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Abstract: We develop a method for uniform valid confidence bands of a
nonparametric component f1 in the general additive model Y = f1(X1) +
. . .+ fp(Xp) + ε in a high-dimensional setting. We employ sieve estimation
and embed it in a high-dimensional Z-estimation framework allowing us to
construct uniformly valid confidence bands for the first component f1. As
usual in high-dimensional settings where the number of regressors p may
increase with sample, a sparsity assumption is critical for the analysis. We
also run simulations studies which show that our proposed method gives
reliable results concerning the estimation properties and coverage properties
even in small samples. Finally, we illustrate our procedure with an empirical
application demonstrating the implementation and the use of the proposed
method in practice.

MSC 2010 subject classifications: Primary 62G08; Secondary 62-07,
41A15.
Keywords and phrases: General Additive Models, High-dimensional Set-
ting, Z-estimation, Double Machine Learning, Lasso.

1. Introduction

Nonparametric regression allows the estimation of the relationship f between
a target variable Y and input variables X = (X1, . . . , Xp)

T without imposing
(strong) functional assumptions:

Y = f(X1, . . . , Xp) + ε,

where ε denotes the random error term satisfying E[ε|X] = 0. When p is large,
estimation of the regression function f(X1, . . . , Xp) is practically infeasible due
to the curse of dimensionality. One approach to overcome this challenge that
has been very popular in statistics and econometrics is to impose additional
additive structure leading to generalized additive models (GAM):

Y = α+ f1(X1) + . . .+ fp(Xp) + ε, (1.1)

where α is a constant and fj(·), j = 1, . . . , p are smooth univariate functions.
The idea of GAMs can be traced back to Friedman and Stuetzle (1981), Stone
(1985) and Hastie and Tibshirani (1990). Estimation and inference in the low-
dimensional setting with fixed p has been analyzed widely in the literature. For
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an introduction to GAMs we refer to the textbook treatments by Hastie and
Tibshirani (1990) and Wood (2017). In recent years, considerable progress has
been made in understanding and analyzing GAMs in high-dimensional settings
(i.e., when the number of components can grow with the sample size) under
the additional assumption that only a small subset of the components of size
s are non-zero. In high-dimensional settings the focus has been on theoretical
results on the estimation rate of sparse additive models. This has been analyzed
in Sardy and Tseng (2004), Lin and Zhang (2006) and many others (Ravikumar
et al., 2009; Meier et al., 2009; Huang et al., 2010; Koltchinskii and Yuan, 2010;
Kato, 2012; Petersen et al., 2016; Lou et al., 2016). How to perform statistical
inference for the model has shown to be a much more challenging problem. Con-
fidence bands that measure the uncertainty of the estimation in a setting with
fixed dimension have been widely studied by Härdle (1989), Sun and Loader
(1994), Fan and Zhang (2000), Claeskens and Keilegom (2003) and Zhang and
Peng (2010). A standard assumption in high-dimensions is sparsity meaning
that only a small subset of s components is different from zero. Results regard-
ing inference for GAMs in a high-dimensional setting have been derived only
recently. We discuss these results in the next paragraphs and emphasize our
contribution to the existing literature.

Kozbur (2015) proposes an estimation and inference method for a single
target component called Post-Nonparametric Double Selection which is an ap-
plication of the Double Machine Learning approach developed in Belloni et al.
(2014b). Our work contributes to this expanding literature on high-dimensional
inference, especially to the Debiased/Double Machine Learning literature. Re-
sults for valid confidence intervals for low dimensional parameters in high-
dimensional linear models were also derived in van de Geer et al. (2014) and
Zhang and Zhang (2014). For a survey on post-selection inference in high-
dimensional settings and generalization we refer to Chernozhukov et al. (2015b).
We consider the same setting as Kozbur (2015), i.e., a more general additively
separable model

Y = f1(X1) + f−1(X2, . . . , Xp) + ε,

that includes the general additive model (GAM)

Y = α+ f1(X1) + . . .+ fp(Xp) + ε.

Kozbur (2015) focuses on inference on functionals of the form θ = a(f1) and
obtains pointwise confidence intervals based on a penalized series estimator. In
contrast, we are able to construct uniformly valid confidence bands for the whole
function f1. Our paper builds on recent results, allowing for inference on high-
dimensional target parameters, provided by Belloni et al. (2018) and Belloni
et al. (2014a). Further, Kozbur (2015) relies on two high level assumptions on
lasso estimation and variable selection (see Assumptions 9 and 10 in Kozbur
(2015)) that are hard to verify. We clarify technical requirements and provide
results on uniform lasso estimation that are needed to perform valid inference.

Gregory et al. (2016) use the so-called Debiasing approach in Zhang and
Zhang (2014) to estimate the first component f1 in a high-dimensional GAM
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where the number p of additive components may increase with sample size.
The estimator is constructed in two steps. The first step is an undersmoothed
estimator based on near-orthogonal projections with a group Lasso bias correc-
tion. Then a debiased version of the first step estimator is used to construct
pseudo responses Ŷ . In the second step a smoothing method is applied to a
nonparametric regression problem with Ŷ and covariates X1. Under sparsity
assumptions on the number of nonzero additive components, they show the so
called oracle property meaning asymptotic equivalence of their estimator and
the oracle estimator where the functions f2, . . . , fp are known. The asymptotics
of the oracle estimator are well understood and carry over to the proposed de-
biasing estimate including methodology to construct uniformly valid confidence
intervals for f1. Nevertheless, Gregory et al. (2016) do not explicitly focus on
inference and they need much stronger assumptions to let the oracle property
hold. For example, they assume normally distributed errors that need to be
independent to X. Further, they assume a bounded support of X. As in our
paper, they choose a large set of basis functions (e.g., polynomials or splines)
to approximate the components f1 and f−1. However, we allow the degree of
approximating functions to grow to infinity with increasing sample size.

Lu et al. (2020) provide an explicit procedure for constructing uniformly
valid confidence bands for components in high-dimensional additive models.
They argue that this is a challenging problem, as a direct generalization of the
ideas for the fixed dimensional case is difficult. Confidence bands in the low-
dimensional case are mostly built upon kernel methods, while estimators for
sparse additive models are sieve estimators based on dictionaries. To derive their
results, Lu et al. (2020) have to combine both kernel and sieve methods to utilize
the advantages of each method resulting in a kernel-sieves hybrid estimator.
This also leads to a two-step estimator with many tuning parameters as the
bandwidth and penalization levels that need to be chosen by cross-validation.
The advantage of our estimator is that we can stay in the sieves framework and
nevertheless derive valid confidence bands. This is possible as we consider the
problem as a high-dimensional Z-estimation problem utilizing recent results from
Belloni et al. (2018). We also provide a theory driven choice of the penalization
level. As in Gregory et al. (2016), Lu et al. (2020) assume normally distributed
errors that are independent to X. This is much more restrictive than in our
paper since we only need to assume sub-exponential tails and we allow for
heteroscedastic error terms. Further, they assume that the number of non-zero
components s = O(1) is bounded. In our setting, s may grow to infinity with
increasing sample size. Nevertheless, their approach differs from ours in that
they consider an ATLAS model, in which they only need to impose a local
sparsity structure.

The finite sample properties of our estimator are evaluated in a simulation
study that is based on the data generating processes in Gregory et al. (2016).
The results show that the suggested method is able to perform valid simulta-
neous inference even in small and high-dimensional settings. Finally, we include
an empirical application to the Boston housing data and provide evidence on
nonlinear effects of certain socio-economic factors on house prices.
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1.1. Organization of the Paper

The paper is organized as follows. In Section 2, the setting is outlined. Section 3
introduces the estimation method. In Section 4, the main result is provided. A
simulation study, highlighting the small sample properties and implementation
of our proposed method, is presented in Section 5. Section 6 illustrates the use
of the method in an empirical application to the Boston housing data. The proof
of the main theorem is provided in Section 7. The Appendix includes additional
technical material. In Appendix A, a general result for uniform inference about
a high-dimensional linear functional is presented. Appendix B provides results
regarding uniform lasso estimation rates in high-dimensions. Finally, computa-
tional details are presented in Appendix C.

1.2. Notation

Throughout the paper we consider a random element W from some common
probability space (Ω,A, P ). We denote by P ∈ Pn a probability measure out
of large class of probability measures, which may vary with the sample size
(since the model is allowed to change with n) and Pn the empirical probability
measure. Additionally, let E respectively En be the expectation with respect to
P , respectively Pn, and Gn(·) denotes the empirical process

Gn(f) :=
√
n

(
1

n

n∑
i=1

f(Wi)− E[f(Wi)]

)

for a class of suitably measurable functions F : W → R. ‖ · ‖P,q denotes the
Lq(P )-norm. In the following, we write ‖·‖Ψρ for the Orlicz-norm that is defined
as

‖W‖Ψρ := inf {C > 0 : E [exp((|W |/C)ρ)− 1] ≤ 1}

for ρ > 1. Further, ‖v‖1 =
∑p
l=1 |vl| denotes the `1-norm, ‖v‖2 =

√
vT v the `2-

norm and ‖v‖0 equals the number of non-zero components of a vector v ∈ Rp.
We define v−l := (v1, . . . , vl−1, vl+1 . . . , vp)

T ∈ Rp−1 for any 1 ≤ l ≤ p. ‖v‖∞ =
supl=1,...,p |vl| denotes the sup-norm. Let c and C denote positive constants
independent of n with values that may change at each appearance. The notation
an . bn means an ≤ Cbn for all n and some C. Furthermore an = o(1) denotes
that there exists a sequence (bn)≥1 of positive numbers such that |an| ≤ bn for
all n where bn is independent of P ∈ Pn for all n and bn converges to zero.
Finally, an = OP (bn) means that for any ε > 0, there exists a C such that
P (an > Cbn) ≤ ε for all n.
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2. Setting

Consider the following nonparametric additively separable model

Y = f(X) + ε = f1(X1) + f−1(X−1) + ε

with E[ε|X] = 0 and Var(ε|X) ≥ c. Let the scalar response Y and features
X = (X1, . . . , Xp) take values in Y respectively X = (X1, . . . ,Xp). We assume
to observe n i.i.d. copies (W (i))ni=1 = (Y (i), X(i))ni=1 of W = (Y,X), where the
number of covariates p is allowed to grow with sample size n. For identifiability,
we assume E[f−1(X−1)] = 0. We aim to construct uniformly valid confidence
regions for the first nonparametric component of the regression function, namely
we want to find functions l̂(x) and û(x) converging to f1(x) with

P
(
l̂(x) ≤ f1(x) ≤ û(x),∀x ∈ I

)
→ 1− α.

Here, I ⊆ X1 is a bounded interval of interest where we want to conduct in-
ference. We approximate f1 and f−1 by a linear combination of approximating
functions g1, . . . , gd1

and h1, . . . , hd2
, respectively. Define

g(x) := (g1(x), . . . , gd1(x))T

for x ∈ R and
h(x) := (h1(x), . . . , hd2(x))T

for x ∈ Rp−1. It is important to note that we allow the number of approximating
functions d1 and d2 to increase with sample size. Assume that the approxima-
tions are given by

f1(X1) = θT0 g(X1) + b1(X1), (2.1)

where θ0,l ∈ Θl and analogously

f−1(X−1) := βT0 h(X−1) + b2(X−1), (2.2)

where b1 and b2 denote the error terms. Additionally, it is convenient to define
the combination

z(x) := (g1(x), . . . , gd1
(x), h1(x), . . . , hd2

(x))T

for x ∈ Rp, where we abbreviate

Z := z(X) = (g1(X1), . . . , gd1
(X1), h1(X−1), . . . , hd2

(X−1))T .

For each element gl of g, we consider

gl(X1) = (γ
(l)
0 )TZ−l + b

(l)
3 (Z−l) + ν(l) (2.3)
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and E[ν(l)|Z−l] = 0 and Var(ν(l)|Z−l) ≥ c. This corresponds to

E[gl(X1)|Z−l] = (γ
(l)
0 )TZ−l + b

(l)
3 (Z−l),

with approximation error b
(l)
3 (Z−l). The second stage equation (2.3) is used to

construct an orthogonal score function for valid inference in a high-dimensional
setting as in Chernozhukov et al. (2017). Estimating

f1(·) ≈ θT0 g(·)

can be recast into a general Z-estimation problem of the form

E [ψl(W, θ0,l, η0,l)] = 0 l ∈ 1, . . . , d1

with target parameter θ0 where the score functions are defined by

ψl(W, θ, η) =
(
Y − θgl(X1)− (η(1))TZ−l − η(3)(X)

)
·
(
gl(X1)− (η(2))TZ−l − η(4)(Z−l)

)
.

Here,

η = (η(1), η(2), η(3), η(4))T

with η(1) ∈ Rd1+d2−1, η(2) ∈ Rd1+d2−1, η(3) ∈ `∞(Rp) and η(4) ∈ `∞(Rd1+d2−1).
The true nuisance parameter η0,l is given by

η
(1)
0,l := β

(l)
0

η
(2)
0,l := γ

(l)
0

η
(3)
0,l (X) := b1(X1) + b2(X−1)

η
(4)
0,l (Z−l) := b

(l)
3 (Z−l),

where β
(l)
0 is defined as

β
(l)
0 := (θ0,1, . . . , θ0,l−1, θ0,l+1, . . . θ0,d1

, β0,1, . . . , β0,d2
)T .

Essentially, the index l determines which coefficient is not contained in β
(l)
0 . The

third part of the nuisance functions captures the error made by the approxima-
tion of f1 and f−1, which is independent from l. Therefore we sometimes omit
l.

Comment 2.1. The score ψ is linear, meaning

ψl(W, θ, η) = ψal (X, η(2), η(4))θ + ψbl (X, η)

with
ψal (X, η(2), η(4)) = −gl(X1)(gl(X1)− (η(2))TZ−l − η(4)(Z−l))
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and

ψbl (X, η) = (Y − (η(1))TZ−l − η(3)(X))(gl(X1)− (η(2))TZ−l − η(4)(Z−l))

for all l = 1, . . . , d1.

Comment 2.2. The score function ψ satisfies the moment condition, namely

E [ψl(W, θ0,l, η0,l)] = 0

for all l = 1, . . . , d1, and, given further conditions mentioned in Section 4, the
near Neyman orthogonality condition

Dl,0[η, η0,l] := ∂t
{
E[ψl(W, θ0,l, η0,l + t(η − η0,l))]

}∣∣
t=0

. δnn
−1/2

where ∂t denotes the derivative with respect to t and (δn)n≥1 a sequence of
positive constants converging to zero.

3. Estimation

In this section we describe our estimation method and how the uniform valid
confidence bands are constructed. The nuisance functions are estimated by lasso
regressions. Finally, they are plugged into the moment conditions and solved for
the target parameters, which yield an estimate for the first component f̂1. The
lower and upper curve of the confidence bands are finally based on the estimated
covariance matrix and a critical value which is determined by a multiplier boot-
strap procedure. The details are given in this section.

Let

g(x) = (g1(x), . . . , gd1(x))
T ∈ Rd1×1,

and

ψ(W, θ, η) = (ψ1(W, θ1, η1), . . . , ψd1
(W, θd1

, ηd1
))
T ∈ Rd1×1

for some vector
θ = (θ1, . . . , θd1

)T

and
η = (η1, . . . , ηd1

)T .

For each l = 1, . . . , d1, let η̂l =
(
η̂

(1)
l , η̂

(2)
l , η̂

(3)
l , η̂

(4)
l

)
be an estimator of the

nuisance function. The estimator θ̂0 of the target parameter

θ0 = (θ0,1, . . . , θ0,d1)T

is defined as the solution of

sup
l=1,...,d1

{∣∣∣En[ψl(W, θ̂l, η̂l)]∣∣∣− inf
θ∈Θl

∣∣∣En[ψl(W, θ, η̂l)]∣∣∣} ≤ εn, (3.1)
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where εn = o
(
δnn
−1/2

)
is the numerical tolerance. Finally, the target function

f1(·) can be estimated by

f̂1(·) := θ̂T0 g(·). (3.2)

Define the Jacobian matrix

J0 :=
∂

∂θ
E[ψ(W, θ, η0)]

∣∣∣∣
θ=θ0

= diag (J0,1, . . . , J0,d1
) ∈ Rd1×d1

with

J0,l = E[ψal (W, η
(2)
0,l , η

(4)
0,l )]

= −E[((γ
(l)
0 )TZ−l + b

(l)
3 (Z−l) + ν(l))ν(l)]

= −E
[(

(γ
(l)
0 )TZ−l + b

(l)
3 (Z−l)

)
E[ν(l)|Z−l]︸ ︷︷ ︸

=0

]
− E[(ν(l))2]

= −E[(ν(l))2]

for all l = 1, . . . , d1. Observe that

E
[
ψ(W, θ0, η0)ψ(W, θ0, η0)T

]
=: Σεν

is the covariance matrix of εν := (εν(1), . . . , εν(d1)). Define the approximate
covariance matrix

Σn : = J−1
0 E

[
ψ(W, θ0, η0)ψ(W, θ0, η0)T

]
(J−1

0 )T

= J−1
0 Σεν(J−1

0 )T ∈ Rd1×d1

with

Σn : =



E[(εν(1))2]
E[(ν(1))2]2

E
[
εν(1)εν(2)

]
E[(ν(1))2]E[(ν(2))2]

. . .
E
[
εν(1)εν(d1)

]
E[(ν(1))2]E[(ν(d1))2]

E
[
εν(2)εν(1)

]
E[(ν(2))2]E[(ν(1))2]

E[(εν(2))2]
E[(ν(2))2]2

. . .
E
[
εν(2)εν(d1)

]
E[(ν(2))2]E[(ν(d1))2]

...
...

. . .
...

E
[
εν(d1)εν(1)

]
E[(ν(d1))2]E[(ν(1))2]

E
[
εν(d1)εν(2)

]
E[(ν(d1))2]E[(ν(1))2]

. . . E[(εν(d1))2]

E[(ν(d1))2]2


.

The approximate covariance matrix can be estimated by replacing every expec-
tation by the empirical analog and plugging in the estimated parameters

Σ̂n : = Ĵ−1En
[
ψ(W, θ̂, η̂)ψ(W, θ̂, η̂)T

]
(Ĵ−1)T

= Ĵ−1Σ̂εν(Ĵ−1)T

=



En[(ε̂ν̂(1))2]
En[(ν̂(1))2]2

En
[
ε̂ν̂(1)ε̂ν̂(2)

]
En[(ν̂(1))2]En[(ν̂(2))2]

. . .
En
[
ε̂ν̂(1)ε̂ν̂(d1)

]
En[(ν̂(1))2]En[(ν̂(d1))2]

En
[
ε̂ν̂(2)ε̂ν̂(1)

]
En[(ν̂(2))2]En[(ν̂(1))2]

En[(ε̂ν̂(2))2]
En[(ν̂(2))2]2

. . .
En
[
ε̂ν̂(2)ε̂ν̂(d1)

]
En[(ν̂(2))2]En[(ν̂(d1))2]

...
...

. . .
...

En
[
ε̂ν̂(d1)ε̂ν̂(1)

]
En[(ν̂(d1))2]En[(ν̂(1))2]

En
[
ε̂ν̂(d1)ε̂ν̂(2)

]
En[(ν̂(d1))2]En[(ν̂(1))2]

. . . En[(ε̂ν̂(d1))2]

En[(ν̂(d1))2]2


.
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This estimated covariance matrix can be used to construct the confidence bands

û(x) := f̂1(x) +
(g(x)T Σ̂ng(x))1/2cα√

n

l̂(x) := f̂1(x)− (g(x)T Σ̂ng(x))1/2cα√
n

,

where cα is a critical value determined by the following standard multiplier
bootstrap method introduced in Chernozhukov et al. (2013). Define

ψ̂x(·) := (g(x)T Σ̂ng(x))−1/2g(x)T Ĵ−1
0 ψ(·, θ̂0, η̂0)

and let

Ĝ =
(
Ĝx
)
x∈I

=

(
1√
n

n∑
i=1

ξiψ̂x(Wi)

)
x∈I

,

where (ξi)
n
i=1 are independent standard normal random variables (especially

independent from (Wi)
n
i=1). The multiplier bootstrap critical value cα is given by

the (1−α)-quantile of the conditional distribution of supx∈I |Ĝx| given (Wi)
n
i=1.

4. Main Results

We now specify the conditions that are required to construct the uniformly valid
confidence bands. Since we would like to represent f1 and f−1 by their approxi-
mations in (2.1) and (2.2) we need to choose an appropriate set of approximating
functions. Let d̄n := max(d1, d2, n, e) and C a strictly positive constant indepen-
dent of n and l. Additionally we set t1 := supx∈I ‖g(x)‖0 ≤ d1. The following
assumptions hold uniformly in n ≥ n0, P ∈ Pn:

Assumption A. 1.

(i) It holds

inf
x∈I
‖g(x)‖22 ≥ c > 0, sup

x∈I
sup

l=1,...,d1

|gl(x)| ≤ C <∞

and for all ε > 0

logN(ε, g(I), ‖ · ‖2) ≤ Ct1 log

(
An
ε

)
.

(ii) There exists 1 ≤ ρ ≤ 2 such that

max
l=1,...,d1

‖b(l)3 (Z−l)‖Ψρ ≤ C, ‖b1(X1) + b2(X−1)‖Ψρ ≤ C.
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Additionally, the approximation errors obey

E
[(
b1(X1) + b2(X−1)

)2] ≤ Cs log(d̄n)/n,

max
l=1,...,d1

E
[(
b
(l)
3 (Z−l)

)2] ≤ Cs log(d̄n)/n

and

En
[(
b1(X1) + b2(X−1)

)2]− E
[(
b1(X1) + b2(X−1)

)2] ≤ Cs log(d̄n)/n,

max
l=1,...,d1

(
En
[(
b
(l)
3 (Z−l)

)2]− E
[(
b
(l)
3 (Z−l)

)2]) ≤ Cs log(d̄n)/n.

(iii) We have

sup
‖ξ‖2=1

E
[
(ξTZ)2

(
b1(X1) + b2(X−1)

)2] ≤ CE [(b1(X1) + b2(X−1)
)2]

and
sup
‖ξ‖2=1

E
[
(ξTZ)2

(
b
(l)
3 (Z−l)

)2] ≤ CE [(b(l)3 (Z−l)
)2]

for l = 1, . . . , d1.
(iv) It holds

E
[
ν(l)
(
b1(X1) + b2(X−1)

)]
≤ Cδnn−1/2

with δn = o
(
t
− 3

2
1 log−

1
2 (An)

)
.

Assumption A.1(i) contains regularity conditions on g. We assume that the
infimum of the `2-norm of g(x) is bounded away from zero, but the supremum is
allowed to increase with sample size (affecting the growth conditions in A.2(v)).
The lower bound on the infimum is not necessary and can be replaced by a
decaying sequence at the cost of stricter growth rates. The Assumptions A.1(ii)
and (iii) are tail and moment conditions on the approximation error. These as-
sumptions are mild since the number of approximating functions may increase
with sample size. Finally, Assumption A.1(iv) ensures that the violation of the
exact Neyman Orthogonality due to the approximation errors is negligible. It
is worth to notice that if b1(X1) and b2(X−1) are measurable with respect to
Z−l (for example in the linear approximate sparse setting for the conditional ex-
pectation) the exact Neyman Orthogonality holds. Now, we go more into detail
regarding the condition on the covering number of the image of g. Especially if
t1 < d1 the complexity of the approximating functions is reduced significantly.
One obtains

g(I) ⊆
(d1
t1

)⋃
j=1

g(j)(I),
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where each g(j)(I) is only dependent on t1 nonzero components. It is straight-
forward to see that for each g(j)(I) the covering numbers satisfy

N(ε, g(j)(I), ‖ · ‖2) ≤
(

6 supx∈I ‖g(x)‖2
ε

)t1
(cf. Van der Vaart and Wellner (1996)), implying

logN(ε, g(I), ‖ · ‖2) ≤ log

(d1
t1

)∑
j=1

N(ε, g(j)(I), ‖ · ‖2)


≤ log

((
e · d1

t1

)t1 (6 supx∈I ‖g(x)‖2
ε

)t1)

≤ t1 log

((
6ed1 supx∈I ‖g(x)‖2

t1

)
1

ε

)
≤ Ct1 log

(
d1

ε

)
.

For specific classes of approximating functions the complexity can be further
reduced.

Assumption A. 2.

(i) For all l = 1, . . . , d1, Θl contains a ball of radius

log(log(n))n−1/2 log1/2(d1 ∨ e) log(n)

centered at θ0,l with
sup

l=1,...,d1

sup
θl∈Θl

|θl| ≤ C.

(ii) It holds

‖β(l)
0 ‖0 ≤ s, ‖β(l)

0 ‖2 ≤ C

for all l = 1, . . . , d1 and

max
l=1,...,d1

‖γ(l)
0 ‖0 ≤ s, max

l=1,...,d1

‖γ(l)
0 ‖2 ≤ C.

(iii) There exists 1 ≤ ρ ≤ 2 such that

max
j=1,...,d1+d2

‖Zj‖Ψρ ≤ C, ‖ε‖Ψρ ≤ C.

(iv) It holds
inf
‖ξ‖2=1

E[(ξTZ)2] ≥ c and sup
‖ξ‖2=1

E[(ξTZ)4] ≤ C,

and the eigenvalues of the covariance matrix Σεν are bounded from above
and away from zero.
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(v) There exists a fixed q̄ ≥ 4 such that

(a) n
1
q̄
s2t31 log

2+ 4
ρ (d̄n) log(An)
n = o(1),

(b) n
1
q̄

supx∈I ‖g(x)‖62st
4
1 log(d̄n) log2(An)

n

(
log

2
ρ (d1) ∨ s

√
s log(d̄n)

n

)
= o(1),

(c) n
1
q̄
t13
1 log

6
ρ (d1) log7(An)

n = o(1).

Assumptions A.2(i) and (ii) are regularity and sparsity conditions, where the
number of nonzero regression coefficients s = sn is allowed to grow to infinity
with increasing sample size. A detailed comment on the sparsity condition is
given in Comment 4.2. Assumption A.2(iii) contains tail conditions on the ap-
proximating functions (and therefore on the original variables) as well as for
the error term. Assumption A.2(iv) is a standard eigenvalue condition, which
restricts the correlation between the basis elements (and therefore between the
original variables). For example, if the conditional variance of ν(l) is uniformly
bounded away from zero the second inequality of A.2(iv) holds. Finally, As-
sumption A.2(v) provides the growth conditions. These are given in general
terms and depend on the choice of the approximation functions. Choosing B-
Splines simplifies the growth conditions significantly as we discuss in Comment
4.1.

Theorem 1. Given conditions A.1 and A.2 it holds that

P
(
l̂(x) ≤ f1(x) ≤ û(x),∀x ∈ I

)
→ 1− α

uniformly over P ∈ Pn where cα is a critical value determined by a multiplier
bootstrap method.

Comment 4.1. [B-Splines] An appropriate and common choice in series esti-
mation are B-Splines. B-Splines are positive and local in the sense that g(x) ≥ 0
and supx∈I ‖g(x)‖0 ≤ t1 for every x, where t1 is the degree of the spline. The
l1-norm of B-Splines is equal to 1, meaning

‖g(x)‖1 =

d1∑
j=1

gj(x) = 1

for every x (partition of unity). Hence, Assumption A.1(i) is met with

1√
t1
≤ inf
x∈I
‖g(x)‖22 ≤ sup

x∈I
‖g(x)‖22 ≤ 1 and sup

x∈I
sup

l=1,...,d1

|gl(x)| ≤ 1.

imsart-generic ver. 2014/10/16 file: Article.tex date: April 6, 2020



Bach, Klaassen, Kueck, Spindler/ Uniform Inference in High-Dimensional GAMs 13

The covering numbers of g(I) is given by

logN(ε, g(I), ‖ · ‖2) ≤ log

 d1∑
j=1

N(ε, g(j)(I), ‖ · ‖2)


≤ t1 log

6d
1
t1
1 supx∈I ‖g(x)‖2

ε


≤ C log

(
d1

ε

)
.

Choosing the degree of the B-Splines of order t1 = log(n), the growth rates in
Assumption A.2(v) simplify to

n
1
q̄
s2 log2+ 4

ρ (d̄n) log(d1)

n
= o(1) and n

1
q̄

log7+ 6
ρ (d1)

n
= o(1).

It is worth to notice that in the first growth condition

n
1
q̄
s2 log2+ 4

ρ (d̄n) log(d1)

n
= o(1)

both the total number of approximating functions d1 and d2, and the number
of relevant functions s may grow with the sample size in a balanced way. If s
is bounded, the number of approximating functions can grow at an exponential
rate with the sample size. This means that the set of approximating functions
can be much larger than the sample size, only the number of relevant function s
has to be smaller than the sample size. This situation is common for lasso based
estimators. Our growth condition is in line with other results in the literature,
e.g., Belloni et al. (2018), Belloni et al. (2014a) and many others. The second
growth condition ensures that

n
1
q̄

log7+ 6
ρ (d1)

n
= o(1)

and is in line with Chernozhukov et al. (2013). It guarantees the validity of
multiplier bootstrap in our setting and allows us to construct uniformly valid
confidence regions.

Comment 4.2. The sparsity condition in A.2(ii) restrict the number of nonzero
regression coefficients s = sn in the Equations 2.1, 2.2 and 2.3. Through this, we
especially assume that the regression function f can be approximated sufficiently
well by only s relevant basis functions. Note that we do not directly control the
number of relevant covariables, but the number of approximating functions in
total. This is another sparsity condition as in Gregory et al. (2016) and Lu et al.
(2020) who restrict the number of relevant additive components in the GAM
model 1.1. Our model also includes the approximate sparse setting due to the
error terms b1 and b2 in 2.1 and 2.2. This is more flexible and more realistic for
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many applications.
Furthermore, we do not define θT0 g(X1) as the best projection of f1(X1) in 2.1
(and βT0 h(X−1) for f−1(X−1) in 2.2) as in Gregory et al. (2016). We only assume
a sparse projection which is ”close” to the best projection where the distance is
measured with ‖ · ‖P,2 as described in Assumption A.1(ii).

5. Simulation Results

To verify the theoretical guarantees of our estimator in practice we perform a
simulation study which is based on the settings in Gregory et al. (2016) and
Meier et al. (2009). We consider the finite sample performance of our estimator
in a high-dimensional model of the form

yi =

p∑
j=1

fj(xi,j) + εi,j ,

with i = 1, . . . , n, j = 1, . . . , p. The definition of the functions fj(xj), j =
1, . . . , j, are presented in Table 1. We extend the initial setting in Gregory
et al. (2016) to allow for heteroscedasticity, i.e., we specify εj ∼ N(0, σj) with

σj = σ · (1 + |xj |) and σ =
√

12
67 . This value for σ ensures a signal-to-noise

ratio that is comparable to the settings in Gregory et al. (2016). Data sets are
generated for scenarios with dimensions n ∈ {100, 1000} and p ∈ {50, 150}.
In all cases, sparsity is imposed by only allowing the first four components,
f1, ..., f4, to be non-zero. The regressors X are marginally uniformly distributed
on an interval I = [−2.5, 2.5] with correlation matrix Σ with Σk,l = 0.5|k−l|,
1 ≤ k, l ≤ p, which corresponds to the setting in Gregory et al. (2016) with the
strongest correlation structure.

Component Function

1 f1(x1) = − sin(2 · x)
2 f2(x2) = x2 − 25

12

3 f3(x3) = x
4 f4(x4) = exp(−x)− 2

5
· sinh( 5

2
)

5, . . . , p fj(xj) = 0.
Table 1

Definition of the functions in the data generating processes that are used in the simulation
study. Data generating processes are based on settings in Gregory et al. (2016) and Meier

et al. (2009).

In the simulation, we use the previously suggested estimator to generate
predictions f̂j(xj) for the function fj(xj) and construct simultaneous confidence

bands that are defined by l̂j(xj) and ûj(xj), accordingly. The functions fj(xj)
in the additive model are approximated using cubic B-splines. Variable selection
is performed using post-lasso with theory-based choice of the penalty level as
implemented in the R package hdm (Chernozhukov et al., 2015a). Further details
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related to the implementation and parametrization in the simulation study can
be found in Appendix C.

Table 2 presents the empirical coverage achieved by the estimated simultane-
ous 95%-confidence bands in R = 500 repetitions as constructed over an interval
of xj I = [−2, 2]. A confidence band is considered to cover the function fj(xj)
if it contains the true function entirely, i.e., if for all values of xj ∈ I it holds

that l̂j(xj) ≤ fj(xj) ≤ ûj(xj). The results serve as empirical evidence on the
validity of the method. In most cases, the empirical coverage approaches 95%
or is above the nominal level. This observation can be made even for the setting
with more regressors than observations.

n p f1 f2 f3 f4 f5
100 50 0.994 0.982 0.968 0.938 0.990
100 150 0.992 0.976 0.952 0.886 0.988
1000 50 0.998 0.980 0.962 0.848 1.000
1000 150 1.000 0.968 0.986 0.806 1.000

Table 2
Simulation results. Coverage achieved by simultaneous 0.95%-confidence bands in R = 500

repetitions as generated over a range of values of xj , I = [−2, 2].

The first two plots in Figure 1 illustrate the averaged confidence bands as
constructed for four different intervals of xj , i.e., I = [−x0, x0] with x0 =
0.5, 1.0, 1.5, 2. It can be observed that as the interval I becomes wider, the
width of the confidence bands increases, as well. The two plots at the bottom
of Figure 1 show the empirical coverage as obtained for a sequence of values
x0,j with I = [−x0,j , x0,j ] with x0,j = 0.01, 0.02, . . . , 2. Whereas the coverage
remains stable over a wide range of x0,j values, the coverage decreases slightly
for larger x0,j . This behavior arises due to boundary problems that are com-
mon in most nonparametric smoothing methods and explain the relatively low
coverage achieved for f4.
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Fig 1: Simulation results for setting with n = 100 and p = 150. (Top) Gray
shaded areas illustrate averaged 95%-confidence bands obtained in R = 500
repetitions for functions f1(x1) and f2(x2). Blue lines correspond to the esti-

mated functions f̂j(xj) and green lines to the true functions fj(xj). (Bottom)
Empirical coverage achieved by confidence bands for a sequence of values x0,j

with I(xj) = [−x0,j , x0,j ] with xj,0 = 0.01, 0.02, . . . , 2. Plots on the left refer to
f1(x1), plots on the right to f2(x2).

6. Empirical Application

As a real-data example, we apply our estimator to the Boston housing data that
has been first used in Harrison Jr and Rubinfeld (1978) and later been reassessed
in several studies, e.g., Kong and Xia (2012) and Doksum and Samarov (1995).
The data set is available via the R package mlbench (Leisch and Dimitriadou,
2010; Newman et al., 1998). The data contain information on housing prices for
n = 506 census tracts in Boston based on the 1970 census. We perform inference
on the effect of 11 continuous variables on the dependent variable MEDV which
measures the median value of owner-occupied homes (in USD 1000’s). A list of
the explanatory variables is provided in Table 3.
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MEDV median value of owner-occupied homes in USD 1000’s
LSTAT percentage of lower status of the population
CRIM per capita crime rate by town
NOX nitric oxides
TAX full-value property-tax rate per USD 10,000
AGE proportion of owner-occupied units built prior to 1940
DIST weighted distances to five Boston employment centres
RM average number of rooms per dwelling
INDUS proportion of non-retail business acres per town
ZN proportion of residential land zoned for lots over 25,000 sq.ft
BLACK 1000(B − 0.63)2 where B is the proportion of blacks by town
PTRATIO pupil-teacher ratio by town
CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)

Table 3
List of variables in the analysis of the Boston housing data.

The implemented model is given by

MEDVi =f1(LSTATi) + f2(CRIMi) + f3(NOXi) + f4(TAXi)+

f5(AGEi) + f6(DISTi) + f7(RMi) + f8(INDUSi)+

f9(ZNi) + f10(BLACKi) + f11(PTRATIOi) + γ · CHAS + εi.

As in the simulation study, the functions fj(xj) are approximated with cubic
B-splines and variable selection is performed using post-lasso with theory-based
choice of the penalty term. The smoothing parameters k = {kj , k−j} have been
determined according to a heuristic cross-validation rule that is outlined in Ap-
pendix C. The results illustrated in Figure 2 suggest nonlinear and significant
effects for the variables LSTAT and RM that are generally in line with economic
intuition and the findings in Kong and Xia (2012) and Doksum and Samarov
(1995). Whereas for small values of the LSTAT variable, i.e., the percentage of

lower status of the population, the estimated effect f̂1(LSTAT) is positive, it
decreases and, finally, becomes negative for higher values of LSTAT. The non-
linearities found for variable RM suggest that the average number of rooms per
dwelling impacts housing prices positively if the average number of rooms ex-
ceeds seven. The results for the other regressors that are presented in Appendix
C point at nonlinear effects that are, however, not significant.
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Fig 2: Plots of f̂1(LSTAT) and f̂7(RM) with simultaneous 95%-confidence bands
in the Boston housing data application.

7. Proofs

Proof of Theorem 1.
We will prove that the Assumptions A.1 and A.2 imply the Assumptions B.1-
B.5 stated in Appendix A and then the claim follows by applying Theorem 2.
Without loss of generality, we assume min(d1, n) ≥ e to simplify notation.

Assumption B.1
Both conditions (i) and (ii) are directly assumed in A.1(i). Due to A.1(ii) and
A.2(iv) it holds

E
[
(ν(l)))2

]
= E

[(
gl(X1)− (γ

(l)
0 )TZ−l − b(l)3 (Z−l)

)2]
≤ C

(
sup
‖ξ‖2=1

E[(ξTZ)2] + E
[(
b
(l)
3 (Z−l)

)2])
. C

where we used that ‖γ(l)
0 ‖2 ≤ C. It holds

E
[
(ν(l)))2

]
≥ Var(ν(l)|Z−l) ≥ c.

Since the eigenvalues of Σεν are bounded from above and away from zero,

Σn = J−1
0 Σεν(J−1

0 )T ∈ Rd1×d1

directly implies B.1(iii).
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Assumption B.2
For each l = 1, . . . , d1, the moment condition holds

E [ψl(W, θ0,l, η0,l)] = E
[(
Y − f(X)

)(
gl(X1)− (γ

(l)
0 )TZ−l − b(l)3 (Z−l)

)]
= E

[
εν(l)

]
= E

[
ν(l) E [ε|X]︸ ︷︷ ︸

=0

]
= 0.

For all l = 1, . . . , d1, define the convex set

Tl :=
{
η = (η(1), η(2), η(3), η(4))T :η(1), η(2) ∈ Rd1+d2−1,

η(3) ∈ `∞(Rp), η(4) ∈ `∞(Rd1+d2−1)
}

and endow Tl with the norm

‖η‖e := max
{
‖η(1)‖2, ‖η(2)‖2, ‖η(3)(X)‖P,2, ‖η(4)(Z−l)‖P,2

}
.

Further, let τn :=

√
s log(d̄n)

n and define the corresponding nuisance realization
set

Tl :=

{
η ∈ Tl :η(3) ≡ 0, η(4) ≡ 0, ‖η(1)‖0 ∨ ‖η(2)‖0 ≤ Cs,

‖η(1) − β(l)
0 ‖2 ∨ ‖η(2) − γ(l)

0 ‖2 ≤ Cτn,

‖η(1) − β(l)
0 ‖1 ∨ ‖η(2) − γ(l)

0 ‖1 ≤ C
√
sτn

}
∪ {η0,l}

for a sufficiently large constant C. For arbitrary random variables X and Y it
holds

‖E[X|Y ]‖Ψρ : = inf{C > 0 : E[Ψρ(|E[X|Y ]|/C)] ≤ 1}
≤ inf{C > 0 : E[E[Ψρ(|X|/C)|Y ]] ≤ 1}
= ‖X‖Ψρ .

Due to Assumption A.2(iii) this implies

max
l=1,...,d1

‖ν(l)‖Ψρ = max
l=1,...,d1

‖gl(X1)− E[gl(X1)|Z−l]‖Ψρ

≤ max
l=1,...,d1

‖gl(X1)‖Ψρ + max
l=1,...,d1

‖E[gl(X1)|Z−l]‖Ψρ

. C.
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Therefore, we are able to bound the q-th moments of the maxima by

E
[

max
l=1,...,d1

|ν(l)|q
] 1
q

= ‖ max
l=1,...,d1

|ν(l)|‖P,q

≤ q!‖ max
l=1,...,d1

|ν(l)|‖Ψ1

≤ q! log
1
ρ−1(2)‖ max

l=1,...,d1

|ν(l)|‖Ψ1

≤ Cq! log
1
ρ−1(2) log

1
ρ (1 + d1) max

l=1,...,d1

‖ν(l)|‖Ψp

≤ C log
1
ρ (d1)

where C does depend on q and ρ but not on n. For F := {εν(l) : l = 1, . . . , d1}
it holds

Sn : = E

[
sup

l=1,...,d1

∣∣√nEn [ψl(W, θ0,l, η0,l)]
∣∣]

= E

[
sup
f∈F

Gn(f)

]

and the envelope supf∈F |f | satisfies

‖ max
l=1,...,d1

εν(l)‖P,q ≤ ‖ε‖P,2q‖ max
l=1,...,d1

ν(l)‖P,2q

≤ C log
1
ρ (d1).

We can apply Lemma P.2 from Belloni et al. (2018) with |F| = d1 to obtain

Sn ≤ C log
1
2 (d1) + C log

1
2 (d1)

(
n

2
q

log
2
ρ+1(d1)

n

)1/2

. log
1
2 (d1),

due to A.2(v)(a). Finally, Assumption A.2(i) implies B.2(i). Assumption B.2(ii)
holds since for all l = 1, . . . , d1, the map (θl, ηl) 7→ ψl(X, θl, ηl) is twice continu-
ously Gateaux-differentiable on Θl×Tl, which directly implies the differentiabil-
ity of the map (θl, ηl) 7→ E[ψl(X, θl, ηl)]. Additionally, for every η ∈ Tl \ {η0,l},
we have

Dl,0[η, η0,l] := ∂t
{
E[ψl(W, θ0,l, η0,l + t(η − η0,l))]

}∣∣
t=0

= E
[
∂t
{
ψl(W, θ0,l, η0,l + t(η − η0,l))

}]∣∣
t=0

= E
[
∂t

{(
Y − θ0,lgl(X1)−

(
η

(1)
0,l + t(η(1) − η(1)

0,l )
)T
Z−l

−
(
η

(3)
0,l (X) + t(η(3)(X)− η(3)

0,l (X))
))

(
gl(X1)−

(
η

(2)
0,l + t(η(2) − η(2)

0,l )
)T
Z−l
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−
(
η

(4)
0,l (Z−l) + t(η(4)(Z−l)− η(4)

0,l (Z−l))
))}]∣∣∣∣

t=0

= E
[
ε(η

(2)
0,l − η

(2))TZ−l

]
+ E

[
ν(l)(η

(1)
0,l − η

(1))TZ−l

]
+ E

[
ε
(
η

(4)
0,l (Z−l)− η

(4)(Z−l)
)]

+ E
[
ν(l)

(
η

(3)
0,l (X)− η(3)(X)

)]
with

E
[
ε(η

(2)
0,l − η

(2))TZ−l

]
= E

[
((η

(2)
0,l − η

(2))TZ−lE[ε|X]
]

= 0,

E
[
ν(l)(η

(1)
0,l − η

(1))TZ−l

]
= E

[
(η

(1)
0,l − η

(1))TZ−lE[ν(l)|Z−l]
]

= 0,

E
[
ε
(
η

(4)
0,l (Z−l)− η

(4)(Z−l)
)]

= E
[(
η

(4)
0,l (Z−l)− η

(4)(Z−l)
)
E[ε|X]

]
= 0

and

E
[
ν(l)

(
η

(3)
0,l (X)− η(3)(X)

)]
= E

[
ν(l)
(
b1(X1) + b2(X−1)

)]
≤ Cδnn−1/2

due to Assumption A.1 with δn = o
(
t
− 3

2
1 log−

1
2 (An)

)
. Due to the linearity of the

score and the moment condition it holds

E[ψl(W, θl, η0,l)] = J0,l(θl − θ0,l)

and due to
|J0,l| = E

[
(ν(l))2

]
Assumption B.2(iv) is satisfied.
For all t ∈ [0, 1), l = 1, . . . , d1, θl ∈ Θl, ηl ∈ Tl \ {η0,l} we have

E
[
(ψl(W, θl, ηl)− ψl(W, θ0,l, η0,l))

2
]

= E
[
(ψl(W, θl, ηl)− ψl(W, θ0,l, ηl) + ψl(W, θ0,l, ηl)− ψl(W, θ0,l, η0,l))

2
]

≤ C

(
E
[
(ψl(W, θl, ηl)− ψl(W, θ0,l, ηl))

2
]

∨ E
[
(ψl(W, θ0,l, ηl)− ψl(W, θ0,l, η0,l))

2
])

with

E
[
(ψl(W, θl, ηl)− ψl(W, θ0,l, ηl))

2
]

= |θl − θ0,l|2E
[(
gl(X1)(gl(X1)− (η

(2)
l )TZ−l)− η(4)

l (Z−l)
)2
]

≤ C|θl − θ0,l|2
(
E
[
gl(X1)4

]
E
[(
gl(X1)− (η

(2)
l )TZ−l − η(4)

l (Z−l)
)4
]) 1

2

≤ C|θl − θ0,l|2
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due to Assumption A.2(ii), (iv) and the definition of Tl. With similar arguments
we obtain

E
[
(ψl(W, θ0,l, ηl)− ψl(W, θ0,l, η0,l))

2
]

= E

[((
Y − θ0,lgl(X1)− (η

(1)
l )TZ−l − η(3)

l (X)
)(
gl(X1)− (η

(2)
l )TZ−l − η(4)

l (Z−l)
)

−
(
Y − θ0,lgl(X1)− (η

(1)
0,l )

TZ−l − η(3)
0,l (X)

)(
gl(X1)− (η

(2)
0,l )

TZ−l − η(4)
0,l (Z−l)

))2
]

= E

[((
Y − θ0,lgl(X1)− (η

(1)
l )TZ−l − η(3)

l (X)
)

·
(

(η
(2)
0,l − η

(2)
l )TZ−l + η

(4)
0,l (Z−l)− η

(4)
l (Z−l)

)
+
(
gl(X1)− (η

(2)
0,l )

TZ−l − η(4)
0,l (Z−l)

)
·
(

(η
(1)
0,l − η

(1)
l )TZ−l + η

(3)
0,l (X)− η(3)

l (X)
))2

]

≤ C

(
‖η(2)

0,l − η
(2)
l ‖2 ∨ ‖η

(1)
0,l − η

(1)
l ‖2 ∨ ‖η

(3)
0,l (X)‖P,2 ∨ ‖η(4)

0,l (Z−l)‖P,2
)2

= C‖η0,l − ηl‖2e
where we used the definition of Tl, A.1(iii) and

sup
‖ξ‖2=1

E[(ξTZ)4] ≤ C.

Therefore, Assumption B.2(v)(a) holds with ω = 2 since it is straightforward to
show Assumption B.2(v) for ηl = η0,l. It holds∣∣∣∣∂tE[ψl(W, θl, η0,l + t(ηl − η0,l))

]∣∣∣∣
=

∣∣∣∣E[∂t{(Y − θ0,lgl(X1)−
(
η

(1)
0,l + t(η

(1)
l − η

(1)
0,l )
)T
Z−l

−
(
η

(3)
0,l (X) + t(η

(3)
l (X)− η(3)

0,l (X))
))

·
(
gl(X1)−

(
η

(2)
0,l + t(η

(2)
l − η

(2)
0,l )
)T
Z−l

−
(
η

(4)
0,l (Z−l) + t(η

(4)
l (Z−l)− η(4)

0,l (Z−l))
))}]∣∣∣∣

=

∣∣∣∣E[(Y − θ0,lgl(X1)− (η
(1)
0,l + t(η

(1)
l − η

(1)
0,l ))

TZ−l

− (η
(3)
0,l (X) + t(η

(3)
l (X)− η(3)

0,l (X)))
)

·
(

(η
(2)
0,l − η

(2)
l ))TZ−l + η

(4)
0,l (Z−l)− η

(4)
l (Z−l)

)
imsart-generic ver. 2014/10/16 file: Article.tex date: April 6, 2020



Bach, Klaassen, Kueck, Spindler/ Uniform Inference in High-Dimensional GAMs 23

+
(
gl(X1)− (η

(2)
0,l + t(η

(2)
l − η

(2)
0,l ))

TZ−l

−
(
η

(4)
0,l (Z−l) + t(η

(4)
l (Z−l)− η(4)

0,l (Z−l))
))

·
(

(η
(1)
0,l − η

(1)
l )TZ−l + η

(3)
0,l (X)− η(3)

l (X)
)]∣∣∣∣

= |I1,1 + I1,2 + I1,3 + I1,4|,

with

I1,1 = E
[(
Y − θ0,lgl(X1)− (η

(1)
0,l + t(η

(1)
l − η

(1)
0,l ))

TZ−l

− (η
(3)
0,l (X) + t(η

(3)
l (X)− η(3)

0,l (X)))
)(

(η
(2)
0,l − η

(2)
l ))TZ−l

)]
≤ C‖η(2)

0,l − η
(2)
l ‖2,

I1,2 = E
[(
Y − θ0,lgl(X1)− (η

(1)
0,l + t(η

(1)
l − η

(1)
0,l ))

TZ−l

− (η
(3)
0,l (X) + t(η

(3)
l (X)− η(3)

0,l (X)))
)(
η

(4)
0,l (Z−l)

)]
≤ C‖η(4)

0,l (X)‖P,2,

I1,3 = E
[(
gl(X1)− (η

(2)
0,l + t(η

(2)
l − η

(2)
0,l ))

TZ−l

−
(
η

(4)
0,l (Z−l) + t(η

(4)
l (Z−l)− η(4)

0,l (Z−l))
))(

(η
(1)
0,l − η

(1)
l )TZ−l

)]
≤ C‖η(1)

0,l − η
(1)
l ‖2,

I1,4 = E
[(
gl(X1)− (η

(2)
0,l + t(η

(2)
l − η

(2)
0,l ))

TZ−l

−
(
η

(4)
0,l (Z−l) + t(η

(4)
l (Z−l)− η(4)

0,l (Z−l))
))(

η
(3)
0,l (X)

)]
≤ C‖η(3)

0,l (X)‖P,2.

This implies Assumption B.2(v)(b) with B1n = C. Finally, to obtain Assumption
B.2(v)(c) with B2n = C we note that

∂2
t E [ψl(W, θ0,l + t(θl − θ0,l), η0,l + t(ηl − η0,l))]

= ∂tE
[(
Y −

(
θ0,l + t(θl − θ0,l)

)
gl(X1)−

(
η

(1)
0,l + t(η

(1)
l − η

(1)
0,l )
)T
Z−l

−
(
η

(3)
0,l (X) + t(η

(3)
l (X)− η(3)

0,l (X))
))

·
(

(η
(2)
0,l − η

(2)
l ))TZ−l + η

(4)
0,l (Z−l)

)
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+
(
gl(X1)−

(
η

(2)
0,l + t(η

(2)
l − η

(2)
0,l )
)T
Z−l

−
(
η

(4)
0,l (Z−l) + t(η

(4)
l (Z−l)− η(4)

0,l (Z−l))
))

·
(

(θ0,l − θl))gl(X1) + (η
(1)
0,l − η

(1)
l )TZ−l + η

(3)
0,l (X)

)]
= 2E

[(
(θ0,l − θl)gl(X1) + (η

(1)
0,l − η

(1)
l )TZ−l + η

(3)
0,l (X)

)
·
(

(η
(2)
0,l − η

(2)
l ))TZ−l + η

(4)
0,l (Z−l)

)]
≤C

(
|θ0,l − θl|2 ∨ ‖η0,l − ηl‖2e

)
using the same arguments as above.

Assumption B.3
Note that the Assumptions B.3(ii) and (iii) both hold by the construction of
Tl and the Assumptions A.1(ii) and A.2(ii). The main part to verify Assump-
tion B.3 is to show that the estimates of the nuisance function are contained
in the nuisance realization set with high probability. We will rely on uniform
lasso estimation results stated in Appendix B. Therefore, we have to check the
Assumptions C.1(i) to (v). Due to Assumption A.2(iii) it holds

max
j=1,...,d1+d2

‖Zj‖Ψρ ≤ C and max
l=1,...,d1

‖ν(l)‖Ψρ ≤ C,

which are the tail conditions in Assumption C.1(i) for the auxiliary regressions.
Assumption C.1(ii) is directly implied by Assumption A.2(iv) and

min
l=1,...,d1

min
j 6=l

E
[
(ν(l))2Z2

−l,j
]

= min
l=1,...,d1

min
j 6=l

E
[
Z2
−l,j E[(ν(l))2|Z−l]︸ ︷︷ ︸

=Var(ν(l)|Z−l)≥c

]
≥ c.

Additionally, the uniform sparsity condition in Assumption C.1(iii) holds by As-
sumption A.2(ii) and the growth condition in Assumption C.1(iv) by Assump-
tion A.2(v)(a). Finally, the condition on the approximation error in Assumption
C.1(v) holds due to A.1(ii). Therefore,

η̂
(2)
l ∈ Tl for all l = 1, . . . , d1

with probability 1− o(1). To estimate η
(1)
0,l we run one lasso regression of Y on

Z. With analogous arguments it holds

‖β(l)
0 − β̂(l)‖0 ≤ ‖θ̂‖0 + ‖β̂‖0 ≤ Cs,

‖β(l)
0 − β̂(l)‖2 ≤

√
‖θ − θ̂‖22 + ‖β0 − β̂‖22 ≤ C

√
s log(d̄n)

n
,

‖β(l)
0 − β̂(l)‖1 ≤ ‖θ − θ̂‖1 + ‖β0 − β̂‖1 ≤ C

√
s2 log(d̄n)

n
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with probability 1− o(1) using Assumptions A.1(ii), A.2(ii)-(v) and

min
l=1,...,d1+d2

E
[
ε2Z2

l

]
= min
l=1,...,d1+d2

E
[
Z2
l E[ε2|X]︸ ︷︷ ︸

=Var(ε|X)≥c

]
≥ c.

This directly implies that with probability 1− o(1) the nuisance realization set

Tl contains η̂
(1)
l for all l = 1, . . . , d1.

Combining the results above with η̂(3) ≡ 0 and η̂(4) ≡ 0 we obtain Assumption
B.3(i). Define

F1 :=
{
ψl(·, θl, ηl) : l = 1, . . . , d1, θl ∈ Θl, ηl ∈ Tl

}
.

To bound the complexity of F1 we exclude the true nuisance function (the true
nuisance function is the only element of Tl with a nonzero approximation error)

F1,1 :=
{
ψl(·, θl, ηl) : l = 1, . . . , d1, θl ∈ Θl, ηl ∈ Tl \ {η(l)

0 }
}
⊆ F (1)

1,1F
(2)
1,1

with

F (1)
1,1 :=

{
W 7→ Y − θlgl(X1)− (η

(1)
l )TZ−l : l = 1, . . . , d1, θl ∈ Θl, ηl ∈ Tl \ {η(l)

0 }
}

F (2)
1,1 :=

{
W 7→ gl(X1)− (η

(2)
l )TZ−l : l = 1, . . . , d1, θl ∈ Θl, ηl ∈ Tl \ {η(l)

0 }
}
.

Note that the envelope F
(1)
1,1 of F (1)

1,1 satisfies

‖F (1)
1,1 ‖P,2q ≤

∥∥∥∥ sup
l=1,...,d1

sup
θl∈Θl,‖η(1)

0,l−η
(l)
l ‖1≤C

√
sτn

(
|ε|+ |η(3)

0 (X)|

+ |(θ0,l − θl)gl(X1)|+ |(η(1)
0,l − η

(1)
l )TZ−l|

)∥∥∥∥
P,2q

. ‖ε‖P,2q + ‖η(3)
0 (X)‖P,2q + ‖ sup

l=1,...,d1

gl(X1)‖P,2q

+
√
sτn‖ sup

j=1,...,d1+d2

Zj‖P,2q

. C + log
1
ρ (d1) +

√
sτn log

1
ρ (d1 + d2)

. log
1
ρ (d1)

due to A.1(ii), A.2(v) and analogously

‖F (2)
1,1 ‖P,2q . log

1
ρ (d1),

where we assumed d1 ≥ 2 without loss of generality. Next, note that due to
Lemma 2.6.15 from Van der Vaart and Wellner (1996) the set

G1,1 :=
{
Z 7→ ξTZ : ξ ∈ Rd1+d2+1, ‖ξ‖0 ≤ Cs, ‖ξ‖2 ≤ C

}
is a union over

(
d1+d2+1

Cs

)
VC-subgraph classes G1,1,k with VC indices less or

equal to Cs+2. Therefore, F (1)
1,1 and F (2)

1,1 are unions over
(
d1+d2+1

Cs

)
respectively
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d1+d2

Cs

)
VC-subgraph classes, which combined with Theorem 2.6.7 from Van der

Vaart and Wellner (1996) implies

sup
Q

logN(ε‖F (1)
1,1 ‖Q,2,F

(1)
1,1 , ‖ · ‖Q,2) . s log

(
d1 + d2

ε

)
and

sup
Q

logN(ε‖F (2)
1,1 ‖Q,2,F

(2)
1,1 , ‖ · ‖Q,2) . s log

(
d1 + d2

ε

)
.

Using basic calculations we obtain

sup
Q

logN(ε‖F (1)
1,1F

(2)
1,1 |Q,2,F1,1, ‖ · ‖Q,2) . s log

(
d1 + d2

ε

)
,

where F1,1 := F
(1)
1,1F

(2)
1,1 is an envelope for F1,1 with

‖F1,1‖P,q ≤ ‖F (1)
1,1 ‖P,2q‖F

(2)
1,1 ‖P,2q . log

2
ρ (d1).

Define
F1,2 :=

{
ψl(·, θl, η0,l) : l = 1, . . . , d1, θl ∈ Θl

}
and with an analogous argument we obtain

sup
Q

logN(ε‖F1,2‖Q,2,F1,2, ‖ · ‖Q,2) . log

(
d1

ε

)
,

where the envelope F1,2 of F1,2 obeys

‖F1,2‖P,q . log
2
ρ (d1).

Combining the results above we obtain

sup
Q

logN(ε‖F1‖Q,2,F1, ‖ · ‖Q,2) . s log

(
d1 + d2

ε

)
,

where the envelope F1 := F
(1)
1,1F

(2)
1,1 ∨ F1,2 of F1 satisfies

‖F1‖P,q . log
2
ρ (d1).

Therefore, Assumption B.3(iv) holds with υn . s, an = d1 ∨ d2 and Kn .

log
2
ρ (d1). For all f ∈ F1, we have

E[f2]
1
2 . sup

‖ξ‖2=1

E[(ξTZ)4]
1
2 . C
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and for each l = 1, . . . , d1

E
[
ψl(W, θl, ηl)

2
] 1

2

= E
[(
Y − θlgl(X1)− (η(1))TZ−l − η(3)(X)

)2(
gl(X1)− (η(2))TZ−l − η(4)(Z−l)

)2] 1
2

= E
[(
gl(X1)− (η(2))TZ−l − η(4)(Z−l)

)2
· E
[(
Y − θlgl(X1)− (η(1))TZ−l − η(3)(X)

)2|X]︸ ︷︷ ︸
≥V ar(ε|X)≥c

] 1
2

≥ c

due to Assumption A.2(iv). This implies Assumption B.3(v). Assumption B.3(vi)(a)
holds by the definition of τn and υn . s. For the next growth condition we note

(B1nτn + Sn log(n)/
√
n)ω/2(υn log(an))1/2 + n−1/2+1/qυnKn log(an)

. (τn + log
1
2 (d1) log(n)/

√
n)(s log(an))1/2 + n−1/2+1/qs log

2
ρ (d1) log(an)

.

(
n

2
q
s2 log2+ 4

ρ (d̄n)

n

) 1
2

. δn

with δn = o
(
t
− 3

2
1 log−

1
2 (An)

)
due to Assumption A.2(v)(a) and analogously

n1/2B2
1nB

2
2nτ

2
n . n1/2τ2

n =

√
s2 log2(d̄n)

n
. δn,

since q can be chosen arbitrarily large.

Assumption B.4(i)− (ii)
Define

F0 := {ψx(·) : x ∈ I},

where ψx(·) := (g(x)TΣng(x))−1/2g(x)TJ−1
0 ψ(·, θ0, η0). We note that for any

q > 0 the envelope F0 of F0 satisfies

‖F0‖P,q = E
[
sup
x∈I

∣∣∣(g(x)TΣng(x))−1/2g(x)TJ−1
0 ψ(W, θ0, η0)

∣∣∣q] 1
q

. E
[
sup
x∈I

∣∣g(x)TJ−1
0 ψ(W, θ0, η0)

∣∣q] 1
q

= E

[
sup
x∈I

∣∣∣∣∣
d1∑
l=1

gl(x)J−1
0,l ψl(W, θ0,l, η0,l)

∣∣∣∣∣
q] 1

q
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. E

[
sup
x∈I

∣∣∣∣∣
d1∑
l=1

gl(x)εν(l)

∣∣∣∣∣
q] 1

q

. t1E

[
sup

l=1,...,d1

∣∣∣εν(l)
∣∣∣q] 1

q

. t1 log
1
ρ (d1).

By using the same argument as above we directly obtain B.4(ii) with

Ln . t31 log
3
ρ (d1).

Therefore, we can find a larger envelope F̃0 with

‖F̃0‖P,q . t31 log
3
ρ (d1).

To bound the entropy of F0 we note that∥∥ψx(W )− ψx̃(W )
∥∥
P,2

=
∥∥∥(g(x)TΣng(x))−1/2

d1∑
l=1

gl(x)E[(ν(l))2]−1ψl(W, θ0,l, η0,l)

− (g(x̃)TΣng(x̃))−1/2
d1∑
l=1

gl(x̃)E[(ν(l))2]−1ψl(W, θ0,l, η0,l)
∥∥∥
P,2

≤ |(g(x)TΣng(x))−1/2 − (g(x̃)TΣng(x̃))−1/2|

·
∥∥∥ d1∑
l=1

gl(x)E[(ν(l))2]−1ψl(W, θ0,l, η0,l)
∥∥∥
P,2

+ (g(x̃)TΣng(x̃))−1/2
∥∥∥ d1∑
l=1

(
gl(x)− gl(x̃)

)
E[(ν(l))2]−1ψl(W, θ0,l, η0,l)

∥∥∥
P,2

= |(g(x)TΣng(x))−1/2 − (g(x̃)TΣng(x̃))−1/2|
∥∥∥g(x)TJ−1

0 ψ(W, θ0,l, η0,l)
∥∥∥
P,2

+ (g(x̃)TΣng(x̃))−1/2
∥∥∥(g(x)− g(x̃)

)T
J−1

0 ψ(W, θ0,l, η0,l)
∥∥∥
P,2

. |(g(x)TΣng(x))−1/2 − (g(x̃)TΣng(x̃))−1/2| sup
x∈I
‖g(x)‖2

+ ‖g(x)− g(x̃)‖2

due to the sub-multiplicativity of the spectral norm and the bounded eigenval-
ues.
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Additionally, it holds

|(g(x)TΣng(x))−1/2 − (g(x̃)TΣng(x̃))−1/2|

.

∣∣∣∣∣
(
g(x̃)TΣng(x̃)

g(x)TΣng(x)

)1/2

− 1

∣∣∣∣∣
. |g(x̃)TΣng(x̃)− g(x)TΣng(x)|
= |(g(x)− g(x̃))TΣn(g(x) + g(x̃))|
≤ |〈Σn(g(x)− g(x̃)), (g(x) + g(x̃))〉|
. ‖g(x)− g(x̃)‖2 sup

x
‖g(x)‖2

which implies∥∥ψx(W )− ψx̃(W )
∥∥
P,2

. ‖g(x)− g(x̃)‖2 sup
x
‖g(x)‖22.

Using the same argument as in Theorem 2.7.11 from Van der Vaart and Wellner
(1996) we obtain

sup
Q

logN(ε‖F̃0‖Q,2,F0, ‖ · ‖Q,2)

. sup
Q

logN

((
εt31 log

3
ρ (d1)

supx ‖g(x)‖22

)
sup
x
‖g(x)‖22,F0, ‖ · ‖Q,2

)

≤ logN

((
εt31 log

3
ρ (d1)

supx ‖g(x)‖22

)
, g(I), ‖ · ‖2

)

. t1 log

(
An
ε

)
.

Therefore, Assumption B.4(i) is satisfied with %n = t1.

Assumption B.5
Next, we want to prove that with probability 1− o(1) it holds

sup
l=1,...,d1

|Ĵl − J0,l| = o(1),

where Ĵl = En[−gl(X1)(gl(X1)− (η̂
(2)
l )TZ−l)]. It holds

|Ĵl − J0,l| ≤ |Ĵl − E[−gl(X1)(gl(X1)− (η̂
(2)
l )TZ−l)]|

+ |E[−gl(X1)(gl(X1)− (η̂
(2)
l )TZ−l)] + J0,l|

with

|E[−gl(X1)(gl(X1)− (η̂
(2)
l )TZ−l)] + J0,l|

≤|E[gl(X1)(η̂
(2)
l − η

(2)
0,l )

TZ−l)]|+ |E[gl(X1)η
(4)
0,l (Z−l)]|

. τn.
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Let

G̃1 :=

{
X 7→ −gl(X1)(gl(X1)− (η

(2)
l )TZ−l) : l = 1, . . . , d1, ‖η(2)

l ‖0 ≤ Cs,

‖η(2)
l − η

(2)
0,l ‖2 ≤ Cτn, ‖η

(2) − η(2)
0,l ‖1 ≤ C

√
sτn

}
.

The envelope G̃1 of G̃1 satisfies

E[G̃q1]
1
q ≤ E

 sup
l=1,...,d1

sup
η(2):‖η(2)

l −η
(2)
0,l ‖2≤C

√
sτn

|gl(X1)|q|(gl(X1)− (η
(2)
l )TZ−l)|q

 1
q

≤ ‖ sup
l=1,...,d1

gl(X1)‖P,2q

· E

 sup
l=1,...,d1

sup
η(2):‖η(2)

l −η
(2)
0,l ‖2≤C

√
sτn

|(gl(X1)− (η
(2)
l )TZ−l)|2q

 1
2q

. log
1
ρ (d1)

(
‖ sup
l=1,...,d1

ν(l)‖P,2q ∨ ‖ sup
l=1,...,d1

b
(l)
3 (Z−l)‖P,2q

∨ E
[

sup
l=1,...,d1

sup
η(2):‖η(2)

l −η
(2)
0,l ‖2≤C

√
sτn

(η
(2)
0,l − η

(2)
l )TZ−l)

2q

] 1
2q
)

. log
1
ρ (d1)

(
log

1
ρ (d1) ∨

√
sτn log

1
ρ (d1 + d2)

)
. log

2
ρ (d1)

and with the same arguments as above we obtain

sup
Q

logN(ε‖G̃1‖Q,2, G̃1, ‖ · ‖Q,2) . s log

(
d1 + d2

ε

)
.

Therefore, by using Lemma P.2 from Belloni et al. (2018) it holds

sup
l=1,...,d1

|Ĵl − J0,l| . sup
f∈G̃1

|En[f(X)]− E[f(X)]|+ τn

. K

(√
s log(d̄n)

n
+ n

1
q
s log

2
ρ (d1) log(d̄n)

n

)
+ τn

with probability 1− o(1). Next, we want to bound the restricted eigenvalues of
Σ̂εν with high probability, by showing

sup
‖v‖2=1,‖v‖0≤t1

|vT
(
Σ̂εν − Σεν

)
v| . un (7.1)

with

un . t1

(
n

1
q log

2
ρ (d1)τ2

n ∨ sτ3
n

) 1
2
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for a suitable q̃ > q̄. Define ξi := εiνi, ξ̂i := ε̂iν̂i and observe that

Σ̂εν − Σεν

=
1

n

n∑
i=1

ξ̂iξ̂
T
i − E[ξiξ

T
i ]

=
1

n

n∑
i=1

ξiξ
T
i − E[ξiξ

T
i ]

+
1

n

n∑
i=1

ξi
(
ξ̂i − ξi

)T
+

1

n

n∑
i=1

(
ξ̂i − ξi

)
ξTi +

1

n

n∑
i=1

(
ξ̂i − ξi

)(
ξ̂i − ξi

)T
.

Using the Lemma Q.1 from Belloni et al. (2018) we can bound the first part.
Due to the tail conditions on ε and ν we obtain(

E
[

max
1≤i≤n

‖εiνi‖2∞
])1/2

≤
(
E
[

max
1≤i≤n

‖εi‖4
]
E
[

max
1≤i≤n

‖νi‖4∞
])1/4

. n
2
q log

1
ρ (d1)

for an arbitrary but fixed q ≥ 4. Then Lemma Q.1 implies

E

[
sup

‖v‖2=1,‖v‖0≤t1

∣∣∣vT( 1

n

n∑
i=1

ξiξ
T
i − E[ξiξ

T
i ]
)
v
∣∣∣]

= E

[
sup

‖v‖2=1,‖v‖0≤t1

∣∣∣En[(vT ξi)2 − E
[(
vT ξi

)2]]∣∣∣]
. δ̃2

n + δ̃n

with

δ̃n .
(
n

4
q log

2
ρ (d1)t1 log2(t1) log(d1) log(n)n−1

) 1
2

.

(
n

5
q
t1 log1+ 2

ρ (d1)

n

) 1
2

and

δ̃2
n

u2
n

.
(
n

1
q̃−

5
q t1s

)−1

= o(1)

for q > 5q̃. Using Markov’s inequality we directly obtain

sup
‖v‖2=1,‖v‖0≤t1

∣∣∣vT( 1

n

n∑
i=1

ξiξ
T
i − E[ξiξ

T
i ]
)
v
∣∣∣ . un
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with probability 1− o(1). Note that by applying the results on covariance esti-
mation from Chen et al. (2012) instead would lead to comparable growth rates.
With probability 1− o(1) it holds

sup
l=1,...,d1

|θ̂l − θ0,l| . τn

due to Appendix A from Belloni et al. (2018). Define

G̃2
2 :=

{
(ψl(·, θl, ηl)− ψl(·, θ0,l, η0,l))

2 :l = 1, . . . , d1, |θl − θ0,l| ≤ Cτn
ηl ∈ Tl \ {η0,l}

}
,

with

sup
Q

logN(ε‖G̃2
2‖Q,2, G̃2

2 , ‖ · ‖Q,2) . s log

(
d1 + d2

ε

)
.

Here, G̃2
2 is a measurable envelope of G̃2

2 with

G̃2
2 = sup

l=1,...,d1

sup
θl:|θl−θ0,l|≤Cτn,ηl∈Tl

(
ψl(W, θl, ηl)− ψl(W, θ0,l, η0,l)

)2
and

‖G̃2
2‖P,q

.
∥∥∥ sup
l,θl,η

(2)
l ,η

(4)
l

(
(θ0,l − θl)gl(X1)

(
gl(X1)− (η

(2)
l )TZ−l − η(4)

l (Z−l)
))2∥∥∥

P,q

+
∥∥∥ sup
l,ηl

((
Y − θ0,lgl(X1)− (η

(1)
l )TZ−l − η(3)

l (X)
)

(
(η

(2)
0,l − η

(2)
l )TZ−l + η

(4)
0,l (Z−l)− η

(4)
l (Z−l)

))2∥∥∥
P,q

+
∥∥∥ sup
l,η

(1)
l ,η

(3)
l

((
gl(X1)− (η

(2)
0,l )

TZ−l − η(4)
0,l (Z−l)

)
(
(η

(1)
0,l − η

(1)
l )TZ−l + η

(3)
0,l (X)− η(3)

l (X)
))2∥∥∥

P,q

=: T1 + T2 + T3.

It holds

T1 . τ2
n

∥∥∥ sup
l,η

(2)
l ,η

(4)
l

(
gl(X1)

(
gl(X1)− (η

(2)
l )TZ−l − η(4)

l (Z−l)
))2∥∥∥

P,q

≤ τ2
n‖ sup

l
(gl(X1))2‖P,2q

∥∥∥ sup
l,η

(2)
l ,η

(4)
l

(
gl(X1)− (η

(2)
l )TZ−l − η(4)

l (Z−l)
)2∥∥∥

P,2q

. τ2
n log

4
ρ (d1),
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T2 ≤
∥∥∥ sup
l,η

(1)
l ,η

(3)
l

(
Y − θ0,lgl(X1)− (η

(1)
l )TZ−l − η(3)

l (X)
)2∥∥∥

P,2q∥∥∥ sup
l,η

(2)
l ,η

(4)
l

(
(η

(2)
0,l − η

(2)
l )TZ−l + η

(4)
0,l (Z−l)− η

(4)
l (Z−l)

)2∥∥∥
P,2q

. sτ2
n

∥∥∥ sup
l
‖Z−l‖2∞

∥∥∥
P,2q

+ log
2
ρ (d1)

. sτ2
n log

2
ρ (d1 + d2) + log

2
ρ (d1)

and

T3 ≤ ‖ sup
l

(ν(l))2‖P,2q
∥∥∥ sup
l,η

(1)
l ,η

(3)
l

(
η

(1)
0,l − η

(1)
l )TZ−l + η

(3)
0,l (X)− η(3)

l (X)
)2∥∥∥

P,2q

. log
2
ρ (d1)

(
sτ2
n

∥∥∥ sup
l
‖Z−l‖2∞

∥∥∥
P,2q

+ 1
)

. log
2
ρ (d1)

(
sτ2
n log

2
ρ (d1 + d2) + 1

)
.

By using an analogous argument as above we obtain

σ̃ : = sup
f∈G̃2

2

E
[
f(X)2

] 1
2

= sup
l=1,...,d1

sup
θl:|θl−θ0,l|≤Cτn,ηl∈Tl

E
[
(ψl(W, θl, ηl)− ψl(W, θ0,l, η0,l))

4
] 1

2

.
s2 log(d1 ∨ d2)

n
.

Again, we can apply Lemma P.2 from Belloni et al. (2018) to obtain

sup
f∈G̃2

2

|En[f(X)]− E[f(X)]| ≤ K
(
σ̃

√
s log(d̄n)

n
+ n

1
q ‖G̃2

2‖P,q
s log(d̄n)

n

)
. sτ3

n ∨ n
1
q log

2
ρ (d1)τ2

n

with probability 1−o(1). Note that we have already shown Assumption B.2(v)(a)
which implies

sup
f∈G̃2

2

E[f(X)] ≤ C
(
|θl − θ0,l|2 ∨ ‖η0,l − ηl‖2e

)
. τ2

n.

Combined this implies

sup
l=1,...,d1

En
[(
ε̂iν̂

(l)
i − εiν

(l)
i

)2
]
≤ sup
f∈G̃2

2

En[f(X)] . n
1
q log

2
ρ (d1)τ2

n ∨ sτ3
n
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and with an analogous argument we obtain

sup
l=1,...,d1

En
[(
εiν

(l)
i

)2
]
. 1.

Therefore, it holds

sup
‖v‖2=1,‖v‖0≤t1

|vT 1

n

n∑
i=1

ξi
(
ξ̂i − ξi

)T
v|

= sup
‖v‖2=1,‖v‖0≤t1

|En
[
vT ξi

(
ξ̂i − ξi

)T
v
]
|

≤ sup
‖v‖2=1,‖v‖0≤t1

∣∣∣∣∣
(
En
[(
vT ξi

)2]En [(vT (ξ̂i − ξi))2
]) 1

2

∣∣∣∣∣
. sup
‖v‖2=1,‖v‖0≤t1

∣∣∣∣∣
(
En
[(
vT
(
ξ̂i − ξi

))2
]) 1

2

∣∣∣∣∣
= sup
‖v‖2=1,‖v‖0≤t1

(
d1∑
k=1

d1∑
l=1

vkvlEn
[
(ε̂iν̂

(k)
i − εiν(k)

i )(ε̂iν̂
(l)
i − εiν

(l)
i )
]) 1

2

. t1 sup
l=1,...,d1

En
[
(ε̂iν̂

(l)
i − εiν

(l)
i )2

] 1
2

. t1

(
n

1
q log

2
ρ (d1)τ2

n ∨ sτ3
n

) 1
2

and

sup
‖v‖2=1,‖v‖0≤t1

|vT 1

n

n∑
i=1

(
ξ̂i − ξi

)(
ξ̂i − ξi

)T
v| . t21

(
n

1
q log

2
ρ (d1)τ2

n ∨ sτ3
n

)
with probability 1− o(1). Combining the steps above implies (7.1) if un = o(1)
which is ensured by the growth conditions. Next, note that for every sparse
vector w ∈ Rd1 (‖w‖0 ≤ t1) there exists a corresponding matrix Mw

Mw ∈ Rd1×d1 : (Mw)k,l =

{
1 if wk 6= 0 ∧ wl 6= 0

0 else,

such that

wT (Σ̂εν − Σεν)w = wT
(
Mw � (Σn − Σ̂n)

)
w.

Due to (7.1) it holds

sup
‖w‖0≤t1

sup
‖v‖2=1

∣∣∣vT (Mw � (Σ̂εν − Σεν)
)
v
∣∣∣ ≤ sup

‖v‖2=1,‖v‖0≤t1

∣∣∣vT (Σ̂εν − Σεν)v
∣∣∣ . un,
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which implies

sup
‖w‖0≤t1

‖Mw � (Σ̂εν − Σεν)‖2 . un

and

sup
‖w‖0≤t1

‖Mw � Σ̂εν‖2 . 1

due to Assumption A.2(iv). This can be used to show for v ∈ Rd1

sup
‖v‖2=1,‖v‖0≤t1

|vT
(
Σ̂n − Σn

)
v| . un (7.2)

with probability 1 − o(1) which can be interpreted as an upper bound for the
sparse eigenvalues of Σ̂n − Σn. It holds

Σ̂n − Σn = Ĵ−1Σ̂εν(Ĵ−1)T − J−1
0 Σεν(J−1

0 )T

= Ĵ−1Σ̂εν
(
Ĵ−1 − J−1

0 )T +
(
Ĵ−1 − J−1

0

)
Σ̂εν(J−1

0 )T

+ J−1
0

(
Σ̂εν − Σεν

)(
J−1

0 )T .

Note that

sup
‖v‖2=1,‖v‖0≤t1

|vT Ĵ−1Σ̂εν
(
Ĵ−1 − J−1

0 )T v|

= sup
‖v‖2=1,‖v‖0≤t1

|vT Ĵ−1
(
Mv � Σ̂εν

) (
Ĵ−1 − J−1

0 )T v|

≤
∥∥∥Ĵ−1

∥∥∥
2

sup
‖w‖0≤t1

∥∥∥(Mw � Σ̂εν

)∥∥∥
2

∥∥∥(Ĵ−1 − J−1
0 )T

∥∥∥
2

. n
1
q
s log

2
ρ (d1) log(d̄n)

n
+ τn

due to the sub-multiplicative spectral norm and an analogous argument holds
for the second term. The third term can be bounded by

sup
‖v‖2=1,‖v‖0≤t1

|vTJ−1
0

(
Σ̂εν − Σεν

)(
J−1

0 )T v| . un.

This implies (7.2). We finally obtain

sup
x∈I

∣∣∣∣∣ (g(x)T Σ̂ng(x))1/2

(g(x)TΣng(x))1/2
− 1

∣∣∣∣∣ . sup
x∈I

∣∣∣g(x)T
(
Σ̂n − Σn

)
g(x)

∣∣∣
≤ sup

x∈I
‖g(x)‖22 sup

‖v‖2=1,‖v‖0≤t1
|vT
(
Σ̂n − Σn

)
v|

. sup
x∈I
‖g(x)‖22un
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with probability 1 − o(1) and εn . supx∈I ‖g(x)‖22un which is the first part of
Assumption B.5.

Assumption B.4(iii)− (iv)
Define

σx : = (g(x)TΣng(x))1/2,

σ̂x : = (g(x)T Σ̂ng(x))1/2

and
F̂0 := {ψx(·)− ψ̂x(·) : x ∈ I}

with ψ̂x(·) := σ̂−1
x g(x)T Ĵ−1

0 ψ(·, θ̂, η̂). For every x and x̃, it holds

‖ψx(W )− ψ̂x(W )− (ψx̃(W )− ψ̂x̃(W ))‖Pn,2

=
∥∥∥σ−1

x g(x)TJ−1
0 ψ(W, θ0, η0)− σ−1

x̃ g(x̃)TJ−1
0 ψ(W, θ0, η0)

−
(
σ̂−1
x g(x)T Ĵ−1ψ(W, θ̂, η̂)− σ̂−1

x̃ g(x̃)T Ĵ−1ψ(W, θ̂, η̂)
)∥∥∥

Pn,2

=
∥∥∥ d1∑
l=1

(σ−1
x gl(x)− σ−1

x̃ gl(x̃))J−1
0,l ψl(W, θ0,l, η0,l)

−
d1∑
l=1

(σ̂−1
x gl(x)− σ̂−1

x̃ gl(x̃))Ĵ−1
l ψl(W, θ̂l, η̂l)

∥∥∥
Pn,2

≤
∥∥∥ d1∑
l=1

(σ−1
x gl(x)− σ−1

x̃ gl(x̃))
(
J−1

0,l − Ĵ
−1
l

)
ψl(W, θ0,l, η0,l)

∥∥∥
Pn,2

+
∥∥∥ d1∑
l=1

(σ−1
x gl(x)− σ−1

x̃ gl(x̃))Ĵ−1
l

(
ψl(W, θ0,l, η0,l)− ψl(W, θ̂l, η̂l)

)∥∥∥
Pn,2

+
∥∥∥ d1∑
l=1

(
(σ−1
x gl(x)− σ−1

x̃ gl(x̃))− (σ̂−1
x gl(x)− σ̂−1

x̃ gl(x̃))
)
Ĵ−1
l ψl(W, θ̂l, η̂l)

∥∥∥
Pn,2

=:I4,1 + I4,2 + I4,3.
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We obtain

I4,1 =
∥∥∥ d1∑
l=1

(σ−1
x gl(x)− σ−1

x̃ gl(x̃))
(
J−1

0,l − Ĵ
−1
l

)
ψl(W, θ0,l, η0,l)

∥∥∥
Pn,2

≤ σ−1
x

∥∥∥(g(x)− g(x̃))T
(
J−1

0 − Ĵ−1
)
ψ(W, θ0, η0)

∥∥∥
Pn,2

+ |σ−1
x − σ−1

x̃ |
∥∥∥g(x̃)T

(
J−1

0 − Ĵ−1
)
ψ(W, θ0, η0)

∥∥∥
Pn,2

. ‖g(x)− g(x̃)‖2 sup
‖v‖2=1,‖v‖0≤2t1

∥∥∥vT(J−1
0 − Ĵ−1

)
ψ(W, θ0, η0)

∥∥∥
Pn,2

+ ‖g(x)− g(x̃)‖2 sup
x∈I
‖g(x)‖22 sup

‖v‖2=1,‖v‖0≤t1

∥∥∥vT(J−1
0 − Ĵ−1

)
ψ(W, θ0, η0)

∥∥∥
Pn,2

. ‖g(x)− g(x̃)‖2 sup
x∈I
‖g(x)‖22un,

where we used that

sup
‖v‖2=1,‖v‖0≤t1

∥∥∥vT(J−1
0 − Ĵ−1

)
ψ(W, θ0, η0)

∥∥∥2

Pn,2

= sup
‖v‖2=1,‖v‖0≤t1

∣∣∣vT(J−1
0 − Ĵ−1

) 1

n

n∑
i=1

ξiξ
T
i

(
J−1

0 − Ĵ−1
)T
v
∣∣∣

≤
∥∥∥J−1

0 − Ĵ−1
∥∥∥2

2
sup
‖v‖0≤t1

∥∥∥Mv �

(
1

n

n∑
i=1

ξiξ
T
i

)∥∥∥2

2

. u2
n.

Analogously, we obtain

I4,2 =
∥∥∥ d1∑
l=1

(σ−1
x gl(x)− σ−1

x̃ gl(x̃))Ĵ−1
l

(
ψl(W, θ0,l, η0,l)− ψl(W, θ̂l, η̂l)

)∥∥∥
Pn,2

≤ σ−1
x

∥∥∥(g(x)− g(x̃))T Ĵ−1
(
ψ(W, θ0, η0)− ψ(W, θ̂, η̂)

)∥∥∥
Pn,2

+ |σ−1
x − σ−1

x̃ |
∥∥∥g(x̃)T Ĵ−1

(
ψ(W, θ0, η0)− ψ(W, θ̂, η̂)

)∥∥∥
Pn,2

. ‖g(x)− g(x̃)‖2 sup
‖v‖2=1,‖v‖0≤2t1

∥∥∥vT Ĵ−1
(
ψ(W, θ0, η0)− ψ(W, θ̂, η̂)

)∥∥∥
Pn,2

+ ‖g(x)− g(x̃)‖2 sup
x∈I
‖g(x)‖22 sup

‖v‖2=1,‖v‖0≤t1

∥∥∥vT Ĵ−1
(
ψ(W, θ0, η0)− ψ(W, θ̂, η̂)

)∥∥∥
Pn,2

. ‖g(x)− g(x̃)‖2 sup
x∈I
‖g(x)‖22un.
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It holds

I4,3 =
∥∥∥ d1∑
l=1

(
(σ−1
x gl(x)− σ−1

x̃ gl(x̃))− (σ̂−1
x gl(x)− σ̂−1

x̃ gl(x̃))
)
Ĵ−1
l ψl(W, θ̂l, η̂l)

∥∥∥
Pn,2

≤
∣∣σ−1
x − σ̂−1

x

∣∣∥∥∥(g(x)− g(x̃))T Ĵ−1ψ(W, θ̂, η̂)
∥∥∥
Pn,2

+
∣∣(σ−1

x − σ̂−1
x )− (σ−1

x̃ − σ̂
−1
x̃ )
∣∣∥∥∥g(x̃)T Ĵ−1ψ(W, θ̂, η̂)

∥∥∥
Pn,2

.

Note that ∣∣(σ−1
x − σ̂−1

x )− (σ−1
x̃ − σ̂

−1
x̃ )
∣∣

=
∣∣∣ 1

σxσx̃
(σx̃ − σx)− 1

σ̂xσ̂x̃
(σ̂x̃ − σ̂x)

∣∣∣
=

1

σ̂xσ̂x̃

∣∣∣ σ̂xσ̂x̃
σxσx̃

(σx̃ − σx)− (σ̂x̃ − σ̂x)
∣∣∣

.
∣∣(σx̃ − σx)− (σ̂x̃ − σ̂x)

∣∣+
∣∣∣ σ̂xσ̂x̃
σxσx̃

− 1
∣∣∣∣∣σx̃ − σx∣∣

with ∣∣∣ σ̂xσ̂x̃
σxσx̃

− 1
∣∣∣∣∣σx̃ − σx∣∣ ≤ (∣∣∣ σ̂x

σx
− 1
∣∣∣ σ̂x̃
σx̃

+
∣∣∣ σ̂x̃
σx̃
− 1
∣∣∣)∣∣σx̃ − σx∣∣

. εn
1

σx

∣∣σ2
x̃ − σ2

x

∣∣
. εn‖g(x)− g(x̃)‖2 sup

x
‖g(x)‖2

uniformly over x ∈ I with probability 1− o(1) and∣∣(σx̃ − σx)− (σ̂x̃ − σ̂x)
∣∣

≤ 1

(σ̂x̃ + σ̂x)

∣∣(σ2
x̃ − σ2

x)− (σ̂2
x̃ − σ̂2

x)
∣∣+
∣∣∣( 1

(σx̃ + σx)
− 1

(σ̂x̃ + σ̂x)

)
(σ2
x̃ − σ2

x)
∣∣∣

.
∣∣(σ2

x̃ − σ2
x)− (σ̂2

x̃ − σ̂2
x)
∣∣+
∣∣∣ (σ̂x̃ + σ̂x)

(σx̃ + σx)
− 1
∣∣∣∣∣σ2

x̃ − σ2
x

∣∣.
Using an analogous argument as in the verification of Assumption B.5 we obtain

|(σ2
x − σ̂2

x)− (σ2
x̃ − σ̂2

x̃)| = |(g(x)− g(x̃))T (Σn − Σ̂n)(g(x) + g(x̃))|
≤ ‖(Σn − Σ̂n)(g(x)− g(x̃))‖2 sup

x∈I
‖g(x)‖2

. ‖g(x)− g(x̃)‖2un sup
x∈I
‖g(x)‖2

with probability 1 − o(1) where the last inequality holds due the order of the
sparse eigenvalues in (7.2). Additionally,∣∣∣ (σ̂x̃ + σ̂x)

(σx̃ + σx)
− 1
∣∣∣∣∣σ2

x̃ − σ2
x

∣∣ ≤ sup
x∈I

∣∣∣ σ̂x
σx
− 1
∣∣∣∣∣σ2

x̃ − σ2
x

∣∣
. εn‖g(x)− g(x̃)‖2 sup

x∈I
‖g(x)‖2
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with probability 1− o(1). Therefore, we obtain

I4,3 . εn‖g(x)− g(x̃)‖2 sup
‖v‖2=1,‖v‖0≤2t1

∥∥∥vT Ĵ−1ψ(W, θ̂, η̂)
∥∥∥
Pn,2

+ (εn ∨ un)‖g(x)− g(x̃)‖2 sup
x∈I
‖g(x)‖22 sup

‖v‖2=1,‖v‖0≤t1

∥∥∥vT Ĵ−1ψ(W, θ̂, η̂)
∥∥∥
Pn,2

. ‖g(x)− g(x̃)‖2εn sup
x∈I
‖g(x)‖22.

Combining the steps above we obtain

‖ψx(W )− ψ̂x(W )− (ψx̃(W )− ψ̂x̃(W ))‖Pn,2 ≤ ‖g(x)− g(x̃)‖2‖F̂0‖Pn,2

with

‖F̂0‖Pn,2 . εn sup
x∈I
‖g(x)‖22 = o(1)

due to the growth condition in Assumption A.2(v)(b) as shown below. Using
the same argument as Theorem 2.7.11 from Van der Vaart and Wellner (1996)
we obtain with probability 1− o(1)

logN(ε, F̂0, ‖ · ‖Pn,2) ≤ logN(ε‖F̂0‖Pn,2, F̂0, ‖ · ‖Pn,2)

≤ logN(ε, g(I), ‖ · ‖2)

≤ %̄n log

(
Ān
ε

)
with %̄n = t1 and Ān . An. Additionally, it holds

‖ψx(W )− ψ̂x(W )‖Pn,2

=
∥∥∥σ−1

x g(x)TJ−1
0 ψ(W, θ0, η0)− σ̂−1

x g(x)T Ĵ−1ψ(W, θ̂, η̂)
∥∥∥
Pn,2

≤ σ−1
x

∥∥∥g(x)T
(
J−1

0 − Ĵ−1
)
ψ(W, θ0, η0)

∥∥∥
Pn,2

+ σ−1
x

∥∥∥g(x)T Ĵ−1
(
ψ(W, θ0, η0)− ψ(W, θ̂, η̂)

)∥∥∥
Pn,2

+ |σ−1
x − σ̂−1

x |
∥∥∥g(x)T Ĵ−1ψ(W, θ̂, η̂)

∥∥∥
Pn,2

. sup
x∈I
‖g(x)‖2(un ∨ εn)

. sup
x∈I
‖g(x)‖2εn

with an analogous argument as above. Therefore, B.4(iii) holds with

δ̄n . sup
x∈I
‖g(x)‖2εn.

To complete the proof we verify all growth conditions from Assumptions B.4
and B.5. As shown in the verification of B.3(vi) it holds

t21δ
2
n%n log(An) = δ2

nt
3
1 log(An) = o(1).
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Additionally,

n−
1
7L

2
7
n%n log(An) =

t
13
7

1 log
6
7ρ (d1) log(An)

n
1
7

= o(1)

and

n
2
3q−

1
3L

2
3
n%n log(An) = n

2
3q
t31 log

2
ρ (d1) log(An)

n
1
3

= o(1)

for q large enough due to growth condition in Assumption A.2(v)(c). Note that

εn%n log(An) = εnt1 log(An) . δ̄nt1 log(An).

Hence, we need to show that

δ̄2
n%̄n%n log(Ān) log(An) = δ̄2

nt
2
1 log2(An) = o(1).

It holds

δ̄2
nt

2
1 log2(An) . u2

n sup
x∈I
‖g(x)‖62t21 log2(An)

.
(
n

1
q log

2
ρ (d1)τ2

n ∨ sτ3
n

)
sup
x∈I
‖g(x)‖62t41 log2(An)

= o(1)

due to Assumption A.2(v)(b).
�

Appendix A Uniformly valid confidence bands

As in Belloni et al. (2018), we consider the problem of estimating the set of
parameters θ0,l for l = 1, . . . , d1 in the moment condition model,

E[ψl(W, θ0,l, η0,l)] = 0, l = 1, . . . , d1, (A.1)

where W is a random variable, ψl a known score function, θ0,l ∈ Θl a scalar of
interest, and η0,l ∈ Tl is a high-dimensional nuisance parameter, where Tl is a
convex set in a normed space equipped with a norm ‖ ·‖e. Let Tl be some subset
of Tl, which contains the nuisance estimate η̂l with high probability. Belloni et
al. (2018) provide an appropriate estimator θ̂l and are able to construct simul-
taneous confidence bands for (θ0,l)l=1,...,d1 where d1 may increase with sample
size n. In this section, we are particularly interested in the linear functional

G(x) =

d1∑
l=1

θ0,lgl(x),
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where (gl)l=1,...,d1 is a given set of functions with

gl : I ⊆ R→ R, l = 1, . . . , d1.

We assume that the score functions ψl are constructed to satisfy the near-
orthogonality condition, namely

Dl,0[η, η0,l] := ∂t
{
E[ψl(W, θ0,l, η0,l + t(η − η0,l))]

}∣∣
t=0

. δnn
−1/2, (A.2)

where ∂t denotes the derivative with respect to t and (δn)n≥1 a sequence of pos-
itive constants converging to zero. We aim to construct uniform valid confidence
bands for the target function G(x), namely

P (l̂(x) ≤ G(x) ≤ û(x),∀x ∈ I)→ 1− α.

Let η̂l =
(
η̂

(1)
l , η̂

(2)
l

)
be an estimator of the nuisance function. The estimator θ̂0

of the target parameter
θ0 = (θ0,1, . . . , θ0,d1

)T

is defined as the solution of

sup
l=1,...,d1

{∣∣∣En[ψl(W, θ̂l, η̂l)]∣∣∣− inf
θ∈Θl

∣∣∣En[ψl(W, θ, η̂l)]∣∣∣} ≤ εn, (A.3)

where εn = o
(
δnn
−1/2

)
is the numerical tolerance and (δn)n≥1 a sequence of

positive constants converging to zero. Let

g(x) = (g1(x), . . . , gd1(x))
T ∈ Rd1×1

and

ψ(W, θ, η) = (ψ1(W, θ, η), . . . , ψd1(W, θ, η))
T ∈ Rd1×1.

Define the Jacobian matrix

J0 :=
∂

∂θ
E[ψ(W, θ, η0)]

∣∣∣∣
θ=θ0

= diag (J0,1, . . . , J0,d1) ∈ Rd1×d1

and the approximate covariance matrix

Σn : = J−1
0 E

[
ψ(W, θ0, η0)ψ(W, θ0, η0)T

]
(J−1

0 )T ∈ Rd1×d1 .

Additionally, define

Sn := E

[
sup

l=1,...,d1

∣∣√nEn [ψl(W, θ0,l, η0,l)]
∣∣]

and
t1 := sup

x∈I
‖g(x)‖0.

The definition of t1 is helpful if the functions gl, l = 1, . . . , d1 are local in the
sense that for any point x in I there are at most t1 � d1 non-zero functions.
We state the conditions needed for the uniformly valid confidence bands.
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Assumption B. 1. It holds

(i) inf
x∈I
‖g(x)‖22 ≥ c > 0

(ii) sup
x∈I

sup
l=1,...,d1

|gl(x)| ≤ C <∞

(iii) The eigenvalues from Σn are uniformly bounded from above and away from
zero.

Since the proof of our main result in this section relies on the techniques
in Belloni et al. (2018), we try formulate the following conditions as similar as
possible to make the use of their methodology transparent.

Assumption B. 2. For all n ≥ n0, P ∈ Pn and l ∈ {1, . . . , d1}, the following
conditions hold:

(i) The true parameter value θ0,l obeys (A.1), and Θl contains a ball of radius
C0n

−1/2Sn log(n) centered at θ0,l.
(ii) The map (θl, ηl) 7→ E[ψl(W, θl, ηl)] is twice continuously Gateaux-differentiable

on Θl × Tl.
(iii) The score function ψl obeys the near orthogonality condition (A.2) for the

set Tl ⊂ Tl.
(iv) For all θl ∈ Θl, |E[ψl(W, θl, η0,l)]| ≥ 2−1|J0,l(θl − θ0,l)| ∧ c0, where J0,l

satisfies c0 ≤ |J0,l| ≤ C0.
(v) For all r ∈ [0, 1), θl ∈ Θl and ηl ∈ Tl

(a) E[(ψl(W, θl, ηl)− ψl(W, θ0,l, η0,l))
2] ≤ C0(|θl − θ0,l| ∨ ‖ηl − η0,l‖e)ω

(b) |∂rE[ψl(W, θl, η0,l + r(ηl − η0,l))]| ≤ B1n‖ηl − η0,l‖e
(c) |∂2

rE[ψl(W, θ0,l + r(θl − θ0,l), η0,l + r(ηl − η0,l))]| ≤ B2n(|θl − θ0,l|2 ∨
‖ηl − η0,l‖2e).

Note that the notation E abbreviates EP . For a detailed discussion about the
ideas and intuitions of these and the following assumptions see Belloni et al.
(2018).
Let (∆n)n≥1 and (τn)n≥1 be some sequences of positive constants converging
to zero. Also, let (an)n≥1, (υn)n≥1, and (Kn)n≥1 be some sequences of positive
constants, possibly growing to infinity, where an ≥ n ∨ Kn and υ ≥ 1 for all
n ≥ 1. Finally, let q ≥ 2 be some constant.

Assumption B. 3. For all n ≥ n0 and P ∈ Pn, the following conditions hold:

(i) With probability at least 1−∆n, we have η̂l ∈ Tl for all l = 1, . . . , d1.
(ii) For all l = 1, . . . , d1 and ηl ∈ Tl,‖ηl − η0,l‖e ≤ τn.

(iii) For all l = 1, . . . , d1, we have η0,l ∈ Tl.
(iv) The function class F1 = {ψl(·, θl, ηl) : l = 1, . . . , d1, θl ∈ Θl, ηl ∈ Tl} is

suitably measurable and its uniform entropy numbers obey

sup
Q

logN(ε‖F1‖Q,2,F1, ‖ · ‖Q,2) ≤ υn log(an/ε), for all 0 < ε ≤ 1,

where F1 is a measurable envelope for F1 that satisfies ‖F1‖P,q ≤ Kn.
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(v) For all f ∈ F1, we have c0 ≤ ‖f‖P,2 ≤ C0.
(vi) The complexity characteristics an and υn satisfy

(a) (υn log(an)/n)1/2 ≤ C0τn,

(b) (B1nτn+Sn log(n)/
√
n)ω/2(υn log(an))1/2+n−1/2+1/qυnKn log(an) ≤

C0δn,

(c) n1/2B2
1nB

2
2nτ

2
n ≤ C0δn.

Whereas the Assumptions B.2 and B.3 are identical to the Assumptions 2.1
and 2.2 from Belloni et al. (2018) the analogs to their Assumptions 2.3 and 2.4
need modifications to fit our setting constructing a uniformly valid confidence
band for the linear functional G(x). In this context, define

ψx(·) := (g(x)TΣng(x))−1/2g(x)TJ−1
0 ψ(·, θ0, η0)

and the corresponding plug-in estimator

ψ̂x(·) := (g(x)T Σ̂ng(x))−1/2g(x)T Ĵ−1
0 ψ(·, θ̂0, η̂0).

Let (δ̄n)n≥1 be a sequence of positive constants converging to zero. Also, let
(%n)n≥1, (%̄n)n≥1, (An)n≥1, (Ān)n≥1, and (Ln)n≥1 be some sequences of positive
constants, possibly growing to infinity, where % ≥ 1, An ≥ n, and Ān ≥ n for
all n ≥ 1. In addition, assume that q > 4.

Assumption B. 4. For all n ≥ n0 and P ∈ Pn, the following conditions hold:

(i) The function class F0 = {ψx(·) : x ∈ I} is suitably measurable and its
uniform entropy numbers obey

sup
Q

logN(ε‖F0‖Q,2,F0, ‖ · ‖Q,2) ≤ %n log(An/ε), for all 0 < ε ≤ 1,

where F0 is a measurable envelope for F0 that satisfies ‖F0‖P,q ≤ Ln.
(ii) For all f ∈ F0 and k = 3, 4, we have E[|f(W )|k] ≤ C0L

k−2
n .

(iii) The function class F̂0 = {ψx(·) − ψ̂x(·) : x ∈ I} satisfies with probability
1−∆n:

logN(ε, F̂0, ‖ · ‖Pn,2) ≤ %̄n log(Ān/ε), for all 0 < ε ≤ 1,

and ‖f‖Pn,2 ≤ δ̄n for all f ∈ F̂0.

(iv) t21δ
2
n%n log(An) = o(1), L

2/7
n %n log(An) = o(n1/7) and L

2/3
n %n log(An) =

o(n1/3−2/(3q)).

Additionally, we need to be able to estimate the variance of the linear func-
tional sufficiently well. Let Σ̂n be an estimator of Σn.

Assumption B. 5. For all n ≥ n0 and P ∈ Pn,

P

(
sup
x∈I

∣∣∣∣∣ (g(x)T Σ̂ng(x))1/2

(g(x)TΣng(x))1/2
− 1

∣∣∣∣∣ > εn

)
≤ ∆n,

where εn%n log(An) = o(1) and δ̄2
n%̄n%n log(Ān) log(An) = o(1).
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As in Chernozhukov et al. (2013) we employ the Gaussian multiplier boot-
strap method to estimate the needed quantiles. Let

Ĝ =
(
Ĝx
)
x∈I

=

(
1√
n

n∑
i=1

ξiψ̂x(Wi)

)
x∈I

,

where (ξi)
n
i=1 are independent standard normal random variables (especially

independent from (Wi)
n
i=1). Define the multiplier bootstrap critical value cα as

the (1−α) quantile of the conditional distribution of supx∈I |Ĝx| given (Wi)
n
i=1.

Theorem 2. Define

û(x) := Ĝ(x) +
(g(x)′Σ̂ng(x))1/2cα√

n

l̂(x) := Ĝ(x)− (g(x)′Σ̂ng(x))1/2cα√
n

with Ĝ(x) = g(x)T θ̂0. Given Assumptions B.1 - B.5 it holds

P
(
l̂(x) ≤ G(x) ≤ û(x),∀x ∈ I

)
→ 1− α

uniformly over P ∈ Pn.

Proof. Since Theorem 2.1 in Belloni et al. (2018) is not directly applicable to
our problem we have to modify the proof to obtain a uniform Bahadur repre-
sentation. We want to prove that

sup
x∈I

∣∣∣√n(g(x)TΣng(x))−1/2g(x)T
(
θ̂ − θ0

)∣∣∣ = sup
x∈I

∣∣∣Gn(ψx)
∣∣∣+OP (t1δn). (A.4)

Assumptions B.2 and B.3 contain Assumptions 2.1 and 2.2 from Belloni et al.
(2018) which enables us to use parts of their results. Therefore, it holds

sup
l=1,...,d1

∣∣∣J−1
0,l

√
nEn [ψl(W, θ0,l, η0,l)] +

√
n
(
θ̂l − θ0,l

)∣∣∣ = OP (δn).

Using Assumption B.1 this implies

sup
x∈I

∣∣∣√nEn [g(x)TJ−1
0 ψ(W, θ0, η0)

]
+
√
ng(x)T

(
θ̂ − θ0

)∣∣∣
= sup

x∈I

∣∣∣∣∣∣
d1∑
j=1

gl(x)
(
J−1

0,l

√
nEn [ψl(W, θ0,l, η0,l)] +

√
n(θ̂l − θ0,l)

)∣∣∣∣∣∣
≤ t1 sup

x∈I
sup

l=1,...,d1

|gl(x)|︸ ︷︷ ︸
≤C

sup
l=1,...,d1

∣∣∣J−1
0,l

√
nEn [ψl(W, θ0,l, η0,l)] +

√
n
(
θ̂l − θ0,l

)∣∣∣
= Op(t1δn).
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Since the minimal eigenvalue of Σn is uniformly bounded away from zero, it fol-
lows that g(x)TΣng(x) is uniformly bounded away from zero as long as ‖g(x)‖22
is uniformly bounded away from zero due to Assumption B.1. This implies (A.4).
Due to Assumption B.5 it holds

P

(
sup
x∈I

∣∣∣∣∣ (g(x)T Σ̂ng(x))1/2

(g(x)TΣng(x))1/2
− 1

∣∣∣∣∣ > εn

)
≤ ∆n,

with ∆n = o(1), which is an analogous version of the Assumption 2.4 from
Belloni et al. (2018). Therefore, given the Assumptions B.2 - B.5, the proofs
of Corollary 2.1 and 2.2 from Belloni et al. (2018) can be applied implying the
stated theorem. �

Appendix B Uniform nuisance function estimation

To establish uniform estimation properties of the nuisance function we rely on
uniform estimation results from Klaassen et al. (2018). Consider the following
linear regression model

Yr =

p∑
j=1

βr,jXr,j + ar(Xr) + εr = βrXr + ar(Xr) + εr

with centered regressors and ar(Xr) accounts for an approximation error. The
errors εr are assumed to satisfy E[εr|Xr] = 0 for each r = 1, . . . , d.
The true parameter obeys

βr ∈ arg min
β

E[(Yr − βXr − ar(Xr))
2].

We show that the lasso and post-lasso lasso estimators have sufficiently fast
uniform estimation rates if the vector βr is sparse for all r = 1, . . . , d. Due to the
approximation error ar(Xr) the sparsity assumption is quite mild and contains
an approximate sparse setting. In this setting d = dn is explicitly allowed to
grow with n. In the following analysis, the regressors and errors need to have at
least subexponential tails. In this context, we define the Orlicz norm ‖X‖Ψρ as

‖X‖Ψρ = inf{C > 0 : E[Ψρ(|X|/C)] ≤ 1}

with Ψρ(x) = exp(xρ)− 1.

B.1 Uniform lasso estimation

Define the weighted lasso estimator

β̂r ∈ arg min
β

(
1

2
En
[
(Yr − βXr)

2
]

+
λ

n
‖Ψ̂r,mβ‖1

)
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with the penalty level

λ = cλ
√
nΦ−1

(
1− γ

2pd

)
for a suitable cλ > 1, γ ∈ [1/n, 1/ log(n)] and a fix m ≥ 0. Define the post-
regularized weighted least squares estimator as

β̃r ∈ arg min
β

(
1

2
En
[
(Yr − βXr)

2
])

: supp(β) ⊆ supp(β̂r).

The penalty loadings Ψ̂r,m = diag({l̂r,j,m, j = 1, . . . , p}) are defined by

l̂r,j,0 = max
1≤i≤n

||X(i)
r ||∞

for m = 0 and for all m ≥ 1 by the following algorithm:

Algorithm 1. Set m̄ = 0. Compute β̂r based on Ψ̂r,m̄.

Set l̂r,j,m̄+1 = En
[((

Yr − β̂rXr

)
Xr,j

)2
]1/2

.

If m̄ = m stop and report the current value of Ψ̂r,m, otherwise set m̄ = m̄+ 1.

Let an := max(p, n, d, e). In order to establish uniform convergence rates, the
following assumptions are required to hold uniformly in n ≥ n0, P ∈ Pn:

Assumption C. 1.
(i) There exists 1 ≤ ρ ≤ 2 such that

max
r=1,...,d

max
j=1,...,p

‖Xr,j‖Ψρ ≤ C and max
r=1,...,d

‖εr‖Ψρ ≤ C.

(ii) For all r = 1, . . . , dn, it holds

inf
‖ξ‖2=1

E
[
(ξXr)

2
]
≥ c, sup

‖ξ‖2=1

E
[
(ξXr)

2
]
≤ C

and
min

j=1,...,p
E[ε2rX

2
r,j ] ≥ c > 0.

(iii) The coefficients obey
max

r=1,...,d
‖βr‖0 ≤ s.

(iv) There exists a positive number q̃ > 0 such that the following growth condition
is fulfilled:

n
1
q̃
s log1+ 4

ρ (an)

n
= o(1).
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(v) The approximation error obeys

max
r=1,...,d

‖ar(Xr)‖P,2 ≤ C
√
s log(an)

n

and

max
r=1,...,d

(En[(ar(Xr))
2]− E[(ar(Xr))

2]) ≤ C s log(an)

n

with probability 1− o(1).

Theorem 3. Under condition C.1 the lasso estimator β̂r obeys uniformly over
all P ∈ Pn with probability 1− o(1)

max
r=1,...,d

‖β̂r − βr‖2 ≤ C
√
s log(an)

n
, (B.1)

max
r=1,...,d

‖β̂r − βr‖1 ≤ C
√
s2 log(an)

n
(B.2)

with

max
r=1,...,d

‖β̂r‖0 ≤ Cs. (B.3)

Additionally, the post-lasso estimator β̃r obeys uniformly over all P ∈ Pn with
probability 1− o(1)

max
r=1,...,d

‖β̃r − βr‖2 ≤ C
√
s log(an)

n
, (B.4)

max
r=1,...,d

‖β̃r − βr‖1 ≤ C
√
s2 log(an)

n
. (B.5)

Proof of Theorem 3.

In the following, we use C for a strictly positive constant, independent of n,
which may have a different value in each appearance. The notation an . bn
stands for an ≤ Cbn for all n for some fixed C. Additionally, an = o(1) stands
for uniform convergence towards zero meaning there exists sequence (bn)n≥1

with |an| ≤ bn, bn is independent of P ∈ Pn for all n and bn → 0. Finally, the
notation an .P bn means that for any ε > 0, there exists C such that uniformly
over all n we have PP (an > Cbn) ≤ ε.
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Due to Assumption C.1(i) we can bound the q-th moments of the maxima of
the regressors uniformly by

E
[

max
r=1,...,d

‖Xr‖q∞
] 1
q

= ‖ max
r=1,...,d

max
j=1,...,p

|Xr,j |‖P,q

≤ q!‖ max
r=1,...,d

max
j=1,...,p

|Xr,j |‖ψ1

≤ q! log
1
ρ−1(2)‖ max

r=1,...,d
max

j=1,...,p
|Xr,j |‖ψρ

≤ q! log
1
ρ−1(2)K log

1
ρ (1 + dp) max

r=1,...,d
max

j=1,...,p
‖Xr,j‖ψρ

≤ C log
1
ρ (an)

where C does depend on q and ρ but not on n. For the norm inequalities we refer
to Van der Vaart and Wellner (1996). Now, we essentially modify the proof from
Theorem 4.2 from Belloni et al. (2018) to fit our setting and keep the notation
as similar as possible. Let U = {1, . . . , d} and

βr ∈ arg min
β∈Rp

E
[ 1

2
(Yr − βXr − ar(Xr))

2︸ ︷︷ ︸
:=Mr(Yr,Xr,β,ar)

]

for all r = 1, . . . , d. The approximation error ar(Xr) is estimated with âr ≡ 0.
Define

Mr(Yr, Xr, β) := Mr(Yr, Xr, β, âr) =
1

2
(Yr − βXr)

2
.

Then we have

β̂r ∈ arg min
β∈Rp

(
En [Mr(Yr, Xr, β)] +

λ

n
‖Ψ̂rβ‖1

)
and

β̃r ∈ arg min
β∈Rp

(En [Mr(Yr, Xr, β)]) : supp(β) ⊆ supp(β̂r).

First, we verify the Condition WL from Belloni et al. (2018). Since Nn = d we
have N(ε,U , dU ) ≤ Nn for all ε ∈ (0, 1) with

dU (i, j) =

{
0 for i = j

1 for i 6= j.

To prove WL(i) we note that

Sr = ∂βMr(Yr, Xr, β, ar)|β=β
(1)
r

= −εrXr.

Since Φ−1(1− t) .
√

log(1/t), uniformly over t ∈ (0, 1/2) , it holds

‖Sr,j‖P,3Φ−1(1− γ/2pd) = ‖εrXr,j‖P,3Φ−1(1− γ/2pd)

≤ (‖εr‖P,6‖Xr,j‖P,6)
1/2

Φ−1(1− γ/2pd)

≤ C log
1
2 (an) . ϕnn

1
6
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with

ϕn = O

(
log

1
2 (an)

n
1
6

)
= o(1)

uniformly over all j = 1, . . . , p and r = 1, . . . , d by Assumption C.1(i) and
C.1(iv). Further, it holds

E
[
S2
r,j

]
= E

[
ε2
rX

2
r,j

]
≤
(
E
[
ε4
r

]
E
[
X4
r,j

])1/2
≤ C

for all j = 1, . . . , p and r = 1, . . . , d by Assumption C.1(i) and

E
[
S2
r,j

]
= E

[
ε2
rX

2
r,j

]
≥ c

by Assumption C.1(ii), which implies Condition WL(ii). Note that Condition
WL(iii) simplifies to

max
r=1,...,d

max
j=1,...,p

|(En − E)[S2
r,j ]| ≤ ϕn

with probability 1−∆n. We use the Maximal Inequality, see for example Lemma
P.2 from Belloni et al. (2018). Let W = (Y,X ) with Y = (Y1, . . . , Yd) ∈ Y and
X = (X1, . . . , Xd) ∈ X . Define

F := {f2
r,j |r = 1, . . . , d, j = 1, . . . , p}

with

fr,j :W = (Y,X )→ R
W = (Y,X) 7→ − (Yr − βrXr − ar(Xr))Xr,j = −εrXr,j = Sr,j .

Note that

‖ sup
f∈F
|f |‖P,q = ‖ max

r=1,...,d
max

j=1,...,p
|f2
r,j |‖P,q

= E
[

max
r=1,...,d

max
j=1,...,p

ε2q
r X

2q
r,j

]1/q

≤ E
[

max
r=1,...,d

ε2q
r max
r=1,...,d

max
j=1,...,p

X2q
r,j

]1/q

≤

(
E
[

max
r=1,...,d

ε4q
r

]1/4q

E
[

max
r=1,...,d

max
j=1,...,p

X4q
r,j

]1/4q
)2

≤ C log
4
ρ (an).

Since

sup
f∈F
‖f‖2P,2 = max

r=1,...,d
max

j=1,...,p
E
[
S4
r,j

]
≤ max
r=1,...,d

max
j=1,...,p

E
[
ε8
r

]1/2 E [X8
r,j

]1/2 ≤ C
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we can choose a constant with

sup
f∈F
‖f‖2P,2 ≤ C ≤ ‖ sup

f∈F
|f |‖2P,2.

Additionally, it holds |F| = dp which implies

log sup
Q
N(ε‖F‖Q,2,F , ‖ · ‖Q,2) ≤ log(dp) . log(an/ε), 0 < ε ≤ 1.

Using Lemma P.2 from Belloni et al. (2018) we obtain with probability not less
than 1− o(1)

max
r=1,...,d

max
j=1,...,p

|(En − E)[S2
r,j ]| = n−1/2 sup

f∈F
|Gn(f)|

≤ n−1/2C
(√

log (an) + n−1/2+1/q log1+ 4
ρ (an)

)
= C

(√
log (an)

n
+

log1+ 4
ρ (an)

n1−1/q

)
≤ ϕn = o(1)

by the growth condition in Assumption C.1(iv). We proceed by verifying As-
sumption M.1 in Belloni et al. (2018). The function β 7→ Mr (Yr, Xr, β) is
convex, which is the first requirement of Assumption M.1. We now proceed
with a simplified version of proof of K.1 from Belloni et al. (2018). To show
Assumption M.1 (a), note that for all δ ∈ Rp∣∣∣En [∂βMr(Yr, Xr, βr)− ∂βMr(Yr, Xr, βr, ar)]

T
δ
∣∣∣

=
∣∣∣En [Xr(ar(Xr))]

T
δ
∣∣∣ ≤ ||ar(Xr)||Pn,2||XT

r δ||Pn,2

.P

√
s log(an)

n
||XT

r δ||Pn,2

for all r = 1, . . . , d due to C.1(v). Further, we have

En
[

1

2

(
Yr − (βr + δT )Xr

)2]− En
[

1

2
(Yr − βrXr)

2

]
= −En

[
(Yr − βrXr) δ

TXr

]
+

1

2
En
[
(δTXr)

2
]
,

where
−En

[
(Yr − βrXr) δ

TXr

]
= En [∂βMr(Yr, Xr, βr)]

T
δ

and
1

2
En
[
(δTXr)

2
]

= ||
√
wrδ

TXr||2Pn,2

with
√
wr = 1/4. This gives us Assumption M.1 (c) with ∆n = 0 and q̄Ar =∞.

Since Condition WL(ii) and WL(iii) hold we have with probability 1− o(1)

1 . lr,j =
(
En[S2

r,j ]
)1/2

. 1
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uniformly over all r = 1, . . . , d and j = 1, . . . , p, which directly implies

1 . ‖Ψ̂(0)
r ‖∞ := max

j=1,...,p
|lr,j | . 1

and additionally

1 . ‖(Ψ̂(0)
r )−1‖∞ := max

j=1,...,p
|l−1
r,j | . 1.

For now, we suppose that m = 0 in Algorithm 1. Uniformly over r = 1, . . . , d,
j = 1, . . . , p we have

l̂r,j,0 =

(
En[ max

1≤i≤n
‖X(i)

r ‖2∞]

)1/2

≥
(
En[‖Xr‖2∞]

)1/2
&P 1

where the last inequality holds due to Assumption C.1(ii) and an application of
the Maximal Inequality. Also uniformly over r = 1, . . . , d, j = 1, . . . , p and for
an arbitrary q > 0, it holds

l̂r,j,0 = max
1≤i≤n

‖X(i)
r ‖∞

≤ n1/q

(
1

n

n∑
i=1

‖X(i)
r ‖q∞

)1/q

= n1/q (En[‖Xr‖q∞])
1/q

with
E[‖Xr‖q∞]1/q . log

1
ρ (an).

By Maximal Inequality, we obtain with probability 1 − o(1) for a sufficiently
large q′ > 0

max
r
|En[‖Xr‖q∞]− E[‖Xr‖q∞]|

. C


√

log
2q
ρ +1(an)

n
+ n1/q′−1 log

q
ρ+1(an)


. log

q
ρ (an)

since

E[max
r
‖Xr‖qq

′

∞ ]1/q
′
. log

q
ρ (an) and max

r
E[‖Xr‖q2∞]1/2 . log

q
ρ (an).

We conclude

l̂r,j,0 ≤ n1/q (En[‖Xr‖q∞])
1/q

≤ n1/q (|En[‖Xr‖q∞]− E[‖Xr‖q∞]|+ E[‖Xr‖q∞])
1/q

.P n
1/q log

1
ρ (an)

imsart-generic ver. 2014/10/16 file: Article.tex date: April 6, 2020



Bach, Klaassen, Kueck, Spindler/ Uniform Inference in High-Dimensional GAMs 52

uniformly over r. Therefore, Assumption M.1(b) holds for some ∆n = o(1),

L . n1/q log
1
ρ (an) and l & 1. Hence, we can find a cl with l > 1/cl. Setting

cλ > cl and γ = γn ∈ [1/n, 1/ log(n)] in the choice of λ, we obtain

P

(
λ

n
≥ cl max

r=1,...,d
‖(Ψ̂(0)

r )−1En[Sr]‖∞
)
≥ 1− γ − o(γ)−∆n = 1− o(1)

due to Lemma M.4 in Belloni et al. (2018). Now, we uniformly bound the sparse
eigenvalues. Set

ln = log
2
ρ (an)n2/q̄

for a q̄ > 5q̃ with q̃ in C.1(iv). We apply Lemma Q.1 in Belloni et al. (2018)

with K . n1/q̄ log
1
ρ (an) and

δn . K
√
slnn

−1/2 log(sln) log
1
2 (an) log

1
2 (n)

.

√
n

4
q̄ log(n) log2(sln)

s log1+ 4
ρ (an)

n

.

√
n

5
q̄
s log1+ 4

ρ (an)

n

for n large enough. Hence, by the growth condition in Assumption C.1(iv), it
holds

δn = o(1)

which implies

1 . min
‖δ‖0≤lns

‖δXr‖2Pn,2
‖δ‖22

≤ max
‖δ‖0≤lns

‖δXr‖2Pn,2
‖δ‖22

. 1

with probability 1− o(1) uniformly over r = 1, . . . , d.

Define Tr := supp(β
(1)
r ) and

c̃ :=
Lcl + 1

lcl − 1
max

r=1,...,d
‖Ψ̂(0)

r ‖∞‖(Ψ̂(0)
r )−1‖∞ . L.

Let the restricted eigenvalues be definied as

κ̄2c̃ := min
r=1,...,d

inf
δ∈∆2c̃,r

‖δXr‖Pn,2
‖δTr‖2

where ∆2c̃,r := {δ : ‖δcTr‖1 ≤ 2c̃‖δTr‖1}. By the argument given in Bickel et al.
(2009) it holds

κ̄2c̃ ≥

(
min

‖δ‖0≤lns

‖δXr‖2Pn,2
‖δ‖22

)1/2

− 2c̃

(
max
‖δ‖0≤lns

‖δXr‖2Pn,2
‖δ‖22

)1/2(
s

sln

)1/2

&

(
min

‖δ‖0≤lns

‖δXr‖2Pn,2
‖δ‖22

)1/2

− 2n
1
q−

1
q̄

(
max
‖δ‖0≤lns

‖δXr‖2Pn,2
‖δ‖22

)1/2

& 1
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with probability 1− o(1) for a suitable choice of q with q > q̄. Since

λ

n
. n−1/2Φ−1 (1− γ/(2dp)) . n−1/2

√
log(2dp/γ) . n−1/2 log

1
2 (an)

and the uniformly bounded penalty loading from above and away from zero, we
obtain

max
r=1,...,d

‖(β̂r − βr)Xr‖Pn,2 .P L

√
s log(an)

n

by Lemma M.1 from Belloni et al. (2018). To show Assumption M.1(b) for
m ≥ 1, we proceed by induction. Assume that the assumption holds for Ψ̂r,m−1

with some ∆n = o(1), l & 1 and L . n1/q log
1
ρ (an). We have shown that the

estimator based on Ψ̂r,m−1 obeys

max
r=1,...,d

‖(β̂r − βr)Xr‖Pn,2 . L

√
s log(an)

n

with probability 1− o(1). This implies

|l̂r,j,m − lr,j | =

∣∣∣∣∣En
[((

Yr − β̂rXr

)
Xr,j

)2
]1/2

− En
[
((Yr − βrXr)Xr,j)

2
]1/2∣∣∣∣∣

≤

∣∣∣∣∣En
[((

(β̂r − βr)Xr

)
Xr,j

)2
]1/2

∣∣∣∣∣
. ‖(β̂r − βr)Xr‖Pn,2 max

1≤i≤n
max

r=1,...,d
‖X(i)

r ‖∞

.P L

√
s log(an)

n
n1/q log

1
ρ (an)

.

√
n4/q

s log1+ 4
ρ (an)

n
= o(1)

uniformly over r = 1, . . . , d and j = 1, . . . , p. Therefore, Assumption M.1(b)
holds for Ψ̂r,m for some ∆n = o(1), l & 1 and L . 1. Consequently, we obtain

max
r=1,...,d

‖(β̂r − βr)Xr‖Pn,2 .

√
s log(an)

n
.

and

max
r=1,...,d

‖β̂r − βr‖1 .

√
s2 log(an)

n

with probability 1− o(1) due to Lemma M.1 in Belloni et al. (2018). Uniformly
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over all r = 1, . . . , d, it holds∣∣∣∣(En [∂βMr(Yr, Xr, β̂r)− ∂βMr(Yr, Xr, βr)
])T

δ

∣∣∣∣
=

∣∣∣∣(En [(β̂r − βr)XrX
T
r

])T
δ

∣∣∣∣
≤‖(β̂r − βr)Xr‖Pn,2‖δXr‖Pn,2 ≤ Ln‖δXr‖Pn,2

with probability 1−o(1) where Ln . (s log(an)/n)1/2. Since the maximal sparse
eigenvalues

φmax(lns, r) := max
‖δ‖0≤lns

‖δXr‖2Pn,2
‖δ‖22

are uniformly bounded from above, Lemma M.2 from Belloni et al. (2018) im-
plies

max
r=1,...,d

‖β̂r‖0 . s

with probability 1 − o(1). Combining this result with the uniform restrictions
on the sparse eigenvalues from above we obtain

max
r=1,...,d

‖β̂r − βr‖2 . max
r=1,...,d

‖(β̂r − βr)Xr‖Pn,2 .

√
s log(an)

n

with probability 1−o(1). We now proceed by using Lemma M.3 in Belloni et al.
(2018). We obtain uniformly over all r = 1, . . . , d

En[Mr(Yr, Xr, β̃r)]− En[Mr(Yr, Xr, βr)] ≤
λL

n
‖β̂r − βr‖1 max

r=1,...,d
‖Ψ̂(0)

r ‖∞

.
λ

n
‖β̂r − βr‖1

.
s log(an)

n

with probability 1− o(1), where we used L . 1 and max
r=1,...,d

‖Ψ̂(0)
r ‖∞ . 1. Since

max
r=1,...,d

‖En[Sr]‖∞ ≤ max
r=1,...,d

‖Ψ̂(0)
r ‖∞‖

(
Ψ̂(0)
r

)−1En[Sr]‖∞ .
λ

n
. n−1/2 log

1
2 (an)

with probability 1− o(1), we obtain

max
r=1,...,d

‖(β̃r − βr)Xr‖Pn,2 .

√
s log(an)

n

with probability 1− o(1), where we used

max
r=1,...,d

‖β̂r‖0 . s, Cn . (s log(an)/n)1/2
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and that the minimum sparse eigenvalues are uniformly bounded away from
zero. With the same argument as above we obtain

max
r=1,...,d

‖β̃r − βr‖2 . max
r=1,...,d

‖(β̃r − βr)Xr‖Pn,2 .

√
s log(an)

n
.

This finally completes the proof. �

Appendix C Computational Details

C.1 Computation and Infrastructure

The simulation study has been run on a x86 64 redhat linux-gnu (64-bit) (Cen-
tOS Linux 7 (Core)) cluster using R version 3.5.3 (2019-03-11). All lasso
estimations are performed using the R package hdm, version 0.3.1 by Cher-
nozhukov et al. (2015a) which can be downloaded from CRAN. Construction of
B-splines is based on the R package splines. R code is available upon request.

C.2 Simulation Study: Smoothing Parameters in B-splines

Table 4 presents the corresponding smoothing parameters {kj , k−j} of the cubic
B-splines that are used in the simulation study. kj denotes the degrees of free-
dom chosen to approximate the function fj(xj) and k−j is chosen for all other
functions.

n p f1 f2 f3 f4 f5
100 50 {7, 4} {6, 4} {7, 4} {5, 4} {7, 4}
100 150 {7, 4} {6, 4} {6, 4} {5, 4} {5, 4}
1000 50 {7, 4} {6, 5} {5, 4} {5, 4} {5, 4}
1000 150 {7, 4} {6, 5} {7, 4} {5, 5} {4, 4}

Table 4
Smoothing parameters {kj , k−j} corresponding to simulation results in Table 2.

C.3 Empirical Application: Cross-Validation Procedure for Choice
of Smoothing Parameter

The choice of the degrees of freedom parameter k for construction of B-splines in
the empirical application is based on a heuristic cross-validation which exploits
the additive structure of the model. Let k = {kj , k−j} be the degrees of freedom
with kj specifying the smoothing parameters for fj(xj) and k−j denoting the
parameter for all other functions f−j(x−j). To explicitly address the dependence
of the fitted function on the chosen degrees of freedom parameter, we use a
notation f̂j(xj , kj) which leads to the model

yi = fj(xi,j , kj) + f−j(xi,−j , k−j) + εi,

Then, the heuristic rule for choosing k proceeds as
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• For j = 1, ..., p,

(i) Set up a grid of values for k−j ,

(ii) Perform a 5-fold cross-validated search for an optimal kj over a grid
of values kj , ..., kj , i.e., fit the regression

yi = fj(xi,j , kj) + f−j(xi,−j , k−j) + εi

and compute MSECV (kj , k−j), where MSECV (kj , k−j) is the cross-
validated mean squared error in prediction provided values kj and
k0,−j .

(iii) Find the optimal value of k∗j which minimizes MSECV over all values
of k−j .

We experimented with different settings and repeated the procedure multiple
times. The resulting parameters are listed in Table 5.

NOX 11
CRIM 6
ZN 3
INDUS 6
RM 6
AGE 5
DIST 9
TAX 5
PTRATIO 11
BLACK 5
LSTAT 7

Table 5
Smoothing parameters used in empirical application.
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C.4 Empirical Application: Additional Plots for Explanatory
Variables
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Fig 3: Additional plots of the effect of the explanatory variables on the dependent
variable MEDV with simultaneous 95%-confidence bands in the Boston housing
data application.
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