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Abstract

This paper builds a consumption-saving model of anticipatory utility. In
addition to consumption-derived utility, an agent experiences gains-loss utility
from two sources: from anticipating future consumption, and from comparing
their current level of consumption with past-formed anticipation levels. The
agent chooses optimally both their consumption and anticipation levels. We
highlight the model’s relevance for macroeconomics analyzing the behavior of
two types of agents in three contexts: when income is certain, when income is
risky, and when there are credit market imperfections. Agents with a limited
planning horizon emerge as “impatient” – predisposed to borrow, while agents
with an unlimited planning horizon emerge as “patient” – predisposed to save.
Agents have an endogenous time-discount factor in all contexts. Our main
results relate to agents’ precautionary savings.
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1 Introduction

Neoclassical economic theory prescribes that individuals make consumption and
savings decisions that maximize the present discounted sum of current and future
consumption utility. This standard intertemporal optimization problem results in the
simple solution of equating the marginal utility of consumption over time by smoothing
consumption. Under this perspective, individuals value savings only indirectly, through
the weight they put on future utility from consumption.

However, survey evidence suggests that consumers have a more complex relationship
with their finances. Money ranks as one of the top sources of stress, ahead of health,
family, and work, and the vast majority of households report experiencing financial
stress. Saving money provides households with more than just enjoyment in the future
when they will consume their savings—it directly affects them in the present. On the
one hand, having savings provides peace of mind. On the other hand, most households
report difficulties in saving money. Thinking about future consumption provides a
source of enjoyment in the present, leading households to value savings beyond their
discounted consumption utility. At the same time, consumers struggle to overcome
immediate gratification.

Early economists conceptualized intertemporal choices as involving both the enjoyment
of thinking about future consumption and the difficulty of abstaining from immediate
enjoyment. Smith (1759) observes that “the sensation of the present instant, makes
but a small part of our happiness, that our enjoyment chiefly arises either from the
cheerful recollection of the past, or the still more joyous anticipation of the future,”
while Rae (1834) notes that “the actual presence of the immediate object of desire in
the mind by exciting the attention, seems to rouse all the faculties, as it were to fix
their view on it, and leads them to a very lively conception of the enjoyments which it
offers to their instant possession.” Loewenstein (1987) presents a model focusing on the
anticipation channel, while most other modern theories of intertemporal choice ignore
this channel and simply assume that decision makers put less weight on consumption
utility experienced further in the future (Ainslie, 1975; Mazur, 1984; Loewenstein and
Prelec, 1992; Harvey, 1994; Laibson, 1997).

This paper develops a consumption-saving model that captures both of these channels.
In addition to experiencing utility from the level of current consumption, as in standard
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models, a decision maker (DM) derives utility from two more sources: utility from
anticipating future consumption, and reference-dependent gain-loss utility compared
to past levels of anticipation. The DM chooses optimally both their consumption and
anticipation levels. Optimally choosing an anticipation level introduces a notion of
hedonic expectation; comparing current utility with past anticipation levels precludes
costless self-deception of the DM.

More specifically, the DM starts their life in period 0 and they experience a utility
flow from anticipating future consumption. In period 1 they experience utility from
consuming, from a gain or loss of how much they consume relative to how much
they chose to anticipate, and from revising their anticipation level of their period 2
consumption. In period 2 they experience utility from consuming, and from a gain or
loss of how much they consume relative to how much they chose to anticipate, and
their life ends.

Within this setup, we consider the behavior of two types of agents. A “present-focused”
DM bases their decisions on a limited planning horizon, that is, as if next period is
their last period. A “non-present-focused” DM bases their decisions taking their whole
planning horizon into account.

Our setup gives rise to an endogenous time discount factor and distinctive behavior
for the two types of agents in three different contexts. We start by assuming there
are no credit market imperfections and anayze the DMs’ behavior when income is
certain and when it is risky. Lastly, we analyze their behavior in the presence of credit
market imperfections.

When income is certain the non-present-focused DM is patient: they choose an
increasing consumption path and their time discount factor is greater than 1. The
present-focused DM is impatient: they choose a decreasing consumption path and
their time discount factor is less than 1. Thus the former DM is a “natural saver” in
the economy, while the latter a “natural borrower.”

We then analyze behavior when income is risky, and in particular when income in
period 2 is a mean-preserving spread of income in period 1. Both agents have an
endogenous stochastic discount factor in this case and a precautionary savings motive.
Contrary to the benchmark model where the precautionary savings motive is second-
order, in our model certainty equivalence is broken for both types: even with quadratic
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utility of consumption a DM has a willingness to save in the presence of risk.

The precautionary savings motive of the non-present-focused DM, combined with
their patience makes them unambiguously wanting to save for period 2. A sufficient
condition for the precautionary savings motive to be stronger than the one in the
benchmark model is that the DM is patient, i.e. have a time-discount factor greater
than 1, at the level of consumption chosen in the benchmark.

In the case of the present-focused DM, a trade-off emerges: the DM is impatient
when income is certain, while they have a precautionary savings motive when period 2
income is risky. We show that as the risk of period 2 income increases, at some point
the precautionary savings motive dominates.

Our analysis up to this point has assumed credit markets without imperfections,
meaning the DM can borrow and save at the same rate up to their natural borrowing
limit. In the final part of the paper we assume the borrowing rate is greater than the
saving rate, a credit market imperfection that allows for the distinction between a
liquid and an illiquid asset. A recent literature has highlighted the empirical relevance
of this distinction (e.g., Angeletos et al., 2001; Kaplan and Violante, 2022).

The non-present-focused DM does not change their behavior under credit market
imperfections. The present-focused DM has a demand for borrowing that is decreasing
in the borrowing rate as one would expect, but importantly, we show there is an
endogenous cut-off above which they don’t want to either borrow or save.

Our paper contributes most directly to existing work that models utility from anticipa-
tion and its consequences. The seminal paper by Loewenstein (1987) presents a model
in which decision makers experience utility from anticipation, where anticipatory utility
is proportional to the discounted sum of future consumption utility. While the resulting
utility function can explain the desire to postpone pleasure, the model also predicts
that decision makers may prefer to perpetually defer consumption. In contrast with
models in which anticipatory utility depends directly on the level of future consumption
utility, Thakral (2022) introduces an alternative formulation in which decision makers
optimally choose their anticipation of future consumption and experience utility from
changes in their anticipation levels. While that paper studies choices over exoge-
nous consumption streams, this paper extends the framework to consumption-saving
problems and explores the model’s macroeconomic implications.
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Our model relates closely to the dynamic model of reference dependence due to
Kőszegi and Rabin (2009). Their model has two key features. First, decision makers
experience gain-loss utility from comparing current consumption to a reference point
or when updating the reference point for future consumption. Second, “recently
held” rational expectations determine the reference point. Our model retains the
first feature but differs by endogenizing the updating of the reference point.1 In
particular, decision makers in our model optimally choose their reference point (how
much to look forward to future consumption), and the level of anticipation of future
consumption in a given period serves as their subsequent reference point. While our
model contrasts with the expectations-based reference point of Kőszegi and Rabin
(2009), our assumption resembles other models of belief-based utility such as the
optimal expectations framework of Brunnermeier and Parker (2005).

As already discussed, in the case of income uncertainty in period 2, our model features
a first-order precautionary savings motive for both types of agents. A first-order
precautionary savings motive is highlighted by Kőszegi and Rabin (2009) as well. In
the case of income uncertainty in period 1, comparing our “present-focused” agent
to Kőszegi and Rabin (2009), we find that uncertainty makes the DM consume more
than they would in its absence only when the low outcome is realized, and that the
DM may become patient, choosing to consume more in period 2 when the high income
is realized. Both results contrast the predictions of Kőszegi and Rabin (2009) in the
same context.

The paper proceeds as follows. In a two-period model, we illustrate the process of
anticipation-level formation and its implications for consumption in three different
contexts: when income is certain (Section 2), when income is risky (Section 3), and
when the DM can distinguish between a liquid and an illiquid asset. (Section 4).
Section 5 concludes.

1How quickly the reference point updates in response to changes in expectations is a degree of
freedom in the Kőszegi and Rabin (2009) model, as highlighted by Thakral and Tô (2021).
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2 Consumption when income is certain

2.1 Components of the model

We introduce our model in the simplest possible context for intertemporal choice. The
decision maker (DM) lives for two periods t = 1, 2. They receive income y1, y2 with
certainty in the two periods.

There is no credit market imperfection, that is the DM can borrow and save at the
same interest rate, that is rb = rs = r, and they can borrow up to their lifetime
income. As we are not interested in the effects of changes in the interest rate at the
moment, we will also assume r = 0.

The DM is assumed to choose optimally their consumption path of ct’s as usual. In
addition, they choose a path of anticipation levels of their future consumption. We
denote by αtt+1 the anticipation level formed in period t for consumption utility in
period t+ 1.

Timing: In period 0 the DM receives all information of the economy—their income
process, and the interest rate—and choose their anticipation levels α0

1, α
0
2 for the

consumption utility they will enjoy in the next two periods. In period 1 they consume
and they choose their anticipation level α1

2 for the next period. In period 2 they
consume.

Preferences: The DM’s flow utility consists of two components, consumption utility
denoted by m(·) and gain-loss utility denoted by n(·).

The function m(·) corresponds to a standard utility flow from the level of consumption.
The function n(·) is a gain-loss value function of the type introduced by Kahneman
and Tversky (1979), having a different branch in the gains, and different branch in
the loss domain. Denote:

n(α) =

n+(α) if α ≥ 0

n−(α) if α ≤ 0

We will assume the following throughout:

Assumption 1. The consumption-utility function satisfies m(0) = 0, m′(·) ≥ 0, and
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m′′(·) ≤ 0.

Assumption 2. The gain-loss function n satisfies the following properties: continuity,
loss aversion (0 < n+(α) < −n−(−α) and 0 < n′+(α) < n′−(−α) for all α > 0), and
diminishing sensitivity (n′′+ ≤ 0 ≤ n′′−).

The DM experiences utility according to the following flows in the respective peri-
ods:

u0 = n
(
α0

1

)
+ n

(
α0

2

)
(1)

u1 = m(c1) + n
(
m(c1)− α0

1

)
+ n

(
α1

2 − α0
2

)
(2)

u2 = m(c2) + n
(
m(c2)− α1

2

)
(3)

We highlight that the anticipation levels formed (chosen) in a previous period are
taken as given in the next period, and thus affect the DM’s decisions in that period.
For example, α0

1 which is formed in period 0, is taken as given in period 1.

In each period t, the DM chooses consumption ct and their future anticipation levels
to maximize ut + Ṽt+1, where ut is their current period utility flow, and Ṽt+1 a
continuation value that depends on the DM’s planning horizon, and will be explained
momentarily.

2.2 The DM’s problem – unlimited planning horizon

In each period t, the DM maximizes ut+ Ṽt+1, where in this case of unlimited planning
horizon, Ṽt+1 = ∑

t′≥t+1 ut′ .

Denote lifetime income by W = y1 + y2.2 The DM solves their problem by backward
induction.

At t = 2 they choose
c2 = W − c1

since the budget constraint binds. At t = 1 they jointly choose c1, α
1
2. From Equa-

2Under credit markets without imperfections, all that matters is lifetime income, and not how
this income is distributed across periods. We revisit this point in Section 4.
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tions (2) and (3), the FOC for α1
2 is

n′
(
α1

2 − α0
2

)
= n′

(
m(c2)− α1

2

)
,

yielding
α1

2 = α0
2 +m(c2)

2 ,

and the FOC implicitly characterizing c1 is

m′(c1)
[
1 + n′

(
m(c1)− α0

1

)]
= m′(W − c1)

[
1 + n′

(
m(W − c1)− α1

2

)]
At t = 0 they choose

α0
1 = m(c1)

2

α0
2 = α1

2
2 = m(W − c1)

3

Combining the FOCs, we get the following Euler equation:

m′(c∗1)
[
1 + n′

(
m(c∗1)

2

)]
= m′(c∗2)

[
1 + n′

(
m(c∗2)

3

)]
(4)

This condition uniquely pins down c∗1, as the LHS is decreasing and the RHS is
increasing in c1.

2.3 Comparison to benchmark model

We can rearrange Equation (4) to write it as

m′(c∗1) = βAUm′(c∗2)

where βAU :=
1+n′

(
m(c2)

3

)
1+n′

(
m(c1)

2

) is an endogenous time-discounting factor, determined in

equilibrium.

Proposition 1. When income is certain and there is no credit market imperfection,
the DM exhibits “patience,” that is c∗1 < c∗2, and βAU > 1.
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Proof. c∗1 < c∗2: If c1 = c2 = W/2 in Equation (4), then the LHS < RHS. Thus it has
to be that c1 < W/2 for the equality to hold.

βAU > 1: Since c∗1 < c∗2, it holds that m′(c∗1) > m′(c∗2); thus for the equality to hold it
has to be that βAU > 1.

The benchmark model is recovered for n(·) constant, or in fact also n(·) linear.
Then βAU = 1, and the DM perfectly smooths their consumption between the two
periods.

2.4 A “present-focused” DM – limited planning horizon

In this case the DM is assumed to have a planning horizon of only 1 period ahead.
Specifically, at time 0 they form their anticipation level as if tomorrow is the last
period of their life.

Denote again by W lifetime income.

At t = 0 the DM chooses α0
1 so that

α0
1 = arg max

{
u0 + Ṽ1

}
where in this case

u0 = n(α0
1)

Ṽ1 = m(W ) + n
(
m(W )− α0

1

)
It follows that

α0
1 = m(W )

2

At t = 1 the DM takes α0
1 as given and jointly chooses c1, α

1
2 so that

(c1, α
1
2) = arg max

{
u1 + Ṽ2

}
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where

u1 = m(c1) + n
(
m(c1)− α0

1

)
+ n

(
α1

2

)
Ṽ2 = m(W − c1) + n

(
m(W − c1)− α1

2

)
The FOC for α1

2 yields
α1

2 = m(W − c1)
2

The FOC for c1 yields

m′(c1)
[
1 + n′

(
m(c1)− m(W )

2

)]
= m′(W − c1)

[
1 + n′

(
m(W − c1)− α1

2

)]

Combining the two FOCs yields the condition characterizing c∗1

m′(c∗1)
[
1 + n′

(
m(c∗1)− m(W )

2

)]
= m′(W − c∗1)

[
1 + n′

(
m(W − c∗1)

2

)]
(5)

Re-arranging the above we can write it again as

m′(c∗1) = βAU,PFm′(c∗2)

where βAU,PF :=
1+n′

(
m(W−c∗1)

2

)
1+n′(m(c∗1)−m(W )

2 ) is an endogenous time-discounting factor, determined
in equilibrium.

Proposition 2. When income is certain, there is no credit market imperfection, and
the DM is “present-focused,” the DM exhibits “impatience,” that is c∗1 > c∗2, and
βAU,PF < 1.

Proof. c∗1 > c∗2: If c1 = c2 = W/2 in Equation (5), then the LHS > RHS. Thus it has
to be that c1 > W/2 for the equality to hold.

βAU,PF < 1: Since c∗1 > c∗2, it holds that m′(c∗1) < m′(c∗2); thus for the equality to hold
it has to be that βAU,PF < 1.

We notice again that for n(·) constant, or in fact also n(·) linear, the FOC reduces to
the benchmark model of two-period consumption under certainty.
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2.5 Discussion

We saw that our model of anticipatory utility features an endogenous time-discounting
factor. A present-focused DM is impatient and has a decreasing consumption path, while
a non-present-focused DM is patient and has an increasing consumption path.

We note that the present-focused DM is subject to a type of error: the time-0 self
thinks time-1 self will consume everything, while time-1 self doesn’t do so when the
time comes. In contrast, the non-present-focused DM’s problem is not: time-0 self
chooses their anticipation levels taking into account a consumption plan which is in
fact the one the future selves will indeed follow.

Anticipation level and market completeness. We introduced the way the present-
focused DM chooses their anticipation level “as if” they have a 1-period only planning
horizon, and thus they will consume all their cash-in-hand next period.

There is a conceptual equivalence between present focus as introduced here and the
degree of market (in-)completeness. More specifically, in our model the DM can
be thought to form their anticipation levels conditional on the contracts they have
available to sign right now. In period 0 the agent knows they can have all their income
as cash-in-hand in period 1 (no credit market imperfections assumption). If they don’t
have access to a forward contract that will allow them to carry over anything left
from period 1 to 2, they assume they will consume everything in period 1, and present
focus emerges. If they do have access to such a contract, they can put some money
aside for period 2, and thus anticipate that consumption already in period 0.

Mental accounting may be more intricately connected to market (in-)completeness
than what the literature has realized.

Anticipatory utility and heterogeneous agent models. We notice that antici-
patory utility, combined with present focus can give rise to two types of agents: an
impatient-borrower and a patient-saver. The degrees of patience and impatience are
endogenously determined based on lifetime income, and there can thus be within-goup
heterogeneity in the two types.

Such a distinction of agent types has been shown to be important for a general
equilibrium analysis (e.g., Eggertsson and Krugman, 2012) and anticipatory utility
could offer a behavioral foundation for it.
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3 Consumption when income is risky

3.1 Choice of anticipation level

To illustrate how anticipation level is formed in the presence of uncertainty, we start
with the simplest possible case: the DM lives for a single period, and their income in
that period is risky. More specifically the DM’s income is a lottery with two outcomes:
income can be yh with probability p, or y` < yh with probability 1− p.

The consumption decision is of course trivial, as the DM will consume the income
they receive; but the formation of the anticipation level α0

1 is meaningful, and this is
what we focus on for now. As m(·) would only complicate notation in this case, we
present the special case of m(c) = c.

The DM’s anticipation-formation problem in period 0 is

α0
1 = arg max

α

{
pfh(α) + (1− p)f `(α)

}
where

f i(α) := n(α) + n
(
yi − α

)
for i ∈ {`, h}. Note that f i(·) has a unique maximum at y∗i := yi/2, being increasing
on (−∞, y∗i ) and decreasing thereafter, and is concave on (0, yi).

Letting g(α) = (1− p)f `(α) + pfh(α), we can show that g(α) has a maximum, and
the maximizer is in the interval [y∗` , y∗h].

Proof. Since f ` and fh are both increasing for α < y∗` and decreasing for α > y∗h, we
have g(y∗` ) > g(α) for all α < y∗` and g(y∗h) > g(α) for all α > y∗h. Moreover, since
g(·) is continuous, it attains a maximum value on the closed and bounded interval
[y∗` , y∗h].

The above holds for any specification of n(·) satisfying Assumption 2. We will also
show this maximizer is unique. It helps to distinguish two sub-cases.
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Sub-case 1: y` > y∗h. In this case there is a unique maximizer: We have

g′(y∗` ) = p[n′(y`/2)− n′(yh − y`/2)] > 0
g′(y∗h) = (1− p)[n′(yh/2)− n′(y` − yh/2)] < 0

and g′′ < 0 in (y∗` , y∗h) since both f `, fh are concave in this region. Thus g′ has a
unique root and this is the maximizer.

What we show next is that when y` < y∗h, g′ has again a unique root but there is a
cut-off p such that for p ≥ p the root is in the

[
y`, y∗h

)
region, while for p < p the root

is in the
(
y∗` , y

`
)
region.

Sub-case 2: y` < y∗h. Let us work with an n() that is linear in losses, in particular
take

n(α) =

n+(α) if α ≥ 0

λα if α < 0

where n+() is as usual increasing and concave, and it is such that n′(0+) < λ.

Now, for a = y`− we have

g′(y`−) = (1− p)[n′(y`)− n′(0+)] + p[n′(y`)− n′(yh − y`)] (6)

For α = y`+ we have

g′(y`+) = (1− p)[n′(y`)− n′(0−)] + p[n′(y`)− n′(yh − y`)] (7)
= (1− p) [n′(y`)− λ]︸ ︷︷ ︸

<0

+p [n′(y`)− n′(yh − y`)]︸ ︷︷ ︸
>0

(8)

Finally, for α = y∗h

g′(y∗h) = (1− p)[n′(y∗h)− n′(y` − y∗h)] + p[n′(y∗h)− n′(yh − y∗h)]
= (1− p)[n′(y∗h)− λ]
< 0

The last line follows from n′() being decreasing thus n′(y∗h) < n′(0+), and having
assumed that n′(0+) < λ.
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We also note that g′(y`+) < g′(y`−) for any p ∈ [0, 1), and that inside the two intervals
(y∗` , y`) and (y`, y∗h), the function g is concave. This implies that g′ is a decreasing
function with g′(y∗` ) > 0 and g′(y∗h) < 0, thus it has a unique critical point, and g() a
unique maximum.

Specifically, we have two cases:

• If (*)< 0 the maximum of g is inside the left interval

• If (*)> 0 the maximum of g is inside the right interval, including the possibility
to be it’s left boundary y`, which is the case when (**)< 0.

The existence of a cut-off p: The transition occurs at the point where (**) is 0.
Thus p is (implicitly) defined from the equation

(1− p)[n′(y`)− λ] + p[n′(y`)− n′(yh − y`)] = 0

which yields the unique cut-off3

p = λ− n′(y`)
λ− n′(yh − y`)

Let us summarize the DM’s optimal anticipation in the presence of income uncertainty,
shown graphically in Figure 1. As the probability p of the good outcome increases from
0 to 1, the DM increases their anticipation level continuously. Whether the decision
maker experiences a loss in the low-consumption state depends on the difference in
consumption across states and the probability of the good state.

First, consider the case y` > yh/2. Even if the DM knew that the good state will
occur with certainty (p = 1), their optimal anticipation level would be yh/2; for
any p < 1, their optimal anticipation level would be even lower. This implies the
DM’s anticipation level will be lower than y` in this case, and hence the DM will not
experience a loss even if the bad state is realized.

Second, consider the case y` < yh/2. If the probability of the good outcome is
sufficiently high (i.e., p > p), the DM’s anticipation level exceeds y`, and thus they
will experience a loss if the bad outcome is realized. Otherwise, the DM’s anticipation

3We can confirm as a sanity check that p ∈ (0, 1)
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level will not exceed y`, so they will not experience a loss even if the bad outcome is
realized.

And an inaction band: Finally, we note there is actually a range of probabilities p
for which the DM will choose the same anticipation level, y`. Specifically, this is the
case for any p ∈

(
p, p

)
, where p is the root of (*),4

p = n′(0+)− n′(y`)
n′(0+)− n′(yh − y`)

We solve for α0
1 as a function of p numerically, and notice it is piecewise linear:

Figure 1: Numerical solution of α0
1(p). Parameters: y` = 0.3, yh = 0.7, n(x ≥ 0) =

(x+2)0.05−20.005

0.05 , n(x ≤ 0) = λx, λ = 1.2, implying a loss aversion of n′(0−)
n′(0+) ≈ 2.32. The

vertical lines show the analytically computed p, p.

To summarize, the DM needs to be compensated by a high enough probability of the
good outcome in order to overcome their loss aversion and risk experiencing a loss
ex-post, if the bad outcome is realized.

4Since (**) < (*) for any p ∈ [0, 1) as we have already pointed out, it follows that p < p.
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3.2 Precautionary savings

Having introduced how anticipation is formed under risky income, we now solve the
same setup as the benchmark precautionary savings model. Suppose the DM receives
some income ȳ with certainty in period 1. In period 2 they receive a mean preserving
spread of that income, that is risky income of the same expectation. Specifically, period
2 income can be yh w.p. p, and y` < yh w.p. 1−p, such that pyh + (1−p)y` = ȳ.

As the key object of interest is the amount of saving between periods 1 and 2, we express
the problem in terms of that. Denote by s the amount of net saving out of period’s 1
income; s > 0 means the DM saves, while s < 0 means the DM borrows.

Naturally, s ∈ [−y`, ȳ]. It follows that c1 = ȳ − s, c2 = y2 + s, where y2, and hence c2

are random variables.

In period 1, the DM jointly chooses

(
s∗, α1

2

)
= arg max

s,α

{
m(ȳ − s) + n

(
m(ȳ − s)− α0

1

)
+ n

(
α− α0

2

)
+ E[m(y2 + s) + n(m(y2 + s)− α)]

}

taking α0
1, α

0
2 as given. The expectation is taken over the realizations of y2.

The FOC implicitly characterizing α1
2 is

n′
(
α1

2 − α0
2

)
= E

[
n′(m(y2 + s)− α1

2)
]

and the FOC for s∗ is

m′(ȳ − s)
[
1 + n′

(
m(ȳ − s)− α0

1

)]
= E

[
m′(y2 + s)

[
1 + n′

(
m(y2 + s)− α1

2

)]]
In period 0 the DM will choose

α0
1 = m(ȳ − s)

2

and
α0

2 = α1
2

2

For concreteness we start with some numerical examples that illustrate our results,
following closely the textbook treatment of Jappelli and Pistaferri (2017) for the
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benchmark model. We then explain all results analytically.

Numerical examples

We solve the model numerically, and compare its results to the benchmark model
of no gain-loss utility, i.e. when n(·) is constant, for three different specifications of
m(·): m(c) = c1−γ , with γ < 1, so m′ is convex; m(c) = ζc− ηc2, meaning m′ is linear;
m(c) = c.

The income process for these illustrations is chosen to be:

y2 =

0.2, w.p. 0.4

1.2, w.p. 0.6

and thus y1 = E[y2] = 0.8.

The results are summarized in table 1 that follows.5

Saving (s∗)
m(c) = c1−γ m(c) = ζc− η

2c
2 m(c) = c

Anticipatory utility no risk 0.0083 0.01 0.16
risk 0.1633 0.04 0.30

Benchmark no risk 0 0 -
risk 0.1583 0 -

Table 1: Precautionary savings of anticipatory utility model.

Discussion of numerical examples

The entries of the last column are empty for the benchmark model, as for a linear
m(·) the problem is not well defined.

5The remaining parameters and specifications used are γ = 0.99; ζ = 3, η = 2; n(x ≥ 0) =
(x+2)0.05−20.05

0.05 , n(x ≤ 0) = (−x+0.8254)0.05−0.82540.05

0.05 ; implied loss aversion n′(0−)
n′(0+) ≈ 2.32. They were

chosen for expository purposes: the parameters of n(·) were chosen to give a reasonable loss aversion
closely above 2; γ ≈ 1 makes the CRRA specification comparable to the standard log(·), as the two
have first derivatives (almost) proportional to each other; ζ, η were chosen so that the maximum of
the quadratic is to the right of the range of interest and so that m(yh − y`) is the same in all three
specifications, which we want for the comparability of the results of table 2.
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The main message of the exercise is that the DM with anticipatory utility exhibits
a stronger savings motive compared to the benchmark. This motive is partially due
to the agent’s patience (proposition 1), and partially to a motive to save to insure
against the possible bad outcome of period 2 (precautionary savings motive).

We highlight that the anticipatory utility breaks certainty equivalence: there is a
precautionary savings motive for the quadratic utility as well, meaning there is a
first-order precautionary savings motive.

To unpack the results let us look back at the FOC of the DM’s problem under
anticipatory utility, which we can compare both to those of the problem under
certainty, and the benchmark model.

α0
1 = m(ȳ − s)

2 (1)

α0
2 = α1

2
2 (2)

n′(α1
2 − α0

2) = E
{
n′(m(y2 + s)− α1

2)
}

(3)

m′(ȳ − s)
[
1 + n′

(
m(ȳ − s)− α0

1

)]
= E

{[
1 + n′

(
m(y2 + s)− α1

2

)]
m′(y2 + s)

}
(4)

By rearranging (4) we notice the DM effectively has an endogenous stochastic discount
factor in this case

m′(ȳ − s) = E
{

1 + n′(m(y2 + s)− α1
2)

1 + n′(m(ȳ − s)− α0
1)︸ ︷︷ ︸

endog. stoc. disc. factor

m′(y2 + s)
}

Using that E[XY ] = E[X]E[Y ] + Cov(X, Y ), and (1) we can get

m′(ȳ − s) =
E
{

1 + n′(m(y2 + s)− α1
2)
}

1 + n′
(
m(ȳ−s)

2

) E
{
m′(y2 + s)

}
+ Cov(m′, n′)

1 + n′
(
m(ȳ−s)

2

)
Now the covariance term is non-negative, as a covariance of two (weakly) decreasing
functions of y2 meaning,

m′(ȳ − s) ≥
E
{

1 + n′(m(y2 + s)− α1
2)
}

1 + n′
(
m(ȳ−s)

2

) E
{
m′(y2 + s)

}
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with the equality holding when the covariance term is 0.

Combining with (2),(3) and re-arranging we get

m′(ȳ − s) ≥
1 + n′

(
α1

2
2

)
1 + n′

(
m(ȳ−s)

2

) E
{
m′(y2 + s)

}
(A)

which has to be satisfied by the chosen α1
2, s.

Finally, combining (2), (3), and given that n′ is convex in our parameterization, from
Jensen’s inequality we get that the chosen α1

2, s must also satisfy

n′
(
α1

2
2

)
> n′

(
E
{
m(y2 + s)

}
− α1

2

)

Since n′(·) is decreasing, this condition is equivalent to

α1
2 <

2
3E[m(y2 + s)]

and again by Jensen’s inequality for m(·) that is concave we get

α1
2 <

2
3m(ȳ + s) (B)

This is a second inequality that has to be satisfied by the chosen α1
2, s.

Remark 1. From (B) we have

1 + n′
(
α1

2
2

)
1 + n′

(
m(ȳ−s)

2

) > 1 + n′
(
m(ȳ+s)

3

)
1 + n′

(
m(ȳ−s)

2

) ≡ βAU(s)

A sufficient condition for the DM to save more under anticipatory utility than what
they save because of the precautionary motive in the benchmark is that

βAU(sprec.) > 1

In that case it holds that

m′(ȳ − sprec.) < βAU(sprec.) E
{
m′(y2 + sprec.)

}
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and the DM will thus want to save more than sprec. for (A) to hold. The βAU(sprec.) > 1
condition, which amounts to m(ȳ+sprec.)

3 < m(ȳ−sprec.)
2 is indeed satisfied for both the

CRRA and quadratic utilities in our examples, where sprec. = 0.1583, and sprec. = 0
respectively.

Remark 2. Starting again from (A) and applying Jensen’s inequality for m′ that is
(weakly) convex in our first two specifications, we get

m′(ȳ − s) > βAU(s) m′(ȳ + s)

which has to be satisfied in equilibrium, while sno risk satisfies that condition with
equality. Thus the DM will also be saving more than in the certainty case, meaning
they have a precautionary saving motive under anticipatory utility.

Remark 3. In the case when m(c) = c, the covariance term is 0, and the problem
reduces to

n′
(
ȳ − s

2

)
= E

{
n′(y2 − ȳ + 2s)

}
We notice saving in this case is determined by a condition analogous to the one in the
benchmark case but the role of m′(·) is played by n′(·). Therefore the precautionary
saving motive in this case is determined by the prudence of n.6

3.3 Precautionary savings under present focus

Contrary to the case we studied above, when the DM is present-focused they have an
incentive to over-consume in period 1 (proposition 2). Thus a trade-off emerges: on the
one hand the DM wants to over-consume in period 1, according to their present-focused
anticipation level formed in period 0, on the other hand, precautionary savings induce
the DM to save for the bad outcome of period 2. We investigate the determinants of
how this trade-off is resolved.

In period 0 now the DM thinks they will consume all their cash-in-hand in period 1,
that is ȳ + y`. This yields

α0
1 = m(ȳ + y`)

2
6Under certainty it is straightforward to solve the condition analytically, to get s = ȳ/5, which for

ȳ = 0.8 gives s = 0.16, as we found numerically.

19



α0
2 is determined by backward induction. α1

2(α0
2; 0) denotes the anticipation level α1

2

believed in period 0, and is a function of α0
2. It is characterized by

α1
2(α0

2; 0) = arg max
α

{
n(α− α0

2) + E
[
n
(
m(y2 − y`)− α

)]}

and then

α0
2 = arg max

a
α

{
n(α) + n(α1

2(α; 0)− α) + E
[
n
(
m(y2 − y`)− α1

2(α; 0)
)]}

Now in period 1, taking α0
1, α

0
2 as given, the DM can decide their desired net saving s

and their anticipation level, which are jointly determined from

(
α1

2, s
∗
)

= arg max
α,s

{
m(ȳ−s)+n

(
m(ȳ−s)−α0

1

)
+n(α−α0

2)+E
[
m(y2+s)+n

(
m(y2+s)−α

)]}

We note that in this case as well, for n(·) constant, we recover the benchmark
model.

As before, we start with with some numerical examples for concreteness, and then
explain all results analytically.

Numerical examples

We solve the model numerically for the same cases we solved it for the non-present-
focused DM. The results are summarized in table 2 that follows.

Saving (s∗)
m(c) = c1−γ m(c) = ζc− η

2c
2 m(c) = c

Anticipatory utility (PF) no risk -0.0002 -0.0074 -0.27
risk 0.1575 0.0245 0.050

Benchmark no risk 0 0 -
risk 0.1583 0 -

Table 2: Precautionary savings of anticipatory utility model, under present focus.
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Discussion of numerical examples

As expected, under no risk the DM borrows under all specifications. We also notice
that in all cases precautionary savings are weaker compared to to non-present-focused
DM, and in the case of linear utility significantly so.

In the case of quadratic utility, precautionary savings of the anticipatory utility
DM appears again stronger than in the benchmark model, while for the CRRA
specification the balance has flipped. So impatience can put enough downward
pressure for precautionary savings to become weaker than the benchmark case. This
is also confirmed in the next table.

Interestingly, for a narrower mean-preserving spread the present-focused DM can be
inclined to borrow even in the presence of risk.

Saving (s∗)
m(c) = c1−γ m(c) = ζc− η

2c
2 m(c) = c

Anticipatory utility (PF) no risk -0.0002 -0.0074 -0.27
risk 0.040 -0.0015 -0.158

Benchmark no risk 0 0 -
risk 0.041 0 -

Table 3: Precautionary savings of anticipatory utility model, under present focus, for
less risky outcome, yh = 1,w.p. 0.6, y` = 0.5,w.p. 0.4

To unpack the results of the present-focused DM, let us again write the FOC charac-
terizing the solution in this case.

α0
1 = m(ȳ + y`)

2 (1’)

α0
2 = α1

2(0)
2 (2a’)

n′(α1
2(0)− α0

2) = E
{
n′(m(y2 − y`)− α1

2(0))
}

(2b’)

n′(α1
2 − α0

2) = E
{
n′(m(y2 + s)− α1

2)
}

(3’)

m′(ȳ − s)
[
1 + n′

(
m(ȳ − s)− α0

1

)]
= E

{[
1 + n′

(
m(y2 + s)− α1

2

)]
m′(y2 + s)

}
(4’)

We notice one key difference in the case of present focus: the appearance of condition
(2b′). This condition pins down the belief of α1

2 that self 0 holds, hence denoted by
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α1
2(0), to distinguish it from the anticipation level actually formed in period 1, denoted

by α1
2 and given by (3′).

Re-arranging (4’) we notice again the DM can be thought to effectively have an
endogenous stochastic discount factor,

m′(ȳ − s) = E
{

1 + n′(m(y2 + s)− α1
2)

1 + n′(m(ȳ − s)− α0
1)︸ ︷︷ ︸

endog. stoc. disc. factor

m′(y2 + s)
}

but this discount factor will be different, as conditions (1’)-(3’) are different from
(1)-(3).

Now, from the introductory discussion of this section, we know that the DM will not
choose an as high anticipation level as to incur a possible loss ex-post, unless the
probability of the good outcome is very high. It turns out this is not the case in any
of the examples we are considering, thus (2a’) and (2b’) reduce to α0

2 = 0 (2”) (and
α1

2(0) = 0).

We are thus effectively left with a system of two equations and two unknowns
(s, α1

2):

n′(α1
2) = E

{
n′(m(y2 + s)− α1

2)
}

m′(ȳ − s)
[
1 + n′

(
m(ȳ − s)− m(ȳ + y`)

2

)]
= E

{[
1 + n′

(
m(y2 + s)− α1

2

)]
m′(y2 + s)

}

We linearize it around the certainty solution where y2 = ȳ, which we denote by (s̄, ᾱ).
From section 2.4 we know that ᾱ = m(ȳ+s̄)

2 , and s̄ < 0.

The linearized system is given by

(α1
2 − ᾱ)− m′(ȳ + s̄)

2 (s− s̄) = 0 (A’)

φ0 + φa(α1
2 − ᾱ) + φs(s− s̄) = 0 (B’)
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where φ0, φa, φs are the following constants, which are of determinate sign

φ0 = m′(ȳ − s̄)
[
1 + n′

(
m(ȳ − s̄)− m(ȳ + y`)

2

)]
−m′(ȳ + s̄)

[
1 + n′

(
m(ȳ + s̄)

2

)]
< 0

φa = n′′
(
m(ȳ + s̄)

2

)
m′(ȳ + s̄) < 0

φs = −
{
m′′(ȳ − s̄)

[
1 + n′

(
m(ȳ − s̄)− m(ȳ+y`)

2

)]
+ [m′(ȳ − s̄)]2n′′

(
m(ȳ − s̄)− m(ȳ+y`)

2

)
+

+m′′(ȳ + s̄)
[
1 + n′

(
m(ȳ+s̄)

2

)]
+ [m′(ȳ + s̄)]2n′′

(
m(ȳ+s̄)

2

)}
> 0

Finally, plugging (A’) into (B’) we can solve for s,

s = s̄+ ϕ

where ϕ ≡ −φ0

φs+ m′(ȳ+s̄)
2 φa

> 0.

Remark 4. The sign of φa is readily verified, as n′′ < 0 and m′ > 0.

The sign of φs is also readily verified from the properties of n(·) and m(·), as inside
the curly brackets is a sum of negative terms.

The denominator of ϕ can be seen to be positive after collecting terms.

The sign of φ0 is determined by the fact that in the certainty case, the same expression
equals 0, but with α0

1 = m(2ȳ)
2 in the place of α0

1 = m(ȳ+y`)
2 here. Since y` < ȳ, it follows

from the properties of m(·) and n(·) that φ0 < 0.

Remark 5. The presence of φ0 6= 0 is critical as it implies a first-order uncertainty
effect. If we had φ0 = 0, it would mean that s̄, ᾱ would be the solution to the system,
i.e. uncertainty would only have second-order effects, as is the case in the benchmark
model.

Remark 6. We have ϕ > 0. This means that at a first-order uncertainty has a
precautionary savings motive. However, s̄ < 0 thus whether the net effect of total
saving is positive or negative depends on the parameterization, but also, critically, on
the size of the spread.

The effect of the size of the spread is captured by the presence of y`. Keeping p fixed,
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a bigger spread has a lower y`.

Assuming prudence in n(·), that is n′′′ > 0, it can be shown that

∂ϕ

∂y`
< 0

thus a bigger spread implies a higher s.

In other words, the precautionary savings motive (ϕ > 0) dominates the impatience
motive (s̄ < 0) at some point as uncertainty gets bigger, as we also saw in the numerical
examples.7

3.4 Short-term income risk

To study precautionary savings we naturally focused on income uncertainty that is
resolved further in the future, in period 2.

Another case of interest is how income uncertainty resolved in the short-term, in
period 1, affects the DM’s behavior. For this section only we limit attention on the
present-focused DM for whom c∗1 > c∗2 under no uncertainty. This is the empirically
more relevant case, as well as the case more directly comparable with Kőszegi and
Rabin (2009).

Assume that y2 = ȳ, and y1 can be yh w.p. p, and y` < yh w.p. 1 − p, such that
pyh + (1 − p)y` = ȳ. In period 0, when the DM chooses their anticipation level α0

1,
they are uncertain about their income realization in period 1; uncertainty is resolved
before the DM chooses how much to consume in period 1.

The following holds

Proposition 3. If the DM knew their income realization from the beginning, they
would consume less (more) in period 1 when y` (yh) is realized, compared to what they
consume under uncertainty.

Proof. Anticipation level α0
1 is formed from

n′
(
α0

1

)
= pn′

(
m
(
yh + ȳ

)
− α0

1

)
+ (1− p)n′

(
m
(
y` + ȳ

)
− α0

1

)
7Naturally if there is no uncertainty, meaning y` = ȳ (= yh), then φ0 = ϕ = 0 and we recover the

certainty solution.
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But n′′ < 0 implies

n′
(
α0

1

)
< pn′

(
m
(
y` + ȳ

)
− α0

1

)
+ (1− p)n′

(
m
(
y` + ȳ

)
− α0

1

)
= n′

(
m
(
y` + ȳ

)
− α0

1

)
And thus

α0
1 >

m
(
y` + ȳ

)
2 ≡ α0

1(y`)

Analogously it is shown that

α0
1 <

m
(
yh + ȳ

)
2 ≡ α0

1(yh)

In other words α0
1 under uncertainty is between the anticipation levels the DM would

choose if they knew they would receive y` or yh in period 1, denoted α0
1(y`) and α0

1(yh)
respectively (see also Figure 1). The result follows from the FOC characterizing c∗1

m′(c∗1)
[
1 + n′

(
m(c∗1)− α0

1

)]
= m′(W − c∗1)

[
1 + n′

(
m(W − c∗1)

2

)]

where W = yh + ȳ, or W = y` + ȳ in each case respectively.

This result is in contrast to Kőszegi and Rabin (2009) where the DM would want to
consume less in both cases (proposition 6).

Furthermore, under uncertainty, the DM will be impatient – that is c∗1 > c∗2, if y` is
realized, while this is not necessarily the case when yh is realized. This is also different
from Kőszegi and Rabin (2009) where the DM would be impatient, consuming c∗1 > c∗2

in both cases (proposition 5).

4 Consumption when both liquid and illiquid as-
sets exist

A recent literature has highlighted the importance of considering both liquid and
illiquid assets for consumption-saving problems as the one studied here (e.g., Kaplan
and Violante, 2022).
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Up to now we have worked with the assumption of credit markets with no imperfections,
that is rb = rs = r and there is no borrowing limit. Under this assumption, there can
be no distinction between a liquid asset – money today, and an illiquid asset – money
tomorrow. That is because income of y tomorrow is equivalent to income of y

1+r today,
and vice-versa.

In such a setup the DM can borrow their lifetime income (up to the natural borrowing
limit) in the first period of their life, and only decide how much to save each period;
the actual timing of a cash-flow is irrelevant. This is why up to now we only focused
on lifetime income – W = y1 + y2.

We now make the distinction between a liquid and an illiquid asset meaningful, by
assuming rb > rs. In such a setup borrowing, or equivalently liquidating an illiquid
asset (tomorrow’s income) is costly. For simplicity we will assume rs = 0.

Non-present-focused DM. Clearly, the fact that borrowing is costly does not change
the behavior of the non-present-focused DM, who is not borrowing anyway.

We thus limit attention to the present-focused DM.

Present-focused DM. We illustrate the present-focused DM’s behavior when income
is certain, i.e. when y1 = y2 = ȳ.

In this case, it will hold that

α0
1 =

m(ȳ + ȳ
1+rb )

2
and net savings and the anticipation level in period 1 are jointly chosen from

(
α1

2, s
∗
)

= arg max
α,s

{
m(ȳ − s) + n

(
m(ȳ − s)− α0

1

)
+ n(α)+

+m
(
ȳ + s(1 + rb1s<0)

)
+ n

(
m
(
ȳ + s(1 + rb1s<0)− α

)}

Lemma. When rb > rs = 0 and income is certain, the present-focused DM will never
want to save.

Proof. Suppose it is the case, and s > 0. Then,

α1
2 = m(ȳ + s)

2

26



and the FOC pinning down s∗ will be

m′(ȳ − s)
1 + n′

m(ȳ − s)−
m
(
ȳ + ȳ

1+rb

)
2

 = m′(ȳ + s)
[
1 + n′

(
m(ȳ + s)

2

)]

But for s = 0, it holds that LHS > RHS, thus the DM will want to borrow, i.e.
s < 0.

Proposition 4. When rb > rs = 0 and income is certain, then (a) the amount
a present-focused DM wants to borrow is decreasing in rb, and (b) there exists an
endogenous cut-off r̄b, above which the DM chooses s∗ = 0.

Proof. Assuming s < 0, then

α1
2 =

m
(
ȳ + s(1 + rb)

)
2

and the FOC pinning down s∗ will be

m′(ȳ − s) = (1 + rb)

1 + n′

m

(
ȳ+s(1+rb

)
)

2


1 + n′

m(ȳ − s)−
m

(
ȳ+ ȳ

1+rb

)
2

m
′
(
ȳ + s(1 + rb)

)

Part (a) follows from applyting the implicit function theorem in the above condition
to get

∂s

∂rb
> 0

when s < 0. Thus an increase in rb decreases borrowing.

For part (b) we plug s = 0 in the above. Now define G(rb) be the difference of the
LHS-RHS in the above for s = 0:

G(rb) ≡ 1 + n′

m(ȳ)−
m
(
ȳ + ȳ

1+rb

)
2

− (1 + rb)
[
1 + n′

(
m(ȳ)

2

)]

We notice it holds that G(0) > 0, and that G(rb) is decreasing in rb. Thus there is a
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unique cut-off implicitly defined from

G(r̄b) = 0

above which the DM will be made worse-off by any borrowing, and thus they will
choose s∗ = 0.

The cut-off r̄b depends on m(·), n(·), and ȳ. For any rb < r̄b the DM borrows choosing
s∗ < 0; for rb ≥ r̄b the DM chooses s∗ = 0

We illustrate below the amount of borrowing for the present-focused DM with linear
utility m(c) = c, and ȳ, n(·) same as in our numerical examples above.

Figure 2: Present-focused DM’s behavior under credit market imperfections. There is
a cut-off r̄b above which the DM, who is impatient and thus the natural borrower in
the economy, is unwilling to borrow anything.

28



5 Conclusion

This paper has introduced a consumption-saving model of anticipatory utility. We
derived the model’s implications for a two-period horizon. We think there are two
natural directions to extend the analysis: (a) to consider the two types of agents
interacting in a general equilibrium setup, and (b) to extend the model to a multi-period
horizon and calibrate it to assess it quantitatively.
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