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Abstract

This paper develops a framework for the short-term modelling of market risk and shock
propagation in the investment funds sector, including bi-layer contagion effects through funds’
cross-holdings and overlapping exposures. Our work tackles chiefly climate risk, with a first-
of-its-kind dual view of transition and physical climate risk exposures at the fund level. So far,
while fund managers communicate more aggressively about their awareness of climate risk, it
is still poorly assessed. Our analysis shows that the topology of the fund network matters and
that both contagion channels are critical in its study. A stress test based on granular short-term
transition shocks suggests that the differentiated integration of sustainability information by
funds has made network amplification less likely, although first-round losses can be material.
On the other hand, there is room for fund managers and regulators to consider physical risk
better, and mitigate the second-round effects it induces, as these are less efficiently absorbed
by investment funds. Improving transparency and setting relevant industry standards in this
context would help mitigate short-term financial stability risks.

JEL codes: C62, G23, G17, Q54.
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Non-technical summary

Investment funds have reached an important size within the financial sector, but their regulation
or efforts to stress test them has so far lagged behind the efforts made on banks. In this paper,
we develop a framework allowing for their stress testing in a short-term time frame, i.e. plausibly
unfolding over a few weeks. The core model integrates different steps and is adaptable with regard
to the order in which they are combined. Crucially, we capture contagion on two layers with distinct
underlying mechanisms. The first one is that of funds’ cross-holdings, i.e. the shares of open-end
funds that are held by other funds, whose value changes based on the balance sheet of the issuing
fund. The second layer is the overlapping exposures on the secondary market of securities, whereby
investment funds can be exposed to common shocks, but can also impact one another by influencing
prices through sales and purchases. The model allows for market shocks, i.e. changes in the values
of traded securities, as well as liquidity shocks coming from redemptions by investors.

Our application tackles in particular climate risk, which consists of both transition risk (exposure
to shocks induced by climate change mitigation) and physical risk (exposure to assets susceptible to
destruction or value loss from extreme weather events or evolving climate conditions). So far, while
the sector has set itself some targets with regard to this problem, the risk is still poorly assessed.
We leverage on several proprietary data sets covering climate-related variables for the real economy,
and investment funds balance sheets. The data set that we assemble provides a first-of-its-kind dual
view of transition and physical climate risk exposures at the fund level. Our analysis shows that
the topology of the fund network matters and that both contagion channels are important in its
study, although few funds present a high-risk profile for both of them. Moreover, climate risk seems
unequally integrated, with transition risk strongly mitigated or exacerbated by the specialization
strategies adopted for some fund portfolios, but very little dispersion in physical-risk profiles.

A stress test on the basis of granular short-term transition shocks suggests that the differenti-
ated integration of sustainability information by funds has made network amplification of climate
transition shocks less likely, although first-round losses can be material. Market shocks, such as
tested here, could have important consequences in terms of flows reallocated from high-carbon to
low-carbon investment funds, although their timing is more likely to increase financial instability
than allowing useful investment in low-carbon sectors. On the other hand, there is room for fund
managers and regulators to consider physical risk better and mitigate the second round effects it in-
duces, as they are less efficiently absorbed by investment funds. Improving transparency and setting
relevant industry standards in this context would help mitigate short-term financial stability risks.



1 Introduction

The search for ways to stress test investment funds has gained traction due to the growth of the
sector and its centrality in the financial system. This drove an expansion of the literature dedicated
to estimating the risk posed by investment funds to financial stability [9, 23, 47, 50]. In parallel,
investment funds have been increasingly integrated into more complex models to account for their
interaction with the financial system at large [45]. This work integrates this broader effort, and the
mechanisms it developed are a building block of the work on system-wide stress testing conducted
at the European Central Bank [96].

Due to their increased importance in financing the real economy [40], investment funds are
positioned as crucial players in the transmission through the financial system of policies to green
the economy. Pledges have been made by key members of the industry to better integrate climate
risk, either through the use of their voting rights or disinvestment. The sub-sector of ESG and “green”
investment funds has grown impressively in the past decade, although its size and technical capacity
still do not appear up to the task of steering the financial system to a position in line with climate
mitigation objectives [60, 77, 87].

However, the will and capacity of investment funds to tackle climate change are questioned.
While financial markets have somewhat adapted to the emergence of climate physical and transition
risk, the risk is currently not fully priced [69]. Furthermore, the use of greenwashing by funds to
attract investors is a concern for regulatory authorities [16, 30, 62], and for the public interest at
large, in taking effective steps toward climate change mitigation [38, 90]. It creates an asymmetry of
information between them and their investors, exposing the latter to unexpected shocks related to
transition risk. Climate action is also limited so far by an entrenched interest in carbon-intensive in-
dustries, as well as a patchy framework when it comes to redirecting investment flows [76]. In partic-
ular, structural limitations such as policy uncertainty, lack of transparency, insufficiency of existing
guides for green investment, and lack of incentives for fund managers have hampered the adaptation
necessary. Thus, Amzallag [5] finds that European funds still significantly overweight “brown” firms
in their portfolios on aggregate, and the climate risk of the financial sector remains generally high.1

One additional concern is the possibility of network externalities, where the presence of large risks
associated with climate change could lead to systemic failures [93]. In our application, this general
systemic risk concern could add to the climate-specific market failure.

The emergence of climate shocks raises new questions in the particular context of network stress
testing, due to the heterogeneity in how different groups of agents are impacted. This is particularly
relevant for investment funds, which are often specialized in ways that can correlate with climate
risk factors (sector or location), and own a large share of the risk [89]. Thus, it matters to know
whether climate shocks are more likely to be only amplified within certain subgroups of nonbanks,
or transmitted to the rest of the network, and which of these options would be best at absorbing
damages with the least negative externalities. Our contribution to the literature on these questions
is threefold:

(i) We develop a general short-term stress testing framework for investment funds, taking into
account both contagion channels of inter-fund holdings and common secondary market expo-
sures.

1As investment funds appear vulnerable to climate shocks, they were included in the long-term portfolio losses pro-
jections of ECB/ESRB [41], which is itself in line with Battiston et al. [13].



(ii) We build a first-of-its-kind dual climate risk profile for firms and investment funds portfolios,
with data on both transition and physical risk exposures.

(iii) We apply our model to a range of plausible shocks, representing climate-related short-term
stress.

This framework is designed to fully capture network externalities and contagion in the invest-
ment fund sector. Our model unfolds in three steps, starting with a shock on external asset holdings,
allowing for a flexible input. It is followed by a redemption shock, after which liquidity-constrained
funds liquidate assets. Our framework can be applied to a variety of narratives, such as extreme
weather events, or sudden – and little expected – policy shocks. In a previous exercise, Roncoroni
et al. [86] simulate the reaction to climate transition shocks along these lines, relying on a bank-fund
system. In addition, we allow redemptions based on initial shocks, which are crucial for funds as
they are little leveraged and most exposed to liquidity risk from their liability side. Furthermore,
this allows us to integrate the key stylized fact that sustainable funds are less prone to procyclical
redemptions than their conventional counterparts [17, 27, 84].

We show how a new price equilibrium between fund shares can form consistently with their
equity cross-holdings. Importantly, this captures the evolution of fund shares at each step during
which their portfolio of external holdings evolves. This contagion channel is enough of a concern
that Veer et al. [99] recommends supervisors to limit funds participation in other investment funds,
as it creates an “illusion of liquidity”. Thus, we model shock propagation on two layers: portfolio
overlap and direct cross-holdings. The price clearing mechanism is conceptually similar to what is
done for network banking models, such that the overall propagation is in line with the literature
on stress amplification between banks, occurring through both the interbank market and portfolio
overlaps.2

The dynamics that we model are meant to unfold over the space of some weeks – the kind
of short-term time frame that was recently called for by the UN Environment Programme Finance
Initiative [28] for climate risk. This also corresponds to the narrative of a “climate Minsky moment”,
as considered by the IMF [1, 61]. Indeed, the market granularity of our model is precisely compatible
with the time frame where network contagion operates, which is generally short-term. In addition,
it avoids the distortion of price impact that occurs through coarse aggregations. As we rely on a
static balance-sheet hypothesis, our results can be regarded as informative over the medium term
following the time of the data used.

We then build an ex ante climate risk profile of investment funds that reveals an unequal inte-
gration of transition and physical climate risks. Our sample consists of over 23,000 investment funds
worldwide, and we rely on security-level climate risk data combined with fund holdings. We find that
funds exhibit a strong heterogeneity in their exposure to transition risk, but are more homogeneous
with regard to physical risk, i.e. no significant segment of the investment funds sector achieves a
clear reduction in its exposure to physical risk. The latter can be explained by a lack of relevant data,
lack of awareness of acute physical risk in general, or lack of tools to translate the firms’ exposures
into potential losses. Overall, our analysis suggests that investment funds taken globally have a high
exposure to both types of risk through portfolio holdings when compared to the general economy.
This climate risk profile then interacts with the systemic nature of the funds at the point of realizing

2Examples include Poledna et al. [81], Roncoroni et al. [85], and Wiersema et al. [102], although the counterparty risk
transmission channel does not necessarily rely on an Eisenberg and Noe-type clearing mechanism as we do.



the propagation of climate shocks across the system.
We apply four different kinds of shocks in our model: redemptions by fund investors based on

climate portfolio information, a market shock on carbon-intensive assets, a market shock on assets
whose issuers are most exposed to physical risk, and the realization of extreme weather events.
This approach fits the bumpy adaptation of financial markets to climate challenges. In comparison,
Battiston et al. [13] or Roncoroni et al. [86] are interested in longer-term impacts, i.e. over periods
of more than ten years, which would reflect permanent market shifts. Although most economic
climate damages will materialize in the long run, we review how short-term shocks are also likely to
occur in the process while leading to socially harmful outcomes of their own. The family of network
models such as this one is precisely meant to assess the impact of such shocks and their amplification.
Therefore, the first three market-induced shocks used in our simulations are calibrated based on the
distributions of securities’ past returns. The last shock is informed by the physical risk exposures of
firms. Short-term shocks are likely to revert at least partly, but their increasing occurrences could
have destabilizing effects on the financial system.

We inscribe our work in the horizon complementarities of climate stress test, whereby short-term
climate risk needs to be mitigated to best support the transition. As argued in Battiston et al. [14],
financial intermediaries matter in achieving climate mitigation pathways, and this is achieved by
incentivizing them in the short-term, and not solely from a long-term risk perspective. Financial
soundness and stability of the financial system are a prerequisite to achieving this. Therefore, ensur-
ing short-term robustness is of importance in the broader double materiality between climate and
the nexus of finance and the real economy, i.e. how the influence between these two poles goes both
ways.

Our findings suggest that the existing structure of the investment funds sector is relatively robust
to climate transition shocks in terms of second-round effects but more vulnerable to the propagation
of physical shocks. The former is most likely explained by the existing specialization into low-
carbon industries or integration of ESG standards, which tends to segment the sector, although it
does not completely preclude shocks from propagating. Regarding the latter, there is little resistance
to shocks induced by market movements based on physical risk, or shocks from physical climate
events themselves. This is explained by the more homogeneous exposure, so that no segment of
the industry is shielded from second-round effects. This highlights the importance for the sector to
monitor climate adaptation efforts in addition to decarbonization, and to reach a more holistic view
of climate risk that integrates its different dimensions.

The rest of the paper is organized as follows: in section 2 we present the model used in our
simulations; then, in section 3 we introduce the data used and key stylized facts; in section 4 we
detail the design of the shocks applied, and discuss the results before concluding in section 5 with a
policy discussion.

2 Core model

Our model is built on sets of investment funds and financial securities, represented jointly as two
connected layers in figure 1. The first type of links we use are holdings by funds of marketable se-
curities, most commonly stock shares, corporate debt and sovereign bonds. As most securities are
marked-to-market, the fund portfolio values depend on their prices. The pricing mechanism (de-
scribed in 2.5) relies on the common assumption that price discounts applied during fire sales cause
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Figure 1: Stylized representation of the network agents and key links transmitting economic shocks.
Dashed arrows indicate cross-holdings between funds, while solid lines indicate that a security is present in a fund’s
portfolio.

a medium-term depletion of asset values, allowing securities to act as intermediaries in a propagation
of shocks between funds.

The second link is that of cross-holdings of shares issued by open-end funds, described in 2.2. It
shares some similarity with the stock cross-holdings between banks [95]. However, the comparison
is limited because bank shares are traded on the secondary market, with a price determined by
demand and supply. Such is also the case of close-end funds, but open-end funds are different since
their shares are not traded but can simply be bought or redeemed by investors. Moreover, their value
is not determined by the market but follows the portfolio value of the issuing fund. In that, there is
an automatism in the contagion that is more alike the interbank lending market, which is the focus
of most of the literature on contagion risk [see for instance 10, 43]. Our model innovates in that
regard relative to the existing literature, in that it provides a rigorous formalization for the shock
propagation through these links.

The timeline of simulations is given in figure 2 and is designed to capture the most likely chain
of events and reactions that is compatible with our narratives. The shocks applied are also reflective
of the influence of all agents, i.e. not only investment funds and the secondary market, but also
fund investors, both institutional and retail. In that respect, interactions between the climate and
real economy layers matter as well. Market participants anticipating more stringent environmental
regulations could decrease their expectations for future returns of polluting firms. Furthermore, a
climate physical shock to the real economy in the form of extreme weather events could cause a
number of defaults or harm economic activity, which then affects holders of securities issued by
affected entities.
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Figure 2: Overall timeline of a simulation

2.1 Mathematical notation and core model variables

For a matrix M, we denote by MT its transpose. Given an integer n ≥ 1, let In be the identity
matrix of size n × n and ιn = (1, . . . , 1)T ∈ Rn the vector of ones of size n. By abuse of notation,
for two vectors a, b in Rn we write as a

b their element-wise division when there is no ambiguity,
meaning a

b = (ai/bi)1≤i≤n, and 1
a = (1/ai)1≤i≤n. Moreover, we denote by Diag : Rn → Rn×n the

diagonal operator, and by 1A the indicator function of a set A. We use bold symbols for matrices to
differentiate them from vector columns and scalars in the following. Finally, given a vector or matrix
a, we denote as a+ and a− its (element-wise) positive and negative parts respectively.3

Let n the number of investment funds in the model, and m the number of securities traded on
the secondary market. We denote by A ∈ Rn×m the funds’ portfolio matrix of tradable assets, such
that for all (i, ω) ∈ {1, . . . , n} × {1, . . . ,m}, Ai,ω is the marked-to-market value that i holds of
security ω. Thus, the total value of tradable securities of a fund i is given by

∑m
ω=1Ai,ω . The second

key portfolio matrix is that of redeemable assets, i.e. how much of other funds’ shares are held. It is
given by matrix R, such that, for (i, j) ∈ {1, . . . , n}2, i holds a value Ri,j ≥ 0 of j’s fund share.4

We denote by C ∈ Rn the fund-level vector of cash holdings. Moreover, let L ∈ Rn the vector
of loans from the banking sector to funds, and B ∈ Rn the vector of other assets not entering any
of the previous categories. We assume that L and B remain constant, i.e. ∀t, L(t) = L(0), and omit
the time variable in their case. The equity of funds, or total net assets (TNA), is represented by the
vector E ∈ Rn. We compute it as the sum of asset holdings, from which bank loans are deducted:

∀t, E(t) = A(t) · ιm +R(t) · ιn + C(t) +B − L . (1)

The net asset value (NAV), i.e. the price per share, is obtained by dividing E by the number of shares
issued, and therefore in the absence of sales or redemptions evolves proportionally to E.5 Moreover,
the prices of tradable securities are given by the vector P ∈ Rm.

2.2 NAV adjustment via direct cross-holdings

We first present the mechanism that describes how the cross-holdings between funds dynamically
adapt within the contagion process, as it is used at two points. Although a less commonly used
channel than portfolio overlap, it appears also necessary to consider the effect of direct cross-holdings
between funds as they constitute a sizeable part of their portfolios. The standard practice for open-
end funds is to recompute their NAV daily and to communicate the new value when markets close.

3More precisely, in the case of a vector a we have a+
i = max(ai, 0) and a−

i = min(ai, 0).
4Note that holdings of tradable securities are allowed to be negative, i.e. funds can short them, while values for cross-

holdings are all non-negative. Moreover, when j is a close-end fund we have ∀i,Ri,j = 0, as shares of j are counted as
tradable securities.

5In the case of sales or redemptions, a decoupling occurs such that the NAV does not change but the TNA does.



Thus, the change in the price of marketable assets impacts the NAV of investment funds that hold
them, and in turn affects the amount that their fund investors can redeem. That is true in particular
when these investors are also investment funds, which makes the problem more complicated.

For instance, if a fund i holds shares of fund j and j holds shares of i, then the final value of
their respective total assets has to take into account this mutual influence. One way to think about
it is that, if the value of i decreases because of a shock on traded assets, then it affects the portfolio
of j. Therefore, the TNA of j decreases, which in turn will impact the portfolio of i, etc. Thinking
sequentially about the issue reflects this daily dynamic, whereby funds would iteratively recompute
their portfolio value at fair prices and communicate it to other entities, triggering further accounting
adjustments6 until the financial system converges to an equilibrium of share prices. But it may not do
so in a finite number of rounds. In contrast, we find directly the full effect of the shock, whereby the
change in market prices will establish at once new TNA. The TNA of a fund i is itself proportional
across time to its NAV when the number of shares remains constant. Thus, a new price equilibrium
will form.

Let t1, t2 be two points in time, with t1 < t2, such that marketable assets can change value or be
traded by funds from t1 to t2, but no fund flows are registered, i.e. there are no redemptions and no
fund shares sold to investors. As some funds might default as a result, we denote by γ ∈ {0, 1}n the
solvency vector such that γi = 0 if i defaults and γi = 1 otherwise. We will then show how fund
cross-holdings will contemporaneously affect the evolution of our system between t1 and t2.

Definition 1. The network of funds is said to be regular if there exists no set X ⊂ {1, . . . , n} such that
every fund in X is fully owned by other funds in X.

This definition has the same implications as the regularity of a financial system in Eisenberg and
Noe [43]. Moreover, let

r(γ) := R(t1) ·Diag (γ/E(t1)) (2)

the matrix of relative asset holdings given defaults of γ, i.e. such that r(γ)i,j corresponds to the
share of j’s equity that is held by i. For tractability, we make the assumption that all funds have a
positive equity at time t1. When t1 ̸= 0, this means that n has been reduced after the removal of
funds defaulted in previous steps.

Proposition 1. If the network of funds is regular, then:
(i) In − r(γ) is nonsingular for all γ ∈ {0, 1}n,

(ii) there exists a unique internally consistent solvency vector γ∗ such that ∀i, γ∗i = 1[0,∞)(Ei(t2)),
with the equilibrium vector of TNAs at t2 given by

E(t2) = (In − r(γ∗))−1 · (A(t2) · ιm + C(t2) +B − L) . (3)

The proof of the proposition is given in appendix A.1 and stems from an established linear al-
gebra result and a standard fixed-point analysis. As the non regularity would make little sense in
practice,7 such cases are rare and likely to reflect data issues. Therefore, we add a step in the data

6Such iteration is at the core of Chrétien et al. [33], and used in Semieniuk et al. [89], where the new information of
lower prices creates a shock to portfolios, based solely on financial entities posting new information about their value.

7Consider that it means the total assets of these funds, except fund shares within the group, equals its total external
debt. This is unlikely, first because funds’ profits are primarily meant to go to shareholders and not (only) to creditors, and
second because most investment funds have a low leverage, often by law.



preparation process to remove funds that belong to groups causing irregularity. Moreover, conse-
quently to definition 1, when starting from a network that is regular, any subnetwork with some
funds removed will also be regular. Therefore, when the initial network is regular, the ones obtained
at later rounds after removal of defaulted funds do not have to be checked.

In a larger financial system, if there is no additional cycle,8 the assets of other financial insti-
tutions can be updated simply by applying the price changes P (t2)

P (t1)
and E(t2)

E(t1)
on their tradable and

redeemable holdings respectively (the latter being due to a total number of shares assumed constant
during that step). For the system of funds we apply the equation

R(t2) = R(t1) ·Diag
(
E(t2)

+/E(t1)
)
. (4)

In our framework, we use this mechanism twice. But that needs not be the case and this choice is
essentially based on a narrative where different actions happening within the system take a certain
time to materialize. For the NAV adjustment, a daily update could in practice deliver the biggest part
of the impact in a short time. Only in a system with long chains and cycles of cross-holdings would
we expect that the impact after a few days is still significant. To that extent, it seems reasonable to
assume that the NAV adjustment happens several times, in parallel to every event that would trigger
it.

2.3 Market shock

In the simulation, funds are exposed to a dual stress materialization: a market shock and a redemption
shock. First, the market shock applies to assets present in the funds’ portfolio as their market value
changes. A typical example would be common shares of brown firms losing value at the introduction
of more stringent environmental regulations, or a firm defaulting because it lost physical capital and
income following an extreme weather event. The shock is represented by a vector Λ ∈ [−1,∞)m,
such that ∀ω, Pω(1)/Pω(0) = 1 + Λω . It impacts the funds’ portfolios of tradable assets, with
Ai,ω(1) = Ai,ω(0)× (1 + Λω) for all (i, ω).

Moreover, C(1) = C(0) because the market shock had no effect on cash. Given A(1) and C(1)

we can then compute E(1) and R(1) using equations (3) and (4) respectively. Following this step,
funds with negative or null equity are removed from the system and considered in default.

2.4 Redemption shock

The second shock applied is that of redemptions, which creates a liquidity stress for some funds,
although it can be positive net flows for others. The redemption shock comes from investors external
to the system of funds. A number of events can push them into moving significant quantities of their
assets in a short period of time, resulting in large inflows or outflows for investment funds [58]. It is
represented by a vector Ψ ∈ (−1,∞)n of net flows, which is the ratio of shares sold relative to the
previous total. That means Ψi is negative if net redemptions occur for fund i, and positive in the case
of net sales.9 We suppose that redemptions are immediately paid, the shares purchased immediately
issued, and the consequences are dealt with in the next step. Thus, we account for it as impacting

8The presence of a feedback loop with other agents, contemporaneous to the one taking place between funds, could
invalid equation (3) in a larger financial system.

9The assumption Ψi > −1 ensures that there is no complete run from investors, and therefore no default consequent
to this step.



the cash reserves of funds:

∀i ∈ {1, . . . , n}, Ci(2) = Ci(1) + Ψi ×

Ei(1)−
∑
j

Rj,i(1)

 , (5)

where Ei −
∑

j Rj,i corresponds to how much of i’s equity is held by external investors. Then, the
new TNA vector is given as E(2) = E(1)+C(2)−C(1). Applying the NAV adjustment mechanism
would not be useful here, because fund flows do not affect the NAV per se, so R(2) = R(1). Lastly,
P (2) = P (1) and A(2) = A(1) as redemptions have no impact on asset prices. We apply this step
after the market shock, which corresponds to a narrative where investors react to changes in the
market and do not anticipate them, leaving open the possibility to calibrate the redemption shock
based on the market shock, through a flow-performance relationship. We use the following piecewise
linear model:

∀i ∈ {1, . . . , n}, Ψi = qi + ri

(
∆Ei(1)

Ei(0)

)+

+ si

(
∆Ei(1)

Ei(0)

)−
, (6)

meaning that investors can have a sensitivity to positive returns that is different from that to negative
returns. This is used for open-end funds only, and we set ri = si = 0 when i is a closed-end fund.
Such a mechanism has been used in related models, such as Mirza et al. [73], but is generally fully
linear, or operational on the negative domain only. Thus, our model is the first to fully embed some
convexity, a prominent stylized feature observed in the literature.

Note that from a macro-prudential policy point of view, the underlying narrative is different in
the case of climate shocks than with a broader economic shock. In the latter, tools such as redemption
suspensions usually appear as a valid solution to mitigate spillover effects.10 However, this solution
has downsides, such as a reputational risk. This risk relates to the behaviour of investors vis-à-vis
certain funds and might be limited in the case of a recession. When the shock is more differentiated
between investment funds, with only some being hardly hit, there could be a higher toll on reputation
from taking measures that restrict investors. Thus, there is a shift in the incentives of funds when it
comes to using these tools, such that part of the prudential toolbox loses in relevance.

2.5 Fire sales and price impact propagation via portfolio overlap

A large literature exists on fire sales and contagion through portfolio overlap. It has also been iden-
tified by the Financial Stability Board as an amplification risk in case of climate shocks [48]. We
build here on existing techniques, with the advantage compared to some previous works of using
asset-level information. This avoids the network distortion and overestimation of price impact that
can occur when assets are aggregated.

First, in order to meet redemptions from investors, funds will reduce some of their positions,
prompting fire sales. The use of cash buffers11 can change significantly the magnitude of the follow-
ing step. Similarly, we know from bank network models that the extent to which banks are willing to
deplete their liquidity coverage ratio has a key influence on subsequent fire sales [35, 53]. We make

10Grill et al. [51] relate how this was used in the face of the market shock induced by the COVID-19 pandemic. They
observe a stronger usage by more vulnerable funds, i.e. leveraged, illiquid, or with little cash holdings.

11Although we depart from it, Zeng [103] provides an important model explaining why funds would try to replenish
their cash buffers in the period following redemptions. Chernenko and Sunderam [32] and Huang [56] provide further
background regarding the cash management of funds.



the hypothesis of fixed cash targets, which can be calibrated at the fund level.

Based on cash targets, we calculate how much each fund wishes to sell or purchase of each
asset, extending on the mechanism of Sydow et al. [96], with funds anticipating the price impact
of transactions given below in equations (7) and (8). Given S ∈ Rn×m the matrix of final sales at
initial prices, the volumes sold by assets are given by vector s = ST · ιn ∈ Rm. That is, sω is the net
value of ω, at initial market prices, that is sold by investment funds for each security. We model the
price impact of fire sales based on the exponential specification in line with Cifuentes et al. [34] and
Fukker et al. [49], but allowing for a symmetric behaviour in case of purchases:12

Pω(3)

Pω(2)
= 1 + bω ×

[
exp

(
−s+ω · dω
Kω(2) · bω

)
− exp

(
s−ω · dω

Kω(2) · bω

)]
(7)

where dω is the price impact illiquidity coefficient of ω, bω is the price impact boundary, and Kω

is its total market value, which corresponds to the total market capitalization for stocks or the total
amount outstanding for bonds. This price impact function achieves a concavity of the price drop on
volume, which is a key feature observed empirically [97].

As tradable assets are marked-to-market, the new matrix of external holdings and new cash
holdings are given respectively by

A(3) = [A(2)− S] ·Diag

(
P (3)

P (2)

)
, and C(3) = C(2) + S · P (3)

P (2)
. (8)

Moreover, we are able to compute E(3) and R(3) using equations (3) and (4) respectively.

As noted in [37, 92], fire sales would materialize when the number of buyers is small compared
to sellers, which is more likely to happen when the initial pool of investors for one stock is small.
To that regard, fire sales are important to climate stress testing in so far as climate shocks are likely
to be localized geographically or focused on some policy-relevant sectors (see section 3.2). Because
funds are often specialized along the same dimensions, a limited number of them would be natural
buyers of certain securities. As a consequence, climate shocks are likely to lead to sensible fire sales
discounts, because many similarly specialized counterparts, who could have bought the stocks in
normal times, will be experiencing distress as well.13

3 Data and measures of exposure to risk

We employ data from a range of different sources. Part of it is investment funds granular data, similar
to [96]. The remainder consists of the same climate-related primary data sets as [3].

3.1 Investment fund data

Our primary source of data for investment funds is the Lipper Global Data Feed provided by Refini-
tiv. The dataset available covers complete holdings of open-end and closed-end investment funds.
Holdings data is available monthly and is well populated for the period from mid-2018 to mid-2020.

12It is symmetric compared to most of the related literature that does not consider purchases, because they have a shock
that is negative across all assets [see e.g. 26], and thus are purely asymmetric. Note that we can make the reaction easily
asymmetric by defining two coefficients dω and hω instead of a single dω used on both sides.

13On the contrary, trading against constrained funds has been identified as a profitable strategy [39]. A configuration
where funds in our sample benefit from this effect is possible, e.g. if they are sufficiently shielded from negative shocks
but have some brown positions that they can expand by taking advantage of browner funds’ distress.



We choose to use values from December 2019 as the default for our simulations, based on data
availability, recency, and to avoid periods at the core of the market downturn induced by COVID-19.
We adopt the static balance-sheet hypothesis, which subsumes that, until the moment the shock is
applied, the balance sheet of institutions remains identical to a past balance sheet known from the
data. Thus, as the application relies on this hypothesis, its informative value is only significant in
the time frame where the static balance-sheet hypothesis appears as a valid approximation. The use
of this hypothesis is common in climate stress tests [e.g. 3, 11, 70, 101] and it appears reasonable
here compared to existing longer-term climate stress tests. Furthermore, we run simulations for
other months as well.14 The use of data from different points in time over the past years provides
additional security with regard to the static balance-sheet hypothesis, which now comes down to
having future medium-term portfolios close to the range of those recently observed.

At the time chosen, the number of funds that are active and hold securities15 in our sample is
23,216. They issue a total of 68,006 distinct fund share classes. The number of end-of-month holdings
of external assets (other than cash or inter-fund holdings) is over 3.3 million, and the number of inter-
fund holdings is above 41,000. Additional statistics on the funds are provided in Appendix B.

As analysed in Cera et al. [31], nonbanks present a significant connection through overlapping
portfolios within-sector as well as with the banking sector. This is a key motivation for the use of
the dynamics presented here in the context of a system-wide stress test. Moreover – when looking
at the funds specifically – we can decompose in two the contagion risk a priori within the sector:
through overlapping portfolios and through direct holdings. To measure the contagion risk from
overlapping portfolios we use the cosine measure of portfolio similarity, and similarly, we can define
the similarity of i’s portfolio to that of the sector as a whole, denoted SC(i). As these measures are
standard, details are given in appendix A.3.

When it comes to the risk coming from cross-holdings, the dynamics are not symmetric, so two
measures would be needed. We focus here on the one that quantifies the risk transmission to others
from the dynamics of 2.2, i.e. how much the change in the NAV of i will affect counterparts within
the fund sector. It is given by

ζi =
1

Ei

∑
j ̸=i

Rj,i, (9)

such that ζi = 1 when i is fully owned by other funds and propagates the entirety of its NAV
shock within the system of funds. We combine in figure 3 the two measures SC(i) and ζi. Our data
suggest that most funds have a relatively low contagion profile, as the bottom-left corner is very
densely populated, which is confirmed by the marginal distributions. Moreover, we observe a few
big funds that present a high risk on both dimensions, but some appear risky on one of the two
aspects, especially portfolio overlap.

3.2 Carbon intensity data

Our first source of data pertaining to the environment is a dataset of firm-level carbon emissions
created by Urgentem. It provides data on carbon emissions under scopes 1, 2 and 3. For this exercise,

14Comprehensive results for other months are generally not presented here but are available upon request.
15More precisely, the filtration applied to the data to select funds has four components: funds need to have at least

some tradable holdings (standard stocks or debt securities) or redeemable holdings (the fund shares issued by other funds
included), they should have positive initial equity, this equity cannot be smaller than the total market value of the shares
they issued that are reported in the portfolios of other funds, and finally, they must not belong to a group that would cause
regularity to be breached.
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Figure 3: Risk profiles of funds from both portfolio overlaps and cross-holdings.
Scatter plot with marginal distributions of funds along both risk dimensions, with the x-axis corresponding toSC(i,)
and the y-axis displaying ζi, as defined in equations (15) and (9) respectively. For visualization purposes, only the
biggest funds are represented, i.e. the top 20% by equity whose assets include either tradable or redeemable hold-
ings. The area of each dot is proportional to the corresponding fund’s equity. The marginal distributions are un-
weighted, i.e. based on the number of funds and not on their sizes.
Sources: Refinitiv and authors’ calculations.

we use the inferred average carbon intensity on scopes 1 and 2, which is measured in tons of CO2-
equivalent per million dollars of revenue. The data set used is from October 2020 and covers 46,447
firms. For each of them, observations can be reported for different years. Therefore, we use for every
company the most recent reporting available.

We will assume that these scores are indicative of exposure to transition risk. Indeed, highly car-
bonated supply chains are more likely to become stranded assets or generally less profitable as new
climate policies increase the environmental liability of polluting firms.16 There are some limitations
to proxying transition risk as GHG emission intensities, as it has not been a clear determinant of
prices in the past [22]. Nonetheless, it appears as a central factor of transition risk for real economy
firms, e.g. in the case of a carbon tax. Moreover, in the context of our exercise, part of the transition
risk comes from the market reacting to new policy shocks based on better information than before,
for instance, more robust measures of carbon intensity in the value chain instead of sector informa-
tion only. Therefore, what matters is more the information that the market would rely upon rather
than the actual long-term determinants of stranded assets and loss of profitability from transition
policies. Industry sectors themselves are strong indicators of emission intensities, as we can see from
figure 14a, presented in appendix B. Lesser but still significant variations can be observed between
countries when aggregating assets at the national level.

16It includes direct carbon pricing, heftier fines in case of breaches of environmental regulations, costlier risk manage-
ment, etc.



The main limitation faced is that of funds that only have a small portion of their portfolio covered
by Urgentem data. Nevertheless, for the purpose of our stress test, we proxy part of the missing
holdings using country and sector information.17 Then, let U denote the subset of securities with
carbon intensity data, and (gω) ∈ RU

+ the carbon intensities of assets. Based on this we define a
fund-level carbon intensity for portfolios:

∀i ∈ {1, . . . , n}, g†i =

∑
ω∈UAi,ω × gω∑

ω∈UAi,ω
. (10)

These values have the advantage of being directly comparable to firm-level carbon intensities. The
methodology is standard in the literature. Note that we do not reward funds that are good at screen-
ing for green firms, except for the “natural” advantage of firm-level scores. For instance, suppose
that i and j invest in the same sector, but i is better at picking green firms while j is uninformed
about greenness. Thus, suppose that i’s portfolio comprises firms that pollute on average 30% less
than those of j. Then, g†i will also be 30% smaller than g†j , but it would remain high compared to
another uninformed fund k investing in a sector that structurally pollutes much less.

Note that a variety of data providers currently exist, which provide the market with similar
information. As discrepancies can exist between them, and carbon accounting methods are complex
and imperfect, we do not claim that the measure used in this paper is superior to that developed
elsewhere.18 This uncertainty is also a limitation as to how precisely markets can currently be stirred
to mitigate climate change. However, as we aim to provide a stylized example of how network
externalities materialize in reaction to climate shocks, we can use this data assuming that it is good
enough to be in line with information available at the time of future climate shocks.

From this construction, we classify funds based on how green their portfolios are. In figure
4 we compare funds when grouped into different buckets (deciles) based on their carbon intensity.
Descriptive statistics related to this grouping are presented in the appendix, figure 15a. These figures
reflect the expected strength of shock propagation between different groups, where funds within
one group are expected to suffer similar initial losses from transition risk. Therefore, it matters if for
example an amplification of a transition shock happens mostly between brown funds or if it could
propagate to the broader network.19

Figure 4a looks at the portfolio overlap channel, i.e. building on inter-funds common holdings.
Its analysis indicates that an amplification within the browner half of funds is indeed plausible. This
is consistent with Amzallag [5], which finds that few funds invest in the same green firms, while
brown firms have numerous investment funds as shareholders. This is partly confirmed here, with
the top decile of green funds having very little overlap with the rest.20 However, the following deciles
present a stronger overlap with the rest, and the tenth decile also seems to present little overlap with

17Given an asset ω for which we know the country and economic sector of the issuer. If the set of firms in that country-
sector intersection is larger than 20, we average their carbon intensities and use it as a proxy for ω. Otherwise, we use the
average of the whole sector across countries. Sector information is taken from NACE codes, at the two-digit level.

18See for instance Janssen et al. [63] for the bias of carbon intensity to shifts in exchange rates.
19Recent work at ESMA has already emphasized this interconnection between brown funds and its implication in case

of shocks [5]. Following the framework of Cont and Wagalath [36], one could suspect that even if green and brown assets
were fundamentally uncorrelated or negatively correlated, the distressed selling by funds would induce a positive excess
correlation between them.

20Nonetheless, one could explain this discrepancy by the lack of maturity of green financing, and we cannot exclude
that sustained flows to green funds eventually modify the sub-sector topology. Thus, the appearance of hubs among green
securities is a plausible future stability threat.



other groups. Overall, common holdings do not seem likely to propagate shocks from the brownest
tier of funds to the greenest one, but the channel as a whole matters in the analysis.

In figure 4b, we see the nominal cross-holdings between the different fund families. Firstly, we
see that non-classified funds are the largest holders in general, in part because the group is much
larger, and because it contains most funds of funds. Secondly, although no overall pattern emerges,
it appears that funds from the first and tenth deciles are the ones most held by others. In that regard,
Ammann et al. [4] find past shifts in flows to be consistent with a reallocation by investors within
fund families from least to most sustainable funds, and they suggest that sustainable funds are more
likely to be actively marketed within a fund family. Meanwhile, the holdings of fund shares are not
taken into account in sustainability indices, such as that by Morningstar’s Portfolio Carbon Risk
Score, which is then used to identify “Low Carbon” funds [54]. In line with this, the appeal of high-
carbon funds would be consistent with a form of greenwashing where part of the flows to more
popular sustainable funds would be redirected to brown funds, with no implied penalty in terms of
their sustainability ratings.
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Figure 4: Connections between subsets of funds based on their carbon intensity.
Investment funds are pooled into deciles based on their carbon intensity. Those with less than 50% of their portfolio
scored are placed in the NC group.
Left panel: the portfolio overlaps are given by cosine similarities (see equation (14) in Appendix B). The value between
two decilesx and y is given by the mean overlap between funds in decilex and those in decile y (excluding the over-
laps of funds with themselves whenx = y).
Right panel: the cross-holdings are given by aggregated nominal amounts in euro, i.e. how much funds in one group
own of funds in another group.
Sources: Urgentem, Refinitiv and authors’ calculations.

3.3 Physical risk exposure data

The second important input, also at the firm level, is a dataset created at the ECB from physical
risk information provided by Four Twenty Seven. Based on precise locational data and the sector of
activity, risk exposure scores are allocated to firms for the different catastrophe types: floods, heat
stress, hurricanes and typhoons, sea level rise, water stress, and wildfires. Each score is given as an
integer between 0 (least exposed) and 100 (most exposed). In figure 14b, in the appendix, are given



the average risk exposure of firms for each country. In particular, islands such as the Virgin Islands
or Japan occupy the top places due to the high idiosyncratic risk induced by their topology. A total
of 117 countries have firms present in the dataset used.

Our standard indicator of physical risk is an average of the scores on the above-mentioned ex-
posures. Similarly to the Urgentem data, we denote by V the subset of securities to which we attach
a physical risk exposure, and (hω) ∈ [0, 100]V the mapping from assets to average physical risk
exposure. Thus, the fund level exposure to physical risk is given as

∀i ∈ {1, . . . , n}, h†i =

∑
ω∈VAi,ω × hω∑

ω∈VAi,ω
. (11)

The dataset provides exposures for a total of 4,3 million firms, by their Orbis identifiers. A total
of 128,581 can be mapped to LEI codes. As many assets are not directly covered, we use location-
based proxies,21 which adds roughly almost five times the original number. A decomposition into
deciles based on the fund-level physical risk measure is also used for the related simulations, with
corresponding statistics given in table 15b. Finally, note that similarly to the case of carbon intensity,
important discrepancies exist between different data providers for physical risk exposure [52].

3.4 Data matching and fund scores

A key challenge of this exercise is to bring together the data used consistently. In particular, the car-
bon intensity and physical risk measures introduced rely on attaching climate-relevant information
as well as sector, location or financial information to the set of asset holdings. We rely primarily on
the ISIN codes of securities, as well as the Legal Entity Identifiers (LEI) of firms. The main resource
used is the Centralised Securities Database (CSDB) [25], maintained by the European System of Cen-
tral Banks. Table 1 details the coverage of this matching for carbon intensity data across different
categories of assets. Importantly, we may not want to interpret all matched climate scores equally.
For instance, their use in the case of sovereign bonds has a less clear meaning, while they constitute
an important part of the sector’s holdings. For that category in particular, the relative lack of expo-
sure data relative to the rest means that they will be less shocked. It appears reasonable for sovereign
bonds to be more shielded from short-term shocks, as the transmission channels from climate risk
to governments generally consist of longer-term dynamics.22 Additional information on the total
market valuation of firms is obtained through the Orbis database by Bureau van Dijk. Firms with
market valuation data covering at least three years are kept, and the values for missing months are
interpolated where needed.

The key value added and novelty of this is that we can decompose climate risk along its transition
and physical dimensions, based on our different indicators. Although the matching is not complete,
this can be first visualized at the firm level. We show in figure 5 the joint distribution of risk obtained
from these two rating methods, on the universe of firms with complete information. The firms
included are all those with information available, and not only the ones issuing on the market. The
next step is observing this at the fund level. As funds have portfolios that are at least somewhat
diversified we observed fewer outliers than when looking at firms directly. Crucially, we can notice

21Given an asset ω that cannot be mapped to the Four Twenty Seven dataset, we may know its country and postcode
from the Register of Institutions and Affiliates Data (RIAD) database. In that case, we proxy its exposure as the average
from firms sharing the same postcode, with the condition that there exist at least five of them.

22See Battiston et al. [11] for a stress test of these securities.



Number
Market weight

(% by value)
With carbon
intensity (%)

With physical
risk (%)

Agencies 29,944 3.01 96.34 35.82
Convertible Bond 12,695 0.26 99.96 31.48
Corporate Bond 892,122 10.70 99.39 46.32
Equity shares 1,947,412 69.39 99.95 33.96
Fixed Income 23,765 0.33 82.95 29.65
Mortgage-Backed Security 188,457 2.66 92.73 27.32
Municipal Bond 56,950 0.83 0.49 2.39
Preferred Stock 18,059 0.42 99.56 51.13
Sovereign Bond 154,317 11.14 0.54 20.53
Supranational 9,851 0.15 95.72 1.30
Other 41,978 1.12 87.13 17.11
Total 3,375,550 100.00 92.85 35.48

Table 1: Fund holdings covered by carbon emission and physical risk data for end-2019.
“Number” corresponds to the total count of securities of the category within the set of holdings, with “Market weight”
indicating the weight of each category by market value. The last two columns indicate the ratios covered by scores
from the Urgentem and Four Twenty Seven datasets respectively, within each category (by the number of securities
and not weighted by market values).
Source: Refinitiv, Urgentem, Four Twenty Seven and authors’ calculations.

that the point of higher concentration for funds is closer to the upper-right corner. This suggests that
investment funds have a bias towards relatively riskier firms, both from the transition and physical
perspective.

More precisely, from an analysis of transition risk alone, we find that in 2019 the carbon intensity
of the funds’ assets was on average in excess by 6.9% compared to our unweighted sample of firms
with data (excluding those proxied). This dimension corresponds to the x-axis in the left-hand side
of figure 5. In this case, the bias of funds is lower than that of the market in general (based on the
total market capitalization of firms), which is in excess of 14.8% on average over the same period.23

This means that the funds included in our sample correct already for part of market excesses when
defining their portfolios. However, that is insufficient to reach an actually “virtuous” level of carbon
intensity, which would have to be below our general benchmark. A visualization for the related time
series is available in figure 6a. We observe in particular that the carbon intensity of both markets
and investment funds has been decreasing on average over the last three years. This is in line with
findings from IMF [60], showing a carbon intensity with the same metric but different data. The
authors further analyse that the decrease is driven by funds’ portfolio allocation, and not by changes
in the firm’s score. In our case, we use here fixed firm scores, corresponding to the latest known data
point, hence a decrease fully attributable to allocation and prices.

When looking at physical risk, the excess exposure of funds relative to our unweighted sample
of firms is 34.2% in 2019 on average, compared to a general market excess of 26.0%. This means that
a bias toward riskier assets is built up on two levels. First, firms with higher physical risk exposures
tend to issue more on the market. Second, investment funds tend to invest more heavily in riskier
firms, even relative to securities available. The latter step is presumably not carried out on purpose
but as an externality of investment strategies that present a positive correlation with physical risk.
For instance, the lack of investment in adaptation might be rewarded, as it would be financially

23The market bias toward more carbon-intensive firms is already known in the literature and affects other institutions
such as central banks [71].
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Figure 5: Joint risk distributions for firms of our sample and investment funds.
Both plots are given as bi-dimensional histograms, with the colour scale indicative of the number of entities of each
tile. For both panels, the x-axis corresponds to the carbon intensity measure, in log scale, while the y-axis is indicative
of the physical risk exposure. Left panel: data for real economy firms included in our sample. The joint representa-
tion is obtained after matching both types of data on the LEI codes. Right panel: data at the fund level after taking
weighted averages of portfolios.
Source: Refinitiv, Urgentem, Four Twenty Seven and author’s calculations.

advantageous in the very short term. The related time series is represented in figure 6b. To the
contrary of carbon intensity, both exposures to physical risk have been slightly increasing (which
reflects portfolio choices as the physical risk values of securities are fixed here).

Overall, there seems to be a potential for funds to pivot their portfolios towards firms that are
better prepared for climate change impacts, and to a lesser extent less polluting. Furthermore, even a
relatively safe portfolio does not prevent the effect of contagion coming from more exposed funds in
the short term, and over a longer horizon, this exposure is likely to materialize as significant losses
if markets and portfolios do not evolve sufficiently.

4 Results

Given a system of investment funds built from our data, we estimate its reaction to shocks following
a propagation mechanism as described in section 2. The shocks are defined in this framework, i.e. as
an initial change in prices Λ and initial fund flows Ψ.

First, in section 4.1 we benchmark the system of funds against uniform shocks, such as used in a
number of other papers. Second, we design several plausible shocks based on climate data features
that translate into risk for portfolio exposures. This allows a finer event analysis than exercises that
rely on a pure redemption shock, often not using granular fund features [44].

4.1 Sensitivity analysis from uniform shocks

One way to test our model and simulation framework is to observe its response when faced with
uniform shocks from the market. That means we apply a series of shocks λ ∈ [0, 0.4] such that
A(1) = (1− λ) ·A(0). Coarse shocks such as a uniform change in the yields of bonds are standard
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Figure 6: Quantification of the bias of financial markets and investment funds for riskier assets on the transition risk
and physical risk dimensions.
The unweighted average is taken as a simple mean of the carbon intensity or physical risk index respectively. These
two variables are the ones defined in section 3. The value is constant as we generally do not have full times series
available for these data, and we use the last value known for the sub-sample of firms where different points in time
are available. The “Funds average” value is obtained as a weighted average of the climate variable, where the weights
are given by the proportion of securities in the aggregated holdings of all funds in our sample. Likewise, the “Market
average” is obtained as a weighted average of the respective climate variable where weights used are the total market
valuations of assets.
Source: Bureau van Dijk’s Orbis, Urgentem, 427, Refinitiv and authors’ computations.

in the stress testing literature where the focus is on the model and not on the scenario.24 Using it
allows us to compare more easily our results. This is done in combination with redemption reactions
based on a linear flow-performance relationship. Different values for the flow-performance driving
coefficients are tested. Results are decomposed into the following components:

a) direct gains and losses from the initial market shock;
b) gains and losses from the first round NAV adjustment on cross-holdings;
c) outflows from the performance-based redemption shock;
d) gains and losses from the price impact;
e) gains and losses from the second round NAV adjustment on cross-holdings.

We reference as indirect gains the components b), d), and e). For each of these components we take
the sum over all funds covered in our analysis. The output using our reference month of December
2019 is given in figure 7. Note that the first plot is linear because it is equal to −λ

∑
i

∑
ω Ai,ω , and

the second one as well, since based on equation (3), the overall reaction of the equity to the initial
market shock is linear as long as the set of defaulted funds induced by γ∗ does not change.

Variations of the flow-performance function are tested here with a linear specification ∀i, ri =
si = r̂, and q = 0. The absence of the convexity feature matters little here as we only consider
negative shocks. We observe that the price impact has a small positive effect in the absence of a flow-
performance reaction. Indeed, this corresponds to a case where funds with mostly long holdings
see the value of their portfolio decrease, while the cash and equivalent maintains the same value.
Thus, cash rises in proportion of total holdings, and as no liquidity shock follows, funds can buy

24Some scenarios such as the ones used by the EBA also feature shocks on securities with little granularity, i.e. defined
at the country level.



securities to maintain the same cash ratio. Furthermore, note that the negative effect of the price
impact disappears for large negative shocks in our framework in the case of an important flow-
performance relationship.25 This is because the negative price impact effects are limited by the ratio
of external investors that can redeem, and the share of tradable security over the whole portfolio
that can be sold or affected by the trades of others. Thus, the positive effect takes over after some
point due to the funds with short positions and those with a small external investor base where the
flow-performance effect is small.
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applied to all prices, and the y-axis is the amount in euro. The last chart represents the amplification of the initial
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Source: authors’ calculations.

It comes that the average amplification as defined above also provides a benchmark to compare
the effect of other shocks on the period between times 0 and 1. Yet, this does not provide for a
comparison over the whole simulation. To this end, we will use uniform shocks as the benchmark
for simulations with heterogeneous market shocks. Given a general price shock Λ as used in section
2.3, define the direct gains function g1 : Λ 7→ ιTn ·A · Λ. Then, the uniform shock that results in the
same direct gains as Λ is given by

u(Λ) :=

(
g1(Λ)

ιTn ·A · ιm

)
ιm, (12)

i.e. such as g1(Λ) = g1(u(Λ)). Then, we use this shock as a base to qualify the indirect gains

25The largest flow-performance coefficient of 0.8 that is used here is larger than our calibrated coefficients for negative
returns given in 4.3, but smaller than the ones used for positive returns.



g2(Λ) that follow market shock Λ, which is given by the sum of components b, d and e above, and
IS(Λ) := g2(Λ)/g2(u(Λ)) the indirect severity indicator. We will then say that Λ exhibits severe
indirect effects if IS(Λ) > 1, and mild indirect effects if IS(Λ) < 1.

Moreover, this exercise proves that second-round effects exhibit a strong sensitivity to the flow-
performance parameter. While the magnitude of the reaction is fading in the last steps, it remains
economically sizeable. Moreover, in the context of a larger stress test, with all financial agents ac-
counted for, losses would be larger as they account for the funds’ total reduction in equity and the
effect of price changes on all securities present in the market.

4.2 Transition shock with score-based redemptions only

In a first stage we study the effect of a shock that affects funds through net flows only, i.e. with
no initial market shock. This corresponds to a narrative of a policy shock designed specifically to
benefit green investment intermediaries, e.g. an extended official labelling of funds based on carbon
intensity, or a change by market data providers in the information on carbon intensity that is given
to investors. This could also reflect more general policies such that the reaction from fund investors
trumps the effect on security prices.

In figure 8 we show that a climate policy announcement such as the Paris Agreement can be
correlated to unusual flows, with in particular an effect on funds that classify as socially responsi-
ble investment (SRI) or environmental, social, and governance (ESG) that experienced significantly
higher flows than their average. The effect observed is in line with Monasterolo and De Angelis [75],
which finds that the Paris Agreement has made green finance more appealing without penalizing
significantly carbon-intensive assets. Moreover, Ceccarelli et al. [29] and Hartzmark and Sussman
[55] show that improved information on sustainability and carbon-related risk also has a potential
to affect flows, favouring most sustainable funds at the expense of the least ones. Thus, existing evi-
dence points to the fact that investors react to the available information and internalize the expected
consequences from transition policies.
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Figure 8: Flows from investment funds to the euro area centred around the signature of the Paris Agreement, separat-
ing bond funds and equity funds, with a decomposition between those that classify as ESG/SRI and the rest. Vertical
lines correspond to the signature of the agreement (April 2016). Note that no effect can be clearly observed around
the drafting period (November-December 2015) or when the agreement took effect (November 2016, which also over-
laps with the election of Donald Trump in the United States).
Source: EPFR and authors’ calculations.

The existence of a strong positive inflow shock also matters here and does not mechanically



result in a desirable outcome. Coval and Stafford [37] find that extreme inflows can be costly for
mutual funds as they tend to increase their existing positions, creating additional price pressure on
the holdings common with their peers. In the case of climate shocks, while steady positive flows
could ease the financing of the green economy, abnormal inflows to green funds could be less useful,
providing instead trading opportunities to outsiders. To that extent, there is a social cost to these
sudden shocks, even in their positive materialisation. Existing barriers can reinforce that effect in
the case of green funds. In particular, the information acquisition related to screening for green
assets can be costly or take long to proceed. Additional monitoring for green features can add to
the burden of these funds, when compared to conventional funds that do not have this dimension.
Thus, portfolio extensions are difficult to carry in the short term.26 This, in turn, can be alleviated via
a greater transparency: cheaper or more readily available information on green factors. Improved
regulation regarding carbon disclosure related to financial assets could especially enhance the ability
of green funds to react to positive shocks.

Results for this first exercise are given in figure 9, supposing that redemptions occur based on the
portfolio carbon rating of the funds. More precisely, to replicate features of the shocks previously
described, we suppose the following net flows on the different quintiles of funds when ordered from
green to brown: 1%, 0.5%, 0%, -1%, and -5%. The distribution itself is based on the carbon-weighted
assets by fund from equation (10), and the percentage changes correspond to values Ψi as defined
in section 2.4. This results in moderate returns overall, with a stronger amplification of the positive
shock through price impact. In line with results obtained in section 4.1 we find that second round
gains from cross-holdings are of smaller magnitude than the gains from price impact, except for
non-classified funds as they do not suffer from self-inflicted price impact.
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Figure 9: Results for a scenario with carbon-based redemptions.
Funds are ordered by green deciles, i.e. group 1 corresponds to those whose carbon intensity is in the 10% lowest. The
group NC corresponds to funds that are not classified from their carbon intensity because the part of their portfolio
with corresponding information available is too small. The left-hand chart corresponds to the input to the model, i.e.
it is directly determined by the flow ratios of the shock. The right-hand side describes the indirect gains happening
as a reaction to initial flows.
Source: authors’ calculations.

26The fire sales step introduced in 2.5 is consistent with it, as the extension of portfolios takes priority over the purchase
of new assets.



4.3 Transition shock affecting asset prices

In a second scenario, we consider a shock on market prices driven by transition risk, and reinforced
by redemptions through a flow-performance response. This supposes the materialization of a transi-
tion shock such that investors, for example retail-driven, disinvest from highly polluting sectors and
from funds whose carbon intensity is high. This could also reflect for instance an unexpected policy
shock. The analysis of transition shocks of the sort has been conducted for instance by Belloni et al.
[15], who simulate the impact of short-term credit downgrades from sector-level carbon exposure
on banks.

We elaborate a deterministic price shock on securities based on their corresponding carbon in-
tensities, such that brown securities depreciate while the price of greener securities increases. To that
end, we use CSDB price data to fit Student-t distributions to all series of monthly prices where securi-
ties have more than two year of data available. From this fitting exercise, for every security ω where
data on prices is available we derive a function Qω : [0, 1] → [−1, 1], which is the quantile function
modified to limit the outcome interval.27 Then, if carbon intensity information is available for ω, the
shock to its price is computed as Λω = (Qω ◦ Dg)(ω), where Dg : Ω → [0, 1] is a shock mapping,
decreasing in gω , which associates to each security a point on its return distribution. Details of the
shock are given in appendix C.1. In the case of securities where carbon intensity is available but not
the price distributions, the shock is proxied from securities with the closest characteristics.

Bolton and Kacperczyk [22] find that only the level of emissions matters in the observed carbon
premium, and that this is based on scope 1 emissions only. This is supported by Ehlers et al. [42],
which find that transition risk corresponding to scope 2 emissions are not appropriately factored by
banks in spite of their relevance. Therefore, by using a measure of scope 2 emissions we depart from
the already observed dynamics, toward a narrative where markets start reacting to more exhaustive
information about their carbon contribution than what is currently the case. Thus, the shock is
consistent with a market that corrects for its previous lack of data exploitation. Moreover, Bessec
and Fouquau [18] observes from textual analysis the influence of a green sentiment on the financial
market, confirming that a reaction is often to be expected relative to climate news. A last narrative
consistent with our shock generation is that of Reinders et al. [83], which conducts a stress-test based
on the Merton pricing equations. It relies crucially on the past volatility of the asset, as well as on
the contemporaneous valuation of the firm, which is also informed by the expected reaction to a
carbon tax increase. Our framework is conceptually consistent as past market movements (notably
volatility) are used to calibrate return distributions, and the joint use of the portfolio carbon intensity
would reflect the change induced by a policy in the market’s perception of a firm’s value.

In combination with this shock, we use the flow-performance relationship described in 6. We
make the conservative hypothesis of null flows in the absence of returns, i.e. ∀i, qi = 0 and the
sensitivities to return are calibrated based on the flow-performance study of Renneboog et al. [84].
More specifically their results isolate funds with green screenings from the rest. For a conventional
open-end fund i (meaning not green), its sensitivity coefficients are ri = 1.557 and si = 0.553.
Meanwhile, if i is green then ri = 2.316 and si = 0.546. In particular, this specification reflects for
all funds the convex character of the flow-performance relationship, which is observed across most

27The lower bound allows for complete defaults while preventing prices to go negative, and as we do not model large
positive shock the upper bound prevents large returns that could be driven by data imperfections. Moreover, this roughly
corresponds to the 1% highest absolute monthly returns.



studies.

Results for this exercise are provided in figure 10. Direct gains are overall consistent with the
categorization of funds, as the browner ones lose more. The subsequent investment flows are in
line with it, and demonstrate the convexity of the relation, as net gains entail a relatively stronger
reaction than negative ones. Indirect gains are an order of magnitude lower than direct ones, hence
an overall moderate amplification. We see that gains on cross holdings are negative for all categories
of funds in the first round, which confirms the possibility of a contagion through this channel, and
this is true across most other months with data. Market gains (from price impact) are broadly in
line with the sign of the initial shocks, except for the greenest decile, which suffers from negative
spillovers.
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Figure 10: Results for a scenario with carbon-based market shock.
Funds are ordered by green deciles, i.e. group 1 corresponds to those whose carbon intensity is in the 10% lowest. The
group NC corresponds to funds that are not classified because the part of their portfolio with carbon intensity infor-
mation available is too small.
Left panel: direct gains of funds on their portfolio of tradable holdings as entailed by the initial price shock. The ag-
gregation at the decile level is obtained by summing total gains in a decile, and dividing by the sum of initial assets.
Central panel: net flows to each decile of funds due to the flow-performance investor reaction. Right panel: indirect
gains happening as a reaction to the initial shock and the subsequent flow-performance investment.
Source: authors’ calculations.

Crucially, flows to green funds are very strong in case of positive returns, thus the intermediary
reaction of investors will reinforce positive spillovers in that case. Therefore, embedding the convex
feature of the flow-performance relationship appears key in a setup where we deal with shocks that
are complex in nature, i.e. more sophisticated than the uniform stressing approach. Moreover, the
effect from the second round of changes on cross-holdings is again significant for non-classified
funds only, which also present a large reaction to the first round cross-holdings changes. This can be
explained by the fact that many funds are non-classified because they are funds of funds – or at least
a large part of their portfolio is made up of other funds – so that by nature they are more affected by
this step.

We find IS(Λ) = 0.66, meaning that it is overall less severe than a uniform shock of a similar
first order impact. The series of values for the relative severity of this exercise at different times is
given in the appendix, figure 17a. We observe that the indirect severity has some changes, but it is
always clearly below 1. Moreover, the trend over the sample period is overall decreasing, which may
reflect an increased specialization of funds with regard to carbon intensity metrics.



4.4 Results from physical risks market reaction

As a first result related to physical risk we suppose an improved pricing by the market, such that
the price of securities more exposed to physical risk decreases, while some securities at the other
end see positive returns. Similarly to the previous market shock, we define a heterogeneous shock
between assets based on the physical risk exposure: Λω = (Qω ◦Dh)(ω), where Dh : Ω → [0, 1] is
a shock mapping, decreasing in hω , that associates to each security a point on its return distribution
(details in appendix C.1). We use the same flow-performance calibration as in section 4.3.

Results for this exercise are provided in figure 11. The first key fact is that the coverage of physical
exposures is worse than for carbon intensity. Therefore, fewer securities are stressed, explaining that
losses appear moderate, although the ones that are stressed suffer shocks of the same magnitude as
in the transition risk market shock. From the representation of direct gains, we can first observe
that the shock is more equally distributed across funds from different segments compared to the
transition market shock, to the point that funds in the first two deciles incur more losses than those
of deciles 3 to 7 in relative terms.

This counter-intuitive allocation of the shock has several explanations. First, this sheds light on
the fact that funds do not organize or define their portfolio as a function of exposure to physical risks
currently. This is to the contrary of carbon exposure, such that a shock based on physical risk is more
similar to a shock randomly distributed. Therefore, the difference in ex ante physical risk exposures
of funds is small (see table 15b in the appendix). Second, the volatility of assets matter: in our setup
a very volatile asset with a risk score of 50 can lose more value than a stable asset whose issuer has
a risk score of 60. For instance, a fund holding equity securities of mildly exposed firms can lose
more than a fund holding bond securities of very exposed firms. Lastly, a bias in our representation
comes from the fact that the shock is computed over the total assets of the funds, while the shock
hits only part of them. Thus, a fund that holds numerous securities with no exposure information
(like sovereign bonds, see table 1), will amortize the shock better and exhibit a smaller relative loss,
even if its corporate holdings are very exposed to physical risk.

The net flows observed are all negative, following closely the initial impact, as expected. Then,
second round effects seem broadly in line with the initial shock, with the notable fact that non-
classified funds that had little direct losses are the ones losing most indirectly. We get IS(Λ) = 0.96,
also meaning that such a shock causes less indirect damages than a flat out crisis, but is close to it
because as explained above there is a lesser correlation with the network structure. The full time
series is provided in the appendix, figure 17b, where we observe that indirect severity for this exercise
is in the window of 91% to 97%, which is higher than that from the transition risk market shock but
always below 1.

This lesser absorbance of the shock by the system can be understood in the framework given
by Pástor et al. [80], whereby the introduction of ESG and climate risk concerns imply a four-fund
separation for investors: a riskless asset, a market portfolio, an ESG weighted portfolio, and a climate
risk weighted portfolio. While ESG and climate risks can be correlated in their framework, they can
also be more orthogonal if we take the latter as reflective of physical exposure. In our case, the
results suggest that while a carbon-weighted portfolio – akin to an ESG one – could be a structuring
element of our system, there is no such thing as a common climate risk portfolio that would be used
to hedge physical risk. This could be attributed to both a weaker investor preferences and to a lack
of information at the firm level.
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Figure 11: Results for a scenario with a market shock based on physical risk exposure.
Funds are grouped by deciles based on their prior risk exposure, i.e. group 1 is the category whose prior exposure to
physical risk is in the lowest 10%. The non-classified (NC) category contains all funds for which less than 20% of their
portfolio has a known physical exposure.
Left panel: direct gains of funds on their portfolio of tradable holdings as entailed by the initial price shock. Central
panel: net flows to each decile of funds due to the flow-performance investor reaction. Right panel: indirect gains
happening as a reaction to the initial shock and the subsequent flow-performance investment.
The aggregation at the decile level is obtained by summing net gains in a decile, and dividing by the sum of initial
assets. Because securities with unknown risk are not stressed, the NC category also suffers benign direct losses.
Source: authors’ calculations.

4.5 Results from physical risk damage materialization

Beyond their immediate impact, physical shocks from extreme weather events affect the economy
through channels such as income destruction, credit shrink or defaults [74, 88]. Under this scenario,
the shock materializes in two steps. First, a connected series of extreme weather events occur. This
causes a loss of profitability or complete default for firms as they lose part of their physical assets or
are impaired in their operations, because their immediate environment or segments of their supply
chain are affected. Second, the asset prices decline based on this event and its perception by financial
markets [78].

Investment funds are in general not likely to be the sector most affected by such shocks in com-
parison to banks or insurance undertakers that would lose on their loans to SMEs or would have
to directly compensate victims respectively. However, because funds do not seem currently to inte-
grate that dimension in their portfolio choices, a shock from a physical climate event large enough
to cause market turmoil could hit them hard. The literature for stress testing short-term climatic
events is scarce thus far, but studies such as Mandel et al. [70] in the case of floods show that shocks
could be propagated and amplified by the domestic and international banking systems, especially
in the future in the case of insufficient adaptation. Therefore, this could push the financial system
in a stressed position where funds would be hit too, and other sectors are even more stretched and
cannot absorb it. Moreover, Lanfear et al. [68] has documented an important sensitivity to extreme
weather events of asset returns, and Billio et al. [19] described an asymmetric exposure of sectors in
the European real economy to extreme weather events.

The simulations performed are divided into the different kind of physical risks considered: floods,
heat stress, hurricanes/typhoons, water stress, and wildfires. For each run, an issuer-level shock is
determined randomly such that −Λω = min(xf(ω)yω, 1) where f(ω) is the country of the issuer of
ω, xf(ω) ∼ U([0, 1]), and yω ∼ Exp(100/hω,k) is an issuer level shock given by an exponential



distribution whose mean is the known exposure hω,k/100 to a source k of physical damage. Thus,
we perform a series of Monte Carlo simulations such that each run corresponds to a scenario with
differentiated shocks between countries, and differences between issuers in a country are informed
by the physical exposure to that type of shock.28 The flow-performance calibration of section 4.3 is
used again.

Results for this exercise are given in figure 12. We observe that shocks defined in this way can
have material effects, with more than 20% of the sector’s equity wiped out in the most extreme
cases. Crucially, the changes in equity for the total investment fund sector exhibit different patterns
depending on the type of shock that is used. While the difference between shock types is very de-
pendent on the metric initially used in the exposure assessment, and therefore has little comparative
power, the spread of values within each shock type is more indicative. Thus, we see that wildfire,
water stress and heat stress are the ones where tail events can damage investment funds the most.
Nonetheless, this is subject to data biases as some countries are better covered than others.
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Figure 12: Results for a range of physical shock based on firms’ exposures.
The box plots and scatter plots correspond for each shock category to a total of 100 Monte Carlo simulations, produced
from shocks generated based on exposures to physical risks. Notches on the box plots represent the confidence inter-
val around the median. Left panel: total equity change of the sector, i.e. after summing over all funds, in the course
of the simulation. Right panel: indirect severity of the simulations, i.e. the level of indirect damages against that of a
similar uniform shock, as defined in 4.1.
Source: authors’ calculations.

5 Conclusion and policy discussion

In this paper, we have developed a model to assess the amplification of financial shocks happening
within the sector of investment funds on an international scale. The method presented innovates in
its formalisation of the shock transmission, including consistently a global sample of open-end and
closed-end investment funds.

In our application to climate stress, we assessed the amplification effects from different types
of climate shocks that are likely to materialize in a short time frame. These shocks are based on
either transition or physical risk and built on a range of plausible narratives. With shocks in line
with historical data on investor flows and returns, we find that the initial climate-related shocks
can be large. Moreover, second-round effects appear more muted but still sizeable in some cases,
while taking into account within-sector amplification only. The amplification is limited for climate

28The stochastic approach to physical risk is also in line with what Budnik [24] advocates for, in the case of climate
banking stress tests.



transition risk – with little spillover from the brown funds to the more sustainable ones – but higher
in case of shocks based on climate physical risk. This suggests that the network structure is resilient
to the type of regulatory or policy shocks associated with a low-carbon transition, but does not
adequately mitigate physical risk while it is poised to become a key source of damages.

Crucially, there is currently no joint mitigation of climate risk, which leaves the door open to
larger future losses. Our data analysis confirms that exposures are significant and that the short-
term amplification may be reinforced in the interaction with other financial institutions. Ulterior
shocks could still occur and propagate over a short time frame (e.g. future extreme weather events),
hence the importance of understanding such contagion dynamics, though the network structure may
further evolve. Thus, our results highlight the importance of monitoring the resilience to physical
risk, due to the increasing likelihood of “green swans”, i.e. climate events with sufficient disrup-
tion potential to trigger a financial crisis [21]. Moreover, hedging climate risk as a whole requires
dedicating attention to both transition and physical risk as there is no strong correlation between
them.29

For climate transition specifically, the shocks applied mostly stem from an insufficiency of the
current regulations. Indeed, as environmental practices and reporting are not sufficiently stream-
lined, markets suffer from uncertainty in their estimates of climate risk, even in the optimistic case
where they would be willing and capable to factor it in. This makes the market still prone to a form
of “climate volatility” from the enactment of subsequent regulations. On top of issues in certifying
green actors, the public push for the development of green firms is also often lagging. Most of the
transition shocks that can plausibly happen in our time frame relate to this currently existing gap.
To encompass more of these concerns, we provide in Appendices C.2 and C.3 additional analysis that
deals with shocks based on best-in-sector preferences and a “green bubble” narrative.

A convergence of the standards applied by regulators and market data providers would hopefully
relieve part of this uncertainty.30 In March 2021, the Sustainability Related Financial Disclosure
Regulation entered into force in the European Union. It goes some way in that direction by setting
higher transparency and disclosure standards for financial market participants. However, it falls
short of providing a really holistic approach, leaving out direct engagement and proxy voting (on top
of other implementation flaws). In practice, IMF [60] finds that funds increasingly support climate-
related resolutions and that this is more driven by those with an “environmental” label, and less
aligned with portfolio composition. In the medium term, a more multidimensional approach might
at least mitigate the relative impact of uncertainty from individual sources.

Accounting better for financial cross-holdings would be a necessary complement of this conver-
gence. Indeed, as investment funds by themselves are not carbon intensive, they often tend to bring
down the carbon intensity of portfolios. This currently constitutes a form of greenwashing as some
funds can invest in other funds browner than them with no negative consequences on their ratings.
As we have seen, this particular channel can also reinforce risk as funds that should be greener can
then suffer when carbon-intensive assets lose value. These considerations extend to other financial
institutions: holdings of securities issued by banks or insurance undertakers could be rated based on

29The lack of attention to the issue of physical damages is in line with findings from Naran et al. [77] that adaptation
finance still mostly comes from the public sector.

30See for instance Popescu et al. [82], which reviews the current options for investment funds to do so, and Afota et al.
[2] that details the action of Banque de France on its own portfolio, also replicable to a large extent by private financial
actors.



the issuers’ exposures, e.g. if they finance or insure fossil fuel extraction projects, and not only on
the carbon footprint of their own operations (which are low, as per figure 14a).

On the side of practitioners, risk mitigation would also be pushing for companies to reduce the
risk at the source. The understanding of risks brings the additional question of whether the network
structures that are best suited to weather climate shocks are also optimal against more standard risks.
Precisely because making the network of investment funds simultaneously resilient to all forms of
risk is hard, a crucial avenue for stability improvement is for financial actors to use their influence
on firms in their portfolio for them to engage in carbon emissions abatement or to invest in physical
risk adaptation. However, there is still a relative lack of formal incentives for funds to consistently
engage in climate stewardship. Indeed, proxy voting could be a major way to make an impact, and
institutional investors can be effective in pushing companies to disclose climate-relevant information
[46].

For future research, a key avenue is the improvement of shock modelling, and in particular the
understanding of physical risk. The design of each shock type used in this paper has room for
improvement, to provide a more exhaustive exploration of shocks with identified likelihoods. More
work has been done in that respect in the case of transition risk [12, 13, 83], but a lot remains to
clarify for both transition and physical risk. Although the method to derive shocks from the data
ought to be refined, a more important discussion is the standardization and correctness of the data
used as an input. Indeed, as discrepancies between providers exist for both categories of climate
data used, the variation coming from initial measurement errors compounds with subsequent model
uncertainties [20, 52].
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A Model and method details

A.1 NAV adjustment details

In this section we prove in different steps the results of proposition 1, starting with the formula to
compute the final equity.

Suppose that some funds default, with a solvency indicator γ, and that this results in equity
vector E(γ). Without yet imposing both to be consistent, we seek to calculate E(γ). Let us denote
by π ∈ Rn the vector of funds NAVs. First, note that in the absence of any fund flows, the NAVs will
change from π(t1) to π(t2), such that ∀i, πi(t2) = πi(t1)× γiEi(γ)/Ei(t1), i.e. the change in share
price is proportional to the change in equity for a fund i as long as it is solvent. On the other hand,
if i is in default then πi(t2) = 0. Thus, the new totals of redeemable assets are

R(t2) · ιn = R(t1) ·Diag(γ) ·Diag

(
E(γ)
E(t1)

)
· ιn = r(γ) · E(γ) .

Then, by applying equation (1), the equity identity, at t2, and plugging in the previous results we
obtain,

E(γ) = r(γ) · E(γ) +A(t2) · ιm + C(t2) +B − L,

which, by rearranging, leads to [In − r(γ)] · E(γ) = A(t2) · ιm +C(t2) +B −L. Then, in a second
step, we show that In − r(γ) is nonsingular under the regularity condition of definition 1. Notice
that the regularity can be expressed in different terms as follows.

Lemma 1. The network of funds is regular if and only if every fund admits an ultimate external
investor.

The latter concept of ultimate external investor can be defined recursively such that, given a fund
i, we say that its admits an ultimate external investor if

• either it admits directly an external investor, i.e. one that does not belong to the network of
funds, such that Ei >

∑
j Rj,i;

• or one of the other funds with a participation in i admits itself an ultimate external investor,
meaning that there exists a path j1 → . . . → jn → i, where i → j means that i holds shares
of j, such that j1 has external investors.

Proof. Suppose first that all funds admit an external investor, and suppose by contradiction that there
exists a set X of funds that are all fully owned by their peers in X. Take any fund i ∈ X, and consider
a path j1 → . . . → jn → i from a fund j1 with a direct external investor. Thus, j1 /∈ X, and by
recursion we can show that none of the other along the chain is in X, because jk cannot be in X
and have investor jk−1 at the same time. We end up with i /∈ X, which is a contradiction, and we
conclude that the network is regular.

Second, assume regularity and consider i ∈ {1, . . . , n} with no direct external investor. Let U(i)
the set of all direct and indirect investors of i in the set of funds, and j ∈ U(i). Then, U(j) ⊂ U(i) as
any direct or indirect investor of j would be at least an indirect investor of i. But by regularity not
every fund in U(i) can be held by other funds in it. This means that there is a fund u in U(i) with
investors not in the set. These investors have to be external from what precedes, and they are also
indirect investors of i. We conclude that all funds admit ultimate external investors. ■
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Figure 13: Case of fund system where some funds (in red) break the condition of regularity.
A path i → j with weight w means that the fund shares of j that i holds account for a proportion w of j ’s equity. In
particular, funds that are problematic all belong to non-trivial strongly connected components of the graph.

Without loss of generality, we will assume an absence of defaulted funds at t1 in the remainder
of this section to simplify the notation, so that we consider any γ ∈ {0, 1}n. To prove that In− r(γ)

is nonsingular, we start by showing that the matrix is (weakly) diagonally dominant,31 which results
directly from the fact that r(γ) is sub-stochastic, i.e. with columns summing to values between 0 and
1. To that end, consider first that funds do not hold their own shares: ∀i, r(γ)i,i = 0. Second, the total
value of the shares issued by a fund i should sum up to its equity for an open end fund as long as it is
not defaulted. Restricting the shareholders to other investment funds we getEi(t1) ≥

∑
j γiRj,i(t1),

which gives 1 ≥
∑

j r(γ)j,i.

Using the regularity condition, we can go further and show that In − r(γ) is a weakly chained
diagonally dominant matrix (WCDD).32 Indeed, regularity ensures that, in the graph that corresponds
to r(γ), if there is no strict diagonal dominance of a row i, it is possible to find a path i → j1 →
. . . → jn where there is strict diagonal dominance in jn. Together with the fact that the matrix is
weakly diagonally dominant, this defines In−r(γ) as a WCDD matrix. Then, Shivakumar and Chew
[91] show that all such matrices are nonsingular.

To prove the reverse for γ = ιn, suppose that there is a set X ⊆ {1, . . . , n} so that each fund in
X is fully owned by other funds in the group. Thus, we have

∀j ∈ X,
n∑

i=1

Ri,j

Ej
=

∑
i∈X

Ri,j

Ej
= 1 . (13)

Denote ιX = (1X(i))i the indicator vector of set X. Then, by equation (13) we have ιTX · r(ιn) = ιTX,
implying that 1 is an eigenvalue of r(ιn). It follows that In − r(ιn) is singular.

Note that regularity is implied by particular cases that can be more straightforward to verify than
the original property:

• when every fund has a direct external investor (case of strict diagonal dominance, where the
Levy–Desplanques theorem is applicable),

31The same result can be obtained from fields other than linear algebra. First, it is known in input-output analysis,
with an equivalent proposition in Karlin [67, theorem 8.3.2], a result that describes cases where the Leontief matrix is
well-defined, also related to the Hawkins-Simon conditions [see for instance 72]. It can also be obtained from spectral
graph theory. Then, X can be identified as a strict generalized random walk Laplacian in the sense of Veerman and Lyons
[100], meaning a matrix of the form In − a · S where a ∈ Rn, with a < In and S ∈ Rn×n is a (row) stochastic matrix,
corresponding to the normalized adjacency matrix of the graph of the fund system.

32It is more general than the case of a strictly dominant diagonal and encompasses it. Note that these notions are often
defined from taking row-wise sums, but invertibility is unchanged when considering the transpose.



• or when no cycle exists in the inter-funds cross-holdings (then finding a topological order
yields ultimate investors for all funds). This case corresponds to the situation where the step-
wise computation of Chrétien et al. [33] ends in finite time.

Finally, it remains to prove that there exists a set of default that guarantees equilibrium. This
step is similar to papers in the strand of Eisenberg and Noe [43], with the exception that we have
cross-holdings, not liabilities, i.e. a stock approach instead of flows and clearing payment between
agents. In this, it is more similar to Barucca et al. [10], except that our underlying mathematical
argument relies on the contraction principle instead of the Knaster–Tarski theorem.

Let M = A(t2) · ιm + C(t2) +B − L. We define Φ: Rn → Rn the mapping given by

Φ(e) := r(ιn) · e+ +M .

We show that this mapping is a contraction for ∥·∥2 under the assumption of network regularity. Let
e1, e2 ∈ Rn, then

∥Φ(e1)− Φ(e2)∥2 =
∥∥r(ιn) · (e+1 − e+2 ) +M −M

∥∥
2

≤ |||r(ιn)|||2 · ∥e1 − e2∥2 .

Then, we know that r(ιn) is the transpose of a substochastic matrix, and we have shown that under
the assumption of a regular fund network it does not admit 1 as an eigenvalue. Therefore, its largest
eigenvalue has a norm strictly less than 1. This is enough to conclude that ∥Φ(e1)− Φ(e2)∥2 <

∥e1 − e2∥2, i.e. Φ is a contraction. Given that Rn is a complete metric space we can conclude from
the contraction principle that Φ admits a unique fixed point [94]. Then, denoting as E(t2) this fixed
point we define γ∗ =

(
1[0,∞)(Ei(t2))

)
i
, and it comes that E(γ∗) = E(t2). To find this fixed point,

we use the fictitious default algorithm from Eisenberg and Noe [43], which converges to the solution
in at most n steps. The proof relies on the same arguments and is not reproduced here.

A.2 Details of asset sales and purchases given price impact

The approach used to compute the number of securities sold in the fire sales step involves an iteration
to a pseudo-equilibrium where the net cash change for funds is as close as possible to the target one.
An alternative viable in the context of an iterating model would be to use simply S0 and consider
the remaining gap as a liquidity shock for the next period.

Let (li) the fund-level cash targets, given as a ratio to total assets and assumed fixed over the
simulation horizon. Thus, the total amount that fund i tries to recover in cash from selling assets is
given by c̄i = li(Ei(2) + Di) − Ci(2). We adopt here the slicing hypothesis, whereby, except for
cash, all assets are treated similarly regardless of their differences in liquidity.33 This hypothesis is an
estimation, although a standard one [see for instance 9], and evidenced in [8, 37, 65]. A more mixed
perspective is provided by Jiang et al. [64], according to which the relative preference between selling
illiquid or liquid assets first is influenced by the perceived aggregate uncertainty. The proportional
expansion happening in case of inflow is also backed by [37].

Let S0 ∈ Rn×m be the initial tentative volumes sold per fund and security. We assume that only

33We have excluded assets that are completely illiquid at the point of splitting between A and B, so that fire sales can
be considered for all assets captured in A.



long positions are sold, and we denote by A+(2) the matrix of holdings on long positions. We get

S0 = Diag

(
c̄

A+(2) · ιm

)
·A+(2) .

The derivation of the final sales matrix S starting from S0 is done through a heuristic iterative
algorithm, extending on that from [96]. It consists in assuming that agents anticipate the price impact
and generally sell more than would normally be needed. The objective is to find a pseudo-equilibrium
of sales whereby C(3)− C(2) ≃ c̄, with the following considerations:

• Due to the price impact, the amount sold may not be sufficient to recover the liquidity wanted
after price change, hence a need to increase the volumes sold. Final volumes are then gradually
increased until this iterative process reaches a point where the liquidity demand is satisfied.

• On the other hand, funds may want to buy assets because they exceed their cash target, i.e.
where c̄i < 0 for some fund i. Then, a positive price impact may cause the value of assets
bought to be higher than initially wanted, so the initial investment can be reduced to achieve
the effect wanted.

• When purchasing, there is a risk that a proportional extension of the portfolio is limited by
the total available on the market. To avoid exceeding market caps, new random holdings are
allocated to funds that want to invest further, first by prioritizing securities that correspond to
the usual sectors and countries of investment for each fund, and then picked uniformly among
all securities available on the market if the first step is not enough.

Although this is not designed specifically to thwart the effect of fire sales from other funds,
significant purchases can have a mitigation effect on second-round losses.

A.3 Details of portfolio overlap measures

The measure of portfolio overlap is defined as the cosine similarity of the holdings, in [0, 1] by con-
struction. This measure consists in taking the scalar products of two normalized vectors, which in
our case are the vectors of holdings across tradable securities. That is, given i and j two investment
funds, we define their portfolio overlap as

SC(i, j) :=
1√∑

ω A2
i,ω ×

√∑
ω A2

j,ω

×
∑
ω

Ai,ωAj,ω . (14)

Similarly, with the whole sector as a counterpart:

SC(i) :=

∑
ω

A2
i,ω ×

∑
ω

∑
j∈{1,...,n}

A2
j,ω

−1/2

×
∑
ω

Ai,ω

∑
j∈{1,...,n}

Aj,ω

 . (15)

It is not the only measure of portfolio similarity available though. For instance, Caccioli et al. [26]
use it jointly with a BinSimilarity measure, which is an unweighted count of the number of holdings
that are common to both institutions’ portfolios.



B Data supplements

This section features complementary information and data analysis to understand the breakdown
of funds, the allocation of risk exposures and how funds’ portfolios are defined in relation to it. It
includes the following:

• Table 2 contains information about the sample of funds used in the reference month. Table 2a
provides a view of the different types of funds.

• Figures 14a and 14b present the average carbon emissions by sector and the average physical
risk by country respectively.

• Tables 15a and 15b present key statistics on investment funds when they are grouped by deciles
based on their risk exposure, relative to transition and physical risk respectively.

With regard to how representative our sample is, we can compare the total assets of open-end
funds (the large majority) to those reported in ICI [57]. We find that we capture about 57% of their
total net assets by end-2019, given a total of $54.9 Trillion. Based on the count of the number of
funds by domicile country provided by the International Investment Funds Association, our sample
is biased towards a strong representation of the US relative to other countries.

Note also that funds are not differentiated based on whether they are actively or passively man-
aged. While behaviours might differ between both, we have considered in our modelling a minimal
set of assumptions about funds’ reactions, keeping the most mechanical ones resulting from liquid-
ity gaps and surpluses. Therefore, we treat both types of funds equally in that regard. Furthermore,
as support for the fact that we generally have low leverage, we present below the regulations that
govern this aspect in the most important domicile countries of investment funds:

1. In the US, the most important piece of regulation limiting leverage is [USA], with a maximum
leverage of one third. It applies to both open-end and closed-end funds.

2. In the European Union and the UK, many funds are classified as UCITS and thus subject to the
UCITS Directive, which includes strict limits on leverage. In contrast, alternative investment
funds are governed by the Alternative Investment Fund Managers Directive (AIFMD), which
does not feature such limits, but leaves the possibility for restrictions to be imposed.

3. In Brazil, a complete credit-taking prohibition is in place, combined with limitations on the
use of derivatives, so that leverage as a whole is strictly regulated and limited [6].

4. In China, regulation is imposed by the China Securities Regulatory Commission (CSRC) (see its
Measures for the Administration of Risk Control Indicators of Securities Companies) and the Asset
Management Association of China (AMAC). Both impose restrictions on different segments of
non-banks concerning their leverage [59].

5. In Canada, the National Instrument 81-102 regulation also places limits on leverage, with open-
end mutual funds prohibited from borrowing except in particular situations, and ETFs or al-
ternative investment funds having more possibilities but still bounded.



Total
number

Number
closed

Portfolio
weight (%)

Mutual Funds 16985 1144 66.0
Insurance
Funds

2860 7 7.1

Exchange
Traded Funds

2766 1 25.1

Pension Funds 1401 7 1.0
Closed End
Funds

426 426 0.8

Hedge Funds 6 0 0.0
Investment
Trust

2 2 0.0

(a) Types of funds

Number
Portfolio

weight (%)

USA 10970 88.4
Brazil 3735 1.9
UK 1929 1.2
Luxembourg 1687 2.4
China 1054 0.7
Canada 727 1.0
Korea
(Republic of)

671 0.1

Ireland 447 1.2
Germany 305 0.3
South Africa 261 0.2
Other 2660 2.5

(b) Domicile countries of funds

Table 2: Key statistics of the investment funds sample, at the reference month of December 2019.
For both tables, we count primary funds, i.e. not share classes. Moreover, the column of portfolio weight represents
the market value of assets held by the given category of funds, as a percentage of the value from aggregating over the
whole sample. For the right-hand table, only individual countries with more than 250 funds are represented, and the
rest is aggregated in “Other”.
Source: Refinitiv and authors’ calculations.

C Results supplements

C.1 Complementary result figures

We first present the details of the shock used in subsection 4.3, based on the market reaction to
transition risk. The mapping adopted to generate the shock is of the form

∀ω ∈ {1, . . . ,m}, Dg(ω) = χ0 +
1

1 + χ1 + gω/χ2

where χ0 ∈ [0, 1), χ1 >
1

1−χ0
−1, and χ2 > 0 are real parameters. The function is chosen so that the

resulting return quantile appears sensible and in line with the narrative of the shock. The resulting
shock is represented in figure 16a.

For the market shock based on physical risk used in subsection 4.4, the mapping used to define
the shock is of the form

∀ω ∈ {1, . . . ,m}, Dh(ω) = 1− κ0 − (1− κ1)×
(
hω −minε hε

maxε hε

)κ2

, (16)

with κ0 ∈ (0, 1), κ1 ∈ (κ0, 1] and κ2 ∈ R+. The resulting shock is represented in figure 16b.

C.2 Results from a market shock on browner firms by sector

We investigate in this section an alternative narrative to the one of subsection 4.3, where instead
of shocking securities based on their absolute carbon intensity, we consider how polluting they are
relative to other firms from the same sector. The narrative is now of a shock that stems from a green
investing endeavour by sophisticated investors who use carbon emission information to foster the



least polluting companies of each sector and penalize the most polluting ones. Alternatively, this
could stem from an application of more stringent carbon pricing whereby part of the additional
cost is passed downstream but such that the most polluting firms within each sector are forced to
internalize more of the cost to remain competitive compared to less polluting firms.

In practice, using the sector decomposition as shown in figure 14a, we can assign to each firm
a sector position SPω , given by the empirical cumulative distribution function of carbon emissions
in the sector of ω. Thus, a value close to 0 means that the issuer of ω is part of the greenest firms
in its sector, and among the brownest for a SPω close to 1. Note that, for about 38% of the sample,
the sector information is missing, and these firms are grouped as if forming another sector. Thus,
we define the market shock from a quantile mapping function that combines both the within-sector
position and the carbon intensity:

Λω = (Qω ◦DSec)(ω), DSec(ω) = χ0 + τ (1− SPω)
χ3 +

1− τ

1 + χ1 + gω/χ2
, (17)

with τ ∈ [0, 1] the parameter that governs the relative importance of the within-sector position. For
our application, we pick τ = 0.8, to give predominance to the within-sector position.

The shock generated is represented in figure 18a, with a separation between the debt and equity
classes. As we would expect, the correlation between the carbon intensity and the shock has become
weaker than it was in the initial transition shock of figure 16a. Indeed, securities that are not at the tail
of the overall distribution carbon-wise, are now very stressed as they represent the worst polluters
in a given sector. Corresponding results are presented in figure 18b. We observe that results present
similarities to the initial transition shock, but investment inflows to green funds result in a mild
amplification, even for the browner funds.

C.3 Results from a shock on green assets

Recent data on investment funds show that those labelled ESG or SRI are prominent drivers of non-
bank growth. This growth of sustainability-labelled funds, which are mostly included in these two
categories (where not wrongly assimilated to them), in its steady aspect alone, has raised the concern
that green stocks are overvalued34 because they are part of a pool of assets that is too small. Thus,
it is argued in van der Beck [98] that strong flows to ESG funds have artificially driven up the price
of their holdings over the past years, also in line with a “concern-driven” performance of green
securities by Pástor et al. [79]. The implication advanced is that reduced future flows to sustainable
funds could harm the price of the highly ESG-rated securities from a lesser purchasing pressure,
although this argument is contingent on a broadly unchanged economic framework. For instance,
a strong commitment to a rapidly increasing carbon price in the medium term could change the
perspective, as could the legal liabilities of firms related to ESG criteria. Nonetheless, given the
uncertainty surrounding these developments, a market correction of the price of current “sustainable
assets” – i.e. a “green bubble” – cannot be disregarded.

We model the occurrence of a shock on green assets is modelled as the opposite of the transition
risk market shock (although with different parameters to avoid a large positive shock on brown
assets), i.e. being influenced by both within-sector considerations and absolute carbon emissions.

34Opposite opinions on the matter have been expressed by Aramonte and Zabai [7], looking in particular at the valua-
tions of ESG funds, and by Jourde and Stalla-Bourdillon [66], comparing green to brown assets.



Thus, we get

Λω = (Qω ◦DGB)(ω), DGB(ω) = 1− χ0 − τ (1− SPω)
χ3 − 1− τ

1 + χ1 + gω/χ2
. (18)

The shock thus generated is represented in figure 19a, where we observe a shape opposite to
the previous ones, i.e. a net loss on the greenest assets and small gains on assets that are relatively
brown. Interestingly, we observe from the results in figure 19b that the impact on funds is more
homogeneous than the previous transitory shocks. That is, greener funds tend to lose more, but
the losses of brown funds are comparable. Differences between the groups are even smaller at the
point of considering the second-round effects. Moreover, the initial shock that we derive here is of
relatively small magnitude. The key difference with transition shocks is that short-term dynamics
are the only ones likely to materialize. Therefore, this indicates that damages from a “green bubble”
would propagate to a large part of the investment funds system but with a limited impact.

C.4 Shock methodology comparison

It is worth comparing the methodology employed here, for the generation of input shocks in partic-
ular, to the case study on investment funds conducted in Carlin et al. [28]. While it does not model
contagion, [28] is one of the closest works to ours, given its focus sector, its emphasis on the impor-
tance of short-term climate stress tests, and having low-carbon assets with positive shocked returns.
Using our notation, their methodology can be represented by the following equation:

Λω = (B ◦ TIC)(fMSCI(LCTω), Sec(ω),Country(ω)),

which is composed of the following:

1. The equity price shock function fMSCI is calibrated using MSCI Low Carbon Transition (LCT)
scores.

2. Company-level baseline shocks fMSCI(LCTω) are calculated, where LCTω is the LCT score
of the company issuing ω. Industry-level shocks are then derived as weighted averages from
the firms they include.

3. Industry-based and country-based caps/floors are applied (function TIC ), including a mini-
mum shock to all companies based in a major oil-producing country.

4. Shocks are bucketed to a discrete grid (function B).

The price changes then affect nonbanks in their portfolio, similar to our first-round impact.

Aside from having further dynamics in our model following the initial shock, we can identify
two features in which our shock generation differs conceptually from [28]. The first one is that their
shocks do not depend on the financial properties of the securities, relative to the way we interact
carbon emission intensities with the distribution of historical returns, and in particular the variance
observed. This reflects a difference in the narrative, whereby we try to better capture a plausible
immediate reaction of financial markets, while [28] may be based on a change in fundamentals that
moves the market over a somewhat longer time frame.

Second, the choice of applying relatively uniform shocks within each sector is something that
is not present in our main simulations presented in Section 4. It is opposed but complementary to
the narrative that supports our additional exercise presented in Appendix C.2. Where [28] assume
that the market would react primarily on sector information, we assumed that it would respond



given a more accurate data access and favour best-in-class companies. The relative plausibility of
both alternatives is not settled and may depend on factors such as the extent to which carbon price
increases would be passed on to clients downstream, or the degree of competition existing within a
sector.
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Figure 14: Decomposition of climate data along dimensions of interest.
Left panel: carbon emissions on scopes 1 and 2 (in log scale on the x-axis) by sectors of firms (on the y-axis). Only
sectors with more than 50 entities are kept. Additionally, data analysis not presented here shows that there are also
marked differences between countries on carbon intensity as some of them host many polluting industries. Right
panel: some important variations between countries (on the y-axis) are observed with regard to climate physical risk
exposure (on the x-axis). Only countries with more than 100 entities are kept. The blue dashed line represents the
euro area average.
Sources: Urgentem, 427 and authors’ calculations.



Category
Number of

funds
Mean AUM

(million euros)

Mean
carbon

intensity

1 1372 2261.8 1.3
2 1372 1357.3 32.3
3 1372 1196.4 55.6
4 1372 1172.1 79.6
5 1372 1739.2 103.5
6 1371 2593.8 129.3
7 1372 2552.7 155.5
8 1372 1307.0 197.4
9 1372 1479.7 270.9
10 1372 544.4 623.1
NC 9477 637.4

(a) Carbon intensity categorization

Category
Number of

funds
Mean AUM

(million euros)

Mean
physical

risk

1 1205 506.4 21.2
2 1205 1028.4 24.4
3 1205 1428.3 26.7
4 1204 1033.4 28.9
5 1205 1604.7 30.5
6 1205 2414.9 31.9
7 1204 1883.1 33.0
8 1205 4245.3 34.1
9 1205 1593.6 35.5
10 1205 1032.9 41.3
NC 11148 723.3

(b) Physical risk categorization

Figure 15: Grouping into deciles of risk as used in the simulation framework.
Left panel: all funds whose securities with available carbon ratings represent more than 50% of their portfolio by
market value distributed into different deciles. The allocation is based on the fund-level carbon intensities defined
by equation (10). Category 1 represents the greenest 10% of classified funds, category 2 the 10% to 20% greenest, etc,
and NC includes all non-classified funds (falling below the 50% threshold). The column with mean carbon intensity is
an unweighted average across all funds in a category. Note that, although all securities have positive carbon emissions
associated, some funds may have a negative weighted average because they short polluting securities.
Right panel: all funds whose securities with available climate physical risk exposure represent more than 20% of
their portfolio by market value distributed into different deciles. The allocation is based on the fund-level physical
risk exposures defined by equation (11). Category 1 represents the 10% least exposed of classified funds, category 2
the 10% to 20% least exposed, etc, and NC includes all non-classified funds (falling below the 20% threshold). The
column with mean physical risk is an unweighted average across all funds in a category.
Source: Urgentem, 427, Refinitiv and authors’ computations.
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Figure 16: Bi-dimensional histogram of the market shocks used in 4.3 and 4.4, with a decomposition between asset
types. The x-axis gives the carbon intensity of the assets while the y-axis gives the shocked returns. The colour of a
square corresponds to the number of securities that present the corresponding risk/shock profile.
Source: authors’ calculations.
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Figure 17: Time series of indirect severity.
Left panel: indirect severity for different months, based on the same transition risk market shock used in section 4.3,
and represented in figure 16a. Right panel: indirect severity for different months, based on the same physical risk
market shock used in section 4.4, and represented in figure 16b. For both, the indirect severity is defined in section
4.1 relative to a uniform shock with a similar aggregate direct impact.
Source: authors’ calculations.
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(b) Decomposition of outputs

Figure 18: Shock and results for the simulation penalizing “worst in class” securities. For the upper panel, the x-axis
gives the carbon intensity of the assets while the y-axis gives the shocked returns. The colour of a square
corresponds to the number of securities that present the corresponding risk/shock profile. For the lower panel, the
x-axis corresponds to groups of funds arranged by deciles according to the values of their carbon-weighted assets.
The y-axis corresponds to the size of gains and flows relative to the initial value of assets.
Source: authors’ calculations.
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Figure 19: Shock and results for the “green bubble” simulation.
For the upper panel, the x-axis gives the carbon intensity of the assets while the y-axis gives the shocked returns. The
colour of a square corresponds to the number of securities that present the corresponding risk/shock profile. For the
lower panel, the x-axis corresponds to groups of funds arranged by deciles according to the values of their
carbon-weighted assets. The y-axis corresponds to the size of gains and flows relative to the initial value of assets.
Source: authors’ calculations.
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