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Abstract

We construct a new measure of monetary policy surprise based on a natural language pro-

cessing algorithm designed to capture contextual nuances in FOMC statements. Specifi-

cally, we exploit cross-sectional variations across alternative FOMC statements to identify

the statement’s tone, and compare current and previous FOMC statements to obtain the

novelty. We use high-frequency bond price movements around FOMC announcements to

compute the surprise component of the monetary policy announcement. According to our

measure, the stock market declines after unexpected policy tightening. Our text-based

approach allows us to assess the counterfactual effects of an altered FOMC statement on

the stock market.
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1 Introduction

Central banks have increasingly relied on public communications to provide guidance about

future policy actions, a practice known as forward guidance (see, for example, Woodford (2005)

and Blinder et al. (2008)). This practice became more prevalent when monetary policy is

constrained by the effective lower bound (see Bernanke (2010)). In this regard, both quanti-

tative decisions (e.g., about interest rates or asset purchases) made by central banks and their

qualitative descriptions of the economic factors that lead to these decisions serve as important

information variables for understanding monetary policy.

While the profession has moved toward treating policy statements by central bank officials as

data to be analyzed, significant challenges remain in parsing of the textual content of these policy

statements due to their unique characteristics of policy statements. First, policy statements

typically contain a rich mixture of qualitative information (such as descriptions of economic

condition) and quantitative information (such as a decision on the key interest rate or amount

of asset purchases) communications. Second, qualitative communications often have subtlety

and nuances that are an important part of the policy but comparatively difficult to measure.

For example, the market’s focus will be on any nuance in statements that sheds light on the

economic conditions and policy decisions. These characteristics call for an advanced natural

language processing algorithm that goes beyond evaluating the textual similarity of documents

based on the frequency of overlapping words. Such an algorithm should also recognize numeric

properties associated with numbers, such as ordering.

In this paper, we refine information in the Federal Open Market Committee’s (FOMC) post-

meeting statements using a pre-trained natural language processing algorithm known as the

Universal Sentence Encoder (USE) introduced by Cer et al. (2018). The USE is able to

capture complex dependencies of different words by training an artificial neural network model

over large amounts of textual data. We fine-tune the USE algorithm, which already performs

well in capturing qualitative communications, with an artificial dataset that mimics FOMC

statements involving numbers to assess quantitative information as well.

In addition to methodological contribution, we also bring in alternative FOMC statements,

which are available for each FOMC meeting since March 2004, that contain a more dovish

(known as Alt A) or a more hawkish (known as Alt C or Alt D) statement than the benchmark

https://www.tensorflow.org/hub/tutorials/semantic_similarity_with_tf_hub_universal_encoder
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statement (Alt B).1 Using alternative statements has two advantages. First, these statements

increase the corpora, thereby improving the text analysis. Second, and more importantly, these

alternative statements have pre-defined tones, allowing us to assess the tone of the post-meeting

statement by calculating the semantic distance between the post-meeting statement and alterna-

tive statements. For example, if the USE representation of the post-meeting statement is closer

to Alt A rather than Alt C or Alt D, then we can classify it as dovish. The different views of the

economic outlook and associated policy prescriptions contained in the alternative statements

provide important anchoring points for interpreting the tone of the policy statement released

after the meeting. By taking the product of the tone and novelty of monetary policy statements,

i.e, the distance in terms of the USE representation between the current post-meeting statement

and the previous post-meeting statement, we can obtain the monetary policy stance. Note that

the identification of the monetary policy stance relies solely on the text analysis of the FOMC

statements (the importance of which we emphasize later).

We then tease out the expected versus surprise components of the monetary policy stance.

Specifically, we exploit high-frequency bond price movements around FOMC announcements to

compute the expected and surprise components of the monetary policy stance. As is common

in the literature, we proceed with the assumption that unexpected changes in high-frequency

bond returns during FOMC announcements reflect news about the monetary policy stance. By

subtracting the expected component from our monetary policy stance, we therefore construct a

new measure of the monetary policy surprise. A tightening policy surprise is associated with a

decline in bond return (alternatively, an increase in bond yield).

To evaluate the plausibility of our measure, we perform two robustness checks. First, we

examine high-frequency stock return data. Our measure shows that a tightening policy sur-

prise generates a negative stock price reaction, consistent with the stock market impact of a

conventional monetary policy shock in Bernanke and Kuttner (2005). Specifically, a positive

one-standard-deviation surprise leads high-frequency stock prices to drop by about 20 to 40

basis points (bps) on average across various event intervals considered. Second, we verify that

our measure of monetary policy shocks is highly correlated (37 to 70%) with those identified

in the existing literature, such as Swanson (2017), Nakamura and Steinsson (2018), Bu et al.

1Like the FOMC transcripts, alternative statements are released with a five year lag. Dovish and hawkish
alternative statements generally incorporate information on market expectations regarding the upcoming policy
statement because they are written to surprise the market in respective directions. The staff of the Federal
Reserve Board prepare alternative statements as a part of discussion materials at each FOMC meeting, See FRB
(2004) for a detailed description of statement language.
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(2020). Both checks serve as external validation of our measure.

The key advantage of our approach is that it allows us to evaluate how markets would react

to counterfactual policy statements. Because our measure of the tone of FOMC statements is

derived from texts (independent from financial markets), it has an important advantage over

other commonly used approaches (including ones that rely on the inversion of high-frequency

bonds across different maturities). Specifically, our measure allows us to assess the impact of a

counterfactual policy statement by changing its tone (via replacing sentences described in post-

meeting statements) while keeping the market expectations constant. This is possible because

our tone measure is not inverted from high-frequency bond data. Thus, our approach enables

policymakers to assess alternative scenarios and their impact on the stock market when writing

policy statements.

We consider both dovish and hawkish scenarios in the counterfactual analysis by working

with FOMC statements released in November 2010 and December 2016, respectively. We first

analyze what the market’s reaction would have been had the November 2010 FOMC announce-

ment included more explicit time-dependent forward guidance on the future path of the federal

funds rate. Specifically, we replace the guidance that the funds rate would remain low “for an

extended period,” which was included in the post-meeting statement, with “at least through

the mid-2012” which was included in the (dovish) Alt A statement. We find that the counter-

factual policy statement would have led to stock market returns to increase by about 39 bps

instead of the 11 bps decline after the actual post-meeting statement. Next, we examine the

counterfactual impact of a more hawkish alternative statement from the December 2016 FOMC

meeting. Here, the description about forward guidance in the actual post-meeting statement

was that the Committee expected “only gradual increases in the federal funds rate.” We replace

this guidance with “additional gradual increases in the federal funds rate” from the (hawkish)

Alt C statement. We find that the release of a more hawkish statement would have led to stock

returns to drop by 110 bps, in sharp contrast to the 6 bps increase after the actual post-meeting

statement. Interestingly, the magnitude is comparable to the effect of an unexpected raise of the

federal funds rate target by 25 bps (1% decline in the stock market return) found in Bernanke

and Kuttner (2005). These two counterfactual exercises highlight the importance of narrative

information in the Fed communication.

Related Literature. Our paper is related to multiple lines of research.

First, our work is closely related to papers that identify monetary policy shocks using high-

frequency bond data, e.g., Gürkaynak et al. (2005), Swanson (2017), Nakamura and Steinsson
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(2018), Bu et al. (2020), Bauer and Swanson (2020), Hoesch et al. (2020), Bauer and Swanson

(2022). Since Gürkaynak et al. (2005), most identification approaches impose assumptions on

the factor structure of bonds of different maturities to extract central bank communication

information. A key feature of our approach is that we can assess which part of the statement is

perceived as dovish or hawkish without relying on those maturity assumptions or even without

bond data. This approach is appealing given that certain assumptions may not be empirically

validated. For example, policy that is intended to move the longer- (shorter-) maturities may

have consequences for shorter- (longer-) maturities if asset purchases signal the future path of

the short-term interest rate, e.g., Bauer and Rudebusch (2014) or forward guidance affects term

premium by reducing interest rate uncertainty, e.g., Bundick et al. (2022).

Second, our work is also related to the increasingly popular literature that applies text analysis

to the fields of economics and finance, (e.g., Gentzkow et al. (2019), Ke et al. (2019), Hansen

et al. (2017), Schonhardt-Bailey (2013), Shapiro and Wilson (2019), Jegadeesh and Wu (2017),

Meade and Acosta (2015), Giavazzi et al. (2020), Lucca and Trebbi (2009), Handlan (2020),

Caldara and Iacoviello (2022), Drechsel and Aruoba (2022), Gorodnichenko et al. (2021), Shiller

(2017), Shiller (2020)). We adapt the method proposed by Ke et al. (2019) who demonstrate

how to predict stock returns by combining new information and compute sentiment scores based

on news articles. We extend their method in two important directions. First, we highlight the

unique characteristics of policy statements and show how to capture subtlety and nuances in

qualitative communications. For this, we introduce a more sophisticated natural language pro-

cessing technique that produces context-aware representation of the text.2 Second, we leverage

alternative FOMC statements to better identify the tone of the released FOMC statement, which

allows us to conduct interesting counterfactual policy experiments.

Two contemporaneous works are closely related to our paper. Handlan (2020) accommodates

alternative FOMC statements and uses an advanced natural language processing algorithm (XL-

Net) to produce a context-aware, vectorized representation of sentences, which is important for

assessing policy communications. However, unlike Handlan (2020), we fine-tune the USE algo-

rithm to accurately capture the basic numeracy of numbers such as comparing the magnitude

of the target interest rate in FOMC statements. Drechsel and Aruoba (2022) is another closely

related paper. They construct sentiment scores for individual words used in FOMC statements

2Other than Handlan (2020) and Giavazzi et al. (2020), none of the above-listed papers uses the context-aware
representation of the text. Gorodnichenko et al. (2021) add the tone of the voice of the Federal Reserve Chair
during press conferences to back out additional information about the overall sentiment of FOMC communications
on top of what is expected in the statement.



5

based on the dictionary in Loughran and McDonald (2011). However, the sentiment classi-

fication of individual words may not be able to capture subtlety and nuances in qualitative

communications, which we believe are a very important part of policy statements. Neither of

the two papers conducts counterfactual policy experiments as we do in this paper.

Outline of the structure of the paper is as follows. Section 2 introduces our natural language

processing technique and explains how we fine-tune the algorithm to fit our purpose. Section 3

describes identification scheme of monetary policy surprises using alternative statements. Sec-

tion 4 discusses empirical results and policy implications. Section 5 concludes.

2 Universal Sentence Encoder for Text Analysis

2.1 Universal sentence encoder

Natural language processing tools convert words or texts into numeric vectors. Such a process is

called embedding and how it is done differentiates many natural language processing algorithms.

Cer et al. (2018) describe two versions of the USE; 1) deep averaging of word embeddings, 2)

transformer-based approach using the self-attention channel. We apply the transformer-based

version of the USE to calculate the similarity between texts because the self-attention channel

that links each word in the text with all the other words in the text is powerful in capturing the

context-dependent meaning of sentences. The USE is able to capture the dependencies between

even distant words by training deep neutral networks that can recognize complex dependencies

of different words based on large corpora. Hence, it can score the similarity between texts in a

more sensible way. For example, imagine that there are two sentences consisting of n1 and n2

words respectively: {
S1 = (w1,1, · · · , w1,n1) , S2 = (w2,1, · · · , w2,n2)

}
(1)

↓{
U1 = (U1,1, · · · , U1,512) , U2 = (U2,1, · · · , U2,512)

}
.

USE will find out numerical representations of S1 and S2 by two 512 dimensional vectors (U1

and U2) using a deep neural network architecture. The process of transforming texts into vector

representations is called embedding. Natural language processing algorithms differ largely by



6

how the embedding is done. The embedding representation of the USE is trained to perform

a variety of tasks such as text classification similar to humans and predicting some part of the

text based on the rest of it. USE is available through Google Tensor Flow. We calculate the

similarity between the two texts based on the cosine similarity between two embedding vectors:

SimUSE(Text1,Text2) = cosine(U1, U2) =
U ′1U2√

U ′1U1

√
U ′2U2

. (2)

Notice that we are not restricting on pre-fixed features (e.g., the frequency of overlapping

words) of the text to calculate sentence embeddings and similarity scores. The training process

of embedding representations captures rich features of the text not necessarily confined to the

frequency of words. This is the main difference of the USE from methods relying on word-

counting that we describe below.

2.2 Word-counting methods

We describe two commonly used word-counting methods for text analysis.

Term Frequency-Inverse Document Frequency. One of the most widely used measures is

the Term Frequency-Inverse Document Frequency (TF-IDF) method. Here, similarities between

multiple (N) documents are determined by the frequency of words that show up in all of these

documents. Specifically,3

Wi,j =
ni,j√∑
k n

2
k,j

ln(
N + 1

dfj + 1
+ 1),

SimTF-IDF(Text1,Text2) = cosine(W·,1,W·,2),

(3)

where ni,j is the count of the j-th word in the i-th document and dfj is the number of documents

that contain the j-th word. The term frequency is weighted by the inverse of the frequency of

documents that the word appears because common words showing up in many documents can be

syntactically important but not semantically. However, the main problem of this method is that

it is too coarse to fine-tune the semantic similarity between different words and the algorithm

cannot be trained to incorporate the contextual meaning.

3We follow the default method used in Python.

https://www.tensorflow.org/hub/tutorials/semantic_similarity_with_tf_hub_universal_encoder
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Latent Semantic Analysis. A more sophisticated word counting method is available, which

is known as the Latent Semantic Analysis (LSA). LSA considers the co-frequency of words in

calculating the similarity score between texts. LSA uses low-dimensional objects obtained by

the singular value decomposition of W = [W·,1,W·,2] to calculate the similarity between texts.4

Specifically,

W = UΣV ′,

SimLSA(Text1,Text2) = cosine(X·,1, X·,2) , X = U·,1:2Σ1:2,1:2.
(4)

By rotating term frequency vectors to maximize the co-frequency of words across multiple doc-

uments, the LSA extracts representations that highlight the co-frequency of words used in

different documents. For this reason, it is widely used in identifying a few key topics from a

large number of texts. However, similar to the TF-IDF approach, it does not take into account

complex dependencies between different words beyond the co-frequency, which is important for

understanding semantic similarity.

2.3 Illustration with simple examples

We illustrate the advantage of the USE in capturing the contextual meaning by comparing the

similarity between the following sentences:

(S1) How old are you?

(S2) What is your age?

(S3) How are you?

We repeat the same exercise with TF-IDF and LSA for comparison.

It is obvious that S1 and S2 are asking the same question, whereas S3 is not. Hence, the

ideal classifier should recognize that S1 is more similar to S2 than S3. However, the similarity

score under the TF-IDF or LSA provides an opposite ranking whereas the USE provides a more

sensible similarity score. We provide information on the results in Table 1.

The mechanism that makes the USE capture the contextual similarity of different texts is the

self-attention channel behind the deep neural network architecture. “How” (w1,1) is contextually

connected with “old” (w1,2) in S1 while “How” (w3,1) is related to “are” in S3. The contextual

4The dimension reduction is especially powerful when we try to capture the common theme from large text
corpora.
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Table 1: Similarity scores

TF-IDF LSA USE

Sim(How old are you, What is your age) 0.00 0.00 0.91
Sim(How old are you, How are you) 0.78 0.78 0.28

Notes: We apply the Term Frequency-Inverse Document Frequency (TF-IDF), Latent Semantic Analysis (LSA),
and Universal Sentence Encoding (USE) approaches to calculate the cosine similarity scores.

representation of “How” should be able to reflect this difference, which is not possible in TF-IDF

and LSA because they represent words as an item in the dictionary without encoding contextual

linkages in embeddings. For example, if the dictionary contains |V | words, wi,j is represented

by a |V |-dimensional vector in which the j-th element is one and all the other elements are

zeros under these approaches. This representation is known as a one-hot vector encoding. The

USE does not restrict word embedding to one-hot vector encoding, allowing multiple non-zero

elements.

Arrows in Figure 1 illustrates how attention weights link a particular word in S1 with all the

other words.5 Since the USE does not use one hot vector encodings and any element in wi,j can

be non-zero. The attention-weighted average transforms word embeddings to perform tasks in

the training stage such as text classification and word prediction better by making contextually

linked words have close embeddings. Notice that unlike one-hot vector encoding, elements in

word embeddings are parameters set to minimize the loss function in the training stage.6

Figure 1: Illustration of self-attention: S1

How old are you?

How old are you?

Notes: The red arrow highlights the contextual link between “How” and “old”.

5This way of illustrating the self-attention channel follows Vaswani et al. (2017).
6One of the training dataset contains web-based question and answer texts, which facilitate the USE to detect

the contextual differences in the meaning of “How” in S1 and S3 better.
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Furthermore, the USE transforms the given word embedding by the weighted average of

embeddings of other words in the text in which weights are determined based on the cosine

similarity between two embeddings.7 This is how the self attention channel works to generate

the contextual representation of any word in the text.

2.4 Illustration with policy-relevant examples

Having illustrated the superiority of the USE over word-counting methods in capturing the local

context, we now examine how the USE performs on more complicated sentences such as those

involving numbers, which are common in FOMC statements. While pre-trained language models

like the USE effectively capture semantic relationships between different words or sentences, they

are less effective at capturing numeric properties associated with numbers.

Following Sundararaman et al. (2020), we fine-tune the pre-trained language model using texts

involving numbers. We set up a specific loss function that preserves the numeric distance between

numbers. We also add a separate loss function for datasets not involving numbers because we

want to preserve the semantic distance between sentences without numbers as generated by the

original USE representation. For the convenience of exposition, let us consider two sentences S1

and S2 involving numbers (x1 and x2) and other two sentences S3 and S4 that do not involve

numbers. Recall that the original USE representation of the two sentences Si and Sj are denoted

as Ui and Uj, respectively. The fine-tuning step adds an additional layer of a fully connected

feedforward network on top of the USE representation of texts to encode numeric information.8

Suppose that f(Ui) and f(Uj) represent the “fine-tuned” USE representation of the two sen-

tences Si and Sj, respectively. Training the fine-tuning layer f(·) requires two types of loss

functions, i.e., one based on S1 and S2 and the other with S3 and S4.

• The first loss function is constructed based on the discrepancy between the distance be-

tween x1 and x2 and the cosine distance between f(U1) and f(U2), i.e., d
[
f(U1), f(U2)

]
=

1− cosine(f(U1), f(U2)):

Lnum(U1, U2) =

(
2
|x1 − x2|
|x1|+ |x2|

− d
[
f(U1), f(U2)

])2

. (5)

7The appendix describing the neural network architecture behind the USE provides detailed explanation on
how these weights are determined.

8A fully connected network links each element in the input layer to every element in the output layer while
the feedforward network means the direction of the connection is only one way from the input layer to the output
layer.
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However, training the fine-tuning layer f(·) by minimizing the loss function only with

sentences involving numbers may distort the USE representation of the sentence without

numbers.

• For this reason, we augment the following loss function

Lnon-num(U3, U4) =

(
d
[
U3, U4

]
− d
[
f(U3), f(U4)

])2

(6)

to make the trained parameters in f(·) preserve the original USE presentation as much as

possible.

For the actual training, we create 252 and 688 sentences with and without numbers, respec-

tively based on post-meeting FOMC statements. Since each training data point consists of a

pair of sentences, we use 536,848 pairs of sentences as the training set. Out of 536,848 training

data points, 63,504 are those involving numbers and 473,344 are those without numbers. Thus,

we use Lnum(Ui, U−i) for the former and Lnon-num(Ui, U−i) for the latter.

We provide a few selected examples below to compare the semantic distance from the original

USE representation and with the one from our fine-tuned representation.

1. Policy-relevant examples without numbers

(P1) Household spending has been increasing at a solid rate, on net, and business invest-

ment has been expanding;

(P2) Household spending is rising moderately and business fixed investment is advancing;

(P3) Household and business spending has been subdued.

2. Policy-relevant examples involving numbers

(N1) FOMC decided to keep the target interest rate at 3.75 percent;

(N2) FOMC decided to raise the target interest rate by 25 basis points to 4.00 percent;

(N3) FOMC decided to lower the target interest rate by 25 basis points to 3.50 percent;

(N4) FOMC decided to raise the target interest rate by 50 basis points to 4.25 percent.
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Table 2: Similarity scores with policy-relevant examples
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(P1)

Household spending has been increasing

at a solid rate, on net, and business

investment has been expanding

1 0.8032

(0.8230)

0.6128

(0.6498)

(P2)

Household spending is rising

moderately and business fixed

investment is advancing

1 0.7060

(0.7001)

(P3)
Household and business spending has

been subdued
1

Notes: Similarity scores are provided based on the fine-tuned USE (original USE).

Table 2 shows similarity scores for possible pairs of (P1, P2, P3). By pointing out solid growth

(subdued pace) in household spending, P1 (P3) takes more optimistic (pessimistic) outlook

than P2 that reflects neutral view as it acknowledges a moderate increase in spending. Hence,

the natural ordering of similarity scores would imply that Sim(P1, P3) is lower than either of

Sim(P1, P2) or Sim(P2, P3). It turns out that both the original USE representation and the

fine-tuned version satisfy this restriction. This illustration highlights that our fine-tuned version

retains the original USE representation which already does a good job in capturing the semantic

distance for sentences without numbers.

At the same time, the fine-tuned version is trained to capture the numeric properties. Table

3 provides the similarity scores based on the examples N1, N2, N3, N4. Note that the similarity

score monotonically decreases as the difference in the level of the federal funds rate increases.

Consequently, for any pair of (Ni, N−i), we find the lowest similarity scores for (N1, N4), (N2, N3),
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Table 3: Similarity scores with policy-relevant examples involving numbers

(N1)
keep at 3.75%

raise by 50 bps to 4.25% (N4)

raise by 25 bps to 4.00% (N2)

lower by 25 bps to 3.50% (N3)

0.9968

0.9976

0.9974

0.8831

0.8765

0.8903

Fine-tuned
USE

Original
USE

(N2)
raise by 25 bps to 4.00%

raise by 50 bps to 4.25% (N4)

keep at 3.75% (N1)

lower by 25 bps to 3.50% (N3)

0.9982

0.9976

0.9960

0.9559

0.8765

0.9190

(N4)
raise by 50 bps to 4.25%

raise by 25 bps to 4.00% (N2)

keep at 3.75% (N1)

lower by 25 bps to 3.50% (N3)

0.9982

0.9968

0.9950

0.9559

0.8831

0.9133

Notes: The four texts we are comparing are “FOMC decided to keep the target interest rate at 3.75 percent,
FOMC decided to raise the target interest rate by 25 basis points to 4.00 percent, FOMC decided to lower the
target interest rate by 25 basis points to 3.50 percent, FOMC decided to raise the target interest rate by 50
basis points to 4.25 percent.” We calculate the similarity between the two texts based on the cosine similarity
between two embedding vectors.

and (N3, N4), respectively. It is important to note that this ranking is not preserved in the

original USE representation while it is preserved in the fine-tuned USE representation.9

9The magnitude of the variations across the similarity scores for examples involving numbers is small relative
to that based on the original USE algorithm. We emphasize that this concern does not carry over to the exercises
involving FOMC statements because of a rich mixture of qualitative and quantitative descriptions therein.
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3 Identification of Monetary Policy Stance

3.1 Defining monetary policy stance

The fine-tuned USE representation appears to be successful in capturing the numeric properties

of numbers as well as the semantic differences across sentences. This feature of our algorithm

allows us to capture subtlety and nuances in FOMC statements, which we believe are a very

important part of the policy.

Beyond a technical point of view, we also bring in alternative FOMC statements, which are

available for each FOMC meeting since March 2004, that contain a more dovish (Alt A) or a more

hawkish (Alt C or Alt D) statement than the benchmark one (Alt B). There are two advantages

of using alternative statements. First, it increases corpora size resulting in better performance.

Second, and more importantly, these alternative statements have pre-defined tones, and thus, we

can assess the tone of the post-meeting statement by calculating the semantic distance between

the post-meeting and alternative statements. For example, if the USE representation of the

post-meeting statement is closer to Alt A rather than Alt C or Alt D, then we can classify it

as dovish. This approach is sensible if the semantic distance between the dovish and hawkish

alternative statements is greater than the difference in the semantic distance between the post-

meeting statement and respective alternative statements (e.g., the semantic distance between

the post-meeting statement and the hawkish alternative statement minus the semantic distance

between the post-meeting statement and the dovish alternative statement). For future reference,

we refer to this condition as “tone identification condition.” We find that the tone identification

condition mostly holds in our sample period between March 2004 and December 2016.10

We characterize the “monetary policy stance” communicated by each FOMC statement. The

“tone” of monetary policy announcements is obtained by computing the similarities between

the released statement and the alternative statements. We define the “novelty” of monetary

policy announcements by computing the semantic distance between the current statement and

the previous statement released after respective FOMC meetings. By taking the product of the

10The only exception is September 2014 in which the post-meeting statement is nearly identical to Alt A but
slightly more distant from Alt C than Alt A. Regarding forward guidance on the future path of the interest
rate, Alt C replaces “considerable time after the asset purchase program ends” with “some time after the asset
purchase program ends” whereas Alt A provides the threshold-based guidance based on the future inflation rate.
Unfortunately, without information on how soon inflation threshold is likely to be reached, our algorithm cannot
classify if Alt A is more distant from Alt C than the post-meeting statement. For this episode, we set the most
dovish tone score for the post-meeting statement.
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tone and novelty of monetary policy announcements, following Ke et al. (2019), we obtain the

monetary policy stance.

Specifically, we define the (benchmark) monetary policy stance from the post-meeting state-

ment as

MP stance (t) = (1− Sim(FOMCt, FOMCt−1))︸ ︷︷ ︸
Novelty

(
Sim(FOMCt, FOMCC,t)− Sim(FOMCt, FOMCA,t)

1− Sim(FOMCA,t, FOMCC,t)

)
︸ ︷︷ ︸

Tone

(7)

and the (alternative) dovish and hawkish monetary policy stance as11

Dovish MP stance (t) = −|1− Sim(FOMCt, FOMCt−1)|, (8)

Hawkish MP stance (t) = |1− Sim(FOMCt, FOMCt−1)|,

respectively. Novelty in the current benchmark FOMC statement relative to the previous one

quantifies the change in the FOMC’s intended policy stance. As long as the tone identification

condition holds in the data, we observe the following monotonicity in the tone of respective

policy stance:

−1 = tone(Dovish MP stance) ≤ tone(MP stance) ≤ tone(Hawkish MP stance) = 1. (9)

As conventional, we sign a positive tone as a hawkish stance and a negative tone as a dovish

stance. Note that the tone measure is normalized to be between -1 and 1.

The above analysis is based on the USE representation at the statement level. But statements

typically consist of multiple paragraphs and we may be interested in isolating the relevance of

a particular paragraph. To do this, we compute the USE representation of the j-th paragraph

in the i-type FOMC statement where i denotes the different versions of the statement. Let this

be P i
j,t. By comparing P i

j,t with P i′

j′,t′ , we can identify which paragraph contributes most to the

change in the similarity score between statements.12

11Here, we assume alternative stances differ from the benchmark stance only in terms of the tone but not
novelty. We tried to use variations in alternative statements for both novelty and tone, by defining hawkish
monetary policy stance as 1 − Sim(FOMCC,t, FOMCt−1), for example. But variations in the novelty across
alternative statements sometimes offset variations in the tone across them, complicating our tone identification.
Since we think cross-sectional variations across alternative statements are most informative about the tone
identification, we chose not to use alternative statements for computing the novelty factor.

12Note that the statement level USE representation is not an equal average of paragraph-level USE represen-
tations. When we approximate the statement level USE representation by a weighted average of paragraph-level
USE representations, the first and second paragraphs take most weights. While this is not the exact replication
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To identify monetary policy surprises around FOMC announcements, we have to estimate

the market expectations for the MP stance right before the FOMC meeting. We do this by

using a weighted average of the dovish MP stance and the hawkish MP stance based on the

assumption that alternative statements mimic expectations of market participants with more

extreme views.13

Et−∆MP stance(t) = (1− pt)× Hawkish MP stance (t) + pt ×Dovish MP stance (t). (10)

Note that the weight, pt, can vary over time. Next, we discuss how to obtain the estimates of

pt.

3.2 Measuring the market expectations from bond prices

At the time of FOMC announcement, the reaction of the high-frequency asset i’s prices can be

captured by

rit−∆l,t+∆h
≡ ln

(
Pi,t+∆h

Pi,t−∆l

)
= αi + βiMPS(pt; t−∆l) + εi,t, εi,t ∼ (0, σ2

i ). (11)

The surprise component of the FOMC announcement measured at t−∆ is

MPS(pt; t−∆l) = MP stance (t)− Et−∆l
MP stance (t). (12)

It is important to understand that MPS(pt; t − ∆l) > 0 corresponds to tightening monetary

policy.

The underlying assumption of (10) and hence (12) is that the market is aware of the two

alternative stances which serve as bounds when forming expectations. This assumption may

sound too strong given that alternative statements are publicly available with a five year lag.

One practical justification is from the bluebook in 2004. The staff of the Federal Reserve Board

rationalizes alternative statements by intentionally beating market expectations in the hawkish

or the dovish direction. Hence, alternative statements reflect the Board staff’s best guess for two

of the statement-level USE representation, our findings suggest that the ordering of language matters because it
sets the context from which the subsequent words are interpreted.

13Lucca and Trebbi (2009) construct a measure of monetary policy stance based on the systematic co-occurrence
of words in FOMC statements with pre-labeled words (e.g., hawkish or dovish) in news articles covering FOMC
announcements. However, they equate market expectations to ones from the previous meeting, ignoring the
market reaction to developments during the inter-meeting period.
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extreme market beliefs. Roughly speaking, we are capturing the marginal investor’s expectation

as a weighted average of these two extreme expectations. As long as the marginal investor’s

expectation is within the bounds set by the survey of market participants, this assumption is

plausible.

3.3 Constructing the surprise component of monetary policy stance

We calibrate the weight {pt}Tt=1 that maximizes the rank correlation of the high-frequency

bond returns (left-side of (11)) and the surprise component of monetary policy announcements

MPS(pt; t − ∆), aka, monetary policy shocks. When pt is not time-varying, (pt = p) our es-

timate is identical to the maximum rank correlation estimator, see Han (1987) and Sherman

(1993). Here, we assume that a dovish surprise should lead to a positive bond return because

bond prices move inversely with bond yields.14 Specifically, we maximize the following rank

correlation function with respect to pt:

(pτi)
T
i=1 = argmax

∑
t6=t′

1(rbτt−∆l,τt−∆h
> rbτt′−∆l,τt′−∆h

)1(MPS(pτt) < MPS(pτt′ )). (13)

This (negative) rank correlation is maximized by calibrating pt based on the sorted bond return.

Specifically, the time series of bond returns {rbt−∆l,t+∆h
}Tt=1 are sorted from most negative to most

positive. Let the ordering of the sorted-returns be indicated with new time subscripts {τ1, ..., τT}:

rbτ1−∆l,τ1+∆h
= min{rbt−∆l,t+∆h

}Tt=1 (14)

rbτT−∆l,τT +∆h
= max{rbt−∆l,t+∆h

}Tt=1.

For a strictly negative value of βb in (11), we have that

MPS(pτT ) ≤ ... ≤ MPS(pτt) ≤ ... ≤MPS(pτ1) (15)

rbτ1−∆l,τ1+∆h
≤ ... ≤ rbτt−∆l,τt+∆h

≤ ... ≤ rbτT−∆l,τT +∆h

where τt ∈ {τ1, ...τT}. Because it is possible that there are (potentially) multiple realizations

of {pτ1 , ..., pτT } that satisfy (15), we pick the one that achieves the largest negative correlation

between {MPS(pτ1), ...,MPS(pτT )} and {rbτ1−∆l,τ1+∆h
, ..., rbτT−∆l,τT +∆h

}. This can be done via

14The sign of the correlation is negative because pt corresponds to a dovish probability, which contributes to
a negative surprise in monetary policy stance.
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grid search (with respect to pτt). Once we select {pτ1 , ..., pτT }, we can sort them back to match

the original time subscript {p1, ..., pT} and construct the corresponding MPS(pt) for each pt,

t ∈ {1, ..., T}.

3.4 Discussion

A key feature of our approach is that we are able to identify the tone of the post-meeting

statement from the pre-labeled (dovish and hawkish) alternative statements. We then use high-

frequency bond prices to back out the market expectations. It is important to understand that

because the tone of the statement is defined in the space of texts (independent from financial

markets), it creates an important advantage over commonly used approaches in the existing liter-

ature. Specifically, we can assess the impact of a counterfactual policy statement by changing its

tone while keeping the market expectations constant. This is possible because our tone measure

is not inverted from high-frequency bond data. Our approach enables policymakers to assess

alternative descriptions of the economy and policy prescriptions and their impact on financial

market when writing policy statements. In the next section, we conduct two counterfactual

policy evaluations to showcase this idea.

In principle, we can also consider obtaining market expectations based on text analysis. For

this, we can train a neural network architecture that mimics market expectations of the upcom-

ing post-meeting statement using public communications available before the meeting (previous

post-meeting statement and inter-meeting speeches by FOMC participants). Doh (2020) trains a

sequential neural network model that predicts the tone of the released FOMC statement based

only on public information at that time. While training relies on the pre-labeled alternative

statements, once trained, the model can predict the tone of the released statement without rely-

ing on alternative statements. However, given the short nature of the availability of alternative

statements (from 2004 to 2016), we find that this approach is not empirically appealing.

4 Empirical Results

4.1 Data for alternative FOMC statements

The Federal Reserve Board staff started to prepare alternative FOMC statements from the March

2004 FOMC meeting. The latest available statement is the one prepared for the December 2016
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Figure 2: Monetary policy stance
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Notes: All measures are normalized to have a unit variance.

FOMC meeting. We have 103 FOMC statements (March 2004 to December 2016) excluding

two inter-meeting announcements (Aug 2007, Jan 2008). When multiple versions of hawkish or

dovish alternative statements are available (e.g., Alt A1 or Alt D), we use the most extreme one

to identify the tone of the released statement.

4.2 Monetary policy stance and surprises

Figure 2 provides the time series of monetary policy stance based on (7) and (8) when the

textual similarity is calculated by the fine-tuned USE representation. Our measure captures the

change in the policy stance including both the current action (e.g., change in the federal funds

rate target) and the expected future action (e.g., forward guidance about the future interest

rates).

To extract monetary policy surprises, we construct the market expectation of monetary policy

stance which is the weighted average of the dovish and hawkish monetary policy stance. The

market-based probability that the dovish and hawkish alternative statement would be released

are parameterized by pt and 1 − pt, respectively. To calibrate the market-based probability pt,

we use high-frequency bond market return data around FOMC announcements. One virtue of

our maximum rank correlation approach is that it sidesteps the burden of estimating αi, βi, σ
2
i

when identifying p1:T in (11). To provide robustness to our claim, we rely on bond futures
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returns of various combinations of ∆l,∆h ∈ {10, ..., 120}min to obtain p1:T and the corresponding

MPS(p1:T ). We provide the results in Figure 3. The median values of p̂1:T are highly correlated

with each other, e.g., 0.96 or higher. This finding implies that the dovish probabilities extracted

from bond returns are fairly robust to different window intervals or instruments. The robustness

of our result is different from Bu et al. (2020) who find large differences in monetary policy shock

estimates depending on the maturity of the bond data. We interpret this as demonstrating the

value of our text-based analysis in isolating core information from FOMC statements.

Having obtained the MPS measure, we quantify its impact on bonds. Specifically, we regress

the intraday 5-year Treasury futures returns on our MPS measure and report the results in Panel

(A) of Table 4. We find that R2 is over 50% across many different event windows. Panel (B)

of Table 4 contains the estimation results from the regression involving daily one-year Treasury

yield changes. A one standard deviation positive shock to our MPS measure is found to increase

the one-year Treasury bond yield by 2 basis points.

4.3 Stock market responses to monetary policy surprises

Since the Federal Reserve intervenes in Treasury markets to influence the interest rate, it is

not surprising that bond returns react to monetary policy surprises. But the monetary policy

transmits to the real economy by affecting broad financial market conditions including stock

market as well as Treasury markets. For this, understanding the links between monetary policy

and asset prices above and beyond bond returns is important as highlighted by Bernanke and

Kuttner (2005) who find that an unanticipated 25 bps cut in the federal funds rate leads to

about 1 percent increase in the stock market return. We turn to the stock market reaction to

our measure of monetary policy surprise to check if our text-based measure captures similar

stock market responses.

For the benchmark case, we select the 5-year Treasury bond futures returns with window inter-

vals ∆l = ∆h = 10min to back out the probability weights and construct MPS(p̂t). Conditional

on this output, we conduct the regression analysis using stock returns as an external validation

check. Specifically, we regress stock returns rst−∆l,t+∆h
on the bond market-implied MPS(p̂t).

In essence, we are estimating (11) using an OLS with stock returns. The estimation results

summarized in Panel (C) of Table 4 imply that the bond market-implied MPS(p̂t) significantly

predicts stock returns measured at various window intervals. Because we normalize MPS(p̂t) to

have a unit variance, we can directly interpret the magnitude of β coefficient in assessing the
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Figure 3: Dovish probability comparison
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Notes: We rely on the 5-year and 10-year Treasury bond futures returns and the 1-year Eurodollar futures
returns. Returns are defined with the following interval ∆l,∆h ∈ {10, ..., 120}min. The median values are
indicated with solid lines.

economic significance of MPS(p̂t). On average, we find that a positive one-standard-deviation

surprise leads to 20-40 bps drop in stock prices. The R2 values are around 20-25% across various

return window intervals.
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Table 4: Return predictability regression

(A) Intraday bond return prediction

[∆l ∆h] α β t-stat (α) t-stat (β) R2

Symmetric window

[−10 10] 0.06 -0.18 4.23 -10.10 0.60
[−60 60] 0.10 -0.25 4.39 -9.91 0.55
[−120 120] 0.12 -0.26 5.15 -11.40 0.54

Asymmetric window

[−1 10] 0.07 -0.18 4.10 -10.25 0.60
[−1 60] 0.09 -0.24 4.02 -10.26 0.54
[−1 120] 0.10 -0.24 3.92 -8.73 0.50

(B) Daily bond yield change prediction

α β t-stat (α) t-stat (β) R2

[−120 120] -0.01 0.02 -1.45 3.82 0.20

(C) Intraday stock return prediction

[∆l ∆h] α β t-stat (α) t-stat (β) R2

Symmetric window

[−10 10] 0.11 -0.25 2.08 -3.51 0.24
[−60 60] 0.29 -0.38 3.59 -3.14 0.26
[−120 120] 0.25 -0.44 2.66 -3.83 0.21

Asymmetric window

[−1 10] 0.07 -0.23 1.37 -2.88 0.21
[−1 60] 0.27 -0.38 3.30 -3.29 0.25
[−1 120] 0.21 -0.45 2.05 -3.37 0.20

Notes: In panels (A) and (B), based on the median value of p̂1:T , we regress stock and bond returns (defined at
various window intervals) on MPS(p̂1:T ). For this, we rely on the intraday E-mini stock futures and the 5-year
Treasury bond futures. For panel (C), we regress daily changes of the (annualized) 1-year Treasury bond yields
on MPS(p̂1:T ). The t statistics are computed based on bootstrap standard errors to account for the fact that
our policy surprise measure is a generated regressor.
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4.4 Comparison with other monetary policy surprise measures

Our MPS(p̂t) is highly correlated with other measures of monetary policy shocks based on the

high-frequency asset market data around FOMC announcements. We explain a few of them

here.

Nakamura and Steinsson (2018) identify monetary policy shocks based on the assumption

that unexpected changes in a 30-minute window during FOMC announcements arise from news

about monetary policy. Swanson (2017) identifies multiple dimensions of monetary policy shocks

using eight different asset prices consisting of three Treasury bond yields (maturities of 2, 5,

10 years) on top of the five interest rate futures used in Nakamura and Steinsson (2018). He

computes the three principal components that account for common variations in these eight

different asset prices around FOMC announcements: 1) federal funds rate (FFR) factor that

affects the current month federal funds rate futures, 2) forward guidance (FG) factor that is

orthogonal to the change in the current month federal funds rate futures, and 3) large-scale

asset purchase (LSAP) factor that is also orthogonal to the change in the current month federal

funds rate futures and plays a minimum role in explaining the data before the federal funds

rate reached the effective lower bound in December 2008.15 Bu et al. (2020) construct monetary

policy shocks using the idea that the variance of the daily bond return is higher on FOMC days

relative to non-FOMC days due to the monetary policy announcement. In addition to near-term

maturities, they use information from the entire yield curve (up to the maturity of thirty years).

Table 5 provides sample correlation of our MPS measure with those measures. We find that

our MPS measure is highly correlated with the monetary policy shock measure of Bu et al.

(2020) and the FG and LSAP factors of Swanson (2017).16 The fact that our MPS measure

is highly correlated with the FG and LSAP factors indicates that we are effectively capturing

communication channel of monetary policy that impacts longer term interest rates.

15In practice, these factors are largely distinguished by their different loadings on the maturity spectrum of
the underlying interest rate data. The FFR factor has a large non-zero loading on the current month federal
funds futures while the other factors have zero loadings. In addition, the loadings of FG factor are concentrated
in the one-to-five year maturity spectrum while the LSAP factor has the largest loading on the ten-year Treasury
yield.

16The negative correlation with the LSAP factor is due to the fact that Swanson (2017) normalized a positive
innovation to the LSAP as larger asset purchases than expected, resulting in policy easing.
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Table 5: Comparison with other measures

MP stance: surprise MP stance: level

Bu et al. (2020) 0.51 0.14
Nakamura and Steinsson (2018) 0.37 0.00
Swanson (2017) (FFR+FG+LSAP) 0.70 0.08

- Federal funds rate (FFR) factor 0.10 0.00
- Forward guidance (FG) factor 0.48 -0.06
- Large-scale asset purchase (LSAP) factor -0.65 -0.22

Notes: Based on the median value of p̂1:T , we construct MPS(p̂1:T ) and compute correlation with other existing
measures of monetary policy factors. The last three factors are from Swanson (2017): 1) federal funds rate
(FFR) factor; 2) forward guidance (FG) factor; and 3) large-scale asset purchase (LSAP) factor.

4.5 Discussion on the information channel

Here, we discuss the empirical relevance of the Fed information effect, i.e., an FOMC tightening

communicates that the economy is stronger than expected, shown in Nakamura and Steinsson

(2018).

In our sample that ranges from 2004 to 2016, we find that a positive one-standard deviation

increase of our MPS measure leads to 20-40 bps drop in stock prices as shown in Table 4, which

is consistent with implications from standard macro-finance models. Our evidence implies that

the empirical support for the information channel may be weak for our sample period. However,

we cannot draw the same conclusion for the pre-2004 period that is included in the analysis

of Nakamura and Steinsson (2018). We rather suspect that more efforts made by the Federal

Reserve staff to fine-tune statement language since 2004 might have increased the effectiveness

of monetary policy communications on the asset markets. This hypothesis is consistent with

the finding in Lunsford (2020) who shows that the information channel effect was present before

August 2003 but disappeared for the later sample as the FOMC provides a more explicit policy

inclination in statements. A similar observation was made by Hoesch et al. (2020). Bu et al.

(2020) argue that the information channel effect highlighted by Nakamura and Steinsson (2018)

is present mainly because Nakamura and Steinsson (2018) consider only the near-term interest

rate data in constructing their measure of monetary policy shock. Bu et al. (2020) show that

when bonds of longer-term maturities than what is used in Nakamura and Steinsson (2018) are

included instead, the information channel effect dissipates.17 On the other hand, Bauer and

17The maturity choice does not seem to play an important role in our study as our policy surprise measure is
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Swanson (2020) find weak support of the information channel even for the sample including

the pre-2004 period and argue for the importance of controlling information from economic

indicators released during the inter-meeting period.

4.6 Counterfactual policy evaluation

The beauty of our approach is that we are able to conduct a counterfactual policy evaluation

by replacing sentences in the released statement with those from either one of the alternative

statements. We consider both dovish and hawkish alternative statements in the counterfactual

analysis.

First, we consider the dovish alternative counterfactual experiment. For the November 2010

meeting, we assess the stock market impact of releasing a more dovish statement (Alt A) provid-

ing an explicit forward guidance shown in Table 6. The released post-meeting statement does

not provide an explicit forward guidance and maintains “for an extended period ”as in Alt B

(which are close to the released statement).

Conditional on β̂ = −0.23 (the smallest coefficient) in Panel (C) of Table 4, we multiply the

counterfactual monetary policy surprise component to assess the impact on the stock returns

(defined in the 10-minute interval). For this, we replace the monetary policy stance with the

counterfactual one and subtract the previously determined expected monetary policy stance

obtained from the high-frequency bond returns. It is important to note that we are only replacing

one data point (that corresponds to the November 2010 FOMC statement release date) while

keeping all else equal in this exercise. We find that the counterfactual monetary policy stance

turns out to be more dovish leading to an 39 bps increase of stock prices relative to the 11 bps

decrease with the actual released statement.

Next, we perform another counterfactual exercise for the December 2016 FOMC meeting. As

shown in Table 7, forward guidance in Alt C suggests that further increases in the federal funds

rate will come sooner than what is described in Alt A or Alt B. Using the same coefficient

β̂ = −0.23, we find that the release of Alt C would have decreased stock market return by

110 bps. Since the stock return increased by 5 bps upon the release of the actual post-meeting

statement, our exercise suggests that net effect of releasing Alt C would have been a 115 bps

robust to various maturities of bond returns, see Figure 3.
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Table 6: Alternative language for the November 2010 FOMC announcement

Alternative A Alternative B Alternative C

Federal funds
rate target

0 to 0.25% 0 to 0.25% 0 to 0.25%

Forward
guidance

0 to 0.25%
at least until mid-2012

exceptionally low levels
for an extended period

exceptionally low levels
for an extended period

Source: Authors’ construction based on FOMC historical materials.

Table 7: Alternative language for the December 2016 FOMC announcement

Alternative A Alternative B Alternative C

Federal funds
rate target

0.25 to 0.5% 0.5 to 0.75% 0.5 to 0.75%

Forward
guidance

only gradual increases
in the federal funds rate

only gradual increases
in the federal funds rate

additional gradual increases
in the federal funds rate

Source: Authors’ construction based on FOMC historical materials.

decline in the stock return.18 Since we took the most conservative estimate of the stock return

predictability regression coefficient in Table 4, our assessment is more likely to serve as a lower

bound on the effect of changing language in FOMC statements. Even so, the magnitude of

market response is not negligible, consistent with the view that FOMC communication may be

an important policy tool. In particular, in the case of a hawkish counterfactual exercise, the

stock market response is comparable to what is expected from an unanticipated raise of the

federal funds rate target by 25 bps found in Bernanke and Kuttner (2005).

5 Conclusion

The central bank’s public communications about current and future policy actions have increas-

ingly received attention as a policy tool. Since March 2004, the FOMC has deliberated on

18One caveat in our exercise is that when we change the entire statement by the alternative statement not only
the tone factor but also the novelty factor might be affected. For the November 2010 episode, the change in the
novelty explains only about 1/3 of the change in the monetary policy surprise measure with the rest explained
by the change in the tone factor. However, the change in the novelty factor explains about 60 percent of the
variation in the monetary policy surprise component for the December 2016 episode.

https://www.federalreserve.gov/monetarypolicy/fomc_historical_year.htm
https://www.federalreserve.gov/monetarypolicy/fomc_historical_year.htm
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alternative policy statements prepared by the Federal Reserve staff before each FOMC meeting.

Two alternative statements capture the hawkish or dovish deviation from the central tendency

of the market expectations right before the meeting, providing cross-sectional variations around

the released statement. We apply a novel natural language processing algorithm based on a deep

learning architecture to alternative FOMC statements in order to identify the tone of the re-

leased statement. This USE algorithm detects the contextual meaning of words in the statement

and quantifies the information provided by language in alternative statements. Furthermore,

we fine-tune the USE algorithm with artificial text datasets to enhance its ability to detect

the numeracy of numbers because FOMC statements often involve numeric values for policy

variables.

We construct a new measure of monetary policy surprises by combining the high-frequency

bond returns around FOMC announcements with a text analysis of alternative statements by the

USE. Our text-based monetary policy surprise measure is robust to the choice of the maturity

of bond returns used. We find that an unexpected policy tightening (easing) leads to a decline

(an increase) in the stock market return on average. This finding reinforces that the FOMC’s

communication has affected financial market conditions in an expected direction at least since

2004, which is consistent with the recent empirical findings. Two counterfactual exercises sug-

gest that changing language in FOMC statements may alter financial market conditions in a

significant way, highlighting the importance of FOMC communication as a policy tool.

A literature on large-scale language model is rapidly growing and improving human language

understanding and reasoning (see Manning (2022)). Our paper suggests that bringing in such

a tool into economic analysis can be useful for performing a rigorous analysis of economic

narratives. Although we focus on the assessment of FOMC communications via post-meeting

statements, our method of fine-tuning a pre-trained large-scale language model with task-specific

datasets can be more generally applied in quantifying economic narratives (see Shiller (2017)

and Shiller (2020)).
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Appendix

A Technical Appendix

A.1 Details of the Neural Network Architecture in the USE

The USE architecture in this paper is based on six neutral network layers, each of which has

two sublayers with a self-attention channel. We first describe tho original architecture and then

explain how to fine tune it to obtain the paragraph level decomposition of similarity scoring

across statements.

A.2 Deep Neural Network Layers in the USE

The first neural network in the USE is built by linking two sublayers as shown in Figure A-1

after taking a group of word embeddings that represents the source sentence as input. The first

layer generates the sentence embedding vector (h1
1, · · · , h1

M) as output and feeds this as input

for the second layer.19

Figure A-1: First Neural Network Layer

Second Sublayer: Feed Forward Neural Network (h1
1 =, · · · , h1

M ) , h1
j =

∑n
l=1 max(0,W1

jlŵl + bj,1) + bj,2 , j = 1, · · · ,M

First Sublayer: Self-Attention (ŵ1, · · · , ŵn) , ŵi =
∑n

k=1 Att(wi, wk)wk , i = 1, · · · , n

Input: A Set of Word Embeddings: (w1, · · · , wn)

19The actual USE architecture is slightly more complicated than presented below. It involves 1)sub-word
(character) level embedding, 2)positional embedding in which the order of any given word is also mapped into
the embedding of that word, 3)residual connection in which input bypasses attention and feed-forward neural
network channels with a certain probability known as the dropout rate, 4)output from the layer is normalized to
have mean zero and standard deviation of one, and 5)8 multihead attention channels are applied in the attention
sublayer.
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Final Layer: input(h5
1, · · · , h5

n) ,output(U1, · · · , U512)

Fifth Layer: input(h4
1, · · · , h4

n) ,output(h5
1, · · · , h5

n)

Fourth Layer: input(h3
1, · · · , h3

n) ,output(h4
1, · · · , h4

n)

Third Layer: input(h2
1, · · · , h2

n) ,output(h3
1, · · · , h3

n)

Second Layer: input(h1
1, · · · , h1

n) ,output(h2
1, · · · , h2

n)

First Layer: input(w1, · · · , wn) ,output(h1
1, · · · , h1

n)

Figure A-2: Neural Network Architecture

Here, attention weights are determined by the distance between different word embeddings as

follows:

ŵi,j =

ni∑
k=1

Att(wi,j, wi,k)wi,k , Att(wi,j, wi,k) =
ew
′
i,jwi,k∑ni

l=1 e
w′i,jwi,l

. (A-1)

The entire USE algorithm works by vertically stacking six neural network layers which take

the sentence embedding output in the previous layer as input and generate another sentence

embedding as output. Figure A-2 describes the entire process.

To train parameters in the neural network architecture, we need to define the loss function

that compares outcomes based on sentence embeddings from the USE with those based on

human judgement. For example, if we define the relation between two texts as one of 3 classes

(entail,contradict,neutral), we can apply the softmax classifier (f) to the difference between

two embeddings. In this case, we can choose parameters in the neural network architecture to
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minimize the loss function that measures the distance between the machine-classified outcome

(f(U i, U j)) and the one judged by humans (fhuman(Texti,Textj)) where U i is the 512-dimensional

USE representation of Texti. In addition, two other natural language processing tasks are run

to train the model.

• Skip-thought task: conditional on the center sentence, predict neighboring sentences

(previous and next). The training dataset is from wikipedia articles.

• Question-answer prediction: predict the correct response for a given question among a

list of correct answers and other randomly sampled answers. The training dataset is from

web question-answer pages and discussion forums.

• Natural language inference: given a premise sentence and a hypothesis sentence, ex-

tract the relation between them. Let Up and Uh be the sentence embeddings of the premise

and the hypothesis, respectively. A fully-connect layer and and a 3-way softmax classifier

are applied for the concatenated input of (Up, Uh, |Up−Uh|, and Up−Uh). The three-way

classifier predicts if the premise entails, contradicts, or is neutral to the hypothesis. The

training dataset is the SNLI corpus.

A.3 Paragraph Level Decomposition of the USE Representation

In some cases, paragraph-by-paragraph comparison may provide more interpretable results. For

instance, we may be interested in which paragraph drives the similarity score between different

statements. For this, we obtain paragraph level USE representations and approximate the state-

ment level USE representation by a weighted average of paragraph level USE representations.

Denote the USE representation of the released FOMC statement at time t by SRt . Similarly,

Sit , (i = A,B,C,D) denotes the USE representation of alternative statements. The USE rep-

resentation of the j-th paragraph of the FOMC statement at time t is P i
j,t. To calculate P i

j,t,

we run the USE algorithm for each paragraph j. The idea is to construct
∑

k wkP
i
k,t that can

mimic Sit best in terms of minimizing the squared difference between two representations of the

FOMC statement at time t.

• Step 1: Paragraph Padding Some statements are longer than others, meaning that the

corpus of FOMC statements has an unequal length depending on the statement. An easy
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way to fix this is to pad a shorter statement with empty paragraph encodings. Suppose

that nmax is the maximum number of paragraph of any given FOMC statement from the

entire corpus of our dataset including both released statements and alternative statements.

Then, we can extract the following array of the paragraph USE representation of the

FOMC statement.

PR
t = [PR

1,t, · · · , PR
nmax,t]. (A-2)

If the number of paragraphs in the statement at time t (nR,t) is smaller than nmax, we

add (nmax − nR,t) zero vectors of 512 dimensions. The purpose of this operation is to

make the USE representation of any FOMC statement have the same number of the USE

representations at the paragraph level.

• Step 2: Approximate the Statement Level USE Representation by a Weighted

Average of Paragraph Level USE Representations

The goal is to select weights (wj , j = (1, · · · , nmax) that can mimic this statement-level

USE representation using paragraph-level USE representations. We consider the following

squared loss:

∑
i∈R,A,B,C,D

∑
t

(Sit −
∑
j

wjP
i
j,t)

T (Sit −
∑
j

wjP
i
j,t). (A-3)

We can put the non-negativity and unit-sum constraints on wj such that wj >= 0 ,
∑

j wj =

1. Once we find the solution for weights, we can mimic P i
t by

∑
j wjP

i
j,t. But the numerical

optimization routine might be non-convex when you put the constraints directly. So we

may consider the following transformation of wj to make the problem an unconstrained

minimization problem:

wj =
eαj∑nmax

k=1 eαk
, (A-4)

where αj is an unconstrained parameter. Notice that wj still satisfies the constraints but

we are minimizing the loss function with respect to (α1, · · · , αnmax).

• Step 3: Decomposing the Similarity Scoring
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For the unit-vector, the cosine similarity is simply the inner product. So we can renormalize

the USE representation to have a unit length. In that case, we have the following nice

decomposition of the similarity scoring between texts.

Sim(P i
t , P

j
t ) ∝ Sim(

nmax∑
k=1

wkP
i
k,t,

nmax∑
k=1

wkP
j
k,t) =

∑
k

∑
k′

wkwk′Sim(P i
k,t, P

j
k′,t). (A-5)

A.4 Details of Fine-tuning

As explained in the text, we add an additional layer to the USE representation of the text to

train the final embedding output to recognize numeric properties better. We consider a fully

connected feed-forward network with a rectified linear unit as an activation function. For the

original USE representation of a FOMC statement UFOMC = [U1, · · · , U512], our additional layer

performs the following transformation:

f(UFOMC) = [max(W ′
1UFOMC + b1, 0), · · · ,max(W ′

512UFOMC + b512, 0)]. (A-6)

Let’s stack parameters governing this transformation by ϑ = [W1, · · · ,W512, b] where b =

[b1, · · · , b512]. As described in the text, we generate two separate training datasets to optimize

ϑ in order to minimize loss functions set out in equation (5) and (6).
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