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Abstract

We describe a two-stage mechanism that fully implements the set of efficient

outcomes in two-agent environments with quasi-linear utilities. The mechanism

asks one agent to set prices for each outcome, and the other agent to make a

choice, paying the corresponding price: Price & Choose. We extend our im-

plementation result in three main directions: an arbitrary number of players,

non-quasi linear utilities, and robustness to max-min behavior. Finally, we dis-

cuss how to reduce the payoff inequality between players while still achieving

efficiency.

JEL Codes: D71, D72.

Keywords: Efficiency, Subgame-perfect implementation, Mechanism, Prices.

1 Introduction

Ted and Joanna Kramer are getting a divorce. It gets messy. Not only do they need

to divide their assets, but they must decide on a complex arrangement for custody and

visitation rights of their son Billy. Many possible outcomes are on the table, and the

Kramers agree to use an outside arbitrator to find a solution. The arbitrator, Judge

∗We thank Yukio Koriyama, Jean-François Laslier, Olivier Tercieux and Dimitrios Xefteris for their
useful remarks and comments.

†fede@econ.berkeley.edu. UC Berkeley .
‡matias.nunez@polytechnique.edu. CREST & Ecole Polytechnique.
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Atkins, does not know the Kramers’ preferences over the different possible solutions,

but needs to find a good compromise despite his ignorance.

Our paper proposes a simple solution for Judge Atkins and the Kramers. The

solution is optimal, in the sense of producing an efficient outcome in any equilibrium of

the ensuing game of Kramer vs. Kramer, and relies on two key aspects of the problem:

First, that Joanna and Ted know each other very well. Their preferences are common

knowledge between them. Atkins does not know the Kramers’ preferences, but can

leverage their shared knowledge. Second, Ted has a high-paying job as an advertising

executive; so they have money available at hand to facilitate an agreement.

Our solution is a simple dynamic mechanism that we call Price and Choose (P&C

in the sequel). It works as follows:

1. The first mover sets up a zero-sum price vector that specifies a price for each of

the different options.

2. The second mover chooses one of the options as the outcome, and pays the first

mover the specified price.

We show in the paper that any equilibrium outcome of P&C is Pareto efficient. The

intuition behind the result is straightforward: The first mover’s best choice is to make

the second mover indifferent among all options; if she does otherwise, she is not playing

optimally as she can find ways of slightly altering the price vector without modifying

the choice of the second mover. This indifference implies that the second mover obtains

her average utility across the options in equilibrium. The second part of the argument

relies on off-equilibrium threats: in equilibrium, the second mover chooses the best

option(s) for the first mover. Indeed, if she does not make such choice, the first mover

can punish her by slightly modifying the price vector. This ends our argument since the

option that maximizes the payoff of the first mover, including transfers, is necessarily

one that maximizes the sum of the utilities: an efficient option.

Our paper contributes to the general theory of implementation, and to the more

practical literature on arbitration. We proceed to discuss each of these connections in

more detail.
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Arbitration is a private dispute resolution method that does not involve courts.

While the model in our paper is quite general, the problem faced by arbitrators, such

as Judge Atkins, is a good application of several aspects of the model we develop.1 Our

method allows the (two) involved parties to choose the arbitrator who will resolve the

dispute.2 These institutions may specify a structured selection procedure to help the

parties exercise their right of choice, such as the American Association of Arbitrators

(for instance, using vetoes, points, etc.). Two recent papers have proposed methods to

improve the procedures used by practitioners. The first one, de Clippel et al. (2014),

proposes a Shortlisting mechanism. Shortlisting works in only two stages, and the paper

tests its validity in the lab. The second paper, Barberà and Coelho (2022), considers

procedures with more steps, but achieving less inequality among players. A key common

ingredient in the problems studied in these two papers is that they do not allow for

monetary transfers between the players.

The lack of transfers is a realistic feature of some problems, but not of others. For

problems like the Kramers’, it makes sense to assume that money is available, and that

it may be used to facilitate an agreement. Economic theory has shown that introducing

transfers (or prices) can serve as a powerful coordination tool and lead to welfare gains.

Our proposal relies on transfers, but can accommodate rather general preferences over

money. In the paper, we first consider a setting where preferences are quasilinear, and

two players need to reach an agreement. Our goal is to design mechanisms that imple-

ment the utilitarian goal (that is, players end up maximizing the sum of the individual

utilities). With quasilinear preferences, utilitarianism captures economic efficiency ex-

actly. Then we generalize the result to a setting with non-quasilinear preferences over

transfers. In consequence, our results allow for example, for general attitudes towards

risky monetary lotteries.

Next, we turn to a discussion of implementation. Implementation theory studies

procedures for collective decision-making in the presence of selfish agents who may

1Arbitration is not the only application of our work; note that our results also deal with a setting
with an arbitrary number of players so that that agreements among countries is also a good illustration
of the current results.

2As argued by Barberà and Coelho (2022), practically all cross-border commercial disputes are
resolved by arbitration.

3



disagree on their preferences over outcomes. So-called full implementation looks for

procedures that induce a desirable outcome, regardless of equilibrium selection. It is

often difficult to achieve when there are only two agents, as in the example with Joanna

and Ted. Our paper considers full (subgame perfect) implementation in a general social

choice problem with monetary transfers. The P&C mechanism we propose has the

benefit of being natural and bounded, in contrast with some well-known proposals in the

literature on implementation (see Jackson (1992) for a critical review). Implementation

is often challenging when there are only two agents, but our baseline analysis of the

P&C applies precisely to the model with two agents.

The literature on implementation with transfers is not new. The classic demand-

revealing mechanisms (see Clarke (1971) and Groves (1976)) achieve implementation in

dominant strategies, even though they fail to be budget-balanced. These mechanisms

require utility to be quasi-linear in transfers. Our mechanism, in contrast, achieves

full implementation in subgame-perfect equilibrium; but it is budget balanced, and

does not require quasilinear utility. Groves and Ledyard (1977) describe a mechanism

that yields efficient Nash equilibria for the public-goods problem, see Groves (1979) for

an excellent summary. The more recent literature has shifted its attention to simple

mechanisms: Varian (1994) designs compensation mechanisms that achieve efficiency

in the presence of externalities. Such mechanisms are not balanced off-equilibrium,

whereas the P&C mechanism is balanced by definition.3 Similarly, Jackson and Moulin

(1992) describes simple mechanisms that implement efficient allocations in undominated

Nash equilibria; yet, the implementation result only applies with indivisible public goods

and quasi-linear utilities. As we have mentioned above, our results extend beyond this

setting.

The main setting is simple, but our arguments turn out to generalize in various

ways. Specifically, we show that the P&C mechanism can be adapted, and efficiency

still implemented, in the following variations of our basic model:

3The compensation mechanisms in Varian (1994) rely on fines to ensure that both players accurately
report each other’s “type,” which pushes transfers to be balanced in equilibrium; with three players
and more, compensation mechanisms rely on classical implementation ideas to make each player’s
payment do not depend on his own report. The P&C mechanism does not depend on this logic since
it gives each player either the possibility of setting a price vector (except the last one) which balances
the transfers.
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• n players. All players, but the last one, choose a price vector that the next

player faces. Prices must add to zero across outcomes. The last player chooses

an outcome, say x. Then each player pays their predecessor the price that it

demanded for x. Here the first mover receives a transfer but does not make any,

the last mover makes a transfer but does not receive any, whereas each of the

other players receives and makes transfers. The two-player version of our result

can be applied “recursively” to show that the mechanism implements the efficient

options. (Section 5)

• Non-quasi linear preferences. We consider a model in which agents have additively

separable preferences over money and outcomes, and show that the main result

of the paper continues to hold. (Section 6)

• Robust implementation. We relax the assumption that players play exactly a

subgame-perfect Nash equilibrium. Instead, the agents are ε-maximizing, and one

player makes a pessimistic worst-case assumption over the possible ε-optimizing

choices of the other player. (Section 7)

• Endogenous order of player. We tackle the implied first-move advantage in P&C

by having players bid for the role of moving first. (Section 8). There is also an

alternative approach to dealing with the first-mover advantage by constraining

prices to add up to a non-zero constant. This is briefly discussed after our basic

result is stated.

The rest of the paper is organized as follows. Section 2 reviews the literature. After

laying down the model in Section 3, Section 4 presents the Price & Choose mechanism

for two players and presents the implementation argument. Sections 5 and 6 respectively

extend the model to an arbitrary number of players and to non quasi-linear utilities.

Section 7 presents the robustness of the mechanism with respect to adversarial behavior.

Finally, Section 8 discusses the other previously mentioned technical extensions.
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2 Review of the literature

Classical results in implementation say that, with two players, and in the absence of

transfers, the only Pareto efficient rule that is implementable is dictatorship (see Maskin

(1999) and Hurwicz and Schmeidler (1978)). While more permissible results arise when

domains are restricted (Moore and Repullo (1990) and Dutta and Sen (1991)), or when

mechanisms are not deterministic (Laslier et al. (2021)), a commonly held view is that

it is hard to design mechanisms with desirable properties in two-player settings. This

has led the literature to consider the short mechanisms (short in the sense of few steps)

proposed by de Clippel et al. (2014) and Barberà and Coelho (2022).

Our P&C mechanism deviates from these papers by working in an environment

with transfers, and by being dynamic in nature—one player sets up a price and the

other player chooses an option. The resulting solution concept is subgame-perfect

Nash equilibrium. One strand of the literature is concerned with the design of mecha-

nisms with transfers. Beyond the papers previously cited, Hurwicz (1977), Dutta et al.

(1995), Sjöström (1996) and Saijo et al. (1996) study Nash implementation when play-

ers announce prices and quantities. Among other findings, they prove that the no-envy

and Pareto correspondence are implementable. Moore and Repullo (1988) prove that

in the quasi-linear setting, any social choice rule is implementable with two players.

Yet, this result has been subject to several criticisms (see Aghion et al. (2012)); and

Moore and Repullo (1988) themselves write that their mechanisms “are far from simple;

players move simultaneously at each stage and their strategy sets are unconvincingly

rich.” Our P&C mechanism is arguably very simple, and uses a natural economic frame-

work. It also continues to work, even when we deviate from the quasi-linear setting

(Section 6).4

In dynamic environments with transfers, the P&C mechanism is also related to Gary

Becker’s “Rotten Kid theorem;” see Bergstrom (1989) for a formal analysis. Bergstrom

proves how to achieve efficiency in the Rotten Kid two-stage game, where a benevo-

lent planner makes transfers to several selfish players. His main result involves quasi-

4Our model with transfers, but non-quasi-linear preferences, is close to the recent literature
on matching problems with imperfectly transferable utility such as Legros and Newman (2007),
Chiappori and Salanié (2016) and Galichon et al. (2019).
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linear preferences but also discusses extensions that do not involve these preferences.

To cite the most relevant of them, Chen et al. (2022a) considers two-stage stochastic

mechanisms that achieve full implementation under initial rationalizability in complete

information environments. Chen et al. (2022b) consider implementation allowing for

lotteries and monetary transfers in the mechanism and characterize the implementable

rules. This is, of course, different from P&C which is not a random mechanism.

Given our motivation, we should mention the literature on dissolving partnerships:

for example Crampton et al. (1987). The literature is usually focused on mechanism

design, not full implementation, and considers more restrictive environments than we

have studied here. Crawford and Heller (1979) and McAfee (1992) consider variations of

the “cut and choose” mechanisms, which were an inspiration of sorts for our mechanism.

The name “price and choose” is meant to highlight this connection. Of course, cut and

choose (or divide and choose) make sense for allocation problems, not for the general

social choice environments we have studied here.

Finally, we should also mention the literature that crafts mechanisms implement-

ing efficient options, such as Perez-Castrillo and Wettstein (2002), Ehlers (2009) and

Eguia and Xefteris (2021). The common feature of the mechanisms designed by these

papers is that they are simultaneous, and rely on lotteries as tie-breaking devices. Our

approach differs from theirs in that we design a deterministic dynamic (with sequential

choices) mechanism. We think of this distinction as an advantage. On the one hand,

de Clippel et al. (2014) and Camerer et al. (2016) have shown that subgame perfect

equilibrium is a good predictor in the lab for a particular mechanism, the shortlisting

one. The shortlisting mechanism is closely related to P&C , since the first-mover pro-

poses a list of alternatives, and her opponent selects an alternative from the proposed

list. On the other hand, Nash equilibrium often performs poorly in experimental design

with simultaneous interactions and lotteries.

3 The Model

Utilities. We consider a finite set N of players, with generic element i, who bargain

over a finite set of options denoted by A = {a1, a2, . . . , ak}. Players have quasi-linear

7



utility functions, defined over the options in A and money. So player i has a utility

function ui : A → R, and enjoys a utility of ui(a) + ti if the outcome is a ∈ A and they

receive a monetary transfer ti.
5

For each player i, we write Avgi to denote 1

k

∑k
j=1 ui(aj), the average utility over A for

player i. Utilitarian welfare from an option a is
∑

i ui(a), and max(u) = max{
∑n

i=1 ui(aj) :

1 ≤ j ≤ k} denotes the maximum utilitarian welfare.

Outcomes. For each i, ti denotes the monetary transfer that player i obtains and

t = (t1, . . . , tn) ∈ R
n is a vector of transfers. An allocation, or outcome, (a, t1, . . . , tn)

is a decision (that is, an option in A) coupled with a vector of transfers.

Welfare. An allocation (a, t1, . . . , tn) ∈ A × Rn is Pareto optimal if there is no other

allocation (a′, t′
1, . . . , t′

n) ∈ A×Rn with 1) ui(a)+ ti ≤ ui(a
′)+ t′

i for all i, 2) ui(a)+ ti <

ui(a
′) + t′

i for all least one i, and 3)
∑n

i=1 t′
i ≤

∑n
i=1 ti. An outcome a ∈ A is efficient if

max(u) =
∑n

i=1 ui(a), so it achieves maximum utilitarian welfare. It is well known that

an allocation (a, t1, . . . , tn) ∈ A × Rn is Pareto optimal if and only if a is efficient.

Subgame perfect implementation. We provide an informal definition of subgame-

perfect implementation because the paper is devoted to a particular mechanism, so

providing a formal and general definition is a big distraction.

A mechanism specifies a game-form: this means that, when the mechanism is cou-

pled with utility functions over outcomes for each of the players, it defines an extensive-

form game. For a mechanism θ, let SPNEθ(u) be the set of subgame perfect equilibria

when the utility profile is u. A mechanism subgame perfect implements the set of effi-

cient options if for any u, any member of SPNEθ(u) selects an efficient option and any

efficient option is selected by some member of SPNEθ(u).

4 Price & Choose mechanism

We proceed with our baseline result by first describing the Price & Choose mechanism

for two players, and showing that it achieves efficient implementation in subgame-

perfect Nash equilibrium.

Consider an instance of our model with two players. The Price & Choose mechanism

5The assumption of quasi-linearity is relaxed in Section 6.
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requires player 1 to set up a price vector, that is a price for each of the different options.

Prices may be positive or negative, and “budget balanced,” in the sense of having to

add up to zero. Player 2 then chooses an alternative in A, and pays player 1 the price

that she demanded for that alternative.

The formal definition of the Price & Choose mechanism (P&C) follows. Let P =

{p ∈ R|A| :
∑k

j=1 pj = 0}

Timing.

1. Player 1 chooses a price vector p ∈ P .

2. Player 2 chooses an option a ∈ A and transfers pa to Player 1.

For any option a chosen at the second stage and any price vector p set in the first

stage, the payoffs associated to this mechanism equal g(p, a) = (g1(p, a), g2(p, a)) =

(u1(a) + pa, u2(a) − pa).

Now it is obvious that the P&C mechanism defines an extensive form game, given

the players’ utility functions. A strategy profile in the game induced by the P&C

mechanism is a pair σ = (σ1, σ2), with σ1 ∈ P and σ2 : P → A. It is also obvious that

there exists at least one subgame perfect Nash equilibrium in pure strategies, as this is

a finite perfect-information game.

We say that the P&C mechanism implements the efficient options in subgame-perfect

equilibrium if, for any subgame-perfect Nash equilibrium σ = (σ1, σ2), σ2(σ1) is efficient;

and, conversely, for any efficient outcome a ∈ A, there is a subgame-perfect Nash

equilibrium σ = (σ1, σ2) with a = σ2(σ1).

Proposition 1. P&C subgame-perfect implements the set of efficient options.

Proof. The proof is divided in five steps: the existence of a price vector that makes

Player 2 indifferent between all options (Step A), the proof that this price vector is the

unique one compatible with equilibrium behavior (Step B), the proof that any equilib-

rium selects an efficient option (Step C) and finally the construction of an equilibrium

selecting an efficient option (Step D) and the converse construction: for each efficient

option, there is an equilibrium implementing it.

Step A: there is one and only one price p∗ ∈ P with g2(p
∗, aj) = u2(aj) − p∗

j being

constant in j.

9



Indeed if θ = u2(aj) − pj , then

kθ =
k∑

j=1

u2(aj) −
k∑

j=1

pj = kAvg2,

as p ∈ P . Therefore, p∗
j = u2(aj) − θ = u2(aj) − Avg2.

Step B: If σ is a subgame-perfect Nash equilibrium, then σ1 = p∗.

Let σ be a subgame-perfect equilibrium, p = σ1 and ai = σ2(p). We claim that

g2(p, aj) = u2(aj)−pj is constant in j. Suppose then, towards a contradiction, that there

is j and h with g2(p, ah) > g2(p, aj). Let H be the set of h with ah ∈ argmax{u2(aj)−pj :

1 ≤ j ≤ k}, and note that i ∈ H while j /∈ H . Consider the price vector p′ that is

identical to p except that p′
i = pi+ε, p′

h = ph+2ε for h ∈ H\{i}, and p′
j = pj +ε−2ε|H|.

For ε > 0 small enough, Player 2 finds it uniquely optimal to choose ai, while player

1’s payoff is strictly greater. A contradiction.

Since g2(p, aj) = u2(aj) − pj is constant in j, by Step A, p = p∗.

Step C: If σ is a subgame-perfect Nash equilibrium, then σ2(p
∗) ∈ argmax{u1(aj) +

u2(aj) : 1 ≤ j ≤ k}.

Suppose, towards a contradiction, that σ2(p∗) = aj and that u1(aj) + u2(aj) <

u1(ai) + u2(ai). By definition of p∗, however, u2(aj) − p∗
j = u2(ai) − p∗

i . Suppose

now that player 1 chooses a price vector p′ ∈ P that is identical to p∗, except in that

p′
i = p∗

i − ǫ and p′
j = p∗

j + ǫ, for ǫ > 0. Then we have that σ2(p
′) = ai, as now ai is the

uniquely optimal choice for player 2, while

u1(aj) + p∗
j = u1(aj) + u2(aj) − Avg2 < u1(ai) + u2(ai) − ǫ − Avg2 = u1(ai) + p′

i,

for ǫ > 0 small enough, contradicting that σ is a subgame-perfect Nash equilibrium.

Step D: There is a subgame-perfect Nash equilibrium that results in the efficient

outcome.

Let σ1 = p∗ and σ2(p) be any sequentially rational choice of outcome, as long as it

selects the efficient outcome after p∗, which is optimal given that 2 is indifferent between

all outcomes after p∗.

Step E: For every efficient outcome, there is a subgame-perfect Nash equilibrium that
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selects it.

Observe that Step A is a general remark on the mechanism whereas Steps B and C

deal with any subgame perfect equilibrium. This means that in any subgame perfect

equilibrium: σ1 = p∗ and σ2(p∗) ∈ argmax{u1(aj) + u2(aj) : 1 ≤ j ≤ k}. In other

words, any subgame perfect equilibrium outcome is efficient. Let aj be an efficient

outcome. Consider the strategy profile σ1 = p∗ and σ2(p∗) = aj . Player 2 is playing a

best response since p∗ is making him indifferent between all options. Player 1’s payoff

equals :

u1(aj) + p∗
j = u1(aj) + u2(aj) − Avg2 = max(u) − Avg2.

This means that, given p∗, Player 1 is indifferent among all efficient options. Now,

suppose that Player 1 alters the price vector to force Player 2 to choose another efficient

option. Any option ah with a price ph > p∗
h will not be chosen by Player 2. This means

that if Player 1 wants to induce Player 2 to choose some option al he must set pl < p∗
l ;

however, this implies that if Player 2 chooses al Player 1’s payoff is lower or equal than

max(u) − Avg2 since Player 1’s payoff is increasing on pl, a contradiction. Hence, any

efficient option is selected in some subgame perfect equilibrium.

The P&C mechanism confers the first player an advantage, as the equilibrium payoffs

to Player 2 are always Avg2, while Player 1 gets a payoff that is greater than Avg1. We

consider this issue in detail in Section 8, but we note here that the assumption that

prices in P add to zero may be modified to avoid (or exacerbate) the payoff imbalance.

Indeed, for any constant α, we may define the P&C mechanism with Player 1

choosing a price in Pα = {p ∈ R|A| :
∑k

j=1 pj = α}. By considering a modified game,

with P = P0 as above, but in which Player 2’s utility is u2 − α/k, and 1’s utility is

u1 + α/k, we see that P&C again subgame-perfect implements the efficient alternative.

Now, however, Player 2’s payoff is Avg2 − α
k

while 1’s payoff is max(u) − Avg2 + α
k
. A

negative value of α serves to balance the payoffs to the two agents.

An outside agent like Judge Atkins, who does not know the utilities of players 1

and 2, may want to use Pα in order to balance the P&C mechanism, but not know the

proper value of α. It is, however, possible to endogenize the needed value of α. One

11



idea is to proceed as follows:

1. Player 1 proposes a real number α.

2. Player 2 decides between being the chooser (so that Player 1 is the proposer) or

the proposer (and Player 1 becomes the chooser).

3. The proposer set-up a price vector with p ∈ Pα and

4. The chooser selects an alternative aj and pays pj to the proposer.

By replicating the arguments in Proposition 1, one can show that, in equilib-

rium, α = k
2
(Avg1 + Avg2 − max(u)) so that Player 2 is indifferent between the two

roles. This means that the respective payoffs equal 1

2
(max(u)) − 1

2
(Avg2 − Avg1) and

1

2
(max(u))+ 1

2
(Avg2−Avg1). This version with an endogenous sum of the prices induces

a redistribution between players with respect to the default version of P&C , in which

the prices sum up to 0 and payoffs equal (max(u) − Avg2, Avg2). The main difference

between the P&C with endogenous α is that the payoff difference only depends on the

players’ average payoff, and not on the total payoff max(u).

Section 8 fleshes out a related idea for balancing payoffs in the P&C mechanism.

5 Price & Choose with Many players

We now turn to a many-player version of the problem. We shall see that the previous

result implies that a simple n-player variation of our P&C mechanism achieves subgame-

perfect implementation of the efficient options. In this mechanism, the first n−1 players

propose, one after the other, a balanced price vector that they demand as payment from

the next player in the order. The nth player chooses an option a ∈ A. The endogenously

set prices determine the transfers made between consecutive players. A balanced price

vector remains a vector of prices such that the sum of prices equals zero.

Formally, the P n−1&C mechanism works as follows :

Timing.

1. Player 1 sets up a price vector p2 ∈ P .

12



2. For each i = 2, . . . , n − 1, Player i sets up a price vector pi+1 ∈ P , knowing prices

p2, . . . , pi.

3. Player n chooses an option a as the outcome given the prices p2, . . . , pn.

Transfers.

Say that aj is the option chosen by Player n; this means that Player n pays Player

n − 1 the price pn(aj). In turn, Player n − 1 has to pay the price pn−1(aj) to Player

n − 2. This applies to any Player m with m = 2, . . . , n − 1, so that he pays pm(aj) to

player m − 1 while receiving the transfer pm+1(aj) from player m + 1. Finally, Player 1

receives the transfer p2(aj) from Player 2, but makes no further payments. This entails

that, assuming quasi-linear preferences, the payoffs associated to the option aj and the

price vector p = (p2, . . . , pn) equal:

gn(p, aj) = un(aj) − pn(aj).

gm(p, aj) = um(aj) − pm(aj) + pm+1(aj) for m = 2, . . . , n − 1.

g1(p, aj) = u1(aj) + p2(aj).

Proposition 2. The Pn−1&C mechanism subgame-perfect implements the set of effi-

cient options.

We prove Proposition 2 by recursively applying Proposition 1.

Proof. We use Proposition 1 and proceed by induction. Fix a subgame-perfect Nash

equilibrium σ = (σ1, . . . , σn). Define pn+1 = p1 = (0, . . . , 0) so that, for any player i,

if the option a is the outcome, with the sequence of prices p2, . . . , pn, then i’s payoff is

ui(a) − pi(a) + pi+1(a).

We claim that in, any subgame given by (p1, . . . , pi−1), the outcome under σ must

be such that, for 1 ≤ i ≤ n :

1. σn(p2, . . . , pn) ∈ A maximizes
∑n

j=i+1 uj(a
′) + ui(a

′) − pi(a′) over a′ ∈ A.

2.
∑n

j=i+1 uj(σn(p)) − pi+1(σn(p)) = Average(
∑n

j=i+1 uj).

The proof of this claim is by induction: First, by Proposition 1, the claim is true for

any subgame (p1, . . . , pn−1), as the resulting subgame is an instance of the two-player

game with payoffs un−1(a) − pn−1(a) and un(a). Second, if the claim is true for any
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subsequent subgame, then for any subgame (p1, . . . , pi) we may consider a two-player

game between player i and a fictitious player (i+1)′. The former has payoffs ui(a)−pi(a)

while (i + 1)′ payoffs’ are
∑n

j=i+1 uj(a). By the inductive hypothesis, this game is an

instance of the two-player game, and thus by Proposition 1, the claim follows.

Now if σ is a subgame-perfect Nash equilibrium that results in the outcome a∗ and

price sequence p1, . . . , pn+1, we have that a∗ maximizes
∑

i ui(a) over a ∈ A, by property

(2), and p1 = 0.

6 Non quasi-linear preferences

We now discuss the properties of the P&C mechanism when players’ preferences are

not quasi-linear in monetary transfers. In particular, suppose that when the outcome

is (a, t1, t2) then player 1’s utility is u1(a) + ζ(t1), and player 2’s utility is u2(a) + η(t2).

Suppose that the functions η, ζ : R → R are monotone (strictly) increasing, con-

tinuous and η(R) = ζ(R) = R. Note that when player 2 pays pa to player 1, player 2’s

utility decreases by η(pa) while player 1’s utility increases by ζ(pa). This implies that,

for any option a chosen at the second stage and any price vector p set in the first stage,

the payoffs associated to this mechanism equal gη,ζ(p, a) = (u1(a)+ζ(pa), u2(a)−η(pa)).

Since η admits an inverse function and η, ζ are defined over the real numbers, the

problem of analyzing the subgame perfect equilibria of the P&C mechanism with pay-

offs given by gη,ζ is identical to compute the subgame perfect equilibria when payoffs

equal h(p, a) = (h1(p, a), h2(p, a)) = (u1(a) + β(pa), u2(a) − pa) with β being monotone

increasing. In other words, we may without loss set η to be the identify function.

Proposition 3. If preferences are not quasi-linear, the P&C subgame-perfect imple-

ments the set of Pareto optimal options.

Proof. Let (σ1, σ2) be a subgame-perfect Nash equilibrium. Steps A and B from Propo-

sition 1 remain true with non quasi-linear preferences. We denote by p∗ = σ1 the price

vector selected by Player 1 in equilibrium. Moreover, Player 2 is indifferent between all

options given p∗. Indeed, as in the proof of Proposition 1, p∗
a = u2(a) − Avg2.

14



Now we claim that the outcome σ2(p∗) = a must be Pareto optimal in A. Suppose

then, towards a contradiction, that there is some a′ ∈ A with ui(a
′) ≥ ui(a), i = 1, 2,

with strict inequality for some i. Then, given that β is strictly monotone increasing,

we have that

u1(a) + β(u2(a) − Avg2) < u1(a
′) + β(u2(a

′) − Avg2).

Now, however, again as in Step C of Proposition 1, Player 1 can decrease the price

of a′ be ǫ and increase the price of a by the same amount so that a′ is the unique

best response by player 2. Player 1’s payoff is then u1(a
′) + β(u2(a

′) − Avg2 − ε) >

u1(a) + β(u2(a) − Avg2), for ε > 0 small enough.

Clearly the previous argument holds regardless of which Pareto optimal outcome is

chosen, and the proof of the result may be concluded along the same lines as the proof

of Proposition 1.

7 P&C as a robust mechanism

The analysis so far hinges, of course, on the assumption of equilibrium. We now argue

that P&C is robust to small deviations from the equilibrium assumption. We consider

two robustness checks: perturbations from the complete information assumption and

approximate equilibrium with adversarial behavior.

Regarding the first robustness check, Aghion et al. (2012) study implementation

with transfers under perturbations of the complete information assumption. They prove

that any mechanism that subgame perfect implements a social choice function which

fails to be Maskin monotonic6 under complete information admits a sequential equilib-

rium with undesirable outcomes when information is perturbed. Their result is stated

for finite strategy sets as well as for countably infinite ones, so it does not exactly apply

to P&C and our setting. For completeness, however, we now show by example that the

social choice function that the P&C mechanism implements is not Maskin monotonic.

6Maskin monotonicity plays a central role in implementation theory since any Nash implementable
social choice function needs to satisfy it.
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To see why, consider the next example involving three alternatives and quasi-linear

preferences over transfers. Let A = {a1, a2, a3} be the set of options and u = (u1, u2)

and u′ = (u1, u′
2) denote two possible utility profiles with u1 = u2 = (1, 0, −1) and

u′
2 = (1, −2, −1). The set of allocations equals {(a′, t1, t2) ∈ A × R

2 with t1 + t2 = 0},

where a′ is the implemented option and t1,t2 are the transfers of players 1 and 2 re-

spectively. The sum of the transfers is zero since Player 2 makes a transfer to Player 1

in the P&C mechanism. Recall that a social choice function f maps the set of utility

vectors U into the set of allocations. A social choice function is Maskin monotonic on

U if for any pair of utility vectors u, u′ ∈ U , if x = f(u) and

{(i, y) | ui(x) ≥ ui(y)} ⊆ {(i, y) | u′
i(x) ≥ u′

i(y)},

(i.e. no player ranks x lower when moving from u to u′) then x = f(u′). The allocation

x chosen by the P&C mechanism where 1 is the first-mover equals x = (a1, 1, −1) since

a1 is the efficient option and the price vector is p = (1, 0, −1). When moving from u

to u′, no player ranks x lower since (i) the utility function of 1 remains unchanged and

(ii) for player 2, the utilities of a1 and a3 remain unchanged whereas the utility of a2

goes down. If the rule is Maskin monotonic, x should be chosen in u′. Yet, the chosen

allocation in u′ is y = (a1, 2/3, −2/3) and clearly x 6= y, violating Maskin monotonicity.

We now consider a different robustness test in line with the spirit behind robust

mechanism design (see Carroll (2019) for an excellent overview). The deviations we

have in mind relax the notion of equilibrium in two ways: First, players are only

approximately optimizing; they are “ε-maximizers.” Second, the assumption of approx-

imate optimization gives rise to ambiguity in how the second player will choose, and

we assume that Player 1 operates under a worst-case scenario. So Player 1 expects

that the ambiguity will be resolved adversarially by Player 2. As we prove below, the

P&C mechanism still achieves efficient implementation in the perturbed setting we have

outlined.

The assumption that Player 2 is adversarial could be motivated by ideas of negative

reciprocity (see Fehr et al. (2021) for a recent contribution on this idea in implementa-

tion), in which players’ utilities depend negatively on the utility level of their opponent.
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Observe also that, in the equilibrium of P&C in Section 3, the opposite behavior arises:

Player 2 is indifferent between all alternatives and he chooses the one maximizing Player

1’s payoff (this occurs, as we show, endogenously; it is not an assumption).

Formally, we say that, for a fixed ε > 0, option a is an ε-maximizer for Player 2 if

there is no a′ that is better than a by more than ε. This is equivalent to saying that

a is an ε-maximizer for Player 2 ⇐⇒ g2(p, a) + ε ≥ g2(p, a′) for any a′ 6= a. We denote

by βε
i (p) the set of ε-maximizers at the price vector p for Player 2. The adversarial

nature of Player 2 is then captured by setting σ2(p) ∈ argmin{g1(p, a) : a ∈ βε
2(p)}.

In words, Player 2 selects the option among ε-maximizers that minimizes Player 1’s

payoff.

Similarly, we say that Player 1 is ε-maximizing when choosing a price vector p ∈ P

if g1(p, σ2(p)) + ε ≥ g1(p
′, σ2(p′)) for all p′ ∈ P .

To sum up, we say that the strategy profile σ = (σ1, σ2) is a ε-robust subgame

perfect Nash equilibrium if

1. σ2(p) ∈ argmin{g1(p, a) : a ∈ βε
2(p)} for all p ∈ P ,

2. and Player 1 is ε-maximizing when choosing σ1 ∈ P .

We say that σ2(σ1) is the outcome of the ε-robust subgame perfect Nash equilibrium σ.

For simplicity we assume here that there is a unique efficient alternative. We expect

that the argument generalizes to settings with more than one efficient option.

Proposition 4. For any ε > 0 small enough, the unique ε-robust subgame perfect Nash

equilibrium outcome of P&C is the efficient outcome.

Proof. Let p∗ be the price vector constructed in the proof of Proposition 1. So g2(p
∗, aj) =

u2(aj) − p∗
j is constant in j and p∗

j = u2(aj) − Avg2 for each aj ∈ A.

Without loss of generality, we say that the (unique) efficient option is a1 ∈ A. So

max(u) = u1(a1) + u2(a1) > u1(aj) + u2(aj) for all j 6= 1.

Choose ε > 0 small enough so that

u1(aj) + u2(aj) +
k − 1

k
ε < u1(a1) + u2(a1) − 2ε (1)

17



for all j 6= 1.

Before we get started, observe that if aj = σ2(p), then aj ∈ βε
2(p), and hence

u2(aj) − pj + ε ≥ u2(ah) − ph for all h 6= j. Therefore:

u2(aj) − pj ≥ Avg2 −
k

k − 1
ε. (2)

The proof is now divided in two steps. In Step A, we exhibit an ε-subgame-perfect

Nash equilibrium that selects a1. In Step B, we show that, despite the potential multi-

plicity of equilibria, all of them select option a1 as the equilibrium outcome.

Step A: Consider the strategy profile σ defined by

a) q∗ = (p∗
1 − ε, p∗

2 + ε
k−1

, p∗
3 + ε

k−1
, . . . , p∗

k + ε
k−1

)

b) Player 2 chooses a1 if p = q∗ and minimizes the payoffs of Player 1 over β2
ε (p)

otherwise.

To see why this is an ε-equilibrium, observe that with q∗, the payoffs of both players

are respectively equal to:

g1(q
∗, ·) = (u1(a1) + p∗

1 − ε, u1(a2) + p∗
2 +

ε

k − 1
, . . . , u2(ak) + p∗

k +
ε

k − 1
)

g2(q
∗, ·) = (u2(a1) − p∗

1 + ε, u1(a2) − p∗
2 −

ε

k − 1
, . . . , u2(ak) − p∗

k −
ε

k − 1
).

Thus, βε
2(q∗) = {a1}, so that Player 2 chooses a1 as we have claimed. To complete

the proof, we need to check that Player 1 does not have a profitable deviation that

exceeds their payoff by at least ε. Assume, towards a contradiction, that Player 1 can

find a price vector p that ensures him a payoff strictly greater than g1(q∗, a1) + ε. Let

aj = σ2(p). Then we have u1(aj) + pj > u1(a1) + q∗
1 + ε.

There are two cases to consider. The first case is when aj = a1. Then u1(a1) + p1 >

u1(a1) + q∗
1 + ε implies that p1 > q∗

1 + ε = u2(a1) − Avg2. Thus Avg2 > u2(a1) − p1, and

we conclude that there exists aj with u2(aj) − pj > u2(a1) − p1.

At the same time, a1 = σ2(p), which implies that a1 ∈ βε
2(p). But then u2(aj)−pj >

u2(a1) − p1 means that aj ∈ βε
2(p), so σ2(p) = a1 is only possible if u1(a1) + p1 ≤
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u1(aj) + pj (by the definition of σ2). Adding up these inequalities, we obtain that

u1(a1) + p1 + u2(a1) − p1 < u1(aj) + pj + u2(aj) − pj,

which contradicts the definition of a1.

The second case to consider is when aj 6= a1. Then the assumption that q∗ is not

an ε-optimum yields that

u1(aj) + pj > u1(a1) + q∗
1 + ε = u1(a1) + u2(a1) − Avg2.

Combine this inequality with Equation (2) to obtain that

u1(aj) + pj + u2(aj) − pj > u1(a1) + u2(a1) −
k − 1

k
ε,

contradicting (1).

Step B: Consider any ε-subgame perfect equilibrium (p, σ2). We claim that σ2(p) = a1,

and suppose (towards a contradiction) that σ2(p) = aj 6= a1.

We first observe that u1(aj) + pj ≥ u1(a1) + u2(a2) − Avg2 − 2ε, because Player

1 may select q∗ (as constructed in Step A) and guarantee a payoff of u1(aj) + pj ≥

u1(a1) + u2(a2) − Avg2 − ε.

By (2), we obtain

u1(aj)+pj+u2(aj)−pj ≥ u1(a1)+u2(a2)−Avg2−2ε+Avg2−
k − 1

k
ε = u1(a1)+u2(a2)−2ε−

k − 1

k
ε,

contradicting (1).

8 Bid, Price, and Choose

The P&C mechanism implements a Pareto efficient option in the general model of social

choice with transfers, but it does so with a particular set of transfers. In fact, the first

mover is treated asymmetrically with respect to the other players. Consider P n−1&C

and note that every player other than the first player in the order receives a payoff
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that equals Avgi, their average payoff from an option in A. The first moving player

will receive, instead, a payoff that equals max(u) −
∑

j 6=1 Avgj > Avg1; a first-mover

advantage.

To correct the resulting unequal welfare distribution, we could proceed as was sug-

gested after we stated the proof of Proposition 1. Instead, here we focus on ideas sug-

gested in the literature by Jackson and Moulin (1992) and Pérez-Castrillo and Wettstein

(2001); where a bid determines the order according to which players play. Specifically,

all players bid to be the first mover, and the highest bidder wins (ties being broken by

a uniform draw). The winning bid is then equally split among the rest of the players.

Then the players play the P&C mechanism, where the player with the winning bid is

the first mover. As we show, this bidding stage reduces inequality among players, and

makes the equilibrium payoffs order independent. That is, in equilibrium, players have

no preferences ex-post over the stages at which to participate.

More formally, consider an auction for the role of choosing first. Each player submits

a bid, bi ≥ 0. Let W = {i : bi ≡ max{bj : 1 ≤ j ≤ n}} be the set of winners — the set

of players who submitted the highest bids. One winner is chosen at random (uniformly)

to pay their bid and become the first mover. The bid collected from the first mover is

then distributed in equal shares among the rest of the players. So if i ∈ W is selected,

then i pays bi and becomes the first mover, while all the remaining players receive a

payment of 1

n−1
bi. The order of play among players who are not first is determined at

random.

Proposition 5. Bid, price, and choose subgame-perfect implements the set of efficient

options. Moreover, in any equilibrium, if U i are the equilibrium payoffs to players

i = 1, . . . , n, then

U i − U j = Avgi − Avgj.

Proof. Let η =
∑n

i=1 ui(a
∗)−

∑n
i=1 Avgi, where a∗ is an efficient outcome, and b∗ = n−1

n
η.

Consider a P&C subgame, after the order of play has been determined, and observe

that, in any subgame-perfect equilibrium outcome of this subgame, the payoffs to a

player j who is not the first mover is Avgj , while the payoff to a player i who is the

first mover is Avgi + η. Thus, if i is a winner of the auction, and is randomly chosen to
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move first, their payoff is Avgi + η − bi. Any player j 6= i gets payoff Avgj + bi/(n − 1).

By definition, η − b∗ = b∗/(n − 1), so the difference in payoffs is as in the statement of

Proposition 5.

Note first that there exists a symmetric Nash equilibrium of the auction with bi = b∗

for all i, as η − b∗ = b∗/(n − 1) ensures that the payoff from winning and losing are the

same. Bidding higher than b∗ would ensure winning, but with a strictly lower payoff;

and bidding lower than b∗ would result in losing, but getting the same payoff as with a

bid of b∗.

This symmetric equilibrium is not unique, but all other equilibria have the same

outcome. Indeed there is no Nash equilibrium with a single winner, as the winner

would gain from lowering their bid. For any W with at least two players, there is a

Nash equilibrium with bi = b∗ for i ∈ W and bi < b∗ for i /∈ W . This follows from the

same argument as above.

Finally, consider a profile of bids with a set of winners choosing b′ 6= b∗. At b′ the

payoff from winning differs from the payoff from losing. If the latter is higher, a winner

has an incentive to lower their bid. If the latter is lower, they can benefit by raising

their bid. So there is no Nash equilibrium in which the winning bid differs from b∗.

9 Conclusion

We have considered implementation in the general social choice problem with money,

and an arbitrary number of agents.

The Price & Choose mechanism constitutes a simple procedure for reaching efficient

agreements. A remarkable feature of our approach is that we do not use penalties, off-

equilibrium threats or lotteries, classical techniques in the mechanism designer toolkit

to discipline players. The main shortcoming of our approach is that it relies on complete

information ; we have addressed this weakness by considering a model with maxmin and

ε-equilibrium behavior and shown that the set of efficient options remains implemented

by the P&C mechanism - whether experimentally subjects manage to reach efficient

agreements through the described methods remains an empirical question.7

7Another possible extension is to understand how to achieve similar results in incomplete infor-
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