
Adapting to Misspecification

Timothy Armstrong, Patrick Kline, and Liyang Sun∗

February 2023

Abstract

Empirical research typically involves an efficiency-robustness tradeoff. A re-

searcher seeking to estimate a scalar parameter can invoke strong assumptions to

motivate a restricted estimator that is precise but may be heavily biased if the

assumptions are violated, or they can relax some of these assumptions to motivate

a more variable unrestricted estimator that is asymptotically unbiased. When a

bound on the bias of the restricted estimator is available, it is optimal to shrink the

unrestricted estimator towards the restricted estimator. For settings where a bound

is not known, or when that bound may not be sharp, we propose shrinkage esti-

mators that are adaptive: they minimize the percentage increase in worst case risk

relative to an oracle that knows the magnitude of the restricted estimator’s bias.

We show how to compute the adaptive estimator by solving for a least favorable

prior in a weighted convex minimax problem. A simple lookup table is provided for

computing the adaptive estimates from the restricted and unrestricted estimates,

their standard errors, and their correlation. We revisit several influential empirical

papers and study how estimates of economic parameters change when adapting to

misspecification.
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1 Introduction

Remember that all models are wrong; the practical question is how wrong do

they have to be to not be useful. – George Box (1987)

Empirical research is typically characterized by a robustness-efficiency tradeoff. The

researcher can either invoke strong assumptions to motivate an estimator that is precise,

but sensitive to violations of model assumptions, or they can employ a less precise esti-

mator that is robust to these violations. Familiar examples include the choice of whether

to add a set of controls to a regression, whether to exploit over-identifying restrictions in

estimation, and whether to allow for endogeneity or measurement error in an explanatory

variable.

As the quote from George Box illustrates, decisions of this nature are often approached

with a degree of pragmatism: imposing a false restriction may be worthwhile if doing so

yields improvements in precision that are not outweighed by corresponding increases in

bias. While precision is readily assessed with asymptotic standard errors, the measure-

ment of bias is less standardized. A popular informal approach is to conduct a series of

“robustness exercises,” whereby estimates from models that add or subtract assumptions

from some baseline are reported and examined for differences. While robustness exercises

of this nature can be informative, they can also be perplexing. How should the results of

this exercise be used to refine the baseline estimate of the parameter of interest?

The traditional answer offered in econometrics textbooks and graduate courses is to

use a specification test to select a model. Specification tests offer a form of asymptotic

insurance against bias: as the degree of misspecification grows large relative to the noise

in the data, the test rejects with near certainty. Yet when biases are modest, as one

might expect of models that serve as useful approximations to the world, the price of this

insurance in terms of increased variance can be exceedingly high.

In this paper we explore an alternative to specification testing: adapting to misspec-

ification. Rather than selecting estimates from a single model, the adaptive approach

combines estimates from multiple models in order to optimize a robustness-efficiency

tradeoff. The robustness notion considered is the procedure’s worst case risk. In the

canonical case of squared error loss, the risk of relying on a potentially misspecified es-

timator is the sum of its variance and the square of its (unknown) bias. Contrasting a

credible unrestricted estimator with a potentially misspecified restricted estimator pro-

vides a noisy estimate of the restricted estimator’s bias. Supposing this noise is normally

distributed, however, the researcher is unable to infer a bound on the bias’s magnitude.

At first blush, it would appear difficult to trade off a combination procedure’s ro-

bustness against its variance when the bias of one of its inputs is potentially infinite.

Consider, however, an oracle who knows a bound B on the magnitude of the restricted

estimator’s bias. Such an oracle, if sufficiently ambiguity averse, will seek an estimator
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that is minimax under this constraint: it is the function of the restricted and unrestricted

estimators that minimizes worst case risk subject to the bound B. We use the shorthand

“B-minimax” to refer to this estimator. It has a particularly simple structure that can

be shown to correspond to a Bayes estimator under a discrete least favorable prior on

the bias. When B = 0, the oracle knows that the unrestricted and restricted estimators

are unbiased for the same parameter; consequently, the 0-minimax estimator amounts to

efficiently weighted GMM. By contrast, when B = ∞, the oracle knows the restricted

estimator is hopelessly biased; hence, the ∞-minimax estimator corresponds to the un-

restricted estimator. For intermediate values of B, the B-minimax estimator involves

a type of shrinkage of the bias estimate towards zero that is used to adjust the GMM

estimator for expected biases.

Now consider a researcher who does not know a bound on the bias. To quantify

the disadvantage this researcher faces relative to the oracle we introduce the notion of

adaptation regret, which gives the percentage increase in maximal risk an estimation

procedure yields over the oracle’s B-minimax procedure. Intuitively, adaptation regret

captures the regret an ambiguity averse researcher feels over having exposed themselves

to an unnecessarily high level of maximal risk. Because adaptation regret depends on the

true bias magnitude, it is unknown at the time of estimation. However, it is typically

possible to deduce the maximal (i.e., the “worst case”) adaptation regret of a procedure

across all possible bias magnitudes ex-ante. Importantly, the worst case adaptation regret

of a procedure can often be bounded even when the bias cannot.

Our proposal for optimizing the robustness-efficiency tradeoff is to employ an adap-

tive estimator that minimizes the worst case adaptation regret. The adaptive procedure

achieves worst case risk near that of the oracle regardless of the true bias magnitude

and can be thought of as a conventional minimax procedure featuring a scaled notion of

risk. The adaptive estimator blends the insurance properties of specification tests with

the potential for efficiency gains when the restriction being considered is approximately

satisfied. Like a pre-test estimator, the risk of the adaptive estimator remains bounded

as the bias grows large. When biases are modest, however, the risk of the adaptive esti-

mator is correspondingly modest. And when biases are negligible, the adaptive estimator

performs nearly as well as could be achieved if prior knowledge of the bias had been

available.

We show that the adaptive estimator takes a simple functional form, amounting to a

GMM estimate plus a “shrinkage” estimate of the scaled bias. As with the B-minimax

estimator, the shrinkage estimate can be viewed as a Bayes estimate of bias involving a

discrete least favorable prior. In contrast with the B-minimax case, however, this prior

requires no input from the researcher and is robust in the sense that the risk of the pro-

cedure remains bounded as the bias grows. An appealing feature of the prior is that it

depends only on the correlation between the restricted and unrestricted estimators. Enu-
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merating these solutions over a grid of correlation coefficients, we provide a lookup table

that facilitates near instantaneous computation of the adaptive combination procedure.

Though the adaptive estimator is conceptually simple and easy to compute using our

lookup table, it is not analytic. Building on the intuition in Efron and Morris (1972), we

explore the potential of a soft-thresholding estimator to approximate the adaptive esti-

mator’s behavior. Interestingly, we find that optimizing the soft threshold to mimic the

oracle yields worst-case regret comparable to the fully adaptive estimator. We also devise

constrained versions of both the adaptive estimator and its soft-thresholding approxima-

tion that limit the increase in maximal risk to a pre-specified level, an extension that

turns out to be important in cases where the restricted estimator is orders of magnitude

more precise than the unrestricted estimator. MATLAB and R code implementing the

adaptive estimator, its soft-thresholding approximation, and their risk limited variants is

provided online at https://lsun20.github.io/MissAdapt.

To illustrate the advantages of adapting to, rather than testing for, misspecification,

we revisit three empirical examples where questions of model specification arise. The

first example, drawn from Dobkin et al. (2018), considers whether to control for a linear

trend in an event study analysis. A second example from Berry et al. (1995) considers

whether to exploit potentially invalid supply side instruments in demand estimation. A

final example, from Angrist and Krueger (1991), considers whether to instrument for

years of schooling when estimating the returns to education.

Related literature Our analysis builds on seminal contributions by Hodges and

Lehmann (1952) and Bickel (1983, 1984) who consider families of robustness-efficiency

tradeoffs defined over pairs of nested models. The main application to misspecified models

generalizes this work by considering a continuum of models, indexed by different degrees

of misspecification. Our general framework also allows for other sets of parameter spaces

indexed by a regularity parameter, although computational constraints limit us to low

dimensional applications in practice.

We follow a large statistics literature on the problem of adaptation, defined as the

search for an estimator that does “nearly as well” as an oracle with additional knowledge

of the problem at hand. Adaptation has been of particular interest in the nonparametric

and high dimensional statistics literature, in which adaptive estimators mimic oracles

that use knowledge of the true smoothness or sparsity structure of a regression function

to pick the correct bandwidth or regressors (see Johnstone (2015), Tsybakov (2009) and

references therein). We focus on the case where “nearly as well as an oracle” is defined

formally as “up to the smallest constant multiplicative factor,” which follows the definition

used in Tsybakov (1998) and leads to simple risk guarantees and statements about relative

efficiency. However, our framework applies to other definitions of this problem, and

we consider in detail an extension that places a bound on worst-case risk under the

unconstrained parameter space.
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While this high dimensional literature has focused on asymptotic rates and constants

(with the papers by Hodges, Lehmann and Bickel cited above standing out as an im-

portant exception), we focus on the exact computation of quantities of interest in low

dimensional settings. In particular, we apply methods for numerical computation of

optimal procedures using least favorable priors similar to those used in the recent econo-

metrics literature, including Chamberlain (2000), Elliott et al. (2015), Müller and Wang

(2019) and Kline and Walters (2019), among others.

To model bias, we work within a local asymptotic misspecification framework of the

sort popularized recently by Andrews et al. (2017). We note, however, that this local

approximation is not needed in linear settings, which include many of our applications. In

particular, the proposed adaptive procedures give global risk guarantees in these settings.

Armstrong and Kolesár (2021) study optimal inference in such settings under a known

constraint on the bias of a potentially misspecified moment condition.

A large literature considers Bayesian and Empirical Bayesian schemes for either model

selection or model averaging (Akaike, 1973; Mallows, 1973; Schwarz, 1978; Hjort and

Claeskens, 2003). In contrast to recent Empirical Bayesian proposals engineered for

forecasting problems (Hansen, 2007; Hansen and Racine, 2012) our analysis considers a

scalar estimand, which renders Stein style shrinkage arguments inapplicable.

2 Preliminaries

Consider a researcher who observes data or initial estimate Y taking values in a set Y ,

following a distribution Pθ,b that depends on unknown parameters (θ, b). We use Eθ,b

to denote expectation under the distribution Pθ,b While we develop many of our results

in a general setting, our main interest is in possibly misspecified models in a normal or

asymptotically normal setting.

Main example. The random variable Y = (YU , YR) consists of an “unrestricted” esti-

mator YU of a scalar parameter θ ∈ R and a “restricted” estimator YR that is predicated

upon additional model assumptions. The additional restrictions required to motivate the

restricted estimator make it less robust but potentially more efficient. To capture this

tradeoff, we assume that YU is asymptotically unbiased for θ while YR may exhibit a bias

of b, stemming from violation of the additional restrictions. We focus on the case where

YR is a single scalar-valued estimate, but we note that extensions to vector-valued b are

possible as well.

It will be convenient to work with YO = YR − YU , which gives an estimate of the bias

that can be used in a test of overidentifying restrictions. We work with the large sample
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approximation(
YU

YO

)
∼ N

((
θ

b

)
,Σ

)
, Σ =

(
ΣU ρ

√
ΣU

√
ΣO

ρ
√
ΣU

√
ΣO ΣO

)
.

The variance matrix Σ is treated as known, which arises as a local approximation to

misspecification. In practice, the asymptotic variance will typically be measured via a

consistent (“misspecification robust”) variance estimate. In the special case where YR is

fully efficient the restriction ρ
√
ΣU

√
ΣO = −ΣO ensues because the unrestricted estimator

equals the restricted estimator plus uncorrelated noise. As famously noted by Hausman

(1978), one can compute ΣO in this case simply by subtracting the squared standard

error of the restricted estimator from that of the unrestricted estimator.

Commonly encountered examples of restricted versus unrestricted specifications in-

clude (respectively) “short” versus “long” regressions containing nested sets of covariates,

estimators imposing linearity/additive separability versus “saturated” specifications, and

estimators motivated by exogeneity/ignorability assumptions versus those motivated by

models accommodating endogeneity.

2.1 Decision rules, loss and risk

A decision rule δ : Y → A maps the data Y to an action a ∈ A. The loss of taking

action a under parameters θ, b is given by the function L(θ, b, a). While it is possible to

analyze many types of loss functions in our framework, we will focus on the familiar case

of estimation of a scalar parameter θ with squared error loss: θ ∈ R, A = R and the loss

function is L(θ, b, θ̂) = (θ̂ − θ)2.

The risk of a decision rule is given by the function

R(θ, b, δ) = Eθ,bL(θ, b, δ(Y )) =

∫
L(θ, b, δ(y)) dPθ,b(y).

A decision δ isminimax over the set C for the parameter (θ, b) if it minimizes the maximum

risk over (θ, b) ∈ C. We are interested in a setting where the researcher entertains multiple

parameter spaces CB, indexed by B ∈ B, which may restrict the parameters (θ, b) in

different ways. The maximum risk over the set CB is

Rmax(B, δ) = sup
(θ,b)∈CB

R(θ, b, δ).

A decision δ is minimax over CB if it minimizes R(B, δ). The minimax risk for the
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parameter space CB is the risk of this decision:

R∗(B) = inf
δ
Rmax(B, δ) = inf

δ
sup

(θ,b)∈CB
R(θ, b, δ)

We use the term B-minimax as shorthand for “minimax over CB” and B-minimax risk

for “minimax risk for the parameter space CB.” At times, we will use “minimax” or

“B-minimax” for “maximum risk of δ over (θ, b) ∈ CB” even when δ is not actually the

minimax decision.

Main example (continued). In our main example, we define CB to place a bound B

on the magnitude of the bias of the restricted estimator:

CB = {(θ, b) : θ ∈ R, b ∈ [−B,B]} = R× [−B,B].

Here, we consider the sets CB for B ∈ [0,∞]. Thus, B = ∞ corresponds to the unre-

stricted parameter space, while B = 0 corresponds to the restricted parameter space.

It follows from the theory of minimax estimation in linear models that the ∞-minimax

estimator (the B-minimax estimator when B = ∞) is YU , while the 0-minimax estima-

tor (the B-minimax estimator when B=0) is YU − (ρ
√
ΣU/

√
ΣO)YO. Inspection of this

formula reveals that the 0-minimax estimator is the efficient GMM estimator exploiting

the restriction b = 0. In the special case where the restricted estimator is fully efficient,

the 0-minimax estimator is additionally equal to the restricted estimator YR = YU + YO.

2.2 Adaptation

The B-minimax risk gives a benchmark for how well we can do using only the constraint

(θ, b) ∈ CB. To achieve this benchmark, the researcher must specify an appropriate

parameter space CB in order to calculate the B-minimax estimator. In our main example,

the parameter spaces are indexed by an a priori bound on the bias magnitude |b| of the
constrained estimator YR.

How much do we have to give up in order to avoid specifying B? Consider an estimator

δ formed without reference to a particular parameter space CB. Relative to an oracle

who knows B and is able to compute the B-minimax estimator, this estimator yields a

proportional increase in worst-case risk over CB given by

A(B, δ) =
Rmax(B, δ)

R∗(B)
.

We refer to A(B, δ) as the adaptation regret of the estimator δ under the set CB. The
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minimum possible worst-case adaptation regret is given by

A∗(B) = inf
δ
sup
B∈B

A(B, δ) = inf
δ
sup
B∈B

Rmax(B, δ)

R∗(B)
. (1)

Following Tsybakov (1998) we refer to A∗(B) as the loss of efficiency under adaptation.

We refer to an estimator that achieves this bound as optimally adaptive, and we use the

notation δadapt for this estimator. To measure the efficiency of an ad hoc estimator δ

relative to the optimally adaptive estimator, we can compute the quantity

A∗(B)
supB∈B A(B, δ)

=
infδ supB∈B A(B, δ)

supB∈B A(B, δ)
.

We refer to this quantity as the adaptive efficiency of the estimator δ.

Main example (continued). In our main example, CB = R × [−B,B], and we seek

estimators that perform well even in the worst case when B = ∞. Thus, we take the set

of values of B under consideration to be B = [0,∞].

Remark 2.1. Note that A(B, δ)−1 = R∗(B)/Rmax(B, δ) gives the relative efficiency

of the estimator δ under the minimax criterion for parameter space CB, according to

the usual definition. Thus, the optimally adaptive estimator obtains the best possible

relative efficiency that can be obtained simultaneously for all B ∈ B, without knowledge
of B, and the loss of efficiency under adaptation gives the reciprocol of this best possible

simultaneous relative efficiency.

Remark 2.2. The general question of adaptation considered in the literature can be

phrased in our setting as obtaining a single estimator δ that is “nearly B-minimax”

for all B ∈ B. We obtain the specific setup above by defining “near” to mean “up to

the smallest uniform multiplicative factor.” This gives a simple and intuitive setting in

which statements about adaptation correspond directly to relative efficiency statements,

as described in Remark 2.1.

While we consider this a useful baseline case, the approach in this paper extends to

other ways of setting up the problem such as constraining increase in the worst case risk

of the estimator to be small relative to the unbiased estimator.

3 Computing adaptive estimators

To compute the optimally adaptive estimator, we must solve (1). As we now show, this

can be phrased as a minimax problem with a scaled loss function, thereby allowing us to

leverage results from the literature on computation of minimax estimators.
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3.1 Adaptation as minimax with scaled loss

Plugging in the definition of Rmax(B, δ), the criterion that the optimally adaptive esti-

mator δadapt minimizes can be written

sup
B∈B

Rmax(B, δ)

R∗(B)
= sup

B∈B
sup

(θ,b)∈CB

R(θ, b, δ)

R∗(B)
= sup

(θ,b)∈∪B′∈BCB
sup

B∈B s.t. (θ,b)∈CB

R(θ, b, δ)

R∗(B)

where the last equality follows by noting that the double supremum on either side of this

equality is over the same set B, θ, b such that B ∈ B and (θ, b) ∈ ∪B′∈BCB′ . Letting

ω(θ, b) =

(
inf

B∈B s.t. (θ,b)∈CB
R∗(B)

)−1

, (2)

we obtain the following lemma.

Lemma 1. The loss of efficiency under adaptation (1) is given by

A∗(B) = inf
δ

sup
(θ,b)∈∪B′∈BCB

ω(θ, b)R(θ, b, δ)

and a decision δadapt that achieves this infimum (if it exists) is optimally adaptive.

Lemma 1 shows that finding an optimally adaptive decision can be written as a

minimax problem with a weighted version of the original loss function. In particular,

δ is found to minimize the maximum (over θ, b) of the objective ω(θ, b)R(θ, b, δ) =

Eθ,bω(θ, b)L(θ, b, δ(Y )). Hence, the optimal adaptive estimator corresponds to a mini-

max estimator under the loss function ω(θ, b)L(θ, b, δ(Y )). Of course, ω(θ, b) must be

computed, but this also amounts to computing a family of minimax problems.

Main example (continued). In our main example, the sets CB = R × [−B,B] are

nested so that R∗(B) is increasing in B and ω(θ, b) = R∗(|b|)−1.

To summarize, the optimal adaptive estimator can be computed via the following

algorithm, once we have a general way of computing minimax estimators.

Algorithm 1 (General computation of optimally adaptive estimator).

Input Set of parameter spaces CB, loss function, (Y,Σ) as described in Section 2, along

with a generic method for computing minimax estimators

Output Optimally adaptive estimator δadapt and loss of efficiency under adaptation

A∗(B)

1. Compute the minimax risk R∗(B) for each B ∈ B and use this to form the weight

ω(θ, b) as in (2).

9



2. Form the loss function (θ, b, a) 7→ ω(θ, b)L(θ, b, a). Compute the optimally adaptive

estimator δadapt as the minimax estimator under the parameter space ∪B∈BCB, and
compute the loss of efficiency under adaptation A∗(B) as the corresponding minimax

risk.

3.2 Computing minimax estimators

Algorithm 1 allows us to compute adaptive estimators once we have a generic method

for solving minimax estimation problems. A typical approach to this problem is to use

the insight that the minimax estimator can often be characterized as a Bayes estima-

tor for a least favorable prior. This can be phrased as a convex optimization problem

over distributions on (θ, b), which can be solved numerically using discretization or other

approximation techniques so long as the dimension of (θ, b) is sufficiently low (see Cham-

berlain (2000), Elliott et al. (2015), Müller and Wang (2019) and Kline and Walters

(2019) for recent applications in econometrics). In this section, we briefly summarize

some of the relevant ideas as they apply to our setting, leaving details for the appendix.

While we treat the general problem in this section, invariance can also be used to further

simplify the problem. Indeed, in our main example, we use the fact that minimax and

adaptive estimators are invariant to certain transformations to reduce the problem to

finding a least favorable prior over b, with a flat “prior” on θ.

Consider the generic problem of computing a minimax decision over the parameter

space C for a parameter ϑ under loss L̄(ϑ, δ). We use Eϑ and Pϑ to denote expectation

under ϑ and the probability distribution of the data Y under θ. To implement Algo-

rithm 1, CB plays the role of C and L(θ, b, δ) plays the role of L̄(ϑ, δ) for a B on a grid

approximating B. We then solve this problem with ∪B∈BCB playing the role of C and

ω(θ, b)L(θ, b, δ) playing the role of L̄(ϑ, δ).

Letting π denote a prior distribution on C, the Bayes risk of δ is given by

RBayes(π, δ) =

∫
EϑL̄(ϑ, δ(Y )) dπ(ϑ) =

∫ ∫
L̄(ϑ, δ(Y )) dPϑ(y)dπ(ϑ).

The Bayes decision, which we will denote δBayes
π , optimizes RBayes(π, δ) over δ. It can be

computed by optimizing expected loss under the posterior distribution for ϑ taking π as

the prior. Under squared error loss, the Bayes decision is the posterior mean.

RBayes(π, δ) gives a lower bound for the worst-case risk of δ under C andRBayes(π, δ
Bayes
π )

gives a lower bound for the minimax risk. Under certain conditions, a minimax theorem

applies, which tells us that this lower bound is in fact sharp. In this case, letting Γ denote

the set of priors π supported on C, the minimax risk over C is given by

min
δ

max
π∈Γ

RBayes(π, δ) = max
π∈Γ

min
δ

RBayes(π, δ) = max
π∈Γ

RBayes(π, δ
Bayes
π ).
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The distribution π that solves this maximization problem is called the least favorable

prior. When the minimax theorem applies, the Bayes decision for this prior is the minimax

decision over C.
The expression RBayes(π, δ

Bayes
π ) is convex as a function of π if the set of possible deci-

sion functions is sufficiently unrestricted (this may require allowing randomized decisions

in general, but the estimation problems we consider will be such that the Bayes decision is

nonrandomized), and the set Γ is convex. Thus, we can use convex optimization software

to compute the least favorable prior and minimax estimator, so long as we have a way

of approximating π with a finite dimensional object that retains the convex structure of

the problem. In our applications, we approximate π with the finite dimensional vector

(π(ϑ1), . . . , π(ϑJ)) for a grid of J values of ϑ, following Chamberlain (2000).

3.3 Computation in main example

In our main example, we use invariance to further simplify the problem before apply-

ing the methods for computing minimax estimators in Section 3.2. Details and formal

statements are given in Appendix A. These results apply to general loss functions for

estimation of the form L(θ, b, δ) = ℓ(θ − δ), but we focus in the main text on the case of

squared error loss L(θ, b, δ) = (θ − δ)2.

It will be useful to transform the data to YU , TO where TO = YO/
√
ΣO is the t-statistic

for a specification test of the null that b = 0. We observe(
YU

TO

)
∼ N

((
θ

b/
√
ΣO

)
,

(
ΣU ρ

√
ΣU

ρ
√
ΣU 1

))
.

where ΣU , ΣO and ρ = corr(YU , TO) = corr(YU , YO) are treated as known. This represen-

tation is equivalent to our original setting, as ΣO is known and can be used to transform

TO to YO.

Applying invariance arguments and the Hunt-Stein theorem, it follows that the B-

minimax estimator δ∗B(YU , TO) takes the form

ρ
√

ΣUδ (TO) + YU − ρ
√

ΣUTO (3)

with δ (TO) given by δBNM
(
TO;

B√
ΣO

)
where δBNM(y; τ) denotes the minimax estimator

in the bounded normal mean problem, in which we observe Y ∼ N(ϑ, 1) and impose the

parameter space C = [−τ, τ ] on ϑ. Furthermore, the B-minimax risk is given by

R∗(B) = ρ2ΣUr
BNM

(
B√
ΣO

)
+ ΣU − ρ2ΣU (4)

where rBNM(τ) denotes minimax risk in the bounded normal mean problem given above.
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We compute rBNM(τ) by computing a least favorable prior on a grid approximating [−τ, τ ],

following the methods described in Section 3.2 above. The bounded normal means prob-

lem has been considered in several papers and applications to other minimax problems;

see Lehmann and Casella (1998, Section 9.7(i), p. 425).

The scaling function (2) can now be written ω(θ, b) = R∗(|b|), where R∗ for our

problem is given in (4). To compute the optimally adaptive estimator for squared error

loss, it therefore suffices to compute the minimax estimator for θ under the scaled loss

function R∗(|b|)−1(θ − δ)2. Invariance arguments can again be applied to show that the

optimally adaptive estimator takes the same form as in (3), but with δ given by the

estimator δ̃adapt(t; ρ), which minimizes

max
b̃∈R

ET∼N(b̃,1)(δ̃(T )− b̃)2 + ρ−2 − 1

rBNM(|b̃|) + ρ−2 − 1
(5)

The loss of efficiency under adaptation A∗([0,∞]) is then given by the minimized value

of (5). Computation is performed by searching for a least favorable prior over b̃ on a grid

approximation of [−K,K] for a large value K.

The least favorable prior for b̃ corresponds to a prior on b/
√
ΣO, and the invariance

arguments for θ lead to a flat (improper) prior for θ.

The main computational step of computing δ̃adapt(t; ρ) can be performed once for

each value of the scalar parameter ρ and tabulated. Thus, in our main application, the

optimally adaptive estimator is easily computed using a lookup table.

To get some intuition for the form of the B-minimax estimator and the optimally

adaptive estimator, note that YU − ρ
√
ΣU√
ΣO

YO is the optimal GMM estimator of θ under the

restriction b = 0. In particular, if ρ
√
ΣO

√
ΣU = −ΣO, then optimal GMM is simply the

restricted estimator YR, which is efficient in this case. If b ̸= 0, then this estimator will

have bias ρ
√
ΣU√
ΣO

b. The estimator in (3) adds the estimate ρ
√
ΣUδ

(
YO√
ΣO

)
of this bias term

ρ
√
ΣU√
ΣO

b. In particular, δ(YO/
√
ΣO) is an estimate of b/

√
ΣO. The B-minimax estimator

takes δ(·) to be a minimax estimator that uses the constraint |b| ≤ B with known B,

whereas the optimally adaptive estimator takes δ(·) to be an estimator that attempts to

adapt to different values of B in this constraint.

3.4 Simple “nearly adaptive” estimators

While the optimally adaptive estimator is easy to compute using convex programming

and even easier to implement once the solution is tabulated, it lacks a simple closed form.

To reduce the opacity of the procedure, one can replace the term δ(TO) in (3) with an

analytic approximation.

A natural choice of approximations for δ(TO) is the class of soft thresholding estima-
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tors, which are indexed by a threshold λ ≥ 0 and given by

δS,λ(T ) = max {|T | − λ, 0} sgn(T ) =


T − λ if T > λ

T + λ if T < −λ

0 if |T | ≤ λ,

which leads to the estimator

ρ
√

ΣUδS,λ (TO) + YU − ρ
√

ΣUTO =


YU − ρ

√
ΣUλ if TO > λ

YU + ρ
√
ΣUλ if TO < −λ

YU if |TO| ≤ λ.

We also consider the class of hard thresholding estimators, which are given by

δH,λ(T ) = T · I(|t| ≥ λ) =

T if |T | > λ

0 if |T | ≤ λ,

which leads to the estimator

ρ
√
ΣUδH,λ (TO) + YU − ρ

√
ΣUTO =

YU if |TO| > λ

YU − ρ
√
ΣUTO if |TO| ≤ λ.

Note that hard thresholding leads to a simple pre-test rule: use the unrestricted estimator

if |TO| > λ (i.e. if we reject the null that b = 0 using critical value λ) and otherwise use

the GMM estimator that is efficient under the restriction b = 0. The soft thresholding

estimator uses a similar idea, but avoids the discontinuity at TO = λ.

To compute the hard and soft thresholding estimators that are optimally adaptive

in these classes of estimators, we minimize (5) numerically over λ. The minimax theo-

rem does not apply to these restricted classes of estimators. Fortunately, however, the

resulting two dimensional minimax problem in λ and b̃ is easily solved in practice.

As discussed further in Section 4, we find that soft thresholding yields nearly optimal

performance for the adaptation problem relative to the optimally adaptive estimators.

In contrast, hard thresholding performs much worse. This mirrors the findings of Bickel

(1984) for the case where the set B of bounds B on the bias consists of the two elements

0 and ∞.
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4 Examples

We now consider a series of examples where questions of specification arise and exam-

ine how adapting to misspecification compares to pre-testing and other strategies such

as committing ex-ante to either the unrestricted or restricted specification. In practice,

it is often difficult to commit to a restricted estimator when a specification test clearly

rejects, as referees and others may demand that the rejected model be discarded. Like-

wise, commitment to an unrestricted specification can be complicated by the difficulty of

publishing imprecise results.

While pre-analysis plans can be used to deter the tendency to hide results, the editorial

process may force a researcher to emphasize one specification over another. The adaptive

approach counters this tendency by combining information across reported specifications.

Because the only inputs required to compute the adaptive estimator are the restricted

and unrestricted estimators themselves along with their covariance matrix, the burden

on researchers of reporting adaptive estimates is very low. In the examples below, we

draw on published tables of point estimates and standard errors whenever possible.

4.1 Adapting to a pre-trend (Dobkin et al., 2018)

We begin with an example from Dobkin et al. (2018) who study the effects of unexpected

hospitalization on out of pocket (OOP) spending. They consider a panel specification of

the form

OOPit = γt +X ′
itα +

3∑
ℓ=0

µℓD
ℓ
it + εit,

where OOPit is the OOP spending of individual i in calendar year t, Dℓ
it = 1{t− ei = r}

is an event time indicator, ei is the date of hospitalization, Xit is a vector of time varying

covariates, and the {µℓ}3ℓ=0 are meant to capture the causal effect of hospitalization on

OOP spending at various horizons, with ℓ = 0 giving the contemporaneous impact.

Concerned that the parallel trends assumption required of their event study design might

be violated, the authors add a linear trend t− ei to Xit in their baseline specification but

also report results dropping the trend.

Table 1 shows the results of this robustness exercise at each horizon ℓ ∈ {0, 1, 2, 3},
where we have denoted the OLS estimates of µℓ including the trend as YU and the

estimates omitting the trend as YR. The restricted estimates of µ0 exhibit standard errors

about 25% lower than the corresponding unrestricted estimates, with larger precision

gains present at longer horizons. The GMM estimator that imposes b = 0 tracks YR

closely and yields trivial improvements in precision, suggesting the restricted estimator

is fully efficient. Consequently, the variability of the difference YO between the restricted
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and unrestricted estimators can be closely approximated by the difference between the

squared standard error of YU and that of YR. At each horizon, we find a standardized

difference TO between the estimators of approximately 1.2.

Yrs since Soft- Pre-
hospital YU YR YO GMM Adaptive threshold test

0 Estimate 2,217 2,409 192 2,379 2,302 2,287 2,409
Std Error (257) (221) (160) (219)
Max Regret 38% ∞ ∞ 15% 15% 68%
Threshold 0.52 1.96

1 Estimate 1,268 1,584 316 1,552 1,435 1,408 1,584
Std Error (337) (241) (263) (239)
Max Regret 98% ∞ ∞ 33% 34% 124%
Threshold 0.59 1.96

2 Estimate 989 1,436 447 1,394 1,246 1,210 1,436
Std Error (430) (270) (373) (267)
Max Regret 159% ∞ ∞ 47% 49% 161%
Threshold 0.66 1.96

3 Estimate 1,234 1,813 579 1,752 1,574 1,530 1,813
Std Error (530) (313) (482) (309)
Max Regret 195% ∞ ∞ 54% 57% 180%
Threshold 0.69 1.96

Table 1: Impact of unexpected hospitalization on out of pocket (OOP) expenditures of the non-elderly
insured (ages 50 to 59) from Dobkin et al. (2018). Standard errors in parentheses. “Yrs since hospital”
refers to years since hospitalization. “Max regret” refers to the worst case adaptation regret in percentage
terms (A∗(B)− 1)× 100. The correlation coefficients between YU and YO by years since hospitalization
are -0.524, -0.703, -0.784 and -0.813 respectively.

Since the difference YO between the restricted and unrestricted estimators is not statis-

tically differentiable from zero at conventional levels of significance, the pre-test estimator

simply discards the noisy estimates that include a trend and selects the restricted model.

However, YO offers a fairly noisy assessment of the restricted estimator’s bias. While zero

bias can’t be rejected at the 5% level in the year after hospitalization, neither can a bias

equal to 50% of the restricted estimate.

The adaptive estimator balances these considerations regarding robustness and pre-

cision, generating an estimate roughly halfway between YR and YU . The worst case

adaptation regret of the adaptive estimator rises from only 15% for the contemporane-

ous impact to 54% three years after hospitalization. The large value of A∗(B) found at

ℓ = 3 is attributable to the elevated precision gains associated with YR at that horizon:

in exchange for bounded risk, we miss out on the potentially very large risk reductions

if b = 0. By contrast, the low adaptation regret provided at horizon ℓ = 0 reflects the

milder precision gains offered by YR when considering contemporaneous impacts. In ef-

fect, the near oracle performance found at this horizon reflects that the efficiency cost of

robustness is low here.
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The soft thresholding estimator arrives at an estimate very similar to the adaptive

estimator. By construction, the adaptive estimator exhibits lower worst case adaptation

regret than the soft thresholding estimator. Standard errors are not reported for the soft-

thresholding, adaptive, or pre-test estimators because the variability of these procedures

depends on the unknown bias level b.

Figure 1: Risk functions for µ0 (ρ = −0.524)

To assess the tradeoffs involved in adapting to misspecification, Figure 1 depicts the

risk functions of the various estimation approaches listed in the first row of Table 1. Here,

the correlation coefficient ρ between YR and YU equals −0.524: the value we estimated

for the contemporaneous impact µ0. As a normalization, the risk of the unrestricted

estimator has been set to 1. The restricted estimator exhibits low risk when the bias

is small but very high risk when the bias is large. Pre-testing yields good performance

when the bias is either very large or very small. When the bias is moderate the pre-

test estimator’s risk becomes very large, as the results of the initial test become highly

variable.

The line labeled “oracle” plots the B-minimax risk for B = |b|. The oracle’s prior

knowledge of the bias magnitude yields uniformly lower risk than any other estima-

tor. The adaptive estimator mirrors the oracle, with nearly constant adaptation penalty.

When the bias in the restricted estimator is small, the adaptive estimator yields large risk

reductions relative to YU . When the bias is large, the adaptive estimator’s risk remains

bounded at a level substantially below that of the pre-test estimator.

Table 2 shows the results from constrained adaptation limiting the worst case risk

to no more than 20% above the risk of YU . This constraint results in relatively minor

adjustments to the point estimates of both the adaptive and soft-thresholding estimators,
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Unconstrained Constrained R̄/ΣU ≤ 1.2
Years since hosp. Adaptive Soft-threshold Adaptive Soft-threshold

0 Estimates 2,302 2,287 2,302 2,287
Max Regret 15% 15% 15% 15%
Max Risk 13% 7% 13% 7%
Threshold 0.52 0.52

1 Estimates 1,435 1,408 1,429 1,408
Max Regret 33% 34% 41% 34%
Max Risk 28% 17% 19% 17%
Threshold 0.59 0.59

2 Estimates 1,246 1,210 1,248 1,176
Max Regret 47% 49% 54% 60%
Max Risk 41% 26% 19% 19%
Threshold 0.66 0.56

3 Estimates 1,574 1,530 1,569 1,463
Max Regret 54% 57% 60% 77%
Max Risk 48% 31% 19% 19%
Threshold 0.69 0.53

Table 2: Impact of unexpected hospitalization on out of pocket (OOP) expenditures of the non-elderly
insured (ages 50 to 59) from Dobkin et al. (2018). “Yrs since hospital” refers to years since hospitalization.
“Max risk” refers to the worst case risk increase relative to YU in percentage terms (Rmax(δ)−ΣU )×100.
The correlation coefficients between YU and YO by years since hospitalization are -0.524, -0.703, -0.784
and -0.813 respectively.

even at horizon ℓ = 3 in which unconstrained adaptation yields a 31-48% increase in worst

case risk over YU . Of course, larger adjustments would have occurred if more extreme

values of TO had been realized. Ex-ante, constraining the adaptive estimator cuts its worst

case risk by more than half while yielding only a modest increase of 6 percentage points

in its worst case adaptation regret. The tradeoff between worst case risk and adaptation

regret is somewhat less favorable for the soft-thresholding estimator: reducing its worst

case risk by roughly a third raises its worst case adaptation regret by a third.

These worst case risk/ adaptation regret tradeoffs are illustrated in the following

Figure 2 depicting the risk functions of the respective estimators at horizon ℓ = 3. Re-

markably, the risk constrained adaptive estimator exhibits substantially lower risk than

the unconstrained adaptive and soft-thresholding estimators at most bias levels, while ex-

hibiting only slightly elevated risk when the bias is small. It seems likely most researchers

would view this tradeoff favorably, leading us to recommend constrained adaptation as

a default option. Constraining the soft-thresholding estimator yields similar risk reduc-

tions when the bias is large but generates more substantial risk increases when the bias

magnitude is negligible. Overall, however, the constrained soft-thresholding estimator

provides a reasonably close approximation to the constrained adaptive estimator.
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Figure 2: Risk functions for µ3 (ρ = −0.813)

4.2 Adapting to an invalid instrument (Berry et al., 1995)

Our second example comes from Berry et al. (1995)’s seminal study of the equilibrium

determination of automobile prices. As in Andrews et al. (2017) and Armstrong and

Kolesár (2021), we focus on their analysis of average price markdowns. YU is taken as

the average markdown implied by optimally weighted GMM estimation using a set of

demand-side instruments, while YR is the GMM estimate adding to the demand side

instruments a set of supply-side instruments.

YU YR YO Adaptive Soft-threshold Pre-test

Estimate 52.95 33.53 -19.42 49.44 51.89 52.95
Std Error (2.54) (1.81) (3.17)
Max Regret 96% ∞ 32% 34% 107%
Threshold 0.59 1.96

Table 3: Adaptive estimates for the average markup (in percent). “Max Regret” refers
to worst-case adaptation regret in percentage terms (Amax(δ)− 1)× 100. The correlation
coefficient is ρ = −0.7.

Table 3 lists estimates under different estimation approaches. While adding the supply

side instruments reduces the standard errors by nearly 30%, the difference YO between the

restricted and unrestricted estimates is large and statistically significant, with TO ≈ 6.

Detecting what appears to be severe misspecification, the adaptive estimator shrinks

strongly towards YU , as does the soft-thresholding estimator. The chosen soft-threshold is

very low indicating a relatively high level of robustness to bias: only scaled bias estimates

smaller than 0.59 in magnitude are zeroed out. Consequently, even realizations of TO near
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3 would have yielded soft-thresholding point estimates close to YU .

4.3 Adapting to endogeneity (Angrist and Krueger, 1991)

In a landmark study, Angrist and Krueger (1991) estimated the returns to schooling using

quarter of birth as an instrument for schooling attainment. Documenting that individuals

born in the first quarter of the year acquire fewer years of schooling than those born later

in the year, they demonstrate that the earnings of those born in the first quarter of the

year also earn less than those born later in the year.

Table 4 replicates exactly the estimates reported in Angrist and Krueger (1991, Panel

B, Table III) for men born 1930-39. YU gives the Wald-IV estimate of the returns to

schooling using an indicator for being born in the first quarter of the year as an instrument

for years of schooling completed, while YR gives the corresponding OLS estimate. Neither

estimator controls for additional covariates. The first stage relationship between quarter

of birth and years of schooling exhibits a z-score of 8.24, suggesting an asymptotic normal

approximation to YU is likely to be highly accurate.

While the IV estimator accounts for endogeneity, it is highly imprecise, with a stan-

dard error two orders of magnitude greater than OLS. Consequently, the maximal regret

associated with using IV instead of OLS is extremely large, as the variability of YU is

more than 5,000 times that of YR. IV and OLS cannot be statistically distinguished

at conventional significance levels, with TO ≈ 1.3. The inability to distinguish IV from

OLS estimates of the returns to schooling is characteristic not only of the specifications

reported in Angrist and Krueger (1991) but of the broader quasi-experimental literature

spawned by their landmark study (Card, 1999).

YU YR YO Adaptive Soft-threshold Pre-test

Estimate 0.102 0.0709 -0.0311 0.071 0.071 0.071
Std Error (0.0239) (0.0003) (0.0239)
Max Regret 500145% ∞ 493% 537% 17882%
Thresholds 2.07 1.96

Table 4: Returns to schooling. Standard errors in parentheses. “Max regret” refers to
the worst case adaptation regret in percentage terms (A∗(B)− 1)× 100. The correlation
coefficients between YU and YO is ρ = −0.9998.

The confluence of extremely large maximal regret for YU with a statistically insignifi-

cant difference YO, leads the adaptive estimator, the soft-thresholding estimator and the

pre-test estimator to all coincide with YR. The motives for this coincidence are of course

quite different. The adaptive and soft-thresholding estimator wish to avoid the regret

associated with missing out on the enormous efficiency gains if OLS is essentially uncon-

founded. By contrast, the pre-test estimator simply fails to reject the null hypothesis

that years of schooling is exogenous at the proper significance level.
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Despite the agreement of the three approaches, this is a setting where it is wise to

take to other considerations into account. Committing to YR exposes the researcher to

potentially unlimited risk. The adaptive and soft-thresholding estimators avoid commit-

ment but still expose the researcher to an approximately five fold maximal risk increase.

As shown in Table 5, if we instead follow our rule of thumb of limiting ourselves to a 20%

increase in maximal risk, we find that both the adaptive and soft-threshold estimators

yield returns to schooling estimates of roughly 9%, approximately halfway between OLS

and IV. The maximal regret of these estimates is extremely high, reflect the potential

efficiency costs of weighting YU so heavily. These efficiency concerns are outweighed in

this case by the potential for extremely large biases.

Unconstrained Constrained R̄/ΣU ≤ 1.2
Adaptive Soft-threshold Adaptive Soft-threshold

Estimate (fully nonlinear) 0.071 0.071 0.087 0.091
Max Regret 493% 537% 30089% 34086%
Max Risk 455% 427% 20% 20%
Threshold 2.07 0.45

Table 5: Adaptive estimates of returns to schooling. “Max risk” refers to the worst case
risk increase relative to YU in percentage terms (Rmax(δ) − ΣU) × 100. The correlation
coefficient is ρ = −0.9998.

5 Conclusion

Empirical research inevitably involves robustness-efficiency tradeoffs. The reporting of

estimates from different models has emerged as a best practice at leading journals. The

methods introduced here provide a scientific means of summarizing what has been learned

from such exercises and arriving at a preferred estimate that trades off considerations

of bias against variance. Computing adaptive estimates requires only point estimates,

standard errors, and the correlation between estimators, objects that are easily produced

by standard statistical packages.
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A Details for main example

We provide details and formal results for the results in Section 3.3 giving B-minimax and

optimally adaptive estimators in our main example. We first provide a general theorem

characterizing minimax estimators in a setting that includes our main example. We

then specialize this result to derive the the formula for the B-minimax estimator and

optimally adaptive estimator for our main example given in Section 3.3, using a weighted

loss function and Lemma 1 to obtain the optimally adaptive estimator.

We consider a slightly more general setting with p misspecified estimates, leading to

a p× 1 vector YO:

Y =

 YU
1×1

YO
p×1

 ∼ N

 θ
1×1

b
p×1

 ,Σ

 , Σ =

 ΣU
1×1

ΣUO
1×p

Σ′
UO

p×1

ΣO
p×p

 . (6)

In our main example, p = 1 and ρ = ΣUO/
√
ΣUΣO. We are interested in the minimax risk

of an estimator δ : Rp+1 → R under the loss function L(θ, b, d), which may incorporate
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a scaling to turn the minimax problem into a problem of finding an optimally adaptive

estimator, following Lemma 1. We assume that the loss function satisfies the invariance

condition

L(θ + t, b, d+ t) = L(θ, b, d) all t ∈ R. (7)

We consider minimax estimation over a parameter space R× C:

inf
δ

sup
θ∈R,b∈C

R(θ, b, δ). (8)

Theorem 1. Suppose that the loss function L(θ, b, d) is convex in d and that (7) holds.

Then the minimax risk (8) is given by

inf
δ̄
sup
b∈C

E0,b[L̃(b, δ̄(YO)− ΣUOΣ
−1
O b)] (9)

= sup
π supported on C

inf
δ̄

∫
E0,b[L̃(b, δ̄(YO)− ΣUOΣ

−1
O b)] dπ(b)

where L̃(b, t) = EL(0, b, t + V ) with V ∼ N(0,ΣU − ΣUOΣ
−1
O Σ′

UO). Furthermore, the

minimax problem (8) has at least one solution, and any solution δ∗ takes the form

δ∗(YU , YO) = YU − ΣUOΣ
−1
O YO + δ̄∗(YO)

where δ̄∗ achieves the infimum in (9).

Proof. The minimax problem (8) is invariant (in the sense of pp. 159-161 of Lehmann and

Casella (1998)) to the transformations (θ, b) 7→ (θ+t, b) and the associated transormation

of the data (YU , YO) 7→ (YU + t, YO), where t varies over R. Equivariant estimators for

this group of transformations are those that satisfy δ(yU + t, yO) = δ(yU , yO)+ t, which is

equivalent to imposing that the estimator takes the form δ(yU , yO) = δ(0, yO) + yU . The

risk of such an estimator does not depend on θ and is given by

R(θ, b, δ) = R(θ, b, δ) = E0,b [L(0, b, δ(0, YO) + YU)] .

Using the decomposition YU−θ = ΣUOΣ
−1(YO−b)+V where V ∼ N(0,ΣU−ΣUOΣ

−1
O Σ′

UO)

is independent of YO, the above display is equal to

E0,b

[
L(0, b, δ(0, YO) + ΣUOΣ

−1
O (YO − b) + V )

]
= E0,bL̃(b, δ(0, YO) + ΣUOΣ

−1
O (YO − b)).

Letting δ̄(YO) = δ(0, YO) + ΣUOΣ
−1
O YO, the above display is equal to E0,b[L̃(b, δ̄(YO) −

ΣUOΣ
−1
O b)]. Thus, if an estimator δ̄∗ achieves the infimum in (9), the corresponding

estimator δ(YU , YO) = δ(0, YO) + YU = δ̄∗(YO)−ΣUOΣ
−1
O YO + YU will be minimax among
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equivariant estimators for (8). It will then follow from the Hunt-Stein Theorem (Lehmann

and Casella, 1998, Theorem 9.2) that this minimax equivariant estimator is minimax

among all estimators, that any other minimax estimator takes this form and that the

minimax risk is given by the first line of (9).

It remains to show that the infimum in the first line of (9) is achieved, and that the

equality claimed in (9) holds. The equality in (9) follows from the minimax theorem, as

stated in Theorem A.5 in Johnstone (2019) (note that d 7→ L̃(b, d− ΣUOΣ
−1
O b) is convex

since it is an integral of the convex functions d 7→ L(0, b, d−ΣUOΣ
−1
O b+v) over the index

v). The existence of an estimator δ̄∗ that achieves the infimum in the first line of (9) follows

by noting that the set of decision rules (allowing for randomized decision rules) is compact

in the topology defined on p. 405 of Johnstone (2019), and the risk E0,b[L̃(b, δ̄(YO) −
ΣUOΣ

−1
O b)] is continuous in δ̄ under this topology. As noted immediately after Theorem

A.1 in Johnstone (2019), this implies that δ̄ 7→ supbE0,b[L̃(b, δ̄(YO)−ΣUOΣ
−1
O b)] is a lower

semicontinuous function on the compact set of possibly randomized decision rules under

this topology, which means that there exists a decision rule that achieves the minimum.

From this possibly randomized decision rule, we can construct a nonrandomized decision

rule that achieves the minimum by constructing a nonrandomized decision rule with

uniformly smaller risk by averaging, following Johnstone (2019, p. 404).

We now specialize this result to derive the formula for the minimax estimator and the

optimally adaptive estimator under squared error loss in Section 3.3. The notation is the

same as in the main text, with ρ in the main text given by ΣUO/
√
ΣUΣO.

First, we derive the minimax estimator and minimax risk in (8) when L(θ, b, d) =

(θ − d)2 and C = [−B,B]. We have L̃(b, t) = E(t+ V )2 = t2 +ΣU −Σ2
UO/ΣO. Thus, (9)

becomes

inf
δ̄

sup
b∈[−B,B]

E0,b

[(
δ̄(YO)−

ΣUO

ΣO

b

)2
]
+ ΣU − Σ2

UO

ΣO

= inf
δ̄

sup
b∈[−B,B]

Σ2
UO

ΣO

E0,b

[(√
ΣO

ΣUO

δ̄(YO)−
b√
ΣO

)2
]
+ ΣU − Σ2

UO

ΣO

.

This is equivalent to observing TO = YO/
√
ΣO ∼ N(t, 1) and finding the minimax estima-

tor of t under the constraint |t| ≤ B/
√
ΣO. Letting δBNM(TO;B/

√
ΣO) denote the solu-

tion to this minimax problem and letting rBNM(B/
√
ΣO) denote the value of this minimax

problem, the optimal δ̄ in the above display satisfies
√
ΣO

ΣUO
δ̄(YO) = δBNM(YO/

√
ΣO;B/

√
ΣO),

which gives the value of the above display as

Σ2
UO

ΣO

rBNM(B/
√
ΣO) + ΣU − Σ2

UO

ΣO

(10)
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and the B-minimax estimator as

ΣUO√
ΣO

δBNM(YO/
√

ΣO;B/
√

ΣO) + YU − ΣUO

ΣO

YO. (11)

Substituting TO = YO/
√
ΣO and the notation ρ = ΣUO/

√
ΣUΣO used in the main text

gives (3) and (4).

We summarize these results in a the following corollary.

Corollary 1. In the case where the dimension p of YO is 1, L(θ, b, t) = (θ − t)2 and

C = [−B,B], the minimax problem (8) has a solution δ given by (11). The minimax risk

is given by (10).

To find the optimally adaptive estimator and loss of efficiency under adaptation in our

main example, we apply Lemma 1 with ω(θ, b) = R∗(|b|)−1, with R∗(B) given by (10).

This leads to the minimax problem (8) with C = R and L(θ, b, d) = R∗(|b|)−1(θ−d)2. The

function L̃ in Theorem 1 is then given by L̃(b, t) = ER∗(|b|)−1(t + V )2 = R∗(|b|)−1(t2 +

ΣU − Σ2
UO/ΣO), which gives (9) as

inf
δ̄
sup
b∈R

E0,b

[(
δ̄(YO)− ΣUO

ΣO
b
)2]

+ ΣU − Σ2
UO

ΣO

Σ2
UO

ΣO
rBNM(|b|/

√
ΣO) + ΣU − Σ2

UO

ΣO

= inf
δ̄
sup
b∈R

E0,b

[(√
ΣO

ΣUO
δ̄(YO)− b√

ΣO

)2]
+ ρ−2 − 1

rBNM(|b|/
√
ΣO) + ρ−2 − 1

.

This is minimized by δ̄ satisfying
√
ΣO

ΣUO
δ̄(YO) = δ̃adapt(YO/

√
Σ; ρ) where δ̃adapt(T ; ρ) is a

solution to

inf
δ̃
sup
b̃∈R

ET∼N(b̃,1)

[(
δ̃(T )− b̃

)2]
+ ρ−2 − 1

rBNM(|b̃|) + ρ−2 − 1
. (12)

By Theorem 1, the optimally adaptive estimator is given by

ΣUO√
ΣO

δ̃adapt(YO/
√
Σ; ρ) + YU − ΣUO

ΣO

YO = ρ
√

ΣU δ̃
adapt(TO; ρ) + YU − ρ

√
ΣUTO. (13)

We summarize these results in the following corollary.

Corollary 2. For adaptation over the parameter spaces CB = R × [−B,B] in the main

example, the loss of efficiency under adaptation is given by the value of (12), and an

optimally adaptive estimator is given by the formula in (13).
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