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Abstract

Motivated by a large body of experimental and �eld evidence documenting the occurrence of

preference reversals and present bias in intertemporal consumptions decisions, we study optimal

monetary policy in a tractable New Keynesian model populated by Gul-Pesendorfer (Econo-

metrica, 2001, 2004) temptation-with-self-control behavioral consumers. Through distortionary

wealth e¤ects in the Euler equation, public debt dynamics are no longer redundant for real

activity and aggregate welfare: Ricardian equivalence fails. The latter, combined with a novel

term related to debt volatility in the central bank�s policy objective, induces a meaningfull

in�ation-output stabilization trade-o¤, making full neutralization of demand-side shocks no

longer possible: divine coincidence fails. As the cognitive costs of self-control are negatively

related to wealth volatility, the welfare costs of economic �uctuations are a declining function

of temptation.

JEL Classi�cation: E32, E44, E50.

Keywords: Optimal monetary policy; Temptation; Self-control; In�ation Targeting

1 Introduction

The baseline New Keynesian model used for policy analysis yields two strong predictions: 1) absent

cost-push shocks in the Phillips curve, stabilizing in�ation allows the central bank to stabilize also

the welfare-relevant output gap, hence fully hedging the economy from demand-side disturbances
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(Divine Coincidence); 2) public debt dynamics have neutral e¤ects on households�decisions and

their welfare (Ricardian Equivalence). The �rst is a direct consequence of the fact that, in the

baseline model, the gap between the natural (�exible price) level of output and its e¢ cient (�rst

best) level is constant (possibly zero) and therefore does not respond to shocks. The second is

implied by allowing the government access to non-distortionary taxation and assuming lack of

liquidity/wealth e¤ects from Treasury bonds holdings by the public.

From a theoretical standpoint, both predictions are not robust to reasonable amendments to

the baseline framework (see some examples in the Related Literature section below). Moreover,

the empirical evidence in their support is, at best, rather weak. On the one hand, structural VARs

provide ample evidence of both in�ation and real activity responding to changes in total factor

productivity (see, for instance, Gali, 1999, and Gali and Rabanal, 2004), while the sizable stan-

dard deviation of residuals from Phillips curve�s estimations suggests that keeping in�ation stable

does not necessarily stabilize output (see Blanchard, 2016).1 On the other hand, the Ricardian

equivalence hypothesis appears rather fragile looking both at econometric evidence on aggregate

data (Ricciuti, 2003; Haug, 2020) and at incentivized individual responses to current and future

tax changes in laboratory experiments (Meissner and Rostam-Afschar, 2017).

We show that both the divine coincidence and Ricardian equivalence break down in a New

Keynesian economy populated by behavioral consumers à-la Gul and Pesendorfer (2001, 2004), that

is, consumers characterized by temptation with self-control preferences (GP-preferences) whereby an

internal con�ict arises between the ex ante optimal long-run ranking of options and ex post short-

run temptations. More speci�cally, in our set-up, the representative in�nitely-lived household

is tempted to behave like a hand-to-mouth consumer by using his entire �nancial wealth (e.g.,

Treasury bonds) for the purpose of immediate consumption. By exerting cognitive e¤ort (self-

control) - hence su¤ering some disutility - to resist the urge to consume - his optimal behavior

trades o¤ the temptation for immediate satisfaction (temptation utility) with long-run optimal

consumption smoothing (commitment utility).2

1Non-zero (conditional) correlation of in�ation and/or real activity with total factor productivity may also result
from the central bank implementing sub-optimal policy rules (e.g. a simple Taylor rule responding to in�ation and
output). Chen et al. (2017) and Coroneo et al. (2018) provide econometric evidence for the U.S. in favor of optimal
monetary policy under discretion, compared to alternative monetary policy regimes.

2Gul and Pesendorfer (2001, 2004) axiomatize temptation with self-control preferences, both in a static and
dynmaic choice context, showing that individual utility must depend on the menu of available choices and not only
on the actually made choice. A larger menu might then be worse than a smaller one if the former includes tempting
choices which are eventually harmful. In a static context, a classic example is a meal at a resturant whose menu
includes both tasty unhealthy dishes (e.g. a high sugar dessert) and healthier options (e.g. a fruit salad). Consumers
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We use this behavioral New Keynesian framework to study the design of optimal monetary

policy, in particular for what concerns a) the identi�cation of central bank�s objectives and its

relevant constraints; b) the optimal response to shocks to total factor productivity and �scal vari-

ables; and c) the consumption equivalent welfare costs of business cycle �uctuations. we �nd three

key consequences of GP-preferences. First, with self-control costs depending on available wealth,

households�anticipation of upcoming temptation-commitment trade-o¤s yields a generalized Euler

equation featuring direct wealth e¤ects from government bonds holdings: Ricardian equivalence

fails! A second-order approximation to the representative household�s welfare shows that the cen-

tral bank should be less concerned about price stability, but be cognizant of the welfare consequences

of public debt volatility.

Second, GP-preferences introduce a two-way feedback channel between public debt (responding

to �scal shocks and the real interest rate) and real activity (responding to the real interest rate,

shocks a¤ecting its natural level, and debt itself). This combined with the modi�ed policy objective

makes it impossible to fully neutralize shocks to total factor productivity and/or �scal variables

(government spending, �scal surplus), and therefore obtain complete in�ation and output gap

stabilization: divine coincidence fails! The optimal targeting rule features, on the one hand, a

dynamic trade-o¤ between stabilizing current versus next period in�ation and output gap, and, on

the other hand, a positive response to the debt gap.

Third, we �nd the consumption-equivalent welfare costs of aggregate �uctuations to be strictly

decreasing in temptation, with the possibility of welfare bene�ts when su¢ ciently strong temptation

is complemented by a weaker impact of supply-side shocks. Under (concave) GP-preferences, some

volatility in wealth is in fact desirable as it dampens the cognitive costs of self-control.

We provide empirical support for our modeling framework by bringing to the data two testable

(steady state) implications of GP-preferences: 1) real interest rates should be, on average, higher

in economies characterized by stronger temptation; and 2) conditional on the latter, they should

be decreasing with respect to public debt. Using available evidence on the incidence of present

bias/temptation in consumption-saving decisions across countries, we �nd empirical evidence in

favor of both predictions.

The motivation to introduce behavioral elements into the baseline New Keynesian framework

would like to exclude ex ante tempting items from a choice menu - in our case, exclude the possibility of acting like
hand�to-mouth - but, this not being a viable option, they exercise ex post welfare-reducing self-control to stick with
the optimal intertemporal consumption/saving plan.
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comes from a large body of experimental and �eld research documenting the occurrence of preference

reversals and present bias in intertemporal consumptions decisions. More precisely, lab experiments

document that subjective discounting between today and tomorrow is stronger than between any

two future dates t and t + 1. This leads to time-inconsistent behavior that cannot be explained

by the standard exponential discounting utility framework where, because of constant subjective

discount rate between any two subsequent periods, future selves always choose according to the

preferences of earlier selves (preferences are time consistent).3 Gul and Pesendorfer�s temptation

with self-control framework is consistent with the observed reversals because small rewards are

tempting only if immediately available (the case of a decision-maker sitting at time t > 0) but not

if expected to occur in the future (the case of a decision maker sitting at t = 0).

Compared to the popular �-� (hyperbolic/quasi-geometric discounting, HQGD) preferences

introduced by Strotz (1956) and further re�ned by Harris and Laibson (2001), modeling temp-

tation in consumption/saving decisions via GP-preferences presents several advantages. First,

GP-preferences are time-consistent, which in turns allows to use standard recursive techniques

to compute unique optimal decision rules. On the contrary, under HQGD, equilibrium multiplicity

is an overwhelming issue, which requires to impose additional re�nements (e.g. Markov Perfect

Equilibrium, MPE).4 Second, GP-preferences allow to uniquely de�ne a welfare criterion for pol-

icy analysis. This is clearly not the case with HQGD due to the ongoing (unresolved) con�ict

between current and future selves. Third, GP-preferences can be tested directly by estimating

the statistical signi�cance of the wealth-to-consumption ratio in the Euler equation. This is more

problematic with HQGD since wealth enters the Euler equation only implicitly via its unknown

equilibrium impact on consumption. Moreover, convincing experimental evidence on the existence

of Gul-Pesendorfer preferences is provided by Toussaerts (2018, 2019). Her lab and �eld experi-

ments allow to distinguish between present-biased/time inconsistent agents (who value commitment

as they expect to fall to temptation) and self-control types (who value commitment as it enables

them to reduce/eliminate self-control costs), shows close coincidence between perceived and actual

self-control (a sign of consumers�sophistication).

3Frederick et al. (2002) provide an extensive review of the discounted utility framework, highlight its key features
and anomalies, overview the experimental and �eld evidence on the present bias in consumption-saving decisions, as
well as introduce several alternative models of intertemporal choice to account for such evidence.

4However, as in shown in Maliar and Maliar (2006, 2016), even after imposing the MPE requirement, multiplicity
is still not ruled out completely.
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Related Literature Our paper is complementary to the literature on the fragility of both the

divine coincidence and/or Ricardian equivalence to reasonable structural amendments to the base-

line New Keynesian model. For what concerns the former, under standard preferences, a meaning-

ful in�ation-output gap stabilization trade-o¤ occurs in presence of time-varying price mark-ups

(Steinsson, 2003), real wage rigidities (Blanchard and Gali, 2005), a credit channel (Ravenna and

Walsh, 2006), as well as in more sophisticated heterogeneous agents environments (HANK models,

Acharya et al., 2022). Debt dynamics are instead non-neutral for real activity and therefore welfare

with distortionary taxation (Linnemann, 2006), a Blanchard-Yaari-type stochastic OLG/perpetual

youth structure (Leith and von Thadden, 2006; Rigon and Zanetti, 2018), and/or the introduc-

tion of liquidity e¤ects from Treasury bonds holdings (Canzoneri et al., 2011; Michaillat and Saez,

2021).5

Our paper also contributes to the literature exploring the positive and normative implications

of Gul-Pesendorfer preferences in dynamic macroeconomic models. Several contributions have

assessed the e¤ects of temptation with self-control for what concerns asset pricing (Krusell et al.,

2002; DeJong and Ripoll, 2007; Airaudo, 2019), the design of optimal capital taxation (Krusell et

al., 2010), retirement accounts and social security (Kumru and Thanopoulos, 2011), Friedman�s

rule (Hiraguchi, 2018), the welfare cost of business cycle �uctuations (Huang et al., 2015), the large

share of privately held illiquid assets and the presence of �wealthy hand-to-mouth� consumers

(Kovacs et al., 2021; Attanasio et al., 2022), housing and the mortgage market (Nakajima, 2012;

Schlafmann, 2021), and the forward guidance puzzle in monetary policy (Airaudo, 2020).

Finally, our paper belongs to a fast growing literature introducing other behavioral elements into

dynamic macro models, hence labeled Behavioral Macroeconomics.6 This includes works propos-

ing a departure from full-information rational expectations (FIRE), such as models with learning

(Evans and Honkapohja, 2003), rational inattention (Mackowiak et al., 2021), dispersed informa-

tion (Angeletos and Lian, 2016), level-k thinking (Angeletos et al., 2021), cognitive discounting

(Gabaix, 2020), diagnostic expectations (Bianchi et al., 2022; L�Huillier et al., 2022) and several

other forms of bounded-rationality in expectation formation (Garcia-Schmidt and Woodford, 2019;

Woodford, 2013). Preference-based contributions to this literature include models with ambiguity

aversion (Adam and Woodford, 2012; Ilut and Schneider, 2014), Epstein-Zin time non-additive util-

5The relevant literature is obviously much more extensive and not limited to the cited papers.
6The literature on Behavioral Macroeconomics is expanding extremely fast, and is therefore much wider than what

cited below.
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ity (Rudebusch and Swansson, 2012; Andreasen et al., 2018), and reference-dependent preferences

(Barberis et al., 2001;K½oszegi and Rabin, 2009).7

The rest of the paper is organized as follows. Section 2 describes the model. Section 3 de�nes

the equilibrium of the model, its e¢ cient allocation (the social planner�s problem). Section 4

de�nes the steady state, the baseline calibration, and provides empirical evidence in support of

some key testable implications of the model. Section 5 derives the key reduced form equations

which characterize the local equilibrium dynamics, as well as constitute the relevant constraints

for the optimal policy problem. Section 6 states the welfare criterion for optimal monetary policy,

and studies the impulse responses to key exogenous shocks under both discretion and commitment.

Section 7 provides a qualitative and quantitative analysis of the welfare costs from business cycle

�uctuations. Section 8 states our preliminary conclusions.

2 The Model

The backbone of our model economy is identical to the baseline New Keynesian model used for

monetary policy analysis. It includes a continuum of identical in�nitely-lived households who

consume and save (demand side), a continuum of sticky price monopolistically competitive good

producing �rms (supply side), and a uni�ed monetary/�scal authority. The novel aspect of the

model is the introduction of Gul-Pesendorfer-type temptation with self-control preferences on the

households�side.

2.1 Households

Consider an economy populated by a continuum of identical in�nitely-lived households. Borrowing

is not permitted, but the representative household can save by investing in a risk-free bond issued by

the government (a short-term Treasury bill). Gross returns on the latter, together with labor income

and dividends from �rm ownership, constitute his total resources that can be used for consumption

expenditure, Ptct; as well as to �nance new bond holdings, Bt. The relevant constraints for the

7See also Backus et al. (2004) for an extensive review of �exotic preferences� in macroeconomic models.
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representative household, in real terms, are:

ct + bt = Rt�1
bt
�t�1

+ wtht + dt � � t; (1)

bt � 0; (2)

where bt = Bt
Pt
, �t = Pt

Pt�1
, wt = Wt

Pt
, dt = Dt

Pt
and � t denote, respectively, real bond holdings, gross

in�ation, the real wage, real dividends and the lump-sum taxes paid to the government.

The household has temptation with self-control preferences (henceforth, just GP-utility or temp-

tation preferences), as formalized in Gul and Pesendorfer (2001, 2004) for general settings, and

recently introduced in a New Keynesian framework by Airaudo (2020). GP preferences describe a

household who, in every period, is tempted to use all his �nancial wealth for current consumption

purposes - thus behavior like a hand-to-mouth consumer - but that, to resist such temptation,

incurs a self-control cognitive cost (disutility). Loosely speaking, let cr denote the singleton set of

optimal consumption chosen by a forward-looking Ricardian consumer, and chtm be the singleton

set of consumption made by a myopic non-Ricardian consumer.8 Letting � denote household�s

preferences over consumption choices (satisfying completeness, transitivity, continuity, and inde-

pendence), temptation with self-control requires

fcrg �
n
cr; chtm

o
�
n
chtm

o
(3)

The fact that fcrg is weakly preferred to the enlarged set
�
cr; chtm

	
signi�es that chtm is a tempting

option, while having
�
cr; chtm

	
preferred to

�
chtm

	
means that, eventually, the consumer exerts

self-control and chooses cr: From Gul and Pesendorfer (2004), the recursive representation for the

household�s intertemporal utility maximization problem is a Bellman equation:

Ut = max
fct;ht;btg

[u(ct; ht) + v(ct; ht) + �EtUt+1]� max
f~ct;~ht;~btg

v(~ct; ~ht) (4)

subject to (1) and (2), where u and v are both Von Neuman-Morgenstern utility functions. On

the one hand, the term ut + �EtUt+1 represents the standard commitment utility: it captures

the household�s evaluation of the long-run best. On the other hand, vt captures the temptation

8See Axioms 1-8 in Gul and Pesendorfer (2004) for a formal de�nition of these preferences over a compact metric
space in an in�nite horizon consumption-saving decision problem.
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utility, i.e. how the household values his urges. The household is sophisticated in the sense that

he is cognizant of his current and future costs of self-control.9 Letting ~ct, ~ht and ~bt denote opti-

mal levels of, respectively, consumption, hours worked and bond holdings under temptation, the

term max v(~ct; ~ht) � v(ct; ht) corresponds the temptation opportunity cost: this is the utility loss

the household su¤ers when he exerts self-control by choosing the triple (ct; ht; bt) over the most

tempting option (~ct; ~ht; ~bt): We will refer to this as the cost of self-control.10 The utility Ut is

therefore the maximum of commitment utility net of costs of self-control. For the purpose of our

analysis, we adopt the following functional forms:

ut = lnxt; vt = � lnxt; xt � ct �
h1+�t

1 + �
(5)

This speci�cation is similar to the one used in Airaudo (2020). First of all, it assumes a

Greenwood-Hercovitz-Hu¤man-type (as in Greenwood et al., 1998, henceforth GHH) temporary

utility, both for commitment u and temptation v. By eliminating wealth e¤ects in labor supply, a

GHH speci�cation will allow us to solve for the temptation allocation in closed form.11 Second, by

imposing a log speci�cation on both u and v in (5), temptation and commitment will both feature a

unitary degree of relative risk aversion. This di¤ers from Airaudo (2020) who, for the case of linear

costs of self-control, allows for higher risk aversion in temptation (with respect to commitment).12

While a log-utility speci�cation is without loss of generality for the purpose of our analysis, it

signi�cantly simpli�es the second-order Taylor approximation to the household�s welfare for the

optimal monetary policy design. Third, and most importantly, the strength of temptation in the

model is captured by the parameter �. For � = 0; the model reduces to a baseline New Keynesian

9Muraven et al. (2006) (see also references therein) and, more recently, Schilback (2019) provide experimental
evidence on the existence of sophistication (foresight) in decision problems with persistent self-control. A naive
household would instead neither recognize nor care about future self-control costs, as well as would not anticipate
future preference reversals. This would lead to a game-theoretic set-up between current and future selves, as in
models with hyperbolic discounting. See Ahn et al. (2020) for a model of naivete about temptation/self-control in a
quasi-hyperbolic discounting framework.
10As in Gul and Pesendorfer (2001, 2004), the cost of self-control is linear in the opportunity cost of temptation.

Noor and Takeota (2010) and Fudenberg and Levine (2006, 2011) consider the case of convex costs of self-control.
11GHH preferences �nd empirical support both at the aggregate macro (see Schmitt-Grohé and Uribe, 2012) and

individual micro (see Cesarini et al., 2017) levels. These preferences are often used to generate government spending
multipliers for output larger than unity. See Monacelli and Perotti (2008) and Bardóczy et al. (2021) for a recent
thorough discussion.
12Airaudo (2020) introduces GP preferences into a New Keynesian model showing that higher risk aversion in

temptation yields discounting in the linearized Euler equation, which then helps solve/tame the forward guidance
puzzle of monetary policy. It is worth clarifying that a log-GHH utility yields a unitary relative risk aversion with
respect to the consumption-labor bundle x; but not with respect to consumption alone (see Airaudo and Hajdini,
2021, for a discussion).
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framework with GHH preferences.

The solution to the representative household optimal consumption-saving decision involves two

stages. In the �rst stage, we identify the optimal tempting choice by solving a simple static

optimization problem:

max � ln

 
~ct �

~h1+�t

1 + �

!
;

subject to the budget ~ct +~bt = Rt�1
bt�1
�t
+wt~ht + dt � � t and the non-negativity constraint ~bt � 0:

Letting ~�t and ~�b;t denote the respective Lagrange multipliers, �rst order conditions with respect

to ~ct, ~ht and ~bt give:

�~x�1t = ~�t; �~x�1t
~h�t =

~�twt; ~�t = ~�b;t: (6)

Inada conditions guarantee that ~xt > 0; such that both multipliers are positive. This, together with

the complementary slackness condition, ~�b;t~bt = 0; implies optimal zero bond holdings, ~bt = 0: After

simple manipulation of the equations in (6), the optimal choice under temptation is summarized

by the following conditions:

~bt = 0; ~ht = w
1
�

t ; (7)

~ct =
bt�1
�t

+ w
1+�
�

t + dt � � t; (8)

~xt = Rt�1
bt�1
�t

+
�

1 + �
w

1+�
�

t + dt � � t; (9)

i.e., no savings, a labor supply which, due to GHH preferences, solely depends on the real wage

(with elasticity ��1), and consumption of all available resources.

Letting ~x (bt�1) denote the expression in (9), the representative household�s Bellman equation

(4) becomes

Ut = max
fct;ht;btg

(1 + �) lnxt � � ln ~x (bt�1) + �EtUt+1; (10)

subject to (1)-(2), with respective multipliers �t and �b;t: First order conditions and simple manip-
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ulation of terms yield the following relationships:

�t = (1 + �)x
�1
t ; ht = w

1
�

t ; (11)

�t = �b;t + �RtEt

�
�t+1
�t+1

�t+1

�
; �b;tbt = 0; (12)

where

�t+j � 1�
~�t+j
�t+j

; for j � 1:13 (13)

The expressions in (11) represent, respectively, the marginal utility of consumption and the house-

hold�s labor supply. With respect to the baseline no-temptation case, the former is augmented by

a factor which depends on self-control costs, while the GHH speci�cation insulates labor supply

from direct temptation e¤ects. The expressions in (12) constitute the household�s Euler equation,

with the consumption-saving trade-o¤ distorted by the temptation-driven factor �t+1, as de�ned

in (13) for j = 1:

2.2 Firms

The supply side of the economy is standard. Production is split into two sectors: retail and

wholesale. The retail sector is perfectly competitive and produces a �nal consumption good yt out

of a continuum of intermediate goods via the CRS technology yt =
hR 1
0 yt(i)

(��1)=�di
i�=(��1)

; with

� > 1 denoting the elasticity of substitution between any two varieties of intermediate goods. Prices

in the retail sector are perfectly �exible. The optimal demand for the intermediate good yt(i) is

given by yt(i) =
�
Pt(i)
Pt

���
yt; where Pt �

hR 1
0 Pt(i)

1�� di
i1=(1��)

is the price of the �nal consumption

good.

The wholesale sector is made of a continuum of �rms indexed by i; for i 2 [0; 1] : They act under

monopolistic competition and are subject to nominal rigidities in price setting. The i-th �rm hires

labor from a competitive labor market to produce the i-th variety of a continuum of di¤erentiated

intermediate goods which are sold to retailers. Wholesale �rms operate a simple linear technology:

yt(i) = ztht(i); where zt denotes TFP with unconditional mean z. Letting ẑt � ln (zt=z) ; we assume

ẑt = �z ẑt�1 + "̂z;t; with j�zj < 1 and "̂z;t � iidN
�
0; �2z

�
:

We introduce nominal rigidities following Calvo�s staggered price setting: each �rm in the

wholesale sector optimally revises its price with probability 1�� in any given period t: Real marginal
13Throughout the paper, we adopt the notational convention that �t = 1:
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costs are equal across �rms and given by mct = (1� st) wtzt ; with st 2 [0; 1) denoting a time-

varying subsidy rate to labor, common across all �rms.14 The i-th �rm chooses the optimal price

P �t (i) to maximize Et
P1
j=0 �

jFt;t+jyt+j(i) (P �t (i)� Pt+jmct+j) ; subject to the demand constraint

yt+j(i) =
�
P �t (i)
Pt+j

���
yt+j . The term Ft;t+j denotes the household�s stochastic discount factor (SDF)

for nominal payo¤s between period t and a generic t+ j; for j � 0.15 In particular, with the SDF

for riskless nominal payo¤s between period t and t + 1 de�ned as RtEtFt;t+1 = 1; from the Euler

equation in (12) with �b;t = 0 (as we will focus on an equilibrium with positive bond supply), we

have that Ft;t+1 = � Pt
Pt+1

�t+1
�t
�t+1;or, more generally

Ft;t+j = �j
Pt
Pt+j

�t+j
�t

jQ
k=1

�t+k; for j � 0:

It is straightforward to solve for the optimal price P �t (where the index i has been dropped since

all price-setting �rms face same economic conditions and therefore choose the same price) relative

to Pt:

P �t
Pt
= �

Et
P1
j=0 �

jQt;t+jyt+jmct+j�
�
t;t+j

Et
P1
j=0 �

jQt;t+jyt+j�
��1
t;t+j

(14)

where � � �
��1 is the (steady-state) gross price mark-up, and Qt;t+j � Ft;t+j�t;t+j ; with �t;t+j �

Pt+j
Pt
: Firms�dividends are distributed to households in a lump-sum fashion, with dt (i) � Dt(i)

Pt
=

Pt(i)
Pt
yt (i)� Wt

Pt
ht (i) given by the following expression:

dt (i) =

�
Pt (i)

Pt

�1��
yt �mct

�
Pt (i)

Pt

���
yt (15)

2.3 Government

A government/central bank conducts both �scal and monetary policy. The government�s budget

constraint is given by

� t + bt = Rt�1
bt�1
�t

+ gt + stwtht; (16)

that is, the proceeds from tax revenues � t and newly issued treasuries bt are used to pay-o¤ out-

standing public debt (capital plus interests), public spending gt and the labor subsidy to �rms.

14Time variation in the subsidy rate will be the source of cost-push supply shocks in the Phillips curve.
15As standard in the literature, we assume �rms discount future pro�ts using the household�s stochastic discount

factor, which, by default, incorporates his dynamic self-control problem.
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For simplicity, we assume � t = �Ht + �
F
t ; where �

F
t is entirely used to �nance the labor subsidy:

�Ft = stwtht: Assuming public spending gt is exogenous - speci�cally, ĝt � ln (gt=g) follows an

AR(1) process, ĝt = �g ĝt�1+ "̂g;t; with
���g�� < 1 and "̂g;t � iidN �0; �2g� - we let ft � �Ht � gt denote

the �scal surplus; and introduce the following debt-feedback �scal rule:

ft =

�
bt
b

��b
vf;t (17)

where b is steady state debt, and �b > 0:
16 The factor vf;t is a �scal shock, with v̂f;t � ln (vf;t=vf )

following the AR(1) process v̂f;t = �f v̂f;t�1 + "̂f;t; for
���f �� < 1 and "̂f;t � iidN �0; �2f�.

The central bank will implement the optimal monetary policy plan by maximizing the repre-

sentative household�s lifetime utility. A detailed description is given in Section 6.

3 Equilibrium

In equilibrium, households and �rms optimize, given aggregate quantities and prices, and all markets

clear. Output equals private consumption plus government spending � i.e. yt = ct+gt � and labor

supply equals labor demand � i.e. ht =
1R
0

ht (i) di = yt�t=zt with �t �
1R
0

�
Pt(i)
Pt

���
di denoting

price dispersion due to Calvo pricing. The law of motion for Pt is implicitly given by P 1��t =

(1� �) (P �t )
1��+ �P 1��t�1 : Aggregate real dividends, dt �

1R
0

dt (i) di; are obtained by integrating (15)

across all �rms: dt = yt (1�mct�t) ; where mct = (1� st) (wt=zt) = (1� st) z�(1+�)t (yt�t)
� :

The consumption-labor composite xt is

xt = yt � gt �

�
yt�t
zt

�1+�
1 + �

: (18)

After combining the expression for ~xt in (9) with the household�s budget (1), simple algebra gives

the temptation composite,

~xt = xt + bt: (19)

Focusing on an equilibrium with positive supply of government bonds in very period - namely,

16 It is common practice in the literature to assume the �scal rule is function of lagged outstanding debt. Our
speci�cation with respect to current (newly issued) debt will bring some analytical advantage when pursuing a
second order Taylor approximation to the government�s intertemporal budget constraint. As discussed later, this
step will be necessary for an accurate optimal monetary policy analysis via linear-quadratic techniques.
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bt > 0 for t � 0 - by the complementary slackness condition in (12); we have that �b;t = 0; which,

in turn, leads to the generalized Euler equation:

�t = �RtEt
�t+1
�t+1

�t+1: (20)

The following lemma establishes that the Euler equation wedge �t+1 is always positive, which, in

turn, guarantees that the right hand side of (20) is always positive as well.

Lemma 1 Recall the de�nition of �t+j in (13). If bt+j > 0; then �t+j 2 (0; 1) ; for any j � 1:

Proof. See Appendix A.4.1.

We can further elaborate on (20) to show that temptation preferences introduce real wealth

e¤ects from bond accumulation in the Euler equation, thus making debt dynamics no longer neutral

for business cycle �uctuations. Substituting the expressions for �t in (11) and �t+1 in (13) into

(20), we obtain:

(1 + �)x�1t = �RtEt

"
x�1t+1 + �

�
x�1t+1 � ~x

�1
t+1

�
�t+1

#
: (21)

Wealth e¤ects are embedded in the temptation choice term ~xt+1. Setting � = 0; we retrieve

the baseline model without temptation: in this case, at the optimum, neither the marginal util-

ity of consuming today, x�1t ; nor the expected marginal utility of saving for future consumption,

�RtEt (�t+1xt+1)
�1 ; are distorted by government bonds. The household does not perceive them

as net wealth, and Ricardian equivalence holds.

With � > 0, temptation generates an increase in the marginal bene�ts of both consumption and

savings in (21). The left hand side of (21) is in fact accrued by a factor (1 + �) as the household

evaluates current consumption by both his commitment utility u and temptation utility v = �u:

The right hand side is instead augmented by the term �
�
x�1t+1 � ~x

�1
t+1

�
. This is clearly positive since

both utilities are strictly concave and ~xt+1 = xt+1 + bt+1 > xt+1: For a deeper economic intuition,

notice that the term �
�
~x�1t+1 � x

�1
t+1

�
corresponds to the marginal disutility cost of self-control. By

increasing ~xt+1 (hence, lowering ~x�1t+1), an increase in bt+1 lowers the future marginal costs of self-

control, giving a forward-looking household an additional incentive to save. Hence, an expected

increase in future government debt induces a negative wealth e¤ect on current consumption.
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4 Steady State, Calibration and Empirical Evidence

We focus on a zero in�ation steady state (� = 1), and, without loss of generality, set z = vf = 1;

st = s; and g = gyy for gy 2 (0; 1) :17 From the optimal pricing of �rms, we have mc = ��1; which,

combined with the de�nition of marginal costs, gives the steady state real wage: w = [(1� s)�]�1 :

Plugging the latter into the labor supply equation yields h = y = [(1� s)�]�1=� ; such that c = cyy;

for cy � 1� gy: The de�nition of xt in (5) and simple algebra give

x = !y; for ! � (1 + �) cy (1� s)�� 1
(1 + �) (1� s)� (22)

where ! 2 (0; 1) provided the steady state share of consumption in GDP, cy; is su¢ ciently large.18

From the Euler equation (20), we �nd the steady state nominal (and real) interest rate R =

(��)�1 ; where, making use of ~x = x + b and the relationship in (22), with by � b
y denoting the

debt-to-GDP ratio, the temptation-driven wedge � is

� = 1� �!

(1 + �) (! + by)
2 (0; 1) : (23)

Finally, from the government�s budget (16), for given by and R; we �nd the steady state surplus-

to-GDP ratio, fy � by (R� 1) :

Proposition 1 The steady state interest rate R

1. is strictly increasing with respect to temptation �;

2. conditional on positive temptation, is strictly decreasing with respect to the debt-to-GDP by:

Proof. See Appendix A.4.3.

Figure 1 displays the steady state real interest rate as function of temptation � and the debt-to-

GDP ratio by under the baseline calibration displayed in Table 1. The latter has the inverse Frisch

elasticity of labor supply � equal to unity, an intratemporal elasticity of substitution across goods

varieties � equal to 8 (hence a 15% net price mark-up), and a Calvo probability of price stickiness

17For each variable, we drop the time subscript t to denote its steady state value.
18This is guaranteed for any realistic parameterization of the model. For instance, for the case of an e¢ cient

subsidy - such that (1� s)� = 1 (see below) - this requires cy to be larger than (1 + �)�1 ; where the latter is 0.5 or
smaller for � � 1. A positive ! is even more likely for the case of no subsidy.
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Figure 1: Steady state real interest rate.

� equal to 0.715 (hence a price duration of approximately 3.5 quarters).19 For what concerns �scal

quantities, we set the public spending to GDP ratio gy equal to 0.18, and assume (for the moment)

no labor subsidy to �rms, s = 0:20 In the �gure, we let the quarterly ratio by range from 0 to 4

- hence, from 0 to 1 yearly (in the analysis to follow, we will set by = 2, that is a 50% debt-to-

GDP ratio an annual frequency) - and consider � 2 [0; 0:5] : This range for temptation includes

the Euler equation based estimates available in the literature, going from the low-end � � 0:05 in

Bucciol (2012), to the intermediate value � � 0:23 in Huang et al. (2015), to the high-end estimate

� � 0:39 in Kovacs et al. (2021).21 As shown in the left panel, for any by � 0; the real rate is

strictly increasing in �; and more so when by approaches zero. Conditional on positive temptation,

the real rate is strictly decreasing in by; as also evident from the right panel.

19A unitary value for � is intermediate between the macro based (below unity, hence higher labor elasticity) and
the micro based (above unity, hence lower labor elasticity) evidence (see Kean and Rogerson, 2012, for a discussion).
20 In the next section, we will set s equal to its e¢ cient level to guarantee an undistorted steady state.
21The Euler equation GMM estimation by Huang et al. (2015) yields � = 0:1 if using NIPA data, and � = 0:24

using CEX data. Restricting to the latter, Kovacs et al. (2021) �nd � = 0:28 using GMM and � = 0:39 using the
method of simulated moments on the full structural model. Attanasio et al. (2022) show that a life-cycle model with
GP-temptation preferences and � = 0:28 matches well the life-cycle pro�le of aggregate consumption and liquid asset
accumulation, as well as it generates the age-dependent hand-to-mouth behavior seen in U.S. data. Airaudo et al.
(2022) �nd similar values from a fully-�edged Bayesian DSGE model estimation on post-WWII U.S. data.
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Table 1 Calibration

Standard Parameters Temptation

� � � by gy �b �e �i
(i=z;g;f)

�i
(i=z;g;f;e)

�

1 8 0.715 2 0.18 1.5 0.5 0.9 0.01 [0; 0:3]

4.1 Testable Implications

Statements 1. and 2. in Proposition 1 identify two testable implications of our theoretical model.

As mentioned, there exist some attempts in the literature to test for the presence of GP preferences

in consumption choices. However, to the best of our knowledge, direct empirical evidence of time

and/or cross-section variation for the temptation parameter � is not available. To circumvent

this problem, as proxies for �; we use estimates of quasi-hyperbolic discounting by Rieger et al.

(2016, 2021) from the cross-country International Test of Risk Attitudes (INTRA) survey data

at the University of Zurich: Our approach is supported by the fact that, under some restrictions,

consumption choice models featuring hyperbolic discounting are in reduced form isomorphic to

models where consumers display temptation with self-control preferences. In particular, Lu (2016)

shows that the decision maker�s preferences in a dual-self model with linear costs of self-control à-la

Fudenberg-Levine (2006) - which is isomorphic to the GP-preferences set-up - could be mapped into

those of a hyperbolic discounter with discount factor � (in his ��-preferences) equal (1 + �)�1 :22

We restrict our attention to a subsample of 28 countries belonging to neighboring economic areas

and/or displaying similar levels of development.23

Testable Implication 1: Higher Temptation leads to Higher Interest Rates A scatter

plot of the annual average real interest rate (computed on quarterly data for the period 1990:1-

2007:4) and the estimated � for hyperbolic discounting (HD) is presented in Figure 2.24 From the

22Lu (2016) derives the result assuming the Fudenberg-Levine�s long-run self is not concerned about future costs of
self-control. Fudenberg and Levine (2006) show that their dual-self framework with linear self-control costs satis�es
all axioms posed in Gul and Pesendorfer (2001, 2004): Dekel and Lipman (2012) provide an equivalence result between
models with Strotz-type dynamically inconsistent preferences and those with GP-type temptation-with-self-control
preferences.
23The full sample includes 53 countries. We have excluded countries from Latin America (featuring highly volatile

interest rates due to recurrent episodes of macroeconomic instability and default risk), Africa (low income economies)
and Asia (Japan because of its prolonged history of near-zero interest rates and de�ation, Thailand and Korea because
of currency crises in the late �90s, and China being a non-free market economy).
24Following Uribe and Yue (2006), the real interest rate is computed as the di¤erence between the nominal return

on a 3-month safe government bond and expected in�ation, the latter measured as the average in�ation over the past
4 quarters.
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Figure 2: Real Interest Rates and Temptation

previous paragraph, a lower (respectively, higher) value of � signi�es higher (respectively, lower)

present-bias in consumption choices, hence higher (respectively, lower) temptation. Di¤erent colors

are assiged to di¤erent geo-economic areas: Western Europe (WE, black dots), Eastern Europe

(EE, red), Northern Europe (NE, white), North America (NA, blue), and Australia-New Zealand

(ANZ, green). Simple visual inspection highlights the possibility of a negative relationship between

the two quantities, with the dashed line giving �tted values from a simple OLS regression (see

estimates in the second column of Table 1).

For a more accurate quantitative assessment, we estimate the following linear regression by

OLS:

RRi = a0 + a1HDi +
4X
j=1

bjDUMj;i +
4X
j=1

cjHDi �DUMj;i + f
0CONTi + "i (24)

where RR is the net real rate, the subscript i indexed the country, HD is hyperbolic discounting,

DUMj;i is a dummy variable equal to 1 if country i belongs to country group j (where j = 1

is for EE, 2 for NE, 3 for ANZ, and 4 for NA) and zero otherwise, and CONTi is a vector of

controls, including TFP growth, life expectancy and the old-age dependency ratio.25 Results for

25Quarterly time series for these variables come from the FRED data set at the Federal Reserve Bank of St. Louis.
See Ferrero et al. (2016) and Busetti and Caivano (2019) for an empirical and theoretical analysis of the relationship
between real interest rate and demographic factors.
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three alternative speci�cations are reported in Table 1. A baseline speci�cation regressing the

real interest rate on HD yields a poor �t and does not allow to reject the null hypothesis of no

statistical relationship (a1 = 0) at usual con�dence levels.26 Adding intercept dummies (I.D.)

to capture geo-economic level e¤ects produces a much better outcome: HD has a negative and

statistically signi�cant impact on interest rates - or, equivalently, temptation has a positive impact

on interest rate - with positive dummies for NE and ANZ capturing the occurrence of higher rates

in those areas. According to standard model evaluation criteria, allowing temptation to exert a

di¤erent impact across di¤erent geo-economic areas yields an even better �t, with more signi�cant

upward pressure on rates in NA and EE (more negative slopes). Overall, these empirical results

appear consistent with Statement 1 in Proposition 1.

Table 2 Regression (24): Interest Rate and Temptation

1) Baseline 2) With I.D. 3) With I.D. and S.D.

a0 3:83��
(0.63, 5.47e�06)

4:65��
(0.50, 4.55e�09)

4:68��
(0:44; 1:04e�9)

a1 �1:33
(0.94, 0.29)

�3:21��
(0.81, 0.0014)

�3:04��
(0.69, 0.0006)

b2 (NE) 1:44��
(0.45, 0.007)

1:28��
(0.38, 0.0066)

b3 (ANZ) 2:42��
(0.58, 0.0009)

2:25��
(0.5, 0.0004)

b4 (NA) 7:34��
(2.52, 0.019)

c1 (EE) �1:21��
(0.57, 0.095)

c4 (NA) �10:86��
(3.79, 0.021)

R2adj = 0.04, F-test = 1:006
(0:236)

R2adj = 0.46, F-test = 6:56
(0:021)

R2adj = 0.63, F-test = 7:39
(0:018)

AIC=0.1, SBIC=0.24 AIC=-0.42,SBIC=-0.18 AIC=-0.71,SBIC=-0.33

Notes: in parenthesis the S.E. and the 2-tailed p-value. I.D. = intercept dummy; S.D. = slope dummy

AIC = Akaike Information Creterion, SBIC = Schwarz Bayesian Information Criterion

26Under all speci�cations, none of the control variables�coe¢ cients appears signi�cantly di¤erent from zero. This
is likely due to the limited cross-country variation as we restrict the analysis to a sub-sample of similar economies.
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Testable Implication 2: Higher Debt-to-GDP leads to Lower Interest Rates We test

the hypothesis by running the following simple regression:

RRi = a0 + a1DYi + "i (25)

with DY denoting the (annualized) quarterly average of debt-to-GDP in country i: Estimating (25)

over the full sample used in the previous exercise yields a poor �t and a coe¢ cient a1 not signi�cantly

di¤erent from zero. With the intent of removing economies whose levels of indebtedness and/or

interest rates appear weak outliers, we restrict the analysis to a subset of core countries, whose

average debt-to-GDP ratio and average real rate (for the 1990:1-2007:4 period) are within �1.5

standard deviations from the respective full sample average.27 The identi�ed core economies are

the black dots in the left panel of Figure 3. The red line displays the �tted values from the OLS

regression (25), based on the estimates in Table 3.

Table 3 Regression (25): Interest Rates and Debt-to-GDP

a0 a1

4:22��
(0.43, 1.72e�08)

�0:026
(0.009, 0.029)

R2adj = 0:255; F-test= 3:75
��

(0.047)

AIC = �0:536; SBIC = �0:387

Notes: in parenthesis the S.E. and p-values.

AIC = Akaike Information Criterion, SBIC = Schwarz Bayesian Information Criterion

Although quantitatively small, the impact of indebtedness on the real interest rate is negative

and statistically signi�cant. This can also be inferred by inspecting the relationship in four smaller

groups characterized by di¤erent degrees of temptation, as in the scatter plots on the right of Figure

3: low (HD between 0.8 and 1), medium (HD between 0.7 and 0.8), high (HD between 0.6 and

0.7), and extreme (HD below 0.6). Except for the high temptation case, the remaining plots clearly

suggest a negative relationship between debt and interest rates.

27The choice of "�1:5 standard deviation from mean" threshold is indeed arbitrary. Under assumption of normality,
this would include, roughly, 80% of the sample. For larger thresholds, we do not �nd a statistical signi�cant estimate
for a1:
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Figure 3: Real interest rates and debt-to-GDP.

5 Equilibrium Dynamics

To guarantee steady state e¢ ciency by eliminating the monopolistic distortion, we introduce As-

sumption 1, which also normalizes both steady state hours and output to unity, h = y = 1:28

Assumption 1: s = s� = ��1
� :

We approximate (to �rst order) all equilibrium conditions around the e¢ cient steady state,

letting "hat" on top of a variable denote its log-deviations from the respective steady state value.

From the optimal price setting problem of �rms, we obtain an expectational Phillips curve, �̂t =

~�Et�̂t+1 + �m̂ct; where, as usual, the coe¢ cient � = (1 � ~��)(1 � �)=� depends negatively on

the extent of nominal rigidities. Making use of the expressions for real marginal costs m̂ct =

ŵt�ẑt�(�� 1) ŝt; labor supply ŵt = � (ŷt � ẑt) ; e¢ cient output ŷ�t = 1+�
� ẑt; as well as Assumption

1, simple algebra gives a standard relationship between in�ation, its one-step-ahead expectation

and the output gap:

�̂t = ~�Et�̂t+1 + �y(ŷt � ŷ�t ) + êt (26)

�y � ��

28With an undistorted/e¢ cient steady state, we will be able to use standard linear-quadratic techniques for the
evaluation of optimal policies without requiring a second order approximation to the Phillips curve. See Beningno
and Woodford (2005) for a detailed discussion.
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where the cost push shock êt � �� (�� 1) ŝt follows a standard AR(1) process, êt = �eêt�1 + "̂e;t;

with j�ej < 1 and "̂e;t � iidN
�
0; �2e

�
:

The government�s budget constraint (16) combined with the �scal rule (17) gives the law of

motion of public debt:

b̂t = �b(b̂t�1 + R̂t�1 � �̂t)� �vv̂f;t (27)

�b � R

1 + (R� 1)�b
; �v �

(R� 1)
1 + (R� 1)�b

(28)

To guarantee that �b 2 (0; 1) - hence, stationary debt dynamics - we introduce the following

assumption.

Assumption 2: �b > 1:29

Moving to the demand side, from the Euler equation (20) and the marginal utility of consump-

tion in (11), we obtain:

x̂t = Etx̂t+1 �
�
R̂t � Et�̂t+1

�
� Et�̂t+1; (29)

Letting # � by
!+by

2 (0; 1) ; the de�nition �t+1 in (13) yields

�̂t+1 = �{#[x̂t+1 � b̂t+1]; { � � (1� #)
�(1 + �)

> 0 (30)

From the de�nition of xt in (5), we have instead

x̂t =
(1� s)�� 1
! (1� s)� ŷt �

gy
!
ĝt +

ẑt
! (1� s)� (31)

= !�1 (ẑt � gy ĝt)

where the second equality is a consequence of Assumption 1. Namely, around the e¢ cient steady

state, the consumption-labor composite x̂t is completely exogenous. Letting  � {#; we plug

(30)-(31) into (29), and, by simple manipulation of terms, derive the aggregate Euler equation:

R̂t � Et�̂t+1 = �Etb̂t+1 +	z ẑt �	g ĝt; (32)

where 	z � !�1[�z(1 + )� 1] and 	g � !�1gy[�g(1 + )� 1]: Iterating the law of motion of debt

(27) one period forward and taking expectations, we can substitute the term Etb̂t+1 in (32), and,

29 In the numerical analysis, we set �b = 1:5 (see Table 1).
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by simple algebra, reach the following expression:

R̂t = Et�̂t+1 + bb̂t + z ẑt � g ĝt + vv̂f;t (33)

b � � �b

1 + �b
; i �

	i
1 + �b

for i = z; g; v �
�v�f
1 + �b

With respect to the textbook New Keynesian framework, the aggregate Euler equation (33) does

not display any dependence on current and expected output. This feature is the result of combining

GHH preferences with steady state e¢ ciency, and has therefore nothing to do with temptation. The

Euler equation takes the form of a generalized Fisher equation whereby the ex ante real interest

R̂t�Et�̂t+1 is a function of exogenous fundamentals (TFP, government spending and �scal shocks)

but also of public debt, where the latter enters as a consequence of the temptation-driven wealth

e¤ects.

6 Optimal Monetary Policy

This section analyzes the consequences of temptation preferences for the design of optimal monetary

policy, both under discretion and commitment. We obtain the central bank�s objective by taking

a second order approximation to the representative household�s lifetime welfare, and expressing

its arguments as squared deviations from welfare-relevant e¢ cient targets. We start by de�ning

the e¢ cient equilibrium allocation, as the solution to the associated static social planner�s utility

maximization problem.

Proposition 2 The e¢ cient equilibrium is characterized by the following relationships: h�t �

z
1
�

t ; y�t � z
1+�
�

t ; c�t � y�t � gt:

Proof. See Appendix A.4.2.

The recursive representation given in (4) can be reformulated as follows:30

U0 � E0
1X
t=0

�tUt; for Ut � (1 + �) lnxt � � ln ~xt (34)

30See Drugeon and Wigniolle (2017) for a similar in�nite summation representation of recursive GP preferences.
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As shown in Appendix A.1.1, under the assumption of steady state e¢ ciency, a second order

approximation to Ut yields

Ut � U � �Uy
h�
2
(ŷt � ŷ�t )

2 + �̂t

i
� Ub

"
b̂t + (1� #)

 
b̂2t
2
� b̂tx̂t

!#
(35)

Uy � 1 + �#

!
; Ub � �#

The key element of di¤erentiation with respect to the loss generally obtained for the baseline

New Keynesian model is in the second bracketed term in (35). While households�welfare continues

to depend (negatively) on �uctuations of the (log) output gap ŷt � ŷ�t and (log) price dispersion

�̂t around their e¢ cient level (zero in both cases), temptation makes public debt dynamics no

longer neutral for welfare evaluations, and hence for optimal policy. Public debt �uctuations

distort households�intertemporal consumption decisions through the wealth e¤ects related to the

self-control costs to resist temptation. For � = 0 (no temptation), we have Ub = 0 and the second

term drops out, leaving the output gap and price dispersion as the only welfare relevant policy

objectives.

Proposition 3 The maximization of the representative household�s welfare function U0 in (34) is

equivalent to the minimization of the following intertemporal loss:

L0 �
1

2
E0

1X
t=0

�t
h
�y (ŷt � ŷ�t )

2 + ���̂
2
t + �b(b̂t � b̂�t )2

i
(36)

where the welfare-relevant debt target b̂�t is a linear combination of shocks,

b̂�t �Mz ẑt �Mg ĝt +Mvv̂ft; (37)

�y � � > 0; while the welfare weights �� > 0 and �b < 0 are function of structural parameters of

the model.31

Proof. See Appendix A.1.

For what concerns the welfare weights entering (36), while �y � � is clearly positive, both ��
and �b are convoluted expressions of standard and temptation-related parameters. Figure 4 displays

31See Appendix A.1 for analytical expressions for both the welfare weights �� and �b; as well as for the coe¢ cients
Mi; for i = z; g; v:
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Figure 4: Welfare Weights

a numerical evaluations of both with respect to �. With the inverse Frisch elasticity parameter �

typically ranging between 0 and 5 (see Kean, 2011; Kean and Rogerson, 2012), it is evident from

the left panel that price stability remains the overwhelming concern for monetary policy. For the

parametric range considered, the weight on in�ation �� is strictly declining in temptation, ranging

between 69 (for � = 0) and 56 (for � = 0:3): A similar pattern characterizes �b; although the latter

is always negative, making �uctuations of debt around target always welfare-increasing. Overall,

as temptation is strengthened, the central bank should be more tolerant of aggregate volatility.32

Optimal monetary policy is found by minimizing (36) subject to the reduced form equilibrium

conditions (26), (27) and (33) written in terms of welfare-relevant gaps. Using the de�nition of b̂�t

in (37), we have:

�̂t = ~�Et�̂t+1 + �y(ŷt � ŷ�t ) + êt (38)

R̂t = Et�̂t+1 + b

�
b̂t � b̂�t

�
+Mt (39)

b̂t � b̂�t = �b(b̂t�1 � b̂�t�1 + R̂t�1 � �̂t) +Nt (40)

32A more detailed discussion and some economic intuition for this result will be provided later when discussing
about the welfare costs of alternative optimal policies.
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where

Mt � Hz ẑt �Hg ĝt +Hvv̂ft; with Hi � i + bMi; for i = z; g; v (41)

Nt � (�bL� 1) (Mz ẑt �Mg ĝt) + [(�bL� 1)Mv � �v] v̂ft;

with L denoting the lag operator. To make sure that the solution to the linear-quadratic problem

indeed represents a loss minimum, we need the quadratic objective de�ned in (36) to be convex.

This is generally the case in standard optimal monetary policy problems (with either ad hoc or

micro-founded objectives) where all welfare weights are positive, a su¢ cient condition for convexity.

In out context, the negativity of �b rules out this argument. Following Benigno andWoodford (2005,

2006), we make use of some results in Telser and Graves (1972) and prove that our objective is

indeed convex for any parameterization of the model. A detailed analysis is provided in Appendix

A.1.4.33

6.1 Discretion

Under discretion, we compute the optimal time consistent monetary policy. For this purpose, we

restrict the analysis to the concept of Markov-Perfect-Equilibrium (MPE), that is, an equilibrium

where endogenous variables are functions only of relevant state variables, namely, the outstanding

debt gap, b̂t�1 � b̂�t�1; the lagged nominal interest rate, R̂t�1; and all exogenous shocks (current

and one-period lagged). Although a discretionary regime implies that policy announcements are

not credible, current policy choices can still a¤ect future expectations via their impact on current

values for the debt gap b̂t� b̂�t and the nominal interest rate R̂t, both state variables in period t+1.

The optimal monetary policy problem is therefore dynamic also under discretion, even if the policy-

maker cannot strategically exploit this intertemporal linkage (which he takes as a given equilibrium

relationship). This is an important element of di¤erentiation with respect to the baseline model

without temptation for which the absence of i) direct wealth e¤ects of debt �uctuations in the Euler

equation and ii) the debt gap in the policy objective allow us to seek the optimal time consistent

policy by solving (analytically) a simple static loss minimization problem.

Letting n̂t � (êt; ẑt; ĝt; v̂f;t)0 denote the vector of all exogenous shocks and Vt � V (b̂t�1 � b̂�t�1;
33A similar issue appears in the two-country model of Groll and Monacelli (2020) where, under the baseline

calibration, the micro-founded loss function features a negative weight on the squared deviation of the terms of trade
from target.
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Figure 5: Impulse Responses to 1% Positive Cost Push Shock under Discretion.

R̂t�1; n̂t; n̂t�1) the value function; the central bank�s optimization problem is described by the

Bellman equation

Vt = min
1

2

h
�y (ŷt � ŷ�t )

2 + ���̂
2
t + �b(b̂t � b̂�t )2

i
+ �EtVt+1; (42)

subject to constraints (38)-(40), and the stochastic processes for the exogenous shocks. As an

analytical characterization of the solution is not possible in our case, we solve for the optimal

discretionary policy following the computational procedure of Soderlind (1999), and obtain key

variables�impulse responses to a 1% disturbance to the cost push shock, total factor productivity,

government spending and the �scal surplus.34 For these, we use a textbook calibration: �i = 0:9

for i = z; g; f and �e = 0:5; while assuming a 1% standard deviation for all of them:35 Results are

displayed in Figures 5-8. In all panels, the bold, dashed and dotted lines correspond, respectively,

to a version of the model where temptation is absent (� = 0), intermediate (� = 0:15) and high

(� = 0:3).

34The computational procedure is described in full details in Appendix A.2.
35The AR(1) processes for TFP, government spending and the �scal surplus are usually assumed to be quite

persistent. On the contrary, in the literature, the AR(1) coe¢ cient �e for a cost push shock ranges from 0 (iid, as
in Smets and Wouters, 2003) to 0.9 (as in Smets and Wouters, 2007). We choose the intermediate value 0.5 as our
baseline.
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Figure 6: Impulse Responses to 1% Positive TFP Shock under Discretion.

Figure 7: Impulse Responses to 1% Positive Government Spending Shock under Discretion.
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Figure 8: Impulse Responses to 1% Positive Fiscal Surplus Shock under Discretion.

In a baseline NK model without temptation, the so-called divine coincidence holds: the central

bank can fully shield in�ation and the output gap from exogenous �uctuations in TFP, government

spending and the �scal surplus (with the nominal rate and public debt playing the role of shock

absorbers).36 On the contrary, a cost push shock induces a signi�cant jump of in�ation above target

and a sizable contraction in real activity.37

The impact of temptation is twofold. On the one hand, temptation appears to have only mild

quantitative e¤ects for what concerns the cost push shock: the responses of in�ation, the output

gap and the nominal interest rate are relatively unchanged, while the debt gap reverts back faster

to steady state. On the other hand, temptation brings in interesting qualitative changes for the

other shocks. In particular, in�ation and the output gap feature a positive on-impact response to

TFP (top panels in Figure 6), and negative ones to government spending and the �scal surplus (top

panels in Figures 7 and 8). The debt gap jumps signi�cantly on impact (the more so the stronger

is temptation) and takes a long time to revert back to its steady state (or welfare-relevant target)

level.

To gain insight into the underlying mechanism of policy transmission, consider the minimum

36See Blanchard and Gali (2007) for a discussion about the divine coincidence, and Blanchard (2016) for some
evidence on its empirical failure.
37The large responses of in�ation and the output gap to the cost puch shock are due to GHH preferences. See

Bardóczy et al. (2021) for a thourough discussion.
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state variable (MSV) solution for in�ation along the MPE:

�̂t = �b

�
b̂t�1 � b̂�t�1

�
+ �RR̂t�1 + �nn̂t + �ln̂t�1; (43)

where �i; for i = b; R; n; l; denotes the elasticity of in�ation to variable i computed by the numerical

procedure.38 Taking the �rst order conditions of (42) with respect to the output gap ŷt� ŷ�t , subject

to the constraints (38)-(40) where Et�̂t+1 is computed using (43), simple calculus and extensive

algebra deliver a targeting rule describing the relevant trade-o¤ for the optimal monetary policy

under discretion:39

����y�̂t+�y (ŷt � ŷ�t )��b�b��y
�
b̂t � b̂�t

�
= ��b (1 +Rb)Et

�
����y�̂t+1 + �y

��y
�y

�
ŷt+1 � ŷ�t+1

��
(44)

where

��y �
�y

1 + �b�b
; �b �

�b + b�R
1� �R

; and Rb �
�b + b
1� �R

(45)

Absent temptation (� = 0), we have b = 0 in the constraint (39) and �b = 0 in the objective

(36), such that the MSV solution of in�ation is a function of current shocks only, i.e. �b = �R =

�l = 0. In this case, equation (44) simpli�es to

���y�̂t + �y (ŷt � ŷ�t ) = ��bEt
�
���y�̂t+1 + �y

�
ŷt+1 � ŷ�t+1

��
: (46)

Since ��b 2 (0; 1) ; by forward iteration, the unique stable solution to (46) is the standard static

targeting rule:

���y�̂t + �y (ŷt � ŷ�t ) = 0: (47)

Once combined with the Phillips curve (38), the targeting rule (47) implies that, along the optimal

discretionary policy path, in�ation and the output gap are only driven by the cost push shock (the

bold lines in Figure 5). Absent the latter, the central bank would be able to attain full in�ation

and output gap stabilization, �̂t = ŷt � ŷ�t = 0, i.e. the so called divine coincidence (the �at bold

black lines in Figures 6-8).

With temptation, the targeting rule is modi�ed along two dimensions. On the one hand, the

central bank now faces a dynamic trade-o¤ between stabilizing current versus expected next period

38Clearly, both �n and �l are vectors of coe¢ cients.
39See Appendix A.3.1 for a detailed derivation.
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in�ation and output (the right hand side of (44)). On the other hand, it includes an additional

static component related to deviations of current debt from target (on the left hand side of (44)).

To gain a more transparent economic intuition, for analytical simplicity, consider a central bank

with no explicit concern for output stabilization, �y = 0:40 Letting � � �b=�� be the relative

welfare weight on the debt gap and � � ��b (1 +Rb) ; the targeting rule (44) reduces to

�̂t = �Et�̂t+1 + ��b

�
b̂t � b̂�t

�
: (48)

Suppose �b = �R < 0 (which appears to be the case in the numerical solution). Since b 2 (�1; 0),

from the de�nition in (45), we have then Rb 2 (�1; 0), and therefore � 2 (0; 1) : Iterating equation

(48) forward and imposing a standard limiting condition, we obtain

�̂t = ��bEt

1X
j=0

�j
�
b̂t+j � b̂�t+j

�
(49)

According to (49), in�ation should respond negatively (since � < 0) to changes in the expected

present discounted value of future debt deviations from target. Indeed, as displayed in panels b)

and d) in Figures 6-8, the latter is negative for the case of TFP (hence a positive on-impact response

of in�ation), and positive for the case of government spending and the �scal shock (hence a negative

on-impact response of in�ation).

Consider a positive TFP shock, and, for additional simplicity, let�s suppose the shock is iid;

such that Etb̂�t+j = 0 and the right hand side of (49) can be written as ��bEt
P1
j=0 �

j b̂t+j � ��bb̂�t :

On the one hand, with b̂�t =Mz ẑt and Mz > 0 (for � within the relevant range); the debt target b̂�t

increases, which, because of a negative �; puts upward pressure on in�ation. On the other hand,

from the Euler equation (33) where z < 0 (for any parameterization of the model), the same shock

exerts a negative impact on the ex ante real interest rate, which, in turn, generates a decline in

expected future debt Etb̂t+j ; for any j � 1; as the interest rate costs of servicing debt diminish. As

a result of theses two channels, in�ation responds positively to TFP.41

This outcome contrasts with the baseline NK model whereby in�ation either does not respond

to TFP (under optimal policy) - as the nominal rate fully absorbs any shock a¤ecting the natural

40Given the overwhelmingly stronger concern for price stability, setting �y to zero is, from a quantitative standpoint,
without loss of generality, but involves a slight deviation from the welfare-based policy objective.
41A positive shock to government spending follows a similar transmission, but, with Mg > 0 (hence, a drop in the

debt target) and g < 0 (hence an increase expected future debt), it generates a persistent drop in in�ation.
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interest rate - or responds negatively (under a sub-optimal Taylor rule) - as real marginal costs

decline with higher productivity. A similar positive response of in�ation occurs instead in Het-

erogeneous Agents NK (HANK) models, both under optimal policy (see Davila and Schaab, 2022;

Acharya et al., 2022) and instrumental Taylor rules (see Ravn and Sterk, 2021), but for a di¤erent

reason. In HANK models, incomplete markets introduce an earning risk channel. When the latter

is su¢ ciently counter-cyclical, higher TFP stimulates demand, which, in turn, puts upward pressure

on price setting by �rms. This mechanism - which is absent in the complete markets representative

agent NK model - counter-acts the negative impact of positive TFP on marginal costs. Ravn and

Sterk (2021) present empirical evidence in favor of in�ationary consequences of increased TFP.

6.2 Commitment

Under commitment, the policy-maker announces and implements the optimal state-contingent

Ramsey plan that maximizes aggregate welfare, taking into account its direct impact on indi-

vidual expectations. Under the timeless perspective of Woodford (2003), the targeting rule under

commitment is given by the following expressions:42

���̂t +
�y
�y

�
(ŷt � ŷ�t )� �

�
ŷt�1 � ŷ�t�1

��
+ �b

�
�bt � Et�1�bt

�
= 0; (50)

where, letting again � � ��b (1 + b) 2 (0; 1) ; the Lagrange multiplier on debt accumulation �bt
can be written as

�bt = ��bEt
1X
j=0

�j
�
b̂t+j � b̂�t+j

�
(51)

The impulse responses under commitment displayed in Figure 9 appears qualitatively similar to

the case of discretion, although the reversion to steady state is much faster. For instance, both

in�ation and the output gap absorb the initial 1% increase in TFP, government spending or the

�scal surplus in about 4 quarters, compared to 100 quarters under discretion.

Since price stability remains overwhelmingly the key policy objective for the central bank, we

further scrutinize the di¤erence between discretion and commitment for what concerns the impulse

response of in�ation. Figure 10 displays the results. Stronger temptation continues to amplify the

on-impact response of all shocks (with a milder e¤ect for the cost-push), while, indeed, committing

to a policy yields a much faster recovery.

42See Appendix A.3.2 for a detailed derivation.
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Figure 9: Impulse Responses under Commitment.

Figure 10: In�ation Responses: Discretion vs. Commitment.
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Similar to the discretionary regime, the baseline case without temptation features zero responses

of both in�ation and the output gap to TFP, government spending and the �scal transfer: absent

the cost push shock, the divine coincidence holds. As shown in Appendix A.3.2, for � = 0 (such

that �b = b = 0); equation (50) collapses to the baseline targeting rule under commitment linking

in�ation to output gap growth:

���̂t +
�y
�y

�
(ŷt � ŷ�t )�

�
ŷt�1 � ŷ�t�1

��
= 0; (52)

The latter combined with the Phillips curve (38) and êt = 0 indeed delivers �̂t = 0 and ŷt = ŷ�t in

every period.

With temptation, the targeting rule (50) requires in�ation to respond to a pseudo-growth rate

in the output gap, (ŷt � ŷ�t ) � �
�
ŷt�1 � ŷ�t�1

�
, but also to the debt multiplier�s forecast error,

�bt � Et�1�bt : To compare commitment to discretion more transparently, once again, consider a

central bank unconcerned about output gap �uctuations, i.e. �y = 0: By straightforward iteration,

we can then express (50) as follows:

�̂t = ��b (Et � Et�1)
1X
j=0

�j
�
b̂t+j � b̂�t+j

�
; (53)

With respect to the discretionary solution (49), in�ation responds to the ex post forecast revision

in the expected discounted sum of future debt deviations from target - rather then the expected

discounted sum itself - and therefore displays a more contained on-impact deviation from and a

faster convergence to price stability.

7 Welfare Analysis

In the spirit of Lucas (1987), we evaluate the qualitative and quantitative importance of temptation

for the welfare cost of business cycle �uctuations under alternative monetary policy settings. Fol-

lowing Schmitt-Grohé and Uribe (2007), we de�ne the consumption equivalent (CE) welfare cost of

a given policy alternative J as the share �J of steady state consumption c that must be given up to

make the household as well o¤ in the stochastic equilibrium under policy J as in the non-stochastic

e¢ cient steady state. Besides the optimal policies under discretion (D) and commitment (C) de-

scribed in the previous section, we study two sub-optimal rules: strict in�ation targeting (SIT ),
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whereby the central bank sets �̂t = 0 at all times - and a standard Taylor rule (TR), whereby

the short-term nominal rate is set according to R̂t = ���̂t: For this purpose, we de�ne LJ ; the

unconditional welfare-based loss function under policy J :43

LJ � �yV ar (ŷJ;t � ŷ�t ) + ��V ar (�̂J;t) + �bV ar(b̂J;t � b̂�t ) (54)

Proposition 4 Let UJ and U (�J) denote the household�s unconditional lifetime welfare, respec-

tively, under monetary policy J; and at the e¢ cient steady state with (1� �J) c replacing c. For

any � � 0, there exists a unique ��J < !
cy
< 1 such that UJ = U (��J), with the following properties:

i. ��J T 0 if and only if LJ T 0;

ii. if LJ is non-negative and strictly decreasing in �; then ��J is strictly decreasing in � as well:

Proof. See Appendix A.4.4.

Lacking an analytical expression for the welfare loss LJ ; it is not possible to retrieve the so-

lution ��J explicitly: Moreover, both statements in Proposition 4 - i.e., that temptation may lower

the welfare costs of economic �uctuations (ii.) and possibly induce some bene�ts (i.) - rely on

assumptions about LJ that cannot be veri�ed analytically. Guided by the theoretical insights of

the proposition, we resort to numerical methods to �nd the solution ��J and scrutinize its properties.

7.1 Temptation and Welfare: Sensitivity Analysis

Setting all parameters at baseline values, with �� = 1:5 for the TR, Figures 11 plots ��J ; for

J = D;C; SIT; TR; as function of temptation �: As expected, for any level of temptation, commit-

ment delivers the lowest welfare costs, followed by discretion, SIT and then a TR.44 Since private

agents�decisions depend on expectations of future quantities and prices, by announcing a credible

policy plan, a committed government can strategically manipulate expectations and attain a more

favorable policy trade-o¤ than discretion when attempting to stabilizing all objectives around their

targets.

However, the key takeaway from the analysis is that ��J is strictly decreasing in �: namely, under

all policies considered, temptation lowers the welfare cost of aggregate �uctuations, as predicted
43This expression is obtained from applying the unconditional expectation operator E to L0 in (36). We intention-

ally omit the scaling factor 0:5(1� �)�1 multyplying LJ .
44The welfare costs under a TR are strictly decreasing in the response coe¢ cient to in�ation ��. Raising �� above

10 - a rather implausible scenario would generate welfare costs similar to those obtained under SIT.

34



Figure 11: Consumption Equivalent (CE) Welfare Costs of Alternative Monetary Policies.

by statement ii. in Proposition 4. As it turns out, if the cost-push shock is a su¢ ciently weak

source of uncertainty, temptation may yield welfare bene�ts, i.e. ��J can be negative. The top left

panel of Figure 12 plots ��J as function of � and the ratio of standard deviations �e=�z - taking the

latter as measure of the relative importance of the cost push shock volatility - for two alternative

parameterization of persistence: �e = 0 (the iid case) and �e = 0:5 (baseline case): Focusing on

the latter, the negatively inclined surface (dark grey) intersects the zero welfare cost �at plane

(very light grey) along a concave frontier in the
�
�; �e�z

�
space. The corresponding contour plot in

the right panel displays such frontier as a threshold value for � beyond which welfare costs turn

negative. A higher �e=�z and/or higher persistence �e (both yielding stronger incidence for the cost

push shock) require stronger temptation for the occurrence of welfare bene�ts.45 Notice that for

�e=�z = 0 (no cost-push shock) there are always welfare bene�ts from implementing the optimal

discretionary policy, for any positive degree of temptation.46As displayed in the bottom panels of

45For instance, suppse �e=�z = 0:3: Then, the stochastic equilibrium under the optimal discretionary policy is
welfare-superior to the e¢ cient steady state for � larger than, about, 0.1 for �e = 0:5, but only 0.01 for �e = 0: For
�e=�z = 0:65 instead, �uctuations under the optimal policy are always detrimental to welfare for any � 2 [0; 0:3] and
any �e 2 [0; 1] :
46SIT displays similar features, while, for any realistic calibration, a Taylor rule always leads to positive welfare

costs. Detailed results are available from the authors upon request.
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Figure 12: Cost Push Shock Volatility and the Welfare Costs of Optimal Monetary Policy.

Figure 12, the possibility of welfare bene�ts is even more prominent under commitment.

7.2 Temptation and Welfare: Inspecting the Mechanism

At the roots of these results is the fact that, with temptation, wealth volatility may increase

household�s welfare. We explain this apparently counter-intuitive channel in two steps. First, we

show that the unconditional loss, under both discretion and commitment, is strictly decreasing

in �, and attribute that to the debt gap volatility term. Then, we zoom in on the GP-utility to

show that an increase in wealth volatility may generate welfare bene�ts by lowering the expected

cognitive costs of self-control.

Figure 13 shows the e¤ect of temptation on the welfare loss LJ de�ned in (54), for J = D

(discretion); C (commitment).47 Under the baseline calibration (i.e. �e=�z = 1), stronger tempta-

tion lowers LJ (second panel from the left), a result which is consistent with the su¢ cient conditions

@LJ=@� < 0 for declining welfare costs introduced in Proposition 4. It is evident from the leftmost

panel that this negative pattern is mostly driven by the new term �bV ar(b̂t� b̂�t ): with �b < 0 and

strictly decreasing in � (see Figure 4 again), temptation strengthens the negative e¤ect of wealth

47 In this numerical exercise, we have set �e = 0:5 and �e = 0:01; their baseline values.
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Figure 13: Loss Function and Temptation

volatility on the unconditional loss. Weakening the cost-push shock incidence (the third and fourth

panels in Figure 13, with �e=�z = 1=3) lowers welfare losses (almost) by a factor of ten, and,

most importantly, makes them negative for � > 0:02 (under commitment) and � > 0:12 (under

discretion).

At the micro level, the positive relationship between temptation and welfare is a consequence

of the dampening e¤ect of wealth volatility on the cognitive costs of self-control in the GP-utility.

Making use of the equilibrium condition ~xt = xt + bt; and de�ning the wealth-to-income ratio

bx;t � bt=xt; we write self-control costs � (ln ~xt � lnxt) as function of bx;t:48

SC (bx;t) = � [ln (1 + bx;t)] (55)

Proposition 5 The expected costs of self-control E [SC (bx;t)] decline as the wealth ratio bx;t be-

comes more volatile.

Proof. See Appendix A.4.5.

48Recall that around the steady state x = !y; hence bx =
by
!
is proportional to the debt-to-GDP ratio.
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8 Conclusions

In the baseline small-scale New Keynesian model - the backbone of larger-scale DSGE models

currently used for policy analysis by central banks in developed and developing countries - absent

cost-push shocks in the Phillips curve, optimal monetary policy attains full stabilization of in�ation

and the output gap at their respect targets (divine coincidence), while, with Ricardian equivalence

holding, the central bank can pursue its dual mandate without any concerns about the dynamic of

public debt. As shown in the literature, both policy outcomes are not robust to realistic structural

modi�cation to the baseline model, as well as the empirical evidence in their support appears, at

best, rather weak.

We propose a behavioral modi�cation to the baseline model which, by breaking Ricardian

equivalence, yields a meaningful in�ation-output stabilization trade-o¤ for a policy-maker seeking

optimal monetary policy. In our model, households are characterized by temptation with self-

control preferences as formalized in Gul and Pesendorfer (2001, 2004): in every period, they are

tempted to behave like a hand-to-mouth consumers by using their entire �nancial wealth for the

purpose of immediate consumption. They resist the urge by exerting self-control, the latter being

measured by the opportunity cost of forgoing tempting immediate consumption to pursue instead

the optimal consumption smoothing plan. As self-control costs depend on the amount of wealth in

hand, anticipation of such trade-o¤ also occurring in the future yields a generalized Euler equation

which is distorted by the household�s holdings of Treasury bond: Ricardian equivalence fails!

To characterize optimal monetary policy, we identify the central bank�s policy objective by

second-order approximation of household�s welfare. The implied loss function features a lower

weight on in�ation stabilization, and a negative weight on (squared) public debt deviations from a

welfare-relevant target (a debt gap). The modi�ed trade-o¤ combined with the wealth distortion

in the Euler equation breaks the divine coincidence. Similar to the baseline framework, total factor

productivity and government spending a¤ects the real interest rate (via the Euler equation), which,

in turn, puts upward pressure on public debt. However, di¤erently from the baseline, public debt,

further disturbed by �scal shocks, feeds back into the Euler equation through the above mentioned

temptation-driven wealth e¤ect.

With the Euler equation, the law of motion of public debt and the Phillips curve being now all

binding policy constraints - together with the modi�ed policy objective - the central bank can no
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longer fully stabilize in�ation and the output gap with respect to shocks to total factor productivity

and/or �scal variables (government spending, �scal surplus). The targeting rule under discretion

features, on the one hand, a dynamic trade-o¤ between stabilizing current versus next period

in�ation and output gaps, and, on the other hand, a positive response to the debt gap. Interestingly,

we �nd the consumption-equivalent welfare costs of economic �uctuations to be strictly decreasing in

temptation, potentially turning into bene�ts. As shown, under the assumption of concave utilities,

wealth volatility dampens the cognitive costs of self-control in the GP-preference speci�cation,

hence increasing household�s welfare.
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A Appendix

A.1 Welfare Approximation

This Appendix provides a detailed derivation of the second order Taylor approximation to the

representative household�s welfare around the e¢ cient steady state, and therefore a formal proof

of the statement in Proposition 3.

Throughout the approximation, we will drop all those terms that are independent from policy,

t:i:p: (i.e., terms that do not a¤ect the optimal policy choices by the government, such as exogenous

disturbances), as well as those terms that are of order of approximation higher than 2, h:o:t. Before

getting started with the analysis, we state some useful approximation results. For generic variables

mt and nt (with respective steady state m and n); after dropping h:o:t:, we have the following

relationships:

mt �m
m

� m̂t +
1

2
m̂2
t ;

�
mt �m
m

�2
� m̂2

t ;

�
mt �m
m

��
nt � n
n

�
� m̂tn̂t (A.1)

As the analytical derivation is rather involved, we proceed in steps:

Step 1 We derive a second-order approximation to the temporary utility Ut; showing that it in-

volves the presence of linear terms in debt.

Step 2 We pursue a second-order approximation to the government�s intertemporal budget con-

straint from which we derive an analytical expression for the discounted sum of linear terms

in debt entering the welfare objective.

Step 3 We combine the results in to write the welfare objective as the expected present discounted

value of quadratic deviations of output, in�ation and debt from their respective targets.

Step 4 We appeal to some results in Telser and Graves (1972) to prove that our loss function is

convex, such that the solution to the linear-quadratic problem indeed corresponds to a loss
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minimum.

A.1.1 Second-Order Approximation of Temporary Utility Ut (STEP 1)

Let Ut � lnxt � It where It � � (ln ~xt � lnxt) : A second-order Taylor expansion yields:49

Ut � U � xt � x
x

� 1
2

�
xt � x
x

�2
� I It � I

I

�
�
x̂t +

x̂2t
2

�
� x̂

2
t

2
� I

 
Ît +

Î2t
2

!
(A.2)

where the second equality makes use of the results in (A.1). Following similar steps, we obtain:

It � I
I

� �

I

~xt � ~x
~x

� �

2I

�
~xt � ~x
~x

�2
� �

I

�
xt � x
x

�
+
�

2I

�
xt � x
x

�2
(A.3)

From the latter, we obtain:

Ît +
Î2t
2

� �

I

 
~̂xt +

~̂x2t
2

!
� �

I

~̂x2t
2
� �

I

�
x̂t +

x̂2t
2

�
+
�

I

x̂2t
2

(A.4)

Î2t �
�
�

I

�2
(~̂xt � x̂t)2 (A.5)

where (A.4) makes use of (A.1), and (A.5) comes from squaring (A.4) and dropping all h:o:t:

Next, consider the consumption-labor bundle xt � ct � h1+�t
1+� : Its approximation yields

xt � x
x

� c

x

ct � c
c

� h
1+�

x

ht � h
h

� �h
1+�

2x

�
ht � h
h

�2
(A.6)

Making use of (A.1) again, we can rewrite the latter as

�
x̂t +

x̂2t
2

�
� c

x

�
ĉt +

ĉ2t
2

�
� h

1+�

x

 
ĥt +

ĥ2t
2

!
� �h

1+�

2x
ĥ2t (A.7)

49To shorten the notation, in the expressions to follow, we drop all t:i:p: and h:o:t:; unless required by the exposition
of results.
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Following similar steps, the market clearing condition ct = yt � gt becomes

�
ĉt +

ĉ2t
2

�
=
y

c

�
ŷt +

ŷ2t
2

�
� g
c

�
ĝt +

ĝ2t
2

�
; (A.8)

while the aggregate technology ztht = yt�t gives

ĥt +
ĥ2t
2

� �̂t + ŷt +
ŷ2t
2
�
�
ẑt +

ẑ2t
2

�
� ẑt (ŷt � ẑt) ; (A.9)

ĥ2t � (ŷt � ẑt)2 ; (A.10)

where (A.10) is obtained by squaring (A.9), and then dropping all h:o:t: (recalling that �̂t is already

second-order). Plugging (A.8)-(A.10) into (A.7), while dropping t.i.p. and h.o.t., simple algebra

yields

x̂t +
x̂2t
2

� y

x
[1� h�] ŷt +

y

x
[(1� h�)� �h�] ŷ

2
t

2
� y

x
h��̂t +

y

x
h� [1 + �] ẑtŷt

� ��
!

ŷ2t
2
� 1

!
�̂t +

1 + �

!
ẑtŷt (A.11)

� �!�1
h�
2
(ŷt � ŷ�t )

2 + �̂t

i

where the second equality follows from y
x =

1
! (see equation (22)) and the fact that y = h = 1

at the e¢ cient steady state (see Section 4); and the third from the de�nition of e¢ cient output,

ŷ�t =
1+�
� ẑt: Making use of (A.1), we have

x̂2t �
�
xt � x
x

�2
�

�
c

x

ct � c
c

� h
�h

x

ht � h
h

�2
�

�
c

x

�y
c
ŷt �

g

c
ĝt

�
� h

1+�

x
(ŷt � ẑt)

�2
�

�
(1� s)�� 1
! (1� s)� ŷt �

gy
!
ĝt +

1

! (1� s)�ẑ
2
t

�2
=

�
�gy
!
ĝt +

1

!
ẑt

�2
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where the second line follows from (A.6) (where only �rst order terms are considered since the

expression is then squared), the third from �rst order approximations of market clearing and the

aggregate technology, the fourth from the de�nition of ! and h
xh

� = y
xw =

1
!

1
�(1�s) ; and the �fth

from steady state e¢ ciency. Notice that this makes x̂2t only a functions of exogenous shocks, and

therefore a t:i:p.

We are left with the temptation term ~xt = xt+bt: Given its linearity, and recalling the de�nition

# � b
~x ; its approximation gives

~xt � ~x
~x

= (1� #) xt � x
x

+ #
bt � b
b

From the latter, we �nd

~̂xt +
~̂x2t
2

= (1� #)
�
x̂t +

x̂2t
2

�
+ #

 
b̂t +

b̂2t
2

!
(A.12)

~̂x2t = [(1� #)x̂t + #b̂t]2 (A.13)

where (A.13) comes from squaring (A.12) and dropping all t.i.p.

Moving back to utility (A.2), we have:

Ut � U �
�
x̂t +

x̂2t
2

�
� I �

I

" 
~̂xt +

~̂x2t
2

!
� ~̂x2t
2
�
�
x̂t +

x̂2t
2

�#

�
�
x̂t +

x̂2t
2

�
� �I

(
(1� #)

�
x̂t +

x̂2t
2

�
+ #

 
b̂t +

b̂2t
2

!

�1
2
[#b̂t + (1� #)x̂t]2 �

�
x̂t +

x̂2t
2

��
(A.14)

� (1 + �#)

�
x̂t +

x̂2t
2

�
� �#

 
b̂t +

b̂2t
2

!
+
�

2

h
#2b̂t + 2#(1� #)x̂b̂t

i
� �(1 + �#)

!

h�
2
(ŷt � ŷ�t )

2 + �̂t

i
� �# (1� #)

 
b̂2t
2
� x̂b̂t

!
� �#b̂t

where the �rst equality makes use of (A.4)-(A.5), the second of (A.12)-(A.13), the third regroups
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similar terms and makes use of the fact that x̂2t � 0 (being a function of shocks only), and the

fourth is a consequence of (A.11) and a simple rearrangement of terms. Notice that for � = 0,

the utility approximation reduces to �!�1
h
�
2 (ŷt � ŷ

�
t )
2 + �̂t

i
: i.e., absent temptation, temporary

utility depends negatively on price dispersion and the squared deviation of output from its e¢ cient

level. Letting Uy � 1+�#
! and Ub � �#; we can write (A.14) more compactly as follows:

Ut � U � �Uy
h�
2
(ŷt � ŷ�t )

2 + �̂t

i
� Ub

"
b̂t + (1� #)

 
b̂2t
2
� b̂tx̂t

!#
; (A.15)

which corresponds to equation (35) in Section 6. Hence, up to a second order approximation, the

maximization of the representative household�s welfare is:

maxU0 � �UyE0
1X
t=0

�t
h�
2
(ŷt � ŷ�t )

2 + �̂t

i
� UbE0

1X
t=0

�t

"
b̂t + (1� #)

 
b̂2t
2
� b̂tx̂t

!#
(A.16)

A technical issue with the formulation in (A.16) is the presence of the sum of linear terms in

b̂t: Following the discussion in Benigno and Woodford(2005), this undermines the evaluation accu-

racy of alternative policy speci�cations (including the truly optimal one) using a linear-quadratic

framework. While a linear term in the output gap (due to the monopolistic competition distortion)

has been eliminated by the e¢ cient labor subsidy, we take care of b̂t by resorting to a second order

approximation to the government�s intertemporal budget constraint.

A.1.2 Second-Order Approximation of Government�s Intertemporal Budget (STEP

2)

The following Lemma states the key result of this section.

Lemma 2 Let Wt � �t Rt�1bt�1�t
; for t � 0. Then

W0 �W
W � �bE0

1X
t=0

~�
t
b̂t + E0

1X
t=0

~�
t

"
�bb

b̂2t
2
����̂t + b̂t (�bz ẑt +�bvv̂ft ��bgĝt)

#
(A.17)

where �i for i = b; �; and �bj for j = b; z; v; g are composite coe¢ cients.
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To prove the result in (A.17), we start from the government budget constraint (16), which, after

setting �Ft = stwtht; becomes:

Rt�1bt�1
�t

= ft + bt; (A.18)

where ft = �Ht � gt denotes its primary surplus. Its forward iteration gives:

Rt�1bt�1
�t

= ft + �Et

�
�t+1
�t

�t+1
Rt
�t+1

bt

�
= ft + �Et

�
�t+1
�t

�t+1ft+1

�
+ �Et

�
�t+1
�t

�t+1bt+1

�
= ft + �Et

�
�t+1
�t

�t+1ft+1

�
+ �Et

�
�t+1
�t

�t+1Et+1

�
�
�t+2
�t+1

�t+2 (ft+2 + bt+2)

��
= ft + �Et

�
�t+1
�t

ft+1�t+1

�
+ �2Et

�
�t+2
�t

ft+2�t+1�t+2

�
+ �2Et

�
�t+2
�t

�t+1�t+2bt+2

�

where the �rst equality follows from the fact that bt = RtEt
�
� �t+1�t

�t;t+1
�t+1

bt

�
by the Euler equation

(20); the second is obtained by leading (A.18) one period forward to �nd the expression for Rt
�t+1

;

the third by using (20) again (as for the �rst line) to substitute for bt+1 and then by making use of

fact that Rt+1bt+1
�t+2

= ft+2 + bt+2; and the fourth by a simple rearrangement of terms. Continuing

with the forward iteration and imposing a standard transversality condition gives the household�s

intertemporal budget constraint (or intertemporal solvency condition):

Rt�1bt�1
�t

= Et

1X
j=0

�j
�t+j
�t
ft+j�t;t+j (A.19)

where �t;t+j � �ji=1�t+i; with �t = 1: Multiplying both sides of (A.19) by �t; while denoting

Wt � �t Rt�1bt�1�t
and qt;t+j � �t+jft+j�t;t+j for j � 0; we rewrite (A.19) more compactly as follows:

Wt = Et

1X
j=0

�jqt;t+j (A.20)
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We introduce the following de�nition for later use:

Qt+j � Et+j
1X
i=0

�iqt+j;t+j+i; for j � 0; (A.21)

such that Wt+j = Qt+j for any j � 0:

Recalling the de�nition of ~� � �� and noticing that, at the steady state, �t;t+j = �j ; a second-

order approximation to (A.20) yields

W +WWt �W
W � �f

1� ~�
+ �fEt

1X
j=0

~�
j
�
qt;t+j � q

q

�

where the �rst term on the right hand side corresponds to the steady state of the right hand side

of (A.20). Since W = �f

1�~� ; the �rst approximation result in (A.1) implies that

Wt �W
W �

�
1� ~�

�
Et

1X
j=0

~�
j

 
q̂t;t+j +

q̂2t;t+j
2

!
: (A.22)

We are going to evaluate the in�nite summations of linear and quadratic terms in (A.22)

separately. To do that, de�ne qt+j � �t+jft+j , such that qt;t+j = qt+j�t;t+j ; and therefore

q̂t;t+j = q̂t+j + �̂t;t+j where �̂t;t+j =
Pt+j
i=t+1 �̂i: Recalling that �̂t = 0 (since �t = 1); after simple

algebra, the sum of linear terms in (A.22) is therefore equivalent to

Et

1X
j=0

~�
j
q̂t;t+j = Et

1X
j=0

~�
j
q̂t+j +

1

1� ~�
Et

1X
j=1

~�
j
�̂t+j : (A.23)
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Using the expression for q̂t;t+j again, we obtain the quadratic term q̂2t;t+j = q̂
2
t+j+�̂

2
t;t+j+2q̂t+j�̂t;t+j

entering (A.22): Let�s evaluate �rst the summation Et
P1
j=0

~�
J
�̂2t;t+j :

Et

1X
j=0

~�
J
�̂2t;t+j = Et

1X
j=0

~�
j

 
t+jX
i=t+1

�̂i

!2

= Et

h
~��̂2t+1 +

~�
2
�
�̂2t+1 + �̂

2
t+2 + 2�̂t+1�̂t+2

�
+~�

3
�
�̂2t+1 + �̂

2
t+2 + �̂

2
t+3 + 2�̂

2
t+1�̂

2
t+2 + 2�̂

2
t+2�̂

2
t+3 + 2�̂

2
t+1�̂

2
t+3

�
+ :::

i
= Et

n
~��̂t+1

h
�̂t+1(1 + ~� + ~�

2
+ :::) + 2~��̂t+2(1 + ~� + ~�

2
+ :::) + 2~�

2
�̂t+3(1 + ~� + ~�

2
+ :::) + :::

i
+~�

2
�̂t+2

h
�̂t+2(1 + ~� + ~�

2
+ :::) + 2~��̂t+3(1 + ~� + ~�

2
+ :::) + 2~�

2
�̂t+4(1 + ~� + ~�

2
+ :::):::

i
+ :::

o
=

1

1� ~�
Et

n
~��̂t+1

�
�̂t+1 + 2~��̂t+2 + 2~�

2
�̂t+3 + :::

�
+ ~�

2
�̂t+2

�
�̂t+2 + 2~��̂t+3 + 2~�

2
�̂t+4 + :::

�
+ :::

o
=

1

1� ~�
Et

1X
j=1

~�
j
�̂t+j

h
�̂t+j + 2P̂t+j

i
(A.24)

where we have de�ned P̂t+j �
P1
i=1

~�
i
�̂t+j+i. Next, we consider

Et

1X
j=0

~�
j
q̂t+j�̂t;t+j = Et

h
~�q̂t+1�̂t+1 + ~�

2
qt+2(�̂t+1 + �̂t+2) + ~�

3
qt+3(�̂t+1 + �̂t+2 + �̂t+3) + :::

i
= Et

h
~��̂t+1(q̂t+1 + ~�q̂t+2) + ~�

2
�̂t+2(q̂t+2 + ~�q̂t+3 + :::) + :::

i
= Et

1X
j=1

~�
j
�̂t+j�̂t+j (A.25)

where we have de�ned �̂t+j �
�P1

i=t+j
~�
i�(t+j)

q̂i

�
, such that �̂t =

P1
j=0

~�
j
q̂t+j (to be used later).

We substitute (A.23)-(A.25) back into (A.22):

Wt �W
W �

�
1� ~�

�
Et

1X
j=0

~�
j

 
q̂t+j +

q̂2t+j
2

!
+ Et

1X
j=1

~�
j
�̂t+j

+
1

2
Et

1X
j=1

~�
j
�̂2t+j + Et

1X
j=1

~�
j
�̂t+jP̂t+j| {z }
A2

+
�
1� ~�

�
Et

1X
j=1

~�
j
�̂t+j�̂t+j| {z }

�A1

(A.26)
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Next, we are going to simplify (A.26) as much as possible. Let�s start with term A1 in (A.26):

A1 = (1� ~�)Et

24 1X
j=1

~�
j
�̂t+jEt+j

�
q̂t+j + ~�q̂t+j+1 + ~�

2
q̂t+j+2 + :::

�35
= (1� ~�)Et

24 1X
j=1

~�
j
�̂t+jEt+j

 1X
i=0

~�
i
q̂t+j;t+j+i �

1

1� ~�

1X
i=1

~�
i
�̂t+j+i

!35
where the second equality follows from (A.23). Notice that, from the de�nition of P̂t+j ; the sum of

terms A1 and A2 in (A.26) equals

A1 +A2 = (1� ~�)Et

24 1X
j=1

~�
j
�̂t+jEt+j

 1X
i=0

~�
i
q̂t+j;t+j+i

!35
= Et

1X
j=1

~�
j
�̂t+jQ̂t+j (A.27)

where the second equality follows from the de�nition of Qt+j in (A.21) and the fact that, to �rst

order approximation,

Q̂t+j �
�
1� ~�

�
Et+j

1X
i=0

~�
i
q̂t+j;t+j+i; for j � 0; (A.28)

Plugging (A.27) back into (A.26), together with �̂t = 0, after a simple rearrangement of terms, we

obtain:

Wt �W
W � Et

1X
j=0

~�
j

"�
1� ~�

� 
q̂t+j +

q̂2t+j
2

!
+

 
�̂t+j +

�̂2t+j
2

!
+ �̂t+jQ̂t+j

#
(A.29)

Consider the term q̂t+j : We can write it as follows we have

q̂t+j = �̂t+j + f̂t+j

= �x̂t+j + �bb̂t+j + v̂f;t+j (A.30)
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where the second equality makes use �̂t+j = �x̂t+j and the linearized version of the �scal rule (17).

Furthermore, recalling the result in (30), we have

�̂t+j = �xx̂t+j + �bb̂t+j ; for �b � {#; �x = ��b (A.31)

Finally, since Wt+j � Rt+j�1bt+j�1
�t+j

�t+j and Wt+j = Qt+j for any j � 0, from the �scal budget

(A.18) we have Qt+j = �t+j (ft+j + bt+j) ; whose �rst order approximation gives

Q̂t+j = �̂t+j +
�
1� ~�

�
f̂t+j + ~�b̂t+j

= �x̂t+j +Qbb̂t+j +
�
1� ~�

�
v̂f;t+j ; for Qb �

�
1� ~�

�
�b +

~� (A.32)

Making use of equations (A.30)-(A.31) (as well as their square, while dropping t.i.p.) and equation

(A.32), we rewrite (A.29) as follows:

Wt �W
W = Et

1X
j=0

~�
j

"
�xx̂t+j +�bb̂t+j +�xx

x̂2t+j
2

+ �bb
b̂2t+j
2

(A.33)

+�bxb̂t+j x̂t+j +�bv b̂t+j v̂f;t+j +�xvx̂t+j v̂f;t+j

i

where

�x � �x � (1� ~�) (A.34)

�b � �b + (1� ~�)�b (A.35)

�xx � (1� ~�) + �x(�x � 1) (A.36)

�bb � �b(�b +Qb) + (1� ~�)�2b (A.37)

�bx � �x�b � (1� ~�)�b + �xQb � �b (A.38)

�bv � (1� ~�)�b + �b(1� ~�) (A.39)

�xv � �x(1� ~�) (A.40)
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To conclude the derivation, we recall that, around the e¢ cient steady state, a second-order approx-

imation to the consumption-labor composite xt yields

x̂t = !
�1
�
ẑt � gy ĝt � �̂t

�
; (A.41)

After plugging the latter, as well as its square, back into (A.33) and dropping t.i.p. and h.o.t., a

simple rearrangement of terms gives

Wt �W
W = �bEt

1X
j=0

~�
j
b̂t+j+Et

1X
j=0

~�
j

"
�bb

b̂2t+j
2
����̂t+j + (�bz ẑt+j +�bvv̂f;t+j ��bgĝt+j) b̂t+j

#

where �� � !�1�x: Setting t = 0 and relabeling the time subscript j by t; we obtain the expression

in (A.17)

A.1.3 Elimination of Linear Terms from the Welfare Objective (STEP 3)

Equation (A.17) implies that

E0

1X
t=0

~�
t
b̂t � ��1b

W0 �W
W +��1b E0

1X
t=0

~�
t

"
���̂t ��bb

b̂2t
2
� b̂t (�bz ẑt +�bvv̂ft ��bgĝt)

#
(A.42)

Notice that the discount factor in (A.42) is ~� while it is � > ~� in (A.16). To substitute (A.42) into

(A.16), we assume E0
1X
t=0

�tb̂t � E0
1X
t=0

~�
t
b̂t+h:o:t:; that is, a discrepancy of order higher than two.

This is the case if ~� is su¢ ciently close to �.50

Based on this argument, we replace E0
1X
t=0

~�
t
m̂t with E0

1X
t=0

�tm̂t in (A.42) for any stochastic

process m̂t; including, obviously, b̂t:

E0

1X
t=0

�tb̂t � ��1b
W0 �W
W �AW (A.43)

50Using previous de�nitions and steady state relationships, simple algebra gives

� � ~� = � !

! + by

�I�

1 + �I�
:

In the quantitative exercise, we restrict to parameterizations for which � � ~� + h:o:t.
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where we have de�ned

AW � ��1b E0
1X
t=0

�t

"
����̂t +�bb

b̂2t
2
+ b̂t (�bz ẑt +�bvv̂ft ��bg ĝt)

#
(A.44)

Similarly, we let

AU � �UyE0
1X
t=0

�t
h�
2
(ŷt � ŷ�t )

2 + �̂t

i
� UbE0

1X
t=0

�t (1� #)
 
b̂2t
2
� b̂tx̂t

!
; (A.45)

and write the welfare objective U0 in (A.16) as

U0 � �UbE0
1X
t=0

�tb̂t +AU (A.46)

We plug (A.43) in the latter to obtain

U0 � AU + UbAW + t:i:p:

� �UyE0
1X
t=0

�t
h�
2
(ŷt � ŷ�t )

2 +
�

2�
�̂2t

i
� UbE0

1X
t=0

�t (1� #)
 
b̂2t
2
� b̂tx̂t

!

+��1b E0

1X
t=0

�t

"
����̂t +�bb

b̂2t
2
+ b̂t (�bz ẑt +�bvv̂ft ��bgĝt)

#

� �Uy
2
E0

1X
t=0

�t
h
� (ŷt � ŷ�t )

2
i
� Uy
2
E0

1X
t=0

�t
�
�

�

�
1 +

Ub
Uy
��

�
�̂2t

�

�UbE0
1X
t=0

�t

 
Bbb

b̂2t
2
�Bbz b̂tẑt �Bbv b̂tv̂ft +Bbg b̂tĝt

!

� �Uy
2
E0

1X
t=0

�t
h
� (ŷt � ŷ�t )

2
i
� Uy
2
E0

1X
t=0

�t
�
�

�

�
1 +

Ub
Uy
��

�
�̂2t

�
(A.47)

�Ub
2
E0

1X
t=0

�tBbb

�
b̂t � b̂�t

�

where the �rst equality follows from the fact that Ub�
�1
b

W0�W
W does not depend on policy; the

second from the standard result E0
1X
t=0

�t�̂t � �
2�E0

1X
t=0

�t�̂2t + t:i:p:+h:o:t: (see Woodford, 2003),

the �rst order approximation x̂t = !�1 (ẑt � gy ĝt) (second order terms, like price dispersion, can

be dropped since x̂t enters only while multiplied by b̂t) and simple substitution of terms, with
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�� � ��1b �� and �bi � �
�1
b �bi for i = b; z; v; g; the third from grouping similar terms and letting

Bbb � (1� #��bb) ; Bbv � �bv; (A.48)

Bbz �
�
(1� #)!�1 +�bz

�
; Bbg �

�
(1� #)!�1gy +�bg

�
; (A.49)

and the fourth from de�ning the welfare-relevant debt target

b̂�t =Mz ẑt �Mg ĝt +Mvv̂f;t; (A.50)

with

Mz =
Bbz
Bbb

; Mg =
Bbg
Bbb

; Mv =
Bbv
Bbb

: (A.51)

Finally, starting from the approximation in (A.47) and de�ning the welfare weights

�y � �; �� �
�
1 +

Ub
Uy
��

�
�

�
; �b �

UbBbb
Uy

; (A.52)

the maximization of the representative household�s lifetime utility U0 is equivalent to the minimiza-

tion of the following intertemporal loss function

L0 �
1

2
E0

1X
t=0

�t
h
�y (ŷt � ŷ�t )

2 + ���̂
2
t + �b(b̂t � b̂�t )2

i
(A.53)

Consider the de�nition of �� in (A.52):

�� �
�
1 +

Ub
Uy
��

�
�

�
=

�
1 +

�#

1 + �#

�x
�b

�
�

�

where the second equality follows from Uy � 1+�#
! ; Ub � �# and �� � !�1�x: Let�s focus on the

ratio �x
�b
:

�x
�b

=
�x � (1� ~�)
�b + (1� ~�)�b

=
�{#� (1� ~�)
{#+ (1� ~�)�b

< 0 (A.54)
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where the �rst equality makes use of the de�nitions of �x and �b in (A.34) and (A.35), and the

second follows from �x = ��b = �{#: �x�b < 0. With �#
1+�# 2 (0; 1); a su¢ cient condition for ��

to be positive is that �x�b > �1: Using the expression in (A.54), simple algebra shows that this last

inequality holds if and only if �b > 1 (which is guaranteed by Assumption 2).

Next, consider the weight �b, also de�ned in (A.52):

�b �
UbBbb
Uy

= !
�#

1 + �#
Bbb;

where the second equality makes use of the de�nitions of Uy and Ub again. It then follows that

sign(�b) = sign(Bbb) ; where Bbb � 1 � # � �bb; as de�ned in (A.48). Consider the term �bb; as

de�ned in Appendix A.1.3:

�bb �
�bb
�b

=
�b(�b +Qb) + (1� ~�)�2b

�b + (1� ~�)�b

where the second equality follows from the de�nitions of �bb and �b in, respectively, (A.37) and

(A.35). This term is always larger than unity since �b > 0 (see de�nition in (A.31)), Qb > 1 (see

de�nition in (A.32)) and �b > 1 by Assumption 2: With 1� # 2 (0; 1) ; we can then conclude that

Bbb < 0; which in turn gives �b < 0:

A.1.4 Second Order Conditions for Loss Minimum (STEP 4)

To guarantee that the solution to the �rst order conditions associated with the minimization of

(A.53) indeed attain a loss minimum, we need to verify that the temporary loss in (A.53) is strictly

convex. This is always the case in the baseline New Keynesian model without temptation where

all welfare weights are positive - i.e. �y; �� > 0 - but might not apply here since �b is negative.

To deal with this issue, we follow Benigno and Woodford (2005, 2006) and make use of results by

Telser and Graves (1972) about necessary and su¢ cient conditions for constrained maximization in

(deterministic) dynamic linear-quadratic problems. We prove that our objective is indeed strictly
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convex for any parameterization of the model.

From Proposition 3 in Appendix A of Benigno and Woodford (2005), we know that this is

equivalent to verifying the second order conditions for optimality in the associated deterministic

problem:

min
fŷt�ŷ�t ;�̂t;b̂t�b̂�t g

1

2

1X
t=0

�t
h
�y (ŷt � ŷ�t )

2 + ���̂
2
t + �b(b̂t � b̂�t )2

i
(A.55)

for bounded deterministic sequences
n
ŷt � ŷ�t ; �̂t; b̂t � b̂�t

o
- in the sense that

P1
t=0 �

tv2t < 1 for

v = ŷt � ŷ�t , �̂t, b̂t � b̂�t - satisfying

~��̂t = �̂t�1 � ��
�
ŷt�1 � ŷ�t�1

�
; (A.56)

b̂t � b̂�t = �b (1 + b)
�
b̂t�1 � b̂�t�1

�
; (A.57)

for given initial conditions of predetermined variables.51 The linear-quadratic problem in (A.55)-

(A.57) is in the same form of the general problem studied by Telser and Graves (1972). Using a

notation similar to theirs, let x̂t �
h
ŷt � ŷ�t ; �̂t; b̂t � b̂�t ;

i0
; such that the problem (A.55)-(A.57) can

be written as follows:52

min
fŷt�ŷ�t ;�̂t;b̂t�b̂�t g

1

2

1X
t=0

�tx̂0tBx̂t; for B � diag (�y; ��; �b) (A.58)

subject to

A (L) x̂t = 0; for A (L) �

24 ���L L� ~� 0

0 0 1� �b (1 + b)L

35 : (A.59)

51Equation (A.56) is a one-period lagged deterministic version of the Phillips curve. Equation (A.57) is derived
from substituting a deterministic version of the Euler equation, lagged by one period, into the law of motion of public
debt.
52There is a slight abuse of notation here since x has been previously used to de�ned the consumption-labor

composite entering the GHH utility speci�cation in the main text, and is also used in Appendix A.2 to denote the
vector of predetermined and non-predetermined variables in the computational algorithm for optimal policy. The

de�nition x̂t �
h
ŷt � ŷ�t ; �̂t; b̂t � b̂�t ;

i0
pertains only to this section.
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with L denoting the lag operator. Second order conditions hold if and only if the quadratic form

x̂0tBx̂t in (A.58) is positive de�nite for all bounded sequences fx̂tg satisfying constraint (A.59).

De�ne the bordered Hessian matrix

H(�) �

24 0 A(~�
1
2 e�i�)

A
0
(~�

1
2 e�i�) B

35 ;
where

A(~�
1
2 e�i�) =

24���~� 1
2 e�i� ~�

1
2 e�i� � ~� 0

0 0 1� �b (1 + b) ~�
1
2 e�i�

35 ;

A
0
(~�

1
2 ei�) =

26664
���~�

1
2 ei� 0

~�
1
2 ei� � ~� 0

0 1� �b (1 + b) ~�
1
2 ei�

37775 :

Since B is a diagonal non-singular matrix (provided all welfare weights are di¤erent from zero) and

A
0
(~�

1
2 ei�) has rank 2 (hence equal to the number of linear constraints), Theorems 5.1-5.3 in Ch. 2 of

Telser and Graves (1972) imply that the positive de�niteness requirement is satis�ed (hence, second

order conditions hold) if and only if all northwest principal minors of H(�) of order p > 4 (where

4 is the product of 2 and the number of linear constraints) has the same sign of (�1)#constraints for

all j�j � �:53 It follows that we only need to verify that the determinant of the bordered Hessian

H(�) is strictly positive for all j�j � �: Writing H(�) more extensively as

H(�) =

26666666664

0 0 ���~�
1
2 e�i� ~�

1
2 e�i� � ~� 0

0 0 0 0 1� �b (1 + b) ~�
1
2 e�i�

���~�
1
2 ei� 0 �y 0 0

~�
1
2 ei� � ~� 0 0 �� 0

0 1� �b (1 + b) ~�
1
2 ei� 0 0 �b

37777777775
;

53Obvsiouly � here stands for the numerical �greek pi�and not in�ation.

55



the Laplace expansion gives the following result:

det (H(�))

= �(1� �b (1 + b) ~�
1
2 ei�) �

det

0BBBBBB@

26666664
0 ���~�

1
2 e�i� ~�

1
2 e�i� � ~� 0

0 0 0 1� �b (1 + b) ~�
1
2 e�i�

���~�
1
2 ei� �y 0 0

~�
1
2 ei� � ~� 0 �� 0

37777775

1CCCCCCA

= �
�
1� �b (1 + b) ~�

1
2 ei�

� �
1� �b (1 + b) ~�

1
2 e�i�

�
det

0BBB@
26664

0 ���~�
1
2 e�i� ~�

1
2 e�i� � ~�

���~�
1
2 ei� �y 0

~�
1
2 ei� � ~� 0 ��

37775
1CCCA

=

�
1� �b (1 + b) ~�

1
2 ei�

� �
1� �b (1 + b) ~�

1
2 e�i�

� �
�2�2~��� + �y(~�

1
2 ei� � ~�)(~�

1
2 e�i� � ~�)

�
=

�
1 + [�b (1 + b)]

2 ~� � 2�b (1 + b) ~�
1
2 cos �

�
| {z }

H1(�)

�
�2�2~��� + �y~� + �y~�

2 � 2�y~�
3
2 cos �

�
| {z }

H2(�)

(A.60)

where (A.60) relies on the equality cos � = ei�+e�i�

2 :

First of all, notice that det(H(�)) is not a¤ected by the sign of the welfare weight �b: Hence,

the latter does not play any role in whether the bordered Hessian H(�) is positive de�nite or

negative de�nite, and hence in establishing the validity of second order conditions for optimality.

Then, consider factor H1(�) in (A.60). This expression is clearly strictly decreasing in cos �; whose

highest value is cos � = 1 for � = 0: It is therefore su¢ cient to show that H1(0) > 0: Simple algebra

gives

H1(0) = 1 + [�b (1 + b)]
2 ~� � 2�b (1 + b) ~�

1
2

=

�
1� �b (1 + b) ~�

1
2

�2
> 0
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since b 2 (�1; 0) : Next, consider factor H2(�):

H2(�) = �
2�2~��� + �y~�

�
1 + ~� � 2~�

1
2 cos �

�
(A.61)

Clearly, the expression within brackets in (A.61) is also strictly decreasing in cos �: Hence, by the

same logic used for H1(�) and given that �2�2~��� > 0; we just need to verify that 1+ ~��2~�
1
2 > 0:

This is indeed the case for any ~� 2 (0; 1) : We can therefore conclude that det(H(�)) > 0 for all

�� � � � �: As a result, the second order conditions always hold for any parameterization of the

model.

A.2 Computation of Optimal Monetary Policy

The computation of optimal monetary policy - both under discretion and commitment - closely

follows the linear-quadratic approach of Soderlind (1999). The �rst step requires writing the equi-

librium system (38)-(40) in the appropriate state-space form. Starting with equation (40), the law

of motion of debt (in deviation from its target) is:

b̂t � b̂�t = �b

�
b̂t�1 � b̂�t�1 + R̂t�1 � �̂t

�
� (Mv + �v)v̂f;t �Mz ẑt +Mg ĝt

+�bMz ẑt�1 � �bMg ĝt�1 + �bMvv̂f;t�1 (A.62)

From the Phillips curve (38), we obtain the law of motion of expected in�ation:

Et�̂t+1 =
1
~�
�̂t �

��
~�
(ŷt � ŷ�t )�

1
~�
êt (A.63)

From the Euler equation (39), after substituting in the expressions for the debt gap in (A.62) and

for expected in�ation in (A.63), and grouping similar terms, we obtain:

R̂t =

�
1
~�
� b�b

�
�̂t �

��
~�
(ŷt � ŷ�t ) + b�b

�
b̂t�1 � b̂�t�1 + R̂t�1

�
+Hz ẑt �Hg ĝt +H

vv̂f;t +H
z
1 ẑt�1 �H

g
1 ĝt�1 +H

v
1 v̂f;t�1 �

1
~�
êt (A.64)
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where H i � Hi � Mi; for i = z; g; Hv � Hv �  (Mv + �v) ; and H
i
1 � �bMi for i = z; g; v: To

the newly de�ned state-space system, we append the stochastic laws of motion for the exogenous

shocks:

êt+1 = �eêt + "̂et+1; (A.65)

ẑt+1 = �z ẑt + "̂zt+1; (A.66)

ĝt+1 = �g ĝt + "̂gt+1; (A.67)

v̂ft+1 = �f v̂ft + "̂ft+1: (A.68)

Letting n̂t � (êt; ẑt; ĝt; v̂f;t)0 ; we de�ne the following vectors:

x̂t �

24 x̂1;t
x̂2;t

35 ; x̂1;t �
h
êt; ẑt; ĝt; v̂ft; ẑt�1; ĝt�1; v̂ft�1;b̂t�1 � b̂�t�1; R̂t�1

i0
; (A.69)

x̂2;t � �̂t; ût � ŷt � ŷ�t ; "̂t+1 � ["̂et+1; "̂z;t+1; "̂g;t+1; "̂v;t+1; 01x6]0 ; (A.70)

where x̂1t includes all exogenous shocks and predetermined variables, x̂2t includes all non-predetermined

variables (in our case, only in�ation), ût includes the instrument or control variables (in our case,

the the output gap), and "̂t+1 gathers the iid disturbances to the exogenous shocks (with 0mxn

denoting a m-row/n-column matrix of zeros).54 Using this notation, the state-space system is

24 x̂1;t+1

Etx̂2;t+1

35 =
24A11 A12

A21 A22

3524 x̂1;t
x̂2;t

35+Bût + "̂t+1; (A.71)

54The lack of output gap expectations in the equilibrium system is the joint consequence of a GHH utlity and an
e¢ cient labor subsidy. As it only enters as a period t dated variable, the output gap is the natural choice as control
variable for the linear-quadratic optimization problem.
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where

A11 �

266666666666666666666664

�e 0 0 0 0 0 0 0 0

0 �z 0 0 0 0 0 0 0

0 0 �g 0 0 0 0 0 0

0 0 0 �f 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 �Mz Mg �(Mv + �v) �bMz ��bMg �bMv �b �b

� 1
~�

Hz �Hg Hv Hz
1 �Hg

1 Hv
1 b�b b�b

377777777777777777777775

;

A12 �
�
07x1;��b;

1
~�
� b�b

�0
; A21 �

�
� 1
~�
; 01x8

�
; A22 �

h
1
~�

i
B �

�
01x8;�

��
~�
;���

~�

�0
:

Looking back at the system (A.71), the �rst four equations correspond to the exogenous processes

(A.65)-(A.68); the next three are simple identities ẑt = ẑt; ĝt = ĝt and v̂f;t = v̂f;t to allow the

recursive inclusion of lagged shocks in the system; the next three are, respectively, the law of

motion of debt (A.62), the Euler equation (A.64), and the Phillips curve (A.63).

Next, consider the temporary welfare-based loss function Lt derived in Proposition 3:

Lt �
1

2

h
�y (ŷt � ŷ�t )

2 + ���̂
2
t + �b(b̂t � b̂�t )2

i

=
1

2

h
b̂t � b̂�t �̂t ŷt � ŷ�t

i26664
�b 0 0

0 �� 0

0 0 �y

37775
26664
b̂t � b̂�t
�̂t

ŷt � ŷ�t

37775

=
1

2

h
x̂
0
t û

0
t

i
K

0

26664
�b 0 0

0 �� 0

0 0 �y

37775K
24x̂t
ût

35 (A.72)
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where the third equality follows from

26664
b̂t � b̂�t
�̂t

ŷt � ŷ�t

37775 = K
24x̂t
ût

35 ; (A.73)

for

K �

26664
0 �Mz Mg �(Mv + �v) �bMz ��bMg �bMv �b �b ��b 0

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1

37775 (A.74)

De�ne the 11x11 matrix W;

W � K 0

26664
�b 0 0

0 �� 0

0 0 �y

37775K =

24Q U

U
0
R

35 (A.75)

for U � [01x10]
0 ; R �

h
�y

i
and an appropriately de�ned 10x10 matrix Q. After combining the

expressions in (A.73)-(A.75) with (A.72), we rewrite the temporary loss function Lt in matrix form:

Lt =
1

2

h
x̂
0
t û

0
t

i24Q U

U
0
R

3524x̂t
ût

35
=
1

2

h
x̂
0
1;t x̂

0
2;t

i
Q

24x̂1;t
x̂2;t

35+ 1
2
û
0
tRût (A.76)

Given (A.76), the Bellman equation associated with the optimal monetary policy problem is:

Jt =
1

2
x̂
0
tQx̂t +

1

2
û
0
tRût + �

1

2
EtJt+1 (A.77)

Since the model is linear-quadratic, we conjecture a value function Jt which is quadratic in the

predetermined variables:

Jt =
1

2
x̂
0
1;tVtx̂1;t +

1

2
�t (A.78)
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where Vt is a matrix (whose entries are unknown) and �t is a scalar (also unknown). We also

conjecture a linear relationship between non-predetermined and predetermined variables in t+ 1:

x̂2;t+1 = Ct+1x̂1;t+1 (A.79)

with Ct+1 also an unknown matrix.55 In our speci�c case, the guessed solution (A.79) includes only

in�ation and takes the following form:

�̂t+1 = Ce;t+1êt+1 + Cz;t+1ẑt+1 + Cg;t+1ĝt+1 + Cv;t+1v̂f;t+1 + C
1
z;t+1ẑt + C

1
g;t+1ĝt (A.80)

+C1v;t+1v̂f;t + C
1
b;t+1

�
b̂t � b̂�t

�
+ C1R;t+1R̂t

After inserting (A.79) into (A.71) and taking expectations, we obtain:

24 I

Ct+1

35Etx̂1;t+1 =

24A11 A12

A21 A22

3524x̂1;t
x̂2;t

35+
24B1
B2

35 ût
=)

24 I �A12
Ct+1 �A22

3524Etx̂1;t+1
x̂2;t

35 =
24A11
A21

35 x̂1;t +
24B1
B2

35 ût
=)

24Etx̂1;t+1
x̂2;t

35 =
24P11 P12

P21 P22

35"24A11
A21

35 x̂1;t +
24B1
B2

35 ût# (A.81)

where the second line follows from moving x̂2;t to the left-hand-side, and the third line from a

simple matrix inversion with

24P11 P12

P21 P22

35 =

24 I �A12
Ct+1 �A22

35�1

P21 = (A22 � Ct+1A12)�1Ct+1 (A.82)

P22 = �(A22 � Ct+1A12)�1 (A.83)

55The time subscript t for matrices Vt and Ct is due to the iterative recursive algorithm used to compute the
time-invariant matrices V and C as their �xed points.
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Making use of (A.82)-(A.83), from (A.81) we obtain

x̂2;t = Dtx̂1;t +Gtût (A.84)

where

Dt � (A22 � Ct+1A12)�1Ct+1A11 � (A22 � Ct+1A12)�1A21 (A.85)

Gt � (A22 � Ct+1A12)�1Ct+1B1 � (A22 � Ct+1A12)�1B2 (A.86)

Plugging (A.84) back into the upper-block of the state space system (A.71) yields

x̂1;t+1 = A
�
t x̂1;t +B

�
t ût + "t+1 (A.87)

where

A�t � A11 +A12Dt (A.88)

B�t � B1 +A12Gt (A.89)

After partitioning

Q =

24Q11 Q12

Q21 Q22

35 ;
we substitute (A.84) into the temporary loss (A.76):

Lt =
1

2

24 x̂1;t

Dtx̂1;t +Gtût

35
0 24Q11 Q12

Q21 Q22

3524 x̂1;t

Dtx̂1;t +Gtût

35+ 1
2
û
0
tRût

=
1

2
x̂
0
1;tQ

�
t x̂1;t +

1

2
û
0
tR
�
t ût + x̂

0
1;tU

�
t ût (A.90)
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where the second equality follows from simple matrix algebra and the following de�nitions

Q�t � Q11 +Q12Dt +D
0
tQ21 +D

0
tQ22Dt (A.91)

R�t � R+G
0
tQ22Gt (A.92)

U�t � Q12Gt +D
0
tQ22Gt (A.93)

After plugging the loss function equation (A.90), the value function guess (A.78) updated to t+1;

and the law of motion for x̂
0
1;t+1 (A.87) into the Bellman equation (A.77), the optimal monetary

policy problem is

min
ût
Jt =

1

2
x̂
0
1;tQ

�
t x̂1;t +

1

2
û
0
tR
�
t ût + x̂

0
1;tU

�
t ût

+
�

2
Et

h
(A�t x̂1;t +B

�
t ût + "t+1)

0
Vt+1(A

�
t x̂1;t +B

�
t ût + "t+1) + �t+1

i
(A.94)

Since the vector x̂1;t includes only exogenous terms and predetermined endogenous variables, taking

expectations, the problem in (A.94) is equivalent to the following:

min
ût

�Jt =
1

2
û
0
tR
�
t ût + x̂

0
1;tU

�
t ût +

�

2
û0t (B

�
t )
0 Vt+1B

�
t ût + �x̂

0
1;t (A

�
t )
0 Vt+1B

�
t ût (A.95)

Provided both R�t and Vt+1 are symmetric, the �rst order condition with respect to ût yields:

ût = �Ftx̂1;t (A.96)

for

Ft �
h
R�t + �(B

�
t )

0
Vt+1B

�
t

i�1 h
(U�t )

0
+ �(B�t )

0
Vt+1A

�
t

i
(A.97)

Equation (A.96) corresponds to the optimal instrument ût (the output gap) as linear function of the

vector of state variables x̂1;t: Substituting the expression in (A.96) into (A.84), we �nd the linear

relationship between the endogenous non-predetermined (e.g. in�ation) and the predetermined
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variables under the optimal plan:

x̂2;t = Ctx̂1;t (A.98)

where

Ct � Dt �GtFt (A.99)

We substitute the optimal instrument rule (A.96) back into the value function (A.94) so that

we can rewrite it in terms of endogenous predetermined variables and exogenous shocks only:

Joptt =
1

2
x̂
0
1;tQ

�
t x̂1;t +

1

2
x̂
0
1;tF

0
tR

�
tFtx̂1;t � x̂

0
1;tU

�
t Ftx̂1;t

+
�

2
Et

n
[(A�t �B�t Ftx̂1;t) + "t+1]

0
Vt+1 [(A

�
t �B�t Ft) x̂1;t + "t+1] + �t+1

o
(A.100)

=
1

2
x̂
0
1;t

h
Q�t + F

0
tR

�
tFt � 2U�t Ft + �(A�t �B�t Ft)

0
Vt+1(A

�
t �B�t Ft)

i
x̂1;t (A.101)

+
�

2
Et"

0
t+1Vt+1"t+1 +

�

2
Et�t+1

where the second equality follows from collecting similar terms. Noticing that

Et"
0
t+1�Vt+1"t+1 = �tr(Vt+1�);

our initial conjecture Jt = 1
2 x̂

0
1;tVtx̂1;t +

1
2�t implies the following recursive equations:

Vt =
h
Q�t + F

0
tR

�
tFt � 2U�t Ft + �(A�t �B�t Ft)

0
Vt+1(A

�
t �B�t Ft)

i
(A.102)

�t = �tr(Vt+1�) + �Et�t+1 (A.103)

Starting with any initial guess for the scalar vt+1; matrix Ct+1 and a symmetric and positive

de�nite matrix guess for Vt+1; we use (A.99) and (A.102)-(A.103) to �nd the updated matrices Ct

and Vt (and scalar vt). We keep iterating until we reach convergence: Ct ! C; Vt ! V; as well as

Ft ! F: Once convergence is attained, the rational expectations solution under the optimal policy
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is described by the following linear relationships:

ût = �Fx̂1;t; x̂2t = Cx̂1;t (A.104)

x̂1;t = (A� �B�F ) x̂1;t�1 + "t (A.105)

The optimized value function is then

Joptt = x̂
0
1;tV x̂1;t +

�

1� � tr(V �)

A.3 Additional Derivations of Results

A.3.1 Targeting Rule under Discretion

We start from the minimum state variable solution for in�ation along the MPE:

�̂t = �b

�
b̂t�1 � b̂�t�1

�
+ �RR̂t�1 + �nn̂t + �ln̂t�1; (A.106)

where n̂t � (êt; ẑt; ĝt; v̂f;t)0 follows the AR(1) process

n̂t = �n̂t�1 + "̂t (A.107)

with iid disturbances included in vector "̂t and diagonal matrix � containing autoregressive co-

e¢ cients. We use (A.106)-(A.107) to compute the conditional expectation of one-period-ahead

in�ation, Et�̂t+1: Leading (A.106) one period forward and applying the operator Et, we �nd that

Et�̂t+1 = �b

�
b̂t � b̂�t

�
+ �RR̂t + (�n� + �l) n̂t: (A.108)
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Substituting the latter into the Euler/Fisher equation (39), simple algebra gives:

R̂t = Rb

�
b̂t � b̂�t

�
+Rnn̂t (A.109)

Rb � �b + b
1� �R

; Rn �
�n� + �l +H

1� �R
; H � [0;Hz;�Hg;Hv]

After inserting (A.108)-(A.109) into the Phillips curve (38) - writing êt = [1; 0; 0; 0]n̂t - and rear-

ranging terms, we obtain:

�̂t = �b

�
b̂t � b̂�t

�
+ �y(ŷt � ŷ�t ) + �nn̂t (A.110)

�b � ~�
�b + b�R
1� �R

; �y � ��; �n � ~�
�n� + �l + �RH

1� �R
+ [1; 0; 0; 0]

Next, we recall the law of motion for government debt (40), and write it as follows:

b̂t � b̂�t = �b(b̂t�1 � b̂�t�1 + R̂t�1 � �̂t) +Nnn̂t +Nln̂t�1 (A.111)

Nn � [�Mz;Mg;� (Mv + �v)] ; Nl � [�bMz;��bMg; �bMv]

Plugging the latter back into (A.110), we obtain a Phillips curve as function of the output gap and

state variables (endogenous and exogenous):

�̂t = ��b

�
b̂t�1 � b̂�t�1 + R̂t�1

�
+ ��y(ŷt � ŷ�t ) + ��nn̂t + ��ln̂t�1 (A.112)

��b � �b�b
1 + �b�b

; ��y �
�y

1 + �b�b
; ��n �

�n + �bNn
1 + �b�b

; ��l �
�bNl

1 + �b�b

Then, we use the latter to eliminate in�ation �̂t from (A.111):

b̂t � b̂�t = ��b(b̂t�1 � b̂�t�1 + R̂t�1)� �b��y(ŷt � ŷ�t ) + �Nnn̂t + �Nln̂t�1 (A.113)

��b � �b
1 + �b�b

; �Nn � Nn � �b��n; �Nl � Nl � �b��l

The dynamic programming problem the benevolent government solves under discretion consists
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then in the Bellman equation

Vt = min
1

2

h
�y (ŷt � ŷ�t )

2 + ���̂
2
t + �b(b̂t � b̂�t )2

i
+ �EtVt+1; (A.114)

for Vt � V (b̂t�1 � b̂�t�1; R̂t�1); subject to constraints (A.112)-(A.113). Making use of partial deriv-

atives @�̂t
@(ŷt�ŷ�t )

= ��y (from (A.112)) and @(b̂t�b̂�t )
@(ŷt�ŷ�t )

= ��b��y (from (A.113)), the �rst order condition

with respect to the output gap ŷt � ŷ�t yields:

�y (ŷt � ŷ�t ) + ����y�̂t � �b�b��y(b̂t � b̂�t ) + �Et
@Vt+1

@(ŷt � ŷ�t )
= 0; (A.115)

where

@Vt+1
@(ŷt � ŷ�t )

=

24@Vt+1
@R̂t

@R̂t

@
�
b̂t � b̂�t

� + @Vt+1

@
�
b̂t � b̂�t

�
35 @

�
b̂t � b̂�t

�
@(ŷt � ŷ�t )

= ��b��y

24Rb@Vt+1
@R̂t

+
@Vt+1

@
�
b̂t � b̂�t

�
35 (A.116)

with the second equality following from partial derivatives @R̂t
@(b̂t�b̂�t )

= Rb (from (A.109)) and again

@(b̂t�b̂�t )
@(ŷt�ŷ�t )

� �b��y. By the Envelope Theorem, simple calculus gives

@Vt

@
�
b̂t�1 � b̂�t�1

� = ����b�̂t + �b��b(b̂t � b̂�t ) + ���bEt
24 @Vt+1

@
�
b̂t � b̂�t

� + @Vt+1
@R̂t

Rb

35 ; (A.117)

where we have made use of partial derivatives @�̂t
@(b̂t�1�b̂�t�1)

= ��b (from (A.112)) and
@(b̂t�b̂�t )

@(b̂t�1�b̂�t�1)
= ��b

(from (A.113)). Doing the same with respect to the endogenous state R̂t�1; it is easy to verify that

@Vt+j

@(b̂t+j�1�b̂�t+j�1)
=

@Vt+j

@R̂t+j�1
for j = 0; 1: This allows us to rewrite (A.117) as

@Vt

@
�
b̂t�1 � b̂�t�1

� = ����b�̂t + �b��b(b̂t � b̂�t ) + ���b (1 +Rb)Et @Vt+1

@
�
b̂t � b̂�t

� (A.118)
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and (A.116) as

@Vt+1
@(ŷt � ŷ�t )

= ��b��y (1 +Rb)Et
@Vt+1

@
�
b̂t � b̂�t

� :
Noticing that �b��y = ��b�y; we plug the latter into the optimal policy �rst order condition (A.115),

yielding

�y (ŷt � ŷ�t ) + ����y�̂t � �b�b��y(b̂t � b̂�t ) = �b��y (1 +Rb)�Et
@Vt+1

@
�
b̂t � b̂�t

� ; (A.119)

and then use it to eliminated Et
@Vt+1

@(b̂t�b̂�t )
from (A.118). After a couple of steps of algebraic simpli-

�cation, we �nd

@Vt

@
�
b̂t�1 � b̂�t�1

� = ���̂t + �y
�y
(ŷt � ŷ�t ): (A.120)

Leading the latter one period forward, taking conditional expectations, and substituting the result

back into (A.119), we obtain the targeting rule under the discretionary monetary policy:

����y�̂t + �y (ŷt � ŷ�t )� �b�b��y
�
b̂t � b̂�t

�
= ��b (1 +Rb)Et

�
����y�̂t+1 + �y

��y
�y

�
ŷt+1 � ŷ�t+1

��

This corresponds to equation (44) in Section 6.1.

A.3.2 Targeting Rule under Commitment

Under the timeless perspective of Woodford (2003), the Lagrangian problem for the optimal mon-

etary policy under commitment is:

minE0

1X
t=0

�t
�
1

2

h
�y (ŷt � ŷ�t )

2 + ���̂
2
t + �b(b̂t � b̂�t )2

i
+��t

h
�̂t � ~��̂t+1 � �y(ŷt � ŷ�t )� êt

i
+ �Rt

h
R̂t � �̂t+1 � b

�
b̂t � b̂�t

�
�Mt

i
(A.121)

+�bt

h�
b̂t � b̂�t

�
� �b(b̂t�1 � b̂�t�1 + R̂t�1 � �̂t)�Nt

io
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where �it for i = �;R; b are Lagrange multipliers. First order conditions with respect to choice

variables and simple algebra deliver the following set of optimality conditions:

�y (ŷt � ŷ�t ) = �y�
�
t (A.122)

�
�
���̂t + �

�
t + �b�

b
t

�
= ~���t�1 + �

R
t�1 (A.123)

�bt = ��bEt�
b
t+1 + b�

R
t � �b(b̂t � b̂�t ) (A.124)

�Rt = ��bEt�
b
t+1 (A.125)

Substituting the expressions for ��t in (A.122) and for �
R
t (lagged one period) in (A.125) into

(A.123), and recalling that ~� � ��; simple algebra yields the targeting rule under commitment:

���̂t +
�y
�y

�
(ŷt � ŷ�t )� �

�
ŷt�1 � ŷ�t�1

��
+ �b

�
�bt � Et�1�bt

�
= 0; (A.126)

where

�bt = ��bEt
1X
j=0

�j
�
b̂t+j � b̂�t+j

�
; for � � ��b (1 + b) 2 (0; 1) (A.127)

is obtained by combining (A.124)-(A.125) and simple forward iteration since b 2 (�1; 0).

Absent temptation (� = 0); we would have �b = b = 0; and the unique stationary solution

to equations (A.124) and (A.125) would be �bt = �Rt = 0 in every period. With � = 1; equation

(A.126) would collapse to the baseline targeting rule under commitment linking in�ation to output

gap growth:

���̂t +
�y
�y

�
(ŷt � ŷ�t )�

�
ŷt�1 � ŷ�t�1

��
= 0:

This corresponds to the no-temptation targeting rule under commitment in equation (52).
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A.4 Proofs

A.4.1 Proof of Lemma 1

We start by proving that the self-control costs � (ln ~xt+j � lnxt+j) are strictly positive, for any

j � 1: Since equations (1) and (9) hold in every period, including a generic t+ j; we can substitute

the expression for dt+j � � t+j from the budget constraint (1) into the expression for ~xt+j in (9).

Simple algebra gives ~xt+j = xt+j + bt+j ; such that ~xt+j > xt+j if bt+j > 0: It immediately follows

that � (ln ~xt+j � lnxt+j) > 0: The latter, together with the fact that both Lagrange multipliers ~�t+j

and �t+j are strictly positive, implies that �t+j < 1: It remains to show that �t+j > 0: Making use

of the equalities ~�t+j = �~x�1t+j and �t+j = (1+�)x
�1
t+j ; in (6) and (11) respectively, we have �t+j > 0

if and only if �~x�1t+j < (1+ �)x
�1
t+j : The latter is equivalent to �~x

�1
t+j

�
1� ~xt+j

xt+j

�
< x�1t+j ; which always

holds since the term in brackets on the left hand side of the inequality is always negative. Hence,

as long as bt+j > 0 we can conclude that �t+j 2 (0; 1) :

A.4.2 Proof of Proposition 2

As for the decentralized equilibrium, it involves two stages. First, we identify the e¢ cient allocation

under temptation by solving max � ln
�
~ct �

~h1+�t
1+�

�
; subject to ~ct + gt = yt = zt~ht: Simple calculus

gives ~ht = z
1
�

t ; and ~xt = z
1+�
�

t �gt: Plugging the latter into the temporary utility of the representative

agent, the second stage problem involves max (1 + �) lnxt � � ln ~xt subject to xt = ztht � gt � h1+�t
1+�

and ~xt = z
1+�
�

t � gt: The �rst order condition with respect to ht yields x�1t (zt � h�t ) = 0, hence

ht = h�t � z
1
�

t : The latter yields the e¢ cient levels of output, y
�
t � z

1+�
�

t ; and consumption,

c�t � y�t � gt:

A.4.3 Proof of Proposition 1

At the steady state, the nominal (and real) interest rate is

R =
(1 + �) (! + by)

� [(1 + �) (! + by)� �!]
(A.128)
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Assuming ! > 0; di¤erentiating (A.128) with respect to respect � gives

@R

@�
=

! (! + by)

� [! + by (1 + �)]
2 > 0; and

@2R

@�2
< 0

Di¤erentiating (A.128) with respect to respect by gives

@R

@by
= � �! (1 + �)

� [! + by (1 + �)]
2 < 0; and

@2R

@b2y
> 0

A.4.4 Proof of Proposition 4

Let U (xJ;t; ~xJ;t) denote the temptation-augmented GHH utility under monetary policy J:We de�ne

the consumption equivalent (CE) welfare cost as the unique solution �J to the following equality:

E

1X
t=0

�tU [x (cJ;t; hJ;t) ; ~xJ;t]| {z }
UJ

= E

1X
t=0

�tU [x (c (1� �J) ; h) ; ~x]| {z }
U(�J )

; (A.129)

where the right hand side is the unconditional household�s lifetime welfare at the undistorted steady

state, with consumption c diminished by a share �J : Under the utility speci�cation in (5), the right

hand side of (A.129) gives

(1� �)U (�J) = ln

�
(1� �J) cyy �

y1+�

1 + �

�
�
�
� ln

�
(1� �J) cyy �

y1+�

1 + �
+ b

�
� � ln

�
(1� �J) cyy �

y1+�

1 + �

��
= ln [! � �Jcy]�

�
� ln

�
! � �Jcy + b
! � �Jcy

��
; (A.130)

where the �rst equality makes use of market clearing conditions (c = cyy and h = y) and ~xt = xt+bt;

and the second one follows from the fact that, at the e¢ cient steady state, ! = (1+�)cy�1
(1+�) and y = 1:
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From the second-order welfare approximation, the left hand side of (A.129) yields

(1� �)UJ = U � (1� �) Uy
2
E

1X
t=0

�t
h
�y (ŷa;t � ŷ�t )

2 + ���̂
2
a;t + �b(b̂a;t � b̂�t )2

i
= ln (!)�

�
� ln

�
1 +

by
!

��
(A.131)

+
1

2

h
�yV ar (ŷJ;t � ŷ�t ) + �yV ar (�̂J;t) + �yV ar(b̂J;t � b̂�t )

i
| {z }

SOTJ

where the second equality follows from the steady state expression for U and the fact that E
�
v̂2t
�
=

V ar (v̂t) for generic variable v; with �i = �Uy�i for i = y; �; b: Notice that the second order term

SOTJ is a just linear transformation of the unconditional loss LJ de�ned in (54): SOTJ = �UyLJ .

Equating the expressions in (A.130) and (A.131), we obtain an implicit equation for �J :

ln (!)�
�
� ln

�
1 +

by
!

��
+ SOTJ = ln [! � �Jcy]�

�
� ln

�
! � �Jcy + b
! � �Jcy

��
(A.132)

Notice that for the right hand side of (A.132) to be well-de�ned we need to impose the restriction

�J <
!
cy
2 (0; 1) :

Let�s start with the case of no temptation. Setting � = 0 in (A.132), we �nd simple algebra

gives a unique solution �NKJ (with the superscript NK standing for �baseline New Keynesian�):

�NKJ =
!

cy
[1� exp (SOTJ)] (A.133)

Since in this case

SOTJ = �UyLJ = �!�1
h
�V ar (ŷJ;t � ŷ�t ) +

�

�
V ar (�̂J;t)

i
< 0;

we have �NKJ 2
�
0; !cy

�
: absent temptation, welfare costs are always positive.

Moving to the case of temptation, for analytical convenience, de�ne m � !� �acy and rewrite
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(A.132) as follows:

SOTJ = � ln (!) +
�
� ln

�
1 +

by
!

��
+ lnm� 1

1 + �

�
� ln

�
1 +

by
m

��1+�
(A.134)

Let G (m) denote the right hand side of (A.134), which, again, is well-de�ned only for m > 0:

Simple calculus and algebra identify the following properties: i) G (m) T 0 for m T !; with

lim
m!0

G (m) = �1 and lim
m!+1

G (m) = +1; ii) G0 (m) > 0 and G00 (m) < 0; with lim
m!+1

G0 (m) = 0:

By these properties, it is straightforward to infer that, for any � > 0; there exists a unique m� > 0

such that G (m�) = SOTJ ; where m� T ! if and only if SOTJ S 0: Equivalently, by the de�nition

of m and SOTJ ; we can conclude there exists a unique ��J <
!
cy
such that UJ = U (��J) ; where

��J S 0 if and only if LJ T 0:

To study the relationship between welfare costs and temptation, let m� (�) denote the solution

m� de�ned above as function of temptation �: By a simple application of the Implicit Function

Theorem, we have that

@m� (�)

@�
=

@SOTJ
@� � @G(m)

@�

G0 (m)

������
m=m�

(A.135)

Simple calculus gives @G(m)@� T 0 for m T !. Suppose that @SOTJ@� > 0: namely, the unconditional

loss is strictly decreasing in �:56 Since G0 (m) > 0; from (A.135) and the fact that ��J = c
�1
y (! �m�)

(from the de�nition of m), we can conclude that ��J is strictly decreasing in � for any �
�
J � 0:57

A.4.5 Proof of Proposition 5

De�ne at � 1 + bx;t: Using standard notation, its log-linearization around the steady state yields

ât =
bx
a

�
b̂t � x̂t

�
: Since n̂t � N

�
0; �2n

�
for n = z; g; e; vf ; along the equilibrium path, all (log-

linearized) endogenous variables are mean-zero normally distributed variables. In particular, we

have that ât � N
�
0; �2ât

�
; such that wt � ln at � N

�
�w; �2w

�
with �w = ln a and �2w = �

2
ât
: Hence,

56Although this cannot be proved analytically, it appears to be the case in all our numerical simulations.
57Our numerical analysis will show that ��J is strictly decreasing in � also for negative values of �

�
J .
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at is log-normally distributed with mean �a and variance �2a given by, respectively,

�a = e �w+
�2w
2 ; �2a =

�
e�

2
w � 1

�
e
2

�
�w+

�2w
2

�
= �a2

�
e�

2
w � 1

�

Using there expressions, simple algebra gives �w = ln �a � ln
q
1 + �2a

�a2
, such that the unconditional

expected costs of self-control are E [SC (at)] = �E (wt) = �

�
ln �a� ln

q
1 + �2a

�a2

�
: Keeping the

unconditional mean �a constant, an increase in wealth volatility �2a always lowers E [SC (at)] :
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