /0 denotes the empty history at period 1.

Agents have identical utility function

u(at ;θ) = 1{θ=at}

and are assumed to follow their own signal when indifferent.

We call wt ≡ logq/(1−q)[
Pr(hhht |θ=1)

Pr(hhht |θ=−1) ] the public belief after history hhht .10

This is essentially the canonical model in Bikhchandani et al. (1992) and it is well known

that the Bayesian Nash equilibrium exhibits herd behavior eventually. For the purpose of future

9Compared to Morris and Shin (2002), for example, noisy public information distorts social welfare in this model through informational
externality rather than payoff interdependence.

10It is convenient to use this particular log likelihood ratio wt here as it only takes integer values in equilibrium (prior to the disclosure of
public information) and in fact represents the net number of private signals revealed by the history.
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analysis though, let us restate the existing results as lemmata.

Lemma 2.1 The Bayesian Nash equilibrium strategy of each agent t is given by

a∗t (hhht ,st) = a∗(wt ,st)≡


st if |wt | ≤ 1

sgn(wt) otherwise
,

where sgn(x)≡


x/ |x| if x 6= 0

0 otherwise
.

Hence, along the equilibrium path hhh∗t = (a∗1,a
∗
2, ...,a

∗
t−1) with hhh∗1 ≡ /0, the dynamic of public

beliefs is given by

w∗1 = 0; w∗t+1 =


w∗t +a∗t if |w∗t | ≤ 1

w∗t otherwise
.

Proof. See Appendix.

Lemma 2.1 shows that public belief wt serves as a sufficient statistic for agent t’s decision

problem and in equilibrium w∗t stops to update once it leaves interval [−1,1], which is exactly

when an informational cascade, or a herd, starts.

Definition 1 We say a herd on action 1(−1) starts at period T if

∀t ≥ T , at(hhht ,st) = at(hhht , ·) = 1(−1).

Lemma 2.2 Along the equilibrium path described by Lemma 2.1, a herd starts eventually with

probability 1.

Proof. See Appendix.

Note that the eventual herd could be incorrect, as Smith and Sørensen (2000) argued, if

agents have bounded private beliefs, which is exactly the case here. The probability of a cor-

rect herd eventually is nevertheless important for our analysis later on social welfare, as it de-

termines expected payoffs for future agents in the long run. Hence we would like to calculate

this probability here.
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For convenience, let us assume the realization of θ is 1 without loss of generality for the

remainder of this section.11 Define

p(x)≡ Pr(plimt→∞ a∗t (hhh
∗
t ,st) = 1|w1 = x,θ = 1), ∀x ∈ R,

the probability of a correct herd eventually conditional on some initial public belief w1 = x,

which can be explicitly calculated according to the following useful lemma.

Lemma 2.3 p(x) can only take the following 7 discrete values:

p(x) = 0≡ α1, ∀x <−1;

p(−1) =
q3

1−2q(1−q)
≡ α2;

p(x) =
q2

1−q(1−q)
≡ α3, ∀x ∈ (−1,0);

p(0) =
q2

1−2q(1−q)
≡ α4;

p(x) =
q

1−q(1−q)
≡ α5, ∀x ∈ (0,1);

p(1) = q+
(1−q)q2

1−2q(1−q)
≡ α6;

p(x) = 1≡ α7, ∀x > 1.

In fact, ααα ≡≡≡ (α1,α2,α3,α4,α5,α6,α7)
> satisfies Qααα === ααα where

Q≡



1 0 0 0 0 0 0

1−q 0 0 q 0 0 0

1−q 0 0 0 q 0 0

0 1−q 0 0 0 q 0

0 0 1−q 0 0 0 q

0 0 0 1−q 0 0 q

0 0 0 0 0 0 1



.

Proof. See Appendix.

11It is without loss of generality from an ex-ante perspective due to the symmetric setting.
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Note that the subgame starting from a period T is identical to the original game (and the

equilibrium strategy is stationary according to Lemma 2.1), hence Lemma 2.3 actually tells us

how to calculate the probability of a correct herd eventually if the public belief at period T is

wT . On the other hand, the matrix Q introduced in Lemma 2.3 also helps us to characterize the

equilibrium public beliefs as a monotone Markov chain.

Definition 2 A transition matrix C = (ci j)n×n is monotone if

∀1≤ i < j ≤ n,∀k ≤ n,∑
k
m=1cmi ≥∑

k
m=1cm j.

A Markov chain is monotone if it has a monotone transition matrix.12

Lemma 2.4 Let P = {P1,P2,P3,P4,P5,P6,P7} be a finite partition of R with:

P1 = (−∞,−1), P2 = {−1}, P3 = (−1,0), P4 = {0},

P5 = (0,1), P6 = {1}, P7 = (1,+∞)}.

Define πt
i ≡ Pr(w∗t ∈ Pi) and πππt = (πt

1,π
t
2,π

t
3,π

t
4,π

t
5,π

t
6,π

t
7) is hence the probability vector of w∗t over

partition P. We have

πππ
t+1 = πππ

tQ with πππ
1 = (0,0,0,1,0,0,0),

where the transition matrix Q is given in Lemma 2.3 and it is monotone.

Proof. See Appendix.

2.2 Timed Release of Public Information

As we have seen in the previous subsection, a herd starts eventually but it is possibly on the

wrong action. Bikhchandani et al. (1992) referred to the eventual herd as an informational

cascade and pointed out that it is vulnerable to public information disclosure. Here we look

into this issue more specifically by introducing public information release into the model.

In addition to the population of agents as before, there is a social planner who also receives

12These definitions come from Keilson and Kester (1977).
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a signal s̃ ∈ {1,−1} after the realization of θ and

Pr{s̃ = 1|θ = 1}= Pr{s̃ =−1|θ =−1}= q̃ ∈ (
1
2
,1).

The precision q̃ is common knowledge to the whole population and s̃ is conditionally indepen-

dent of any st .

The social planner can decide whether and when to release the signal s̃ to the public. Once

s̃ is released at period τ ≥ 1 it becomes public information and every agent afterwards, t ≥ τ, can

take it into account before she makes her decision. The social planner wants to maximize the

expected average payoff of the whole population,

lim
T→∞

1
T

T

∑
t=1

Eu(a∗t ;θ).

Note that due to the existence of herd behavior, the social planner’s objective is essentially to

maximize the probability of a correct herd eventually, or say, the probability of learning the

truth eventually.

In this subsection we particularly consider the situation where the releasing strategy is

timed, namely she has to decide a period τ ∈ {1,2,3...} to release or not to release at all be-

fore anything happens and commits to that. Notice that the realization of θ is still assumed to

be 1 without loss of generality.

Note that private signals are equally precise, hence the public belief wt can also be inter-

preted as the net number of correct private signals revealed by history hhht . We would like to

first have a similar interpretation of the public signal by measuring its precision with respect to

private signals:

Definition 3 The public signal s̃ has relative precision λ ∈ R+ if

logq/(1−q)[
q̃

1− q̃
] = λ , or equivalently, q̃ =

qλ

qλ +(1−q)λ
.
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When the public signal has relative precision λ , we have

Pr{s̃|θ = 1}
Pr{s̃|θ =−1}

= (
q̃

1− q̃
)s̃ = [(

q
1−q

)λ ]s̃

= [(
q

1−q
)st ]λ = [

Pr(st |θ = 1)
Pr(st |θ =−1)

]λ whenever st = s̃.

That is, learning a public signal in favor of one state with relative precision λ is equivalent to

learning λ net private signals in favor of that state.

Now suppose the social planner releases the public signal at period τ. Then the subgame

after the release is equivalent to the original game without public information, which we dis-

cussed in the previous subsection, but with an initial public belief inferred from bother the

history before period τ and the public signal. Hence, a herd still starts eventually and the ex-

pected average payoff of the population is just the probability of a correct herd eventually,

which depends only on the initial public belief according to Lemma 2.3. Meanwhile, using the

relative precision, we can linearly describe the effect of the public signal on the public belief.

These observations are summarized in the following lemma.

Lemma 2.5 Suppose the social planner releases s̃ with relative precision λ at period τ ≥ 1 and

the history before that has generated a public belief wτ . Then the new public belief after release

will be

w̃τ = wτ +λ s̃,

and (under the assumption that the realization of θ is 1) the expected average payoff of the

population conditional on w̃τ is simply given by

plimT→∞

1
T

T

∑
t=1

u(a∗t ;θ = 1|w̃τ ) = p(w̃τ ) = p(wτ +λ s̃).

Furthermore, let us denote v(τ;λ ) as the (unconditional) expected average payoff of the popu-

lation when the social planner is to release the public signal with relative precision λ at period

τ, then

v(τ;λ ) = Ewτ ,s̃[p(wτ +λ s̃)].

Proof. See Appendix.
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Keep in mind that without no release at all, the expected average payoff of the population,

which is just the probability of a correct herd eventually, is equal to α4 given in Lemma 2.3.

Now we are in a position to provide the main result of this section.

Proposition 2.1 1. It is never optimal to release a public signal less precise than the private

signals. That is,

∀λ ∈ (0,1), ∀τ ≥ 1, v(τ;λ )< α4.

2. It is strictly better to release a public signal no less precise than the private signals than

not to release at all. That is,

∀λ ∈ [1,+∞), ∃τ < ∞ such that v(τ;λ )> α4.

3. It is always (weakly) better to release a public signal later than sooner regardless of its

precision. That is,

∀λ ∈ R+, ∀τ ≥ 1, v(τ +1;λ )≥ v(τ;λ ).

Proof. See Appendix.

Here we would like to talk about the third statement of Proposition 2.1 in particular. The

weak monotonicity of v(τ;λ ) in τ mathematically comes from the fact that equilibrium public

beliefs evolve according to a monotone transition matrix until the public signal is released, re-

gardless of the value of λ . However, the intuition for this weak monotonicity is not as universal

as the property itself. For illustrative purposes, let us focus on two cases, λ = 1 and λ < 1.

We can think of releasing a public signal as an "additional" agent joining in the sequence

who always follows his own private signal s̃. When λ = 1, the release has no ex-ante effect if a

herd has not started yet because every agent t just follows her own private signal st , which has

the same precision as s̃, before a herd starts. In this case the ex-ante benefit of releasing s̃ arises

after a herd starts, where s̃ is more likely to break down a wrong herd than to break down a

correct herd as q̃ > 1/2. So the benefit of releasing s̃ is increasing in the probability of herding

at the time of release. It is easy to verify that the probability of herding is weakly increasing in

t, which explains the weak monotonicity of v(τ;λ ) in τ.
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When λ < 1, however, releasing s̃ has no effect once a herd starts: |w̃τ | = |w∗τ + λ s̃| > 1 and

sgn(w̃τ ) = sgn(w∗τ ) when w∗τ = ±2 and λ < 1.13 But it brings ex-ante disadvantage before a herd

starts since it is more likely to induce a wrong herd than what a normal agent does, due to the

lower precision q̃ < q. Therefore the harm of release is decreasing in the probability of herding,

which in turn is weakly decreasing over time and hence explains the weak monotonicity of

v(τ;λ ) in τ.

It is worth pointing out that when λ > 3, the weak monotonicity is actually uniformity. In that

case, the public signal is so strong that people start to herd on the action same as the realization

of s̃ immediately after it is released, so releasing at different periods makes no difference.

2.3 Contingent Release of Noisy Public Information

In addition to the monotonicity result, Proposition 2.1 also makes another observation: it is

better not to release the public signal at all when it is less precise than private signals. This can

be interpreted as an anti-transparency result: more (but noisy) public information can be bad

for social welfare.14 However, the social planner has so far been restricted to use exogenous

releasing strategies, hence a natural question would be whether this suboptimality of release

when λ < 1 still holds if contingent releasing strategies are allowed, namely the social planner

can decide whether to release or not at period t based on the realization of s̃ and wt .

Let g(s̃,wt) ∈ {0,1} be the strategy of the social planner: g(s̃,wt) = 1 means the social planner

releases the public signal at period t after seeing s̃ and wt ; g(s̃,wt) = 0 means not. And gt ∈ {0,1}

denotes the corresponding action. We restriction attention on pure strategies by the social

planner.

Note that gt is now relevant information for agents τ ≥ t, because, given a releasing strategy

by the social planner, agents can possibly infer the realization of s̃ from gt and wt . A natural

issue arises here, like in lots of games with incomplete information, that there could potentially

exist undesired equilibria due to lack of restriction on off-equilibrium beliefs. So we want to

impose the following refinement on certain off-equilibrium path.

Definition 4 Given a releasing strategy g(s̃,wt) by the social planner, let µ(wt ,gt) denote agents’
13Bikhchandani et al. (1992) argued that releasing a public signal less informative than the private signal can still be beneficial when there

is an information cascade. This is true under their assumption that agents play mixed strategies when indifferent, but not under the tie-breaking
rule here.

14The seminal paper on anti-transparency, Morris and Shin (2002), also used the average payoff of the population to refer to social welfare.
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belief at period t about the realization of s̃ after observing wt and gt . That is,

µ(wt ,gt)≡ Pr(s̃ = 1|wt ,gt ,g(·, ·)).

We say µ(wt ,gt) is non-excessive if

µ(wt ,0) =
1
2
, ∀wt s.t. g(s̃,wt) = 1 for any s̃ ∈ {−1,1}.

Non-excessive belief requires that, on an off-equilibrium path where the social planner does

not release s̃ while she should have released it regardless of its realization, agents should not

make excessive inference about the realization of s̃ in this symmetric world. We think this is

a reasonable refinement and it indeed helps us get rid of meaningless equilibria which do not

serve for the purpose of our analysis here.15

Note that the agents’ behavior still follows what has been described in Lemma 2.1 but under

a public belief generated from both the previous actions and their inference about s̃. Hence we

will give the main result here that focuses on the social planner’s releasing strategy.

Proposition 2.2 When λ < 1 and agents’ belief about s̃ is non-excessive, there are 3 Bayesian

Nash equilibria where the social planner’s contingent releasing strategies are respectively:

g1(s̃,wt) = 0;

g2(s̃,wt) = 1{wt=−s̃};

g3(s̃,wt) = 1{wt=±2s̃}.

Proof. See Appendix.

The interesting addition compared to the case with exogenous releasing strategy is g2. With

g2, the social planner will release the public signal once he saw an history that is not a herd yet

but against the realization of s̃, which is reasonable because he wants to prevent the agents from

starting an herd against the public signal too early. Unfortunately, from an ex-ante perspective,

social welfare is not improved under contingent releasing strategies.

15Without restriction on non-excessive beliefs, one can show that to release the public signal after any history could be an equilibrium.
But these equilibria do not help improve the social welfare.
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Corollary 2.1 g1 generates the same ex-ante average payoff of the population in equilibrium

as g3 does, which is better than what g2 does. And none of them can improve social welfare

compared to exogenous releasing strategies.

Proof. g1 means no release at all, which is also the best the social planner can do under exoge-

nous releasing strategies. g3 means to disclose the public signal when a herd has already started

but in that case disclosure makes no difference as the noisy public signal can never break down

a herd, hence social welfare is the same as with no release at all. On the other hand, the "sep-

arating" strategy g2 implies that the agents can perfectly infer the realization of s̃ after period

1, hence social welfare is the same as with exogenous release at period 2, which is worse than

with no release at all when λ < 1 as we saw in Proposition 2.1.

3 Alternative Settings

Recall that the benefit of public information disclosure is weakly increasing over time in the

binary model. In this section, however, we are about to introduce two alternative settings under

which postponing disclosure of public information is not necessarily a good decision for the

social planner.

3.1 Impatient Social Planner

So far we have assumed that the social planner cares about the expected average payoff of the

population without discounting, hence she essentially cares only about whether people eventu-

ally herd on the correct action or not, i.e., limiting efficiency. Although limiting efficiency is

the common objective of interest in the literature of social learning, it might not be a plausible

measure of social welfare for a social planner.

For example, Proposition 2.1 says that the social planner is indifferent among all periods to

release a public signal that is sufficiently precise. Imagine that the social planner has a public

signal with perfect precision. Then naturally she should release the public signal as early as

possible, because any delay would hurt some earlier agents. However this natural observation

is not captured by the non-discounted average payoff as the social planner only cares about

people in the limit. Hence in this subsection we introduce a discount factor δ in the social
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planner’s objective and reconsider the timing of information disclosure. In particular, we show

that it is not always better to postpone the release of a public signal.

Formally, with all the other configurations identical to the benchmark model, we assume

the social planner now wants to maximize the discounted sum of people’s expected payoff,

(1−δ )
∞

∑
t=1

δ
t−1Eu(a∗t ;θ).

For simplicity we restrict attention on exogenous releasing strategies and assume the public

signal has the same precision q as the private signals.

Claim 3.1 Let V (τ) be the discounted sum of people’s expected payoff when the public signal

is released at period τ. Then ∀q ∈ (1
2 ,1), V (3)>V (4).

Proof. See Appendix.

In the benchmark without discounting, the social planner is indifferent between releasing

at period 3 and at period 4.16 Hence with discounting it is not surprising to see that the social

planner now strictly prefers to release the public signal at periods 3 than period 4. The optimal

timing of disclosure with discounting is yet to be explicitly characterized, nevertheless we

present this example mainly to bring up the concern for the plausibility of treating limiting

efficiency as the main objective in social-learning models.

3.2 Ternary Setting

In this subsection we expand the binary setting in the benchmark model and allow the state/action/signal

space to have three elements.17 Under this new setting, even for a patient social planner who

only cares about limiting efficiency as in the benchmark model, it is not always better to post-

pone the disclosure of public information.

Formally, the state of the world ψ is realized out of {L,M,R} with

Pr(ψ = L) = Pr(ψ = M) = Pr(ψ = R) = 1/3.

16See the proof of Proposition 2.1 for details.
17Ternary spaces are sufficient to capture the intuition we want to describe, yet not too complicated for analysis.
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After the realization of ψ, every agent t receives a private signal st ∈ {L,M,R} and the private

signals are conditionally i.i.d. with

Pr{st = L|ψ = L}= Pr{st = M|ψ = M}= Pr{st = R|ψ = R}= q ∈ (
1
3
,1);

Pr{st = L|ψ = M}= Pr{st = R|ψ = M}= Pr{st = M|ψ = R}=

Pr{st = L|ψ = R}= Pr{st = R|ψ = L}= Pr{st = M|ψ = L}= 1−q
2

.

Each agent chooses at from {L,M,R} and observes the history of past actions hhht ≡ (a1,a2, . . . ,at−1).

They have identical utility function u(at ;ψ) = 1{ψ=at}, and note that this degenerate utility func-

tion implies that the three states cannot be linearly ordered, unlike many other economic models

with multiple states.18

With ternary spaces, we want to specify a tie-breaking rule:

a∗t (hhht ,st) = st if st ∈ argmax
a∈{L,M,R}

Eψ [u(a;ψ)|hhht ,st ],

a∗t (hhht ,st) = at−1 if argmax
a∈{L,M,R}

Eψ [u(a;ψ)|hhht ,st ] = Ψ\{st}.

Namely, agent t follows st if it is one of the maximizers and chooses to follow her immediate

predecessor if the two actions different from st are both maximizers.19

Again there is a social planner who receives a signal s̃ ∈ {L,M,R} and decide whether/when

to release it to the public. Here for simplicity s̃ is assumed to be equally precise as the pri-

vate signals. The (patient) social planner’s objective is still to maximize the ex-ante average

payoff of the population and we restrict attention on exogenous releasing strategies only in this

subsection.

Definition 5 ∀a ∈ {L,M,R}, a trap away from action a starts at period T if at(hhht , ·) 6= a for all t ≥ T .

It is easy to see that a trap away from one action is equivalent to a herd on the other action

in the binary model. However, with three possible actions, a herd on action a′ 6= a is a trap away

from action a, but not vice versa. And the difference between a herd and a trap is exactly what

18Specifically, the degenerate utility function rules out the scenario where an agent believes one state, say M, is more likely after observing
an action L and an action R. This setting, though complicates the analysis, is crucial for the result we will present in this subsection.

19The specification itself is not very important; we just want a tie-breaking rule to guarantee deterministic outcomes and hence tractability.
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drives the following result that the benefit of releasing the public signal is no longer weakly

monotone over time.

Claim 3.2 Let G be the ex-ante average payoff of the population with no release at all, and let

G(τ) be the ex-ante average payoff of the population if the public signal is released at period

τ ≥ 1. Then ∀q ∈ (1
3 ,1), G(3)> G and G(4)> G(5).

Proof. See Appendix.

G(3)> G is not a surprising: the public signal is equally precise as a private signal, so releas-

ing it would not bring any harm but could possibly break down a wrong herd starting at period

3, if the first two actions are the same but wrong.20 Meanwhile we lose weak monotonicity

as G(4) > G(5) for the following reason: releasing s̃ at period 4 is possible to break down a trap

away from true state ψ if s̃ = ψ, no matter what hhh3 is; however, if ψ = R but hhh4 = (L,M,L,L), the

trap away from R could not be broken down even if s̃ = R as long as it is released at period 5. In

general, weak monotonicity fails here because the existence of traps rather than herds: a trap

is not necessarily an informational cascade and information can still aggregate over time for

the two "surviving" actions before a herd finally starts, hence the social planner could face the

danger of not being able to break down a wrong trap if the public signal is released too late. On

the other hand, the optimal timing of release is unclear to us and in principle it shall depends

on the value of q. See Figure 1 for some examples.

4 Conclusions

We treat this work as a contribution to the literature on social learning, with a focus on ex-

ogenous information intervention. In particular, we look into the effect of public information

disclosure on the asymptotic efficiency of social learning. In the canonical binary model, if a

social planner were to choose a certain period to release a public signal, she should release it

as late as possible regardless of the precision of the public signal: a monotonicity result. Mean-

while, when the public signal is less precise than people’s private signals, releasing it would

do no good on social welfare even if the timing of release can be contingent on the history of

actions: an anti-transparency result.
20It is not difficult to see that a herd will arise when, in the history, the number of one action is larger than the number of the other two

actions by at least 2.

17



We present two alternative settings where the monotonicity result may fail. Postponing

information disclosure could be bad for a social planner, if her objective is the discounted sum

of people’s expected payoffs, or if the state/action spaces are richer. Characterizing the optimal

timing of disclosure in these two settings is a challenging but interesting follow-up to this work.

As to the anti-transparency result, a relevant and interesting question is: what is the lower

bound of the (relative) precision of a public signal that could improve social welfare once

released in a more general setting, e.g., agents have private signals of heterogeneous precisions?

Some preliminary work suggests that this lower bound is lower and could be substantially lower

than the “average ”precision of people’s private signals.21
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Appendix

Proof of Lemma 2.2.1. By standard Bayesian Nash equilibrium definition and the tie-breaking

rule,

a∗t (hhht ,st)

= argmax
a∈{1,−1}

Eθ (1{θ=a}|hhht ,st) = argmax
a∈{1,−1}

Pr(θ = a|hhht ,st)

=


st if Pr(θ = 1|hhht ,st) = Pr(θ =−1|hhht ,st)

sgn(Pr(θ = 1|hhht ,st)−Pr(θ =−1|hhht ,st)) otherwise
.

By Bayes’ Rule and uniform prior,

Pr(θ = 1|hhht ,st) =
Pr(hhht ,st |θ = 1)

Pr(hhht ,st |θ = 1)+Pr(hhht ,st |θ =−1)
= 1−Pr(θ =−1|hhht ,st)

⇒ sgn(Pr(θ = 1|hhht ,st)−Pr(θ =−1|hhht ,st)) = sgn(Pr(hhht ,st |θ = 1)−Pr(hhht ,st |θ =−1))

⇒ a∗t (hhht ,st)

=


st if Pr(hhht ,st |θ = 1) = Pr(hhht ,st |θ =−1)

sgn(Pr(hhht ,st |θ = 1)−Pr(hhht ,st |θ =−1)) otherwise
.
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By definition of wt and independence between st and hhht ,

Pr(hhht ,st |θ = 1)
Pr(hhht ,st |θ =−1)

=
Pr(hhht |θ = 1)

Pr(hhht |θ =−1)
Pr(st |θ = 1)

Pr(st |θ =−1)

= (
q

1−q
)wt (

q
1−q

)st = (
q

1−q
)wt+st , where q

1−q
> 1

⇒ sgn(Pr(hhht ,st |θ = 1)−Pr(hhht ,st |θ =−1)) = sgn(wt + st) =


st or 0 if |wt | ≤ 1

sgn(wt) otherwise
,

hence we get a∗t (hhht ,st) characterized in the Lemma.

On the other hand, apparently w∗1 = 0 and by definition of w∗t ,

(
q

1−q
)w
∗
t+1 =

Pr(hhh∗t+1|θ = 1)
Pr(hhh∗t+1|θ =−1)

=
Pr(hhh∗t ,at |θ = 1)

Pr(hhh∗t ,at |θ =−1)

=
Pr(hhh∗t |θ = 1)

Pr(hhh∗t |θ =−1)
Pr(a∗t |hhh∗t ,θ = 1)

Pr(a∗t |hhh∗t ,θ =−1)

= (
q

1−q
)w
∗
t

Pr(a∗t |hhh∗t ,θ = 1)
Pr(a∗t |hhh∗t ,θ =−1)

.

Meanwhile, if |w∗t | ≤ 1,

a∗t = st ⇒
Pr(a∗t |hhh∗t ,θ = 1)

Pr(a∗t |hhh∗t ,θ =−1)
=

Pr(st |hhh∗t ,θ = 1)
Pr(st |hhh∗t ,θ =−1)

=
Pr(st |θ = 1)

Pr(st |θ =−1)
= (

q
1−q

)st

⇒ w∗t+1 = w∗t + st = w∗t +a∗t ;

otherwise,

a∗t = sgn(w∗t )⇒
Pr(a∗t |hhh∗t ,θ = 1)

Pr(a∗t |hhh∗t ,θ =−1)
=

Pr(sgn(w∗t )|hhh∗t ,θ = 1)
Pr(sgn(w∗t )|hhh∗t ,θ =−1)

= 1

⇒ w∗t+1 = w∗t .

Proof of Lemma 2.2.2. According to Lemma 2.1 and Definition 2.1, a herd on action sgn(w∗t )
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starts at period t if and only if |w∗t |> 1. Note that

∀t ∈ N∗,
∣∣w∗t ∣∣≤ 1⇒


∀k ∈ N∗, a∗2k−1 +a∗2k = 0

∀t ∈ N∗, a∗t = st

⇒∀k ∈ N∗, s2k−1 + s2k = 0.

Hence a herd starts eventually unless s2k−1 + s2k = 0, ∀k ∈ N∗. However,

Pr(∀k ∈ N∗, s2k−1 =−s2k)≤ 1−Pr(∃k′ ∈ N∗ s.t. sk′ = sk′+1 = sk′+2)

= 1−Eθ [Pr(∃k′ ∈ N∗ s.t. sk′ = sk′+1 = sk′+2|θ)] = 1−1 = 0,

where ∀θ ∈Θ, Pr(∃k′ ∈N∗ s.t. sk′ = sk′+1 = sk′+2|θ) = 1 due to {st}∞t=1 being conditional i.i.d. and Law

of Large Numbers.

Proof of Lemma 2.2.3. By Lemma 2.1, a herd starts in equilibrium when |w∗t | > 1 and the herd

is correct(wrong) if w∗t > 1(< −1). Then we can immediately see that α1 = 0 and α7 = 1. For the

remaining cases, let us look into the transition of wθ
t . (Recall that we have assumed that the

realization of θ is 1 without loss of generality)

If w1 = 0,

a∗1 = s1 and w∗2 = s1

⇒ Pr(w∗2 = 1|w1 = 0) = Pr(s1 = 1) = q,

Pr(w∗2 =−1|w1 = 0) = Pr(s1 =−1) = 1−q.

Note that ∀T < ∞ (especially T = 2 here),

p(x)≡ Pr(plimt→∞ a∗t (hhh
∗
t ,st) = θ |w1 = x)

= Pr(plimt→∞ a∗t (hhh
∗
t ,st) = θ |wT = x)

since the subgame starting from agent T is identical to the original game, thus we have α4 =
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(1−q)α2 +qα6. Through similar arguments,

Pr(w∗2 = 2|w1 = 1) = q and Pr(w∗2 = 0|w1 = 1) = 1−q

⇒ α6 = qα7 +(1−q)α4 = q+(1−q)α4;

Pr(w∗2 = 0|w1 =−1) = q and Pr(w∗2 =−2|w1 =−1) = 1−q

⇒ α2 = qα4 +(1−q)α1 = qα4.

Solve the three linear equations together to get α2, α4 and α6 as stated in the Lemma.

If w1 = x ∈ (−1,0),

a∗1 = s1 and w∗2 = x+ s1

⇒ Pr(w∗2 = x+1 ∈ (0,1)|w1 = x) = q,

Pr(w∗2 = x−1 <−1|w1 = x) = 1−q

⇒ α3 = qα5 +(1−q)α1 = qα5;

through similar argument,

Pr(w∗2 = x′+1 > 1|w1 = x′ ∈ (0,1)) = q,

Pr(w∗2 = x′−1 ∈ (−1,0)|w1 = x′ ∈ (0,1)) = 1−q

⇒ α5 = qα7 +(1−q)α3 = q+(1−q)α3.

Solve the two linear equations together to get α3 and α5 as stated in the Lemma.

Combing all these linear equations together, we have exactly Qααα === ααα. In other words, ααα is

an eigenvector of P associated with eigenvalue 1, with restriction that α7 = 1 and α1 = 0.

Proof of Lemma 2.2.4. πππ1 = (0,0,0,1,0,0,0) simply because w∗1 = 0. As to the transition between

w∗t to w∗t+1, it is identical to the transition between w∗1 and w∗2 illustrated in the proof of Lemma
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2.3:

Pr(w∗t+1 > 1|wt > 1) = 1, Pr(w∗t+1 <−1|w∗t <−1) = 1;

Pr(w∗t+1 = 1|w∗t = 0) = q, Pr(w∗t+1 =−1|w∗t = 0) = 1−q;

Pr(w∗t+1 = 2|w∗t = 1) = q, Pr(w∗t+1 = 0|w∗t = 1) = 1−q;

Pr(w∗t+1 = 0|w∗t =−1) = q, Pr(w∗t+1 =−2|w∗t = 0) = 1−q;

Pr(w∗t+1 ∈ (0,1)|w∗t ∈ (−1,0)) = q, Pr(w∗t+1 <−1|w∗t ∈ (−1,0)) = 1−q;

Pr(w∗t+1 > 1|w∗t ∈ (0,1)) = q, Pr(w∗t+1 ∈ (−1,0)|w∗t ∈ (0,1)) = 1−q.

Therefore the transition matrix is exactly matrix Q, which is indeed monotone according to

Definition 2.2.

Note that by Lemma 2.1, w∗t can only take values ±2, ±1 and 0, hence πt
3 = πt

5 = 0 for any t and

w∗t > 1(<−1) indicates w∗t = 2(−2).

Proof of Lemma 2.2.5. By definition of public beliefs,

(
q

1−q
)wτ =

Pr(hhhτ |θ = 1)
Pr(hhhτ |θ =−1)

and (
q

1−q
)w̃τ =

Pr(hhhτ , s̃|θ = 1)
Pr(hhhτ , s̃|θ =−1)

.

Since hhht and s̃ are independent,

(
q

1−q
)w̃τ =

Pr(hhhτ , s̃|θ = 1)
Pr(hhhτ , s̃|θ =−1)

=
Pr(hhhτ |θ = 1)

Pr(hhhτ |θ =−1)
· Pr(s̃|θ = 1)

Pr(s̃|θ =−1)

= (
q

1−q
)wτ (

q̃
1− q̃

)s̃ = (
q

1−q
)wτ (

q
1−q

)λ s̃.

Hence we have w̃τ = wτ +λ s̃.

On the other hand,
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plimT→∞

1
T

T

∑
t=1

u(a∗t ;θ = 1|w̃τ )

= plimT ′→∞

1
T ′

τ+T ′

∑
t=τ

u(a∗t ;θ = 1|w̃τ )

= Pr(plimt→∞ a∗t = 1|w1 = w̃τ ) = p(w̃τ ),

where the last equation comes from Lemma 2.3. Finally, the (unconditional) expected average

payoff is just

v(τ;λ ) = Ew̃τ
p(w̃τ ) = Ewτ ,s̃[p(wτ +λ s̃)].

Proof of Proposition 2.2.1. For τ ≥ 1, let π̃ππ
τ = (π̃τ

1 , π̃
τ
2 , π̃

τ
3 , π̃

τ
4 , π̃

τ
5 , π̃

τ
6 , π̃

τ
7 ) be the probability vector of

w̃τ on the partition P introduced in Lemma 2.3. Then by Lemma 2.3 we have

Ew̃τ
(p(w̃τ )) = π̃ππ

τ ·ααα.

Note that the public information is irrelevant for agents before period τ so in equilibrium w∗t for

t ≤ τ still evolves according to Lemma 2.4. Bearing in mind as well that s̃ is independent of w∗t

and distributed according to

Pr{s̃ = 1|θ = 1}= Pr{s̃ =−1|θ =−1}= q̃,

we can derive π̃ππ
τ explicitly and prove the proposition case by case on λ as follows: (we then

omit the argument λ in v(·; ·) in each case)
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Case I (0 < λ < 1⇔ 1
2 < q̃ < q)

w̃1 = w∗1 +λ s̃ and πππ
1 = (0,0,0,1,0,0,0)

⇒ π̃ππ
1 = (0,0,1− q̃,0, q̃,0,0)

⇒ v(1) = q̃α5 +(1− q̃)α3 =
q̃q+q2(1− q̃)
1−q(1−q)

<
2q2−q3

1−q(1−q)
< α4;

w̃2 = w∗2 +λ s̃ and π
2 = (0,1−q,0,0,0,0,q,0)

⇒ π̃ππ
1 = ((1−q)(1− q̃),0,(1−q)q̃,0,q(1− q̃),0,qq̃)

⇒ v(2) = (1−q)q̃α3 +q(1− q̃)α5 +qq̃ =
qq̃+q2(1− q̃)
1−q(1−q)

= v(1)< α4;

w̃τ = w∗τ +λ s̃ and πππ
τ = 2q(1−q)πππτ−2 +((1−q)2,0,0,0,0,0,q2) for τ ≥ 3

⇒ π̃ππ
τ = 2q(1−q)π̃ππτ−2 +((1−q)2,0,0,0,0,0,q2);

⇒ v(τ) = 2q(1−q)v(τ−2)+q2

⇒ sgn(v(τ +1)− v(τ)) = sgn(v(τ−1)− v(τ−2)).

If v(τ−2)< α4 =
q2

1−2q(1−q)

⇒ v(τ−2)< 2q(1−q)v(τ−2)+q2 = v(τ)< 2q(1−q)α4 +q2 = α4

⇒ v(1) = v(2)< v(3) = v(4)< α4.

Recursively we have v(1) = v(2)< v(3) = v(4)< v(5) = v(6)< · · · and v(τ)< α4 for any τ ≥ 1.
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Case II (λ = 1⇔ q̃ = q)

w̃1 = w∗1 +λ s̃ and πππ
1 = (0,0,0,1,0,0,0)

⇒ π̃ππ
1 = (0,1− q̃,0,0,0, q̃,0)

⇒ v(1) = q̃α6 +(1− q̃)α2 = q(q+
(1−q)q2

1−2q(1−q)
)+

(1−q)q3

1−2q(1−q)
= α4;

w̃2 = w∗2 +λ s̃ and π
2 = (0,1−q,0,0,0,0,q,0)

⇒ π̃ππ
2 = ((1−q)(1− q̃),0,0,(1−q)q̃+q(1− q̃),0, ,0,qq̃)

⇒ v(2) = [(1−q)q̃+q(1− q̃)]α4 +qq̃ = 2q(1−q)α4 +q2 = α4;

w̃τ = w∗τ +λ s̃ and πππ
τ = 2q(1−q)πππτ−2 +((1−q)2,0,0,0,0,0,q2) for τ ≥ 3

⇒ π̃ππ
τ = 2q(1−q)π̃ππτ−2 +((1− q̃)(1−q)2, q̃(1−q)2,0,0,0,(1− q̃)q2, q̃q2)

⇒ v(τ) = 2q(1−q)v(τ−2)+ q̃(1−q)2α2 +(1− q̃)q2
α6 + q̃q2 =

2q(1−q)v(τ−2)+(1−q)qα4 +q3 > 2q(1−q)v(τ−2)+q2

⇒ sgn(v(τ +1)− v(τ)) = sgn(v(τ−1)− v(τ−2)).

If v(τ−2)≥ α4⇒ v(τ)> 2q(1−q)v(τ−2)+q2 ≥ α4

⇒ v(4) = v(3)> v(2) = v(1) = α4.

Recursively we have α4 = v(1) = v(2)< v(3) = v(4)< v(5) = v(6)< · · · .
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Case III (1 < λ < 2⇔ q < q̃ < q2

q2+(1−q)2 = α4)

w̃1 = w∗1 +λ s̃ and πππ
1 = (0,0,0,1,0,0,0)

⇒ π̃ππ
1 = (1− q̃,0,0,0,0,0, q̃)

⇒ v(1) = q̃ < α4;

w̃2 = w∗2 +λ s̃ and π
2 = (0,1−q,0,0,0,0,q,0)

⇒ π̃ππ
2 = ((1−q)(1− q̃),0,q(1− q̃),0,(1−q)q̃,0,qq̃)

⇒ v(2) = (1−q)q̃α5 +q(1− q̃)α3 +qq̃ =
2q(1−q)q̃+q3

1−q(1−q)

⇒ v(2)− v(1) =
q3(1− q̃)− (1−q)3q̃

1−q(1−q)
> 0 as q̃ < α4 <

q3

q3 +(1−q)3
;

w̃τ = w∗τ +λ s̃ and πππ
τ = 2q(1−q)πππτ−2 +((1−q)2,0,0,0,0,0,q2) for τ ≥ 3

⇒ π̃ππ
τ = 2q(1−q)π̃ππτ−2 +((1− q̃)(1−q)2,0, q̃(1−q)2,0,(1− q̃)q2,0, q̃q2)

⇒ v(τ) = 2q(1−q)v(τ−2)+ q̃(1−q)2α3 +(1− q̃)q2
α5 + q̃q2

⇒ sgn(v(τ +1)− v(τ)) = sgn(v(τ−1)− v(τ−2)).

v(3) = 2q(1−q)v(1)+ q̃(1−q)2α3 +(1− q̃)q2
α5 + q̃q2 with v(1) = q̃

⇒ v(3)− v(2) = q(1−q)q̃− q̃(1−q)q = 0⇒ v(3) = v(2)> v(1).

Recursively we have v(1)< v(2) = v(3)< v(4) = v(5)< v(6)< · · · . As the sequence {v(τ)}∞
τ=1 is weakly

monotonic and bounded between 0 and 1, limτ→∞ v(τ) exists and it satisfies

lim
τ→∞

v(τ) = 2q(1−q) lim
τ→∞

v(τ)+ q̃(1−q)2α3 +(1− q̃)q2
α5 + q̃q2

⇒ lim
τ→∞

v(τ) =
q̃(1−q)2α3 +(1− q̃)q2α5 + q̃q2

1−2q(1−q)
>

q(1−q)2α3 +(1−q)q2α5 +q3

1−2q(1−q)
>

q2

1−2q(1−q)
= α4.

Thus ∃T < ∞ s.t. v(T )> α4.
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Case IV (λ = 2⇔ q̃ = q2

q2+(1−q)2 = α4)

Similar to Case III, we have v(1) = q̃ = α4;

w̃2 = w∗2 +λ s̃ and π
2 = (0,1−q,0,0,0,0,q,0)

⇒ π̃ππ
2 = ((1−q)(1− q̃),q(1− q̃),0,0,0,(1−q)q̃,qq̃)

⇒ v(2) = (1−q)q̃α6 +q(1− q̃)α2 +qq̃ = (1−q)α4α6 +q(1−α4)α2 +qα4 =

α4[α4 +2q(1−α4)]> α4;

w̃τ = w∗τ +λ s̃ and πππ
τ = 2q(1−q)πππτ−2 +((1−q)2,0,0,0,0,0,q2) for τ ≥ 3

⇒ π̃ππ
τ = 2q(1−q)π̃ππτ−2 +((1− q̃)(1−q)2,0,0, q̃(1−q)2 +(1− q̃)q2,0,0, q̃q2)

⇒ v(τ) = 2q(1−q)v(τ−2)+ [q̃(1−q)2 +(1− q̃)q2]α4 + q̃q2

⇒ sgn(v(τ +1)− v(τ)) = sgn(v(τ−1)− v(τ−2)).

v(3) = 2q(1−q)v(1)+ [q̃(1−q)2 +(1− q̃)q2]α4 + q̃q2 with v(1) = q̃ = α4

⇒ v(3) = [2q(1−q)+α4(1−q)2 +(1−α4)q
2 +q2]α4 = v(2)> v(1).

Recursively we have α4 = v(1)< v(2) = v(3)< v(4) = v(5)< v(6) = · · · .

Case V (2 < λ < 3⇔ α4 = q2

q2+(1−q)2 < q̃ < q3

q3+(1−q)3 )

Similar to Case III, we have v(1) = q̃ > α4;

w̃2 = w∗2 +λ s̃ and π
2 = (0,1−q,0,0,0,0,q,0)

⇒ π̃ππ
2 = ((1− q̃),0,0,0,0,0, q̃)

⇒ v(2) = q̃ = v(1);

w̃τ = w∗τ +λ s̃ and πππ
τ = 2q(1−q)πππτ−2 +((1−q)2,0,0,0,0,0,q2) for τ ≥ 3

⇒ π̃ππ
τ = 2q(1−q)π̃ππτ−2 +((1− q̃)(1−q)2,0,(1− q̃)q2,0, q̃(1−q)2,0, q̃q2)

⇒ v(τ) = 2q(1−q)U(τ−2)+ q̃(1−q)2α5 +(1− q̃)q2
α3 + q̃q2

⇒ sgn(v(τ +1)− v(τ)) = sgn(v(τ−1)− v(τ−2)).

v(3) = 2q(1−q)v(1)+ q̃(1−q)2α5 +(1− q̃)q2
α3 + q̃q2 with v(1) = q̃

⇒ v(3)− q̃ =−(1−q)2q̃+α5(1−q)2q̃+(1− q̃)α3q2 =
q4(1− q̃)− (1−q)4q̃

1−q(1−q)
> 0

⇒ v(3)> q̃ = v(2) = v(1).
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Recursively we have α4 < v(1) = v(2)< v(3) = v(4)< v(5) = v(6)< · · · .

Case VI (λ = 3⇔ q̃ = q3

q3+(1−q)3 )

Similar to Case V, we have v(1) = v(2) = q̃ > α4;

w̃τ = w∗τ +λ s̃ and πππ
τ = 2q(1−q)πππτ−2 +((1−q)2,0,0,0,0,0,q2) for τ ≥ 3

⇒ π̃ππ
τ = 2q(1−q)π̃ππτ−2 +((1− q̃)(1−q)2,(1− q̃)q2,0,0,0, q̃(1−q)2, q̃q2)

⇒ v(τ) = 2q(1−q)v(τ−2)+ q̃(1−q)2α6 +(1− q̃)q2
α2 + q̃q2

⇒ sgn(v(τ +1)− v(τ)) = sgn(v(τ−1)− v(τ−2)).

v(3) = 2q(1−q)v(1)+ q̃(1−q)2α6 +(1− q̃)q2
α2 + q̃q2 with v(1) = q̃

⇒ v(3)− q̃ =−(1−q)2q̃+α6(1−q)2q̃+(1− q̃)α2q2 =
q5(1− q̃)− (1−q)5q̃

1−2q(1−q)
> 0

⇒ v(3)> q̃ = v(2) = v(1).

Recursively we have α4 < v(1) = v(2)< v(3) = v(4)< v(5) = v(6)< · · · .

Case VII (λ > 3⇔ q̃ > q3

q3+(1−q)3 )

∀τ ≥ 1, w̃τ = w∗τ +λ s̃ with |w∗τ | ≤ 2 by Lemma 2.1

⇒ |w̃τ |> 1 and sgn(w̃τ ) = sgn(s̃) as λ > 3

⇒ π̃ππ
τ = ((1− q̃),0,0,0,0,0, q̃)

⇒ v(τ) = q̃ > α4.

Thus we have α4 < v(1) = v(2) = v(3) = v(4) = · · · .

Proof of Proposition 2.2.2. Firstly, note that before the period when the social planner would re-

lease the signal according to his releasing strategy, the equilibrium public belief w∗t still evolves

according to Lemma 2.1 and w∗t ∈ {−2,−1,0,1,2}. Thus for the social planner, whether to release

the public signal or not depends on just five scenarios:

wt = 2s̃, wt = s̃, wt = 0, wt =−s̃, wt =−2s̃.

Note also that once the public signal is released or fully inferred by the agents, the subgame
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after that is just the standard case without public information but with an initial public belief

ŵt = w∗t +λ s̃, and social welfare is just p(ŵt) according to Lemma 2.3 as a herd starts eventually.

Suppose agents believe g(s̃,wt) = 0 is the releasing strategy of the social planner:

If w∗t =±2s̃

⇒ releasing s̃ would not break down the herd since 0 < λ < 1

⇒makes no difference.

If w∗t = 0

⇒ releasing s̃ makes ŵt = λ s̃

⇒ g(λ s̃) = q̃α5 +(1− q̃)α3 < α4 as q̃ < q;

without release, ŵt = w∗t = 0

⇒ g(0) = α4⇒ not a profitable deviation.

If w∗t = s̃

⇒ releasing s̃ makes ŵt = (λ +1)s̃

⇒ p(ŵt) =
q̃q

q̃q+(1−q)(1− q̃)
α7 +

(1− q̃)(1−q)
q̃q+(1−q)(1− q̃)

α1 =
q̃q

q̃q+(1−q)(1− q̃)
;

without release, ŵt = w∗t = s̃

⇒ p(ŵt) =
q̃q

q̃q+(1−q)(1− q̃)
α6 +

(1− q̃)(1−q)
q̃q+(1−q)(1− q̃)

α2

>
q̃q

q̃q+(1−q)(1− q̃)
as q̃ < q

⇒ not a profitable deviation.
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If w∗t =−s̃

⇒ releasing s̃ makes ŵt = (λ −1)s̃

⇒ p(ŵt) =
q̃(1−q)

q̃(1−q)+q(1− q̃)
α3 +

q(1− q̃)
q̃(1−q)+q(1− q̃)

α5;

without release, ŵt = w∗t =−s̃

⇒ p(ŵt) =
q̃(1−q)

q̃(1−q)+q(1− q̃)
α2 +

q(1− q̃)
q̃(1−q)+q(1− q̃)

α6;

q̃(1−q)
q̃(1−q)+q(1− q̃)

(α2−α3)−
q(1− q̃)

q̃(1−q)+q(1− q̃)
(α5−α6)

=
q

q̃(1−q)+q(1− q̃)
q

1−q(1−q)
(1−q)2

1−2q(1−q)
[q2(1− q̃)− q̃(1−q)2]

> 0 as q̃ <
q2

q2 +(1−q)2

⇒ not a profitable deviation.

Therefore g1(s̃,wt) = 0 is indeed an equilibrium strategy of the social planner.

Suppose agents believe g(s̃,wt) = 1{wt=±2s̃} is the releasing strategy of the social planner:

If releasing, ŵt = w∗t +λ s̃ and |ŵt |> 1

⇒ p(ŵt) = sgn(ŵt) = sgn(w∗t );

if no release

⇒ by Bayes Rule, ŵt = w∗t −λ s̃ and |ŵt |> 1

⇒ p(ŵt) = sgn(ŵt) = sgn(w∗t )

⇒makes no difference;

if not to release when w∗t =±2s̃ but releasing later at t′ > t

⇒ by Bayes Rule, ŵk = w∗t −λ s̃ and |ŵk|> 1 for k = t, t +1, . . . , t′−1,

ŵt ′ = ŵt ′−1 +2λ s̃ = w∗t +λ s̃ and |ŵt ′ |> 1

⇒ p(ŵt ′) = sgn(ŵt ′) = sgn(w∗t )

⇒makes no difference.

Note that to release earlier at t′′ < t when |wt ′′ | ≤ 1 is also not profitable because the original

strategy at t′′ is not to release until wt =±2s̃ later, which is equivalent to not to release at all since

λ < 1 and has been shown above to give better outcome. Therefore g3(s̃,wt) = 1{wt=±2s̃} is indeed
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an equilibrium strategy of the social planner.

Suppose agents believe g(s̃,wt)≡ 1{wt=0} is the releasing strategy of the social planner:

If releasing, ŵt = λ s̃

⇒ p(ŵt) = q̃α5 +(1− q̃)α3 < α4;

if no release at all

⇒ by non-excessive belief, ŵt = 0 and p(0) = α4;

⇒ it is a profitable deviation.

Therefore g(s̃,wt)≡ 1{wt=0} is not an equilibrium strategy of the social planner.

Suppose agents believe g(s̃,wt) = 1{wt=s̃} is the releasing strategy of the social planner:

If releasing, ŵt = (1+λ )s̃

⇒ p(ŵt) =
q̃q

q̃q+(1−q)(1− q̃)
;

if no release

⇒ by Bayes Rule, ŵt = (1−λ )s̃

⇒ p(ŵt) =
q̃q

q̃q+(1−q)(1− q̃)
α5 +

(1− q̃)(1−q)
q̃q+(1−q)(1− q̃)

α3

>
q̃q

q̃q+(1−q)(1− q̃)
as q̃ < q

⇒ it is a profitable deviation.

Therefore g(s̃,wt) = 1{wt=s̃} is not an equilibrium strategy of the social planner.
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Suppose agents believe g(s̃,wt) = 1{wt=−s̃} is the releasing strategy of the social planner:

If releasing, ŵt = (λ −1)s̃

⇒ p(ŵt) =
q̃(1−q)

q̃(1−q)+q(1− q̃)
α3 +

q(1− q̃)
q̃(1−q)+q(1− q̃)

α5;

if no release

⇒ by Bayes Rule, ŵt =−(1+λ )s̃

⇒ p(ŵt) =
q̃(1−q)

q̃(1−q)+q(1− q̃)
α1 +

q(1− q̃)
q̃(1−q)+q(1− q̃)

α7

=
q(1− q̃)

q̃(1−q)+q(1− q̃)
<

q̃(1−q)
q̃(1−q)+q(1− q̃)

α3 +
q(1− q̃)

q̃(1−q)+q(1− q̃)
α5 as q̃ < q

⇒ not a profitable deviation;

if not to release when wt =−s̃ but releasing later at t′ > t

⇒ by Bayes Rule, ŵk =−(1+λ )s̃ for k = t, t +1, . . . , t′−1 and

ŵt ′ = ŵt ′−1 +2λ s̃ = (λ −1)s̃

⇒ p(ŵt ′) =
q̃(1−q)

q̃(1−q)+q(1− q̃)
α3 +

q(1− q̃)
q̃(1−q)+q(1− q̃)

α5⇒makes no difference;

if instead releasing earlier at t′′ < t when wt ′′ = 0

⇒ ŵt ′′ = λ s̃ and p(ŵt ′′) = q̃α5 +(1− q̃)α3;

at t′′ the original strategy is not to release until wt =−s̃ later

⇒ agents can perfectly infer s̃ at t′′+1 since wt ′′+1 =±1

⇒ ŵt ′′+1 = wt ′′+1 +λ s̃ and

p(ŵt ′′+1) = q̃[qα7 +(1−q)α3]+ (1− q̃)[qα5 +(1−q)α1] = q̃α5 +(1− q̃)α3

⇒makes no difference;

if instead releasing earlier at t′′′ < t when wt ′′′ = s̃

⇒ ŵt ′′′ = (1+λ )s̃ and p(ŵt ′′′) =
q̃q

q̃q+(1−q)(1− q̃)
;

at t′′′ the original strategy is not to release but agents can infer s̃ = wt ′′′

⇒makes no difference.

Therefore g(s̃,wt) = 1{wt=−s̃} is indeed an equilibrium strategy of the social planner.
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Proof of Claim 2.3.1. We start by calculating the discounted sum of people’s expected payoffs

without any public information, V . Without loss of generality, we assume θ = 1 and use EUt ≡

Eu(a∗t ;θ = 1) to simplify the notation. Then V = (1−δ )∑
∞
t=1 δ t−1EUt .

Recursive calculation similar to the proof of Proposition 2.1 yields

EU1 = EU2 = q,

EU3 = EU4 = q2 +2q(1−q)EU1,

· · ·

EU2k+1 = EU2k+2 = q2 +2q(1−q)EU2k−1.

Hence

EU2k+1 = [2q(1−q)]k[q− q2

(1−q)2 +q2 ]+
q2

(1−q)2 +q2 ;

V = (1−δ )
∞

∑
k=0

(δ 2k +δ
2k+1)EU2k+1 =

δ 2q2 +(1−δ 2)q
1−δ 22q(1−q)

> q.

If the public signal is released at period 1,

EU1 = q,

EU2 = EU3 = q2 +2q(1−q)EU1,

· · ·

EU2k = EU2k+1 = q2 +2q(1−q)EU2k−1.

Compared to the case without public information, we have

V (1) =
V − (1−δ )q

δ
>V as V > q.

Clearly there is no difference between releasing at period 1 and at period 2, so V (2) =V (1)>V .
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If the public signal is released at period 3,

EU1 = EU2 = q;

with probability q3, a correct herd starts after the release;

with probability (1−q)3, a wrong herd starts after the release;

with probability 3q(1−q), it is as if only the public signal is released for agents t ≥ 3.

Hence

V (3) = (1−δ )(q+δq)+(1−δ )q3 δ 2

1−δ
+3q(1−q)δ 2V (1)

= (1−δ
2)q+q3

δ
2 +3q(1−q)δ 2V (1).

If the public signal is released at period 4,

EU1 = EU2 = q; EU3 = q2 +2q(1−q)EU1;

with prob. q3, a correct herd starts after the release;

with prob. (1−q)3, a wrong herd starts after the release;

with prob. q(1−q), it is as if only the public signal is released for agents t ≥ 4.

with prob. 2q(1−q), the public signal is as if released after one action for agents t ≥ 4.

Hence

V (4) = (1−δ )(q+δq+δ
2q2)+(1−δ )q3 δ 3

1−δ
+q(1−q)δ 3V (1)+2q(1−q)δ 2V (2)

= (1−δ
2)q+(1−δ )δ 2q2 +q3

δ
3 +2q(1−q)(δ 2 +

δ 3

2
)V (1).

Therefore,

V (3)−V (4) = q3
δ

2(1−δ )− (1−δ )δ 2q2 +q(1−q)δ 2(1−δ )V (1)

= q(1−q)δ 2(1−δ )[V (1)−q]> 0 as V (1)>V > q.
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Proof of Claim 2.3.2. Note that there would still be a herd eventually due to bounded private

beliefs, so the ex-ante average payoff of the population is again the probability of a correct herd

eventually.

Let us first calculate G, the probability of a correct herd eventually without any public

information. Using similar recursive arguments as in the proof of Proposition 2.1 but with more

tedious algebra, we have

G = 6q(
1−q

2
)2G+q2 +4q

1−q
2

q
1+q

2
+4q2(

1−q
2

)2(A+B),

where A and B are given by


A = q 1+q

2 +q 1−q
2 A+(1−q)qB

B = (1+q
2 )2 + 1+q

2
1−q

2 A+ 1−q
2 qB

.

A and B are in fact the probabilities of a correct herd conditional on the event that a trap has

started corresponding to two different tie-breaking situations.

It is easy to see that G(1) = G(2) = G, because without the public signal the first two agents

always follow their own private signals and releasing s̃ is just "adding" an agent who always fol-

low her signal, which does not affect social welfare from an ex-ante perspective. By exploring

all possible situations of the first two actions, the value of G(3) can be calculated as follows:

G(3) = q2[q+2
1−q

2
(

1+q
2

+
1−q

2
A)]+2(

1−q
2

)2q2B

+2(
1−q

2
)2qG+4q

1−q
2

[q(
1+q

2
+

1−q
2

A)+
1−q

2
G+

1−q
2

qB]

⇒ G(3)−G = q2(1−q)[
1+q

2
+

1−q
2

(A+B)−1]> 0 as A+B > 1.

For G(4) and G(5), if the first three actions cancel each other then it is as if the public signal were

released three periods earlier; otherwise either a trap or a herd starts and calculations similar to
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those above can be applied. Indeed we have

G(4) = 6q(
1−q

2
)2G(1)+2q2(

1−q
2

)2B+q2[q+2
1−q

2
(

1+q
2

+
1−q

2
A)]

+4q3 1−q
2

+4q2(
1−q

2
)2A

+4q2(
1−q

2
)2[q+2

1−q
2

(
1−q

2
G+

1−q
2

qB+q
1+q

2
+q

1−q
2

A)]

+4(
1−q

2
)3q[

1−q
2

qG+q(
1−q

2
G+

1−q
2

qB+q
1+q

2
+q

1−q
2

A)]

+4(
1−q

2
)2q{qB+

1−q
2

[
1−q

2
qG+q(

1−q
2

G+
1−q

2
qB+q

1+q
2

+q
1−q

2
A)]};

G(5) = 6q(
1−q

2
)2G(2)+2q2(

1−q
2

)2B+q2[q+2
1−q

2
(

1+q
2

+
1−q

2
A)]

+4(
1−q

2
)3

1−q
2

q2G

+4(
1−q

2
)q2 1−q

2
(q

1+q
2

+q
1−q

2
A+q

1−q
2

B+
1−q

2
C)

+4(
1−q

2
)q2 1+q

2
[q+

1−q
2

+
1−q

2
(

1−q
2

A+
1−q

2
)]

+4(
1−q

2
)2q[q(q

1+q
2

+q
1−q

2
A+

1−q
2

qB+
1−q

2
C)+(1−q)q2B],

where C ≡ 1−q
2 G+q 1+q

2 +q 1−q
2 A+ 1−q

2 qB.

It can be verified that

sgn(G(4)−G(5)) = sgn(q2(A+B−1)+3
1−q

2
(1−G)− 1+q

2
).

When q = 1 or 1
3 ,

A = B = G = 1 or 1
3

⇒ q2(A+B−1)+3
1−q

2
(1−G)− 1+q

2
= 0;

Meanwhile, q2(A+B−1)+3 1−q
2 (1−G)− 1+q

2 is in fact convex in q on (1
3 ,1), therefore

q2(A+B−1)+3
1−q

2
(1−G)− 1+q

2
> 0 and G(4)> G(5).
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