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Abstract

We study a novel large dimensional approximate factor model with regime changes in

the loadings driven by a latent first order Markov process. By exploiting the equivalent

linear representation of the model we first recover the latent factors by means of Principal

Component Analysis. We then cast the model in state-space form, and we estimate load-

ings and transition probabilities through an EM algorithm based on a modified version

of the Baum-Lindgren-Hamilton-Kim filter and smoother which makes use of the factors

previously estimated. An important feature of our approach is that it provides closed

form expressions for all estimators. We derive the theoretical properties of the proposed

estimation procedure and show their good finite sample performance through a compre-

hensive set of Monte Carlo experiments. An important feature of our methodology is that

it does not require knowledge of the true number of factors. The empirical usefulness of

our approach is illustrated through an application to a large portfolio of stocks.

Keywords: Large Factor Model, Markov Switching, Baum-Lindgren-Hamilton-Kim Fil-

ter and Smoother, Principal Component Analysis, Stock Returns.

JEL Codes: C34, C38, C55, G10.

1 Introduction

This paper develops a comprehensive approach for the analysis of large dimensional models

exhibiting an approximate factor structure, in which the loadings are subject to regime shifts

driven by a first order latent Markov process. We label these large dimensional Markov

Switching factor models.
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Since the work of Hamilton (1989), which was inspired by the seminal contribution of

Goldfeld and Quandt (1973), Markov switching models have been widely used in the empirical

analysis of macroeconomic and financial time series data: Hamilton (2016) gives an overview

from a macroeconomic perspective; Guidolin (2011), and Ang and Timmermann (2012), pro-

vide a comprehensive survey in relation to financial markets; see also Qu and Zhuo (2021) and

references therein for more recent advances. However, to the very best of our knowledge, the

existing literature has focused on small dimensional Markov switching models, which are not

applicable to high dimensional cross-sections of data. We aim at filling a gap in the literature

by studying Markov switching models as applied to large panels.

There now exists strong empirical evidence that macroecononomic and financial variables

exhibit an approximate factor structure, as stressed in Giannone et al. (2021). This nature of

the data naturally leads to approximate latent factor specifications as a tool to model time

series comovement in large dimensional cross-sections. Following the seminal contribution

of Chamberlain and Rothschild (1983), static approximate factor representations have been

considered, for example, in Connor and Korajczyk (1986) to develop measures of portfolio

performance, and in Stock and Watson (2002a,b) to forecast large macroeconomic panels and

to build indexes of macroeconomic activity. The full inferential theory is developed by Bai

(2003). Settings allowing for dynamic factor representations have been also extensively stud-

ied: see Forni et al. (2017) and references therein. A broad overview of large factor models is

provided in Stock and Watson (2016). To the very best of our knowledge, the vast majority

of existing contributions has looked at the linear setting. However, this may not be flexi-

ble enough to accommodate the discrete regimes typically observed in macroeconomic and

financial series.

A number of contributions have extended linear static factor models to allow for dis-

crete shifts in the loadings by assuming that these shifts are driven by an observable state

variable. A first and growing stream of literature assumes that this state variable is a de-

terministic time index, which leads to a factor model with structural instability in the load-

ings: see Breitung and Eickmeier (2011), Corradi and Swanson (2014), Baltagi et al. (2016),

Cheng et al. (2016), Barigozzi et al. (2018), Barigozzi and Trapani (2020), Duan et al. (2022),

among others, and Bai and Han (2016) for a survey of the literature. The presence of struc-

tural breaks implies that regime changes are not recurrent and are related to events such as

technological changes or shifts in monetary policy regimes. Alternatively, the states could be

driven by the realisation of an observable stationary variable with respect to a reference value,

in which case a threshold factor model would arise: see Massacci (2017). Under this set up,

regimes are recurrent and associated to cyclical events such as business and financial cycles.

Finally, smoothly varying loadings are considered in Motta et al. (2011) and Pelger and Xiong

(2022).

In this paper, we are interested in large dimensional factor models in relation to recur-
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rent regime changes. A major drawback of threshold factor models is that they require a

priori identification of the state variable. This may lead to model misspecification and unre-

liable empirical findings should the wrong state variable be employed to identify the regimes.

In order to overcome this problem, we resort to the two-state Markov switching model of

Goldfeld and Quandt (1973) with a latent state variable and extend it to allow for an under-

lying large dimensional factor structure. Within this setting, we make the following major

methodological contributions: we propose an algorithm to estimate the conditional state prob-

abilities, as well as the loadings and the factors; we derive the asymptotic properties of the

estimators for loadings and factors. Remarkably, our results do not require knowledge of the

true number of factors in any regime and it is robust to the number of factors being unknown

and estimated. This is an important aspect of our paper. Estimating the number of factors

is challenging in a linear setting, as evidenced by the high number of relevant contributions:

Bai and Ng (2002), Alessi et al. (2010) and Ahn and Horenstein (2013) develop model selec-

tion criteria; Onatski (2010) and Trapani (2018) propose inferential procedures. Dealing with

an unknown number of factors clearly becomes even more engaging in the presence of regimes

driven by a latent state variable and it therefore is an important aspect of our paper.

To the very best of our knowledge, the literature on large dimensional Markov Switching

factor models is still in its infancy. However, two existing contributions are important to

discuss. First, Liu and Chen (2016) consider a model similar to ours, but their definition of

common factors differs in that they consider factors pervasive along the time dimension rather

than the cross-sectional dimension. As a consequence their idiosyncratic components are

assumed to be white noise. Second, Urga and Wang (2022) consider a set up similar to ours,

but assume a priori knowledge of the number of factors and consider a model with serially

homoskedastic idiosyncratic components. Their Maximum Likelihood estimation approach

adapts the EM algorithm by Rubin and Thayer (1982) and Bai and Li (2012) to the case of

Gaussian mixtures where the weights are given by the probability of the latent variables to

be in a given regime. Differently to our approach, Urga and Wang (2022) do not have closed

form solutions for the estimated parameters.

More in detail our approach is the following. We introduce an algorithm to estimate fac-

tors, loadings, and transition probabilities of the model which is an extension to the high

dimensional factor model setting of the state-space approach advanced in Hamilton (1989)

and Kim (1994) to handle low dimensional Markov switching autoregressive models. Specif-

ically, ours is a generalization of the Baum-Lindgren-Hamilton-Kim filter and smoother, the

original version of which was proposed to estimate Markov-switching VAR models—see, e.g.,

the reviews by Guidolin (2011), Krolzig (2013), Hamilton (2016), and Guidolin and Pedio

(2018). An important feature of our approach is that it provides closed form expressions for

all estimators.

Most importantly, we achieve our goal by exploiting the well known property that a fac-
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tor model with neglected discrete regime changes admits an equivalent representation with

a higher number of factors: see, e.g., the discussions in Breitung and Eickmeier (2011),

Barigozzi et al. (2018), and Duan et al. (2022), in the case of structural breaks. We use

this property to estimate the latent factors by means of Principal Component Analysis (PCA)

applied to the linear representation. We then input these estimated factors into our algorithm,

which allows us to recover the loadings and the transition probabilities. We then derive the

asymptotic properties of the estimator for the loadings: we prove the asymptotic normality;

we characterise the bias, which is induced both by the well known rotational indeterminacy

problem, and by the incomplete information related to the underlying data generated process.

We also study the asymptotic properties of the factors which are estimated by projecting the

data onto the estimated loadings. We corroborate our theoretical results through a compre-

hensive set of Monte Carlo experiments, which confirm the good finite sample properties of

the estimation procedure we propose.

Finally, we assess the empirical validity of our model through an application to a large

set of U.S. stock returns. Markov switching models have been widely used to capture the

cyclical behaviour of small-dimensional portfolios of financial assets: see Guidolin (2011) and

Ang and Timmermann (2012), and references therein. We contribute to this literature by

applying the Markov switching factor model to a large dimensional portfolio of financial assets.

Our results show that the regimes described by the model closely follow U.S. business cycle

dynamics. In addition, an inspection of the estimated loadings allows us to identify level and

slope factors. Therefore, our model could be employed to explain cross-sectional differences in

average returns, and to then run conditional asset pricing tests when the regimes are driven

by a latent first order Markov process. This would complement the findings in Massacci et al.

(2021), who identify the regimes based on the return from the underlying stock market.

The rest of the paper is organised as follows. Section 2 introduces the two-state model.

Section 3 describes the estimation algorithm. Section 4 derives the asymptotic theory. Section

5 briefly discusses the issue of unobserved heterogeneity. Section 6 runs a comprehensive set of

Monte Carlo experiments. Section 7 employs applies our model to large sets of macroeconomics

and financials variables. Finally, Section 8 concludes. Mathematical derivations are collected

in Appendix A.

Notation

We denote as ⊗ the Kronecker product, with ⊙ the Hadamard (element-wise) product, and

with ⊘ the element-wise ratio. For a vector v = (v1 · · · vm)′ we denote its Euclidean norm as

‖v‖ =
√∑m

i=1 v
2
i . For a matrix C we denote the spectral norm as ‖C‖ =

√
µ1(CC′), where

µ1(CC′) indicates the largest eigenvalue of CC′. If rk(C) = r < ∞, then, we sometimes

use the same notation ‖C‖ to denote also the Frobenius norm ‖C‖F =
√

tr(CC′). Indeed,

‖C‖F ≤ √
r‖C‖ and since it is always true that ‖C‖ ≤ ‖C‖F , then, bounding the Frobenius
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or the spectral norm is asymptotically equivalent.

For a scalar discrete random variable Z, the notation P(Z = z) is its probability mass

function computed using the true value of the parameters. For random variables Y and W

the notations E[Y] and E[Y|W] are the expectation and conditional expectation given W,

respectively, computed with respect to the true distributions FY (y) and FY |W (y|W) which

in turn are computed using the true value of the parameters. If, in place of the true value

of the parameters, we use an estimate of the parameters, say θ̂, then we adopt the notations

P
θ̂
(Z = z), E

θ̂
[Y], and E

θ̂
[Y|W], respectively.

Finally, we indicate with Im the identity matrix of dimension m, with ιm an m-dimensional

vector of ones, and with 0 any matrix or vector of zeros whose dimensions depend on the

context.

2 Markov switching factor model

2.1 Setup

We study a two-state large dimensional Markov switching factor model. Formally, we consider

xt = Λ1f1tI(st = 1) +Λ2f2tI(st = 2) + et, t ∈ Z, (1)

et = Σ
1/2
e1 I(st = 1)νt +Σ

1/2
e2 I(st = 2)νt. (2)

We assume the elements of the N × 1 vector process observable dependent variables {xt} to

have zero mean, and we consider the more general case in which they are allowed to have

mean different from zero in Section 5; {fjt} is the rj × 1 vector process of latent factors such

that rj is fixed and rj ≪ N , for j = 1, 2; Λj is the N × rj matrix of factor loadings with rows

λ′
ji, for i = 1, . . . , N and j = 1, 2; {et} is the N×1 vector process of idiosyncratic components

with innovations νt ∼ (0, IN ). Note that we allow the elements of {et} to be both serially and

cross-sectionally correlated and we refer to Section 4 for the specific assumptions.

As it is standard in the literature, we assume that st follows a discrete-state, homogeneous,

irreducible and ergodic, first-order Markov chain such that

P (st+1 = j |st = i) = pij, i, j = 1, 2,
2∑

j=1
pij = 1,

with matrix of transition probabilities

P =

(
p11 p12

p21 p22

)
=

(
p11 1− p11

1− p22 p22

)
. (3)
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Defining the 2× 1 vector of state indicators

ξt =

[
I(st = 1)

I(st = 2)

]
, t ∈ Z, (4)

allows to write the transition equation

ξt = P′ξt−1 + vt, t ∈ Z, (5)

where {vt} is a discrete-valued zero mean martingale difference sequence whose elements sum

to zero. Because, ‖P‖ < 1, {st} follows an ergodic Markov chain, thus, there exists a stationary

vector of probabilities ξ̄ satisfying:

ξ̄ = P′ξ̄.

Hence, the elements of ξ̄ are long-run or unconditional state probabilities. In particular, we

have ξ̄ = E[ξt], such that

E[ξt] = E

[
I(st = 1)

I(st = 2)

]
=

[
P(st = 1)

P(st = 2)

]
, (6)

where 0 < P(st = j) < 1, for j = 1, 2, by Assumption 1 in Section 4 below, which

makes the Markov chain irreducible. In particular, (3) and (6) are related by (see, e.g.,

Guidolin and Pedio, 2018, Chapter 9)

P(st = 1) =
1− p22

2− p11 − p22
, P(st = 2) =

1− p11
2− p11 − p22

. (7)

2.2 State space representation

Let the (r1 + r2)× 1 vector process {gt} be defined as

gt =

[
f1t

0

]
I(st = 1) +

[
0

f2t

]
I(st = 2) =

[
f1t

f2t

]
⊙ ξt, t ∈ Z. (8)

Let B1 = [Λ1 0] and B2 = [0 Λ2], where B1 and B2 are N × (r1 + r2) matrices. The model

in (1), (2) and (5) admits the equivalent state space representation:1

xt = (B1 B2) (ξt ⊗ gt) +
(
Σ

1/2
e1 Σ

1/2
e2

)
(ξt ⊗ IN ) et, t ∈ Z, (9)

ξt = P′ξt−1 + vt.

1Note that ξt ⊗ gt = [f ′1t 0 f ′2t 0]′.
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Under standard assumptions, the term (B1 B2) (ξt ⊗ gt) is identifiable up to a relabelling of

the states. Also note that identification of B1 and B2, and therefore also of the elements of

{gt}, is possible only up to an invertible transformation.

2.3 Linear representation

Model (9) is observationally equivalent to a model with one change point affecting the loadings

of all units (Barigozzi et al., 2018). As a result, it can be rewritten as the r1+ r2 linear factor

model:

xt = Agt + et, t ∈ Z, (10)

where A = [Λ1 Λ2]. Then, A and gt may be estimated by standard Principal Component

Analysis (PCA) (Stock and Watson, 2002a,b; Bai, 2003). Now, since PCA gives consistent

estimators of the factors as N,T → ∞, hereafter, we first consider estimation of model (9) in

the case in which gt is known. Then, we briefly review the implementation of PCA in Section

3.2.

2.4 Log-likelihood

The parameters of interest are partitioned as

ϕ =
[
vec (B1)

′ , vec (B2)
′ , vech(diag (Σe1))

′, vec(diag (Σe2))
′]′ , ρ = vec (P) ,

so that the vector of parameters of interest, denoted as q, is defined as

q =
[
ϕ′,ρ′]′ .

Let X = (x′
1, . . . ,x

′
T )

′, G = (g′
1, . . . ,g

′
T )

′, where X is an NT × 1 vector, G is an (r1 + r2)T ×
1 vector. These are T -dimensional realizations of the stochastic processes {xt} and {gt},
respectively. Moreover, let Xv be the σ-algebra generated by the random variables {xt}vt=1,

for v = 1, . . . , T ; in a similar way, define Gv as the σ-algebra generated by the random variables

{gt}vt=1, for v = 1, . . . , T . And for simplicity we write X ≡ XT and G ≡ GT .

The likelihood function, denoted by f (X;q), can be decomposed as

f (X;q) =
f (X,G;q)

f (G |X;q )
=

f (X |G;q ) f (G;q)

f (G |X;q )
=

f (X |G;q) f (G)

f (G |X;q )
, (11)

where in the last step we accounted for the fact that f (G;q) ≡ f (G), since it does not depend

on the parameters of our model, because we do not specify any dynamic model for the process

{gt}.
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Furthermore, following Krolzig (2013, Section 6.2):

f (X |G;q) = f (X |G;ϕ,ρ) =
∑

{ξt}Tt=1∈{0,1}T
f
(
X
∣∣G, {ξt}Tt=1;ϕ

)
P
(
{ξt}Tt=1|G,ρ

)
. (12)

Here, to avoid heavier notation, we use the same notation {ξt}Tt=1 both for a generic T dimen-

sional realization of the process {ξt} and for the σ-algebra generated by the random variables

{ξt}Tt=1. Notice that the sum is over 2T possible values since, given a realization for {ξ1t}Tt=1,

then the realizations of {ξ2t}Tt=1 are given by ξ2t = 1− ξ1t for all t.

Following the approach by Doz et al. (2012); Bai and Li (2016); Barigozzi and Luciani

(2019) for QML estimation of linear factor models, we consider for f
(
X
∣∣G, {ξt}Tt=1;ϕ

)
a

mis-specified Gaussian quasi likelihood of an exact factor model, i.e., as if the idiosyncratic

components were cross-sectionally uncorrelated. Furthermore, we also neglect serial correla-

tion of the idiosyncratic components, thus treating them as if they were weak white noise

processes. It is important to stress that we are not assuming the idiosyncratic components to

be uncorrelated, but we are just considering likelihood estimation of a mis-specified model.

In the linear case, it is proved that, as N,T → ∞ such mis-specifications are asymptotically

negligible. Under such mis-specification and using the Markov property of {ξt} (up to omitted

constant terms):

log f
(
X
∣∣G, {ξt}Tt=1;ϕ

)
=

T∑

t=1

log f (xt |gt, ξt;ϕ) (13)

≃ −1

2

T∑

t=1

log detΣet −
1

2

T∑

t=1

{xt − (B1 B2) (ξt ⊗ gt)}′ (Σet)
−1 {xt − (B1 B2) (ξt ⊗ gt)} ,

where Σet = (diag(Σe1) diag(Σe2)) (ξt ⊗ IN ). Notice also that, even in this case the likelihood

(12) is not Gaussian but it is a mixture of Gaussians. Finally, again by the Markov property

of {ξt}:

P
(
{ξt}Tt=1|G;ρ

)
=

T∏

t=1

P (ξt|ξt−1,G;ρ)P (ξ0) . (14)

3 Estimation: EM algorithm

The following algorithm is a generalization of the procedure proposed by Krolzig (2013, Chap-

ter 5). The EM algorithm is made of two steps repeated at each iteration k ≥ 0. The E step

involves taking the expected value of the log-likelihood derived from (11) conditional on X

given an estimate of the parameters q̂(k). Namely:

log f (X;q) = Eq̂(k) [log f (X |G;q) |X ] + Eq̂(k) [log f (G) |X ]− Eq̂(k) [log f (G |X;q ) |X ] .

8



The M step solves the constrained maximization problem with respect to q = [ϕ′,ρ′]′, that is

(
ϕ̂(k+1), ρ̂(k+1)

)
= argmax

ϕ,ρ
Eq̂(k) [log f (X |G;ϕ,ρ) |X ]

s.t. Pι2 = ι2, (15)

where the constraints ensure that probabilities add up to one. In principle, in the M step we

should also account for the term Eq̂(k) [log f (G) |X ], which however in our context does not

depend on any parameter.

It is well known that the iteration of these steps produces a series of log-likelihoods which

are increasing. Indeed, Eq̂(k) [log f (G |X;q) |X ] does not contribute to the convergence of

the EM algorithm (see Dempster et al., 1977 and Wu, 1983). Moreover, if the maximum is

identified and unique, then the EM algorithm will eventually lead to lead to the Maximum

Likelihood estimator of q. As shown below, the solution of the M step can be computed using

the expressions given in (13) and (14). Such solution is unique and has a closed form, so, no

identification issue, due to multiple maxima or related to the existence of such maxima, arises

in this context.

3.1 Baum-Lindgren-Hamilton-Kim filter and smoother

In order to compute the expected likelihood in the E step it is clear that, because of (13)

and (14), we need to compute Eq̂(k) [ξt|X], Eq̂(k) [ξt ⊗ gt|X], and Eq̂(k) [(ξt ⊗ gt)(ξt ⊗ gt)
′|X] =

Eq̂(k) [(I2 ⊗ gtg
′
t)|X].

We start by considering the case in which {gt}Tt=1 is observed, while we postpone the

discussion of the estimation of the factors to Section 3.2. Then, for the E step we just

need to compute Eq̂(k) [ξt|X], since in this case ξt and gt are independent for all t. This

is accomplished by means of a generalization the Baum-Lindgren-Hamilton-Kim filter and

smoother explained in detail in this section. It is an iterative procedure through which we first

compute the sequences of conditional one-step-ahead predicted probabilities {ξt|t−1 }Tt=1, such

that ξt|t−1 = Eq̂(k) [ξt |Xt−1 ] and filtered probabilities {ξt|t }Tt=1 such that ξt|t = Eq̂(k) [ξt|Xt].

Second, by means of those sequences, we compute the sequence of smoothed probabilities

{ξt|T }Tt=1 such that ξt|T = Eq̂(k) [ξt|X].

To simplify notation, let ε1 = [1 0]′ and ε2 = [0 1]′, so that P(st = j) ≡ P(ξt = εj),

j = 1, 2, and therefore, in the following, we can just use ξt as defined in (4), without the need

of referring also to st. Then, for any v = 1, . . . , T , we use the notation

ξt|v = E [ξt |Xv ] =

[
P (ξt = ε1 |Xv )

P (ξt = ε2 |Xv )

]
. (16)

Notice also that, since {ξt}ut=1 is independent of Gv for all u, v = 1, . . . , T , because we consider

the factors as observed, we can always write ξt|v = E [ξt |Xv ] = E [ξt |Xv,Gv ].
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The one-step-ahead predictions and the filtered probabilities are computed by means of

the following steps which are similar to the Hamilton filter, see, e.g., Krolzig (2013, Chapter

5.1) and Hamilton (1989). For simplicity of notation, let us assume for the moment that not

only the factors {gt}Tt=1 are observed, but also the true values of the parameters q are known.

Then, the one-step-ahead predicted probabilities are obtained through the prior probability

P (ξt = εi |Xt−1,Gt−1 ) =

2∑

j=1

P (ξt = εi |ξt−1 = εj )P (ξt−1 = εj |Xt−1,Gt−1 )

=
2∑

j=1

P (ξt = εi |ξt−1 = εj )P (ξt−1 = εj |Xt−1 ) , i = 1, 2. (17)

So that, because of (16), we have

ξt|t−1 = P′ξt−1|t−1 , t = 1, . . . , T. (18)

The update involves the posterior probability:

P (ξt = εi |Xt ) = P (ξt = εi |Xt,Gt ) = P (ξt = εi |xt,Xt−1,Gt )

=
f (xt, ξt = εi |Xt−1,Gt )

f (xt |Xt−1,Gt )

=
f (xt |ξt = εi,Xt−1,Gt )P (ξt = εi |Xt−1,Gt )

f (xt |Xt−1,Gt )
, i = 1, 2. (19)

Then, since xt depends on Xt−1 only through ξt−1 and it depends on Gt only through gt

f (xt |ξt = εi,Xt−1,Gt ) = f (xt |ξt = εi,gt ) , i = 1, 2. (20)

Let,

ηt =

[
f (xt |ξt = ε1,gt )

f (xt |ξt = ε2,gt )

]

=
1

(2π)N/2





|diag(Σe1)|−1/2 exp

[
−1

2
(xt −B1gt)

′ (diag(Σe1))
−1 (xt −B1gt)

]

|diag(Σe2)|−1/2 exp

[
−1

2
(xt −B2gt)

′ (diag(Σe2))
−1 (xt −B2gt)

]





. (21)
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Further, notice that, from (16) and (21), the denominator of (19) be written as:

f (xt |Xt−1,Gt ) =

2∑

j=1

f (xt |ξt = εj,Xt−1,Gt )P (ξt = εj , |Xt−1,Gt )

=

2∑

j=1

f (xt |ξt = εj,gt )P (ξt = εj, |Xt−1 ) = η′
tξt|t−1 . (22)

Taking into account (16), (17), (20), and (22), the filtered probabilities are obtained from (19)

as

ξt|t =
ηt ⊙ ξt|t−1

η′
tξt|t−1

=
ηt ⊙ ξt|t−1

ι′2
(
ηt ⊙ ξt|t−1

) , t = 1, . . . , T, (23)

where ηt is computed as in (21). The filter can started by setting either ξ0|0 = ε1, or,

equivalently, ξ0|0 = ε2.

We then run the Kim smoother, see e.g., Krolzig (2013, Chapter 5.2) and Kim (1994).

Notice that (recall that X ≡ XT and G ≡ GT ):

P (ξt = εi |X,G) =
2∑

j=1

P (ξt = εi |ξt+1 = εj ,X,G)P (ξt+1 = εj |X,G )

=

2∑

j=1

P (ξt = εi |ξt+1 = εj ,Xt,Gt ) f
(
{xs,gs}Ts=t+1 |ξt = εi, ξt+1 = εj,Xt,Gt

)

f
(
{xs,gs}Ts=t+1 |ξt+1 = εj ,Xt,Gt

) P (ξt+1 = εj |X,G)

=

2∑

j=1

P (ξt = εi |ξt+1 = εj ,Xt,Gt )P (ξt+1 = εj |X,G)

=

2∑

j=1

P (ξt = εi |Xt,Gt )P (ξt+1 = εj |ξt = εi,Xt,Gt )

P (ξt+1 = εj |Xt,Gt )
P (ξt+1 = εj |X,G) , i = 1, 2,

which by (16) implies that the sequence of smoothed probabilities is given by

ξt|T =
[
P
(
ξt+1|T ⊘ ξt+1|t

)]
⊙ ξt|t , t = 1, . . . , T. (24)

This backward recursion is initiated at ξT |T which is the last iteration of the filter in (23).

Finally, for the implementation of the EM algorithm we need to compute also the smoothed

cross-probabilities, see Krolzig (2013, Chapter 5.A.2),

ξt,t−1|T =




P(ξt = ε1, ξt−1 = ε1|X)

P(ξt = ε2, ξt−1 = ε1|X)

P(ξt = ε1, ξt−1 = ε2|X)

P(ξt = ε2, ξt−1 = ε2|X)



= ρ ⊙

[(
ξt|T ⊘ ξt|t−1

)
⊗ ξt−1|t−1

]
, t = 1, . . . , T.

(25)
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The above description of the Baum-Lindgren-Hamilton-Kim filter and smoother assumes q

and gt to be observed. However, in practice both need to be estimated. This is discussed in

the next two sections.

3.2 Estimating the factor space

To estimate both the factors gt and their dimension r1 + r2, we exploit the fact that, as

shown in Section 2.3, our Markov switching factor model (1) is observationally equivalent to

a linear factor model with r1 + r2 common factors gt and factor loadings A, see (10). Then,

the number of factors can be estimated by any of the existing methods, see, e.g., Bai and Ng

(2002); Onatski (2010); Ahn and Horenstein (2013); Trapani (2018). As far as the factors gt

themselves they can be estimated via PCA as follows. First, an estimator Â of the loadings

matrix A is obtained as
√
N times the normalized eigenvectors corresponding to the r1 + r2

largest eigenvalues of the sample N×N covariance matrix T−1
∑T

t=1 xtx
′
t. Second, the factors

are estimated by linear projection of the data xt onto the estimated loadings:

ĝt =
1

N
Â′xt, t = 1, . . . , T. (26)

This is the same approach followed by Stock and Watson (2002a) and it is the dual approach

of the one adopted by Bai (2003). Consistency of Â and ĝt are proved in the Appendix. Notice

that the steps described in this section do not require knowing the latent state indicator ξt,

hence can be carried out independently.

3.3 Estimating the parameters

At each iteration k ≥ 0 of the EM algorithm, the filtered and smoothed probabilities, given in

(23) and (24), respectively, and the smoothed cross-probabilities given in (25), are computed

using an estimator q̂(k) of the parameters and an estimator ĝt of the factors. Hereafter, we

denote as ξ
(k)
t|t , ξ

(k)
t|T , and ξ

(k)
t,t−1|T such estimators. This defines the E step.

In the M step we have to solve the constrained maximization problem in (15). Let us start

with estimation of ϕ. From (12), we have:

∂ log f (X |G;ϕ,ρ)

∂ϕ′ =
1

f (X |G;ϕ,ρ)

∑

{ξt}Tt=1

∂f
(
X
∣∣G, {ξt}Tt=1;ϕ

)

∂ϕ′ P
(
{ξt}Tt=1|G,ρ

)

=
1

f (X |G;ϕ,ρ)

∑

{ξt}Tt=1

∂ log f
(
X
∣∣G, {ξt}Tt=1;ϕ

)

∂ϕ′ f
(
X
∣∣G, {ξt}Tt=1;ϕ

)
P
(
{ξt}Tt=1|G;ρ

)

= C
∑

{ξt}Tt=1

∂ log f
(
X
∣∣G, {ξt}Tt=1;ϕ

)

∂ϕ′ P
(
{ξt}Tt=1|X,G;ϕ,ρ

)
, (27)
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where C is a positive normalization constant.2 Therefore, from (13), (15), and (27), if we

observed G, the first order conditions would be:

0 =
∂Eq̂(k) [log f (X |G;ϕ,ρ) |X ]

∂ϕ′

∣∣∣∣
ϕ=ϕ̂(k+1)

=
T∑

t=1

2∑

j=1

∂Eq̂(k) [log f (xt |gt, ξt = εj;ϕ) |X ]

∂ϕ′

∣∣∣∣
ϕ=ϕ̂(k+1)

P

(
ξt = εj |X; ϕ̂(k), ρ̂(k)

)

=

T∑

t=1

2∑

j=1

∂Eq̂(k) [log f (xt |gt, ξt = εj;ϕ) |X ]

∂ϕ′

∣∣∣∣
ϕ=ϕ̂(k+1)

ξ
(k)
j,t|T , (28)

where ξ
(k)
j,t|T = Eq̂(k) [ξjt|X] = P(ξt = εj

∣∣X; ϕ̂(k), ρ̂(k) ) is the jth component of ξ
(k)
t|T .

Then, by substituting (13) into (28), and by replacing true factors with estimated ones,

we get

B̂
(k+1)
j =

(
T∑

t=1

ξ
(k)
j,t|T xtĝ

′
t

)(
T∑

t=1

ξ
(k)
j,t|T ĝtĝ

′
t

)−1

, j = 1, 2, (29)

and, consistently with the fact that we use a mis-specified likelihood with uncorrelated id-

iosyncratic components, we set

[Σ̂
(k+1)
ej ]ii =




∑T
t=1

(
xit − b̂

(k+1)′
ji ĝt

)2

∑T
t=1 ξ

(k)
j,t|T


 , i = 1, . . . , N, j = 1, 2, (30)

[Σ̂
(k+1)
ej ]ik = 0, i, k = 1, . . . , N, i 6= k, j = 1, 2,

where b̂
(k+1)′
ji is the ith row of B̂

(k+1)
j .

Moving to estimation of ρ, from (12), we have:

∂ log f (X |G;ϕ,ρ)

∂ρ′ =
1

f (X |G;ϕ,ρ)

∑

{ξt}Tt=1

f
(
X
∣∣G, {ξt}Tt=1;ϕ

) ∂P
(
{ξt}Tt=1|G;ρ

)

∂ρ′

=
1

f (X |G;ϕ,ρ)

∑

{ξt}Tt=1

∂ log P
(
{ξt}Tt=1|G;ρ

)

∂ρ′ f
(
X
∣∣G, {ξt}Tt=1;ϕ

)
P
(
{ξt}Tt=1|G;ρ

)

= C
∑

{ξt}Tt=1

∂ logP
(
{ξt}Tt=1|G;ρ

)

∂ρ′ P
(
{ξt}Tt=1|X,G;ϕ,ρ

)
, (31)

2Specifically, we have:

P

(
{ξt}

T
t=1|X ,G;ϕ,ρ

)
=

f
(
X

∣∣G, {ξt}
T
t=1;ϕ

)
P
(
{ξt}

T
t=1|G;ρ

)
∑

{ξt}
T

t=1
f (X |G, {ξt}Tt=1;ϕ )P ({ξt}Tt=1|G;ρ)

,

so C =

∑
{ξt}

T
t=1

f(X|G,{ξt}
T

t=1;ϕ )P({ξt}Tt=1|G;ρ)
f(X|G;ϕ,ρ )

.
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where C is the same positive normalization constant as in (27). And, because of (14) and

(31), if we observed G the derivatives with respect to the generic (i, j)th element of ρ, i.e, pij,

i, j = 1, 2, would be (treating ξ0 as known)

∂ log f (X |G;ϕ,ρ)

∂pij

=
T∑

t=1

2∑

h=1

2∑

ℓ=1

∂ logP (ξt = εh|ξt−1 = εℓ;ρ)

∂pij
P (ξt = εh, ξt−1 = εℓ|X;ϕ,ρ)

=

T∑

t=1

2∑

h=1

2∑

ℓ=1

1

P (ξt = εh|ξt−1 = εℓ;ρ)

∂P (ξt = εh|ξt−1 = εℓ;ρ)

∂pij
P (ξt = εh, ξt−1 = εℓ|X;ϕ,ρ)

=

T∑

t=1

2∑

h=1

2∑

ℓ=1

I (ξt = εj , ξt−1 = εi)

P (ξt = εh|ξt−1 = εℓ;ρ)
P (ξt = εh, ξt−1 = εℓ|X;ϕ,ρ)

=
T∑

t=1

P (ξt = εj, ξt−1 = εi|X;ϕ,ρ)

P (ξt = εj|ξt−1 = εi;ρ)
=

T∑

t=1

P (ξt = εj, ξt−1 = εi|X;ϕ,ρ)

pij
. (32)

Now, from (15) and (31), the first order conditions are:

0 =

{
∂Eq̂(k) [log f (X |G;ϕ,ρ) |X ]

∂(vec(P))′
− κ′ (ι′2 ⊗ I2

)}∣∣∣∣
vec(P)=vec(P̂(k+1))

, (33)

where κ is the 2-dimensional vector of Lagrange multipliers, thus it has positive entries. Then,

from (32)

∂Eq̂(k) [log f (X |G;ϕ,ρ) |X ]

∂pij
=

T∑

t=1

P
(
ξt = εj , ξt−1 = εi|X; ϕ̂(k), ρ̂(k)

)

pij
. (34)

By collecting all 4 terms deriving from (34) into a vector, we have

∂Eq̂(k) [log f (X |G;ϕ,ρ) |X ]

∂ρ′ =
T∑

t=1

ξ
(k)′
t,t−1|T ⊘ ρ′, (35)

where ξ
(k)
t,t−1|T is defined in (25). Finally, from the first order conditions (33), we must have:

0 =

{
T∑

t=1

ξ
(k)′
t,t−1|T ⊘ ρ′ − κ′ (ι′2 ⊗ I2

)
}∣∣∣∣∣

ρ=ρ̂(k+1)

. (36)

Let κ = (κ1, κ2)
′, and let κ̃ = (ι2 ⊗ κ) = (κ1, κ2, κ1, κ2)

′. Then, (36) gives

ρ̂(k+1) =

T∑

t=1

ξ
(k)
t,t−1|T ⊘ κ̃. (37)
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By applying the adding up condition to (37):

ι2 =
(
ι′2 ⊗ I2

)
ρ̂(k+1) =

(
ι′2 ⊗ I2

)
(

T∑

t=1

ξ
(k)
t,t−1|T ⊘ κ̃

)
=
(
ι′2 ⊗ I2

) T∑

t=1




ξ
(k)
11,t,t−1|T

κ1

ξ
(k)
21,t,t−1|T

κ2

ξ
(k)
12,t,t−1|T

κ1

ξ
(k)
22,t,t−1|T

κ2




=
T∑

t=1

2∑

j=1




ξ
(k)
1j,t,t−1|T

κ1

ξ
(k)
2j,t,t−1|T

κ2


 =

T∑

t=1




ξ
(k)
1,t−1|T

κ1

ξ
(k)
2,t−1|T

κ2


 =

T−1∑

t=0




ξ
(k)
1,t|T

κ1

ξ
(k)
2,t|T

κ2


 =

T−1∑

t=0

ξ
(k)
t|T ⊘ κ,

which implies κ =
∑T−1

t=0 ξ
(k)
t|T . Therefore, from (37),

ρ̂(k+1) =

[
T∑

t=1

ξ
(k)
t,t−1|T

]
⊘
[
ι2 ⊗

T−1∑

t=0

ξ
(k)
t|T

]
. (38)

By letting k∗ be the last iteration of the EM algorithm, we define our final estimator of the

parameters as q̂ ≡ q̂(k∗+1), as given by (29), (30), and (38). The final estimator of ξt is defined

as ξ̂t|T ≡ ξ
(k∗+1)
t|T , i.e., obtained by running a last time the Baum-Lindgren-Hamilton-Kim filter

using the final estimates of the parameters.

3.4 Initialization and convergence of the EM algorithm

To start the algorithm we need initial estimators q̂(0) for the parameters. Specifically, we set

B̂
(0)
1 = B̂

(0)
2 = Â, as defined in Section 3.2. Then, given also ĝt as in (26), let êt = xt − Âĝt,

and we set Σ̂
(0)
e1 = Σ̂

(0)
e2 = diag

(
T−1

∑T
t=1 êtê

′
t

)
. Finally, we set

P̂(0) =

[
0.5 + ω1 1− 0.5− ω1

1− 0.5− ω2 0.5 + ω2

]
,

where ω1, ω2 ∈ (0, 0.5) and ω1 > ω2. This initialization implicitly identifies state 1 as the most

probable one, i.e., it is the state with largest unconditional probability as defined in (7).

We say that the EM algorithm converged at iterations k∗, where k∗ is the first value of k

such that: ∣∣log f
(
X
∣∣G; ϕ̂(k), ρ̂(k)

)
− log f

(
X
∣∣G; ϕ̂(k−1), ρ̂(k−1)

)∣∣
1
2

{
| log f

(
X
∣∣G; ϕ̂(k), ρ̂(k)

)
+ log f

(
X
∣∣G; ϕ̂(k−1), ρ̂(k−1)

)} < ǫ,

for some a priori chosen threshold ǫ > 0.
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4 Asymptotic theory

For ease of reference let us write in scalar notation (1) and (10):

xit =
2∑

j=1

λ′
jifjtI(st = j) + et = a′igt + et, i = 1, . . . , N, t ∈ Z, (39)

where et ∼ (0,
∑2

j=1ΣejI(st = j)).

We consider the following set of assumptions, which generalizes the setting in Bai (2003)

and Massacci (2017) to our framework.

Assumption 1. Factors.

(a) For j = 1, 2 and all t ∈ Z, E[fjt] = 0 and E[‖fjt‖4] < ∞.

(b) For j, k = 1, 2, as T → ∞, T−1
∑T

t=1 I (st = j) hktfjtf
′
jt

p→ Σ
(k)
fj , where Σ

(k)
fj is rj ×

rj positive definite, and {hkt}Tt=1 is any sequence such that (i) P (0 ≤ hkt ≤ 1) = 1;

(ii) T−1
∑T

t=1 hkt
p→ h̄k > 0.

Assumption 1 restricts the factor processes {fjt}, j = 1, 2, so that appropriate moments

exists. Note that the sequence {hkt}Tt=1 can be random or deterministic and it is introduced to

account for the fact that we estimate the expected value of ξjt and not ξjt itself. Assumption

1 implies that 0 < P(st = j) < 1, j = 1, 2, thus ruling out the possibility that any of the

states is absorbing. It also implies that for j = 1, 2, as T → ∞,

1

T

T∑

t=1

I (st = j) fjtf
′
jt

p→ Σfj, (40)

where Σfj is positive definite and

1

T

T∑

t=1

gtg
′
t

p→ Σg =

(
Σf1 0

0 Σf2

)
. (41)

Moreover, it is straightforward to see that, if j 6= k, then, for all T ∈ N,

1

T

T∑

t=1

I (st = j) fjtf
′
ktI (st = k) = 0. (42)

Assumption 2. Loadings.

(a) For j = 1, 2, all i = 1, . . . , N and all N ∈ N, ‖λji‖ ≤ λ̄ < ∞, where λ̄ is independent of

j, i, and N ;

(b) For j = 1, 2, as N → ∞, N−1Λ′
jΛj → ΣΛj

, where ΣΛj
is rj × rj positive definite.

(c) As N → ∞, N−1Λ′
1Λ2 → ΣΛ12 , where ΣΛ12 is r1 × r2.

(d) For any r2 × r2 full rank matrix L, Λ1 6= Λ2L.
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According to Assumption 2, loadings are nonstochastic and factors have a nonnegligible

effect on the variance of {xt} within each regime. The condition in part (d) ensures that the

regimes are identified and it is analogous to the alternative hypothesis in the test for change in

loadings developed in Pelger and Xiong (2022). This condition is trivially satisfied if r1 6= r2

since the number of factors changes between regimes; if instead r1 = r2 then part (d) rules

out the possibility that the columns of Λ1 are a linear combination of the columns of Λ2, in

which case the regimes cannot be separately identified.

From this assumption it also follows that, as N → ∞,

A′A
N

→ ΣA =

(
ΣΛ1 ΣΛ12

Σ′
Λ12

ΣΛ2

)
, (43)

and

B′
1B1

N
→ ΣB1 =

(
ΣΛ1 0

0 0

)
,

B′
2B2

N
→ ΣB2 =

(
0 0

0 ΣΛ2

)
,

B′
jBk

N
→ 0, if j 6= k.

(44)

Assumption 3. Idiosyncratic component.

(a) For all i = 1, . . . , N , all t ∈ Z and all N ∈ N, E [eit] = 0 and E[e8it] ≤ M < ∞, where M

is independent of i, t, and N .

(b) For all t ∈ Z and N ∈ N,

1

N

N∑

i,l=1

|E[I (st = j) eitelt]| ≤ M < ∞,

where M is independent of t and N ;

(c) For j = 1, 2, all i, l = 1, . . . , N , all N ∈ N and all T ∈ N,

E



∣∣∣∣∣
1√
T

T∑

t=1

{I (st = j) eitelt − E [I (st = j) eitelt]}
∣∣∣∣∣

4

 ≤ M < ∞,

where M is independent of j, i, l, N , and T .

Part (b) controls the amount of cross-sectional correlation we can allow for. It implies the

usual assumption for approximate factor models of nondiagonal idiosyncratic covariances Σej,

j = 1, 2. Part (b) also implies

E



∣∣∣∣∣

1√
N

N∑

i=1

I(st = j)eit

∣∣∣∣∣

2

 ≤ M < ∞,
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hence N−1/2‖I(st = j)et‖ = Op(1) for all j and t. Part (c) limits time dependence and it is

guaranteed together with part (a) if we assumed finite 8th order cumulants for the bivariate

process {(eit, elt)}. Notice that the constant M in the three parts of the assumption does not

have to be the same one.

We limit the degree of dependence between factors and idiosyncratic components within

each regime by means of the following assumption.

Assumption 4. Weak dependence between common and idiosyncratic components.

For j = 1, 2, and all N and T ,

E


 1

N

N∑

i=1

∥∥∥∥∥
1√
T

[
T∑

t=1

I (st = j) fjteit

]∥∥∥∥∥

2

 ≤ M < ∞,

where M is independent of N ∈ N and T ∈ N.

Assumption 5. Eigenvalues. The eigenvalues of the r×r matrix ΣAΣg are distinct, where

ΣA is defined in (43) and Σg is defined in (41).

This assumption guarantees a unique limit for N−1A′Â, indeed by assuming distinct

eigenvalues we can uniquely identify the space spanned by the eigenvectors which are a linear

combination of the columns of A. Notice that Σg is block diagonal because of (42).

Assumptions 1 to 5 are enough to prove consistency of our estimators, however to derive the

asymptotic distribution we strengthen those assumptions by means of the last two following

assumptions.

Assumption 6. Moments and Central Limit Theorems.

(a) For j = 1, 2, all i = 1, . . . , N all N ∈ N and all T ∈ N, for all i,

E



∥∥∥∥∥

1√
NT

N∑

l=1

T∑

t=1

al {I (st = j) eitelt − E [I (st = j) eitelt]}
∥∥∥∥∥

2

 ≤ M < ∞,

where M is independent of j, i, N , and T .

(b) For j, k = 1, 2, all N ∈ N and all T ∈ N,

E



∥∥∥∥∥

1√
NT

N∑

i=1

T∑

t=1

I (st = j)λkif
′
jteit

∥∥∥∥∥

2

 ≤ M < ∞,

where M is independent of j, k, N , and T .

(c) For j, k = 1, 2, all i = 1, . . . , N and all N ∈ N, as T → ∞,

1√
T

T∑

t=1

I (st = j) hktfjteit
d→ N (0,Γjki) ,
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where {hkt}Tt=1 is defined in Assumption 1, and

Γjki = lim
T→∞

1

T

T∑

t=1

T∑

v=1

I (st = j) I (sv = j) hkthkvE[fjtf
′
jveiteiv].

(d) For j = 1, 2, all t ∈ Z, as N → ∞,

1√
N

N∑

i=1

λjieit
d→ N (0,Φjt) ,

where

Φjt = lim
N→∞

1

N

N∑

i=1

N∑

l=1

λjiλ
′
jlE [eitelt] .

Finally, we impose the standard restrictions on the convergence rates.

Assumption 7. Rates. As N,T → ∞,
√
T/N → 0 and

√
N/T → 0.

Define the (r1 + r2)× (r1 + r2) matrix Ĥ as

Ĥ =
GG′

T

A′Â
N

V̂−1, (45)

where G = (g1, . . . ,gT ) and V̂ is the (r1 + r2)× (r1 + r2) diagonal matrix containing the first

r1 + r2 eigenvalues of Σ̂x = (NT )−1∑T
t=1 xtx

′
t sorted in decreasing order. In Lemma 6 we

prove that

p lim
N,T→∞

A′Â
N

= Q, with Q = Σ
−1/2
g ΨV1/2 , (46)

where V is the (r1 + r2) × (r1 + r2) diagonal matrix of the first (r1 + r2) eigenvalues of

Σ
1/2
g ΣAΣ

1/2
g in decreasing order, and Ψ is the corresponding matrix of eigenvectors such

that Ψ′Ψ = Ir1+r2 . Likewise define Qj = p limN,T→∞N−1Λ′
jÂ, for j = 1, 2, which is an

rj × (r1 + r2) matrix such that Q = [Q′
1 Q′

2]
′. Thus, by Lemma 7 we have

Qj = Σ
−1/2
fj ΨjV

1/2 , j = 1, 2, (47)

where Ψj is the rj × (r1 + r2) matrix such that Ψ = [Ψ′
1 Ψ′

2]
′. Therefore, because of (41),

(46), and by Lemma 8 according to which V̂
p→ V,

p lim
N,T→∞

Ĥ = H, with H = ΣgQV−1. (48)

For j = 1, 2, let B̂j = B̂
(k∗+1)
j , where k∗ is the last iteration of the EM algorithm as defined

in Section 3.3. For given j = 1, 2 and i = 1, . . . , N , let b̂ji be the estimator for bji such that

B̂j = [b̂j1, . . . , b̂jN ]′ and Bj = [bj1, . . . ,bjN ]′. The following theorem states the asymptotic
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distribution of b̂ji.

Theorem 1. Let Assumptions 1 - 7 hold. Then, for k1, k2 = 1, 2 with k1 6= k2, and for any

given i = 1, . . . , N , as N,T → ∞,

√
T
{
b̂k1i − Î

ξ̂k1
Ĥ′bk1i −

(
Ir1+r2 − Î

ξ̂k1

)
Ĥ′bk2i

}
d→ N

(
0,Σ

b̂k1i

)
,

where the (r1 + r2)× (r1 + r2) matrix Î
ξ̂k1

is defined as

Î
ξ̂k1

=

(
T∑

t=1

ξ̂k1,t|T I(st = k1)ĝtĝ
′
t

)(
T∑

t=1

ξ̂k1,t|T ĝtĝ
′
t

)−1

, (49)

and where

Σ
b̂k1i

=
(
Q′

1Σ
(k1)
f1 Q1 +Q′

2Σ
(k1)
f2 Q2

)−1 (
Q′

1Γ1k1iQ1 +Q′
2Γ2k1iQ2

) (
Q′

1Σ
(k1)
f1 Q1 +Q′

2Σ
(k1)
f2 Q2

)−1
,

with Qj, Γjk1i, and Σ
(k1)
fj , j = 1, 2, defined in (47), Assumption 6(c), and Assumption 1 when

hk1 = ξ̂k1,t|T , respectively.

Theorem 1 shows that the estimator b̂k1i for bk1i is subject to two sources of bias. The

first is standard and it is induced by the usual indeterminacy due to the latency of both factors

and loadings and captured by the invertible matrix Ĥ defined in (45), see also Bai (2003). If

we assumed T−1
∑T

t=1 gtg
′
t = Ir1+r2 , then it would straightforward to see that Ĥ becomes just

a rotation, i.e., an orthogonal matrix. However, additional restriction on the loadings would

be necessary to reduce Ĥ to be the identity—for a discussion on identification of factors, see,

e.g., (Bai and Ng, 2013). The second source of bias is induced by Î
ξ̂k1

, which depends on

the probability of the state being asymptotically correctly estimated. If the unconditional

probability of being in state k1 is correctly estimated with probability one, that is, if ξ̂k1,t|T
p→

I(st = k1), as N,T → ∞, then Î
ξ̂k1

p→ Ir1+r2 and b̂k1i will estimate consistently a linear

transformation of bk1i. Otherwise b̂k1i estimates a linear combination of linear transformations

of bk1i and bk2i, with weights determined by Î
ξ̂k1

and (Ir1+r2 − Î
ξ̂k1

), respectively.

To further aid to the understanding of Theorem 1, let R̂k = ĤÎ′
ξ̂k

, for k = 1, 2, and

consider the partition

R̂k =

[
R̂k,11 R̂k,12

R̂k,21 R̂k,22

]
, Ĥ =

[
Ĥ11 Ĥ12

Ĥ21 Ĥ22

]
,

where R̂k,jℓ, k, j, ℓ = 1, 2 and Ĥjℓ, j, ℓ = 1, 2, are rj × rℓ. From Theorem 1, for any given

20



i = 1, . . . , N , as N,T → ∞, we obtain:

√
T
{
b̂′
1i − [λ′

1i 0] R̂1 − [0 λ′
2i]
(
Ĥ− R̂1

)}

=
√
T
{
b̂′
1i − λ′

1i[R̂1,11 R̂1,12]− λ′
2i

[(
Ĥ21 − R̂1,21

) (
Ĥ22 − R̂1,22

)]}
d→ N

(
0,Σ

b̂1i

)
, (50)

and likewise

√
T
{
b̂′
2i − [0 λ′

2i] R̂2 − [λ′
1i 0]

(
Ĥ− R̂2

)}

=
√
T
{
b̂′
2i − λ′

2i[R̂2,21 R̂2,22]− λ′
1i

[(
Ĥ11 − R̂2,11

) (
Ĥ12 − R̂2,12

)]}
d→ N

(
0,Σ

b̂2i

)
. (51)

From (50) and (51), if we consistently estimate the unconditional probability of being in

a given state j = 1, 2, then R̂k
p→ Ĥ as N,T → ∞. The columns of B̂j then estimate two

different linear transformations of the columns of Λj . If r1 = r2, both linear transformations

are invertible, and there is no need to know the true values of r1 and r2 to get consistent

estimates of the space spanned by the true loadings in the two different regimes. In particular,

we can consider either the first or the second half of the columns of B̂j as an estimator of a

linear transformation of Λj , for j = 1, 2.

On the other hand, if r1 6= r2, then the first r1 columns of B̂1, and the last r2 columns

of B̂2, estimate an invertible linear transformation of the columns of Λ1 and Λ2, respectively.

However, the last r2 columns of B̂1, and the first r1 columns of B̂2, estimate Λ1R̂1,12 and

Λ2R̂2,21, respectively, none of which is invertible. In this case, we need consistent estimators

of r1 and r2 in order to be able to isolate the first r1 columns of B̂1 and the last r2 columns

of B̂2, respectively, which are consistent estimators of a linear transformation of the columns

of Λ1 and Λ2, respectively. Therefore, if we only know that r1 6= r2 without knowing their

true values, then we can consistently estimate a linear transformation of the columns of Bj ,

but nothing can be said about Λj , j = 1, 2.

Theorem 1 describes the asymptotic properties of the estimator for the factor loadings

B̂1 and B̂2. Complementary results can be obtained with respect to the estimated factors

associated to the loading matrices B̂1 and B̂2. Formally, the true factors that correspond

to B1 and B2 are ξ1tgt and ξ2tgt, respectively, and their estimators are ξ̂1,t|T ĝt and ξ̂2,t|T ĝt,

respectively. The following theorem states the asymptotic distribution of those factors.

Theorem 2. Let Assumptions 1 - 7 hold. Then, for any given t = 1, . . . , T , as N,T → ∞,

√
N

{(
ξ̂1,t|T ĝt
ξ̂2,t|T ĝt

)
− Ĥ−1

ξ

(
ξ1tgt

ξ2tgt

)}
d→ N

(
0,Σ

ξ̂⊗ĝ,t

)
,
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where

Ĥξ =


 ĤÎ

′
ξ̂1 Ĥ

(
Ir1+r2 − Î

ξ̂2

)′

Ĥ
(
Ir1+r2 − Î

ξ̂1

)′
ĤÎ

′
ξ̂2


 ,

with Ĥ and Î
ξ̂j

defined in (45) and (49), respectively, and where

Σ
ξ̂⊗ĝ,t

=

{
Hξ

(
ΣB1 0

0 ΣB2

)
H′

ξ

}−1 (
HξΣBetH

′
ξ

)
{
Hξ

(
ΣB1 0

0 ΣB2

)
H′

ξ

}−1

,

where ΣBj, j = 1, 2, are defined in (44),

ΣBet =




Φ1t 0 0 Φ12,t

0 0 0 0

0 0 0 0

Φ′
12,t 0 0 Φ2t




,

with Φjt, j = 1, 2, defined in Assumption 6(d) and Φ12,t = limN→∞
1
N

∑N
i=1

∑N
l=1 λ1iλ

′
2lE[eitelt],

and where

Hξ =

[
HI′ξ1 H (Ir1+r2 − Iξ2)

′

H (Ir1+r2 − Iξ1)
′

HI′ξ2

]
,

with H defined in (48) and Iξj = p limN,T→∞ Î
ξ̂j

.

Now, in general Î
ξ̂j

6= Ir1+r2 and so also Iξj 6= Ir1+r2 . Then, because of Theorem 1,

the estimator b̂ji is biased and it is straightforward to see that the asymptotic covariance

in Theorem 2 is positive definite. Note that if we know r1 = r2 holds, then we can build

consistent estimators f̂1t and f̂2t for linear combinations of f1t and f2t, respectively, by simply

regressing xt onto the first r1 columns of B̂1 and the last r2 columns of B̂2, respectively: as

previously discussed, these define consistent estimators Λ̂1 and Λ̂2 for linear transformation of

Λ1 and Λ2, respectively. Formally, this means we can build the sequence of factor estimators

f̂jt =
1

N
ξ̂j,t|T Λ̂

′
jxt, j = 1, 2. (52)

If the unconditional probability of being in a given state is correctly estimated then Î
ξ̂j

p→
Ir1+r2 as N,T → ∞, and Theorem 2 is redundant: in this case, asymptotic normality of (52)

follows from arguments analogous to those in Bai (2003).
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5 Unobserved heterogeneity

The model in (1) assumes no individual effects. These can be introduced by considering

xt = (α1 +Λ1f1t) I(st = 1) + (α2 +Λ2f2t) I(st = 2) + et, (53)

where αj = (αj1, . . . , αjN )′, for j = 1, 2, and αji captures the individual effect of cross-

sectional unit i within regime j. The vectors α1 and α2 introduce unobserved heterogeneity.

If the state variable driving the regimes were observable, the resulting identification problem

could be solved by expressing the model in terms of deviations of xt from the conditional means

within each regime: on this, see Massacci et al. (2021). However, since the state variable st

in (53) is latent, this strategy no longer is applicable since the state is not observable with

probability one. For this reason, we express the model in terms of the deviation of xt from

the unconditional mean.

Formally, consider the N × 1 vector of dependent variables yt defined as

yt = xt − E (xt)

= (α1 +Λ1f1t) I (st = 1) + (α2 +Λ2f2t) I (st = 2) + et

−E [(α1 +Λ1f1t) I (st = 1)] + E [(α2 +Λ2f2t) I (st = 2)]

= α1ϕ1t +Λ1f1tI (st = 1) +α2ϕ2t +Λ2f2tI (st = 2) + et,

where

ϕjt = I (st = j) − E [I (st = j)] , j = 1, 2.

If α1 = α2, xt has the same expected value in both regimes, and yt = Λ1f1tI (st = 1) +

Λ2f2tI (st = 2) + et. In the more general case in which α1 6= α2, unconditional demeaning

leads to a larger factor space of dimension r1 + r2 +2. The additional two factors ϕ1t and ϕ2t

take only two values, namely ϕjt = −E [I (st = j)] and ϕjt = 1 − E [I (st = j)], depending on

whether I (st = j) = 0 or I (st = j) = 1, respectively, for j = 1, 2. In this case, the equivalent

linear representation in (10) holds with gt = [ϕ1t, I (st = 1) f ′1t, ϕ2t, I (st = 2) f ′2t] and A =

[α1,Λ1,α2,Λ2]. The measurement equation in (9) of the state space representation remains

valid with B1 = [α1,Λ1,α2,0] and B2 = [α1,0,α2,Λ2]. Therefore, the tools developed in

this paper can be applied to the sample counterpart of yt, namely to ŷt = xt−
(
T−1

∑T
t=1 xt

)
,

which consistently estimates yt as N → ∞.

6 Monte Carlo

Throughout we set N = {100, 200} and T = {250, 500, 750, 1000} and we simulate the N × T

matrix of data where at each t = 1, . . . , T the data xt follows (1). This requires to simulate

the latent state ξt, the loadings Λ1 and Λ2, the factors f1t and f2t, and the idiosyncratic
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components et.

We simulate the latent state ξt according to (5), where P has entries p11 = 0.9 and

p22 = 0.7 so that p12 = 0.1 and p21 = 0.3. This configuration corresponds to the unconditional

probabilities to be equal to P(st = 1) = E[ξ1t] =
1−p22

2−p11−p22
= 0.75 and P(st = 2) = E[ξ2t] =

1−p11
2−p11−p22

= 0.25. Then, we generate the innovations vt of the VAR as in (5) as follows: at

each t we generate ut ∼ U [0, 1] and (i) if ξ1,t−1 = 1 and ut ≤ p11 then vt = [1 0]′ − P′ξt−1;

(ii) if ξ1,t−1 = 1 and ut > p11 then vt = [0 1]′ − P′ξt−1; (iii) if ξ1,t−1 = 0 and ut ≤ p21 then

vt = [1 0]′ −P′ξt−1; (iv) if ξ1,t−1 = 0 and ut > p21 then vt = [0 1]′ −P′ξt−1.

We set the number of factors in each state to rj = r = {1, 2}, j = 1, 2. Then the

common component is generated according to (1). Specifically, letting χit = λ′
1if1tI(st =

1) + λ′
2if2tI(st = 1), i = 1, . . . , N , the r entries of λ1i and λ2i are generated from a N(1, 1)

distribution and the matrices Λ1 and Λ2 are rotated in such a way that Λ′
1Λ1 and Λ′

2Λ2 are

diagonal matrices. The factors are such that fjt = ft, j = 1, 2, such that T−1
∑T

t=1 ftf
′
t = Ir

and each component of ft is such that fit = ρffi,t−1 + zit, i = 1, . . . , r, with ρf = {0, 0.7} and

zit ∼ N(0, 1).

The idiosyncratic components are generated according to (2), where Σje = Σje,a +Σje,b,

j = 1, 2, with Σje,a diagonal and Σje,b banded. Specifically, the entries of Σ1e,a are generated

from a U [0.25, 1.25] and those of Σ2e,a are generated from a U [0.75, 1.75], while Σ1e,b is a

Toeplitz matrix with τk on the kth diagonal for k = 1, 2 and zero elsewhere, and, finally Σ2e,b

is a Toeplitz matrix with τk−1 on the kth diagonal for k = 1, 2, 3 and zero elsewhere. We set

τ = {0, 0.5}. Moreover, each component of νt is such that νit = ρiνi,t−1 + ωit, i = 1, . . . , N ,

with ρi = {0, ρ} and ρ ∼ U [0, 0.5]. Finally, we set the noise-to-signal ratio N−1
∑N

i=1

∑T
t=1 e

2
it∑T

t=1 χ
2
it

to be 0.5 on average across all N simulated time series.

We simulate the model above 100 times for different values of r, ρf , τ , and ρ. The EM is

run allowing for at most 100 iterations and using a convergence threshold equal to 10−6. We

initialize the algorithm using PCA as described in Section 3.4. Since the states are identified

only up to a permutation at each iteration of the algorithm we assign label 1 to the state with

highest unconditional probability.

In Tables 1-4 first four columns, we report the average and standard deviation over all

replications of the estimated diagonal entries of the transition matrix p̂jj, j = 1, 2, of the

unconditional probabilities P(st = j), estimated as
¯̂
ξj,t|T = T−1

∑T
t=1 ξ̂j,t|T , j = 1, 2.

Since the loadings are not identified, in the fifth column of Tables 1-4 we report the

multiple R2 coefficient obtained from regressing the columns of B̂1 onto the columns of B∗
1 =

B1Îξ̂1+B2(I2r−Î
ξ̂1
), thus correcting for the possible bias as prescribed by Theorem 1. Namely,

we compute

R2
B∗ =

tr

{(
B∗′

1 B̂1

)(
B̂′

1B̂1

)−1 (
B̂′

1B
∗
1

)}

tr
(
B̂∗′

1 B̂
∗
1

) .
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Table 1: Estimated probabilities - r = 1, ρf = 0, τ = 0, ρ = 0.

T N p̂11 p̂22
¯̂
ξ1,t|T

¯̂
ξ2,t|T R2

B∗ MSE(χ) avg. iter

250 100 0.89 0.64 0.76 0.24 0.97 0.02 13.78
(0.03) (0.13) (0.06) (0.06)

500 100 0.90 0.68 0.76 0.24 0.98 0.01 12.55
(0.01) (0.04) (0.03) (0.03)

750 100 0.90 0.69 0.75 0.25 0.98 0.01 12.71
(0.01) (0.03) (0.03) (0.03)

1000 100 0.90 0.69 0.75 0.25 0.98 0.01 12.05
(0.01) (0.03) (0.03) (0.03)

250 200 0.89 0.64 0.76 0.24 0.97 0.01 11.98
(0.02) (0.11) (0.06) (0.06)

500 200 0.89 0.68 0.75 0.25 0.97 0.01 21.23
(0.02) (0.04) (0.03) (0.03)

750 200 0.89 0.68 0.75 0.25 0.97 0.02 37.37
(0.02) (0.04) (0.03) (0.03)

1000 200 0.90 0.69 0.75 0.25 0.98 0.02 36.22
(0.01) (0.03) (0.03) (0.03)

Table 2: Estimated probabilities - r = 1, ρf = 0.7, τ = 0.5, ρ = 0.5.

T N p̂11 p̂22
¯̂
ξ1,t|T

¯̂
ξ2,t|T R2

B∗ MSE(χ) avg. iter

250 100 0.89 0.62 0.77 0.23 0.97 0.02 20.14
(0.03) (0.17) (0.07) (0.07)

500 100 0.90 0.68 0.76 0.24 0.98 0.02 15.28
(0.02) (0.05) (0.04) (0.04)

750 100 0.90 0.69 0.76 0.24 0.98 0.02 14.43
(0.01) (0.03) (0.03) (0.03)

1000 100 0.90 0.66 0.77 0.23 0.98 0.01 14.07
(0.02) (0.14) (0.05) (0.05)

250 200 0.89 0.62 0.77 0.23 0.98 0.02 11.95
(0.03) (0.14) (0.07) (0.07)

500 200 0.89 0.67 0.75 0.25 0.98 0.01 20.21
(0.02) (0.04) (0.04) (0.04)

750 200 0.89 0.69 0.75 0.25 0.98 0.01 19.17
(0.01) (0.04) (0.02) (0.02)

1000 200 0.90 0.69 0.75 0.25 0.98 0.01 21.82
(0.01) (0.03) (0.03) (0.03)

The closer this number is to one, the closer is the space spanned by the columns of B̂1 to the

space spanned by the columns of B∗
1 (see Doz et al. (2012)).

In the sixth column of Tables 1-4 we report the MSE of the estimated common components
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Table 3: Estimated probabilities - r = 2, ρf = 0, τ = 0, ρ = 0.

T N p̂11 p̂22
¯̂
ξt|T,1

¯̂
ξt|T,2 R2

B∗ MSE(χ) avg. iter

250 100 0.88 0.46 0.81 0.19 0.97 0.04 19.32
(0.04) (0.22) (0.08) (0.08)

500 100 0.89 0.65 0.76 0.24 0.97 0.03 14.63
(0.02) (0.04) (0.03) (0.03)

750 100 0.90 0.67 0.76 0.24 0.97 0.03 14.46
(0.01) (0.04) (0.03) (0.03)

1000 100 0.90 0.68 0.76 0.24 0.97 0.03 13.83
(0.01) (0.03) (0.02) (0.02)

250 200 0.87 0.48 0.78 0.22 0.97 0.03 13.72
(0.04) (0.22) (0.08) (0.08)

500 200 0.89 0.65 0.75 0.25 0.97 0.02 10.40
(0.02) (0.05) (0.04) (0.04)

750 200 0.89 0.67 0.75 0.25 0.97 0.02 10.86
(0.01) (0.04) (0.03) (0.03)

1000 200 0.90 0.68 0.75 0.25 0.97 0.01 10.81
(0.01) (0.03) (0.02) (0.02)

Table 4: Estimated probabilities - r = 2, ρf = 0.7, τ = 0.5, ρ = 0.5.

T N p̂11 p̂22
¯̂
ξt|T,1

¯̂
ξt|T,2 R2

B∗ MSE(χ) avg. iter

250 100 0.91 0.38 0.86 0.14 0.98 0.04 17.40
(0.03) (0.20) (0.07) (0.07)

500 100 0.90 0.65 0.77 0.23 0.97 0.03 20.36
(0.02) (0.04) (0.04) (0.04)

750 100 0.90 0.67 0.76 0.24 0.97 0.03 17.20
(0.01) (0.04) (0.03) (0.03)

1000 100 0.90 0.68 0.76 0.24 0.98 0.03 16.61
(0.01) (0.03) (0.03) (0.03)

250 200 0.89 0.41 0.83 0.17 0.97 0.03 14.55
(0.04) (0.21) (0.09) (0.09)

500 200 0.89 0.66 0.76 0.24 0.97 0.02 13.41
(0.01) (0.06) (0.04) (0.04)

750 200 0.90 0.67 0.76 0.24 0.97 0.02 14.56
(0.01) (0.03) (0.03) (0.03)

1000 200 0.90 0.68 0.76 0.24 0.98 0.02 11.96
(0.01) (0.03) (0.02) (0.02)

defined as

MSE(χ) =

∑N
i=1

∑T
t=1(χ̂it − χit)

2

∑N
i=1

∑T
t=1 χ

2
it

,

where χ̂it =
(
b̂1i b̂2i

)′ (
ξ̂t ⊗ ĝt

)
.

In the last column of Tables 1-4 we report the average number of iterations needed to get
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convergence of the EM algorithm.

7 Empirical analysis

In this section we show how the methodological framework we propose can be used to model

a large set of stock returns. This relates our work to a vast literature that models stock re-

turn dynamics using Markov switching specifications. Perez-Quiros and Timmermann (2000,

2001) document business cycle asymmetries in U.S. stock return dynamics using decile-sorted

portfolios. Ang and Bekaert (2002), and Guidolin and Timmermann (2008), study portfolio

allocation in international equity markets under regime switching. In a multi asset setting,

Guidolin and Timmermann (2006) describe the joint distribution of equity and bonds under

regime switching. Guidolin (2011), and Ang and Timmermann (2012), provide a review of

the literature. We contribute to this stream of literature by characterizing stock return dy-

namics with a Markov switching model in a large dimensional setting. To the very best of our

knowledge, we are the first to do so. In what follows, Section 7.1 describes the data and the

empirical model specification, Section 7.2 discusses the estimated regime probabilities, and

Section 7.3 presents the findings for estimated loadings and factors.

7.1 Data and model specification

The vector of observable dependent variables xt in (1) is made of the monthly value weighted

returns in excess of the risk-free rate from the N = 49 industry portfolios kindly made publicly

available on Kenneth French website.3 In order to obtain a balanced panel, the sample period

runs from July 1969 through December 2021, a total of T = 630 time periods.

7.2 Regime probabilities

Using the selection criterion of Ahn and Horenstein (2013) as applied to the equivalent linear

representation in (10), we find r = 2 common factors. Based on this, we apply the algorithm

detailed in Section 3. The EM algorithm converges relatively fast in just 22 iterations (see

Figure 1). The realisation of the estimator P̂ for the matrix of conditional probabilities P in

(3) is equal to

P̂ =

[
0.9194 0.0806

0.3395 0.6605

]
.

The estimated unconditional probability for regime j is equal to the sample average
¯̂
ξj|T =

T−1
∑T

t=1 ξ̂j,t|T , for j = 1, 2. It follows that
¯̂
ξ1|T = 0.8044 and

¯̂
ξ2|T = 0.1956.4 Therefore,

3See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html .
4By computing the unconditional probability using their analytical formulas in (6), we get

¯̂
ξ1|T = 0.8081

and
¯̂
ξ2|T = 0.1919.
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Figure 1: Expected log-likelihood
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This figure plots the value of the maximized expected conditional log-likelihood computed using

the estimated factors, i.e., E
q̂(k)

[
log f

(
X

∣∣∣Ĝ; ϕ̂(k+1), ρ̂(k+1)
)
|X
]

(see also (15)), as a function of

the EM iterations k.

Figure 2: Estimated conditional probabilities ξ̂t|T , t = 1, . . . , T .
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(a): ξ̂1,t|T (b): ξ̂2,t|T
This figure plots the series of the estimated conditional probabilities ξ̂1,t|T (Panel a) and ξ̂2,t|T
(Panel b) estimated from the Markov switching factor model in (9).

regime j = 1 is approximately four times more frequent than regime j = 2.

In order to provide an economic understanding of the regimes described by the model,

Figure 2 plots the sequences of estimates ξ̂1,t|T and ξ̂2,t|T , for t = 1, . . . , T . These series are

negatively and positively correlated, respectively, with the NBER recession indicator, with

correlation coefficients equal to -0.303 and 0.303, respectively. Therefore, the state j = 1 is

related to periods of economic expansions, whereas the state j = 2 is more likely to occur

during recessionary phases.5 This is consistent with the empirical frequency of the states, since

expansions occur more often than recessions.6 Our model therefore captures regime changes

in equity markets related to business cycle dynamics.

5The NBER recession indicator is publicly available at https://fred.stlouisfed.org/series/USREC.
6Information on U.S. business cycle dates may be found at https://www.nber.org/research/data/us-business-cycle-expansions-and-contractions.
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Figure 3: Estimated factors ĝt, t = 1, . . . , T .
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(a): ĝ1t (b): ĝ2t

This figure plots the series of the estimated factors ĝ1t (Panel a) and ĝ2t (Panel b) estimated from
the linear factor model in (10).

7.3 Factors and loadings

7.3.1 Equivalent linear representation

Following the sequential order dictated by our estimation procedure, we first consider es-

timated factors and loadings for the equivalent linear representation in (10), namely ĝt =

(ĝ1t, ĝ2t)
′ and Â = (â1, â2) as obtained in Section 3.2.

We begin from the estimated factors ĝ1t and ĝ2t, which are displayed in Figure 3. To aid

understanding of these factors, we study the correlation between them and the six observable

factors considered in Fama and French (2016), namely: the value-weighted return on the

market portfolio in excess of the one-month Treasury bill rate (RMt); size (SMBt); value

(HMLt); profitability (RMWt); investment (CMAt); momentum (MOMt). The correlations

displayed in Table 5 show that the first estimated factor ĝ1t is strongly correlated with the

market return RMt, it is reasonably correlated with SMBt, CMAt and MOMt, and it is

only mildly correlated with HMLt and RMWt. On the other hand, the second estimated

latent factor does not exhibit any substantial correlation with any of the observable factors

we consider. This implies that the first factor in the equivalent linear representation is likely

to be a market factor, while it is more difficult to give economic interpretation to the second

factor.

The estimated loadings are displayed in Figure 4. It is important to note that the elements

of the estimated vector â1 associated to ĝ1t all have the same sign, which confirms that

the corresponding factor g1t is a level factor. On the other hand, the vector of loadings â2

associated to ĝ2t has elements with positive and negative sign, which is consistent with g2t

being a slope factor.

7.3.2 Markov switching factor model

We then study the four common factors collected in the vector ξ̂t|T ⊗ ĝt, for t = 1, . . . , T ,

namely ξ̂j,t|T ĝ1t and ξ̂j,t|T ĝ2t, for j = 1, 2. These four series are plotted in Figure 5. To aid
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Figure 4: Estimated loadings Â.
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This figure plots the sequences of estimated loadings âi1 (Panel a) and âi2 (Panel b), i = 1, . . . , N ,
estimated from the linear factor model in (10).

Table 5: Factor correlations in linear model.

ĝ1t ĝ2t
RMt 0.96 0.05
SMBt 0.40 -0.06
HMLt -0.13 -0.06
RMWt -0.14 0.12
CMAt -0.32 -0.12
MOMt -0.26 -0.08

This table reports the correlation coefficients between the estimated latent factors ĝ1t and ĝ2t
from the equivalent linear specification in (10) and the following six observable factors from
Fama and French (2016): the value-weighted return on the market portfolio in excess of the one-
month Treasury bill rate (RMt); size (SMBt); value (HMLt); profitability (RMWt); investment
(CMAt); momentum (MOMt).

understanding of those factors, Table 6 displays their correlations with the same observable

factors detailed in Section 7.3.1. Consistently with the results in Table 5, Table 6 shows that

both ξ̂1,t|T ĝ1t and ξ̂2,t|T ĝ1t are highly correlated with RMt and therefore capture the amount

of cross-sectional dependence in stock returns driven by the market within each regime. This

result is easy to interpret, as ĝ1t is obtained as the sum of ξ̂1,t|T ĝ1t and ξ̂2,t|T ĝ1t. On the other

hand, ξ̂1,t|T ĝ2t and ξ̂2,t|T ĝ2t are more difficult to interpret, as they display limited correlation

with all observable factors we consider, a feature they naturally share with ĝ2t.

Finally, we consider the vectors of loadings b̂ji =
(
b̂ji1, b̂ji2

)′
, for j = 1, 2 and i = 1, . . . , N .

These are shown in Figure 6. It is important to note that both
{
b̂1i1

}N

i=1
and

{
b̂2i1

}N

i=1
have

all elements with the same sign. This feature is inherited from â1 through ĝ1t and it confirms

that b̂1i1 and b̂2i1 are level factors. On the other hand, analogously to â2,
{
b̂1i2

}N

i=1
and

{
b̂2i2

}N

i=1
have both positive and negative elements, and the corresponding factors ξ̂1,t|T ĝ2t

and ξ̂2,t|T ĝ2t are slope factors. It is also worth noting that b̂11 and b̂12 are very similar to

each other, the same being true for b̂21 and b̂22: this suggests that the bias induced by the
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Table 6: Factor correlations in Markov switching model.

ĝ1tξ̂1,t|T ĝ2tξ̂1,t|T ĝ1tξ̂2,t|T ĝ2tξ̂2,t|T
RMt 0.74 0.06 0.62 -0.01
SMBt 0.32 -0.08 0.24 0.01
HMLt -0.17 -0.11 0.00 0.06
RMWt -0.06 0.09 -0.15 0.08
CMAt -0.22 -0.12 -0.23 -0.03
MOMt -0.01 0.03 -0.39 -0.19

This table reports the correlation coefficients between the estimated latent factors ĝ1tξ̂1,t|T ,

ĝ2tξ̂1,t|T , ĝ1tξ̂2,t|T , and ĝ2tξ̂2,t|T from the Markov switching factor model in equivalent linear spec-
ification in (1) and the following six observable factors from Fama and French (2016): the value-
weighted return on the market portfolio in excess of the one-month Treasury bill rate (RMt); size
(SMBt); value (HMLt); profitability (RMWt); investment (CMAt); momentum (MOMt).

Figure 5: Estimated factors ξ̂t|T ⊗ ĝt, t = 1, . . . , T .
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This figure plots the series of the estimated factors ξ̂1,t|T ĝ1t (Panel a), ξ̂2,t|T ĝ1t (Panel b), ξ̂1,t|T ĝ2t

(Panel c), and ξ̂2,t|T ĝ2t (Panel d) estimated from the Markov switching factor model in (9).

imperfect knowledge of the state is almost negligible it practice, which implies that the regimes

are estimated with high degree of accuracy.

8 Concluding remarks

This paper has developed estimation and inferential theory for high dimensional factor models

with discrete regime changes in the loadings driven by a latent first order Markov process.
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Figure 6: Estimated loadings B̂1 and B̂2.
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This figure plots the sequences of estimated factor loadings b̂1i1 (Panel a), b̂1i2 (Panel b), b̂2i1
(Panel c), and b̂2i2 (Panel d), i = 1, . . . , N , estimated from the Markov switching factor model in
(9).

Our estimator employs a EM algorithm based on a modified version of the Baum-Lindgren-

Hamilton-Kim filter and smoother. Remarkably, the estimator does not need knowledge of the

number of factors in either states, as it only requires the true number of factors in the equivalent

linear representation, which can be estimated using existing techniques. We derive convergence

rates and asymptotic distribution of the estimators for factors and loadings, and we show their

good finite sample performance through an extensive set of Monte Carlo experiments. Finally,

we empirically validate our methodology through an application to a large set of stock returns.

Our work can be extended along several dimensions. Three are worth mentioning. First,

our model allows for two regimes and the case of multiple states to capture richer dynamics

is worth exploring. Second, the problem of estimating the number of factors within each

regime should be addressed. Finally, the challenging task of making inference on the number

of regimes is worth considering. All these extensions are part of our research agenda.
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A Appendix: mathematical proofs

Define CNT = min
{√

N,
√
T
}

Let I1t = I(st = 1) and I2t = I(st = 2). For j = 1, 2, and

i, l = 1, . . . , N , define

σjil = E

(
1

T

T∑
t=1

Ijteitelt

)
, χjil =

1

T

T∑
t=1

Ijteitelt − E

(
1

T

T∑
t=1

Ijteitelt

)
,

ϕjil =
1

T

T∑
t=1

Ijtλ
′
jifjtelt, ϕjli =

1

T

T∑
t=1

Ijtλ
′
jlfjteit.

(A.1)

A.1 Lemmas

Lemma 1. Under Assumptions 1 - 4, and given Ĥ defined in (45), we have

1

N

N∑

i=1

∥∥∥âi − Ĥ′ai
∥∥∥
2
= Op

(
1

C2
NT

)
.

Lemma 2. Let Assumptions 1 - 6 hold. Then:

(a) N−1
∑N

l=1 âlσjil = Op

(
1√

NCNT

)
;

(b) N−1
∑N

l=1 âlχjil = Op

(
1√

TCNT

)
;

(c) N−1
∑N

l=1 âlϕjil = Op

(
1√

TCNT

)
;

(d) N−1
∑N

l=1 âlϕjli = Op

(
1√
T

)
.

Lemma 3. Under Assumptions 1 - 6,

N−1
(
Â−AĤ

)′
Â = Op

(
1

C2
NT

)
.

Lemma 4. Under Assumptions 1 - 6,

N−1
(
Â−AĤ

)′
et = Op

(
1

C2
NT

)
.

Lemma 5. Let Assumptions 1 - 6 hold. Then:

(a) ĝt − Ĥ−1gt = Op

(
1√
N

)
+Op

(
1

C2
NT

)
, for t = 1, . . . , T ;

(b) 1
T

∑T
t=1

(
ĝt − Ĥ−1gt

)
ĝ′
t = Op

(
1

C2
NT

)
.

Lemma 6. Under Assumptions 1 - 5, and given Q defined in Theorem 1,

p lim
N,T→∞

A′Â
N

= Q,
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Lemma 7. Let Assumptions 1 - 5 hold, and consider the matrix Q defined in Theorem 1.

Then, for j = 1, 2, the rj × (r1 + r2) matrix Qj satisfying Q = [Q′
1 Q′

2]
′ is such that

Qj = Σ
−1/2
fj ΨjV

1/2 ,

where Σfj is defined in (40), and Ψj is the rj × (r1 + r2) matrix such that Ψ = [Ψ′
1 Ψ′

2]
′.

Lemma 8. Let V̂ be the (r1 + r2) × (r1 + r2) diagonal matrix containing the first r1 + r2

eigenvalues of Σ̂x = (NT )−1∑T
t=1 xtx

′
t in decreasing order. Define V as the (r1 + r2) ×

(r1 + r2) diagonal matrix of the first r1 + r2 eigenvalues of Σ
1/2
g ΣAΣ

1/2
g in decreasing order,

where Σg and ΣA are defined in (41) and (43), respectively. Then, under Assumptions 1 - 4,

V̂
p→ V.

A.2 Proofs of Lemmas

Proof of Lemma 1. Consider Σ̂x = (NT )−1∑T
t=1 xtx

′
t and Ĥ = (GG′/T )

(
A′Â/N

)
V̂−1.

By the definition of eigenvectors and eigenvalues, Σ̂xÂ = ÂV̂, where V̂ is the r× r diagonal

matrix of the first r = (r1 + r2) largest eigenvalues of Σ̂x in decreasing order, and Â is
√
N

times the N × r matrix of eigenvectors of Σ̂x corresponding to its r largest eigenvalues. Note

that
∥∥∥V̂
∥∥∥ = Op (1) and

∥∥∥Ĥ
∥∥∥ ≤ ‖GG′ /T ‖ ‖AA′ /N ‖1/2

∥∥∥ÂÂ
′
/N
∥∥∥
1/2 ∥∥V−1

∥∥ = Op (1) by

Assumptions 1 and 2. We then have

(
Â−AĤ

)
V̂ = ÂV̂ −AĤV̂ = ÂV̂ −A

GG′

T

A′Â
N

,

which implies

V̂Â′ − Â′A
N

GG′

T
A′ = Â′Σ̂x − Â′A

N

GG′

T
A′ = Â′ 1

NT

[(
T∑

t=1

xtx
′
t

)
−AGG′A′

]
.

Taking into account (A.1), after some algebra we have

V̂
(
âi − Ĥ′ai

)
= Â′ 1

NT

[(
T∑
t=1

xtxit

)
−AGG′ai

]

=

[
2∑

j=1

(
1

N

N∑
l=1

âlσjil +
1

N

N∑
l=1

âlχjil +
1

N

N∑
l=1

âlϕjil +
1

N

N∑
l=1

âlϕjli

)]
.

(A.2)

It follows that

1

N

N∑

i=1

∥∥∥âi − Ĥ′ai
∥∥∥
2
≤ 8

∥∥∥V̂−1
∥∥∥
2

2∑

j=1

(
1

N

N∑

i=1

σ̂ji· +
1

N

N∑

i=1

χ̂ji· +
1

N

N∑

i=1

ϕ̂ji· +
1

N

N∑

i=1

ϕ̂j·i

)
,

(A.3)
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where

σ̂ji· =
1

N2

∥∥∥∥
N∑
l=1

âlσjil

∥∥∥∥
2

, χ̂ji· =
1

N2

∥∥∥∥
N∑
l=1

âlχjil

∥∥∥∥
2

, ϕ̂ji· =
1

N2

∥∥∥∥
N∑
l=1

âlϕjil

∥∥∥∥
2

, ϕ̂j·i =
1

N2

∥∥∥∥
N∑
l=1

âlϕjli

∥∥∥∥
2

.

Consider σ̂ji· and note that

∥∥∥∥∥

N∑

l=1

âlσjil

∥∥∥∥∥

2

≤
(

N∑

l=1

‖âl‖2
)(

N∑

l=1

σ2
jil

)

so that

1

N

N∑

i=1

σ̂ji· =
1

N

N∑

i=1


 1

N2

∥∥∥∥∥

N∑

l=1

âlσjil

∥∥∥∥∥

2

 ≤ 1

N

(
1

N

N∑

l=1

‖âl‖2
)

1

N

(
N∑

i=1

N∑

l=1

σ2
jil

)
:

given Assumption 3(b), N−1
(∑N

i=1

∑N
l=1 σ

2
jil

)
≤ M by Lemma A.1(a) in Massacci (2017),

which implies that

1

N

N∑

i=1

σ̂ji· = Op

(
1

N

)
. (A.4)

Consider now,

N∑
i=1

χ̂ji· =
1

N2

N∑
i=1

∥∥∥∥
N∑
l=1

âlχjil

∥∥∥∥
2

=
1

N2

N∑
i=1

N∑
l=1

N∑
q=1

â′lâqχjilχjiq

≤
[

1

N2

N∑
l=1

N∑
q=1

(â′lâq)
2

]1/2 [
1

N2

N∑
l=1

N∑
q=1

(
N∑
i=1

χjilχjiq

)2
]1/2

≤
(

1

N

N∑
l=1

‖âl‖2
)[

1

N2

N∑
l=1

N∑
q=1

(
N∑
i=1

χjilχjiq

)2
]1/2

;

since

E



(

N∑

i=1

χjilχjiq

)2

 = E

(
N∑

i=1

N∑

u=1

χjilχjiqχjulχjuq

)
≤ N2 max

i,l
E

(
|χjil|4

)

and

E

(
|χjil|4

)
= E

[∣∣∣∣
1

T

T∑
t=1

Ijteitelt − E

(
1

T

T∑
t=1

Ijteitelt

)∣∣∣∣
4
]

=
1

T 2
E

{∣∣∣∣
1√
T

[
T∑
t=1

Ijteitelt − E

(
T∑
t=1

Ijteitelt

)]∣∣∣∣
4
}

≤ 1

T 2
M
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by Assumption 3(c), then

N∑

i=1

χ̂ji· ≤ Op (1)

√
N2

T 2
= Op

(
N

T

)

and

1

N

N∑

i=1

χ̂ji· = Op

(
1

T

)
. (A.5)

Also

ϕ̂ji· =
1

N2

∥∥∥∥
N∑
l=1

âlϕjil

∥∥∥∥
2

=
1

N2

∥∥∥∥
N∑
l=1

âl

(
1

T

T∑
t=1

Ijtλ
′
jifjtelt

)∥∥∥∥
2

=
1

N2

∥∥∥∥
N∑
l=1

âlλ
′
ji

(
1

T

T∑
t=1

Ijtfjtelt

)∥∥∥∥
2

≤
[
1

N

N∑
l=1

(
1

T 2

∥∥∥∥
T∑
t=1

Ijtfjtelt

∥∥∥∥
2
)]

‖λji‖2
(

1

N

N∑
l=1

‖âl‖2
)

and

1

N

N∑
i=1

ϕ̂ji· =

[
1

N

N∑
l=1

(
1

T 2

∥∥∥∥
T∑
t=1

Ijtfjtelt

∥∥∥∥
2
)](

1

N

N∑
i=1

‖λji‖2
)(

1

N

N∑
l=1

‖âl‖2
)

=
1

T

(
1

N

N∑
l=1

∥∥∥∥
1√
T

T∑
t=1

Ijtfjtelt

∥∥∥∥
2
)(

1

N

N∑
i=1

‖λji‖2
)(

1

N

N∑
l=1

‖âl‖2
)

= Op

(
1

T

)
(A.6)

by Assumptions 2 and 4. Finally,

ϕ̂j·i =
1

N2

∥∥∥∥
N∑
l=1

âlϕjli

∥∥∥∥
2

=
1

N2

∥∥∥∥
N∑
l=1

âl

(
1

T

T∑
t=1

Ijtλ
′
jlfjteit

)∥∥∥∥
2

=
1

N2

∥∥∥∥
N∑
l=1

âlλ
′
jl

(
1

T

T∑
t=1

Ijtfjteit

)∥∥∥∥
2

≤ 1

N2

∥∥∥∥
N∑
l=1

âlλ
′
jl

∥∥∥∥
2 ∥∥∥∥

1

T

T∑
t=1

Ijtfjteit

∥∥∥∥
2

≤ 1

T

∥∥∥∥
1√
T

T∑
t=1

Ijtfjteit
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2(

1

N

N∑
l=1

‖λjl‖2
)(

1

N

N∑
l=1

‖âl‖2
)
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and

1

N

N∑

i=1

ϕ̂j·i ≤
1

T


 1

N

N∑

i=1

∥∥∥∥∥
1√
T

T∑

t=1

Ijtfjteit

∥∥∥∥∥

2


(

1

N

N∑

l=1

‖λjl‖2
)(

1

N

N∑

l=1

‖âl‖2
)

= Op

(
1

T

)

(A.7)

by Assumptions 2 and 4. By combining (A.3) - (A.7), and since
∥∥∥V̂−1

∥∥∥ = Op (1), then

1

N

N∑

i=1

∥∥∥âi − Ĥ′ai
∥∥∥
2
= Op

(
1

N

)
+Op

(
1

T

)

and the result stated in the lemma follows.

Proof of Lemma 2. Starting from (a), consider

1

N

N∑

l=1

âlσjil =
1

N

N∑

l=1

(
âl − Ĥ′al + Ĥ′al

)
σjil =

1

N
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(
âl − Ĥ′al

)
σjil + Ĥ′ 1

N

N∑
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alσjil.

Note that

∥∥∥∥∥

N∑
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alσjil

∥∥∥∥∥ ≤
(
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l
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)( N∑
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)

≤
[
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l
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)

≤ 2λ̄M

by Assumption 2 and Assumption 3(b), so that

1

N
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(
1

N

)
.

Further

∥∥∥∥
1
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(
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)
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∥∥∥∥ ≤
(

1

N
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∥∥∥
2
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N

(
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=

[
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(
1
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(
1√
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)
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(
1√
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)

by Lemma 1 and Assumption 3(b). It thus follows that

1

N
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)
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(
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Moving on to (b), we have
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N∑
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âlχjil =
1
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âl − Ĥ′al
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N
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Note that

∥∥∥∥∥
1

N
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∥∥∥∥∥ ≤
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,

with
1
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(
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.

Further
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[
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T∑
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(
1
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1
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by Assumption 6(a). It follows that

1
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.

As for (c), consider
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N∑
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âl
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T

T∑
t=1

Ijtλ
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âl − Ĥ′al
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′
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We have

∥∥∥∥
1
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(
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)
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′
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(
1

N
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∥∥∥
2
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1

N
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∥∥∥∥
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(
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)

by Lemma 1, Assumption 6(c) and Assumption 2. Also,
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(
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)

by Assumption 6(b) and Assumption 2. It follows that

1

N
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(
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(
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)
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(
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.

Finally, for (d) we have
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(
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]
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T

(
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T
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)
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(
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)
,

by Assumption 2 and Assumption 6(c). Further,
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1

N
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(
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)
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with

1

N
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1
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(
1

T

T∑

t=1
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′
jlfjteit
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T

(
1

N

N∑
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T

T∑
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)2
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(
1
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,

by Assumption 2 and Assumption 6(c), so that taking into account Lemma 1 we have

1

N
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(
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)
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(
1
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)
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(
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)
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(
1√
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.

It follows that

1

N

N∑

l=1

âlϕjli = Op

(
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)
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(
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)
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(
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,

which completes the proof of the lemma.

Proof of Lemma 3. Consider
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)′
Â = N−1
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Â−AĤ

)′
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)′
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AĤ
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)′ (
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)
.

(A.8)

Using the identity in (A.2), we have
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N
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)
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(
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âlσjil

)
a′i

]
+

2∑
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[
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(
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]
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[
1
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N∑
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(
1
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N∑
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[
1
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N∑
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(
1

N
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)
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]


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(A.9)

Consider

1

N

N∑

i=1

(
1

N

N∑

l=1

âlσjil

)
a′i =

1

N

N∑

i=1

[
1

N
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(
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)
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]
a′i + Ĥ′ 1

N

N∑
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1

N

N∑

l=1
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′
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We have

∥∥∥∥
1

N
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(
1
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l=1

âlσjil

)
a′i

∥∥∥∥ ≤ 1√
N

(
1

N
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∥∥∥
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1
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1

N
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=
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N
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(
1
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)
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(
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by Lemma 1, Assumption 2, and the fact that, given ρjil = σjil

/
(σjiiσjll)

1/2 , by Assumption

3(b) we have

1

N

N∑

i=1

N∑

l=1

|σjil|2 =
1

N

N∑

i=1

N∑

l=1
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2
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1

N

N∑
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N∑
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|σjiiσjll|1/2 |ρjil| = M
1

N
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(A.10)

Further ∥∥∥∥∥
1

N
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i=1

1

N
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′
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∥∥∥∥∥ ≤ 1

N
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1

N
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)

= O

(
1

N

)

by Assumptions 2 and 3(b). Therefore,

1

N

N∑

i=1

(
1

N

N∑
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)
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(
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(
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)
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. (A.11)

Consider now

1

N

N∑
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(
1

N

N∑
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âlχjil

)
a′i =

1

N

N∑
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[
1
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(
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N
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1
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′
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We have

∥∥∥∥∥
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∥∥∥∥∥
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and consider

∥∥∥∥∥
1

N

N∑

l=1

(
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(
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by Assumption 3(c). Therefore, taking into account Lemma 1,

∥∥∥∥∥
1

N

N∑

l=1

(
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Further,

∥∥∥∥
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. (A.12)

Consider now
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by Lemma 1. Further
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. (A.13)

Finally,
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by Assumptions 2 and 6(b). Further

∥∥∥∥
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by Assumptions 2 and 6(b). Therefore,
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. (A.14)

Combining equations (A.9) through (A.14), we obtain

N−1
(
Â−AĤ

)′
A = Op

(
1√
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(
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(
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(
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(
1

C2
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(A.15)

From (A.8), (A.15) and Lemma 1, we obtain
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(
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)′
Â = Op

(
1
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)
+Op
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1
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.

which completes the proof of the lemma.

Proof of Lemma 4. Given the identity in (A.2), we can write

N−1
(
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(A.16)

44



Consider

∥∥∥∥
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(A.17)

by Lemma 1, equation (A.10), and Assumption 3(a). Consider now
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We have
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by Assumptions 3(a) and 3(c). Therefore, taking into account Lemma 1,
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Further,
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by Assumptions 3(a) and 6(a). Therefore,
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. (A.18)

Consider now
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by Assumptions 2, 3(a) and 4. Taking into account Lemma 1,
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Further,
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by Assumptions 2, 3(a) and 6(a). Therefore,
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. (A.19)

Finally,
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(A.20)

by Assumption 3(a) and Lemma 2(d). By combining (A.16), (A.17), (A.18), (A.19) and

(A.20), we have
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Â−AĤ
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Proof of Lemma 5. Starting from (a), and taking into account (10), consider

ĝt = N−1Â′xt = N−1Â′ (Agt + et) = N−1Â′Agt +N−1Â′et

and note that

A = A− ÂĤ
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+ ÂĤ
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ĝt − Ĥ−1gt = N−1
(
AĤ
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et. (A.21)

The result in (a) follows by taking into account Lemma 3 and Lemma 4. As for (b), adding
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and subtracting terms we have
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Taking into account the results in (a), it follows that
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From (A.21), we also have that
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Â−AĤ√
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and taking into account Assumptions 2 and 6(c), and Lemma 3,
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Â−AĤ√
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(A.24)

Combining (A.22) through (A.24), it follows that
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which shows (b) and completes the proof of the lemma.
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Proof of Lemma 6. Given Ĥ = (GG′/T )
(
A′Â/N

)
V̂−1, pre-multiply both sides of the

identity (1/NT )X′XÂ = ÂV̂ by (GG′ /T )
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where
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, Ẑ =

(
GG′

T

)1/2
(
A′Â
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so that we can write (A.25) as
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by Assumption 5, the eigenvalues of W + D̂Ẑ
−1

are also distinct for large N and T , by the

continuity of eigenvalues. This implies that the eigenvector matrix of W + D̂Ẑ
−1

is unique

except for the fact that each column can be replaced by its negative value. Further, the

p − th column of Ẑ depends on Â only through the p − th column of Â, for p = 1, . . . , P .

This implies that the sign of each column in Ẑ, and thus in Ψ̂ = Ẑ
(
V̂∗
)−1/2

, is deter-

mined by the sign of the corresponding column of Â. Therefore, the column sign of Â

and Ψ̂ are uniquely determined. By the eigenvector perturbation theory, which requires the

eigenvalues to be distinct, there exists a unique eigenvector matrix Ψ of Σ
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A Σ
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g Σ

1/2
A such

that
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by Assumption 1 and since V̂∗ p→ V, the latter following from arguments analogous to those

in the proof of Proposition 1 in Bai (2003). This completes the proof of the lemma.

Proof of Lemma 7. From Lemma 6, and taking into account (41), we have
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which completes the proof of the lemma.

Proof of Lemma 8. Given the equivalent linear representation in (10), we can write
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Taking into account Assumption 2 and Assumption 4, it follows that
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∥∥∥∥∥
1√
T

T∑
t=1

(
I1tf1te

′
t

I2tf2te
′
t
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=
1√
NT

Op (1)Op

(√
N
)

= Op

(
1√
T

)
.

(A.27)

Similarly, we can prove that

1

N
A

(
1

T

T∑

t=1

etg
′
t

)
= Op

(
1√
T

)
. (A.28)

Finally, by the weak dependence condition in Assumption (3),

∥∥∥∥∥
1

NT

T∑

t=1

ete
′
t

∥∥∥∥∥ = op (1) . (A.29)

By combining (A.26) through (A.29), we then have

1

NT

T∑

t=1

xtxt =
A√
N

(
1

T

T∑

t=1

gtg
′
t

)
A′
√
N

+ op (1) =
A√
N

GG′

T

A′
√
N

+ op (1) .

The result in the lemma follows from Assumptions (1) and (2) by noting that the eigenvalues of(
A
/√

N
)
(GG′ /T )

(
A′
/√

N
)

are the same as those of
(
G′
/√

T
)
(A′A /N )

(
G
/√

T
)
.

A.3 Proof of Theorem 1

Given (1), from Section 2.2 recall B1 = [Λ1 0] and B2 = [0 Λ2]. Adding and subtracting

terms, we have

xt = I1tB1gt + I2tB2gt + et

= I1tB1Ĥĝt + I2tB2Ĥĝt + I1tB1Ĥ
(
Ĥ−1gt − ĝt

)
+ I2tB2Ĥ

(
Ĥ−1gt − ĝt

)
+ et.
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We focus upon B̂1 =
[
b̂11, . . . , b̂1N

]′
as an estimator for B1 = [b11, . . . ,b1N ]′. Analogous

arguments hold for B̂2. We have

B̂1 =

(
T∑
t=1

ξ̂1,t|T xtĝ
′
t

)(
T∑
t=1

ξ̂1,t|T ĝtĝ
′
t

)−1

=

{
T∑
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ξ̂1,t|T
[
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(
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)
+ I2tB2Ĥ

(
Ĥ−1gt − ĝt

)
+ et

]
ĝ′
t

}

×
(

T∑
t=1

ξ̂1,t|T ĝtĝ
′
t

)−1

= B1Ĥ

(
T∑
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′
t

)(
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ξ̂1,t|T ĝtĝ
′
t

)−1

+B2Ĥ

(
T∑
t=1

ξ̂1,t|T I2tĝtĝ
′
t

)(
T∑
t=1

ξ̂1,t|T ĝtĝ
′
t

)−1

+B1Ĥ

[
T∑
t=1

ξ̂1,t|T I1t
(
Ĥ−1gt − ĝt

)
ĝ′
t

](
T∑
t=1

ξ̂1,t|T ĝtĝ
′
t

)−1

+B2Ĥ

[
T∑
t=1

ξ̂1,t|T I2t
(
Ĥ−1gt − ĝt

)
ĝ′
t

](
T∑
t=1

ξ̂1,t|T ĝtĝ
′
t
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+

(
T∑
t=1

ξ̂1,t|T etĝ
′
t

)(
T∑
t=1

ξ̂1,t|T ĝtĝ
′
t

)−1

.

Since I2t = 1− I1t, and recalling the definition of Î
ξ̂1

, after some algebra we get

√
T
[
B̂1 −B1ĤÎ

ξ̂1
−B2Ĥ

(
I− Î

ξ̂1

)]
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(
1√
T

T∑
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′
t

)(
1

T
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t
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[
1√
T
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(
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)
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]

×
(
1

T

T∑
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ξ̂1,t|T ĝtĝ
′
t

)−1

+B2Ĥ

[
1√
T

T∑
t=1

ξ̂1,t|T I2t
(
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)
ĝ′
t

]

×
(
1

T
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ξ̂1,t|T ĝtĝ
′
t

)−1

.

(A.30)

For 0 < M < ∞, and taking into account Lemma 5, for j = 1, 2 we have that,

1

T

T∑

t=1

ξ̂1,t|T Ijt
(
Ĥ−1gt − ĝt

)
ĝ′
t ≤ M

[
1

T

T∑

t=1

(
Ĥ−1gt − ĝt

)
ĝ′
t

]
= Op

(
1

C2
NT

)
. (A.31)

From (A.30) and (A.31), and taking into account Assumption 7, it follows that

√
T
[
B̂1 −B1ĤÎ

ξ̂1
−B2Ĥ

(
I− Î

ξ̂1

)]
=

(
1√
T

T∑

t=1

ξ̂1,t|T etĝ
′
t

)(
1

T

T∑

t=1

ξ̂1,t|T ĝtĝ
′
t

)−1

+ op (1) .
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Since ĝt = N−1Â′xt and xt = I1tΛ1f1t+I2tΛ2f2t+et then ĝt = N−1
(
I1tÂ

′Λ1f1t + I2tÂ
′Λ2f2t + Â′et

)
.

After some algebra, we have

√
T
[
B̂1 −B1ĤÎ

ξ̂1
−B2Ĥ

(
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×
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(
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1

T
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′
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+
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(
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T
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1

T
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(A.32)

By Lemma 2 it follows that

Â′ − Ĥ′A′ = Op

(
1√

NCNT

)
+Op

(
1√

TCNT

)
+Op

(
1√
T

)
, (A.33)

which implies that

Â−AĤ = Op

(
1√

NCNT

)
+Op

(
1√

TCNT

)
+Op

(
1√
T

)
. (A.34)

From (A.32) - (A.34), it follows that

√
T
[
b̂1i − Î

ξ̂1
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(
I− Î

ξ̂1

)
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Â′Λ2

N

(
1
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2Â

N

]−1

×
[
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(
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)
+

Â′Λ2

N

(
1√
T

T∑
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I2tξ̂1,t|T f2teit

)]
+ op (1)

and the result stated in the theorem follows by Assumption 1 and Lemma 6, and by noting that,

by Assumption 6(c),
(
T−1/2

∑T
t=1 I1tξ̂1,t|T f1teit

)
and

(
T−1/2

∑T
t=1 I2tξ̂1,t|T f2teit

)
converge in

distribution to two independent Normal random variables.

A.4 Proof of Theorem 2

Given the representation in (9), we can write

xt = (B1 B2) (ξt ⊗ gt) + et = (B1 B2) (ξ1tgt ξ2tgt)
′ + et.
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Given also the estimators B̂1 and B̂2 defined according to (29), the estimators ξ̂1,t|T ĝt and

ξ̂2,t|T ĝt for ξ1tgt and ξ2tgt, respectively, are obtained as

(
ξ̂1,t|T ĝt
ξ̂2,t|T ĝt

)
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[(
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)′ (
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)
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Adding and subtracting terms, it follows that
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(
B̂1 B̂2

)]
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(A.35)
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Consider first

1

N

(
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1
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2
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(
B̂1 B̂2

)]
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,

so that from (A.30) and (A.31), and taking into account Assumption 2, it follows that
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By (A.30) and (A.31), and taking into account Assumption 3(b), we also have that,
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′

ξ

(
B′

1

B′
2

)]
et

∥∥∥∥∥ ≤ ‖et‖√
N

∥∥∥∥∥
1√
N

[(
B̂′

1

B̂′
2

)
− Ĥ
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(A.37)

Therefore, taking into account (A.35), (A.36) and (A.37), and by Assumption 7, we have

√
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)
− Ĥ−1
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Given Ĥξ, let Iξj = p limN,T→∞ Îξj for j = 1, 2, where Îξj is defined in (49). Also, given

Ĥ defined in (45), we have Ĥ
p→ ΣgQV−1 = H, where Σg = p limN,T→∞ (GG/T ) by

Assumption (1), and Q = p limN,T→∞
(
A′Â/N

)
= by Lemma 6. By Theorem 1, we then

have
(
B̂1 B̂2

)′ p→ Hξ (B1 B2)
′. Therefore
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where, by Assumption 2,
∥∥∥
(
B′

jBj/N
)
−ΣBj

∥∥∥ → 0 and
∥∥∥
(
B′

jBk/N
)
−ΣBjk

∥∥∥ → 0, for

j, k = 1, 2 with j 6= k as N → ∞ . The result stated in the theorem follows by noting that

1√
N

(
B′

1

B′
2

)
et

d→ N (0,ΣBet) .

by Assumption 6(d), which concludes the proof.
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