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Abstract

In a stylized exchange economy with single, continuous good and quasi-linear utilities, we propose a novel
double-auction format featuring two (forward and reverse) clock auctions, Vickrey-style payments, and carefully
designed per-unit taxes. In the spirit of Ausubel (2004), we show that there is a sincere ex-post perfect equilibrium
of the game and that the market-clearing price is the Walrasian equilibrium price in an economy with deformed
utilities. Furthermore, we show how the clocks can be adjusted dynamically to minimize the informational spillover
between the two auctions. Finally, we show that the said taxes can implement an optimal robust mechanism in
the sense of ex-post IC and IR constraints but ex-ante objectives, such as efficiency or revenue, in private values
setting similar to Lu and Robert (2001). Further tractability is achieved given quadratic utilities, allowing for
comparisons with nearly efficient robust mechanisms of Andreyanov and Sadzik (2021).
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1 Introduction

In the 2017 FCC auction (dubbed Incentive Auction) for spectrum licenses, the
standard forward auction was combined with the novel reverse auction to acquire
and repackage spectrum, historically dispersed over numerous small owners, see
Ausubel et al. (2012, 2017) and Cramton et al. (2015). However, the success was
tarnished by several instances of supply reduction.1 Combined with the uniform-
price nature of payments, this could lead to under-performance in terms of revenue,
see Doraszelski et al. (2017).2 These shortcomings set the stage for an auction
format that would be in some sense strategy-proof and also revenue-maximizing,
that is, robust and optimal.

In this paper, we devise a dynamic auction that works in a two-sided market and
multi-unit demand and supply, in other words, a typical double-auction environ-
ment. This auction should promote sincere bidding and have the capacity to be
optimal. We are primarily interested in optimality with independent private values
and ex-post IC, IR, and market-clearing constraints. For simplicity, we model the
trade of a perfectly divisible, homogeneous asset but a non-linear utility upqiq from
consuming the asset. We break down the problem into three logical steps.

In the first step, we lay down general auction rules. Since it is a dynamic auction,
it will inevitably share multiple features with the Ausubel auction. To be precise,
there will be two continuous Ausubel auctions: forward and reverse, in which all
agents participate. Next, we describe activity rules and transactional prices. Then
we introduce the per-unit (i.e., marginal) taxes, crucial to the optimality of the
auction, paid on top of the baseline Vickrey-style payments.

We show that this game has a sincere ex-post equilibrium in the spirit of Ausubel
(2004, 2006), see Proposition 1. Sincerity here means that agents submit demands
as if they were price-takers but with a new utility vpqq instead of the original upqq.
We will refer to the fictitious exchange environment with these new utilities as the
virtual economy. The auction rules then act as a Walrasian tatonnement, leading
straight towards an efficient outcome in the virtual economy.

The ex-post nature of the equilibrium offers much freedom in adjusting the two
clocks. Indeed, the existence of the sincere equilibrium does not depend on the

1For example, OTA Broadcasting, a private equity firm, has sold less than half of their owned spectrum, some of which was acquired
just before the Incentive Auction, see Ausubel et al. (2017) for details.

2Public officials were concerned about raising enough amount of revenue from incentive auctions, see Loertscher et al. (2015) footnote
30. Also internet link 1, internet link 2
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fine details of the price dynamics. For example, one could move the clocks to
almost continuously match supply with demand, as in McAfee (1992). However,
the objective that this approach minimizes - the temporary mismatch of supply
and demand - has no direct connection to either efficiency or revenue.

Instead, we suggest paying attention to the unconstrained flow of information
between the forward and reverse auction, as it might support unwanted equilib-
ria. Thus, we suggest moving the clocks to minimize the damaging informational
spillover between the two auctions. To be precise, we show that a price path exists
such that the number of agents for whom spillover occurs is monotonically decreas-
ing until there is at most one such agent, see Proposition 2. Moreover, simple price
dynamics can mimic this price path we refer to as adaptive price dynamics.

In the second step, we study a broad class of smooth (except for q “ 0) optimization
problems, equivalent to finding an efficient and robust direct mechanism in the
virtual economy parametrized by one-dimensional private types. We call it a v-
optimal mechanism. We show how and under what conditions our dynamic auction
implements this direct mechanism, see Proposition 3.

In the third step, we derive the optimal (profit-maximizing) direct mechanism in
the original economy, given type distributions and original utilities upqi, θiq. We
show that, under mild regularity conditions, it is precisely a v-optimal mechanism
that can be implemented via our auction, see Proposition 4.

We pay special attention to the so-called worst-off types. Lu and Robert (2001),
working on a similar mechanism with interim constraints, admits that two-sided
trade creates difficulties beyond standard mechanism design. Indeed, the mono-
tonicity of a trader’s virtual valuation typically fails at the worst-off type, even
if the distribution of types is regular. Moreover, if we switch to the ex-post con-
straints, the locus of the worst-off types is conditioned on other players’ types,
making it nearly untractable.

Despite the apparent complexity of the optimal mechanism, the implementation is
relatively simple - two Ausubel auctions with a per-unit tax on top. We will refer
to the anti-derivative w.r.t. q of the per-unit tax as the integrated tax. The optimal
integrated tax has three key features. First, it conditions the clock price due to the
ex-post nature of the mechanism. Second, it generically has a kink at zero. Third,
they are typically concave (but less concave than the utility) on each side of the
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Figure 1: Per-unit (left figure) and integrated (right figure) optimal tax at different levels of the clock-price p, for a
quadratic utility and uniform[-1,1] distribution.

kink.

The cusp shape of the integrated tax comes from two conflicting ideas. On the one
hand, the auctioneer wants to exclude the traders whose contribution to exchange
is minimal to exert pressure on the rest of the traders upwards. A convex kink “in
the middle” guarantees precisely that. However, on the other hand, the auctioneer
wants to minimize the distortion among the strongest buyers and sellers. Thus,
the tax should flatten closer to the “shoulders.”

In Andreyanov and Sadzik (2021), certain ad-hoc robust mechanisms were similarly
implemented with taxes, albeit in a sealed-bid fashion. The implementation of
the central mechanism, called σ-VCG, featured smooth, progressive taxes. To be
precise, the integrated tax was equal to σq2{2. In the same paper, another robust
mechanism was suggested, which can be thought of as a bid-ask spread.3 This
mechanism was implemented with an integrated tax of δ|q|; thus, we will refer to
it as δ-VCG.

A natural question is how much revenue the simpler but more practical σ-VCG and
δ-VCG mechanisms yield relative to the optimal robust mechanism. To answer this
question, we focus on a special case of ex-ante symmetric agents and quadratic util-
ity. We consider two type distributions: uniform and logistic. In the large economy
limit, we calculate expected revenue in closed form. For finite economies, however,
we must rely on a combination of analytic results and Monte Carlo simulations.

The measurements in Table 1 imply that a quadratic tax is significantly under-
3See Example 8 in Andreyanov and Sadzik (2021)
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revenue from optimal utility from efficient
type distribution optimal σ-VCG optimal δ-VCG optimal σ-VCG optimal δ-VCG

uniform 50% 88.8% 75% 74.1%
logistic 64.8% 99.7% 75% 74.4%

Table 1: Percentage of optimal revenue and efficient surplus, achieved by the optimal σ-VCG and δ-VCG mechanisms
in the large economy limit.

performing relative to the bid-ask spread in terms of revenue. Figure 2 also shows
that σ-VCG is apparently dominated by δ in a much broader sense. Namely, for any
σ-VCG mechanism, there exist a δ-VCG mechanism that yields the same expected
utility but higher expected revenue. Moreover, the δ-VCG family of mechanisms
is nearly identical to the Pareto frontier for the logistic distribution.

The paper is organized as follows. In Section 2 we explore the literature. In
Section 3, we lay out a flexible design of the dynamic auction. In Section 4, we
define a sincere equilibrium, and in Section 5, we discuss ways to minimize the
informational spillover. In Section 6, we study the implementation of a broad class
of mechanisms that we call v-optimal. In Section 7, we study profit-maximization
and how it relates to v-optimality. Finally, in Section 8, we solve several examples
with quadratic utility and conclude in Section 9.

The formal proofs for sections Sections 4 to 7 are contained in Appendices A to D.

2 Literature

Our paper is linked to several strands of the literature: the design of robust, optimal
mechanisms and the design of practical auction rules.

The first strand is the classical literature on optimal mechanism design. The con-
cept of virtualization, necessary for optimality, was developed independently by
Mussa and Rosen (1978) and Myerson (1981). It was later generalized, among oth-
ers, by Wilson (1985), Gresik and Satterthwaite (1989), Maskin and Riley (2000)
and Lu and Robert (2001), to be used for two-sided and multi-unit environments.
We add to this body of literature a non-linear utility and a small observation, see
Lemma 2, that allows circumventing the non-monotonicity of virtual type.

The second strand is the design of robust mechanisms for exchange markets, typi-
cally with increasingly many participants. The concept of robustness is in the sense
of Wilson (1987), Bergemann and Morris (2005), and Chung and Ely (2007), mean-
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Figure 2: Welfare comparison of σ-VCG and δ-VCG mechanisms to the Pareto frontier, for n “ 100 agents with
quadratic utility and either uniform[-1,1] (left figure) or logistic (right figure) type distribution.

ing that the mechanism should work for all information structures, distributions,
and beliefs. Here we can distinguish three approaches. The first classical approach
is to find a mechanism with given properties, assuming that the type distribution
is known. The second approach is to estimate the properties of the distribution
using some kind of cross-validation, see Kojima and Yamashita (2017), or estimate
it on the fly, see Loertscher and Marx (2020) and Loertscher and Mezzetti (2021).
The third approach is consider the worst-case, relative to the maximized objective,
scenario, see Brooks and Du (2021) and Suzdaltsev (2022). Our paper belongs to
the first approach, which can be justified by saying that the distribution can always
be estimated using a small randomly sampled group.

The third strand is the design of simple mechanisms when optimal mechanisms
are impractical. For example, in Hart and Nisan (2017) it was argued that simple
mechanisms for selling two goods could achieve a guaranteed fraction of the optimal
revenue. In Andreyanov and Sadzik (2021), two families of simple mechanisms
(σ-VCG and δ-VCG) were suggested for an exchange environment with multi-
unit demands. In this paper, we give the means to compare them to the optimal
mechanism and find that they often capture a significant portion of optimal revenue.

Our numerical exercises contribute to the long ongoing debate over the efficiency-
revenue tradeoff in two-sided markets with private information on both sides. One
of the oldest results in this area is the impossibility of budget surplus under efficient
trade by Myerson and Satterthwaite (1983), meaning that full ex-post efficiency
is very costly in terms of revenue. Another argument was made by Gresik and
Satterthwaite (1989) that optimal mechanisms converge to efficiency at a quadratic
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rate, and in Lu and Robert (2001) that they converge to a simple bid-ask spread.
Both results, however, rely on either unit demand or linear utility. With decreasing
returns to scale, optimal mechanisms neither converge to efficiency nor to bid-ask
spreads, which we confirm under quadratic utility. Furthermore, Loertscher et al.
(2015) argues that the efficiency-revenue tradeoff is steeper in markets with two-
sided private information compared to those with one-sided, meaning that full
optimality might be too costly in terms of efficiency. It, therefore, seems natural to
find a compromise between the fully optimal and efficient mechanisms. With our
quadratic-utility model, we can trace the whole Pareto frontier. Interestingly, for
logistic type distribution, the simple mechanisms based on bid-ask spreads (δ-VCG)
almost reach that frontier.

Our paper also contributes to the expanding literature studying uniform-price and
pay-as-bid auctions, see Back and Zender (1993), Ausubel et al. (2014) and Wang
and Zender (2002). One of the main takeaways is that demand reduction with
multi-unit demands can severely impact auction revenues. We show that one pos-
sible solution to the problem is a combination of a per-unit tax with a bid-ask
spread. However, in our numerical exercises, the latter is disproportionally more
important. Furthermore, Burkett and Woodward (2020) argues that there could
also be low-revenue equilibria and suggests using reserve prices. Such “collusive-
seeming” equilibria also emerge in our setting, but for a different reason: the inad-
vertent informational spillover between the two sides of the auction.

Finally, in the domain of robust auction design with private values, our paper is
most similar to McAfee (1992) in its oral double-clock design and Ausubel (2004,
2006) in the clinching design of the payments. However, to our best knowledge, we
are the first to characterize the optimal tax in the robust setting and to show that
the price path can be optimized in terms of informational spillovers - a property
unique to robust double auctions.

3 Dynamic auction

Our auction can be thought of as two copies: forward (i.e., ascending, buyers’)
and reverse (i.e., descending, sellers’); of the efficient dynamic auction of Ausubel
(2004), with carefully crafted per-unit taxes on top of the baseline Vickrey-style
payments. These additional payments are necessary to implement mechanisms
other than efficient, for example, revenue-maximizing ones.
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Our auction also resembles the recent Incentive auction used for spectrum band-
width reallocation in its double-clock design. However, the payment rule is very
different.

Forward, reverse auctions and clinching

There are two clock auctions that run either sequentially or in parallel. To distin-
guish between them, we will use superscript ` for the forward auction and ´ for
the reverse. We denote the clock prices in these auctions as p` and p´.

Each player i participates in both auctions and, at any current price, submits a
demand q`

i in the forward auction and q´
i in the reverse auction. To be precise,

in each round of either auction, the auctioneer first announces the clock price,
and then bidders simultaneously and independently from each other respond with
quantities.

The forward (reverse) auction starts at a low price p`
0 (high price p´

0 ) and then
gradually raises (lowers) it. The price in the forward (reverse) auction stops at the
first moment when the total demand becomes non-positive (non-negative). We will
refer to this pair of, possibly different, clock prices as the stop-off price.

There is much freedom in how the auctioneer can move the clock prices towards
each other. The exact instructions would depend on the auctioning style (discrete
or continuous clocks) and also on the objectives of the auctioneer, which we will
discuss later.

Following Ausubel (2004), at any clock-prices, we define residual demands as

q`
´i :“ ´

ÿ

j‰i

q`
j , q´

´i :“ ´
ÿ

j‰i

q´
j ,

and clinched demands as

q`
i,c :“ maxp0, q`

´iq, q´
i,c :“ minp0, q´

´iq.

Activity rules and transfers

Buyers and sellers can submit any demands as long as they satisfy two types of
activity rules. First, demands in both auctions are non-increasing in their respective
prices. Second, at any prices other than the stop-off ones, the agent’s demand in
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the forward auction is no greater than her demand in the reverse auction. We do
not impose any additional restrictions on the demands at this point.

Similar to Ausubel (2004), payments are made for the clinched units of the good
and consist of two parts. The first part is standard - each incrementally clinched
unit costs exactly the clock price at which it was clinched in the corresponding
auction. The second part consists of marginal taxes mτ that depend on both the
current price clock and the current position in clinched demands. Namely, agent
i pays mτpp`, q`

i,cq for the unit clinched in the forward auction and mτpp´, q´
i,cq in

the reverse.

Thus, agent i’s total payment given final allocation q will therefore be equal to
ż q

0

p´ipxq ` mτipp´ipxq, xqdx,

where p´ip¨q is the inverse residual demand curve facing agent i.

It is worth mentioning that agents do not have direct control over the units that
they clinch and the payments that they make or receive. However, they can affect
the stop-off price.

Price dynamics

The two-sided nature of the environment requires us to decide on the order in which
the price clocks will be moved. We refer to the protocol for switching between the
two price clocks as price dynamics. We will consider two such protocols.

With simple price dynamics, we first fully advance the price clock in one of the two
auctions: forward or reverse; until it hits the stop-off price. After that, we fully
advance the price clock in the opposite auction. If the clock runs at a constant
speed, the two auctions will end in a finite time.

While this is a remarkably naive approach, it is convenient for showing the existence
of sincere equilibrium of the game, see Section 4. Moreover, the proof does not
depend on the particular order in which the clock prices move as long as they are
guaranteed to meet the stop-off price. We can therefore argue, albeit informally,
that this result extends to all price dynamics that move the clocks monotonically
and find the correct stop-off price.

A more sophisticated approach is to choose which clock to move based on the history
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of revealed demands. This can be done either at discrete times or continuously,
depending on the nature of the price clock. Importantly, the clocks always have to
move forward so that there will be a sincere equilibrium.

With price dynamics, which we refer to as adaptive, the clocks move according
to the following rule: if the number of agents i for whom q`

i ą q´
´i, is greater

(less) than the number of agents j for whom q´
j ă q`

´j, move the forward (reverse)
clock; otherwise, move either clock. These price dynamics are associated, albeit
not perfectly, with a price path that optimizes the flow of information between the
forward and reverse auctions, see Section 5.

Clearing rule

The clearing rule is a protocol for finalizing allocations and transfers at the moment
when both forward and reverse auctions stop. If everyone plays continuously, then
there will be an exact market clearing. However, because demands are allowed to
jump, one can end up with a mismatch of supply and demand in the auction.

If such a mismatch happens, some of the most recent demands might require ra-
tioning. One such rationing procedure was proposed in Okamoto (2018), but there
are others. In fact, any rationing procedure would suffice as long as each agent
receives an allocation inside her true jump of demand at the stop-off price, and she
is indifferent across the whole range of that jump.

4 Sincere bidding

We model quasilinear utilities uipqiq ´ ti, where ti is the transfer and uipqiq is agent
i’s utility from holding qi units of asset. We assume that ui is continuously differ-
entiable in qi so that it has a well-defined derivative muipqq :“

B

Bquipqq everywhere.
Let Ui denote the set of possible utility functions. Later, we will explain how Ui

interacts with the scope of tax functions τ .

Central to the analysis of our auctions are marginal taxes mτipp, qq and so-called
sincere demands dippq. These demands per se are not strategies but will capture
most of the equilibrium behavior.
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Definition 1. A sincere demand dippq is defined as

dippq “ argmaxq

„

uipqq ´

ż q

0

mτipp, xqdx ´ pq

ȷ

.

Similar to Ausubel (2004, 2006), sincere demands are associated with a price-
taking behavior, but with the taxes mixed into the utility. Indeed, one can think
of the sincere demands as competitive demands given deformed utilities uipqq ´
şq

0mτipp, xqdx. We will refer to the
şq

0mτipp, xqdx term as the integrated tax.

Assuming that the marginal tax mτipq, pq decreases strictly slower than marginal
utility muipqq at all prices p, we can equivalently define the sincere demand as the
unique solution to p “ muipqq ´ mτipp, qq.

For the purpose of this section, we will assume that at the starting prices p`
0 , p

´
0 ,

there is no clinching and that the price clocks move according to the simple price
dynamics. To be precise, first, the price clock in the forward auction moves at
x-per-second speed until it reaches the stop-off price. Then, the price clock in the
reverse auction does the same. The auction finishes after time pp´

0 ´ p`
0 qx seconds

has passed.

Imagine for now that, on the equilibrium path, all bidders will play their sincere
demands. Absent per-unit taxes will lead to an efficient allocation, as in the general
equilibrium with the fictitious Walrasian auctioneer. Indeed,

p “ muipqq, i “ 1, . . . , n,

is both a system of sincere demands without taxes and the first-order condition for
maximizing the sum of utilities.

To the contrary, with per-unit taxes, the allocation is no longer efficient given
the original utilities ui. However, it can be considered efficient given some other
utilities vi. We can reverse engineer these utilities, up to a constant, by solving the
following system of first-order conditions.

#

p “ muipqq ´ mτipp, qq, i “ 1, . . . , n

p “ mvipqiq, i “ 1, . . . , n.

In other words, mvipqq is the graph of the set of points in the pq, pq space, where
the first-order conditions are satisfied for the sincere demand.
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We would like the vi utilities not only to exist but also to be strictly concave so that
the first-order approach is valid. We will also refer to the economy with utilities vi
as the virtual economy.

Linearizing this system around pp, qq, we get that

mv1
i,qpqq “ ´

mτ 1
i,qpp, qq ´ mu1

i,qpqq

1 ` mτ 1
i,ppp, qq

,

at points of differentiability. This motivates the following joint assumption on the
set of possible utilities and taxes.

Assumption 1. For any i and any possible utility ui P Ui,

mτ 1
i,qpqq ´ mu1

i,qpqq ą ε, p1 ` mτ 1
i,qpq, pqq

´1
ą ε,

for all pp, qq P R ˆ pRzt0uq and some ε ą 0.

In other words, the tax has to be less concave than the utility at all prices, and
the marginal tax can not decrease too fast in the current price. This assumption
guarantees that mvipqq is strictly decreasing with a slope of at least ε2, and thus
there is exactly one efficient outcome in the virtual economy.

Abusing notation, denote player i’s strategies at clock prices p` ď p´ as q`
i pp`q

and q´
i pp´q but the history of his play at the previous price p as q`

i pp|p`q in the
forward auction and q´

i pp|p´q in the reverse.

Definition 2. A collection of strategies tq`
i p¨q, q´

i p¨quni“1 is said to comprise a sin-
cere ex-post perfect equilibrium if, at any point in time t, the following strategies in
the forward and reverse auctions

q`
i pp`

q :“ minpdipp
`

q, inf
pďp`

q`
i pp|p`

qq, (1)

q´
i pp´

q :“ maxpdipp
´

q, sup
pěp´

q´
i pp|p´

qq, (2)

where tdip¨quni“1 are sincere demands, constitute a Nash equilibrium in the contin-
uation game, had all private information been common knowledge.

Formulas (1) and (2) simply mean that on and off-equilibrium paths, the agent is
playing his sincere demand, as long as the monotonicity activity rule is not binding.
Otherwise, he keeps his latest demand (in the respective market) unchanged until
he can play his sincere demand again. We will refer to this strategy as sincere
bidding.
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Figure 3: Payments in a sincere equilibrium (left), when player 1 advances her demand very late (middle), and very
early (right).

We are now ready to state the first main result of our paper.

Proposition 1. For any utilities and taxes satisfying Assumption 1,

1. the market clearing price and allocation under sincere bidding coincides with
the Walrasian equilibrium in the virtual economy,

2. with simple price dynamics, sincere bidding is an ex-post perfect equilibrium.

See Appendix A for formal proof.

It is worth noting that, with only a forward auction and with no taxes, the sincere
play was weakly dominant if no information was revealed, see Ausubel (2004). The
clock would advance at a constant speed, and the bidders would play sincerely.

Unfortunately, this is not true in the two-sided setting. The reason is that, by
merely switching between the auctions, the auctioneer releases information that
could be used for strategic purposes, see Examples 1 and 2.

Example 1. With simple price dynamics and only the stop-off price revealed, sin-
cere bidding is not weakly dominant.

Consider two players i “ 1, 2 with sincere demands d1ppq “ 2 ´ p, d2ppq “ 1 ´ 2p
that are common knowledge, and no additional taxes.

Under sincere bidding, the price in the forward auction starts as low as 0.5 and
increases till the stop-off price of 1. The reverse auction starts with the clock price
as high as p “ 2 and falls down to 1. At the stop-off price, the first and second
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player’s total clinches amount to 1 and ´1, that is, first player is the buyer. The
average prices are 0.75 and 1.5 correspondingly, see Figure 3 (left).

Consider now a modified strategy for player 1. Namely, if the stop-off price after the
forward auction is less than 1, he plays sincerely in the reverse auction. Otherwise,
he plays d̃1ppq “ d1p2q “ 0, that is, he advances his demand very early.

If player 2 proceeds with bidding sincerely, he will clinch everything at the stop-
off price 1, see Figure 3 (right). If, however, she shifts her sincere demand to
d̃2ppq “ d2ppq ´ ε, for a small ε ą 0, the stop-off price in the forward auction will
be equal to 1 ´ ε

2 and player 1 will then play sincerely in the reverse auction.

Consequently, the second player bids sincerely. Her loss due to the insidious actions
of the first player in the reverse auction amounts to exactly 0.5, while by slightly
shifting her demand, she can get arbitrarily close to her payoff in the sincere equi-
librium. This completes the example.

One might say that weak dominance is a too strong equilibrium concept, and
survival by eliminating weakly dominant strategies should be used instead, as was
done in Ausubel (2004).

Example 2. With simple price dynamics, and full history revealed at each point
in time, there are strategies other than sincere bidding which survive iterated elim-
ination of weakly dominated strategies.

To build the counterexample, consider, again, sequential price dynamics and two
players i “ 1, 2 with sincere demands d1ppq “ 2 ´ p, d2ppq “ 1 ´ 2p.

Assume that both players bid sincerely in the forward auction, then the stop-off
price would be equal to 1. At this point, both players know their final allocation,
but the payments for player 2 are not yet known.

Consider now a modified strategy for player 1. Namely, in the reverse auction he
plays d̃1pp

˚q, where p˚ is the stop-off price. This means that as soon as the reverse
auction starts, player 1 announces one demand to be equal to 1, thus effectively
removing all the uncertainty from the auction, see Figure 3 (middle).

Clearly, this is an ex-post perfect equilibrium, and insincere play by player 1 in the
reverse auction can never be eliminated, no matter what the original beliefs were,
which completes the example.
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Figure 4: Informational spillover into forward auction (left figure) and into the reverse auction (right figure).

5 Informational spillover

The multiplicity of equilibria, discussed in the previous section, can be traced
to a simple observation that by making the stop-off price known to the bidders,
the auctioneer makes their incentives to reveal further true demand very weak.
The premature revelation of the stop-off price is a consequence of a more general
phenomenon: the inadvertent informational spillover between the two auctions.

For the purpose of this section, we assume that the auction is fully transparent.

Definition 3. For agent i, and at clock prices p` ď p´ we say that there is in-
formational spillover into the forward auction if q´

´ipp
´q ă q`

i pp`q, and into the
reverse auction if q´

i pp´q ă q`
´ipp

`q.

Imagine that at some point in time, the residual demand in the forward auction is
ahead of agent i’s sincere demand in the reverse auction, that is, dipp

´q ă q`
´ipp

`q,
see Figure 4 (right). Then, assuming that all other agents bid sincerely, i can reveal
any value between rdipp

´q, q`
´ipp

`qs in the reverse auction without risking changing
the stop-off price. Alternatively, he can keep ones demand unchanged for the range
of prices rd´1

i pp`q, p´s in the reverse auction. Thus, informational spillover allows
supporting equilibria that are not sincere.

The question that we want to answer is whether there exists a price path that,
in some sense, minimizes informational spillover. The simple price dynamics can
not give us this property. Indeed, after fully advancing the clock in the forward
auction, the residual demand there is no less than the sincere demand in the reverse
auction for every player, and strictly so for strictly decreasing demands. Moreover,
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Figure 5: Illustration of the price path associated with adaptive price dynamics, and the spillover-minimizing con-
tinuous price path in Proposition 2.

for n “ 2, it is simply impossible to rule out informational spillover with generic
demands. However, we can try to make the number of agents that experience
informational spillover as small as possible.

This approach is motivated by the following lemma:

Lemma 1. For any clock prices p` ď p´: if there is spillover into both auctions,
then there is spillover for exactly one agent.

According to this lemma, the number of agents experiencing spillovers at any point
in time is far from arbitrary. Represented by a pair of numbers, it can only be one
of the following: p0, 0q, p1, 0q, p0, 1q, p1, 1q, p2`, 0q, p0, 2`q; where x` stands for “x
and more”, see Figure 5 for a stylized illustration. Moreover, when the numbers
are p1, 1q, the same agent experiences spillover on both sides.

With this structure at hand, we can show that, for any collection of well-behaved
sincere demands, a price path exists with special properties. Namely, along this
path, the number of agents with spillovers decreases till there is at most one such
agent, and it stays that way.

To make the result sharp, we put a few technical assumptions on the sincere de-
mands and treat them as known.

Assumption 2. Let i) agents play continuous and (weakly) monotone sincere de-
mands tqip¨quni“1, ii) there exist a stop-off price p˚ such that

ř

qipp
˚q “ 0.
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Proposition 2. Under Assumption 2, for any starting prices p`
0 ď p´

0 , there exist a
(weakly) monotone path p`ptq, p´ptq connecting pp`

0 , p
´
0 q with pp˚, p˚q continuously.

The path consists of two parts. In the first part, the number of agents experiencing
informational spillover decreases monotonically until there is, at most, one such
agent. In the second part, there is still at most one such agent.

See Appendix B for formal proof.

How does this help with the design of the auction? If we could find a realistic rule
that mimics the aforementioned price path, it could be considered superior to other
rules, such as simple price dynamics. The adaptive price dynamics does precisely
that by moving the clocks in a way that balances the number of spillovers in the
forward and reverse auctions, see Figure 5

Of course, one could say that adaptive price dynamics does more - it tries to reduce
the number of spillovers to 0. However, there is no guarantee that the set of prices
for which there are no spillovers is connected nor that it reaches the stop-off price.
Thus, we can only guarantee to monotonically reduce the number of agents for
whom spillover takes place to at most 1, but not 0.

6 Direct mechanisms

This section complements the double clock auction with taxes by providing an op-
timal taxation function. To achieve this goal, we add more structure to the agents’
preferences: single-dimensional types and single-crossing preferences. We consider
a flexible class of designer objectives, which covers expected profit maximization
and near-efficiency as special cases. First, we derive an optimal direct mechanism
for this class of objectives. Then, we derive the taxation function that achieves the
same allocation and payoffs in the sincere equilibrium of our dynamic auction.

Single-dimensional types

We model agent i’s preferences as a single-dimensional, private type θi P R. Thus,
agent i’s payoff with type θi, asset allocation qi P R and money transfer ti P R, is

uipθi, qiq ´ ti.

We will refer to the whole profile of types as θ and the profile of types other than
agent i as θ´i. We begin with a minimal set of assumptions that are typically used
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in the mechanism design literature.

Assumption 3. θi is independently distributed with a strictly increasing CDF Fi,
uipθi, qiq is twice continuously differentiable and strictly single crossing (

B2

BθiBqi
uipθi, qiq ą

0), for all i and θi, qi in the support.

We focus on direct mechanisms with a truth-telling equilibrium, invoking the reve-
lation principle. A direct mechanism pq, tq consists of an allocation rule q : Rn Ñ Rn

and a transfer rule t : Rn Ñ Rn. A direct mechanism must satisfy the incentive
compatibility (IC) and individual rationality (IR) constraints so that the agents
play a truth-telling equilibrium. In this paper, we require that both IC and IR
constraints are satisfied ex-post, that is, at each type profile on the type space, as
in Andreyanov and Sadzik (2021), rather than on average, as in Lu and Robert
(2001). Formally, they are defined as below.

Definition 4. A direct mechanism pq, tq satisfies the ex-post IC and IR constraint
if it satisfies the following inequalities.

IC: uipθi, qpθi, θ´iqq ´ tpθi, θ´iq ě uipθi, qpθ
1
i, θ´iqq ´ tpθ1

i, θ´iq,

IR: uipθi, qpθi, θ´iqq ´ tpθi, θ´iq ě uipθi, 0q.

for all i and all θ in the support.

Denote by ũipθi, qiq the net (i.e. added relative to the autarky), utility of agent i:

ũipθi, qiq “ uipθi, qiq ´ uipθi, 0q.

A standard mechanism-design argument tells, see e.g. Milgrom and Segal (2002),
that under Assumption 3, a direct mechanism pq, tq is ex-post IC if and only if:
qipθi, θ´iq is weakly increasing in θi and the envelope conditions hold:

tipθi, θ´iq “ ũipθi, qipθi, θ´iqq ´ ũipθ
1
i, qipθ

1
i, θ´iqq ´

ż θi

θ1
i

B

Bθi
ũipx, qipx, θ´iqqdx, (3)

for all i and θi, θ
1
i, θ´i in the support.

Net surplus and worst-off-types

Another convenient way to describe an ex-post IC direct mechanism - is in terms
of the agent’s net equilibrium payoff s̃ipθi, θ´iq that we refer to as her net surplus :

s̃ipθi, θ´iq “ ũipθi, qipθi, θ´iqq ´ tipθi, θ´iq “ max
θ1
i

tũipθi, qipθ
1
i, θ´iqq ´ tipθ

1
i, θ´iqu.
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Furthermore, let wotpθ´iq denote the set of worst-off types, and tetpθ´iq denote the
set of types excluded from trade, of agent i in a mechanism:

wotpθ´iq “ argmin
θ1
i

s̃ipθ
1
i, θ´iq, tetpθ´iq “ tθ1

i : qipθ
1
i, θ´iq “ 0u.

Lemma 2. Under Assumption 3, in an ex-post IC direct mechanism pq, tq,

tetpθ´iq Ă wotpθ´iq.

The above lemma allows to recast the envelope conditions (3):

s̃ipθi, θ´iq “ inf
θ1
s̃ipθ

1
i, θ´iq `

ż θi

θ˚
i

B

Bθi
ũipx, qipx, θ´iqqdx, @θ˚

i P tetpθ´iq, (4)

for any i and θ´i in the support such that tetpθ´iq is non-empty.

v-optimality

We are interested in a broad class of ex-post IC and IR direct mechanisms, which
we will refer to as v-optimal.

Consider a collection of functions vipθi, qq, which can be interpreted as individual
contributions of each agent to a certain social utility. We wish to maximize this
social utility subject to the market clearing constraint

řn
i“1 qi “ 0, also ex-post,

that is, satisfied for all types in the support. Additionally, we normalize each
agent’s payoff at the worst-off type to be equal to her payoff in the autarky.

Definition 5. A v-optimal direct mechanism pq, tq maximizes
¡

Rn

«

n
ÿ

i“1

vipθi, qiq

ff

ź

j

dFjpθjq (5)

subject to the constraints: qipθi, θ´iq is weakly increasing in θi, envelope conditions
(3), market clearing and infθ1

i
s̃pθ1

i, θ´iq “ 0, for all i and θi, θ´i in the support.

While not fully general, this formulation covers a number of important families
of mechanisms. In particular, three such families have been studied before. The
first family, studied in Gresik and Satterthwaite (1989), Lu and Robert (2001), in
the context of Bayesian IC and IR constraints, can be informally defined via vi “

p1´αqui`αti, and can be thought of as a convex combination of efficient and profit-
maximizing mechanisms. The second and third families, studied in Andreyanov
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and Sadzik (2021), are vi “ ui ´ σq2i {2 and vi “ ui ´ δ|q|. They can be thought
of as nearly efficient mechanisms, capable of balancing the budget ex-post through
controlled demand reduction. By coincidence, if the utility is quadratic: uipθi, qq “

θiq´µq2{2, the second family also contains (for σ “
µ

n´2) the uniform-price double
auction, studied, among others, in Kyle (1989) and Rostek and Weretka (2012).

We place a few technical assumptions on the auctioneer’s objective v, which ensure
that the v-optimal mechanism is a solution to a smooth (with a notable exception
of q “ 0) and convex optimization problem.

Assumption 4. vipθi, qiq is twice continuously differentiable, strictly concave in qi
and strictly single crossing, for all i, qi ‰ 0, and θi in the support.

With a slight abuse of notation, let mvipθi, qiq denote B

Bqi
vipθi, qiq at points of dif-

ferentiability, and the sub-gradient of vi otherwise. Likewise, let muipθi, qiq denote
B

Bqi
uipθi, qiq. We now move on to characterize v-optimal direct mechanisms.

Monotonicity of allocation

As is common in the literature, we first attempt to solve a relaxed problem - where
we drop the monotonicity constraint so that we can solve for the allocation q,
pointwise, and then check if it is monotone. A version of the Kuhn-Tucker theorem
ensures that the Lagrangian method applies in the relaxed problem, yielding the
first order conditions:

ppθq P mvipθi, qipθqq,
n

ÿ

i“1

qipθq “ 0, (6)

where ppθq P R is the Lagrange multiplier.4 By strict concavity of the vi functions,
qipθq is single-valued.

Below we verify that the solution to the relaxed problem is indeed monotone. For
any q ‰ 0, we may linearize (6) around pp, qq as below

mv1
i,θi

` mv1
i,qi
q1
i,θi

“ p1
θi
, mv1

j,qj
q1
j,θi

“ p1
θi
, j ‰ i. (7)

We can then solve for the slopes using market clearing

p1
θi

“
mv1

i,θi

mv1
i,qi

p
ÿ 1

mv1
k,qk

q
´1, q1

j,θi
“
mv1

i,θi

mv1
j,qj

˜

1{mv1
j,qj

ř

1{mv1
k,qk

´ Ipj “ iq

¸

. (8)

4For example, Theorem 1 and 2 in Luenberger 1969, 217p and 221p.
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Clearly, under strict single crossing and strict concavity of the vi functions, the
allocation of any agent is strictly increasing in her type.5 We would like to further
strengthen this property by uniformly bounding the slopes of mvi.

Assumption 5. mv1
i,θ ą ε, and ´1{mv1

i,q ą δ, for all i and θi, θ´i, qi in the support,
and some ε, δ ą 0.

We can therefore bound the slope of the allocation function from below:

q1
j,θj

“ mv1
j,θj

¨
p´1{mv1

j,qj
q ¨ p

ř

k‰j ´1{mv1
k,qk

q

p´1{mv1
j,qj

q ` p
ř

k‰j ´1{mv1
k,qk

q
ě
n ´ 1

n
εδ. (9)

Consequently, one can invert the allocation function with respect to own type
everywhere except q “ 0. We will refer to it as an inverse allocation function
q´1
i px, θ´iq, defined on the pRzt0uq ˆ Rn´1 domain.

Existence of the type excluded from trade

Before we proceed to the first main result of this section, there is one technical
observation that we need to make. Namely, we would like that, in a v-optimal
mechanism, there exists a type excluded from trade, that is, tetpθ´iq is nonempty.
Together with the taxation principle, this will allows to once again recast the en-
velope conditions using the inverse allocation function.

Lemma 3. Under Assumptions 3 to 5, in a v-optimal mechanism pq, tq, tetpθ´iq is
nonempty, and the transfers can be written as:

t̃ipq, θ´iq “

ż q

0

muipq
´1
i px, θ´iq, xqdx, (10)

for all i and θ´i in the support.

For the exposition, we provide two alternative versions of Assumption 5 that would
ensure the existence of types excluded from trade, see Section C.3. The first version
requires that all vi, Fi are identical, and can be used with compact support. The
second version requires that for any p P R there exists a type θi in the support such
that p P mvipθi, 0q.

5The allocation function is also strictly decreasing in types of others, and the market clearing price is strictly increasing in all types.
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Taxation scheme

We are now ready to derive the taxation scheme associated with the auction de-
scribed in Section 3, which would match the one in our v-optimal mechanism. Ac-
cording to the rules of the auction, the payments consist of two parts: the Vickrey-
style payments and the integrated (along the residual supply curve) marginal taxes

˜̃tipq, θ´iq “

ż q

0

mτpp´ipxq, θ´iq ` p´ipxqdx, (11)

where p´ipxq is the residual supply curve facing agent i.

If we could set the marginal tax equal to the wedge between mui and mvi at the
desired allocation, the agents would essentially perceive vi as their true utility. It
only remains to do it for every realization of types.

Definition 6. Set the marginal tax mτipp, qq “ x, where px, θ̂q solves
#

x “ muipθ̂, qq ´ mvipθ̂, qq,

p “ mvipθ̂, qq,
(12)

for all p, q in the support.

We refer to the solution θ̂ipp, qq to the system of equations (12), as the fixed-point
type. It is correctly defined on the Rˆ pRzt0uq domain, and so is the marginal tax.

We are ready to formulate our second main result.

Proposition 3. Under Assumptions 3 to 5, the sincere equilibrium in the double
clock auction with the marginal tax mτpp, qq defined by (12) achieves the same
allocation and transfer as in the v-optimal mechanism.

The proof proceeds by observing, quite mechanically, the equivalence between the
transfers t̃ipθi, qiq and ˜̃tipθi, qiq, see Appendix C.

Finally, by linearizing (12) around pp, qq, we can derive the slopes of the fixed-point
type and the marginal tax

θ̂1
p “ 1{mv1

θ, θ̂1
q “ ´mv1

q{mv
1
θ,

mτ 1
p “ mu1

qθ̂
1
p ´ 1, mτ 1

q “ mu1
θθ̂

1
q ` mu1

q.

Corollary 1. Under Assumptions 3 to 5, the marginal tax mτi is continuously
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differentiable for all q ‰ 0 and satisfies

mτ 1
q ´ mu1

q ą 0, mτ 1
p ` 1 ą 0.

In other words, the (integrated) tax is less concave than the utility, and the marginal
tax can not respond to the change in price too fast.

7 Revenue maximization

We now move on to the special case of interest, which is revenue maximization.
Ignoring the monotonicity constraint, we will attempt to maximize the average
transfer

ĳ

Rn´1

n
ÿ

i“1

„
ż

R
pũipθi, qiq ´ s̃ipθi, θ´iqq dFipθiq

ȷ

ź

j‰i

dFjpθjq (13)

subject to market clearing and envelope conditions. Naturally, in the revenue-
maximizing mechanism, any leftover surplus can be extracted via translation of
monetary transfers, therefore, infθ1

i
s̃ipθ

1
i, θ´iq “ 0.

Before we proceed with a classic Myersonian trick, there is one more assumption
that we have to make, related to the integrability of net surplus, which is necessary
for integration by parts on the whole real line. 6

Assumption 6.
řn

i“1 ũipθi, qiq ď Cpθiq for any q :
řn

i“1 qi “ 0 and some function
Cpxq, such that

ş

CpxqdFipxq ă 8.

Although this assumption is very weak, from it follows that the expected net surplus
in the exchange economy is finite. To see the importance of this observation, note
that even with simple quadratic models as in Section 8, the utility is not bounded
on R, and thus the expected net surplus is not obviously bounded.

Lemma 4. Under Assumptions 3, 4 and 6:
ż

s̃ipz, θ´iqdFipzq ă 8

for all θ´i in the support.

With this at hand, we split the integral of the net surplus at the type excluded
from trade (which is guaranteed to exist) and apply integration by parts to each of

6Riemann if F is continuous, or, more generally, Stiltjes
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the two halves. This gives us the following equivalence
ż

R
pũipθi, qiq ´ s̃ipθi, θ´iqq dFipθiq “

ż

R
Jipθi, qiqdFipθiq (14)

Jipθi, qiq “ ũpθi, qiq ´
Ipqi ą 0q ´ F pθiq

fpθiq

B

Bθ
ũpθi, qq. (15)

We will refer to Ji as the virtual utility.

It is worth noting that the virtual utility, in this particular form, is continuous in
both allocation and type. Indeed, the only potential source of discontinuity is the
indicator function Ipqi ą 0q multiplied by B

Bθ ũpθi, qq, which is zero at q “ 0. Thus,
there is no jump at qi “ 0. Instead, there is a concave kink. Had we not used
Lemma 2, the virtual utility would be discontinuous in type.

It remains to check whether the premise of the Proposition 3 is satisfied so that
we can also claim the implementation of the profit-maximizing mechanism. One
simple way to achieve this - is to put more assumptions on the true utilities ui.

Assumption 7. Fi is log-concave and

u3
θqqpθi, qq ¨ sgnpqq ă 0, u3

θθqpθi, qq ¨ sgnpqq ą 0,

for all i, q ‰ 0, and θi in the support.

This assumption guarantees that Assumption 4 is satisfied for vi “ Ji.

This leads to the following proposition.

Proposition 4. Under Assumptions 3, 4 and 6, the profit-maximizing mechanism
is v-optimal with vi equal to the virtual utility Ji.

See Appendix D for formal proof.

Corollary 2. Under Assumptions 3, 6 and 7, the virtual utility Ji is twice con-
tinuously differentiable, strictly concave in qi and strictly single crossing, for all i,
qi ‰ 0, and θi in the support.

Likewise, even stronger restrictions on the utility ui can guarantee that Assump-
tion 5, or its alternative versions, are satisfied for vi “ Ji.
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8 Symmetric quadratic model

This section illustrates our methodology in a symmetric model where each agent i
has the following quadratic utility function.

uipθi, qiq “ θiqi ´
µ

2
q2i ,

for some known µ ą 0. We consider two log-concave distributions of private types
θi: uniform on the r´1, 1s interval and logistic (i.e., with full support). The above
specification provides additional tractability and allows for comparison across dif-
ferent mechanisms.

8.1 Pareto frontier

We now solve for the mechanism that maximizes a linear combination of expected
revenue and efficiency, in other words, finds the Pareto frontier. Following the
arguments in Section 6, we have to maximize

ř

i Jα,ipθi, qiq over q, subject to the
market clearing constraint

ř

qi “ 0, where

Jαpθi, qiq “ qi rφαpθiq ¨ Ipqi ą 0q ` ψαpθiq ¨ Ipqi ď 0qs ´
µ

2
q2i ,

pointwise, where φαpθq “ θi ´ α1´F pθiq
fpθiq

and ψαpθq “ θ ` αF pθiq
fpθiq

are monotone
functions, as long as F is log-concave.

To identify the optimal allocation, we must find a Lagrange multiplier ppθq such that
the market clears and the first-order conditions hold. This leads to the following
solution

dipp|θiq “ µ´1
rpφpθiq ´ pq ¨ Ipq ą 0q ` pψpθiq ´ pq ¨ Ipq ă 0qs “

“ µ´1
rminp0, ψpθiq ´ pq ` maxp0, φpθiq ´ pqs ,

for each agent i, which will also be her sincere demand in the auction implementa-
tion. The Lagrange multiplier ppθq is then the root of

řn
i“1 dipp|θiq{n, that is, the

average sincere demand.

Finally, the marginal tax mτ and the fixed-point type θ̂ solve the system of equa-
tions (12) and thus

θ̂pp, qq “ φ´1
α pµq ` pq ¨ Ipq ą 0q ` ψ´1

α pµq ` pq ¨ Ipq ă 0q (16)

mτpp, qq “ θ̂pp, qq ´ pµq ` pq (17)
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Proposition 5. In the symmetric quadratic model with a log-concave distribution
F , the optimal mechanism is implemented via marginal taxes (17).

Since the worst-off types are in the interior of the type space, the transfers can be
formally written out, conditional on the value of the Lagrange multiplier.

tipqi|θ´iq “

#

şq

0

`

φ´1
α pµz ` p´ipz|θ´iqq ´ µz

˘

dz, q ą 0
şq

0

`

ψ´1
α pµz ` p´ipz|θ´iqq ´ µz

˘

dz, q ă 0
, (18)

where p´ipz|θ´iq is the inverse residual supply curve. Despite a relatively simple
mechanism implementation, its explicit characterization is rather difficult in a finite
economy, even for standard distributions.

8.1.1 Uniform distribution

When the distribution is uniform, φ1pθq “ 2θ ´ 1, ψ1pθq “ 2θ ` 1, thus

dipp|θiq “ µ´1
rminp0, 2θi ` 1 ´ pq ` maxp0, 2θi ´ 1 ´ pqs ,

and the marginal tax is

mτpp, qq “
´µq ´ p ´ 1

2
` Ipq ą 0q.

Note that the number of agents excluded from trade depends on the location of the
root of the average demand curve and thus can not be easily characterized.

For example, for just n “ 3 agents, the exclusion region follows an elaborate pat-
tern, see Figure 6. When all three types are close to each other (a light grey area),
nobody is trading. Next, with two significantly opposing types and a third in the
middle (a dark grey area), only opposing types are trading with each other. Finally,
when two types oppose the third, all three players are trading (black area).

When the number of players grows, the pattern becomes more complicated. How-
ever, the root of the average demand curve will converge in the probability limit,
which is equal to 0. Thus, the limit exclusion region will be simply θi P r´1{2, 1{2s.

8.1.2 Logistic distribution

For a logistic distribution, φ1pθq “ θ ´ 1 ´ e´θ, ψ1pθq “ θ ` 1 ` eθ, thus

dipp|θiq “ µ´1
“

minp0, θi ` 1 ` eθ ´ pq ` maxp0, θi ´ 1 ´ e´θ
´ pq

‰

,
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Figure 6: Exclusion region for two (left) players and three (right) players for a uniform[-1,1] distribution of types.
The latter is in the coordinates ξ “ θ1 ´ θ3, χ “ θ2 ´ θ3, independent from the value of θ3.

and the marginal tax is

mτpp, qq “ sgnpqq ¨

”

1 ` ωpe´1´sgnpqq¨pµq`pq
q

ı

.

The exclusion region for n “ 3 follows a pattern similar to that of the uniform
distribution, see Figure 7. In the limiting economy, again, the root of the average
demand curve will be equal to 0. Thus the limit exclusion region is simply θi P

r´1 ´ ωp1{eq, 1 ` ωp1{eqs, where ωpzq is the product-logarithm function.

8.2 σVCG mechanisms

Our first benchmark is smooth nearly-efficient mechanisms in Andreyanov and
Sadzik (2021) called σ-VCG mechanisms, which can be thought of as an attempt
to control demand reduction explicitly.

One way to define this mechanism is the maximizer of
ř

i Jσ,ipθi, qiq over q, subject
to the market clearing constraint

ř

qi “ 0, where

Jσ,ipθi, qiq “ θiqi ´
µ ` σ

2
q2i .

The ex-post allocation and transfer in this mechanism can be derived:

qi “
n ´ 1

n

θi ´ θ̄´i

µ ` σ
, tipqiq “ θ̄´iq `

µ ` nσ

2pn ´ 1q
q2,
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Figure 7: Exclusion region for two (left figure) players and three (right figure) players for a logistic distribution of
types. The latter is in the coordinates θ1, θ2 for a fixed θ3 “ 0.

where θ̄´i “ 1
n´1

ř

j‰i θj is the average type other than agent i’s type.

Since both transfer and utility are quadratic in types, we can compute their ex-
pected values given the variance of the type distribution:

Eti “
pn ´ 2qσ ´ µ

2npµ ` σq2
Vθi, Eui “

pn ´ 1qpµ ` 2σq

2npµ ` σq2
Vθi,

since Eθ̄´i “ Eθi, Epθ̄´iq
2 “

Eθ2i `pn´2qpEθiq2
n´1 and Vθ “ Eθ2i ´ pEθiq2. Naturally, for

a uniform-price double auction (σ “
µ

n´2), the expected payment is equal to zero,
while for the efficient mechanism (σ “ 0), it is negative.

Finally, the maximum expected transfer over σ-VCG mechanisms is attained at
σ “

nµ
n´2 , and is equal to pn´2q2

npn´1q
¨ Vθ
8µ , while the utility is equal to pn´2qp3n´2q

npn´1q
¨ Vθ
8µ .

8.3 δVCG mechanisms

Our second benchmark is non-smooth nearly-efficient mechanisms in Andreyanov
and Sadzik (2021), which can be thought of as a bid-ask spread of size 2δ, which
we refer to as δ-VCG mechanisms.

One way to define this mechanism is the maximizer of
ř

i Jδ,ipθi, qiq over q, subject
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to the market clearing constraint
ř

qi “ 0, where

Jδ,ipθi, qiq “ qi rφδpθiq ¨ Ipqi ą 0q ` ψδpθiq ¨ Ipqi ď 0qs ´
µ

2
q2i ,

pointwise, where φδpθq “ θi ´ δ and ψδpθq “ θ ` δ. The rest of the algorithm is
identical to the one used for revenue maximization, so we have to rely on Monte
Carlo simulations for finite economies.

In the limit economy, however, there is no supply reduction, so the agent’s demand
is equal to pθi ´ δq{µ if he turns out to be a buyer, and pθi ` δq{µ if he turns out
to be a seller. Moreover, for symmetric distributions, the limit of the equilibrium
price will be equal to 0, so buyers will pay a per-unit price of δ, while sellers will get
a per-unit price of ´δ. Thus, we can compute the expected payment and utility:

Eti “ 2δ

ż F´1p1q

δ

„

x ´ δ

µ

ȷ

dF pxq

Eui “ 2

ż F´1p1q

δ

„

x
x ´ δ

µ
´
µ

2
p
x ´ δ

µ
q
2

ȷ

dF pxq

which can be easily maximized over δ, for any given distribution.

9 Conclusion

We have studied an optimal robust mechanism in a double-auction environment
similar to Lu and Robert (2001). While the direct mechanism is rather compli-
cated, the associated implementation is simple - two Ausubel auctions: forward
and reverse, with the price clocks running towards each other, much like in the
celebrated Incentive Auction.

The clock nature of the auction can be thought of as a means to solve for the La-
grangean multiplier in the optimization problem, where the sum of virtual utilities
is maximized subject to market clearing constraints, as long as these virtual utilities
are concave. Moreover, the task of finding the worst-off types necessary for explic-
itly characterizing the direct mechanism is implicitly solved in the equilibrium of
the auction.

The virtualization of utilities in a model with single-dimensional types is achieved
by introducing a marginal tax that depends on the player’s current (clinched) po-
sition and the clock price but not on the positions of other players. A hallmark

29



feature of this tax is that it combines a relatively standard exclusion of the weakest
traders with a tax scheme that can be explicitly computed.

The equilibrium is sincere in a sense similar to Ausubel (2004), but players submit
demands as if their utilities were replaced with virtual utilities. However, the two-
sided nature of the auction poses new challenges. In particular, the informational
spillover between the forward and reverse auctions makes it impossible to eliminate
all non-sincere equilibria if the auction is fully transparent. However, it is possible
to move the clocks to minimize this spillover.
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Appendix A Proofs for Section 4

A.1 Proof of Proposition 1.

Observe first that, in every subgame, along the conjectured equilibrium path, the
revealed demands in the sincere ex-post equilibrium coincide with the sincere de-
mands tdippquni“1 which, together with the market-clearing condition fully charac-
terize the outcome (price and allocation) of the game.

We will now prove that the market clearing price and allocation under sincere
bidding coincide with the Walrasian equilibrium in the virtual economy.

Suppose that players bid by the sincere strategy in the clock auction. Then auction
outcomes are characterized by the first-order condition for the sincere demands

p “ mupqiq ´ mτpp, qiq, i “ 1, . . . , n.

By definition of mvi, the first-order condition above can also be expressed as

p “ mvipqiq, i “ 1, . . . , n,

which are the first order conditions for Walrasian demands in the economy with
utilities vi. Since the second-order conditions in both cases are satisfied by Assump-
tion 1, the first-order conditions show that the market clearing price and allocation
in both equilibria are the same.

We will now prove that sincere bidding is an ex-post perfect equilibrium. The proof
considers two cases regarding the prior history of play in the clock auction.

First, we examine agents’ incentives on the equilibrium path of play, where the
demands revealed before the subgame was all sincere.

Assuming that all but player j continue to play sincerely, bidder j’s payoff is path-
independent in the following sense. At any counterfactual allocation q, the stop-off
price p´jpqq is uniquely defined by the sincere demands of other players. Moreover,
her payment to the auctioneer is equal to the marginal tax mτipp´jpxq, xq plus
p´jpxq, integrated over x P r0, qs. The optimality condition is, therefore

#

mujpqq “ mτjpp, qq ` p

p “ mvipqiq, i “ 1, . . . , n, i ‰ j

which yields p “ mvipqjq by the definition of the vi functions. Player j’s payoff
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is aligned with the social surplus in the virtual economy, which is maximized by
playing sincerely. Thus, sincere play is a nash equilibrium of the subgame.

Second, we consider incentives off the equilibrium path, where traders reported
non-sincerely before this subgame.

Assuming that all but player j continue to play sincerely, bidder j’s payoff is path-
independent, but her actions are constrained by the demands revealed before the
subgame. However, these payoffs are monotonically decreasing in the distance from
the conjectured allocation. Thus, she finds it optimal to play as close to the sincere
demand as possible. Therefore, sincere play is a nash equilibrium of the subgame.

Appendix B Proofs for Section 5

B.1 Proof of Lemma 1

Proof. To the contrary, assume that at some prices p` ď p´, there is informational
spillover into both auctions, and, at the same time, there is informational spillover
for more than one agent. This means that there exist two agents i ‰ j such that:

q´
´ipp

´
q ă q`

i pp`
q, q´

j pp´
q ă q`

´jpp
`

q.

Using the definition of the residual demands, we can pair these inequalities:

´
ÿ

k‰i,j

q´
k pp´

q ă q`
i pp`

q ` q´
j pp´

q ă ´
ÿ

k‰i,j

q`
k pp`

q

which contradicts the fact that q´
k pp´q ď q`

k pp`q for all k.

B.2 Proof of Proposition 2

Proof. Consider the domain of prices pp`, p´q P rp`
0 , p

˚s ˆ rp˚, p´
0 s and denote the

subset of prices that have x spillovers into the forward and y spillovers into the
reverse auctions by Sx,y.

Observe first that S0,2` and S2`,0 do not intersect by Lemma 1, thus any point in
the domain belongs to either S0,1`, S1`,0, S1,1 or S0,0.

The price path connecting pp`
0 , p

´
0 q with pp˚, p˚q will have two parts. The first part

is a straight line, and the second part goes along the boundary of either S0,1` or
S1`,0, see Figure 5. To construct the price path, consider three cases.
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Case 1: If the starting prices are in S1`,0, we first advance the forward clock till it
reaches the boundary of S1`,0. After that we move along the path pp̃`ppq, pq where

p̃`
ppq “ sup

xPrp´
0 ,p

˚s

x : px, pq P S1`,0.

Case 2: If the starting prices are in S0,1`, we first advance the reverse clock till it
reaches the boundary of S0,1`. After that we move along the path pp, p̃´ppqq where

p̃´
ppq “ inf

xPrp˚,p`
0 s

x : pp, xq P S0,1`.

Case 3: If the starting prices pp`
0 , p

´
0 q are in S1,1, any of the aforementioned trajec-

tories will work. Finally, the starting prices can not be in S0,0 by assumption.

We argue that along the first part of the trajectory, the number of agents experienc-
ing spillovers is weakly decreasing. Indeed, on the one hand, advancing the forward
(reverse) clock does not increase the number of spillovers in the forward (reverse)
auction. On the other hand, the number of spillovers in the reverse (forward)
auction is fixed at 0 by construction.

The function p̃`p.q does not have to be continuous. However, if it is monotone,
we can connect the (at most countably many) points of discontinuity to obtain a
monotone and continuous path p`ptq, p´ptq. It remains to show that p̃`p.q is weakly
monotone and that, along this path, the number of agents that experience spillover
is at most one.

Monotonicity: Assume that p̃`pp´
1 q “ p`

1 , that is, pp`
1 , p

´
1 q belongs to the closure

of S1`,0. Now, pick any p´
2 ă p´

1 . When the clock prices move from pp`
1 , p

´
1 q to

pp`
1 , p

´
2 q, the number of spillovers in the reverse auction can not increase, while the

number of spillovers in the forward auction is already at 0. Thus, pp`
1 , p

´
2 q belongs

to the closure of S1`,0 as well, thus p̃`pp´
2 q ě p`

1 . Consequently, p̃`ppq is weakly
monotone.

Finally, observe that S1`,0 does not intersect with S0,2 by Lemma 1. Thus, it can
only share a boundary with S1,1, S0,1 and S0,0. In either case, the number of agents
experiencing spillovers is at most one.
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Appendix C Proofs for Section 6

C.1 Proof of Lemma 2

Fix θ´i and consider two mutually exclusive cases. Suppose first that the set of
types excluded from trade is empty. Then the claim holds trivially.

Suppose that it is not empty. Let θ̂i be a type excluded from trade. By definition
of net utility, B

Bθi
ũipθ̂i, qipθ̂i, θ´iqq “ 0.

Next, the net surplus functions s̃i are absolutely continuous, a.e. differentiable and

B

Bθi
s̃ipθ̂i´, θ´iq ď

B

Bθi
ũipθ̂i, qipθ̂i, θ´iqq ď

B

Bθi
s̃ipθ̂i`, θ´iq,

where B

Bθi
s̃ipθ̂i´, θ´iq and

B

Bθi
s̃ipθ̂i`, θ´iq are left-hand and right-hand partial deriva-

tives respectively, see Theorems 1,2 in Milgrom and Segal (2002).

Next, at points of differentiability we can write:

B

Bθi
s̃ipθq “

B

Bθi
ũipθi, qipθqq “

ż qpθq

0

B

BθiBqi
uipθ, xqdx,

thus s̃i is convex in θi by monotonicity of qi in θi and single-crossing of ui.

Finally, since r B

Bθi
s̃ipθ̂i´, θ´iq,

B

Bθi
s̃ipθ̂i`, θ´iqs contains 0 at the type excluded from

trade, by the necessary first-order conditions, θ̂i is also the worst-off type.

C.2 Proof of Lemma 3

Equation (9) shows that qipθi, θ´iq is continuous in θi and bounds it’s slope away
from zero. Thus, qipθi, θ´iq is guaranteed to cross 0 at some type θi P R, in other
words, tetpθ´iq is non-empty, for any θ´i in the support. Next, by formula (4)

tipθq “ ũpθi, qpθqq ´ s̃pθi, qpθqq “

“ ũpθi, qpθqq ´ inf
θi
s̃ipθi, θ´iq ´

ż θi

θ˚

B

Bθ
ũpx, qpx, θ´iqqdx

where θ˚ P tetpθ´iq. Recalling that, in a v-optimal mechanism, infθ1 s̃ipθ
1
i, θ´iq “ 0

tipθq “

ż θi

θ˚

d

dx
ũpx, qpx, θ´iqqdx ´

ż θi

θ˚

B

Bθ
ũpx, qpx, θ´iqqdx “

“

ż θi

θ˚

B

Bq
ũpx, qipx, θ´iqqdqipx, θ´iq “

ż θi

θ˚

muipx, qipx, θ´iqqdqipx, θ´iq.
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Finally, we get formula (10) via monotone change of variables from x to q´1
i px, θ´iq.

C.3 Proofs of Lemma 3 with alternative versions of Assumption 5

Version 1 : vi are identical, Fi are identical.

Proof. To the contrary, assume that for some realization of types θ´i, trader i only
trades strictly positive quantities. Define a type z “ minj‰i θj, and observe that it
belongs to the support of each agent. Consequently, we can say that qipz, θ´iq ą 0.

Furthermore, the allocation can not decrease if we lower the types of traders j ‰ i.
Consequently, we can say that qipz, . . . , zq ą 0. But this can not be true because
any p P mvipz, 0q solves the first-order conditions in the symmetric case.

Version 2 : for any i and p P R, there exist a type z in the support such that
p P mvipz, 0q.

Proof. Pick a trader i, and fix a profile of types θ´i. Next, consider the economy
without trader i, that is, solve a system of first-order conditions

mvjpθj, q̃jq “ p̃, @j ‰ i,
ÿ

j‰i

q̃j “ 0.

This solution exists for some p̃.

Next, pick a type z in the support, such that p̃ “ mvipz, 0q. By construction, i is
excluded from trade in the original economy with the profile of types pz, θ´iq.

C.4 Proof of Proposition 3

We want to prove that agents face the same menus tipqq in both the auction and
the optimal mechanism. For that, it suffices to show that the integrand in (10)
coincides with the one in (11) for any qpθq ‰ 0.

Using the left-hand side of (12) we first write that

mτpp´ipxq, xq ` p´ipxq “ muipθ̂ipp´ipxq, xq, xq.

Second, we combine the right-hand side of (12) with the definition of the residual

37



supply curve
$

’

&

’

%

p´ipxq “ mvipθ̂ipp´ipxq, xq, xq

p´ipxq “ mvjpθj, qjq, @j ‰ i

x `
ř

j‰i qj “ 0.

The latter can be recognized as the system of first-order conditions for the optimal
mechanism, given that x is the allocation of agent i and θ´i are the types of others.
Thus θ̂ipp´ipxq, xq and q´1px, θ´iq coincide and, therefore,

muipθ̂ipp´ipxq, xq, xq “ muipq
´1

px, θ´iq, xq,

which completes the proof.

Appendix D Proofs for Section 7

D.1 Proof of Lemma 4

The boundedness of the expected net surplus comes from the fact that, on the one
hand, the net surplus is nonnegative by IR, and on the other hand, the sum of net
surpluses can not exceed the sum of net utilities at the efficient allocation

s̃ipθi, θ´iq ě 0,
ÿ

s̃ipθi, θ´iq ď Cpθiq,

therefore s̃ipθi, θ´iq ď Cpθiq for any θ in the support, and thus
ş

s̃ipz, θ´iqdFipzq is
majorized by

ş

CpzqdFipzq ă 8.

D.2 Proof of Proposition 4

Recall that our objective is
ĳ

Rn´1

n
ÿ

i“1

„
ż

R
pũipθi, qiq ´ s̃ipθi, θ´iqqq dFipθiq

ȷ

ź

j‰i

dFjpθjq, (19)

where s̃ipθi, θ´iq “
şθi
θ˚ ũ

1
1px, qpx, θ´iqqdx and θ˚ P tetpθ´iq, that is, θ

˚ is one of the
types excluded from trade by Lemma 2, and also one of the worst-off types, that
is, s̃ipθ

˚
i , θ´iq “ 0. Since s̃i integrable by Lemma 4 and θ˚ is finite by Lemma 3, we

can use the following representation:
ż

R
s̃ipθi, θ´iqdF pθiq “ lim

NÑ8

ż N

´N

s̃ipθi, θ´iqdFipθiq

“

ż θ˚

´N

s̃pθi, θ´iqdF pθiq `

ż N

θ˚

s̃pθi, θ´iqdpF pθiq ´ 1q ` opN ; θ´iq,
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for anyN sufficiently large. The remainder term vanishes in the limit, limNÑ8 opN ; θ´iq “

0 due to the definition of improper integral. Integrating the first two terms by parts,
we get that

ż

R
s̃pθi, θ´iqdF pθiq “

ż θ˚

´N

ũ1
1pθi, qpθi, θ´iqqF pθiqdθi

`

ż N

θ˚

ũ1
1pθi, qpθi, θ´iqqpF pθiq ´ 1qdθi ` opN ; θ´iq

“

ż

R

Ipqi ą 0q ´ F pθiq

fpθiq
ũ1
1pθi, qqdF pθiq

Note that Ipθi ą θ˚
i q “ Ipqi ą 0q since qi is monotone in θi and θ

˚
i is a type excluded

from trade. Plugging it into (19) gives us the virtual value Ji.

We next need to show that the virtual value J is concave and single-crossing to use
the first-order approach.

B2J

BθBq
“

B2ũ

BθBq
´

B

Bθ

ˆ

Ipqi ą 0q ´ F pθiq

fpθiq

˙

B2ũ

BθBq
´

Ipqi ą 0q ´ F pθiq

fpθiq

B3

Bθ2Bq
ũ ą 0,

B2J

Bq2
“

B2ũ

Bq2
´

Ipqi ą 0q ´ F pθiq

fpθiq

B3

BθBq2
ũ ă 0.

Both properties are guaranteed by Assumption 7.
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