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Abstract

This paper revisits the estimation of the private returns to R&D. In the
standard approach, the returns to R&D only incorporates the impact of in-
creased R&D on productivity or production costs. In contrast, we allow for
endogeneity of output and variable inputs, where we only condition on the
quasi-fixed inputs, R&D and physical capital stock. Our empirical analyses
are based on an extended Cobb Douglas production function that allows for
firms with zero R&D capital, which is useful for studying transitions from
being R&D non–active to become R&D active. We further accommodate het-
erogeneity in R&D intensities, where rates of return may vary over a firm’s
life cycle, which is particularly relevant to R&D starters. Using a comprehen-
sive panel of Norwegian firms observed in the period 2001-2018, we estimate
average private returns to be 7-8 percent, which is substantially lower than
estimates commonly reported in the literature. The low returns could reflect
a high public subsidy rate of R&D, and indicate that, without large public
subsidies, the aggregate level of private R&D in Norway would have been
much lower than the current level.
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1 Introduction

The private returns to R&D are a parameter of key interest to many public and

private agents, such as investors, managers and policy makers. It is often found to

be higher than for other investments, which is used by interest groups and others to

propose policies to support private R&D, including broad R&D tax credits schemes.

Even if some schemes may generate little in terms of spillover effects (see Nilsen et

al., 2021), evidence of a high general private returns to R&D might convince the

public that policies to support R&D are worth their costs to taxpayers. To assess the

private returns to R&D as accurate as possible is important as public R&D support

are huge in most developed countries. For example, in Norway total public R&D

support (tax credits plus grants) to business enterprise R&D (BERD) increased from

0.11 to 0.22 percent of GDP from 2006 to 2018, while BERD increased from 0.78

to 1.05 percent. In comparison, the average public support of BERD in the OECD

area increased from 0.15 to 0.18 percent of GDP in the same period (OECD, 2022)

While there are many approaches to estimating the returns to R&D in the liter-

ature – whether primal or dual (see the survey by Hall et al., 2010) – they almost

all have in common that they derive returns estimates from the productivity impact

of R&D under a ceteris paribus condition. In the primal approach, the marginal

returns (R) to R&D means the increase in output (Y ) as a result of an increase in

R&D (F ). For example, Doraszelski and Jaumandreu (2013) refers to the returns to

R&D as the elasticity of output with respect to R&D expenditures. However, it is

more common to transform elasticity estimates (β) into marginal returns estimates

from the relation: β = R(F/Y ) – which is simply the definition of R&D elasticity.

In the dual approach, R refers to the corresponding reduction in costs for given out-

put. For example, Bernstein and Nadiri (1988) defines R as the real cost reduction

from a unit increase in F for given Y .

By far, the most common way of specifying the underlying production function in

the literature is to use a Cobb–Douglas function with equal elasticities across firms.

However, according to R&D surveys, most firms report that they do not undertake

any R&D, which would imply infinite returns at the extensive margin. The standard

solution is to estimate the average returns using only firms with positive R&D, e.g.
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excluding firm-year observations before a firm becomes R&D active. This creates a

sample selection problem that may bias the results. Moreover, it does not remove

the problem that returns will tend to be very high at the margin for firms with low

R&D intensity, which is likely to inflate estimates of average returns purely because

of a functional form assumption. A more flexible assumption might be that firms

have different elasticities with respect to R&D, which is consistent with the huge

heterogeneity in R&D intensity observed in the data.

A second problem with the interpretation of returns as simply meaning produc-

tivity is that firms do not change their input of R&D ceteris paribus. The effect of

partially increasing R&D should arguably also incorporate the effects of adjusting

other inputs in response to increased R&D, most obviously intermediate inputs and

labour. A value added function, or even profit function, might be better suited

to assess the private returns to R&D than productivity. The profit function would

capture both the direct and indirect effects on profits triggered by a (partial) change

in R&D, whereas the value added function would capture both increased profits to

owners and the increased earnings to employees.

We address the limitations of the existing literature in three ways. First, we

propose an extended Cobb–Douglas production function, where output depends on

a translation of the R&D capital stock, with an unknown but estimable translation

parameter, to allow positive output from firms with zero R&D. This functional form

may be particularly useful to analyze R&D starters, i.e. the transition from being a

R&D non-performer to being R&D active. Secondly, we accommodate heterogeneity

in observed R&D intensities by allowing the R&D elasticity to be firm-specific. This

would explain the huge heterogeneity in R&D intensities across firms and why most

firms do not engage in R&D at all. Third, we derive returns estimates from a value

added function, where firms simultaneously optimize material and labour inputs for

any level of the R&D capital stock – as opposed to a returns measure that only

incorporates the (first order) impact of increased R&D on output or production

costs.

In this study, we analyze a panel of Norwegian firms in all industries from 2001

to 2018. According to our preferred specification, our estimate of the weighted
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average gross rate of return to R&D spending by Norwegian firms is about 7-8

percent, using the amounts of R&D investment as weights (henceforth referred to as

R&D-weighted average return). This estimate is low compared to the rate of return

commonly observed in the international literature, cf. Hall et al. (2010).

The structure of the paper is as follows. Section 2 presents some studies relevant

to our investigation. Section 3 describes our theoretical framework for analyzing the

private returns to R&D, Section 4 presents the econometric model, Section 5 the

data, Section 6 the results and Section 7 offers some concluding comments.

2 Approaches to studying the relation between

R&D and productivity

Several models of the relationship between R&D investment and productivity at

the firm level have been proposed in the empirical literature. One general model

structure, usually referred to as the CDM model, which was proposed by Crepon,

Duguet and Mairesse (1998) following a conceptual model by Pakes and Griliches

(1998). Here firm output is a function of input services and total factor productivity.

Under the assumption of a standard neoclassical production function, output (Y )

can be expressed as a function of the input factors labour (L), intermediates (M)

and capital (K):

Y = A∗f(L,M,K). (1)

where A∗ is referred to as total factor productivity, which is assumed to depend on

several variables relating to R&D, market factors, industry, and possibly other vari-

ables. One way of refining this model is to include additional variables in Equation

(1) to capture the effect of intangible investments – both internal and external to

the firm. One such factor is R&D, which is not directly treated as primary input in

the CDM framework, but is instead assumed to influence A∗ in equation (1) through

product and process innovations.

There is also a long tradition in economics of specifying R&D as a primary

input factor, F , in a standard Cobb-Douglas production – rather than indirectly

via product- and process innovations as in the CDM model. The factor F is then

often treated as an intangible capital stock (R&D capital), which similar to physical
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capital, K, accumulates by means of investments according to the PIM method:

Ft = (1− δ)Ft−1 + It−1, (2)

where δ is the depreciation rate of the R&D capital stock and I (real) R&D invest-

ment. Thus, if an estimate (or qualified guess) of the depreciation rate is available,

one can calculate the R&D capital stock, F , using (2), and estimate the produc-

tion function (1) directly, which then can be used to estimate the returns to R&D

investments, I.

In recent years, with access to more micro data, more attention has been devoted

to the role of intangible capital, such as information and communication technology

(ICT) and organizational capital (see, for instance, Hall et al. 2013; Acemoglu and

Restrepo 2018, 2020; Autor and Salomons 2018; Leduc and Liu 2019). Increased

quality of workers is also an important source of productivity growth. For exam-

ple Piekkola (2020) makes a distinction between R&D labour, management and

advertising, and general labour, and constructs a measure of labour input quality

based on the share of employees in each category and their relative wages. Our ap-

proach is broadly in line with Piekkola (2020), with the distinction that we measure

labour quality by educational attainments rather than by dividing employees into

professional categories.

An important feature of the (standard) Cobb-Douglas production function frame-

work is that it cannot be applied to all firms without modifications, as it predicts

zero output for firms with zero R&D. In the literature using micro data, there are

several options available to circumvent that problem. One “solution” is simply to

study those firms that report positive R&D and neglect other firms. This strategy

does not solve the problem with firms that become R&D active during the obser-

vation period. Including these firms from that year on creates a sample selection

problem that may bias estimates of the returns to R&D at the extensive margin.

Since potential R&D performers are often a target of public R&D policies, the bias

is potentially important. The problem of sample selection can be solved ad hoc by

adding a small amount of R&D investment to firms with zero reported R&D, which

makes it technically possible to include them in the analysis. A refinement of this

solution is suggested by Griffith et al. (2006) and Hall et al. (2013). Relying on
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the CDM approach, they replace observed R&D spending with imputed R&D using

data for all firms. In this way, zero R&D investment is replaced by nonzero imputed

R&D. While this approach may perhaps be justified for firms who report zero R&D

in some years, it does not not allow us to study the returns to R&D on the extensive

margin, i.e. of becoming R&D active. Finally, one may specify a more flexible func-

tional form that allows zero R&D, as suggested already by Griliches (1979). The

advantage of this solution, which we will pursue here, is that one avoids altering the

data or the sample taking all observations at face value.

3 Theoretical framework

Our starting point is an extended Cobb Douglas production function with labour,

intermediates, tangible capital and R&D capital as inputs. The first extension is

that we assume that the production function is homogenous of degree β in a trans-

lation, λ+ F , of the R&D capital stock, F , thereby bounding the marginal returns

to R&D and allowing positive output from firms with zero R&D. The second ex-

tension is that the production function is homogenous of degree ε in an aggregate

function g(L) of the vector L = (L(1), L(2), L(3)) of man-years from three skill classes.

Although there are examples of studies that control for the quality of labour input

(e.g. Doraszelski and Jaumandreu, 2013), our appraoch is among the most elabo-

rate in this respect (Doraszelski and Jaumandreu, op. cit., only separate between

temporary and permanent employees). Since R&D active firms generally hire more

educated and higher paid workers than other firms, the assumption of homogeneous

labour across education groups risks confounding the productivity effect of R&D

with that of skill. Under the standard assumptions that the production function is

homogenous with respect to physical capital and intermediates (of degree γ and ρ,

respectively), we can write

Y = Ag(L)εMρ(λ+ F )βKγ (3)

where A is total factor productivity (unexplained ”neutral efficiency”). Moreover,

sales revenue equals S = PY , where P is the (potentially endogenous) output price,

and value added equals V = S − qMM , where qM is the price of intermediates.
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Importantly, the specification (3) allows the R&D capital stock, F , to be zero

without implying Y = 0. In particular, the marginal output of R&D is:

Y ′
F = β

Y

λ+ F

and the R&D elasticity is:

ElFY = β
F

λ+ F

An important property of (3) is that Y ′
F , does not increase towards infinity as F

tends to zero. When λ = 0 , we have the Cobb-Douglas case with ElFY = β and

Y ′
K → ∞ as F → 0. In this case, it will always be profitable to invest in R&D as

the returns to R&D at the extensive margin is infinity.

In the empirical model, we assume that ε, ρ and γ are common parameters, but

allow β to be firm-specific, as will be motivated by the analysis below.

3.1 Economic behavior

We assume that producers are price takers in all factor markets, but not in the

product markets, and that both types of capital, K and F , are fixed in the short run,

so that the short-run optimization of the firm is w.r.t. L and M for pre-determined

R&D capital stock, Fit, and tangible capital stock, Kit. The corresponding labour

cost function, i.e. given the level of aggregate labour input, gi(L), is

Cit(qit, gi(Lit)) = citgi(Lit) (4)

where qit = (q
(1)
it , q

(2)
it , q

(3)
it ) is the vector of firm-specific wage rates of low-, medium-

and high-skilled labor, respectively, and cit is the firm-specific unit price of labour

(the aggregate wage rate). Appendix A derives the formulas in (4) in the case of

a CES aggregation function of labour inputs, L. We also allow gi(·) to be firm-

specific to be consistent with firms choosing L
(m)
it = 0 from some m, for example,

only employing workers in the lowest skill category (m = 1).

We next consider the partial optimization problem of firm i in the beginning of

period t conditional on the predetermined variables Fit and Kit, assuming that the

firm knows qit, qMt and Ait. The problem is to choose the price that maximizes

operating profits. Making the usual assumption of monopolistic competition with
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demand given by:

Pit = ΦitY
−e
it

where e (e > 1) is the elasticity of demand with respect to sales price , Pit profit

maximization gives the following equation for log value added:

lnVit = θ̃ − ε̃ ln cit + β̃i ln rit(λ) + γ̃ lnKit − ρ̃ ln qMt + ãit (5)

where θ̃ is a constant, rit(λ) = λ + Fit, ε̃ = εϑ, γ̃ = γϑ, β̃i = βiϑ, ρ̃ = ρϑ, and

ãit = ϑ(lnAit + lnΦit/(e− 1)), with

ϑ =
(e− 1)

(ε+ ρ+ e− e(ε+ ρ))
∈ (0, (1− ε− ρ)−1). (6)

See Appendix A for a proof.1 The left and right limit correspond to, respectively,

e → 1 and e → ∞. Equation (5) will be the key equation for estimating the private

returns to R&D. We show in Appendix A that the profits, Πit (value added minus

wage costs), is proportional to Vit:

Πit

Vit

=
e− (e− 1)(ρ+ ε)

e− (e− 1)ρ
∈ (

1− ρ− ε

1− ρ
, 1)

where the left and right limit correspond to, respectively, e → ∞ and e → 1.

We have no information about firm-specific intermediate input prices, therefore

the term involving ln(qMt) in Equation (5) cannot be distinguished from time dum-

mies in our empirical specification and ρ̃ cannot be identified. On the other hand, we

do observe firm-specific wages. Although the aggregate wage rate cit is in general an

unknown function of qit, this problem can be overcome using the Sato-Vartia index:

cit
ci,t−1

=
∏
k

(
q
(k)
it

q
(k)
i,t−1

)ω
(k)
it

where the weights, ω
(k)
it , are proportional to the geometric average of the (observable)

cost shares α
(k)
it and α

(k)
i,t−1 of skill class k:

α
(k)
it =

q(k)
it

L
(k)
it∑3

k=1 q
(k)
it L

(k)
it

(7)

The Sato-Vartia index is exact in the case of the CES aggregator function where

gi(L) = g(L; ai) for weight parameters ai (see Appendix A for formulas). In that

1θ̃ is defined in Equation (26) in Appendix A
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case we have the well-known result that α
(k)
it = a

(k)
i

(
q
(k)
it /cit

)1−σ

(see Diewert 1978

and Brasch et al. 2022). In the special case of Cobb-Douglas (σ = 1), we get the

famous result that factor cost shares are constant: α
(k)
it = a

(k)
i . More important for

our purpose is that the Sato-Vartia index is consistent to second order with any

exact, twice differentiable aggregator function gi(·). We can therefore apply the

Sato-Varita index to obtain:

∆ ln cit =
∑
k

ω
(k)
it ∆ ln q(k)

it
(8)

with the normalizing initial condition ci1 = 1.

3.2 The returns to R&D

To simplify notation, define

Rit =
dVit

dFit

=
β̃iVit

Fit + λ
(9)

which is our proposed value added-based measure of the private returns to R&D,

as motivated in the Introduction. In the tradition of Hall et al. (2010), it is often

assumed that Rit varies randomly about a common mean, R, where R is the constant

marginal cost of R&D. To apply this assumption in our context, where F and K

are pre-determined – and therefore based on ex ante expected returns – we define

V e
it = E(Vit |Fit, Kit) and assume the existence of a steady state defined as follows:

E(Rit|Fit, Kit) =
β̃iV

e
it

Fit + λ
= R (10)

The first equality follows from (9), assuming

Vit = V e
it + eit

for an error term, eit, whereas the second equality says that in a steady state with

Fit > 0, expected returns equals the marginal costs of R&D. The interpretation of

Equation (10) is that of an equilibrium correction, where a firm over time adjusts

Fit towards a firm-specific equilibrium R&D intensity (but not necessarily R&D

level). As we will discuss below, the adjustment may be sluggish and hampered by

adjustment cost and uncertainty, so that in general Rit ̸= R.
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Under the above formal assumptions:

β̃iVit = (Fit + λ)R + β̃ieit (11)

Taking the expectation conditional on Fit > 0 on both sides of (11) yields:

β̃i = Rfi(λ) (12)

where

fi(λ) =
E(Fit|Fit > 0) + λ

E(Vit|Fit > 0)
(13)

The function fi(λ), which varies across i because βi does so, represents an equilib-

rium relation between Fit and Vit. We will refer to (12)-(13) as the constant marginal

costs (CMC) model. In particular, the CMC model explains why some firms never

engage in R&D activities: If β̃i < Rλ/V e
it the marginal returns to R&D are always

lower than R.

A natural estimator of R would an R&D weighted average of Rit, to ensure that

equal weight is given to each NOK of investment. This approach would require

that β̃i is known or estimable. Since β̃i is firm-specific, it cannot be estimated

directly because of the incidental parameter problem. An alternative strategy is the

following: (i) estimate fi(λ) using the empirical counterpart:

f̂i(λ) =

∑Ti

t=1 1(Fit > 0)(Fit + λ)∑Ti

t=1 1(Fit > 0)Vit

(14)

where 1(A) denotes the indicator function which is one if the statement A is true,

and (ii) substitute the incidental parameters β̃i using (12) (replacing fi(λ) with

f̂i(λ)) and estimate R using GMM (see Section 5 for details).

In the literature, the usual assumption is that βi = β (no heterogeneity in the

elasticity of Y w.r.t. F ), implying fi(λ) = f(λ) for all i under the CMC assumption.

We will refer to this special case as the restricted CMC model (R-CMC), which can

be stated as:

β̃ = Rf(λ) (15)

The function f(λ) represents an equilibrium R&D intensity that does not depend on

i because β is assumed to be homogeneous across firms. According to the H-CMC
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model, there should be no systematic or persistent differences in R&D intensities

across firms. To estimate (weighted) average returns from the R-CMC-model, we

can do the following: (i) estimate the common parameter β̃ using GMM, (ii) obtain

individual Rit estimates from Equation (9), and (iii) calculate the (weighted) average

of Rit across (i, t).

By definition, fi(λ) refers to an equilibrium state where the investment ratio

ii,t−1 = Ii,t−1/Fit is close to δ on average. In that case, Rit ≃ R. In contrast,

ii,t−1 = 1 for R&D starters. More generally, it is reasonable to expect that firms

for which a large proportion of the ii,t−1 observations are either close to one (say,

above some value αhigh) or close to zero (say, below αlow) are far away from their

equilibrium R&D intensity. In that case f̂i(λ) will be biased as an estimator fi(λ).

A simple way to capture this is to assume that:

fi(λ) ≃ f̂i(λ)
(
1 + λlow1(ii ≤ αlow) + λhigh1(ii ≥ αhigh)

)
(16)

where λlow and λhigh represent average relative estimation biases and

ii =

∑Ti

t=1 Ii,t−1∑Ti

t=1 Fi,t

(17)

is the average investment rate of the firm. For example, if β̃i ≃ Rf̂i(λ)(1 + λhigh)

a positive estimate of λhigh would indicate that the equilibrium R&D intensity of

firms with very high investment rates are underestimated. From (9), the weighted

average return is:
Ti∑
t=1

ωitRit ≃ R(1 + λhigh) > R

where ωit = (Fit + λ)/
∑Ti

t=1(Fit + λ) is the ideal R&D weight. Thus the parameter

λhigh would capture a high observed return to R&D in firms that are well below

their equilibrium R&D intensity. This is exactly what we would expect from R&D

starters. In contrast, a negative λlow could reflect low returns to R&D for firms

above their equilibrium R&D intensity.

It would not be unusual for firms to have some extreme investment rates. For

example, it is well known that in the presence of non-convex adjustment costs of cap-

ital, there will be an ”interval of inaction”, where the firm will not decrease/increase

Fit even if the equilibrium condition (10) is violated. This could be the case if the
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selling price of capital is lower than the purchasing price (full or partial irreversibil-

ity) or there are fixed costs of investments (see for example Golombek and Raknerud,

2018). A recent, but sparse, literature on the implications of fixed costs on the time

series properties of the returns to R&D, also suggests that fixed costs will cause

higher rates of return to firms that invest relatively more in R&D, i.e. have a high

Ii,t−1/Fit (see Resutek 2022).

4 Sample and variable construction

For our analysis, we have constructed a panel of annual firm-level data for Norwegian

firms with at least three consecutive observations during 2001–2018. The base for the

sample is the R&D statistics, which are survey data collected by Statistics Norway.

These data comprise detailed information on firms’ R&D activities, such as total

R&D expenses (divided into internally performed R&D and externally purchased

R&D), the number of employees engaged in R&D activities, and the number of man-

hours worked in R&D. Only firms with more than 50 employees are automatically

included in the survey. For smaller firms (with 5–49 employees) a stratified sampling

scheme is employed. The stratification is based on industry classification (NACE

codes) and firm size. However, these smaller firms are not representative of firms of

their size and industry, because they have a higher probability of engaging in R&D.

Currently, data are available for 1993, 1995, 1997, 1999, and annually from 2001 to

2018. To supplement the regular R&D census, we obtained questionnaire data from

SKF on each applicant’s R&D expenditure for three years prior to applying for tax

credits. These data are collected by the RCN, which must approve in advance any

project that is to form the basis for tax credits. The information from all available

surveys is used for the construction of R&D capital stocks.

The survey data on R&D are supplemented with data from three different reg-

isters: The accounts statistics, the Register of Employers and Employees (REE),

and the National Education Database (NED) and the R&D Support Database2.

The latter contains information about each firm’s R&D support during 2001-2019 –

both direct support and tax credits. There are only a few examples in the data of

2In Norwegian: Virkemiddeldatabasen
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firms that report positive R&D in the annual R&D survey and never obtains R&D

tax credits. Descriptive statistics are provided in Appendix B.

Value added, V , is net value added at factor cost and computed as the sum of

operating profits net of depreciation and labor costs. All prices have been deflated

by the same price index so that in any time period, one dollar of any cost component

has the same value as one dollar of a revenue component. We use the price index

for R&D investment as a common deflator. This is based on the price indices from

the national accounts for the various components making up total R&D, implying

that the real unit price of R&D is one. According to Hall et al. (2010) the choice

of deflator usually does not matter much for the econometric results for the main

parameters of interest. R&D investment, I, is yearly R&D investment as they are

reported in the survey data. The (real) R&D capital stock (F ) at the beginning of

a given year t is computed by the perpetual inventory method (2) using a constant

rate of depreciation δ = 0.15. The benchmark for the initial R&D capital stock for

a given firm in its first observation year in 2001-2018 is based on its history of R&D

investment going back to (at most) 1993 (for details, see Cappelen et al., 2012).

To construct the physical capital stock, K, we used information from the ac-

counts statistics. The accounts statistics distinguish between several groups of phys-

ical assets. To obtain consistent definitions of asset categories over the whole sample

period, all assets have been divided into only two types: equipment, denoted by e,

which includes machinery, vehicles, tools, furniture and transport equipment, and

buildings and land, denoted by b. The expected lifetimes of the physical assets in

group e (of about 3–10 years) are considerably lower than those of the assets in

group b (about 40–60 years). Total capital, K, is then an aggregate of equipment

capital, e, and building capital, b. We use the book value as a measure of the capital

stock. When aggregating the two capital types, we use a Törnqvist volume index

with time-varying weights that are common across firms in the same industry (see

OECD, 2001).

Man-hours, L(k), is the sum of all individual man-hours worked by employees

in the given firm according to the contract. For each firm, we distinguish between

three skill groups: employees with primary, secondary and postsecondary education
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(see Appendix B). Man-hours worked by persons in skill group k are aggregated to

the firm level to construct L(k). When calculating the (average) wage in each skill

group, qkit, we use predicted wages from a wage regression with random individual

effects, where we include a dummy for skill-category (k) and dummies for industry

(NACE 2), region, gender and calendar year as regressors. It is the average of the

predicted wages for all the firm’s employees in the given skill category from this

regression which is the basis for calculating qkit. Using matched employer-employee

data we are able to match each firm with its registered employees over time. This

prediction-based method is chosen to reduce the problem of errors in reported hours

in the employer-employee register. Errors are often related to part-time employees

and/or timeliness problems, because hours are reported by week and wage costs by

year. When estimating the wage equation we therefore restrict the sample to full

time employees during the given calendar year.

5 Empirical analyses

Our dependent variable in the empirical analysis is lnVit. Our stochastic specifica-

tion of the structural equation (5) is the following:

lnVit = −ε̃ ln cit + γ̃ lnKit + β̃i ln rit(λ) + ai + µ∗
t + ζit (18)

where ai is a fixed effect, µ∗
t is the time-varying intercept (which incorporates the

term ρ̃ ln qMt), and ζit is the error term assumed to follow a first-order autoregressive

process:

ζit = ϕζi,t−1 + eit (19)

with

|ϕ| ≤ 1, E[eit] = 0, E[e2it] = σ2
e

and

Cov[eit, ejt] = 0 if t ̸= s or i ̸= j.

Multiplying (18) by ϕ and quasi-differencing, yield:

lnVit = ϕ lnVi,t−1 − ε̃ ln c
it
+ ϕε̃ ln c

i,t−1
+ β̃i ln rit(λ)− ϕβ̃i ln ri,t−1(λ)

+ γ̃ lnKit − ϕγ̃ lnKi,t−1 + vi + µt + eit (20)
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where µt = µ∗
t −ϕµ∗

t−1 and vi = (1−ϕ)ai. Next, we difference to eliminate the fixed

effect, vi:

∆ lnVit = ϕ∆ lnVi,t−1 − ε̃∆ ln c
it
+ ϕε̃∆ ln c

i,t−1
+ β̃i∆ ln rit(λ)− ϕβ̃i∆ ln ri,t−1(λ)

+ γ̃∆ lnKit − ϕγ̃∆ lnKi,t−1 +∆µt +∆eit (21)

5.1 GMM Estimator

We use lagged levels of the endogenous variables as instruments for the endogenous

variables in (21) and estimate the interest parameters using GMM – as proposed

by Arellano and Bond (1991). However, this method requires that the (nuisance)

parameter λ is known. To estimate all the parameters, we perform a grid search in λ-

space to minimize the residual sum of squares associated with the GMM estimator

for the given λ-value. Following the general methodology of Arellano and Bond

(1991, the GMM-estimator uses the following moments:

E(ln(Vi,t−s)∆eit) = 0

E(ln(ci,t−s+1)∆eit) = 0

E(ln ri,t−s+1(λ))∆eit) = 0

E(ln(Ki,t−s+1)∆eit) = 0

for s ≥ 2 (see Equation(21)). That is, we treat all the right-hand side variables

in equation (21) as pre-determined endogenous variables. A testable identifying

assumption is that ∆eit is a MA(1) noise term. In principle, a non-linear GMM

estimator could be applied, but, unfortunately, it runs into convergence problems as

λ is poorly identified. Our results show that a very small λ minimizes the residual

sum of squares, i.e. an estimate on par with the lowest positive Fit observation in

our estimation sample.

As discussed in Section 3, we examine two specifications with respect to the

marginal cost of R&D. The first is the CMC-model (12)-(13), where we assume a

firm-specific β̃i and a common costs of R&D (R) with a firm-specific steady-state

R&D intensity, fi(λ). In this model, we substitute β̃i with Rfi(λ) and replace fi(λ)

with the right hand side of Equation (16), considering R as the GMM-estimand.

The second case is a restricted version of this model, referred to as R-CMC, where
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we assume a common elasticity for all firms: β̃i = β̃. In the R-CMC model, β̃ (not

R) is the estimand. It is straightforward to derive an estimate of R from β̃ as a

weighted average of Rit, as explained in Section 3.2.

5.2 Results

The parameter estimates are presented in Table 1. As a benchmark we also present

a fixed-effects (FE) estimator of the R-CMC model. The FE estimator is the con-

ventional within-estimator applied to equation (18). However, this method yields

biased estimates in the presence of endogeneous time-varying explanatory variables,

as described above.

Table 1: Estimates of coefficients in the value added equation under different model
assumptions. Robust standard errors in parentheses
Indep. variables in Coeff. GMM-estimates FE-estimates
structural equation∗ CMC R-CMC R-CMC

Est. (t-stat) Est. (t-stat) Est. (t-stat)
lnVi,t−1 ϕ .228 (17.2)∗∗∗ .260 (18.8)∗∗∗

− ln cit ε̃ .515 (2.82)∗∗∗ .593 (2.74)∗∗∗ .386 (3.88)∗∗∗

lnKit γ̃ .090 (4.99)∗∗∗ .107 (6.72)∗∗∗ .126 (22.0)∗∗∗

ln rit(λ) β̃ .022 (10.5)∗∗∗ .013 (6.95)∗∗∗

f̂i(λ) ln rit(λ) R .063 (7.09)∗∗∗

1(ii ≤ αlow)f̂i(λ) ln rit(λ) λlow .009 (0.29)

1(ii > αhigh)f̂i(λ) ln rit(λ) λhigh .024 (3.43)∗∗∗

λ .59 .59 .59
Number of obs. 33,105 33,105 39,070
Number of firms 4,524 4,524 4,719
R2 0.22
Residual variance .091 .096 .416
∗f̂i(λ), αlow and αhigh refers to Equations (12)-(14) and (16), where [αlow, αhigh]
is the interquartile range of the investment rate, ii defined in Equation(17),
with αlow = 0.11 and αhigh = 0.29.

Both the FE and GMM estimators of the coefficient related to the key R&D

variable, ln rit(λ), are positive and significant. In the case of the R-CMC model,

this coefficient can be interpreted as the elasticity with respect to R&D (i.e., β̃).

The R-CMC specification is a special case of CMC where it is assumed that βi = β

for all i. In the CMC model, the estimates related to f̂i(λ) ln rit(λ) can be inter-

preted in terms of average gross returns to R&D as a function of the firm-specific
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Table 2: Distribution of marginal returns to R&D, Rit, conditional on Fit > 0 for
different models and subsamples

Model (Estimator) All obs.with Subsample1)

Fit > 0 Q[1] Q[2]-Q[3] Q[4]
CMC: heterogeneous elasticity (GMM)
Weighted mean2) .071 .072 .064 .122
Median .073 .077 .064 .183
Unweighted mean .383 .092 .082 1.71
R-CMC: common elasticity (GMM)
Weighted mean .081 .076 .075 .147
Median .089 .104 .061 .221
Unweighted mean 2.48 4.04 1.40 3.31
R-CMC: common elasticity (FE)
Weighted mean .051 .051 .047 .084
Median .066 .075 .046 .132
Unweighted mean 1.68 2.8 .935 2.02
Share of R&D (Fit) in sample 1 .212 .707 .080

Notes: 1) Q[n] refers to the n′th quartile (interval) of the R&D investment ratio, ii:
Q[1] = [0, .11), Q[2] = [.11, .17), Q[3] = [.17, .29), Q[4] = [.29, 1]
2)Weighted by share of R&D (Fit) in the given subsample

investment ratio, ii. We find that the estimated returns are highest on average in

the fourth investment ratio quartile (about 2 percentage points higher than in the

other quartiles combined). The equilibrium rate of return to R&D, R, is estimated

to be 6.3 percent.

As expected, we find a significant positive relation between both types of capital

and value added: the estimated long-run elasticity with respect to K lies in the

range 0.09-0.13 using different estimation methods, and is of magnitude five times

larger than the estimated (common) elasticity with respect to R&D capital, β̃ . The

estimates of the autoregressive coefficient ϕ in Table 1 – the coefficient of lnVi,t−1 –

lie in the range of 0.23-0.26 and are highly significant. Since the FE estimator uses

the equations in levels (before quasi-differencing), ϕ is not identified using the FE

estimator.

The coefficient of − ln(cit) is estimated to be about 0.5 in both the CMC and

R-CMC model using GMM, and about 0.3 in the R-CMC model using the FE

estimator. The results confirm that labour is the single most important production

factor.
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5.3 Returns to R&D

From the GMM estimates in Table 1, we can calculate the marginal return to R&D-

investment, Rit = ∂Vit/∂Fit, for each observation as explained in Section 3. The

estimated marginal returns have a R&D-weighted mean of 7.1 and 8.1 percent in the

CMC and R-CMC model, using GMM, and 5.1 in the R-CMC model, using the FE

estimator (see Table 2). The low returns derived from the FE estimator reflect the

low estimate of β̃ (0.013) compared to using GMM (0.022). Mean and median values

by quartiles (Q[n]) for the R&D-investment ratio (Ii,t−1/Fit) are also depicted. We

see that the observations in Q[1] account for 21 percent of the total R&D stock,

Q[2]-Q[3] (combined) account for 70 percent, and Q[4] account for only 8 percent.

The latter category includes (almost all of) the R&D-starters during 2001-2018. As

expected, the results show higher returns in the highest quartile, likely reflecting a

disequilibrium phenomenon, as discussed in Section 3.2. However, there is no clear

difference between Q[1] and Q[2]-Q[3]. In fact, we estimate slightly higher returns in

Q[1] than on Q[2]-Q[3] combined. This is driven by the positive, but insignificant,

λlow estimate in Table 1.

Looking at the returns in the different investment ratio quartiles, and across

models, we find some striking patterns. In the CMC model, average and median

returns are more homogeneous across the quartiles than in the R-CMC model. In

contrast, the R-CMC model depicts a pattern of much higher returns in Q[1] and

Q[4] compared to the CMC model. These results indicate that the R-CMC model

is too rigid. However, if we only care about the weighted average return to R&D,

the estimates are remarkably similar – about 7-8 percent gross returns – both in the

case of CMC and R-CMC using GMM.

The weighted average returns (7-8 per cent) are low compared to the rate of

return commonly observed in the international literature , cf. Hall et al. (2010).

Exceptions are Klette and Johansen (1998), who estimate the mean net rate of

return to be 9 percent for Norwegian manufacturing, but with huge variations across

industries and Parisi et al. (2006), who estimate the rate of return to knowledge

capital to be only 4 percent on Italian data. The low return could reflect the

high public subsidy rates mentioned in the Introduction, above 20 percent implied
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marginal subsidy rate in 2018 according to the OECD (2022). Our results indicate

that without large public subsidies, the level of private R&D would need to be much

lower to earn a normal rate of return on the investment.

5.4 Specification tests

As seen from Table 3, the Arellano–Bond test of zero first-order autocorrelation

in the error term ∆eit is rejected, but not for second-order autocorrelation. This

confirms that ζit follows a first-order autoregressive process, as assumed in (19).

We also applied a Sargan test to test the validity of the overidentifying restrictions

with regard to the instrumental variables. With a χ2-test statistic of 894.2 and 805

degrees of freedom, we cannot reject this hypothesis. All these specification tests,

seen together, give strong support to our econometric specification.

Table 3: Specification tests
Observed value Level of significance
of test statistic (Z) Pr(Z > z)

Test of zero autocorrelation in errors∗

order 1 -11.762 .001
order 2 -.35 .72

J-test of overidentifying restrictions∗∗ 894.2 .150
Notes: ∗t-test ∗∗test statistics is distributed as χ2(805)

6 Conclusions

This paper has revisited the estimation of the private return to R&D. We have pro-

posed an extended Cobb Douglas production function which allows for firms with

zero R&D capital in order to study the transition from being R&D non–active to ac-

tive, without restricting the sample to R&D performers. In the standard approach,

the returns to R&D only incorporates the impact of increased R&D on productiv-

ity or production costs. In contrast, we obtained returns estimates from a value

added function derived under the assumption of profit maximizing firms that opti-

mize labour and intermediate factor inputs at any level of R&D capital. The value

added function captures both increased profits to owners and increased earnings to

employees resulting from the R&D investment. We further accommodated the huge
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observed heterogeneity in R&D intensities by allowing R&D elasticities to be firm-

specific, and incorporate heterogeneity in labour quality by distinguishing between

three levels of educational attainments of employees. Estimating the model on a

comprehensive panel of Norwegian firms observed in the period 2001-2018, we ob-

tained estimates of the average private return of 7-8 percent, which is substantially

lower than estimates commonly reported in the literature. The low return estimates

could reflect a high public subsidy rate of R&D, and indicates that, without large

public subsidies, the aggregate level of private R&D would have been much lower

than the current level.
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Appendix A. Derivation of the cost-, value added-,

and profit function

Consider the production function

Yit = A∗
it M

ρ
itg(Lit, Hit)

ε

where A∗
it, Yit and Mit denote productivity, output and materials, and

g(Lit, Hit) =
[
a

1
σL

(σ−1)/σ
it + (1− a)

1
σH

(σ−1)/σ
it

]σ/(σ−1)

is the CES aggregate of (man hours from) high skilled and low skilled workers, Hit

and Lit. The notation in this Appendix differs in some cases from that of the main

text, as we ignore quasi fixed factors (K and F ) and include only two types of labour.

The production function can trivially be augmented with quasi-fixed factors, e.g.,

Kit, by defining A∗
it = AitK

κ
it.

Cost-minimization w.r.t. Lit and Hit, given factor prices for high and low skilled

labor, wl
t and wh

t , conditional on Mit and Yit, gives the conditional cost function

C(Mit, Yit) = cit

(
Yit

A∗
itM

ρ
it

) 1
ε

with

cit =
[
a(wl

it)
r + (1− a)(wh

it)
r
] 1

r

where r = 1 − σ. Now consider the problem of finding the cost minimizing Mit,

given qMt and cit:

M∗
it = argmin

Mit

qMtMit + C(Mit, Yit)

= argmin
Mit

qMtMit + cit

(
Yit

A∗
itM

ρ
it

) 1
ε

The 1. order condition is

lnM∗
it =

1

ρ+ ε
(lnYit − lnA∗

it) +
ε

ρ+ ε
ln cit −

ε

ρ+ ε
ln qMt +

ε

ρ+ ε
ln(η)
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where η = ρ/ε. This leads to the following cost function:

Cit(Yit) = cit

(
Yit

A∗
itM

∗ρ
it

) 1
ε

+ qMtM
∗
it

=

 cεitYit

A∗
it

[
η

ρε
ρ+εY

ρ
ρ+ε

it A
∗ −ρ
ρ+ε

it c
ρε
ρ+ε

it q
−ρε
ρ+ε

Mt

]


1
ε

+ qMt

[
η

ε
ρ+εY

1
ρ+ε

it A
∗ −1
ρ+ε

it c
ε

ρ+ε

it q
−ε
ρ+ε

Mt

]

= q
ρ

ρ+ε

Mt c
ε

ρ+ε

it A
∗ −1
ρ+ε

it Y
1

ρ+ε

it [η
ε

ρ+ε + η
−ρ
ρ+ε ] = θq

ρ
ε̃
Mtc

ε
ε̃
itA

∗−1
ε̃

it Y
1
ε̃
it (22)

where ε̃ = ρ+ ε and

θ = η
ε

ρ+ε + η
−ρ
ρ+ε =

ρ+ ε

ρ
η

ε
ε̃

The factor demand functions can be derived from (22) by Shepards lemma:

lnH∗
it =

1

ε̃
(lnYit − lnA∗

it) + ln cit,h

lnL∗
it =

1

ε̃
(lnYit − lnA∗

it) + ln cit,l

lnM∗
it =

1

ε̃
(lnYit − lnA∗

it) + ln cit,M

and

cit,h = θ × q
ρ
ε̃
Mt × ∂

(
c

ε
ε̃
it

)
/∂wh

t

cit,l = θ × q
ρ
ε̃
Mt × ∂

(
c

ε
ε̃
it

)
/∂wl

t

cit,M = θ × c
ε
ε̃
it × ∂

(
q

ρ
ε̃
Mt

)
/∂qMt

We see that

∂
(
c

ε
ε̃
it

)
/∂wl

t =
ε

ε̃
c

−ρ
ε̃

it

∂cit
∂wl

it

=
ε

ε̃
c

−ρ
ε̃

it ac1−r
it (wl

it)
r−1

∂
(
c

ε
ε̃
it

)
/∂wh

t =
ε

ε̃
c

−ρ
ε̃

it

∂ ln cit
∂wh

it

=
ε

ε̃
c

−ρ
ε̃

it (1− a)c1−r
it (wh

it)
r−1

∂
(
q

ρ
ε̃
Mt

)
/∂qMt =

ρ

ε̃
q

ρ−ε̃
ε̃

Mt =
ρ

ε̃
q

−ε
ε̃

Mt

In particular we obtain

lnM∗
it =

1

ε̃
(lnYit − lnA∗

it) +
ε

ε̃
ln cit −

ε

ε̃
ln qMt +

ε

ε̃
ln(η) (23)

Each firm faces a demand function

Yit = ΦitP
−e
it ⇔ Pit = Φ

1
e
itY

−1
e

it . (24)
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with optimal Yit given by:

Y ∗
it = argmax

Yit

PitYit − C(Yit)

= argmaxΦ
1
e
itY

e−1
e

it − θq
ρ
ε̃
Mtc

ε
ε̃
itA

∗−1
ε̃

it Y
1
ε̃
it

The first order condition is:

e− 1

e
Y

−1
e

it Φ
1
e
it = θq

ρ
ε̃
Mtc

ε
ε̃
itA

∗−1
ε̃

it

1

ε̃
Y

1−ε̃
ε̃

it

⇕

lnY ∗
it =

−eε̃

e+ ε̃− eε̃
ln(ν) +

ε̃

e+ ε̃− eε̃
lnΦit −

ρe

e+ ε̃− eε̃
ln qMt

− εe

e+ ε̃− eε̃
ln cit +

e

e+ ε̃− eε̃
lnA∗

it (25)

where

ν =
e

e− 1

θ

ε̃
=

e

ρ(e− 1)
η

ε
ε̃

We do not observe output, but sales, Sit. Using Sit = PitY
∗
it , we can rewrite (25) in

terms of sales:

lnSit =
1

e
lnΦ +

e− 1

e
lnY ∗

it

= ln(θS) +
1

e+ ε̃− eε̃
lnΦit +

e− 1

e+ ε̃− eε̃
lnA∗

it

− (e− 1)ε

e+ ε̃− eε̃
ln cit −

ρ(e− 1)

e+ ε̃− eε̃
ln qMt

where

ln(θS) =
−(e− 1)ε̃

e+ ε̃− eε̃
ln(ν)

From (23):

lnM∗
it =

ε

ε̃
ln(η) +

1

ε̃
(lnY ∗

it − lnA∗
it) +

ε

ε̃
ln cit −

ε

ε̃
ln qMt

= ln(θM) +
1

e+ ε̃− eε̃
lnΦit +

e− 1

e+ ε̃− eε̃
lnA∗

it

− (e− 1)ε

e+ ε̃− eε̃
ln cit −

(
ρe+ ε(e+ ε̃− eε̃)

ε̃(e+ ε̃− eε̃)

)
ln qMt

where

θM = η
ε
ε̃ν− e

e+ε̃−eε̃
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we obtain:

ln(qMtM
∗
it) = ln(θM) +

1

e+ ε̃− eε̃
lnΦit +

e− 1

e+ ε̃− eε̃
lnA∗

it

− (e− 1)ε

e+ ε̃− eε̃
ln cit −

ρ(e− 1)

e+ ε̃− eε̃
ln qMt

and

Vit = A
∗ e−1
e+ε̃−eε̃

it Φ
1

e+ε̃−eε̃

it c
− (e−1)ε

e+ε̃−eε̃

it q
− ρ(e−1)

e+ε̃−eε̃

Mt (θS − θM)

Variable factor costs are given by:

lnC(Y ∗
it ) = ln(θ) +

ρ

ε̃
ln(qMt) +

ε

ε̃
ln(cit)−

1

ε̃
lnA∗

it +
1

ε̃
ln(Y ∗

it ) =

ln(θC)−
(e− 1)ε

e+ ε̃− eε̃
ln cit −

ρ(e− 1)

e+ ε̃− eε̃
ln qMt +

e− 1

e+ ε̃− eε̃
lnA∗

it

+
1

e+ ε̃− eε̃
lnΦit

where

ln(θC) = ln(θ)− e

e+ ε̃− eε̃
ln(ν)

Profit can be written as:

Πit = A
∗ e−1
e+ε̃−eε̃

it Φ
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it c
− (e−1)ε
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it q
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and profit as a share of Vit:
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ρ
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ε
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=
ν
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ρ
η

ε
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)
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ε
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ε
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)
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ε
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ρ
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e
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)
Equation (5) follows with:

θ̃ = ln

((
e

e− 1

) −e
e+ε̃−eε̃

ε
−ε(1−e)
e+ε̃−eε̃

(
e− (e− 1)(ρ+ ε)

(e− 1)

))
(26)

and the profit share is:

Πit

Vit

=
e− (e− 1)(ρ+ ε)

e− (e− 1)ρ
∈ (

1− ρ− ε

1− ρ
, 1) (27)

27



Appendix B. Data sources

Accounts statistics: All joint-stock companies in Norway are obliged to publish com-

pany accounts every year. The accounts statistics contain information obtained from

the income statements and balance sheets of joint-stock companies, in particular, the

information about operating revenues, operating costs and result, labor costs, the

book values of a firm’s tangible fixed assets at the end of a year, their depreciation,

and write-downs.

The structural statistics: The term ”structural statistics” is a general name for

statistics of different industrial activities, such as manufacturing, building and con-

struction, wholesale and retail trade statistics, etc. They all have the same structure

and include information about production, input factors, and investments at the firm

level. These structural statistics are organized according to the NACE standard and

are based on General Trading Statements, which are given in an appendix to the tax

return. In addition to some variables, which are common to those in the accounts

statistics, the structural statistics contain data about purchases of tangible fixed

assets and operational leasing. These data were matched with the data from the

accounts statistics. As the firm identification number here and further we use the

number given to the firm under registration in the Register of Enterprises, one of

the Brønnøysund registers, which has operated from 1995.

R&D statistics: R&D statistics are the survey data collected by Statistics Nor-

way every second year up to 2001 and annually from then on. These data comprise

detailed information about firms’ R&D activities, in particular, about total R&D

expenses with division into internally performed R&D and externally performed

R&D services, the number of employees engaged in R&D activities and the number

of man-years worked in R&D. In each wave, the sample is selected with a stratified

method for firms with 10–50 employees, whereas firms with more than 50 employees

are all included. Strata are based on industry and firm size. Each survey contains

about 5000 firms, although many of them do not provide complete information.

Register of Employers and Employees (REE): The REE contains information

obtained from employers. All employers are obliged to send information to the REE

about each individual employee’s contract start and end, working hours, overtime
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and occupation. An exception is made only if a person works less than four hours

per week in a given firm and/or was employed for less than six days. In addition,

this register contains identification numbers for the firm and the employee, hence,

the data can easily be aggregated to the firm level.

National Education Database (NED): The NED gathers all individually based

statistics on education from primary to tertiary education and has been provided

by Statistics Norway since 1970. We use this data set to identify the length of

education. For this purpose, we utilize the first digit of the NUS variable. This

variable is constructed on the basis of the Norwegian Standard Classification of

Education and is a six-digit number, the leading digit of which is the code for the

educational level of the person. According to the Norwegian standard classification

of education (NUS89), there are nine educational levels in addition to the major

group for “unspecified length of education”. Education levels are given in Table 4.
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Appendix C: Supplementary tables

Table 4: Educational levels
Tripartition of levels Level Class level

0 Under school age
Primary education 1 1st – 7th

2 8th – 10th
Secondary education 3 11-12th

4 12th – 13th
5 14th – 17th

Postsecondary education 6 14th – 18th
7 18th – 19th
8 20th+
9 Unspecified

Table 5: Descriptive statistics for the main variables used in the final samplea)

Variable Obs Mean Median Inter quartile range
Vit/Lit 47,739 2,045 881.5 647.7 1,272

I
b)
it /Lit 30,423 148.7 35 0 152.8
Lit 47,739 104.7 35 17 84

L
(1)
it /Lit 47,739 .30 .27 .13 .45

L
(2)
it /Lit 47,739 .58 .59 .46 .71

L
(3)
it /Lit 47,739 .12 .04 0 .14

Ii,t−1/F
b)
it 30,423 .18 .14 0 .18

F
b)
it /Vit 30,423 2.93 .25 .05 .97

Kit/Vit 47,739 3.08 .29 .07 .88
Πit/Vit 47,739 .74 .26 .09 .56
a)L is number of man-years; L(m) is man-years
in skill category m; V , I, F,K and Π denote value added,
R&D investments, R&D capital stock, physical capital
stock and profits in NOK 1000 (fixed 2017 prices), resp.
b)Conditional on Fit > 0
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