arXiv:2210.09828v1 [econ.EM] 18 Oct 2022

Modelling Large Dimensional Datasets with Markov
Switching Factor Models

Matteo Barigozzi! Daniele Massacci?

October 19, 2022

Abstract

We study a novel large dimensional approximate factor model with regime changes in
the loadings driven by a latent first order Markov process. By exploiting the equivalent
linear representation of the model we first recover the latent factors by means of Principal
Component Analysis. We then cast the model in state-space form, and we estimate load-
ings and transition probabilities through an EM algorithm based on a modified version
of the Baum-Lindgren-Hamilton-Kim filter and smoother which makes use of the factors
previously estimated. An important feature of our approach is that it provides closed
form expressions for all estimators. We derive the theoretical properties of the proposed
estimation procedure and show their good finite sample performance through a compre-
hensive set of Monte Carlo experiments. An important feature of our methodology is that
it does not require knowledge of the true number of factors. The empirical usefulness of

our approach is illustrated through an application to a large portfolio of stocks.

Keywords: Large Factor Model, Markov Switching, Baum-Lindgren-Hamilton-Kim Fil-

ter and Smoother, Principal Component Analysis, Stock Returns.
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1 Introduction

This paper develops a comprehensive approach for the analysis of large dimensional models
exhibiting an approximate factor structure, in which the loadings are subject to regime shifts
driven by a first order latent Markov process. We label these large dimensional Markov

Switching factor models.
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Since the work of |H_am1]L_(m| (Il%d), which was inspired by the seminal contribution of

bddfddﬁ.nd&lmndi] M), Markov switching models have been widely used in the empirical

analysis of macroeconomic and financial time series data: |H@m1]$gm| (IZ_Qld) gives an overview
from a macroeconomic perspective; |G.u]d_cﬂ.m| (IZQLIJ), and |An.g_a.n.d_T_1mmﬂm.a.mJ (|2Qld), pro-

vide a comprehensive survey in relation to financial markets; see also ) and

references therein for more recent advances. However, to the very best of our knowledge, the
existing literature has focused on small dimensional Markov switching models, which are not
applicable to high dimensional cross-sections of data. We aim at filling a gap in the literature
by studying Markov switching models as applied to large panels.

There now exists strong empirical evidence that macroecononomic and financial variables

exhibit an approximate factor structure, as stressed in bmmnuj_aﬂ ([2112]]) This nature of

the data naturally leads to approximate latent factor specifications as a tool to model time

series comovement in large dimensional cross-sections. Following the seminal contribution
of klhalnb_eﬂ.ain_and_Rmhsrhﬂle (Il%d), static approx1mate factor representations have been

considered, for example, in ) to develop measures of portfolio

performance, and in (IZDQZaI ) to forecast large macroeconomic panels and
to build indexes of macroeconomic activity. The full inferential theory is developed by

). Settings allowing for dynamic factor representations have been also extensively stud-

ied: see ) and references therein. A broad overview of large factor models is
provided in lS_tm;kjm_WaLsm:J (IZQl_d To the very best of our knowledge, the vast majority

of existing contributions has looked at the linear setting. However, this may not be flexi-

ble enough to accommodate the discrete regimes typically observed in macroeconomic and
financial series.

A number of contributions have extended linear static factor models to allow for dis-
crete shifts in the loadings by assuming that these shifts are driven by an observable state
variable. A first and growing stream of literature assumes that this state variable is a de-

terministic time index, which leads to a factor model with structural instability in the load-

ings: see |Bre1tung and El(‘km@lml (IZQL]J) b&trﬁdlﬁm_sjmnmnl (|2Q1_41 |Baltag1 et alJ (IZQld
klhﬁn.g_eijlj (IZQlﬁI) |Bar1gozm ot al. (|2Qlé |B_a11ggzm_andlnapan1| (IZQZd), |Dua11£_t_alj (IZM),

among others, and ) for a survey of the literature. The presence of struc-

tural breaks implies that regime changes are not recurrent and are related to events such as
technological changes or shifts in monetary policy regimes. Alternatively, the states could be
driven by the realisation of an observable stationary variable with respect to a reference value,
in which case a threshold factor model would arise: see |Mﬁ§sa£&1| (IZ_QLﬂ) Under this set up,

regimes are recurrent and associated to cyclical events such as business and financial cycles.

Finally, smoothly varying loadings are considered in |Mmmﬁ_&]_] ([20_1_]]) and Elgmmg

In this paper, we are interested in large dimensional factor models in relation to recur-




rent regime changes. A major drawback of threshold factor models is that they require a
priori identification of the state variable. This may lead to model misspecification and unre-
liable empirical findings should the wrong state variable be employed to identify the regimes.
In order to overcome this problem, we resort to the two-state Markov switching model of
Goldfeld and Quandt (1973) with a latent state variable and extend it to allow for an under-
lying large dimensional factor structure. Within this setting, we make the following major
methodological contributions: we propose an algorithm to estimate the conditional state prob-
abilities, as well as the loadings and the factors; we derive the asymptotic properties of the
estimators for loadings and factors. Remarkably, our results do not require knowledge of the
true number of factors in any regime and it is robust to the number of factors being unknown
and estimated. This is an important aspect of our paper. Estimating the number of factors
is challenging in a linear setting, as evidenced by the high number of relevant contributions:
Bai and Ng (2002), [Alessi et all (2010) and |Ahn and Horenstein (2013) develop model selec-
tion criteria; (Onatski (2010) and Trapani (2018) propose inferential procedures. Dealing with
an unknown number of factors clearly becomes even more engaging in the presence of regimes
driven by a latent state variable and it therefore is an important aspect of our paper.

To the very best of our knowledge, the literature on large dimensional Markov Switching
factor models is still in its infancy. However, two existing contributions are important to
discuss. First, [Liu and Chen (2016) consider a model similar to ours, but their definition of
common factors differs in that they consider factors pervasive along the time dimension rather
than the cross-sectional dimension. As a consequence their idiosyncratic components are
assumed to be white noise. Second, [Urga and Wang (2022) consider a set up similar to ours,
but assume a priori knowledge of the number of factors and consider a model with serially
homoskedastic idiosyncratic components. Their Maximum Likelihood estimation approach
adapts the EM algorithm by [Rubin and Thayer (1982) and Bai and Li (2012) to the case of
Gaussian mixtures where the weights are given by the probability of the latent variables to
be in a given regime. Differently to our approach, [Urga and Wang (2022) do not have closed
form solutions for the estimated parameters.

More in detail our approach is the following. We introduce an algorithm to estimate fac-
tors, loadings, and transition probabilities of the model which is an extension to the high
dimensional factor model setting of the state-space approach advanced in [Hamilton (1989)
and [Kim (1994) to handle low dimensional Markov switching autoregressive models. Specif-
ically, ours is a generalization of the Baum-Lindgren-Hamilton-Kim filter and smoother, the
original version of which was proposed to estimate Markov-switching VAR models—see, e.g.,
the reviews by |Guidolinl (2011), Krolzig (2013), [Hamilton (2016), and |Guidolin and Pedio
(2018). An important feature of our approach is that it provides closed form expressions for
all estimators.

Most importantly, we achieve our goal by exploiting the well known property that a fac-



tor model with neglected discrete regime changes admits an equivalent representation with
a higher number of factors: see, e.g., the discussions in Breitung and Eickmeier (2011),
Barigozzi et al! (2018), and Duan et all (2022), in the case of structural breaks. We use
this property to estimate the latent factors by means of Principal Component Analysis (PCA)
applied to the linear representation. We then input these estimated factors into our algorithm,
which allows us to recover the loadings and the transition probabilities. We then derive the
asymptotic properties of the estimator for the loadings: we prove the asymptotic normality;
we characterise the bias, which is induced both by the well known rotational indeterminacy
problem, and by the incomplete information related to the underlying data generated process.
We also study the asymptotic properties of the factors which are estimated by projecting the
data onto the estimated loadings. We corroborate our theoretical results through a compre-
hensive set of Monte Carlo experiments, which confirm the good finite sample properties of
the estimation procedure we propose.

Finally, we assess the empirical validity of our model through an application to a large
set of U.S. stock returns. Markov switching models have been widely used to capture the
cyclical behaviour of small-dimensional portfolios of financial assets: see (Guidolin (2011) and
Ang and Timmermann (2012), and references therein. We contribute to this literature by
applying the Markov switching factor model to a large dimensional portfolio of financial assets.
Our results show that the regimes described by the model closely follow U.S. business cycle
dynamics. In addition, an inspection of the estimated loadings allows us to identify level and
slope factors. Therefore, our model could be employed to explain cross-sectional differences in
average returns, and to then run conditional asset pricing tests when the regimes are driven
by a latent first order Markov process. This would complement the findings in [Massacci et al.
(2021), who identify the regimes based on the return from the underlying stock market.

The rest of the paper is organised as follows. Section ] introduces the two-state model.
Section Bl describes the estimation algorithm. Section [ derives the asymptotic theory. Section
briefly discusses the issue of unobserved heterogeneity. Section [0l runs a comprehensive set of
Monte Carlo experiments. Section[Zemploys applies our model to large sets of macroeconomics
and financials variables. Finally, Section [§ concludes. Mathematical derivations are collected

in Appendix [Al

Notation

We denote as ® the Kronecker product, with ® the Hadamard (element-wise) product, and
with @ the element-wise ratio. For a vector v = (v1 - - - vy,)" we denote its Euclidean norm as
vl = y/> i, vZ. For a matrix C we denote the spectral norm as ||C|| = y/u1(CC’), where
p1(CC') indicates the largest eigenvalue of CC’. If tk(C) = r < oo, then, we sometimes
use the same notation ||C|| to denote also the Frobenius norm ||C||z = /tr(CC’). Indeed,
IIC||7 < +/r||C|| and since it is always true that ||C|| < ||C||p, then, bounding the Frobenius



or the spectral norm is asymptotically equivalent.

For a scalar discrete random variable Z, the notation P(Z = z) is its probability mass
function computed using the true value of the parameters. For random variables Y and W
the notations E[Y] and E[Y|W] are the expectation and conditional expectation given W,
respectively, computed with respect to the true distributions Fy (y) and Fyy (y|W) which
in turn are computed using the true value of the parameters. If, in place of the true value
of the parameters, we use an estimate of the parameters, say (/9\, then we adopt the notations
P;(Z = z), E[Y], and E;[Y|W], respectively.

Finally, we indicate with I,,, the identity matrix of dimension m, with ¢, an m-dimensional
vector of ones, and with 0 any matrix or vector of zeros whose dimensions depend on the

context.

2 Markov switching factor model

2.1 Setup

We study a two-state large dimensional Markov switching factor model. Formally, we consider

xp = Afyll(se = 1) + Aofyll(sy = 2) + ey, t€Z, (1)
er = B %(s, = Dy + (s, = 2)w. (2)

We assume the elements of the NV x 1 vector process observable dependent variables {x;} to
have zero mean, and we consider the more general case in which they are allowed to have
mean different from zero in Section B} {f;;} is the r; x 1 vector process of latent factors such
that r; is fixed and 7; < N, for j = 1,2; A; is the NV x r; matrix of factor loadings with rows
s
with innovations v ~ (0,Ix). Note that we allow the elements of {e;} to be both serially and

fori=1,...,N and j = 1,2; {e;} is the N x 1 vector process of idiosyncratic components
cross-sectionally correlated and we refer to Section [ for the specific assumptions.

As it is standard in the literature, we assume that s; follows a discrete-state, homogeneous,

irreducible and ergodic, first-order Markov chain such that
. . . . 2
P(St+1:]‘$t:2):pij7 17]:1727 Zplj:17
i=1

with matrix of transition probabilities

1 _
P— P11 P12 _ P11 P11 ‘ (3)
D21 P22 1—pa  po



Defining the 2 x 1 vector of state indicators

allows to write the transition equation
& =P& 1+, t€Z, (5)

where {v;} is a discrete-valued zero mean martingale difference sequence whose elements sum
to zero. Because, ||P|| < 1, {s;} follows an ergodic Markov chain, thus, there exists a stationary
vector of probabilities £ satisfying:

£=PE.
Hence, the elements of & are long-run or unconditional state probabilities. In particular, we
have & = E[£;], such that

B I(s;=1) | | P(sg=1)
E[ét]_E[H(stzz)]_[P(st:m]’ ©)

where 0 < P(s; = j) < 1, for j = 1,2, by Assumption [ in Section @ below, which
makes the Markov chain irreducible. In particular, ([B) and () are related by (see, e.g.,
Guidolin and Pedid, 2018, Chapter 9)

1 —poo

1—pn
- P2 pmg =PI 7
2 —p11 — p22 (s: ) 0

P(s; =1 .
(st ) 2 —p11 — p22

2.2 State space representation

Let the (r1 +72) x 1 vector process {g;} be defined as

0
£

fis

f
gt = [ N ]H(St:1)+
for

0

]I(st:2):[ ]@&, tez. 8)

Let B; = [A; 0] and By = [0 Ay, where By and By are N x (r1 +72) matrices. The model
in (), ) and (&) admits the equivalent state space representation

xi = (B By) (&0 g) + (51" 27 ) (@@ Iv)en, (€, (9)
& =P& 1+,

'Note that & ® g = [f{; 0 £5, 0]'.



Under standard assumptions, the term (B; Bs) (& ® g;) is identifiable up to a relabelling of
the states. Also note that identification of B; and Bs, and therefore also of the elements of

{g;}, is possible only up to an invertible transformation.

2.3 Linear representation

Model (@) is observationally equivalent to a model with one change point affecting the loadings
of all units (Barigozzi et al., 2018). As a result, it can be rewritten as the r1 4 79 linear factor
model:

x; = Agy + ey, teZ, (10)

where A = [A; Az]. Then, A and g; may be estimated by standard Principal Component
Analysis (PCA) (Stock and Watson, 2002a,b; Bai, 2003). Now, since PCA gives consistent
estimators of the factors as N,T — oo, hereafter, we first consider estimation of model (@) in
the case in which g; is known. Then, we briefly review the implementation of PCA in Section
3.2

2.4 Log-likelihood

The parameters of interest are partitioned as
¢ = [vec (By)',vec (By)', vech(diag (2.1))’, vec(diag (262))/]/ , p=vec(P),
so that the vector of parameters of interest, denoted as q, is defined as
a=[¢, 0]

Let X = (x},...,x7), G = (g},...,&}), where X is an NT x 1 vector, G is an (r; + )T x
1 vector. These are T-dimensional realizations of the stochastic processes {x;} and {g:},
respectively. Moreover, let X, be the o-algebra generated by the random variables {x;}}_,
forv=1,...,T;in asimilar way, define G, as the g-algebra generated by the random variables
{gt}{_1, forv=1,...,T. And for simplicity we write X = X7 and G = Gr.
The likelihood function, denoted by f (X;q), can be decomposed as
f(X.G:9) _ f(X[Giq)f(G:q) _ f(X|Giq) f(9)

T = 7Gx ~  JG1Xa) T(GXia) 1D

where in the last step we accounted for the fact that f (G;q) = f (G), since it does not depend

on the parameters of our model, because we do not specify any dynamic model for the process

{g}



Furthermore, following Krolzig (2013, Section 6.2):

FXIGiq) =fXI|Gie,p)= > F(X|GA{&H19)P{&}lG.p).  (12)
{&} {0,137

Here, to avoid heavier notation, we use the same notation {Et}tT:1 both for a generic T dimen-
sional realization of the process {&;} and for the o-algebra generated by the random variables
{&,}L,. Notice that the sum is over 27 possible values since, given a realization for {&1;}L;,
then the realizations of {€a;}7_; are given by &y = 1 — &, for all ¢

Following the approach by Doz et all (2012); Bai and Li (2016); Barigozzi and Luciani
(2019) for QML estimation of linear factor models, we consider for f (X {G,{Et}le;cp) a
mis-specified Gaussian quasi likelihood of an exact factor model, i.e., as if the idiosyncratic
components were cross-sectionally uncorrelated. Furthermore, we also neglect serial correla-
tion of the idiosyncratic components, thus treating them as if they were weak white noise
processes. It is important to stress that we are not assuming the idiosyncratic components to
be uncorrelated, but we are just considering likelihood estimation of a mis-specified model.
In the linear case, it is proved that, as N, T — oo such mis-specifications are asymptotically
negligible. Under such mis-specification and using the Markov property of {£;} (up to omitted

constant terms):

T
log f (X |G, {&}i50) =D log f (x¢ |gr, & ) (13)
t=1
1 1 e -
~ =2 logdet Doy — 5> {xi — (B1 Ba) (& @)} ()™ {3 — (B Ba) (6 @ 8}
t=1 t=1

where X, = (diag(X.1) diag(Xe2)) (& ® In). Notice also that, even in this case the likelihood

(I2) is not Gaussian but it is a mixture of Gaussians. Finally, again by the Markov property

of {&}:

P ({Et}tT=1|G§ P) = H P (&/&-1,G;p) P (&) - (14)

t=1

3 Estimation: EM algorithm

The following algorithm is a generalization of the procedure proposed by [Krolzig (2013, Chap-
ter 5). The EM algorithm is made of two steps repeated at each iteration k£ > 0. The E step
involves taking the expected value of the log-likelihood derived from (III) conditional on X

given an estimate of the parameters q®). Namely:

log f (X;q) = Egw [log f (X|G;5q) | X |+ Egm [log f(G) | X ] — Egw [log f (G| X;q) | X].



The M step solves the constrained maximization problem with respect to q = [¢’, p’ ]/, that is

<(’5(k+1)’ ﬁ(kJrl)) = arg max Ea(k) log f (X|G;,p) | X]
PP

s.t. Puo =19, (15)

where the constraints ensure that probabilities add up to one. In principle, in the M step we
should also account for the term Ega) [log f (G) | X ], which however in our context does not
depend on any parameter.

It is well known that the iteration of these steps produces a series of log-likelihoods which
are increasing. Indeed, Ezw [log f (G |X;q)|X ] does not contribute to the convergence of
the EM algorithm (see [Dempster et al., 1977 and (Wu, 1983). Moreover, if the maximum is
identified and unique, then the EM algorithm will eventually lead to lead to the Maximum
Likelihood estimator of q. As shown below, the solution of the M step can be computed using
the expressions given in (I3]) and (I4]). Such solution is unique and has a closed form, so, no
identification issue, due to multiple maxima or related to the existence of such maxima, arises

in this context.

3.1 Baum-Lindgren-Hamilton-Kim filter and smoother

In order to compute the expected likelihood in the E step it is clear that, because of (I3
and (I4), we need to compute Egw) & X], Egw [§r ® g X], and Egu [(§: @ 1) (& @ g1)'| X] =
Eqw [(T2 © gig})| X

We start by considering the case in which {gt}?zl is observed, while we postpone the
discussion of the estimation of the factors to Section Then, for the E step we just
need to compute Egu[&]X], since in this case & and g; are independent for all ¢. This
is accomplished by means of a generalization the Baum-Lindgren-Hamilton-Kim filter and
smoother explained in detail in this section. It is an iterative procedure through which we first
compute the sequences of conditional one-step-ahead predicted probabilities {&;;_1 M, such
that &;—1 = Equ [& | X¢—1] and filtered probabilities {&;; }E | such that &1 = Egoo [€] Xt
Second, by means of those sequences, we compute the sequence of smoothed probabilities
{&r /=1 such that &7 = Egw [&]X].

To simplify notation, let &1 = [1 0] and e2 = [0 1], so that P(s; = j) = P(& = €;),

j = 1,2, and therefore, in the following, we can just use &; as defined in (), without the need

of referring also to s;. Then, for any v =1,...,T, we use the notation
P& =e1]|Xy)
&o = E[&]X0] = S (16)
P (gt = &3 ’Xv)
Notice also that, since {&; }}* ; is independent of G,, for all u,v = 1,...,T, because we consider

the factors as observed, we can always write &, = E[& | X,] = E[§: Xy, Gy ].



The one-step-ahead predictions and the filtered probabilities are computed by means of
the following steps which are similar to the Hamilton filter, see, e.g., Krolzig (2013, Chapter
5.1) and Hamilton (1989). For simplicity of notation, let us assume for the moment that not
only the factors {gt}le are observed, but also the true values of the parameters q are known.

Then, the one-step-ahead predicted probabilities are obtained through the prior probability

P& =¢€i|Xi—1,Gi-1) = P& =¢€ilé—1=¢€;)P (-1 =¢;|Xi-1.Gi-1)

]

1

<.
Il

P& =¢eilb—1=¢€;)P(&-1=¢;|Xi-1), i=1,2. (17)

Il
S

1

<.
Il

So that, because of ([I6]), we have
S = P&y, t=1,...,T. (18)
The update involves the posterior probability:

P& =ei|X:) =P (& =€i| X1, Gt) =P (& = € [x¢, Xi—1, Gt)
[ (x, & =i X1, Gy)
[ |Xi1,Gr)
S (xel& =€, Xy1,Gr) P (& = €| Xy—1, Gy)
a f(Xt ‘Xt—th) ’

i=1,2. (19)
Then, since x; depends on X;_; only through &1 and it depends on Gy only through g;

fxe|& =€, X1, Gr) = f(xe|& = €irg), i=12 (20)
Let,

n = [ f(Xt|Et = Elagt) ]
f(x¢|& =e2,8:)
|diag(Se1)| /2 exp [—% (x¢ — Bigy)' (diag(Zer)) ™" (x¢ — Blgt)]
_ . (21)

) _ 1 ) _
|diag(3e2)| 1/2 exp [—5 (x¢ — ngt)' (diag(Xe2)) 1 (x¢ — Bth)]

10



Further, notice that, from (I6]) and (21I]), the denominator of (I9) be written as:

2
f (Xt ’Xt—laGt) = Zf (Xt ‘Et = €j7Xt—1aGt) P (& = &y, ’Xt—th)
=1
]2
=Y f e l& =ejm) P (& = €5, | Xi1) = My - (22)
j=1

Taking into account (I6)), (IT), 20), and ([22), the filtered probabilities are obtained from (I9)

as

M © &rje—1 M © &1
&t = =1 | t=1,...,T, (23)

M&tje—1 thy (me® Et|t—1) ’

where 7; is computed as in ([2I). The filter can started by setting either &y, = €1, or,

equivalently, g = €2.
We then run the Kim smoother, see e.g., Krolzig (2013, Chapter 5.2) and Kim (1994).
Notice that (recall that X = Xp and G = Gr):

P =e|X,G)=) P& =c¢€ill+1=¢;,X,G)P (&1 =¢;|X,G)
=

Z P& =¢€il+1=¢5,Xt,Gy) f <{Xs,gs}5:t+1 &t = €i, 641 = Ej,Xt,Gt>
—1 f <{X57gs}sT:t+1 &1 = €5, X4, Gt)

P11 =¢;1X,G)

<
\}

P& =c¢cilb+1=¢€;, X,G)P (&1 =¢;|X,G)

<.
Il
—

P& =i |X:,Gi)P(&41 = €& = €4, X4, Gy)
P (&1 =¢€;| X4, Gt)

I
M)

P(£t+1:€j‘X,G), ’i:1,27
1

<.
Il

which by (€] implies that the sequence of smoothed probabilities is given by

Eyr = [P (&ir @ &ap)] @&y, t=1,...,T. (24)

This backward recursion is initiated at &7 which is the last iteration of the filter in (23)).
Finally, for the implementation of the EM algorithm we need to compute also the smoothed
cross-probabilities, see Krolzig (2013, Chapter 5.A.2),

P& =¢e1,§-1 = 1| X)
| P& =e2&1=a|X) | -
gt,tfl\T - P(Et N €2|X) =p 0O [(Et\T @ £t|t71) ® Et,”t,l] , t=1,...,T.
P(& = €2,§i-1 = €2 X)

(25)

11



The above description of the Baum-Lindgren-Hamilton-Kim filter and smoother assumes q
and g; to be observed. However, in practice both need to be estimated. This is discussed in

the next two sections.

3.2 Estimating the factor space

To estimate both the factors g; and their dimension r1 4+ 79, we exploit the fact that, as
shown in Section 23] our Markov switching factor model ([I]) is observationally equivalent to
a linear factor model with r; + ro common factors g; and factor loadings A, see (I0). Then,
the number of factors can be estimated by any of the existing methods, see, e.g., Bai and Ng
(2002); |lOnatski (2010); |Ahn and Horenstein (2013); Trapani (2018). As far as the factors g;
themselves they can be estimated via PCA as follows. First, an estimator A of the loadings
matrix A is obtained as v/N times the normalized eigenvectors corresponding to the r; 4+ ro
largest eigenvalues of the sample N x N covariance matrix 7! Z?:l x:X}. Second, the factors

are estimated by linear projection of the data x; onto the estimated loadings:
~ 1 ~/
gt:NAXt, tzl,,T (26)

This is the same approach followed by [Stock and Watson (2002a) and it is the dual approach
of the one adopted by [Bai (2003). Consistency of A and g; are proved in the Appendix. Notice
that the steps described in this section do not require knowing the latent state indicator &,

hence can be carried out independently.

3.3 Estimating the parameters

At each iteration k£ > 0 of the EM algorithm, the filtered and smoothed probabilities, given in
(23) and (24), respectively, and the smoothed cross-probabilities given in (25]), are computed
using an estimator G*) of the parameters and an estimator g; of the factors. Hereafter, we
denote as 53?, 5%2, and Eiill‘T such estimators. This defines the E step.

In the M step we have to solve the constrained maximization problem in (I3]). Let us start

with estimation of ¢. From (I2]), we have:

dlog f (X|G; 1 of (X|G,{&}L;
ng(&p" 2.0) F(X|G;p,p) 2 FX] 3f,t}t_1 LP)P({Et}thllG,p)
T ent,

1 01 X |G, r .
T T (X|Gip.p) > LEA |a¢,{£t}t : SD)f(X\G,{Et}tT:l;w)F’({ét}tT:llG;p)

T e,

01 X |G, r.
=C > sl ‘aw,{gt}t_l ¢)P({€t}f:1\X,G; ®,p) . (27)
{&37,

12



where C is a positive normalization constantH Therefore, from ([3), (I3), and 7)), if we

observed G, the first order conditions would be:

_ 9Egm [log f (X |G;¢,p) | X]

g’ p=@pk+1)
T 2
g log f (x¢ g, & = €53 ¢) [ X] _
=> > — B - P(Et=€j|X;<P(k),ﬁ(k))
=1 j=1 P e=pk+D)
d OEg [log f (x¢ |81, & = €559 ) | X ] (k)
- Z Z B, RIS (28)
=1 ¥ p=@h+D)

where £(t|T = Eqm [§elX] =P(& =€ | X; @®) p*)) is the jth component of £t|T
Then, by substituting (I3)) into (28)), and by replacing true factors with estimated ones,

we get

-1
5 (k+1 ~ .
B ) = <Z g] tTtht> <Z g] tT gtg£> y J= 17 27 (29)

and, consistently with the fact that we use a mis-specified likelihood with uncorrelated id-

iosyncratic components, we set

T ~(k+1)7~ \ 2
S (k1) 2im1 (x“ B bg'i ) gt) : :
(X i = , i=1,...,N, j=12, (30)
zt 15_7 t|T

[ié];+1)]ik:07 Z‘7k:17"-7]\[7 27&]{:7 j:1727

where B%H) is the ith row of B( +1)

Moving to estimation of p, from ([12), we have:

dlog f (X|Gi . p) _
op’ f(X!G, e, p)

oP ({&}11G;
Z f X‘G {Et}t 1P ) P({ggp/”G p)

{&L
= L Z dlogP ({Et}t:ﬂG; P)

fF(X|G A& 0) P ({&3E411Gs p)
{gt}zzl

T .
=c > OlogP ({gtp}/tﬂav p)

P({&}11X,.G;0,p), (31)
{gt};:1

2Specifically, we have:

X’G {&t}t 15 P ) ({gt}t 1|G P)
Z{g S FXIG A& 150) P{EHIIG )

1

({Et}t 11X, Gs o, p)

CienT, F(X|G &Y 0 )P({€: 321 1Gip)

so C = X
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where C is the same positive normalization constant as in (27). And, because of (I4)) and
(B1)), if we observed G the derivatives with respect to the generic (i, j)th element of p, i.e, p;j,
i,j = 1,2, would be (treating &y as known)

dlog f (X |G; ¢, p)

3]%
T 2
= ZZZ OlogP (& = enl&i—1 = EEEP)p(& —en &1 = X, p)
t=1 h=1 ¢=1 8171] ’ )
T 2 2
! OP (& = enlé—1 =€ p)
) P =En,St-1 =€ X7 )
tZU; ; P& =enl&—1 =€up) Ipij (& hy &t—1 | X; e, p)

1(& =¢€5,&-1 =€)

1 h=1 (=1 P (& = enlé—1 = e p)

P (Et =ep, &1 = €£’X§ %P)

T T
_ Z P& =¢j&1=¢€ilX;0,p) Z P& =¢€j,6-1 =il X;0,p)

- (32)
—~ P& =¢jl61=¢€i5p) = Pij
Now, from (I5) and (31]), the first order conditions are:
OE4m [log f (X [Gs 9, p) | X
8(vec(P))’ vec(P)=vec(P(k+1))

where K is the 2-dimensional vector of Lagrange multipliers, thus it has positive entries. Then,

from (32)

OEgqm [log f (X|Gi0.p) |1X] P (& =¢j,&-1 =ei| X; 60, pk)

= 34
8171] ; Dij ( )
By collecting all 4 terms deriving from (34]) into a vector, we have
OEqm [log f (X |G; ¢, p d
Gl
8p/ Z tt 1|T ®p’ (35)

where ﬁt(,?—uT is defined in (25]). Finally, from the first order conditions (33]), we must have:

T
(k
{Z tt)/1|T®p -k (L/2®I2)} (36)
1 p=pk+1)
Let k = (k1,k2)’, and let K = (12 ® K) = (K1, k2, k1, k2)". Then, ([B) gives
T
F S e ok )
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By applying the adding up condition to (37]):

(k)

gll,t,tfl\T
"
T T §21,1s,t—1\T
A, ~k+1) _ ~\1 _ (7 K
L= (yel)p = (1, ® L) Z & 1\T@” _(”2®12)Z g<k)2
—1 p— 12,t,t—1|T
o
§22,1s,t—1\T
K2
(k) (k) (k)
T 2 §jti—1r T €10 S1t—1|T T-1 & SLt|T T-1 *)
— K — K — —
- Z Z 3% ' - Z ek ' - I3 () - Et\T K,
=1 j=1 2j,t,t—1|T —1 S2,t—1|T =0 S2,¢|T —0
K2 K2 K2
which implies kK = (k) Therefore, from
p tT

T-1
pU+D [Z 5“ N L ® Z £§I€T)] . (38)
t=0

By letting k* be the last iteration of the EM algorithm, we define our final estimator of the
parameters as g = G 1), as given by 29), 30), and 38). The final estimator of & is defined

(k*
as £t|T = Et )

using the final estimates of the parameters.

, l.e., obtained by running a last time the Baum-Lindgren-Hamilton-Kim filter

3.4 Initialization and convergence of the EM algorithm

To start the algorithm we need initial estimators G(©) for the parameters. Specifically, we set
]§§0) = ]§§0) = K, as defined in Section Then, given also g; as in (20)), let €, = x; — th,
and we set Zg) = Eg) = diag <T_1 Zthl /é{ég). Finally, we set

f)(o) . 0.5 + w1 1-05-— w1
1—-0.5—wsy 0.5 + wo

where w,wy € (0,0.5) and wy > wy. This initialization implicitly identifies state 1 as the most
probable one, i.e., it is the state with largest unconditional probability as defined in ().
We say that the EM algorithm converged at iterations k*, where k* is the first value of k

such that: A
llog f (X |G; 80, 1)) —log f (X |G @*—D, plk=1)]

3 {[log f (X !Gwp(’“ P +log f (X|G; @*— D, plk-1))}

for some a priori chosen threshold e > 0.

<€,
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4 Asymptotic theory

For ease of reference let us write in scalar notation (Il) and (I0):
Tt —Z)\ ful(sy=j)+e=algi+e, i=1,...,N, t€Z, (39)

where e; ~ (0, 25:1 3eil(se = j)).
We consider the following set of assumptions, which generalizes the setting in [Bai (2003)

and Massacci (2017) to our framework.

Assumption 1. Factors.

(a) For j =1,2 and allt € Z, E[f;;] = 0 and E[||f;;||"] < oo

(b) For j,k = 1,2, as T — oo, T7! Zthl]I(st:j)hkt £ 2 E§J), where Et("];) is rj X
rj positive definite, and {hkt}?zl is any sequence such that (i) P(0 < hg <1) = 1;

(i) T~V hyy 2 By > 0.

Assumption [l restricts the factor processes {fj;}, j = 1,2, so that appropriate moments
exists. Note that the sequence {hkt}le can be random or deterministic and it is introduced to
account for the fact that we estimate the expected value of {;; and not j; itself. Assumption
[ implies that 0 < P(sy = j) < 1, j = 1,2, thus ruling out the possibility that any of the
states is absorbing. It also implies that for j = 1,2, as T — oo,

T
T Z st =7) £> gy, (40)
where X¢; is positive definite and
T
1 ;] D Efl O
e )

Moreover, it is straightforward to see that, if j # k, then, for all T' € N,

!

'ﬂ

—Z (st = 7) £jufp,0 (s: = k) = 0. (42)

Assumption 2. Loadings.

(a) For j=1,2, alli=1,...,N and all N € N, ||Aj;|| < X < oo, where X is independent of
7,1, and N;

(b) For j =1,2, as N — o0, N*IA;Aj — XA, where Xp; is rj X 1; positive definite.

(c) As N = oo, N"1A/Ay — 2, where Bp,, is 1 X T3.

(d) For any ro X ro full rank matriz L, Ay # AL
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According to Assumption 2] loadings are nonstochastic and factors have a nonnegligible
effect on the variance of {x;} within each regime. The condition in part (d) ensures that the
regimes are identified and it is analogous to the alternative hypothesis in the test for change in
loadings developed in [Pelger and Xiong (2022). This condition is trivially satisfied if rq # 79
since the number of factors changes between regimes; if instead r; = ry then part (d) rules
out the possibility that the columns of A are a linear combination of the columns of Ao, in
which case the regimes cannot be separately identified.

From this assumption it also follows that, as N — oo,

A’A Y b
< —>2A:<E/"1 2“12>, (43)
Alg A2
and
B'B > 0 B.B 0 o B’'B
1Tl—>231:< 6‘1 o)’ QTQ—Q:BQ:(O = ) ;V’“—u), if j # k.
Ao
(44)

Assumption 3. Idiosyncratic component.
(a) Foralli=1,...,N, allt € Z and all N € N, E[e;] = 0 and E[e§,] < M < oo, where M
is independent of i, t, and N.
(b) For allt € Z and N € N,

N

Z [E[I (st = j) eiens]| < M < o0,
ii=1

where M is independent of t and N;
(¢c) For j=1,2, alli,l=1,...,N, all N € N and all T € N,

T 4
1 . )
Nis Z {L(st = j) eaerr — E[L(se = j) enen]}| | <M < oo,

where M is independent of j, i, I, N, and T

Part (b) controls the amount of cross-sectional correlation we can allow for. It implies the
usual assumption for approximate factor models of nondiagonal idiosyncratic covariances X;,

j =1,2. Part (b) also implies

2
<M < oo,

1 N
\/——Z St—J €it
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hence N=V2||I(s; = j)e;|| = Op(1) for all j and ¢. Part (c) limits time dependence and it is
guaranteed together with part (a) if we assumed finite 8th order cumulants for the bivariate
process { (e, e¢)}. Notice that the constant M in the three parts of the assumption does not
have to be the same one.

We limit the degree of dependence between factors and idiosyncratic components within

each regime by means of the following assumption.

Assumption 4. Weak dependence between common and idiosyncratic components.
For j=1,2, and all N and T,

T 2

Z St—J jtezt]

<M < oo,

1N
tl v 2| 77

where M is independent of N € N and T € N.

=1

Assumption 5. Eigenvalues. The eigenvalues of the r xr matriz XA Xg are distinct, where
YA is defined in [@3) and Xg is defined in ([@Il).

This assumption guarantees a unique limit for N~TA’ 11, indeed by assuming distinct
eigenvalues we can uniquely identify the space spanned by the eigenvectors which are a linear
combination of the columns of A. Notice that Xg is block diagonal because of (42]).

Assumptions[Ilto[Hlare enough to prove consistency of our estimators, however to derive the
asymptotic distribution we strengthen those assumptions by means of the last two following

assumptions.

Assumption 6. Moments and Central Limit Theorems.
(a) For j=1,2, alli=1,...,N all N € N and all T € N, for all i,

N T 2
E H\/ng a{l(sy = j)ewery — El(s¢ = j) erer]}|| | <M < oo,
where M is independent of j, i, N, and T.
(b) For j,k=1,2, all N € N and all T € N,
N T 2
H\/—T;;H )‘kz ]telt <M < oo,

where M is independent of j, k, N, and T.
(¢) For j,k=1,2, alli=1,...,N and all N € N, as T — oo,

T
T Z st=17] hktf]tezt —> N (0, F]/m)
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where {hkt}z;l is defined in Assumption[d, and

T T
. /
iji = Tlgn — E E I (St = j) I (SU = j) hkthkvE[fjtfjveitBiv]-

(d) For j=1,2, allt € Z, as N — oo,

N
1 d
—\/N E )\jieit — N(O, ‘I’jt),
i=1

where

B = J&E%o_ ZZMME leien] -
=1 =1

Finally, we impose the standard restrictions on the convergence rates.
Assumption 7. Rates. As N,T — oo, VT /N — 0 and VN /T — 0.

Define the (1 + 73) x (r1 + ro) matrix H as

GG’ A/K{/,l

H= 45
T W , (45)

where G = (g1, ..., gr) and V is the (11 + r2) x (1 + r2) diagonal matrix containing the first
r1 + ro eigenvalues of Sy = (N T)_1 Zthl x¢x, sorted in decreasing order. In Lemma [6] we
prove that

~
!/

A _
= Q, with Q = =2 wV1/2, (46)

lim
p N, T—o0

where V is the (r1 +r2) X (r; +re) diagonal matrix of the first (r1 +72) eigenvalues of
Zé/ > AZé/ % in decreasing order, and W is the corresponding matrix of eigenvectors such
that ¥'® = I, ,,,. Likewise define Q; = plimy 700 N’lA;-;‘;, for j = 1,2, which is an
rj % (r1 4 r2) matrix such that Q = [Q} Qb]'. Thus, by Lemma [7] we have

Q=3 e, vi2, j=12 (47)

where W, is the r; x (ry + r2) matrix such that ¥ = [} W], Therefore, because of (@I,
(@6), and by Lemma R according to which V 5 V,

li H = H, with H=3X,QV 1 4
P fm H=H v «Q )

For j =1,2, let ]§ = ﬁ(k*ﬂ) where k* is the last iteration of the EM algorithm as defined
in Section B3l For given j=1,2andi=1,..., N, let Bji be the estimator for bj; such that
Bj = [bjl7 e b ~) and B; = [bj1,. .. b]N] The following theorem states the asymptotic
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distribution of Bﬂ

Theorem 1. Let Assumptions - [ hold. Then, for ki,ko = 1,2 with k1 # ks, and for any
gweni=1,...,N, as N,T — o0,

VT {bk12 — H b, — < 1472 _/I\Ekq) I/_\I/bk”} - N (O Ebk”) ’

where the (r1 +ra) X (r1 + r2) matric Tgkl is defined as

“1
(Z Eiy i 15t = k1)8 ) <Z §k1,tTgtgt> ; (49)

t=1

and where

S = (AUSEQ+ QEIQ) T QUi+ QilaniQ2) (QUZQ + Q42 Q:)

with Q/]\’ Ljtnir and EEJ;’I)’ j = 1,2, defined in {L), Assumptionld(c), and Assumption [l when
by = &k, 41, Tespectively.

Theorem [ shows that the estimator Bkli for bg,; is subject to two sources of bias. The
first is standard and it is induced by the usual indeterminacy due to the latency of both factors
and loadings and captured by the invertible matrix H defined in (45, see also Bai (2003). If
we assumed T~ Z?:l g:g, = L. 4, then it would straightforward to see that H becomes just
a rotation, i.e., an orthogonal matrix. However, additional restriction on the loadings would
be necessary to reduce H to be the identity—for a discussion on identification of factors, see,

g., (Baiand Ng, 2013). The second source of bias is induced by ng ,
the probability of the state being asymptotically correctly estimated. If the unconditional

which depends on

probability of being in state ki is correctly estimated with probability one, that is, if E,ﬁﬂ LN
I(sy = k1), as N,T — oo, then T&l LS I, 4, and Bkli will estimate consistently a linear
transformation of by, ;. Otherwise by, ; estimates a linear combination of linear transformations
of by,; and by,;, with weights determined by Tgkl and (L, 4, — igk ), respectively.

To further aid to the understanding of Theorem [ let Ry = HI’ , for £ = 1,2, and

consider the partition

=~ | Renn Ry i H;, Hp
’ Hy; Ha

where f{;wg, k,7,£ = 1,2 and I/‘\I]‘g, J,€ = 1,2, are rj x ry. From Theorem [l for any given
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i1=1,...,N,as N,T — oo, we obtain:
VT B — [X; 0] Ry — [0 Xy] (H - Ry )}
=~ ~ ~ ~ ~ ~ d
= \/T{ 1 — AL[R111 Rigz] — A, {<H21 - R1,21> <H22 - R1,22>]} =N (0,3;,,), (50)

and likewise

VT {Bh; — 0 Xy Ro — [, 0] (H-R,) }
=T {B'gz — /\'gi [ﬁ2,21 ﬁZ,QQ] - Xu Kﬁn - 1?{2,11> <ﬁ12 - ﬁ2,12>]} i N (0= EBQi) . (51)

From (B0) and (5I)), if we consistently estimate the unconditional probability of being in
a given state j = 1,2, then f{k 2 H as N,T — oo. The columns of ]§j then estimate two
different linear transformations of the columns of A;. If 71 = ry, both linear transformations
are invertible, and there is no need to know the true values of r; and 79 to get consistent
estimates of the space spanned by the true loadings in the two different regimes. In particular,
we can consider either the first or the second half of the columns of ]§j as an estimator of a
linear transformation of A;, for j =1, 2.

On the other hand, if ry # ro, then the first r; columns of ]§1, and the last r9 columns
of ]§2, estimate an invertible linear transformation of the columns of A; and Ao, respectively.
However, the last r9 columns of ]§1, and the first r; columns of ]§2, estimate Alﬁmg and
A2ﬁ2,21, respectively, none of which is invertible. In this case, we need consistent estimators
of r; and r9 in order to be able to isolate the first ; columns of ]§1 and the last r9 columns
of ]§2, respectively, which are consistent estimators of a linear transformation of the columns
of A and A, respectively. Therefore, if we only know that r; # ro without knowing their
true values, then we can consistently estimate a linear transformation of the columns of B,
but nothing can be said about A;, j = 1,2.

Theorem [I] describes the asymptotic properties of the estimator for the factor loadings
]§1 and ]§2. Complementary results can be obtained with respect to the estimated factors
associated to the loading matrices ]§1 and ]§2. Formally, the true factors that correspond
to By and Bs are £1:g; and £2,8;, respectively, and their estimators are gl,t\T g and é\27t|T g,

respectively. The following theorem states the asymptotic distribution of those factors.

Theorem 2. Let Assumptionsl -4 hold. Then, for any givent=1,...,T, as N, T — o0,

\/N éLt‘T/g\t B I/_\I,1 §18t i)-/\/' 0,3~ ),
§Q7t‘T/g\t 3 é‘tht ( £®g,t)
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where

~ ~ ~ /
_ Hig, g} (Inm . 152)
Hf = ~ ~ \/ ~ )
H (T~ Tg)) Hig,

with H and fgj defined in (D) and [@9), respectively, and where

-1 -1
1 O , , 1 O ,

o .. =<¢H H H3pe:H H H )

fogt { 6( 0 232) 5} (HeDperHy) yHe | S, | T

where Xg;, j = 1,2, are defined in (@4,

®; 0 0 P9y
0 0 0 0
EBet = 0 00 0 )

with ®j4, j = 1,2, defined in Assumptionld(d) and ®12; = limy_,o0 % leil Zfil A1iXy Eleier],
and where

Hg _ HI/§1 H (IT1+T2 - 152)/
H (17"1-‘:-7’2 - Iﬁl)/ HI/§2

with H defined in {@8) and I¢; = plimN,Tﬁooigj.

Now, in geileral Tg] # I, 4+, and so also I¢; # I, 4. Then, because of Theorem [I]
the estimator bj; is biased and it is straightforward to see that the asymptotic covariance
in Theorem [2] is positive definite. Note that if we know r; = r9 holds, then we can build
consistent estimators /f\lt and /f\gt for linear combinations of fi; and fy, respectively, by simply
regressing x; onto the first 1 columns of ]§1 and the last r9 columns of ]§2, respectively: as
previously discussed, these define consistent estimators Kl and Kg for linear transformation of

A7 and As, respectively. Formally, this means we can build the sequence of factor estimators

N 1~ ‘
£ = Nﬁj,t\TA}Xt, Jj=12. (52)

If the unconditional probability of being in a given state is correctly estimated then ng 2
I, 4r, as N,T — oo, and Theorem [2is redundant: in this case, asymptotic normality of (52])

follows from arguments analogous to those in [Bai (2003).
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5 Unobserved heterogeneity

The model in (I]) assumes no individual effects. These can be introduced by considering
x¢ = (op + Afyy) I(sp = 1) 4 (a2 + Aofay) I(sy = 2) + ey, (53)

where a; = (ozjl,...,osz)l, for j = 1,2, and «aj; captures the individual effect of cross-
sectional unit ¢ within regime j. The vectors a;; and «s introduce unobserved heterogeneity.
If the state variable driving the regimes were observable, the resulting identification problem
could be solved by expressing the model in terms of deviations of x; from the conditional means
within each regime: on this, see Massacci et all (2021)). However, since the state variable s;
in (B3] is latent, this strategy no longer is applicable since the state is not observable with
probability one. For this reason, we express the model in terms of the deviation of x; from
the unconditional mean.

Formally, consider the N x 1 vector of dependent variables y; defined as

yi = x—E(x¢)
= (o1 +Aif1) (st =1) + (g + Aofyy) I (sy = 2) + ¢
—E[(a1 + A1fi) I(se = 1)] + E[(ag + Aofoy) I (s¢ = 2)]
= oo+ Aifpll(sy = 1) + copar + Aofyll (s; = 2) + ey,

where
it =1(st =7) —E[l(st =J)], j=1,2

If a; = a9, x; has the same expected value in both regimes, and y; = Aif;I(s; =1) +
Aoty (sy =2) 4+ €;. In the more general case in which @y # as, unconditional demeaning
leads to a larger factor space of dimension r1 + 79 + 2. The additional two factors ¢1; and o
take only two values, namely ;s = —E[I[(s; = j)] and ¢j; =1 — E[I(s; = j)], depending on
whether I(s; = j) =0 or I(s; = j) = 1, respectively, for j = 1,2. In this case, the equivalent
linear representation in (I0) holds with g; = [@1¢,I(s = 1) £],, 0o, I (s = 2) £},] and A =
[a1, A1, ag, Ag]. The measurement equation in (@) of the state space representation remains
valid with By = [ag, A1, a2,0] and Bs = [, 0, a2, A3]. Therefore, the tools developed in
this paper can be applied to the sample counterpart of y;, namely to y; = x; — <T -1 Zthl xt) ,

which consistently estimates y; as N — oc.

6 Monte Carlo

Throughout we set N = {100,200} and T' = {250, 500, 750, 1000} and we simulate the N x T
matrix of data where at each ¢t = 1,...,T the data x; follows ({]). This requires to simulate

the latent state &, the loadings A; and As, the factors fj; and fy;, and the idiosyncratic
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components ey.
We simulate the latent state & according to (Bl), where P has entries p;; = 0.9 and
P22 = 0.7 so that p;o = 0.1 and ps; = 0.3. This configuration corresponds to the unconditional

probabilities to be equal to P(s; = 1) = E[{1;] = 27;171732[)22 = 0.75 and P(s; = 2) = E[én] =
2_;%;22 = 0.25. Then, we generate the innovations v; of the VAR as in (fl) as follows: at

each ¢ we generate u; ~ UJ[0,1] and (i) if & ,—1 = 1 and w; < py; then v, = [1 0] — P’&;_;
(i) if &14-1 = 1 and w; > p11 then vy = [0 1] — P'&_y; (iii) if {4—1 = 0 and u; < po; then
vi=[10] —P'&_1; (iv) if £&14-1 = 0 and w¢ > po; then vy = [0 1] —P'&_y.

We set the number of factors in each state to r; = r = {1,2}, j = 1,2. Then the
common component is generated according to (d). Specifically, letting x;: = A, fil(sy =
1) + X, forl(sy = 1), i = 1,..., N, the r entries of Aj; and Ag; are generated from a N(1,1)
distribution and the matrices A; and Ag are rotated in such a way that AjA; and ALA, are
diagonal matrices. The factors are such that f;; = f;, j = 1,2, such that 71 thzl f.f, =1,
and each component of f; is such that fi = pgfii—1+ 2, i =1,...,r, with py = {0,0.7} and
zit ~ N(0,1).

The idiosyncratic components are generated according to (@), where 3 = Xjc o + Zjep,
J = 1,2, with 3;. , diagonal and X;.; banded. Specifically, the entries of 3. , are generated
from a U[0.25,1.25] and those of 3., are generated from a U[0.75,1.75], while 3.4 is a
Toeplitz matrix with 7% on the kth diagonal for k = 1,2 and zero elsewhere, and, finally Yoeh

is a Toeplitz matrix with 771 on the kth diagonal for k = 1,2,3 and zero elsewhere. We set

7 = {0,0.5}. Moreover, each component of v; is such that vy = pjvi—1 +wir, i = 1,..., N,
T 2
with p; = {0, p} and p ~ U[0,0.5]. Finally, we set the noise-to-signal ratio N~ SV | %
t=1 A4t

to be 0.5 on average across all N simulated time series.

We simulate the model above 100 times for different values of 7, p¢, 7, and p. The EM is
run allowing for at most 100 iterations and using a convergence threshold equal to 1076. We
initialize the algorithm using PCA as described in Section B4l Since the states are identified
only up to a permutation at each iteration of the algorithm we assign label 1 to the state with
highest unconditional probability.

In Tables M first four columns, we report the average and standard deviation over all
replications of the estimated diagonal entries of the transition matrix pj;, 7 = 1,2, of the
unconditional probabilities P(s; = j), estimated as EMT =71 Zthl EMm j=12.

Since the loadings are not identified, in the fifth column of Tables [ we report the
multiple R? coefficient obtained from regressing the columns of B, onto the columns of B* =

~

BlI@ +Bs (I, _/I\El)’ thus correcting for the possible bias as prescribed by Theorem[Il Namely,

~ ~ o~ -1 /<
tr{(B’{’Bl) <B’1B1> <B’1B’{>}

tr <B’{’B’1‘)

we compute

RQ*:
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Table 1: ESTIMATED PROBABILITIES - r =1, py =0, 7 =0, p=0.

T N  pu P &uyr Syr | Ry MSE(x) | avg. iter

250 100 0.89 0.64 0.76 0.24 | 097 0.02 13.78
(0.03) (0.13)  (0.06) (0.06)

500 100 0.90 0.68 0.76 0.24 | 0.98 0.01 12.55
(0.01)  (0.04) (0.03) (0.03)

750 100 0.90 0.69 0.75 0.25 | 0.98 0.01 12.71
(0.01)  (0.03) (0.03) (0.03)

1000 100 090 0.69 0.75 0.25 | 0.98 0.01 12.05
(0.01) (0.03) (0.03) (0.03)

250 200 089 0.64 076 024 | 097 0.01 11.98
(0.02) (0.11) (0.06) (0.06)

500 200 089 0.68 0.75 0.25 | 0.97 0.01 21.23
(0.02) (0.04) (0.03) (0.03)

750 200 089 0.68 0.75 0.25 | 0.97 0.02 37.37
(0.02) (0.04) (0.03) (0.03)

1000 200 0.90 0.69 0.75 0.25 | 0.98 0.02 36.22
(0.01) (0.03) (0.03) (0.03)
Table 2: ESTIMATED PROBABILITIES - r =1, py = 0.7, 7 = 0.5, p = 0.5.
T N ]/?\11 ]/?\22 51,t|T 52715‘71 RQB* MSE(X) avg. iter
250 100 0.89 0.62 0.77 0.23 | 0.97 0.02 20.14
(0.03) (0.17) (0.07)  (0.07)

500 100 0.90 0.68 0.76 0.24 | 0.98 0.02 15.28
(0.02)  (0.05) (0.04) (0.04)

750 100 0.90 0.69 0.76 0.24 | 0.98 0.02 14.43
(0.01)  (0.03) (0.03) (0.03)

1000 100 0.90 0.66 0.77 0.23 | 0.98 0.01 14.07
(0.02) (0.14) (0.05) (0.05)

250 200 0.89 0.62 0.77 0.23 | 0.98 0.02 11.95
(0.03) (0.14) (0.07) (0.07)

500 200 0.89 0.67 0.75 0.25 | 0.98 0.01 20.21
(0.02) (0.04) (0.04) (0.04)

750 200 0.89 0.69 0.75 0.25 | 0.98 0.01 19.17
(0.01) (0.04) (0.02) (0.02)

1000 200 0.90 0.69 0.75 0.25 | 0.98 0.01 21.82
(0.01)  (0.03) (0.03) (0.03)

The closer this number is to one, the closer is the space spanned by the columns of ]§1 to the

space spanned by the columns of B} (see Doz et all (2012)).

In the sixth column of Tables [[Hdl we report the MSE of the estimated common components
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Table 3: ESTIMATED PROBABILITIES - r =2, py =0, 7 =0, p =0.

T N P11 P2 Eyra Syrpe R%. MSE(x) | avg. iter

250 100 0.88 046 0.81 0.19 | 0.97 0.04 19.32
(0.04) (0.22) (0.08) (0.08)

500 100 0.89 065 0.76 0.24 | 0.97 0.03 14.63
(0.02) (0.04) (0.03) (0.03)

750 100 0.90 0.67 0.76 0.24 | 0.97 0.03 14.46
(0.01)  (0.04) (0.03) (0.03)

1000 100 090 0.68 0.76 0.24 | 0.97 0.03 13.83
(0.01)  (0.03) (0.02) (0.02)

250 200 087 048 0.78 0.22 | 097 0.03 13.72
(0.04) (0.22) (0.08) (0.08)

500 200 0.89 0.65 0.75 0.25 | 0.97 0.02 10.40
(0.02) (0.05) (0.04) (0.04)

750 200 0.89 0.67 0.75 0.25 | 0.97 0.02 10.86
(0.01) (0.04) (0.03) (0.03)

1000 200 0.90 0.68 0.75 0.25 | 0.97 0.01 10.81
(0.01)  (0.03) (0.02) (0.02)

Table 4: ESTIMATED PROBABILITIES - r = 2, py = 0.7, 7 = 0.5, p = 0.5.

T N P11 P2 Eyra Syrpe R%. MSE(x) | avg. iter

250 100 091 038 086 0.14 | 0.98 0.04 17.40
(0.03) (0.20) (0.07) (0.07)

500 100 0.90 065 0.77 0.23 | 0.97 0.03 20.36
(0.02)  (0.04) (0.04) (0.04)

750 100 0.90 0.67 0.76 0.24 | 0.97 0.03 17.20
(0.01)  (0.04) (0.03) (0.03)

1000 100 090 0.68 0.76 0.24 | 0.98 0.03 16.61
(0.01) (0.03) (0.03) (0.03)

250 200 0.89 041 083 0.17 | 0.97 0.03 14.55
(0.04) (0.21) (0.09)  (0.09)

500 200 0.89 066 0.76 0.24 | 0.97 0.02 13.41
(0.01)  (0.06) (0.04) (0.04)

750 200 0.90 067 0.76 0.24 | 097 0.02 14.56
(0.01)  (0.03) (0.03) (0.03)

1000 200 090 0.68 0.76 0.24 | 0.98 0.02 11.96
(0.01)  (0.03) (0.02) (0.02)

defined as N .
MSE(X) _ Zizl thl(Xit - Xit)2
N T
Doim1 D=1 Xzzt

)

~ o~ N\~
where i1 = <b1i bQi) <€t ® gt)-
In the last column of Tables [[Hd] we report the average number of iterations needed to get
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convergence of the EM algorithm.

7 Empirical analysis

In this section we show how the methodological framework we propose can be used to model
a large set of stock returns. This relates our work to a vast literature that models stock re-
turn dynamics using Markov switching specifications. [Perez-Quiros and Timmermann (2000,
2001) document business cycle asymmetries in U.S. stock return dynamics using decile-sorted
portfolios. |Ang and Bekaert (2002), and |Guidolin and Timmermann (2008), study portfolio
allocation in international equity markets under regime switching. In a multi asset setting,
Guidolin and Timmermann (2006) describe the joint distribution of equity and bonds under
regime switching. |Guidolin (2011)), and |Ang and Timmermann (2012), provide a review of
the literature. We contribute to this stream of literature by characterizing stock return dy-
namics with a Markov switching model in a large dimensional setting. To the very best of our
knowledge, we are the first to do so. In what follows, Section [C.1] describes the data and the
empirical model specification, Section discusses the estimated regime probabilities, and

Section [L.3] presents the findings for estimated loadings and factors.

7.1 Data and model specification

The vector of observable dependent variables x; in () is made of the monthly value weighted
returns in excess of the risk-free rate from the N = 49 industry portfolios kindly made publicly
available on Kenneth French WebsiteH In order to obtain a balanced panel, the sample period

runs from July 1969 through December 2021, a total of T'= 630 time periods.

7.2 Regime probabilities

Using the selection criterion of Ahn and Horenstein (2013) as applied to the equivalent linear
representation in (I0), we find » = 2 common factors. Based on this, we apply the algorithm
detailed in Section Bl The EM algorithm converges relatively fast in just 22 iterations (see
Figure [[]). The realisation of the estimator P for the matrix of conditional probabilities P in
@) is equal to

5 0.9194 0.0806
1 0.3395 0.6605 |

The estimated unconditional probability for regime j is equal to the sample average Ej‘T =
T-1 Z?zl @7“T, for j = 1,2. It follows that EHT = 0.8044 and gz\T = 0.1956H Therefore,

3See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html| ~
“By computing the unconditional probability using their analytical formulas in (@), we get EI‘T = 0.8081

and EQ‘T = 0.1919.
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Figure 1: EXPECTED LOG-LIKELIHOOD

<10*
T

This figure plots the value of the maximized expected conditional log-likelihood computed using
the estimated factors, i.e., Egw [1ogf (X G; plk+D) ﬁ(’”l)) |X} (see also (), as a function of
the EM iterations k.

Figure 2: ESTIMATED CONDITIONAL PROBABILITIES &7, t =1,...,T.

Al T ' 1

||| L L L L L L A n L L |
—~ —~
(a): 51,t\T (b): 2,4|T

This figure plots the series of the estimated conditional probabilities El,t\T (Panel a) and EQ,HT
(Panel b) estimated from the Markov switching factor model in (@J).

regime j = 1 is approximately four times more frequent than regime j = 2.

In order to provide an economic understanding of the regimes described by the model,
Figure [ plots the sequences of estimates EMT and EZHT’ for t = 1,...,T. These series are
negatively and positively correlated, respectively, with the NBER recession indicator, with
correlation coefficients equal to -0.303 and 0.303, respectively. Therefore, the state j = 1 is
related to periods of economic expansions, whereas the state j = 2 is more likely to occur
during recessionary phasesH This is consistent with the empirical frequency of the states, since
expansions occur more often than recessionsH Our model therefore captures regime changes

in equity markets related to business cycle dynamics.

®The NBER recession indicator is publicly available at https://fred.stlouisfed.org/series/USREC!
SInformation on U.S. business cycle dates may be found at https://www.nber.org/research/data/us-business-cycle-expar

28


https://fred.stlouisfed.org/series/USREC
https://www.nber.org/research/data/us-business-cycle-expansions-and-contractions

Figure 3: ESTIMATED FACTORS &, t =1,...,T.
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(2): G (b): Ga
This figure plots the series of the estimated factors gi; (Panel a) and ga; (Panel b) estimated from
the linear factor model in (I0).

7.3 Factors and loadings
7.3.1 Equivalent linear representation

Following the sequential order dictated by our estimation procedure, we first consider es-
timated factors and loadings for the equivalent linear representation in (I0), namely g; =
(G2, G2¢) and A = (a1,3,) as obtained in Section

We begin from the estimated factors g1; and g9, which are displayed in Figure Bl To aid
understanding of these factors, we study the correlation between them and the six observable
factors considered in [Fama and French (2016), namely: the value-weighted return on the
market portfolio in excess of the one-month Treasury bill rate (RM,); size (SM By); value
(HM Ly); profitability (RMW;); investment (CM A;); momentum (MOM;). The correlations
displayed in Table B show that the first estimated factor gi4 is strongly correlated with the
market return RM;, it is reasonably correlated with SM B;, CM A; and MOM;, and it is
only mildly correlated with HM L; and RMW;. On the other hand, the second estimated
latent factor does not exhibit any substantial correlation with any of the observable factors
we consider. This implies that the first factor in the equivalent linear representation is likely
to be a market factor, while it is more difficult to give economic interpretation to the second
factor.

The estimated loadings are displayed in Figure @ It is important to note that the elements
of the estimated vector a; associated to gi; all have the same sign, which confirms that
the corresponding factor gi; is a level factor. On the other hand, the vector of loadings as
associated to go; has elements with positive and negative sign, which is consistent with gof

being a slope factor.

7.3.2 Markov switching factor model

We then study the four common factors collected in the vector EHT g, fort =1,...,T,

namely gj,t\TZ?\lt and Emﬁ% for j = 1,2. These four series are plotted in Figure Bl To aid
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Figure 4: ESTIMATED LOADINGS A.
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This figure plots the sequences of estimated loadings @;; (Panel a) and a;2 (Panelb),i=1,..., N,
estimated from the linear factor model in (0.

Table 5: FACTOR CORRELATIONS IN LINEAR MODEL.

/g\lt :q\2t
RM, 096 0.5

SMB;, 040 -0.06
HML, -0.13 -0.06
RMW; -0.14 0.12
CMA, -0.32 -0.12
MOM,; -0.26 -0.08

This table reports the correlation coefficients between the estimated latent factors gi; and gy
from the equivalent linear specification in (I0) and the following six observable factors from
Fama and Frenchl (2016): the value-weighted return on the market portfolio in excess of the one-
month Treasury bill rate (RM;); size (SM By); value (HM L;); profitability (RMW;); investment
(CM A;); momentum (MODM).

understanding of those factors, Table [0l displays their correlations with the same observable
factors detailed in Section [[.3.1] Consistently with the results in Table [ Table [l shows that
both a,t\T/g\lt and EMTgU are highly correlated with RM; and therefore capture the amount
of cross-sectional dependence in stock returns driven by the market within each regime. This
result is easy to interpret, as gy; is obtained as the sum of gl,t|T/g\1t and EMTgU. On the other
hand, th‘T/g\Qt and 52,t|qu\2t are more difficult to interpret, as they display limited correlation
with all observable factors we consider, a feature they naturally share with go;.

o~ o~

o~ !
Finally, we consider the vectors of loadings bj; = <bjl-1, bji2> ,forj=1,2andi=1,...,N.

~ N ~ N
These are shown in Figure[6l It is important to note that both {bm} and {bgﬂ} have

1=

=1

all elements with the same sign. This feature is inherited from a; through g;; and it confirms
~ ~ ~ N

that b1;1 and bg;; are level factors. On the other hand, analogously to as, {blig}' . and
1=

~ YN ~
{bgig}' . have both positive and negative elements, and the corresponding factors &; ;g
1=

and gZ,t\Tﬁ?t are slope factors. It is also worth noting that BH and 612 are very similar to

each other, the same being true for 621 and ng: this suggests that the bias induced by the
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Table 6: FACTOR CORRELATIONS IN MARKOV SWITCHING MODEL.

RM,
SM B,
HML,
RMW,
CMA,
MOM,

guSiyr  GeSigr Guboyr G2ty

0.74 0.06 0.62 -0.01
0.32 -0.08 0.24 0.01
-0.17 -0.11 0.00 0.06
-0.06 0.09 -0.15 0.08
-0.22 -0.12 -0.23 -0.03
-0.01 0.03 -0.39 -0.19

This table reports the correlation coefficients between the estimated latent factors §1t§1t‘T,

§2t§1t‘T, §1t§;t‘T, and §2t§2ﬂ from the Markov switching factor model in equivalent linear spec-
ification in (IJ) and the following six observable factors from [Fama and Frenchl (2016): the value-
weighted return on the market portfolio in excess of the one-month Treasury bill rate (RM;); size
(SM B;); value (HM L;); profitability (RMW;); investment (CM A;); momentum (MOM).

Figure 5: ESTIMATED FACTORS EHT g, t=1,...,T.
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This figure plots the series of the estimated factors a7t|T/g\1t (Panel a), g2,t|T./g\1t (Panel b), a7t|T/g\2t

(Panel ¢), and ng_ﬂT@Qt (Panel d) estimated from the Markov switching factor model in (@J).

imperfect knowledge of the state is almost negligible it practice, which implies that the regimes

are estimated with high degree of accuracy.

8 Concluding remarks

This paper has developed estimation and inferential theory for high dimensional factor models

with discrete regime changes in the loadings driven by a latent first order Markov process.
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Figure 6: ESTIMATED LOADINGS B; AND Bs.
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This figure plots the sequences of estimated factor loadings 311-1 (Panel a), 311-2 (Panel b), 521-1
(Panel ¢), and by;2 (Panel d), i =1,..., N, estimated from the Markov switching factor model in

@).

Our estimator employs a EM algorithm based on a modified version of the Baum-Lindgren-
Hamilton-Kim filter and smoother. Remarkably, the estimator does not need knowledge of the
number of factors in either states, as it only requires the true number of factors in the equivalent
linear representation, which can be estimated using existing techniques. We derive convergence
rates and asymptotic distribution of the estimators for factors and loadings, and we show their
good finite sample performance through an extensive set of Monte Carlo experiments. Finally,
we empirically validate our methodology through an application to a large set of stock returns.

Our work can be extended along several dimensions. Three are worth mentioning. First,
our model allows for two regimes and the case of multiple states to capture richer dynamics
is worth exploring. Second, the problem of estimating the number of factors within each
regime should be addressed. Finally, the challenging task of making inference on the number

of regimes is worth considering. All these extensions are part of our research agenda.
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A Appendix: mathematical proofs

Define Cyr = min{\/ﬁ,\/f} Let Iyy = I(sy = 1) and Iy = I(s; = 2). For j = 1,2, and
i, =1,..., N, define

1 X 1
oju=E T t; Lieier ) s Xja = T
1

=

&
Il
—

1 T
Hjteitelt —-E <T Z Hjteitelt> )
t=1 (A.1)

M=

1 T
it = 7 > LN fiven, o = T Lie N fjeeir.
=1

o+
Il

1

A.1 Lemmas

Lemma 1. Under Assumptions - @ and given H defined in (@), we have

1 & 9 )
N ; ‘ =0p <CTNT> .
Lemma 2. Let Assumptions Il - { hold. Then:
(a) N\ G0y = 0, <Wm)
() N 'Y aa =0, <ﬁm)’
() N'SoN  &pu = O, (ﬁm)’
(d) NN A = O, (%)

Lemma 3. Under Assumptions [I] - [6]

N1 (A-aR)A=0, (%) .
NT

ﬁi — H/ai

Lemma 4. Under Assumptions [ - [l

e aaw) 1
N7 (A-AH) e =0, <—02 >
NT
Lemma 5. Let Assumptions [I - [ hold. Then:
~ -1, — 1 1 _ .
(a) g&e—H g =0, <ﬁ> +0, (CTNT) fort=1,...,T;

() +50, (&8-H e ) 8 =0, (cf ).
Lemma 6. Under Assumptions[I]- [l and given Q defined in Theorem [I]
A'A

li =
pN,Yl“IEoo N Q’
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Lemma 7. Let Assumptions [1 - [ hold, and consider the matrix Q defined in Theorem [l
Then, for j = 1,2, the r; x (r1 + r9) matrix Q; satisfying Q = [Q} Qj]’ is such that

Q; = 2, P w; v,

where X¢; is defined in ({@{), and ¥; is the r; x (r; + r2) matrix such that ¥ = [¥} Wh]'.

Lemma 8. Let V be the (r1 +79) x (r1 + r2) diagonal matrix containing the first r; + 7o
eigenvalues of 3y = (NT) S %%, in decreasing order. Define V as the (r; + rp) x
(r1 + r2) diagonal matrix of the first r; 4 ro eigenvalues of Zé/ > AEé/ % in decreasing order,
where ¥, and XA are defined in ({#Il) and (43), respectively. Then, under Assumptions [II-[4]

VAV,

A.2 Proofs of Lemmas

Proof of Lemma [ Consider 3y = (NT)~ st xtxt and H = (GG'/T) <A’K/N> vl
By the definition of eigenvectors and eigenvalues, SLA AV where V is the r x r diagonal
matrix of the first 7 = (r; + 79) largest eigenvalues of Zx in decreasing order, and A is VN
times the N x r matrix of eigenvectors of ﬁ corresponding to its r largest eigenvalues. Note
that H?H = 0, (1) and ‘H < |GG’ /T||||AA" /N ||V? || A HA A//NH V-1 = 0, (1) by
Assumptions [I] and 2l We then have

GG' A’A
T N

<K—AIA{)\7:K\A/'—AIA{\7:K\7—A

which implies

... A’A GG’
/ f— — R
VA -7 N T

T
(Z xtx;> - AGG’A’] .
t=1

Taking into account (A.J]), after some algebra we have

—~ 1 T
Al— [( e x,) — AGG'aZ}
NT t; bt
1

2 /1 N 1 N 1 N 1
= N > Ao+ N > A+ N Z a)pjin + + Z apjii | | -
j=1 =1 =1 =

{\7 <ﬁl — ﬁ’ai)

(A.2)
It follows that
| X R 9 1 & N N 1 N
B s [ S (3 ey T 1 ).
i=1 j=1 i=1 i= i=1 i=1
(A.3)



where

2

2 2 2

- 1

- 1

N

? 1 (1 & 1
<— = al®| =
_N<lelnaln)N(

given Assumption Bi(b), N~! <Zf\i1 le\il J?z’l) < M by Lemma A.1(a) in [Massacci (2017),
which implies that

N
> A0
=1

N
> ax;i
=1

N
> apji
=1

N
> i
=1

N 1

Consider 7j;. and note that

N
> a0
=1

so that

len. 11
PSS DM

N
> a0
=1

N
2 .
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=1

=1
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vz -o(5) o

Consider now,
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i=1 i=11liI=1
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by Assumption B(c), then

and
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by Assumptions P2land @l Finally,

1 JZV:A
= — a; ;i
N2 |5
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2

1 1141 & 1 & 1 1
~ 2 ~ 12
3w g (53| nte] ) (22 (S m) -0, (3)
i=1 i=1 t=1 =1 =1
(A.7)
by Assumptions Pl and @ By combining (A.3) - (A7), and since “\A/*l“ = O, (1), then
N
1 N ~ 2 1 1
N;‘a“ﬂ'a@' =Or <N> tO (f)
and the result stated in the lemma follows. O

Proof of Lemma[2 Starting from (a), consider

1 1 < 1 1
N Zal()'ju = N Z (ﬁl — H’al + H'al> Ujil = N Z <al — H'al> Ujil + H,N Zalaﬂl.
=1 =1 =1

Note that

N
Z a10 il
I=1

by Assumption 2l and Assumption Bi(b), so that

al 1
Zalo-jil =0 (N) .
=1

N N B
< () (Zm) < [ (il + [2al) (Zm) <M

=1

2|

Further

1/2

< (%i(\ﬁz—f;az\f)
- [o(e)] "o
= O m)

by Lemma [Il and Assumption B(b). It thus follows that

1 1 1 1
N qoy=0,——)v0,(=)=0, [ ———).
NZZ; o p<\/NCNT> p<N> p(WCNT>

Ells
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Moving on to (b), we have

N

N N

1 SN ~ 1

N Z ANjil = 77 Z <az - H/al> Xjil + H/N Z X jil-
= =1

l 1

Note that
L , , 1/2 1/2
3 (- < (53 [a-mnf) (330)
=1 =1
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N 1 N[1 T 1 T 2
1 1z 2
= N7 lzl {ﬁ t; [Liceier — E (Hjteitelt)]}
T -
- o(5)
so that
N
1 1 1
st =04 () 00 () =0, (1)
;( ) { X]Zl P CNT P ﬁ p \/TCNT
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which completes the proof of the lemma. O
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by Lemma [I, Assumption 2, and the fact that, given p;; = oji /(ajiiaj”)l/Q , by Assumption
B(b) we have
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by Lemma [Il Further
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by Assumptions 2 and B(b). Further
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which completes the proof of the lemma.
O

Proof of Lemma[7] Given the identity in (A2)), we can write

—~ ~\/ ~
N-! (A-AH) e = VI

44



Consider

A

1 1 N
N Z N Z al Ojil | €it

( ) 0,0,

\/7CNT

by Lemma [T equation (A.10), and Assumption Ba). Consider now

Ten (1 1
N 2 <Nzalinl> eit = Z NZ(W Hal)X]zl

-%@%H o) (e e
%

72 (52 rxﬂlenr)gl

i=1 =1 = =1 =1 =
We have
1 N1 XN 1
N Z N Z < H al) Xjil | €it < z H (al H al) H z |X]zlezt|
i=1 =1 l:l
1 1
< [LE -]
l:1 l:l
with
1 N 1 N 1 T 1 T
N Z ’ij’leit’ N Z [T Z Hjteitelt —-E (T Z Hjteitelt>:| €it
i=1 i=1 t=1 t=1
1 1 X 1 1 T
= ﬁ Z; T ; jtCiteit — <—th:1 ]Ijtez‘telt)] €it
1
= O _—
(7)

by Assumptions Bla) and Bl(c). Therefore, taking into account Lemma [T}

1 X1 L, 4, ) )
N; NZ(al_Hal) xjit | €it]| = Op <C—NT> 0, (ﬁ)

o,

1

VTCONT

=1
Further,
Hl%lfzv: Hlfz\élfz\e 1ZT: E<1XT:
- _ aXiilCit — - - a; | = H'te‘telt _ _ H'te‘telt>:| e
NS NZ NSNS T T
Ll A s san E (Lyewer)
= — a; [Lirepen — E (Lirese
NTNizl \/ﬁl:lt:l 1 [L5tCitClt jtCitClt
1 1 N 1 N T
< Wicii N@; Wl;t;az [Liceierr — E (Ljzeier)]
1

45

1/2 1/2
1 N

(A.17)

eit + H Z Z 1€t X 54l -

1/2

=1

).

|eit]

VL)
12
NS



by Assumptions Bla) and [6(a). Therefore,
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by Assumptions 2 Bl(a) and [6(a). Therefore,
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by Assumption Bl(a) and Lemma P(d). By combining (A.16), (A7), (AI8), (AI9) and
(A.20), we have
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Proof of Lemma [3 Starting from (a), and taking into account (I0)), consider
g =N 'Ax, =N 'A'(Ag, +e) = N"'A’Ag, + N"'Ale,

and note that
A—A—AH '+AH '

so that we have
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The result in (a) follows by taking into account Lemma [B] and Lemma [ As for (b), adding
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and subtracting terms we have

[ERANN -1 5/ 1 X -1 S A1)
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1T R R , (A.22)
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Taking into account the results in (a), it follows that

T
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From (A.21]), we also have that
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)

and taking into account Assumptions 2l and [6l(c), and Lemma [3]
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Combining (A22]) through (A.24), it follows that
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which shows (b) and completes the proof of the lemma.
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Proof of Lemma[6 Given H = (GG'/T) (A’K/N) V1, pre-multiply both sides of the
identity (1/NT)X'XA = AV by (GG /T)"? N=1A’ to obtain

N\ 1/2 / N N\ 1/2 IR N
1 (GG, (XX (GG AR\ o
N T NT T N

Given ([I0), write X = G’A’ + E with X = (x1,...,x7) and E = (eq,...,er)". We thus have

1 /GG\Y? [ /AGG/A\ ~ ~ [(GG\Y?[A'A\ ~
where /2
1 (GG  (AGE + E'G'A' + EE\ ~
_N<T> A< ad >A_o,,<1>

wo (GE\* (AAN (Ga\'? o rGa\'Y? (aA
S\ T N T TN\ T N )’
so that we can write (A.20) as
~a—1\ ~ ~ o~
<W+DZ )Z:zv.

Therefore, each column of Z is an eigenvector of (W + f)iil), although the length is not

equal to unity. Let V* be the diagonal matrix of the diagonal elements of Z'Z. Define
~ o~ \—1)2 ~
v =17 (V*) so that each column of ¥ has unit length. We thus get

<W + 132*1> ¥ =0V,

-~ o1
where W is the eigenvector matrix of (W + DZ > Consider

o GG\'? [A’A\ (GG -
W+DZ1:<T> <N><T> +DZ

and note that

T ! T
GG 1 Z Ly fre Life | 1 Z e fref7, 0 p (2 0 ) _
T T\ Tyfy Lo fo T 0 Infof) 0 Xy )

t=1

by Assumption 1. Further, (A’A /N) — XA by Assumption 2. Therefore, by Assumptions
1and 2, W + ]3271 N Eéﬂ ZAEgz. Because the eigenvalues of Zéﬂ ZAEéﬂ are distinct
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by Assumption [B the eigenvalues of W + ]32_1 are also distinct for large N and T, by the
continuity of eigenvalues. This implies that the eigenvector matrix of W + ]3271 is unique
except for the fact that each column can be replaced by its negative value. Further, the
p — th column of Z depends on A only through the p — th column of K, forp=1,...,P.
This implies that the sign of each column in 2, and thus in ¥ = Z (\7*)71/2, is deter-
mined by the sign of the corresponding column of A. Therefore, the column sign of A
and W are uniquely determined. By the eigenvector perturbation theory, which requires the

eigenvalues to be distinct, there exists a unique eigenvector matrix ¥ of EZQ Eg 2 EXQ such
~ ~ ~ N\ —1/2 ~ ~

that H\Il—\IIH = 0, (1). Since ¥ = Z <V*> and Z = (GG//T)l/Q (A’A/N) then

~ -~ ~\—1/2

¥ = (GG’ /T)"? (A’A /N) <V> , which implies that

A’A GG\ V2 12 i
A () () e

by Assumption 1 and since ATARE V, the latter following from arguments analogous to those

in the proof of Proposition 1 in [Bai (2003). This completes the proof of the lemma. O

Proof of Lemma [[. From Lemma [6] and taking into account (A1), we have

Qi
Q p—
Q:
— o Y2gvyie
-1/2
_ g O V12
0 g )
—-1/2
_ [ Zn 0 Wi\ e
o =, o,
_ 2;11/2 ‘I’1V1/2
2;21/2 ‘I’2V1/2
which completes the proof of the lemma. ]

Proof of Lemma [8. Given the equivalent linear representation in (I0), we can write

1 T
N—Z XXt =

Zl igtgz) <3 A( 5 gicl) (4.26)
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Taking into account Assumption [2] and Assumption [ it follows that

I;.f10e)
T t= 1 < Hgtfgtet )H
1
ﬁ? (1)0, (V) (A.27)
- o(7)

v (el = olml =

Similarly, we can prove that

1 (1< 1
—A| = Zetg£> =0, <—> . (A.28)
<T = VT
Finally, by the weak dependence condition in Assumption (3]),
1 —
ﬁ Z eie;
t=1
By combining ([A.26]) through (A.29]), we then have
T T
1 A (1 ,) A’ A GG A’
—thxt:— _thgt —=top(1) = +op(1).
NT = VW<Tm1 VN VN T VN

The result in the lemma follows from Assumptions ([I]) and (2] by noting that the eigenvalues of

(A/\/N) (GG’ /T) (A’/\/ﬁ) are the same as those of (G’/\/T) (A’A/N) <G/\/T)
U

=0, (1). (A.29)

A.3 Proof of Theorem [

Given (), from Section recall B; = [A; 0] and By = [0 Az]. Adding and subtracting

terms, we have

x¢ = IuBig: +I:Bog: + e
~ IuBiHg, + LBy Hg, + [, B H (H g — &) + LyBoH (H g — &) + e
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~ o~ —~ /
We focus upon B; = [bn,...,blN} as an estimator for B; = [bu,...,blN]'. Analogous

arguments hold for ]§2. We have

~

B, =

T -1
tTtht> (2:151,t|Tgtgz/£>
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HT [HltBlﬁgt +1yByHg, + ;B H (ﬁ_lgt - /g\t> +IBoH <ﬁ_1gt - /g\t> + et] gi}
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+ <21§ tTetgt> <21£1,tTgtgz/£>
t= t=

Since Iy = 1 — T34, and recalling the definition of I517 after some algebra we get

R R R N 1 T 17~ \!
\/7{131 — B,HI; — BH (I—Igl)] = (ﬁt:}& Tetgt> <Tt§1§1,t|Tgtgzlt> _

T ~
Z 1,07 Tt <H_1gt - gt) gt

1 ~ N\ ~
ﬁ > &1y o <H_1gt - gt) g
VT =1 J

( . Z &1 tTgtgt> h :
(A.30)

For 0 < M < oo, and taking into account Lemma [5] for j = 1,2 we have that,

1 ~ o\ -~ 1
T Z <H 1gt - gt) 8| =0p <CTNT> : (A.31)

t=1
From (A.30)) and (A.31]), and taking into account Assumption [7] it follows that

T
1 ~ o N\ A
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=1

-1
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Since g = N~1A’x; and x; = [ A1 f1p-+lo; Aofoy+e, then g = N1 (HUK’AlfU 4 Ty A/ Aoy + K’et).
After some algebra, we have

VT |B; - B HI, B;H( &)

1 I~ 1 I~ ALA 1 T~ A
= {<—T > Hltfl,tlTetf{t> — T <ﬁ t;l I:€1 tTetf2t> % + ﬁt; 1ret (efeN)] }
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A'A A A1 T A A
N - < Z T14€, t|Tf1tet> NN (f 211111551,15Tetf{t> ]1\[
X PO = ~ +o0,(1).
A'A A A[/1ZL ALA b
N - < Z Ioe€, T f2tet> ~Tw (f > Iy AT etf2t> ]2\[
t=1
A’ A
Z 3 4T ete}
N N
(A.32)
By Lemma [21 it follows that
K'fhy—o<—¥L—>+o<—i—v+m>(i> (A.33)
-~ P\VNCyr "\VTCnr "\vT)’ .
which implies that
A-AH=0,| —— | +0,| — |+ 0, | = | - A.34
p<\/NCNT> p<\/TCNT> p< T) ( )
From (A.32)) - (A.34)), it follows that
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AA; (1 T @M<1 ~ )
skl (UL o frren | + 22 (1 fyen | | + o0, (1
N <\/thl 1t§1,t\T 1te t) N Tt; 2t§1,t\T 2t€it op (1)

and the result stated in the theorem follows by Assumption[Iland Lemmal6 and by noting that,

by Assumption [6]c), <T_1/2 Z?:l Huﬁ,ﬂT flteit) and (T_l/2 Zthl HgtﬂﬂT thel't> converge in
distribution to two independent Normal random variables.

A.4 Proof of Theorem

Given the representation in (@), we can write

x¢ = (B1 B) (& @ g¢) + e = (B1 Ba) (Suge Sarge) + et
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Given also the estimators B; and By defined according to (29)), the estimators EMT g: and

EMT g; for &g and £9;8;, respectively, are obtained as

¢ o ~ AN "~ N/
é:\l’t‘T/g\t = |:<B1 B2) (B1 B2):| <B1 BQ) Xt
o478t

~ o~ ~ ~ -1 N
_ B/1B1 B/1B2 B/1 (B1 B2) §18t
B,2B1 B/2B2 B/2 £2181
o~ o~ o~ o~ —1 ~
L BiB BBy B,
B’2B1 B’2B2 B’2

-~ —~ AN AN AN AN _1 o~
§1,47 8t _ B1B; B|B; B (B, B,) 118t
Eo.4/7 8t B,B; B)B; B 2Bt
~ o~ ~ o~ —1 ~
B/1B1 B/1B2 B/1 S 6 \o-1 [ Su8t
+<1§'1§ 5, ) (g ) BB)E"
21 22 2 2t8t
o~ o~ o~ o~ —1 ~
B/1B1 B/1B2 B/1 S o5 Yoot [ S8t
_<1§'1§ BB 5, | (BB
21 22 2 §218t
o~ o~ o~ o~ —1 ~
L[ BiB BiBs B,
B,B, B.B, B!
PP
B’lBl B’1B2 ~ B’l
+<1§/1§1 BB, ) elmy )
2 B2 J 2
(BB BB\ L (B
B,B, B,B, ‘\ B, ’

or equivalently

é;l,t\T/g\t _H! 18t
52,t\T g ¢ §2t8t
BB

~ o~ —1
B/ B'B P B/
— -1 121 192 ! -1 1

2/\ 1/\ 2/\ 2/\ 2\ 2
BB, BB B/ N~

4 Nfl A,l/\l /\/1/\2 Nfl /\/1 {(Bl BQ)H£—<B1 B2>:| Hg_l Eltgt
B,B; B,B; B/, 281
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Consider first
1 ( B, S 5 \a 118t
— | = (B; By) — (B; By ) H !
N < By ) [ ( ) ¢ ] 218t
1 ( B} ~ = 5\ 6 118t
= = 2 (B; By)H; — (B, By )| H, ! ;
N < By ) [ ‘ < ﬂ ¢ §2t8t
so that from (A30)) and (A.31]), and taking into account Assumption [ it follows that
B’ o~ A
= (B1 By) — (B1 By) H'| Sugt
N\ By £2t8t
1 (B, H P NP ~ 18t
— B1 B,) H, — <31 BQH HH H (A.36)
VN ( BIQ )H \/_ ¢ ¢ £2181
o (r) + o (e,
By (A.30) and (A.31)), and taking into account Assumption Bl(b), we also have that,
Bi) a (B Bi) a (B
B, “\ B B} “\ B,
1 1
P <\/NT> PAVNCZ,,

Therefore, taking into account (A.39)), (A.36]) and (A.37), and by Assumption [7] we have

asY

1

VN

N

IN

€

.

-1

R B'B, BB, ,
g A~ 1 - B
UN [ Sturs ) C g Sus )| | TN N L A, ) e 1o, (1),
o0\ 8t © O\ G B;B; B;B» VN B), b
N N

Given ﬁg, let I; = plimMT%oo/I\gj for j = 1,2, where /I\gj is defined in (9)). Also, given
H defined in 5D, we have H 2 EgQV*1 = H, where ¥z = plimy 7 (GG/T) by
Assumption (), and Q = plimy 7 (A’A/N) = by Lemma [6l By Theorem [Il we then

—~ —~ /
have (B1 B2) EN H, (B, B,)’. Therefore

B/B; BB,
. N N ¥B1 B2 /
p lim ~ P ~a = H; H,
NT—o [ B,B; B/Bs YB21 XB2
N N
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where, by Assumption 2] H(B;Bj/N) —EBj‘ — 0 and H(B;Bk/N) —EBij — 0, for
Jyk=1,2 with j # k as N — oo . The result stated in the theorem follows by noting that

L ( Bl )etiN(O,EBet).

VN \ B,

by Assumption [Bl(d), which concludes the proof.
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