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Two interrelated trends characterizing
today’s digital economy are the growing use
of AI algorithms (AIAs) for pricing and
other economic decisions, and the changes
in data flow driven by the various initiatives
for privacy protection enacted by both gov-
ernments (for instance, through the GDPR
in Europe and CCPA in the US) and the
large digital platforms (like Apple’s restric-
tions on tracking with the launch of IOS14
in April 2021 or the Google’s decision to
eliminate third party cookies).1 Although
the ongoing debate about regulating digital
platforms is looking at both phenomena, it
is doing so as if they were separate. But
data are the key fuel of AIAs. Thus, any
change to the type and quality of available
data has an impact on the type and perfor-
mance of the AIAs. This, in turn, implies
that the large digital platforms might have
incentives to strategically alter data flows to
their advantage. Although the latter prob-
lem has been discussed by prominent lit-
erature in economics, its interactions with
AIAs have not.2

This study intends to fill this gap by
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1Regarding the first trend, see (Chen, Mislove
and Wilson 2016), (Competition and Authority 2018),
(Calvano et al. 2020), (Assad et al. 2020), (Klein 2021),
(Brown and MacKay 2021) and (Mehta and Perlroth

2023). Regarding the second trend, see (Alcobendas,
Kobayashi and Shum 2021), (Aridor, Che and Salz 2022)
and (Lefrere et al. 2022).

2See (Bergemann and Bonatti 2018) for an extensive
introduction to markets for information, including an

overview of the design and price of information for the

case of sponsored search auctions.

analyzing the case of digital advertising.
Specifically, we want to understand whether
a platform that sells ad slots on its search
engine (as Google, Bing, or Yandex do) can
benefit from obfuscating the data available
to the AIAs bidding in its search auctions.
Sponsored search is the most lucrative por-
tion of digital advertising (worth about 40
percent of all digital ad revenues) and an
area where algorithmic bidding, often via
AIAs, is the norm. These algorithms re-
quire data to optimize bids, budgets, and
keyword selection, but, to a large extent, it
is the selling platform that determines the
type, amount, frequency, and coarseness of
the data released. As a result, platforms
can potentially control the effectiveness of
AIAs. Regulations like the forthcoming
DMA in Europe will mandate that large
platforms should disclose data, but it is far
from easy to inform regulators on which
type of data to focus on, especially given
the conflicting role played by the privacy
initiatives.3 In this paper, we offer some
clear evidence of the risk that platforms
strategically obfuscate data through a se-
ries of simulated experiments where asym-
metric bidders employ AIAs to compete in
the Generalized second-price (GSP) auc-
tions.4 In this context, different amount of
available information leads to differences in
terms of possible states on which the bid-
ders condition future bids. We find that
when more detailed information is available
to train the algorithms, the advertisers’ re-
wards are higher, and conversely, the auc-

3See, for instance, the conflicting provisions in the
DMA that on the one hand enhance transparency to-

ward advertisers (Art. 6g), while on the other place

restrictions on targeted/micro-targeted ads (Art. 6aa).
4In terms of the methodology, our approach follows

(Calvano et al. 2020) by setting up a series of computa-

tional experiments where AI algorithms set bids.
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AI & DATA OBFUSCATION 2

tioneer revenues decline. In particular, in
our setting, the decision not to reveal com-
petitor bids increases the platform revenues
by 22%. Moreover, algorithmic bidding has
a tendency to sustain low bids relative to
the competitive benchmark case.

I. Generalized Second-price Auction

Consider three advertisers i ∈ {1, 2, 3}
bidding in an online advertising auction
with two slots. Advertisers value a click on
their ad differently: v1 = 3, v2 = 2, v3 = 1.
If an ad is placed on the first slot, it gets
five clicks, whereas the second slot leads to
two clicks. Denote these click-through-rates
(CTRs): x1 = 5, x2 = 2. We discretize
the set of feasible bids B on the interval
[Bmin,Bmax] = [0.2, 3], with k = 15 possible
bids so that the step between the bids is
0.2. The bid of advertiser i is denoted bi.
The first slot is assigned to the highest bid-
der and the second to the second highest.
When several bids are equal, the slots are
allocated randomly. Denote the rank of ad-
vertiser i’s bid ρ (i), then, the resulting pay-
off is vix

ρ(i). In the GSP mechanism, each
bidder pays the price-per-click equal to the
bid of the advertiser placed below him. As
a result, bidder i’s reward in the GSP auc-
tion can be written as

(
vi − bρ(i)+1

)
xρ(i).

The static GSP auction has many Nash
equilibria. For this reason, (Varian 2007)
and (Edelman, Ostrovsky and Schwarz
2007) introduced a refinement of the set of
equilibria, the lowest-revenue locally envy-
free equilibrium (EOS), which is predomi-
nantly used in the literature on the GSP as
a competitive benchmark.5 The EOS equi-

5A Nash equilibrium is locally envy-free if xρ(i)(vi−
bρ(i)+1) ≥ xρ(i)−1(vi − bρ(i)) for every i. EOS refine-

ment is the lowest-revenue Nash equilibrium which sat-

isfies this condition. This refinement is especially impor-
tant because it conforms with the search engines’ tuto-
rials on how to bid in these auctions. See, for instance,

the Google AdWord tutorial in which Hal Varian teaches
how to maximize profits by following this bidding strat-

egy: https://www.youtube.com/watch?v=tW3BRMld1c8.

As EOS showed, such equilibria induce the same allo-
cations and payments as truthful bidding in the VCG,

and they are fully characterized by the following condi-
tions: denote by S the number of available slots, then

b1 > b2, bi = vi for all i > S, and for all i = 2, . . . , S,

bi = vi − xi

xi−1 (vi − bi+1) .

librium of the three-player game is given by
b1 > b2, b2 = 1.6, b3 = 1, and leads to auc-
tioneer revenue R = 10.

These studies model the GSP auction as a
full information game because, back in the
days when they were written, the amount
of feedback that was available to bidders
was extensive. Bidders had auction-level in-
formation such that it was as if they knew
other players’ bids. Below we discuss how
the data that search engines pass to ad-
vertisers has evolved over time becoming
coarser. This tendency is what we refer to
as data obfuscation.

II. Design Features of the AIAs
Experiments

The auction game described above is re-
peated many times. This repetition is what
allows the AIAs to learn through a process
of trial and error how to optimize bids in
order to maximize a reward. In particular,
the AIAs that we consider are Q-learning
algorithms bidding against each other and
learning simultaneously.6 Their training
entails striking a balance between explo-
ration (trying out new strategies) and ex-
ploitation (using the obtained knowledge).

The knowledge

The knowledge of each algorithm is rep-
resented by the Q-matrix, which is the ma-
trix of expected rewards from each possible
bid in each possible state of the game. For
each bidder i, in each period t, it is Qi

t(s, b),
where b ∈ B, and s ∈ S. Here, the states
of the game can contain different amounts
of information about the past auction out-
comes. For example, in one of the experi-
ments, each state is defined by the previous
bids of all players. In the first period, each
cell of the Q-matrix is initialized randomly.

The experimentation

To fully explore the Q-matrix, the algo-
rithm should visit different actions in dif-
ferent states, even the ones that it finds not

6This is the approach pioneered by (Calvano et al.

2020). For an overview of this type of AIAs see (Sutton

and Andrew 2018).

https://www.youtube.com/watch?v=tW3BRMld1c8
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optimal, given prior knowledge. We use an
ε-greedy exploration strategy. At each it-
eration, the algorithm chooses the bid that
currently leads to the highest value of Q-
matrix in a given state with a probability
1− ε, and with probability ε chooses a ran-
dom bid among all possible ones.7 We will
use a declining with time exploration rate
εt = e−β∗t, where β > 0 is the annihilation
coefficient of the exploration rate.8

Among the many features that character-
ize how an AIA is designed, two play a par-
ticularly key role in our analysis. These are
the updating rule and the data usage.

II.A. The Updating Rule

The information obtained in period t is
used for updating the Q-matrix. The algo-
rithm starts from an initial Q-matrix. After
choosing bid bit in state st, the algorithm
observes rit as well as st+1, and updates
Qi
t(s, b) for s = st and b = bit. The updat-

ing can happen in a number of ways. We
consider two main approaches that the lit-
erature describes as synchronous and asyn-
chronous updating rules:

I. Asynchronous Updating : For each i,
Qi(st, b

i
t) is updated using the follow-

ing “temporal difference” update rule:

Qi
t+1(st, b

i
t) = (1− α)Qi

t(st, b
i
t)+

α ∗ (rit(st, b
i
t, b
−i
t )+

δ ∗max
b′∈B

Qi
t(s
′, b′)).

Here α is the learning rate.9 The
learning rate determines to what

7In what follows we assume that if several bids lead

to the same value of Q-matrix in a given state, one of

them is chosen randomly. Results hold also when the
algorithms are conservative and choose the lowest bid,

and they are presented in Appendix A.
8We use β = 8.137e − 07, for the simulations with

15,000,000 iterations, and β = 1.22e − 05 for the simu-

lations with 1,000,000 iterations, so that at the last it-
eration, the probability of exploration is only 0.00005.In
particular, exp(−15, 000, 000 ∗ 8.137e − 07) = 0.00005
and exp(−1, 000, 000 ∗ 1.22e− 05) = 0.00005.

9In what follows, α = 0.1 which is a standard in com-
puter science literature. We have also explored other

learning rates, and our results are qualitatively similar.
Moreover, δ = 0.95 unless stated otherwise.

extent the new information substi-
tutes the old (“how much” the algo-
rithm learns from new bids and re-
ceived rewards). At the same time,
Qi
t+1(s, b) = Qi

t(s, b) for all s 6= st,
b 6= bit. Asynchronous updating only
requires knowledge of the reward re-
ceived from the submitted bid.

II. Synchronous Updating : Qi(st, b) is up-
dated for all bids b ∈ B with a
reward rit(st, b, b

−i
t ) that the bidder

would have received had it submitted
a different bid, given the bids of other
players:

Qi
t+1(st, b) = (1− α)Qi

t(st, b)+

α ∗ (rit(st, b, b
−i
t )+

δ ∗max
b′∈B

Qi
t(s
′, b′)),

and Qi
t+1(s, b) = Qi

t(s, b) for all s 6= st.
Thus, synchronous updating requires
calculating the rewards for all the bids
of i, rit(st, b, b

−i
t ), hence also for those

bids that were not submitted b 6= bit.

From the description above it is clear that
the feasibility of the two approaches above
crucially hinges on the available data and
on how such data can be used to calculate
the counterfactual reward associated with
actions that are not taken. In our setting,
the GSP auction has very clear rules to
determine the allocation of slots and pay-
ments depending on the bids received.10

Hence, if bidder i observes b−i, the calcu-
lation of his reward under any possible bi

holding fixed b−i is trivial and, hence, using
a synchronous updating rule is feasible. But
absent data on b−i, this counterfactual cal-
culation is unfeasible. In this case, an asyn-
chronous updating rule is instead possible
because its implementation requires observ-
ing only the reward associated with the bid
effectively submitted by i.

10A synchronous algorithm thus operates in a way
similar to how economists approach equilibrium analy-

sis. See (Asker, Fershtman and Pakes 2022) for a dis-

cussion.
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II.B. The Data Usage

The data is used not only to calculate
the rewards associated with the different ac-
tions but also to keep track of the state. In
this regard, there are two polar cases that
we can consider in terms of how the data is
used:

I. Stateful algorithms: Stateful algo-
rithms maintain a record of previous
bids and use this information to in-
form their decisions.

II. Stateless algorithms: Stateless algo-
rithms, on the other hand, do not re-
tain information from previous steps.
They make decisions based solely on
the current reward.

A key difference between stateful and state-
less algorithms is that the former, since it
has memory, can respond differently to the
same received rewards, based on the previ-
ous state. This, in turn, allows for dynamic
strategies that are not possible with state-
less algorithms. But data requirements are
greater for stateful algorithms if they need
to keep track of past bids, relative to the
case of stateless algorithms which do not
require such information.

III. Data Policy: Obfuscation
Stategies by the Platform

A search engine hosting GSP auctions has
ample latitude about the data that it re-
leases to bidders. Different considerations,
from the technological feasibility to eco-
nomic features like the reputation that the
platform has (or seeks to establish) will in-
form its data policy. For the sake of clarity,
we will focus on two extreme scenarios (Full
Information vs No information), but also,
among the infinitely many cases in between,
present an intermediate case (Partial Infor-
mation). These three cases differ in terms
of what the platform reveals about bids:

I. Full Information: In every period, the
bidder observes not only the current
reward but also the bids of the other
players submitted in the past period.

II. Partial Information: In every period,
the bidder observes not only the cur-
rent reward but also her bid submitted
in the past period and the price paid.

III. No information: The only informa-
tion that the bidder observes is the
reward she received after submitting
a particular bid.

Before relating these three cases to exam-
ples of data policies adopted by platforms,
let us connect them to the feasibility of dif-
ferent AIAs designs. It is only under full
information that Stateful synchronous algo-
rithms are feasible. Instead, under no infor-
mation, Stateless asynchronous is the only
possible form of AIAs. Partial information
is incompatible with the use of synchronous
AIAs but allows asynchronous AIAs to re-
tain some, limited form of memory contain-
ing one’s own bids (we will refer to this
type of AIAs as Partial asynchronous al-
gorithms). Hence, the platform data pol-
icy determines to a significant extent the
type of AIAs that advertisers can use and
a movement away from full information is
what we consider a data obfuscation strat-
egy.

We can now turn to a few examples of
data policies and their evolution. We fo-
cus on the case of Google. As mentioned
early, (Varian 2007) and (Edelman, Ostro-
vsky and Schwarz 2007) who pioneered the
equilibrium analysis of the search auctions
decided that a complete information game
was an adequate approximation of the en-
vironment faced by the bidder. This choice
was in sharp contrast with the canonical
auction literature but was motivated by the
specificities of the environment. As stated
in (Varian 2007): ”(...) one might ask
how likely it is that advertisers know what
they need to know to implement a full in-
formation equilibrium. (...) Google reports
click and impression data on an hour-by-
hour basis and a few days of experimen-
tation can yield pretty good estimates of
the number of clicks received for different
bids. Furthermore, Google itself offers a
“Traffic Estimator” that provides an esti-
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mate of the number of clicks per day and
the cost per day associated with the adver-
tiser’s choice of keywords. Finally, third-
party companies known as “Search Engine
Managers (SEMs)” offer a variety of ser-
vices related to managing bids. The avail-
ability of such tools and services, along with
the ease of experimentation, suggest that
the full-information assumption is a reason-
able first approximation. As we will see be-
low, the Nash equilibrium model seems to fit
the observed choices well.” Fast forwarding
to 2021, the situation is radically changed
to the point that many SEMs have been
thrown out of business by how Google has
limited their access to the data and, among
those still in business, several have aban-
doned those activities that involved bidding
on clients’ behalf.11 The “Traffic Estima-
tor” tool has also been dismissed.

Among the changes to the data policy
of Google, one that has received substan-
tial attention from the industry is that in-
volving the ”search terms report”. This
report used to be a crucial tool to assess
how each single keyword ad was performing.
But starting in September 2020, Google
modified it to contain exclusively ”terms
that a significant number of users searched
for, even if a term received a click.” In-
dustry specialists have argued that this
led to at least 20 percent of search terms
becoming invisible for advertisers.12 An-
other related instance occurred in July 2021
when Google announced ”changes to phrase
match and broad match modifiers”: fol-
lowing changes that had begun in Febru-
ary 2021, the new system in place from
July 2021 meant that keyword matches be-
came broader, thus making it harder for ad-
vertisers to relate the keyword (for which
they bid) to the user queries (which, if gen-
erating clicks, trigger the advertiser pay-
ments).13

11For a discussion of the role of the SEMs in the pe-
riod of their active engagement in bidding and the po-
tential threat it represented for the platform revenues
see (Decarolis, Goldmanis and Penta 2020), (Decarolis

and Rovigatti 2021), and (Decarolis et al. 2021).
12See panel (A1a) and (A1b) in Figure A1 in the On-

line Appendix reporting screenshots of the Google an-

nouncement and of a news article on its effects.
13See panel (A1c) in Figure A1 in the Online Ap-

Other examples exist and all describe the
same pattern toward data obfuscation.14

Hence, despite the richness of the po-
tentially available information, sponsored
search auctions now release so little infor-
mation to advertisers that even the most
extreme scenario that we labeled above as
the No information one is likely a reason-
able approximation of how this market cur-
rently works. Indeed, as much as it might
appear absurd that an advertiser does not
even know the price it paid for bidding on
a keyword, this is what the combination of
a second price system (that decouples bids
from prices) and the revised data policies
described above produce: a keyword bid
gets applied through broad matches to mul-
tiple queries in ways that advertisers can-
not control anymore neither ex ante (due
to the broad match modifiers) nor ex-post
(due to the revised search terms report).
This might also explain why Google is mov-
ing toward a system of data-driven attribu-
tion.15

Different forces might be behind the re-
vised data policies described above. For in-
stance, regarding the changes to the search
terms report, Google motivated it with the
aim ”to maintain our standards of privacy
and strengthen our protections around user
data.” The same privacy narrative is behind
all of the recent revisions to data policies
adopted by the large platforms.16 With-

pendix reporting a screenshot of the Google announce-
ment.

14For instance, this is the case of the elimination of

the average position. To know in which slot an ad was
shown, the average position used to be a highly infor-

mative metric. However, a data policy change in Febru-

ary 2019 replaced it with coarser information describing
what percent of ads appear at the top of the page (and

at the very top of the page). See panel (A1d) in Figure
A1 in the Online Appendix reporting a screenshot of the

Google announcement.
15Attribution is a fundamental element in digital ad-

vertising: it relates a conversion to an action (in our
case, a bid on a keyword). In September 2021, Google
announced changes to the default attribution of clicks to
bids offering a cryptical description of it: ”data-driven

attribution uses the Shapley value solution concept from

cooperative game theory”. See details in Figure A2 in
the Online Appendix.

16Apple, for instance, described privacy protection as

the reason for its IOS14 ”do not track” feature. But,
privacy implications aside, this revision turned out to
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out questioning the underlying intentions,
it is nevertheless important to assess what
the consequences, intended or not, might
be. This is what we do in the next section
by evaluating how AIAs perform under dif-
ferent information regimes.

IV. Results

We begin by contrasting the outcomes
under the two most extreme scenarios: Full
Information vs No information. In terms
of the AIAs, this means contrasting the al-
gorithm that exploits the most data, the
Stateful Synchronous algorithm which re-
quires Full Information to the algorithm
that requires the least data, the Stateless
Asynchronous algorithm, the only type of
algorithm implementable under No infor-
mation.

Table 1 presents these baseline results.
The first row summarizes the outcomes
when the bidders have access to the infor-
mation on the competitors’ bids and use
Stateful Synchronous algorithms, whereas
the second row shows the outcomes when
the platform restricts access to the infor-
mation on the competitors’ bids, and as a
result, the advertisers use Statelss Asyn-
chronous algorithms. For each of the set-
tings, we ran the experiment 50 times. Col-
umn 1 reports the average bids at conver-
gence for each of the players in the decreas-
ing order of valuations.17 Each run differs
only in terms of the randomly initialized Q-
matrix, as well as random exploration. Col-
umn 2 presents the average rewards at con-
vergence, while column 3 reports the aver-
age auctioneer revenue across runs as well
as its 95% confidence interval for the rev-
enue (in squared brackets).

The decision not to reveal competitor
bids increases the platform’s average rev-
enues by 22% from 7.2 to 8.76. That is
driven by the reduction in the reward of

greatly benefit the Apple ad network at the expense

of the Facebook one, see https://www.ft.com/content/

074b881f-a931-4986-888e-2ac53e286b9d.
17The advertiser with value-per-click v1 = 3 on aver-

age at convergence bids 2.03, the advertiser with value-
per-click v2 = 2 bids 1.2, whereas the advertiser with

v3 = 1 bids 0.6 when Stateful Synchronous algorithms

are played.

the highest-value player from 9 to 7.46 due
to the increase in the bid of the second-
highest-value player, from 1.2 to 1.51.

To expand our analysis, we consider a se-
ries of other experimental designs, starting
from the one that applies to the scenario of
Partial Information. Table 2 illustrates the
results for this case in its first row where
we consider an AIA that is asynchronous
but has a memory of the past price paid
by the agent. Consistent with the intu-
ition, this Partial Asynchronous algorithm
produces average auctioneer revenue lower
than in case of No Information (when Sta-
telss Asynchronous algorithms are used),
but still significantly higher than the aver-
age auctioneer revenues under the Full In-
formation (when Stateful Synchronous al-
gorithms are used instead). In particular,
average auctioneer revenue increases by 8%
from 7.2 to 7.79 when the auctioneer in-
stead of revealing all the bids, only reveals
the bid of the competitor who is placed
right below a given advertiser, and as a re-
sult defines a price paid by this advertiser.

Two other cases are considered and re-
ported in the last two rows of Table 2.
These two cases look at how the per-
formance of the Stateful Synchronous al-
gorithm changes if we either shut down
the forward-looking element of the payoff
(i.e., we set δ=0 in the updating rule) or
if we eliminate its memory of past bids
(i.e., adopt a stateless algorithm). These
two cases are of limited practical relevance
within our setting as, if the platform dis-
closes the full information needed by the
synchronous algorithm, there would be no
reason to ignore past states or future re-
wards. But they do serve an important il-
lustrative role to explain our findings. In-
deed, in both of these alternative versions of
the synchronous algorithm, the bids at con-
vergence are very close to those of the base-
line Stateless Asynchronous and so are the
revenues. These latter results are sugges-
tive that the behavior observed for the base-
line Stateful Synchronous algorithm cru-
cially depends on the possibility of adopting
dynamic strategies, which indeed require
both memory of the past and attention to
the future.

https://www.ft.com/content/074b881f-a931-4986-888e-2ac53e286b9d
https://www.ft.com/content/074b881f-a931-4986-888e-2ac53e286b9d
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Before exploring why dynamic strategies
are important, let us complete the descrip-
tion of the baseline findings. So far we have
focused on the bids and revenues at con-
vergence; that is, on what the algorithms
do once they have attained stable behav-
ior.18But convergence requires a large num-
ber of periods.19 Figure 1 shows the evolu-
tion of the auctioneer’s revenues, individual
bids, and rewards (vertical axis) by the per-
cent or the total number of iterations (hor-
izontal axis). The black line represents the
mean of the distribution of revenues across
simulation runs, the dark grey zone is the
area between the 25th and 75th percentiles,
while the light grey is the zone between
the 10th and 90th percentiles. The algo-
rithms start to coordinate long before con-
vergence is achieved. The auctioneer rev-
enues start from a fairly large value, but
this is simply because the algorithms ini-
tially randomize uniformly across bids that,
on average, lead to a revenue similar to the
EOS level. This effect disappears as exper-
imentation starts to be less prominent, and
eventually, auctioneer revenues converge to
the lower level. As can be seen from Pan-
els (d)-(i), most of the difference in revenues
between Stateful Synchronous and Stateless
Asynchronous experiments is driven by the
reduction in the reward of the highest-value
player due to the increase in the bid of the
second-highest-value player.

IV.A. Drivers of the Baseline Findings

Although it is notoriously difficult to fully
open up the black box of how AIAs work,
in our case a key driver of the behavior
of the Stateful Synchronous algorithm rel-
ative to the Stateless Asynchronous algo-
rithm can be traced back to dynamic strate-
gies. Building upon our earlier discussion
of the experiments in Table 2, here we
compare the bid evolution when the syn-
chronous algorithm learns to bid with dif-
ferent discounting of the future payoffs. In
particular, Figure 2 shows the evolution of

18See Appendix C for the definition and discussion of
convergence.

19Much less for the Stateless algorithms, but on the

order of millions for the Stateful.

the smoothed bids (moving average was ap-
plied) by the percent or the total number
of iterations in the baseline Stateful Syn-
chronous experiment with δ = 0.95 as well
as in the one with δ = 0. The difference
is striking. We can observe that while with
δ = 0.95 when one of the players increases
the bid, the other right away follows, no
such behavior is observed in the case when
δ = 0. Moreover, as discussed earlier,
the average auctioneer revenues in the case
of Stateful Synchronous experiments with
δ = 0 are 8.57 and not statistically differ-
ent from the ones in Stateless Asynchronous
experiments.

That logic can be seen clearly in Figure 3.
Here, we have focused on the Stateful Syn-
chronous algorithm’s bids at convergence.
We start from the final Q-matrix, but then
introduce an exogenous shock to the bid of
Player v2 = 2. Instead of bidding 1.2, she
deviates to bidding 1.6 in the period that
we call 0. What follows is that when Player
v2 = 2 deviates, Player v3 = 1 increases her
bid (punishes with a higher price).20 Impor-
tantly, just after a few periods, all players
return to equilibrium bidding. 21

V. Generalizations

In this section, we extend our results
along three dimensions. First, we consider
alternative settings of AIAs hyperparame-
ters; second, we look at variations in the
GSP auction game; lastly, we consider al-
ternative auction designs. In general, all
of the extensions below lead to the same
qualitative outcome of the baseline findings,
with differences only in the magnitude of
the revenue increase via obfuscation.

Starting from the case of alternative
AIAs, we consider different designs of the
Q-learners. In one experiment, we consider
alternative bid selection methods for the
cases in which different actions are asso-
ciated with identical Q-values. In partic-

20That is the result of a long history of learning, not

a random action chosen by Player v3 = 1 on a wider
interval of actions since Q-value of the bid 1.2 could
have been updated just by an insignificant amount.

21The exact number of periods depends on a partic-
ular simulation run, and varies from 2 to 5.
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ular, the main results also hold when the
algorithms are conservative and choose the
lowest bid, and they are presented in Ap-
pendix A. In another experiment, we con-
sider asymmetric grids, spanning the same
bid space, but featuring a different number
of actions for each player.

The second extension regards variations
to the GSP stage game. In Appendix D,
we show that the increase in auctioneer
revenues due to the information restriction
can be much higher than in our baseline
experiment. To do that, we run an ex-
periment with three asymmetric advertis-
ers bidding in an online advertising auction
with three slots, taken from (Milgrom and
Mollner 2014). Advertisers value a click
on their ad differently: v1 = 15, v2 = 10,
v3 = 5, so the ratio of the values is the same
as in our baseline setting. What is different
is the relative click-through rates. If an ad
is placed on the first slot, it gets 100 clicks,
whereas the second slot leads to three clicks,
and the third to one click. In this case, we
find that the increase in auctioneer revenues
due to the data obfuscation is 78%.

The third and last variation involves al-
ternative auction designs. In Appendix E,
we consider another mechanism, namely
the Vickrey-Clarke-Groves (VCG), widely
used in online advertising.22 We find that
for the VCG, the decision not to reveal com-
petitor bids increases the platform’s aver-
age revenues by 38%. Moreover, the auc-
tioneer revenues under the VCG setting
tend to be lower than those under the GSP.
The results are presented in Table A5. This
latter finding is complementary to the re-
sults of a growing number of studies on
the performance of AIAs across auction for-
mats.23

22VCG is allegedly used by Facebook.
23For instance, a thorough analysis of first price vs

second price auctions in the presence of stateless algo-
rithms is conducted in (Banchio and Skrzypacz 2022).

This study considers a setting with symmetric players.

The authors find no difference between the auctioneer
revenues for the case of a symmetric second-price auc-

tion with 2 players. For the case of the first-price auc-

tion, instead, stateless synchronous algorithms are less
likely to converge on collusive outcomes. This is also co-

herent with (Asker, Fershtman and Pakes 2021) who find

that in the context of Bertrand competition, a stateless

VI. Conclusions

In this study, we analyzed the role of
AI in digital ad auctions. Through com-
putational experiments, we evaluated the
performance of bidding algorithms powered
by AI across several stylized auction games
characterized by different information lev-
els. We find that when more detailed infor-
mation is available to the algorithms, the
advertisers’ rewards tend to be higher, and
conversely, the auctioneer revenues tend to
decline. In particular, the decision not to
reveal competitor bids increases the plat-
form revenues by 22%. That increase is
driven by the fact that with Limited Infor-
mation (the bidder observes only her own
reward) only Statelss Asynchronous algo-
rithms can be used, while in case of Full
Information (the bidder observes not only
the current reward but also the bids of
the other players submitted in the past pe-
riod), bidders could instead exploit State-
ful Synchronous algorithms. Moreover, al-
gorithmic bidding sustains low bids under
the GSP relative to the competitive bench-
mark. The results are robust to a number of
extensions, notably the change of the auc-
tion format from GSP to VCG.

These results highlight several important
features regarding how AI might shape the
working of ad auctions. Moreover, our find-
ings might help to understand recent deci-
sions by the dominant selling platforms. In
the context of search advertising, advertis-
ers on Google have experienced a reduction
in the amount of type of data available to
optimize their bidding strategies. This de-
liberate increase in the extent of data foggi-
ness, while responding to the growing pri-
vacy concerns among search users, creates
a trade-off with market competition.

Generalize back: all platforms.
New competition issue: data is an input

to vertical partners, foreclosure incentive.
This shall guide data regulations, with an
eye on AI

In a follow-up study, we also analyze the
tension created by the deployment of AI
bidding tools by the platform. These tools

synchronous algorithm restores competition.
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might be trained by the platform on data
that is superior to that available to ad-
vertisers or their intermediaries, thus lead-
ing such platform-sponsored tools to out-
perform the competition. But once all the
bidding activity is directly delegated to the
platform itself, the risks for competition or,
at the very least, the lock-in effect on ad-
vertisers are significant.
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Table 1—: Limit Bids, Rewards, and Auctioneer Revenues: Baseline Experimental Designs

GSP Auction with Three Asymmetric Players
Bids Individual Rewards Revenue

Stateful Synchronous (2.03, 1.2, 0.6) (9.0, 2.8, 0.0) 7.2
[7.03, 7.37]

Stateless Asynchronous (2.22, 1.51, 0.61) (7.46, 2.78, 0.0) 8.76
[8.39, 9.13]

Note: Column 1 reports the average across runs limit bids for each of the players in the decreasing order of valuations;
column 2 - the average across runs limit individual reward for each of the players in the decreasing order of valuations;
while column 3 - the average auctioneer revenue across runs as well as the 95% confidence interval for the revenue
in squared brackets. The Stateful Sync experiments were run with 15,000,000 iterations, α = 0.1, β = 8.137e − 07,
δ = 0.95. The Stateless Async experiments were run with 1,000,000 iterations and β = 1.22e− 05.

Table 2—: Limit Bids, Rewards, and Auctioneer Revenues: Other Experimental Designs

Three Asymmetric Players (GSP)
Bids Individual Rewards Revenue

Partial Asynchronous (2.22, 1.34, 0.58) (7.83, 2.79, 0.12) 7.79
[7.28, 8.29]

Stateful Synchronous (δ = 0) (2.46, 1.47, 0.61) (7.64, 2.79, 0.0) 8.57
[8.06, 9.08]

Stateless Synchronous (2.49, 1.49, 0.6) (7.55, 2.8, 0.0) 8.65
[8.31, 8.99]

Note: UPDATE THIS NOTE XXXX: Column 1 reports the average across runs limit bids for each of the players in
the decreasing order of valuations; column 2 - the average across runs limit individual reward for each of the players
in the decreasing order of valuations; while column 3 - the average auctioneer revenue across runs as well as the 95%
confidence interval for the revenue in squared brackets. The Stateful Sync experiments were run with 15,000,000
iterations, α = 0.1, β = 8.137e− 07, δ = 0.95. The Stateless Async experiments were run with 1,000,000 iterations
and β = 1.22e− 05.
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(a) Stateful Sync Revenues (b) Stateless Async Revenues (c) Revenues Evolutions

(d) Bids of Player v1 = 3 (e) Bids of Player v2 = 2 (f) Bids of Player v3 = 1

(g) Rewards of Player v1 = 3 (h) Rewards of Player v2 = 2 (i) Rewards of Player v3 = 1

Figure 1. : Evolution of Auctioneer’s Revenues, Bids, and Rewards

Note: Panels (a)-(c) show the evolution of the auctioneer’s revenues (vertical axis) by the percent or the total
number of iterations (horizontal axis). The black line represents the mean of the distribution of revenues, the dark
grey zone is the area between the 25th and 75th percentiles, while the light grey is the zone between the 10th and
90th percentiles. Panels (d)-(i) show the evolution of the individual bids and rewards (vertical axis) by the percent or
the total number of iterations (horizontal axis). The Stateful Sync experiments were run with 15,000,000 iterations,
α = 0.1, β = 8.137e − 07, δ = 0.95. The Stateless Async experiments, were run with 1,000,000 iterations and
β = 1.22e− 05.



AI & DATA OBFUSCATION 13

(a) Bids when δ = 0.95 (b) Bids when δ = 0

Figure 2. : Evolution of Bids in a Single Run

Note: Panel (a) shows the evolution of the smoothed bids (moving average was applied) by the percent or the total
number of iterations in just one run of the baseline Stateful Synchronous experiment. Panel (b), instead shows the
evolution of the smoothed bids (moving average was applied) by the percent or the total number of iterations in
just one run of Stateful Synchronous experiment with δ = 0. Stateful Sync experiment was run with 15,000,000
iterations, α = 0.1, β = 8.137e− 07, and both δ = 0.95, and δ = 0.

Figure 3. : Evolution of Bids in a Single Run of when Player v2 = 2 deviates at period 0

Note: The figure shows the evolution of the bids by the iteration from the moment of the forced deviation of Player
v2 = 2 to raise his bid to 1.6 instead of his bid 1.2 at convergence of the Stateful Synchronous algorithm.
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Appendix: For Online Publication Only

A. Conservative algorithms

In this appendix, we present results sim-
ilar to the ones in Table 1 and Figure 1
with the only difference that in the explo-
ration process, the algorithms are conserva-
tive and choose the smallest bid among the
ones that lead to the highest value of the
Q-matrix in a given state. See Table A1
and Figure A3.

The decision not to reveal competitor
bids increases the platform’s average rev-
enues by 23% from 6.4 to 7.86. That is
driven by the reduction in the reward of
the highest-value player from 9 to 7.49 due
to the increase in the bid of the second-
highest-value player, from 1.2 to 1.49.

B. Comparison with literature

For comparison with the literature, we
also consider the Stateless Synchronous and
Stateful Asynchronous algorithms. Results
are presented in Table A2 below. If we were
to focus on the comparison between State-
less algorithms, one with Asynchronous Up-
dating, and the other with Synchronous,
our findings extend the ones by (Banchio
and Skrzypacz 2022). We find no statisti-
cally significant difference between the auc-
tioneer revenues for the case of asymmet-
ric GSP.1 Importantly, in order to use Syn-
chronous Updating, the information on the
bids of other players should be available.
And given the availability of such informa-
tion, players would naturally retain at least
a short-term memory of it, and condition
on it. As soon as we implement the State-
ful Synchronous algorithms instead of the
Stateless, the results are reversed, and co-
ordination is again sustained by the algo-

1(Banchio and Skrzypacz 2022) consider the second-

price auctions with symmetric players, as well as the
first-price. The authors find no difference between the

auctioneer revenues for the case of a symmetric second-
price auction with 2 players. For the case of the first-

price auction, instead, stateless synchronous algorithms

are less likely to converge on collusive outcomes. Also,
(Asker, Fershtman and Pakes 2021) find that in the con-

text of Bertrand competition, a stateless synchronous

algorithm restores competition.

rithms. In Table A2 we also present re-
sults for the Stateful Asynchronous exper-
iment that is the one used by (Calvano
et al. 2020). We do not find a statistically
significant difference with the Stateless al-
gorithms.

C. Convergence

Since the algorithmic environments are
not stationary, there is no guarantee that
the algorithms converge. Even if the al-
gorithms converge, the basic question is
whether the bids converge toward the Nash
Equilibrium (NE) predictions. Still, con-
vergence can be verified ex-post. Follow-
ing (Calvano et al. 2020), we use the fol-
lowing definition: convergence is deemed
to be achieved if for each player the opti-
mal strategy does not change for 100,000
consecutive periods for the case of State-
ful Synchronous experiments. That is, if
for each player i and each state s the ac-
tion bi,t(s) = argmax[Qi,t(b, s)] stays con-
stant for 100,000 repetitions, we assume
that the algorithms have completed the
learning process and attained stable behav-
ior. We stop the session when this oc-
curs, and in any case after 15 million itera-
tions. In the Stateless Asynchronous exper-
iment, 1,000,000 iterations were enough for
the convergence to be reached with enough
exploration since the Q-matrix, in this case,
takes the form of Q-vector since the state
is a singleton, thus the convergence check
was based on 1,000 iterations. Only a very
few runs didn’t converge, and thus for all
the charts and tables, we considered only
converged runs as in (Calvano et al. 2020)
and (Banchio and Skrzypacz 2022).

For the Stateful Synchronous, 15 mil-
lion iterations are required for the proba-
bility of exploration to decrease to 0.00005,
so that convergence can be reached:
exp(−15, 000, 000 ∗ 8.137e− 07) = 0.00005.
If the rival is experimenting at even a
1% rate, the environment is still too non-
stationary for the algorithm to converge.
As a result, convergence is achieved only
when experimentation is nearly terminated.
In turn, such a small β leads to Q-matrix
exploration that is sufficient for the exper-



AI & DATA OBFUSCATION 2

iments with 3 players. As can be seen in
Table A3, each cell of the Q-matrix is vis-
ited at least 72 and 428 times. In some sim-
ulations, the algorithms experience cyclical
behavior and do not bid a constant amount.

D. Milgrom and Mollner (2014)
example

Consider the case of three asymmetric ad-
vertisers i ∈ {1, 2, 3} bidding in an online
advertising auction with three slots taken
from (Milgrom and Mollner 2014). Their
valuations are v1 = 15, v2 = 10, v3 = 5,
respectively, while the click-through rates
amount to x1 = 100, x2 = 3 and x3 = 1. We
discretize the set of feasible bids B on the
interval [Bmin,Bmax] = [1, 15], with k = 15
possible bids so that the step between the
bids is 1. The EOS equilibrium in this case
is given by b1 > b2, b2 = 9.8, b3 = 3.3, and
leads to auctioneer revenue R = 990.

The results of the experiment, reported in
table A4, show that the magnitude of the
increase in auctioneer revenues due to the
information obfuscation strictly depends on
the structure of the auction prizes. In this
case, it amounts to a 78% increase.

E. Comparison with the VCG

In table A5, we compare the GSP
(columns 1 to 3) and the VCG (columns
4 to 6) mechanisms. We find that for both
auction designs the decision not to reveal
the competitor bids increases the platform’s
average revenues. Moreover, the auctioneer
revenues under the VCG setting tend to be
lower than those under the GSP setting.
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Table A1—: Limit Bids, Rewards, and Auctioneer Revenues with conservative AIs

GSP Auction with Three Asymmetric Players
Bids Individual Rewards Revenue

Stateful Synchronous (2.07, 1.2, 0.2) (9.0, 3.6, 0.0) 6.4
[6.4, 6.4]

Stateless Asynchronous (2.14, 1.49, 0.2) (7.49, 3.59, 0.0) 7.86
[7.56, 8.16]

Note: This table presents the same results as in Table 1 with the only difference that in the exploration process, the
algorithms are conservative and choose the smallest bid among the ones that lead to the highest value of the Q-matrix
in a given state. Column 1 reports the average across runs limit bids for each of the players in the decreasing order of
valuations; column 2 - the average across runs limit individual reward for each of the players in the decreasing order
of valuations; while column 3 - the average auctioneer revenue across runs as well as the 95% confidence interval
for the revenue in squared brackets. The Stateful Sync experiments were run with 15,000,000 iterations, α = 0.1,
β = 8.137e− 07, δ = 0.95. The Stateless Async experiments, were run with 1,000,000 iterations and β = 1.22e− 05.

Table A2—: Limit Bids, Rewards, and Auctioneer Revenues under various Experimental
Designs

Three Asymmetric Players (GSP)
Bids Individual Rewards Revenue

Stateful Synchronous (2.03, 1.2, 0.6) (9.0, 2.8, 0.0) 7.2
[7.03, 7.37]

Stateless Asynchronous (2.22, 1.51, 0.61) (7.46, 2.78, 0.0) 8.76
[8.39, 9.13]

Stateless Synchronous (2.49, 1.49, 0.6) (7.55, 2.8, 0.0) 8.65
[8.31, 8.99]

Stateful Asynchronous (2.17, 1.43, 0.8) (6.83, 2.32, 0.16) 8.92
[8.34, 9.5]

Note: Column 1 reports the average across runs limit bids for each of the players in the decreasing order of valuations;
column 2 - the average across runs limit individual reward for each of the players in the decreasing order of valuations;
while column 3 - the average auctioneer revenue across runs as well as the 95% confidence interval for the revenue
in squared brackets. The Stateful Sync experiments were run with 15,000,000 iterations, α = 0.1, β = 8.137e − 07,
δ = 0.95. The Stateless Async experiments, were run with 1,000,000 iterations and β = 1.22e− 05.

Table A3—: Summary Statistics on Count Matrices

count mean std min 25% 50% 75% max

State Visits 3375.0 64701.54 543513.35 1741.5 2322.56 4726.5 11719.12 15970379.25
Cell Visits 50625.0 4313.44 36229.21 116.1 154.78 315.1 781.75 1064691.95

Note: The table reports summary statistics on the average number of visits counted in each Q-matrix state and in
each Q-matrix cell. for the Stateful Synchronous experiments. Specifically, count matrices are averaged across runs
for every player. Then, they are reshaped as a vector of dimension [1 × k], where k is the size of the q-matrix. This
vector is player specific, and it is used for computing summary statistics at the player level. For the analysis of
states, average count matrices are first summed row-wise so as to get a vector of dimension [S × 1], where S is the
number of states of the q-matrix, which is then used to compute summary statistics on states at the player-level.
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Table A4—: Limit Bids, Rewards, and Auctioneer Revenues under various Experimental
Designs

Three Asymmetric Players (GSP)
Bids Individual Rewards Revenue

Stateful Synchronous (11.45, 4.3, 2.17) (1069.35, 23.57, 5.0) 437.02
[416.05, 458.0]

Stateless Asynchronous (13.36, 7.72, 2.01) (728.0, 23.96, 5.0) 778.04
[711.29, 844.8]

Note: Column 1 reports the average across runs limit bids for each of the players in the decreasing order of valuations;
column 2 - the average across runs limit individual reward for each of the players in the decreasing order of valuations;
while column 3 - the average auctioneer revenue across runs as well as the 95% confidence interval for the revenue
in squared brackets. The Stateful Sync experiments were run with 15,000,000 iterations, α = 0.1, β = 8.137e − 07,
δ = 0.95. The Stateless Async experiments, were run with 1,000,000 iterations and β = 1.22e− 05.

Table A5—: Comparison of the GSP and VCG

Three Asymmetric Players
GSP VCG

Bids Individual Rewards Revenue Bids Individual Rewards Revenue
Stateful Synchronous (2.03, 1.2, 0.6) (9.0, 2.8, 0.0) 7.2 (2.52, 1.21, 0.6) (10.18, 2.8, 0.0) 6.02

[7.03, 7.37] [5.63, 6.41]
Stateless Asynchronous (2.22, 1.51, 0.61) (7.46, 2.78, 0.0) 8.76 (2.79, 1.94, 0.62) (7.94, 2.76, 0.0) 8.3

[8.39, 9.13] [7.81, 8.79]

Note: Column 1 reports the average across runs limit bids for each of the players in the decreasing order of valuations;
column 2 - the average across runs limit individual reward for each of the players in the decreasing order of valuations;
while column 3 - the average auctioneer revenue across runs as well as the 95% confidence interval for the revenue
in squared brackets. The Stateful Sync experiments were run with 15,000,000 iterations, α = 0.1, β = 8.137e − 07,
δ = 0.95. The Stateless Async experiments, were run with 1,000,000 iterations and β = 1.22e− 05.
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(a) Search Term Report

(b) Impacts of the Search Term Report Change

(c) Broad Match Modifiers

(d) Position Information

Figure A1. : Examples of Data Policy Changes
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(a) Attribution

(b) Details on the Attribution Model

Figure A2. : Changes in Default Attribution
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(a) Stateful Sync Revenues (b) Stateless Async Revenues (c) Revenues Evolutions

(d) Bids of Player v1 = 3 (e) Bids of Player v2 = 2 (f) Bids of Player v3 = 1

(g) Rewards of Player v1 = 3 (h) Rewards of Player v2 = 2 (i) Rewards of Player v3 = 1

Figure A3. : Evolution of Auctioneer’s Revenues, Bids, and Rewards

Note: Panels (a)-(c) show the evolution of the auctioneer’s revenues (vertical axis) by the percent or the total
number of iterations (horizontal axis). The black line represents the mean of the distribution of revenues, the dark
grey zone is the area between the 25th and 75th percentiles, while the light grey is the zone between the 10th and
90th percentiles. Panels (d)-(i) show the evolution of the individual bids and rewards (vertical axis) by the percent or
the total number of iterations (horizontal axis). The Stateful Sync experiments were run with 15,000,000 iterations,
α = 0.1, β = 8.137e − 07, δ = 0.95. The Stateless Async experiments, were run with 1,000,000 iterations and
β = 1.22e− 05.


