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Abstract

We study the persistent effects of temporary changes in U.S. federal corporate and personal

income tax rates using a narrative identification approach. A corporate income tax cut leads to

a sustained increase in GDP and productivity, with peak effects between five and eight years.

R&D spending and capital investment display hump-shaped responses while hours worked and

employment are much less affected. In contrast, personal income tax cuts trigger a short-lived

boost to GDP, productivity and hours worked but have no long-term effects. We develop and es-

timate an endogenous growth model with variable factor utilization and show that these features

generate a pro-cyclical response of productivity which is key to account for our empirical findings.
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1 Introduction

Can temporary tax cuts stimulate the economy over the longer-term? Over the last twenty years,

extensive research efforts have focused on the short-run impact of stabilization policies, but evidence

about the long-run effects of tax changes remains sparse. This is despite recurrent academic and

policy debates about the potential longer-term impacts of tax reforms. Our paper provides empirical

evidence and a theoretical mechanism through which temporary changes in corporate and personal

taxes may have persistent effects.

We use Bayesian Local Projections and post-WWII U.S. data on output, taxes, productivity

and R&D spending to estimate the dynamic effects of income tax changes.1 Federal tax changes

are identified based on the narrative approach of Romer and Romer (2010), which excludes all tax

changes that were motivated by fluctuations in current or prospective economic conditions. We use

the decomposition of these data into different tax types by Mertens and Ravn (2013) and focus on

personal and corporate income tax changes separately.

Our paper has three main empirical findings. First, changes in tax rates tend to be temporary,

reverting to historical averages between two and four years after the shock. Second, the effects of

personal income taxes on output are large and significant during the first six quarters but return to

zero within two years. In contrast, a corporate income tax cut generates a smaller stimulus on impact

but has larger expansionary effects over the medium- and long-term, with peak effects occurring

around eight years after the shock. Third, while the dynamic effects of personal income taxes are

short-lived on productivity and negligible on R&D expenditure, changes in corporate income taxes

are associated with a sustained, but temporary, rise in R&D spending and a persistent increase in

aggregate productivity.

We interpret our empirical findings through the lens of a structural model with variable factor

utilization (for both capital and labor), R&D spending and technological adoption. We estimate

the structural model via Bayesian methods by minimizing the distance between the impulse re-

sponses of the structural model and those estimated using Local Projections (LPs). We choose

prior distributions that are conventionally used in the empirical macro literature and that imply:

(i) productivity is virtually a-cyclical and (ii) long-run effects are unlikely. Yet, the posterior dis-

tributions of the structural parameters imply impulse responses that replicate both the short-run

1As discussed in Section 2, the Bayesian approach provides us with an efficient method to characterise the joint
and marginal distribution of the impulse responses to both tax shocks in the short-run and in the long-run. It also
offers tools to navigate the small sample bias-variance trade-off highlighted by Jordà et al. (2020) and Li et al. (2021).
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effects of personal income tax changes and the long-run effects of corporate income tax changes on

output and productivity.

To uncover the mechanism behind our findings, we use the estimated structural model to per-

form three counterfactual simulations, which in turn: (i) switch R&D spending off, (ii) make factor

utilization (both capital and labor) inelastic, (iii) switch R&D spending off and make factor uti-

lization (both capital and labor) inelastic. The first exercise shows that R&D is key for the model’s

ability to generate a persistent response of productivity and output following a temporary change

in corporate income taxes. The second exercise shows that variable factor utilization is crucial to

produce the short-run response of productivity to temporary tax cuts. The third counterfactual

shows that without R&D and variable factor utilization, an otherwise standard New-Keynesian

model would not deliver pro-cyclical productivity, thereby missing the estimated output responses

to either shock.

Related literature. Our paper relates to several strands of empirical and theoretical work. In

terms of stabilization policy, an influential literature exemplified by Romer and Romer (2010), Barro

and Redlick (2011), Mertens and Ravn (2013), Cloyne (2013) and Caldara and Kamps (2012), among

many others, estimate the short-run dynamic effects of tax changes on output. This literature has

focused on solving the identification problem that tax changes affect the economy but fiscal policy

may also react to economic conditions.

This strand of research does not typically look at the long-run, or examine the impact on

productivity or R&D expenditure. There have been a few recent studies, however, considering the

effect of tax reforms on innovation in different contexts. Akcigit et al. (2022) exploit cross-sectional

variation in income taxes across individual inventors and U.S. states to estimate large and positive

effects of tax cuts on innovation and capital investment. Cram and Olbert (2022) measure the effects

of the 2021 global corporate tax reform on stock prices across companies with different shares of

foreign earnings and intangible assets and on sovereign debt risk of countries with different shares

of multinational companies’ tax bases. Baley et al. (2022) study the monetary policy response to

permanent corporate tax reforms.

Growing research efforts, surveyed by Cerra et al. (2022) and including Comin and Gertler

(2006), Benigno and Fornaro (2017), Anzoategui et al. (2019), de Ridder (2019), Beaudry et al.

(2020), Jordà et al. (2020), Queraltó (2022), Fornaro and Wolf (2020), Furlanetto et al. (2021)

and Antolin-Diaz and Surico (2022), among others, examine the long-run effects of non-technology
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shocks working via strategic complementarities and financial frictions, monetary policy and govern-

ment spending. A distinctive feature of our analysis is the focus on the long-run effects of corporate

and personal income taxes on productivity, aggregate R&D spending and GDP, a key part of the

policy debate around fiscal policy.

Our analysis is structured as follows. In Section 2, we present the identification strategy and

the empirical framework. In Section 3, we present the evidence based on LPs and post-WWII U.S.

data. In Section 4, we develop a structural model with variable factor utilization and endogenous

growth, which we estimate in Section 5 by minimizing the distance between the model impulse

responses and those based on the LP estimates of Section 3. In Section 6, we perform a number of

counterfactual analyses that highlight the main channels that drive our empirical findings. Section

7 revisits the role of investment adjustment costs in the propagation of macroeconomic shocks.

Section 8 concludes. The Appendix contains further details and robustness exercises.

2 Empirical Framework

In this section, we describe the narrative approach and dataset we use to isolate exogenous variation

in taxes. We then present the empirical model that we use to identify the longer-run effects of

corporate and personal income tax changes, and provide details on the data and estimation.

2.1 Identification and approach

Our goal is to examine the longer-term aggregate effects of different tax policy reforms. We face

at least three empirical challenges. First, we need information on when tax policy was changed,

including how different types of taxes were adjusted as these may have different long-run properties.

Second, tax policy is often endogenous because policy levers tend to be adjusted in response to

changes in current or prospective economic conditions: tax policy affects macroeconomic outcomes,

but economic conditions also influence tax policy decisions. Third, we need an empirical approach

well-suited to studying longer-term impacts.

We address the first two challenges using the identified corporate and personal taxes changes

from Mertens and Ravn (2013). These data build on the original dataset of Romer and Romer

(2010), who identify tax changes for the United States from 1950 to 2006. To isolate changes in tax

policy that are plausibly “exogenous”, Romer and Romer (2010) examine the motivations given by

policymakers for all major pieces of Federal tax legislation over this period. Tax changes that were
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not implemented for reasons related to changes in current or prospective future economic conditions

are regarded as “exogenous”.

A quantitative measure of each exogenous reform is constructed using historical revenue pro-

jections for the impact of the policy change, as announced at the time of the intervention. These

are scaled by nominal GDP and, thus, approximate changes in the average tax rate (all else equal).

Mertens and Ravn (2013) refine this series by excluding potentially anticipated reforms, defined as

tax changes implemented more than 90 days after announcement. Key for our purpose, Mertens

and Ravn (2013) sub-divide the Romer and Romer (2010) shocks into corporate and personal tax

reforms. This so-called “narrative” approach of looking for quasi-natural experiments from histor-

ical episodes has a long tradition in macroeconomic research, as exemplified by Barro and Redlick

(2011), Cloyne (2013), Mertens and Ravn (2012, 2014), Guajardo et al. (2014), Hayo and Uhl

(2014), Cloyne and Surico (2017), Gunter et al. (2018), Nguyen et al. (2018), Hussain and Liu

(2018), Cloyne et al. (2021).2

The literature studying the effects of tax changes using narrative methods tends to find large

macroeconomic effects, but typically these papers focus on the shorter term effects over 2 to 5 years.

A sizable part of the macroeconomic policy debate, however, has focused on the potential longer-

term effects of tax reforms, yet there remains little direct evidence on this issue. In fact, policy

recommendations often have to rely on inferring long-run results from the short-run estimates in a

number of the papers referenced above. The datasets in Romer and Romer (2010) and Mertens and

Ravn (2013), however, span a period of nearly 60 years and contain numerous reforms to personal

and corporate taxes. It should also be feasible to examine the longer-term impacts of tax reforms

using these data.

As for the empirical model, we need an econometric approach that allows us to draw inference

about longer-term effects. Recent work by Jordà et al. (2020) for monetary policy has shown that

the longer-term effects of policy interventions tend to be incorrectly captured when impulse response

functions (IRFs) are estimated using a traditional Vector Autoregression (VAR) approach with short

lag lengths (as is common in the empirical macro literature that focuses on relatively short time-

series samples after WWII). This is because impulse responses are constructed as a projection from

a fixed model using all the lags in the VAR. In finite samples, the lag structure has to be truncated

2The narrative approach arguably dates back to, at least, Friedman and Schwartz (1963) who examine episodes of
unusual monetary policy in the United States. In a modern setting the approach has been popularized by Romer and
Romer (1989) and Romer and Romer (2004). On the government spending side, a number of papers have employed a
narrative approach to examine the impact of defence spending, e.g. Ramey and Shapiro (1998), Ramey (2011), Crafts
and Mills (2013), Ramey and Zubairy (2018) and Barro and Redlick (2011).
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and the VAR impulse response function, particularly at longer horizons, will be sensitive to the

number of lags included (Li et al., 2021). Jordà et al. (2020) recommend estimation of impulse

response functions using local projections (LPs), following Jordà (2005). This is a direct estimate

of the impulse response function and does not use coefficient estimates on all the lagged controls

to construct the IRF. As a result, this approach is less sensitive to the choice of lag structure and

lag truncation issues that afflict VAR methods in finite samples. For estimation we use Bayesian

methods, which provide an efficient way to compute and characterize joint and marginal posterior

distributions.

One contribution of Mertens and Ravn (2013) is to introduce a methodology for treating the

narratively identified tax changes derived from historical documents as potentially noisy “proxies”

(or instruments) for the genuinely exogenous variation in tax policy (the “shock”). The Mertens

and Ravn (2013) technology, however, is based on a vector autoregression framework. Accordingly,

our econometric specification starts as close as possible to Mertens and Ravn (2013) but, following

Jordà et al. (2020), we conduct estimation via local projections, given our focus on the longer-term

impacts of tax changes.

We begin from a structure close to Mertens and Ravn (2013) where the joint dynamics of a

vector of observables Z can be described by a reduced form including all the lags of the variables in

Z. This is the conventional starting point for a vector autoregression approach. To construct the

impulse response function, however, we follow Jordà (2005) and estimate the following sequence of

local projections:

Zt+h = c(h) +B
(h)
1 Zt−1 +

P∑
j=1

b
(h)
j Zt−1−j + ut+h, ut+h ∼ N(0,Ωh) (1)

where Zt denotes the M variables of interest described below, h is the impulse response horizon and

ut+h denote residuals that contain a combination of forecast errors and may be serially correlated and

heteroscedastic. Here will follow the Jordà (2005) approach to estimating IRFs via local projections

rather than a local projection-instrumental variables (LP-IV) approach (see, for example, Jordà

and Taylor, 2015, Ramey, 2016). There are two reasons for this. First, the formulation in Jordà

(2005) allows us to remain as close as possible to the set up in Mertens and Ravn (2013) while still

conducting estimation via local projections. Indeed, the shorter-term effects we will estimate below

are very close to the short-run IRFs estimated by Mertens and Ravn (2013), which provides a useful

benchmark. Second, the approach in Mertens and Ravn (2013) considers two types of tax changes
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using two instruments that are correlated. The two instruments identify a convolution of the tax

shocks but we do not know the true causal relationship between the personal and the corporate

income tax changes in the data. Mertens and Ravn (2013) consider different causal orderings when

simulating their results from their proxy-VAR. We therefore implement the same approach here.3

The identification issue centers around the fact that the reduced form residuals are an unknown

combination of all the underlying structural shocks, εt, including the exogenous variation in tax

policy. The goal is to identify the contemporaneous impact of a structural shock to taxes on the

vector of reduced form residuals ut. The mapping from the reduced from residuals in period t to

the structural shocks can be written as:

ut = A0εt (2)

Given knowledge of the relevant elements of A0, Jordà (2005) shows that the impulse response at

horizon h can be calculated as B
(h−1)
1 A0. On the other hand, Mertens and Ravn (2013) point out

that the relevant elements of A0 can be identified by treating narratively identified tax changes

as proxies for the true structural variation in taxes. This is akin to using the narrative shocks as

instruments for observed tax policy changes. The identification restriction is that the narrative

shocks are uncorrelated with other structural shocks that may influence the economy, at least

conditional on the lags of Z.4

Identification of A0 directly follows Mertens and Ravn (2013). In particular, the identification

problem can be written in terms of the reduced form residuals:

uT,t = ηuX,t + S1εT,t

uX,t = ζuT,t + S2εX,t

where uT,t and εT,t are vectors containing the two reduced form and structural tax shocks, while uX,t

and εX,t are the remaining residuals and innovations for the other variables of interest (collected

3An alternative LP-IV setup would be: ∆hZt+h = αh + βh∆Tt + ΓhXt−1 + ut+h where Z are the same outcome
variables of interest above, ∆Tt is the observed and potentially endogenous variation in tax policy (containing two tax
variables) and X is a vector of controls, potentially including lagged values of Z. ∆hZt+h = Zt+h−Zt−1. ∆Tt would
then be instrumented using the narrative “proxies” from Mertens and Ravn (2013). Because corporate and personal
tax changes are correlated, we would need to be careful comparing the coefficient estimates with those in Mertens
and Ravn (2013) (who explicitly consider the relationship between the two taxes when simulating the IRFs). More
generally, Stock and Watson (2018) and Plagborg-Møller and Wolf (2021) discuss the equivalence of LP-IV and proxy
VAR methods. For transparency and completeness, we also implement a LP-IV approach in the robustness section.

4Stock and Watson (2018) call this lag-lead exogeneity. This is a form of weak exogeneity where the narrative
shocks are identified as orthogonal to current and future economic shocks but can, in principle, reflect past events.
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together in a vector X).

In a nutshell, the approach amounts to using the narratively identified proxies as instruments

for uT,t in the second equation above, constructing an estimate of S2εX,t and then using this as an

instrument for uX,t in the first equation. This strategy identifies the contemporaneous impacts of

the tax variables ζ and provides an associated estimate of the matrix η, although these latter terms

have no structural interpretation because we are not identifying the effects of the non-policy shocks.

Mertens and Ravn (2013) show that the structural parameters η, S1, ζ and S2 underlie the elements

of A0. The first two columns of the A0 matrix, which refer to the tax shocks, are given by:

β1 =

 I + η(I − ζη)−1ζ

(I − ζη)−1ζ

S1

As mentioned above, because we are identifying two shocks — to corporate and personal income

taxes — these policy instruments may well be correlated (as they are sometimes changed together

in the same piece of legislation). We can estimate the effect of one policy holding the other constant,

but we do not know how the two policies causally respond to each other in the data. As a result,

in order to produce impulse response functions we need to take a stand on the precise policy

experiment being conducted. Mathematically, this can be seen above. In order to pin down β1 for

construction of the impulse response function, a decomposition of S1S
′
1 is required. As in Mertens

and Ravn (2013), we use a Cholesky decomposition and order the tax rate being perturbed last for

this decomposition. This restricts the direct contemporaneous effect of this shock on the remaining

tax rate to be zero while still allowing for indirect effects via u2t. Like Mertens and Ravn (2013),

we show in the robustness section that our results are not sensitive to the ordering assumptions.

2.2 Data and estimation

In our benchmark specification, we use the same data as Mertens and Ravn (2013). The control

variables on the right hand side of the sequence of local projections (1) include four lags of the

following eight variables: (i) APITRt, (ii) ACITRt, (iii) ln
(
BPI
t

)
, (iv) ln

(
BCI
t

)
, (v) ln (Gt) , (vi)

ln (GDPt) , (vii) ln(DEBTt), (viii) PCt.
5 The average personal and corporate tax rates are denoted

by APITRt and ACITRt, respectively, while ln
(
BPI
t

)
and ln

(
BCI
t

)
are the corresponding tax

bases. Finally, ln (Gt) denotes government spending, ln(DEBTt) stands for federal debt and GDP

5Montiel Olea and Plagborg-Møller (2021) demonstrate that lag-augmented local projections are particularly well-
suited to draw robust inference about impulse responses at long horizons. Furthermore, they show that lag augmen-
tation obviates the need to correct standard errors for serial correlation in the regression residuals.
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is represented by ln (GDPt). All variables, expect APITRt and ACITRt, are expressed in real

per-capita terms. The sample runs from 1950Q1 to 2006Q4 and the data are obtained from the

replication files of Mertens and Ravn (2013). An initial estimation of the structural tax shocks using

the variables (i) to (vii) above for h = 0 reveals that the estimated personal tax rate shock can

be predicted by the lags of a principal component (denoted PCt) obtained from a large quarterly

dataset of Macro and Financial variables of the US economy.6 Following Forni and Gambetti (2014),

we add this principal component as eighth control variable on our LPs to ameliorate the effects of

information insufficiency. Note that, as in Mertens and Ravn (2013), any additional variables of

interest (that we will consider below) are added one by one to the benchmark model. These are

personal consumption expenditures, non-residential investment, Research and Development (R&D)

expenditure and productivity. The appendix provides a detailed description of the variables and

data sources.

As noted above, we estimate the local projections via Bayesian methods. The posterior distri-

butions are derived as in Miranda-Agrippino and Ricco (2015), who present an MCMC algorithm to

approximate the posterior while taking into account the non-spherical nature of the forecast errors

ut+h. In eliciting priors for the LP parameters, we depart from Miranda-Agrippino and Ricco (2015)

and use a flat prior on the LP coefficients. This implies that the results for impulse responses we

present below are still largely data-driven.

3 Empirical results

In this section, we present the main results on the short-run and long-run effects of corporate and

personal income tax changes using the local projections approach and data described in the previous

section. We first focus on transitory versus persistent effects and show clear heterogeneity in the

response of output and productivity to each type of tax shock. Then, we focus on the dynamic effects

on investment, R&D expenditure and consumption to shed light on the potential mechanism. The

final parts of the section discuss the forecast error variance decomposition and a set of robustness

exercises, which are covered in more detail in the Appendix.

6The large dataset is obtained from Mumtaz and Theodoridis (2020). In order to implement the “structuralness”
test of Forni and Gambetti (2014), we use up to 4 lags of the first 5 principal components obtained from this dataset.
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3.1 Transitory versus persistent dynamics

Using the approach outlined above, we now present our baseline set of empirical estimates about the

longer-term effects of cuts to corporate and personal income taxes. We first focus on the response

of the average tax rate, GDP and productivity, with the latter being a key and novel focus of our

analysis. We will then extend our empirical evidence to examine investment, R&D and consumption

to shed light on the most likely mechanism driving the GDP responses. Each further variable is

added to the benchmark data vector Z one at the time to avoid a sharp increase in the number of

parameters to be estimated.

In Figure 1, we present our first set of main results. The figure contains two columns. On the

left, we show the IRFs to a reduction in the average corporate tax rate. On the right, we show the

results for a reduction in the average personal tax rate. The impact effect is normalized so that

both shocks reduce their respective average tax rate by 1 percentage point in the first period. The

solid red lines are the posterior medians and the shaded bands refer to 68% and 90% (Bayesian)

credible intervals. Impulse response functions are computed using posterior draws of the coefficients

A0 and B1. The solid blue lines come from the estimated structural model that will be presented,

solved and estimated in Section 5.

The first row in Figure 1 reveals that, following a shock to corporate and personal income

taxes, the average tax rates decline temporarily. The change in the average corporate tax rate (first

column) loses significance after 8 quarters and goes back to zero after around 20 quarters. The

changes in the average personal income tax rate are somewhat less persistent, losing significance

after 6 quarters and touching zero after around 16 quarters. Despite the different method (i.e. local

projections vs. VAR), these results largely replicate the findings in Figures 2 and 3 of Mertens and

Ravn (2013), where the results are plotted for the first 20 quarters. In short, the estimated tax cuts

are rather transitory.

The second row in Figure 1 shows the impulse response functions for the percentage response of

real GDP. As expected, the IRFs for the first 20 quarters are very comparable to the main figures

in Mertens and Ravn (2013). What is new is our estimate of the longer-term effects beyond quarter

20. Looking at the first column it is clear that, despite the transitory nature of the corporate tax

reduction, there are very persistent effects on real GDP, whose short-run increase of 0.5% persists

throughout the ten year period shown in the figure. In other words, the corporate income tax cut

has disappeared after 5 years, but the effect on the level of economic activity is still sizable and

significant after 8 years. The second column, however, reveals that the average personal tax rate
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Figure 1: Response of the Tax Rate, GDP and Productivity to Corporate and Personal Tax Changes
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This figure shows the responses of the average tax rates, real GDP, and labor productivity to a 1% cut in
the average rate of corporate income taxes (left column) and the average rate of personal income taxes (right
column). Red shadow bands represent central posterior 68th and 90th credible sets. Blue lines with circles
represent the impulse responses of the model in Section 4 evaluated at the posterior median of estimated
model parameters. These model-produced estimates will be discussed later in the text.
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cut does not produce such long-lasting dynamics. The underlying personal income tax cut is only

slightly more transitory than the corporate tax cut but its effects on GDP are far less persistent

and appear to die out already after two to three years after the shock hits.

A similar picture emerges for productivity, as shown in the third row of Figure 1. Both tax rate

cuts boost productivity on impact, with the size of the initial response to a personal income tax cut

being much larger than for a cut to corporate taxes. On the other hand, the effects of corporate tax

cuts grow over time and remain significant even after 10 years. In sharp contrast, the response of

productivity to a change in personal income tax rates is not statistically different from zero already

after two years.

The clear difference in the short-run and long-run properties of the two taxes can be illustrated

further by looking at the joint posterior distribution of transitory and persistent responses of the

variable of interest in Figure 2. The top row refers to GDP while the bottom row represents

productivity. We use ‘transitory’ (or shorter-term) to mean the effect estimated within 2 years after

the shock, while ‘persistent’ (or longer-term) represents the dynamic effects estimated beyond the

two year horizon.7 The horizontal axis shows the response to a corporate tax cut, while the vertical

axis shows the associated responses to a personal income tax cut.

For the sake of exposition, each panel also reports the 45o degree line, which is the locus of points

where the effects of personal and corporate income taxes on the variable of interest are numerically

identical. Posterior draws below (above) the 45o degree line indicate a larger impact of corporate

(personal) taxes. The share of draws below the 45o degree line, which we denote as δ in Figure

2, can therefore be seen as a measure of the probability that corporate tax changes have larger

effects. In Appendix Figure A.2, we show that our flat priors for the LP parameters imply very

disperse joint prior distributions for the short-run and long-run effects of the two shocks on GDP

and productivity. These joint prior distributions are centered at (0,0). As a result, there is an even

chance that the (persistent and transitory) effects of one type of tax will dominate the other.

The left column indicates that for only about 6% of posterior draws do corporate income tax

changes have larger short-term effects on GDP (top row) and productivity (bottom row) than per-

sonal income tax changes. In sharp contrast, the right column of Figure 2 reveals that corporate

income tax cuts have significantly larger long-term effects than personal income tax cuts in about

93% of posterior draws for GDP and 98% for productivity. We conclude that the evidence of het-

7We obtain similar results using as a cutoff any other horizon within the first 4 years, which is the period by which
the effects of personal (corporate) tax changes on output and productivity return to zero (start growing).
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Figure 2: Joint Posterior Distribution of Shorter-term versus Longer-term Effects on GDP

This figure shows the joint posterior distribution of the GDP responses (top row) and productivity responses
(bottom row) to shocks to the personal income average tax rate (on the vertical axis) and the corporate
income average tax rate (on the horizontal axis) in the shorter-term (left column) and longer-term (right
column). The shorter-term (longer-term) column refers to the cumulated average responses of GDP and
productivity to each shock over the quarters within (beyond) the first two years after the shock. The red
dots show draws from the posterior distributions of estimated parameters based on the local projections. The
black slope represents the 45o degree line, which is the locus of points along which the two shocks have GDP
effects of exactly the same magnitude. Points above (below) the 45o degree line indicates the mass of the
joint posterior distribution for which the effects of a personal income tax change are larger (smaller) than the
effects of corporate income tax changes. Each δ statistic is the probability that the response to a corporate
income tax change is larger than the response to a personal income tax change for each variable at the two
different horizons.
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erogeneous responses across both forecast horizons and type of income tax in Figure 1 is significant

at conventional levels.

In Appendix A3, we report the responses of Total Factor Productivity (TFP), total hours and

employment. Our theoretical model will not, however, feature an extensive margin so the employ-

ment IRF will not be used in the structural estimation in Section 5. The three main takeaways from

this additional analysis are that: (i) the response of total hours and employment to a corporate

income tax cut is typically modest and insignificant; (ii) in contrast, changes in personal income

taxes have a significant but short-lived impact on total hours but muted effects on employment;

(iii) the effects on TFP are very similar to those based on labour productivity.

In summary, in the short-run, the effects of personal income tax changes on output, productivity

and hours worked are significantly larger than the effects of corporate income tax changes. Over

longer horizons, however, the responses of output and productivity to corporate income tax cuts

are large and highly significant. In contrast, the long-run effects of a personal income tax cut are

indistinguishable from zero, both in economic and statistical terms. In the next section, we will

extend our empirical analysis to investment, R&D expenditure and consumption in an effort to shed

light on the possible mechanism behind the heterogeneity documented in Figure 1 and Figure 2.

3.2 On the mechanism

The impulse responses in Figures 1 and 2 replicate the results in Mertens and Ravn (2013) over

the first 20 quarters, which is the horizon at which most previous literature stops. On the other

hand, we have shown that there are significant longer-term effects of corporate tax cuts that persist

beyond the typical IRF horizons presented in earlier work. These persistent dynamics are not,

however, evident for the effects of personal tax cuts. In the rest of the paper we investigate what

may explain these findings.

In this sub-section, we look at a number of additional variables that could offer insights on the

transmission mechanism, especially at longer horizons. These are R&D expenditure, investment and

consumption expenditure. The endogenous growth literature argues that R&D spending has the

potential to generate persistent effects on both output and productivity. On the other hand, studies

in the Real Business Cycle tradition emphasize the role of capital expenditure as an important

propagation mechanism. Finally, given such longer-term output responses, we would also expect to

see persistent effects on household expenditure for corporate tax changes, with short-lived effects

from personal tax changes.
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The findings are reported in Figure 3. The first row shows the impulse responses of R&D

expenditure to a corporate tax cut (left column) and to a personal tax cut (right column). The

second and third rows show the dynamic effects on investment and consumption respectively. Red

lines represent medians and 68% credible sets of the impulse response posterior distributions. Shaded

areas refer to 90% central intervals. As discussed in Section 2, each variable is added one at the

time to our baseline dataset to avoid a sharp increase in our already richly parameterized local

projections.

The evidence in the first row of Figure 3 suggests that the effects of corporate tax cuts (first

column) on R&D are initially negligible but become significant at about one year after the shock.

The increase is persistent and reaches a peak of 1.4% at quarter 18 before returning to zero after

nine years. The effect also loses significance after six years. The response of investment to corporate

tax changes (second row) is equally strong but its significance seems more short-lived. Finally, the

consumption profile (third row) is similar to the pattern of the impulse responses of output and

productivity in Figure 1. The significant and sustained rise in R&D seems a plausible candidate for

explaining the persistent increase in productivity reported in Figure 1. In the next sections, we will

explore this conjecture formally by developing and estimating a structural model with endogenous

growth via R&D.

The estimated effects of a personal income tax cut (second column of Figure 3), paint a different

picture. The response of R&D is never statistically different from zero while the change in investment

is larger but far more transitory than for corporate tax changes. The effects on R&D and capital

expenditure suggests that the sharp and short-lived increase in productivity after a personal income

tax cut in Figure 1 does not come from firms’ innovation activities. Later, we show that this is

consistent with a short-run labor utilization story. Finally, the response of consumption in the

bottom row largely inherits the shape of the GDP profile, as was the case for corporate taxes. This

is consistent with the notion that corporate taxes raise labor income persistently, while personal

taxes affect incomes only temporarily.

In summary, the evidence in this section is consistent with a transmission mechanism in which

R&D responds to a corporate tax shock (but not to a personal tax shock) and this triggers an

endogenous response of productivity, which in turn drives a persistent effect on GDP. In Appendix

Figure 5, we provide further support for this interpretation by looking at sectoral real gross output

from the U.S. Bureau of Economic Analysis’s Industrial Accounts. We classify sectors in two groups

based on their R&D intensity and estimate the heterogeneous effects of corporate and personal tax
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Figure 3: The response of expenditure by component: R&D, Investment and Consumption
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This figure shows the responses of R&D expenditure, non-residential investment and personal consumption
expenditures to a 1% cut in the average rate of corporate income taxes (left column) and the average rate of
personal income taxes (right column). Red shadow bands represent central posterior 68th and 90th credible
sets. Blue lines with circles represent the impulse responses of the model in Section 4 evaluated at the
posterior median of estimated model parameters. These model-produced estimates will be discussed later in
the text.

16



cuts. The estimates reveal that the output response to corporate tax changes is significantly larger

in sectors with high R&D intensity. In contrast, there is no statistical difference in the output

responses of the two groups of sectors to personal tax changes.

3.3 Forecast Error Variance Decompositions

In this section, we use the LP estimates to assess the contribution of each shock to the variance of

the endogenous variables at different forecast horizons. The results of this exercise are summarized

in Appendix Figure A.4, which reports the median estimates and 90% central credible sets of the

forecast error variance decomposition for the corporate income tax shock (in red) and the personal

income tax shock (in blue).8

Two main results emerge. First, at the shorter horizon of one year, the contribution of both

shocks is similar, accounting for around 20% of the variance of GDP and investment, as well as 15%

to 20% of the variation in productivity and R&D spending. But as the forecast period increases, and

especially at longer horizons, the contribution of the corporate income tax shock becomes dominant,

peaking around year 8 and accounting for around 30% of the variance of GDP and consumption,

and 20% to 25% for productivity, capital and R&D expenditure. In contrast, the contribution of

personal income tax changes to longer-run fluctuations tend to be lower than 10%.9

3.4 Robustness

In this section, we briefly describe a variety of sensitivity analyses that confirm the robustness of our

results. The full set of results are reported in the Appendix. We consider sensitivity to: (i) varying

the lag length for the controls in Z, (ii) estimation via local projection instrumental variables, (iii)

using the optimal prior strategy described in Giannone et al. (2015), (iv) including the defence news

shock from Ramey (2011) as a further control, (v) changing the causal ordering of the two taxes

as in Mertens and Ravn (2013) and (vi) estimation using Smooth Local Projections a la Barnichon

and Brownlees (2019).

8By estimating the Mertens and Ravn (2013) VAR-type structure using local projections, we side-step practi-
cal issues associated with computing forecast error variance decompositions using local projection IV methods (see
Plagborg-Møller and Wolf (Forthcoming)).

9These findings also echo results in earlier studies that focused more on short-term impacts. Mertens and Ravn
(2012) find that Romer and Romer (2010) tax shocks explain around 20% of the in-sample variance of output at
business cycle frequencies, which lines up well with our short-term results in Appendix Figure A.4. Cloyne (2013)
finds that narrative-identified tax shocks in the U.K. account for around 20% of the variation in output in-sample and
at the ten year horizon. McGrattan (1994) finds that labor taxes account for around 25% of the in-sample variance of
output and capital taxes around 5%, again at business cycle frequencies and using a completely different VAR-based
identification approach.
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The results of all these sensitivity analyses are summarized in Appendix Figures A.5, A.6 and

A.7. Figure A.5 shows the response of real GDP to corporate and personal tax cuts. The solid red

line coincides with the benchmark specification above. The light red bands report the original 90%

credible set. Overlaid are the results from each of the robustness checks noted above. The point

estimates from all these exercises have the same shape as the baseline result and all lines lie well

within the original confidence intervals. In Appendix Figures A.6 and A.7, we repeat these exercises

for the variables related to the endogenous TFP mechanism discussed above. In particular, Figure

A.6 shows that the response of R&D is not sensitive to all these different specifications. Finally,

Figure A.7 tells a similar story about the robustness of the productivity response.

4 A Structural Model

The core of our model builds upon the framework developed by Anzoategui et al. (2019), which

combines an otherwise standard sticky price model in the New-Keynesian tradition of Christiano

et al. (2005) and Smets and Wouters (2007) with the endogenous productivity features introduced

by Comin and Gertler (2006). We extend this framework along several dimensions, which give

our model a chance to match the empirical IRFs estimated via local projections in Section 3.

Most importantly, we introduce adjustment costs to productivity-enhancing expenditures, as well

as variable labor utilization via an unobserved labor effort margin in the spirit of Gaĺı and van Rens

(2020) on the household side.

4.1 Production Sector and Endogenous Productivity

There exists a continuum of measure At of monopolistically competitive intermediate goods firms

that each make a differentiated product: intermediate goods firm i produces output Yi,t. The en-

dogenous state variable At is the stock of intermediate goods adopted in production (equivalently,

the stock of adopted technologies). The final goods composite is the following CES aggregate of

individual intermediate goods:

Yt =

(∫ At

0
(Yi,t)

1
θ di

)θ
(3)

with θ > 1. Let Ki,t be the stock of capital firm i employs, Ut capital utilization (described below),

and Li,t the stock of labor employed. Then firm i produces output Yi,t according to the following
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Cobb-Douglas technology:

Yi,t = (UtKi,t)
α (Li,t)

1−α . (4)

Given a symmetric equilibrium for intermediate goods, we express the aggregate production function

as:

Yt = Aθ−1t · (UtKt)
α(Lt)

1−α. (5)

Endogenous total factor productivity growth is the result of expansion in the variety of adopted

intermediate goods, measured by At. We next describe how R&D and adoption drive the dynamics

of At.

4.2 R&D and Technological Adoption

The processes for creating and adopting new technologies are based on Comin and Gertler (2006)

and Anzoategui et al. (2019). Let Zt denote the total stock of discovered technologies. As above,

At is the stock of adopted technologies, so Zt − At is the unadopted technology stock. R&D ex-

penditures increase Zt while adoption expenditures increase At. We distinguish between innovation

and adoption to i) allow for realistic technology adoption lags; and ii) enable to model to jointly

match the empirical dynamics of labor productivity and R&D expenditure.

R&D There are a continuum measure 1 of innovators that spend R&D-specific goods to create

new intermediate goods. We describe below the technology for producing R&D goods. Let Xj,z,t be

R&D good expenditure by innovator j; the number of new technologies created by a unit of R&D

expenditure, ϕt, is given by:

ϕt = Zζ+1
t Xρz−1

z,t , (6)

where Xz,t is the aggregate amount of R&D expenditure and Zt is the stock of technology, both of

which an individual innovator takes as given. Following Romer (1990), the presence of Zt reflects

public learning-by-doing in the R&D process; as in Jones (1995), the degree of returns is param-

eterized by ζ.10 We assume ρz < 1, which implies that more R&D expenditure in the aggregate

reduces the efficiency of R&D at the individual level.

Let Jt be the value of an unadopted technology, Λt,t+1 the household’s stochastic discount factor

and Pz,t the price of R&D goods. We can then express innovator j’s decision problem as choosing

10The existence of a balanced growth path requires ζ = −ρz θ−1
1−α , which we impose when estimating and simulating

the model. See the online appendix for details on the balanced growth path of the model.
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Xj,z,t to solve:

max
Xj,z,t

Et {βΛt,t+1Jt+1ϕtXj,z,t} − Pz,tXj,z,t. (7)

The optimality condition for R&D is then given by

Et {βΛt,t+1Jt+1ϕt} − Pz,t = 0

which implies

Et

{
βΛt,t+1Jt+1Z

1+ζ
t Xρz−1

z,t

}
= Pz,t (8)

The left side of Equation (8) is the discounted marginal benefit from an additional unit of expen-

diture, while the right side is the marginal cost. Finally, we allow for obsolescence of technologies.

Let φ be the survival rate for any given technology. Then, we can express the evolution of the stock

of technologies as:

Zt+1 = ϕtXz,t + φZt (9)

where the term ϕtXz,t represents the creation of new technologies. Combining equations (9) and

(6) yields the following expression for the growth of new technologies:

Zt+1

Zt
= ZζtX

ρz
z,t + φ. (10)

Adoption We next describe how unadopted technologies become adopted, and therefore enter

productive use. There is a competitive group of “adopters”, indexed by k, who convert unadopted

technologies into adopted ones. They buy the rights to the technology from the innovator, at

the competitive price Jt, which is the value of an unadopted technology. They then convert the

technology into use by employing adoption goods as an input (we describe the production technology

for adoption goods below). This process takes time on average, and the conversion rate may vary

endogenously. In particular, the rate of adoption depends positively on the level of resources devoted

to adoption: an adopter succeeds in making a product usable in any period t with probability

λt, which is an increasing and concave function of expenditure, Xk,a,t, according to the following

expression

λt = λ

(
ZtXk,a,t

Ψt

)
(11)

where λ′ > 0, λ′′ < 0.

To ensure the existence of a balanced growth path, we augment Xk,a,t by a spillover effect from
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the total stock of technologies Zt (implying that the adoption process becomes more efficient as the

technological state of the economy improves) and Ψt, which is a scaling factor that grows at the

same rate as GDP on the balanced growth path. Once in usable form, the adopter sells the rights to

the technology to a monopolistically competitive intermediate goods producer that makes the new

product using the production function in Equation (4). Let Πi,t be the profits that an intermediate

goods firm makes from producing a good under monopolistically competitive pricing. The price of

the adopted technology, Vt, is the present discounted value of after-tax profits from producing the

good, which is given by:

Vt =
(
1− τCIt

)
Πi,t + φEt {βΛt,t+1Vt+1} (12)

where τCIt is the tax rate on corporate income (profits). An adopter’s problem is choosing Xk,a,t to

maximize the value Jt of an unadopted technology, namely:

Jt = max
Xk,a,t

Et {−Pa,tXk,a,t + φβΛt,t+1 [λtVt+1 + (1− λt)Jt+1]} (13)

where λt is as in Equation (11) and Pa,t is the price of adoption goods. The first term in the Bellman

equation reflects total adoption expenditures, while the second term stands for the discounted

benefit: the probability weighted sum of the values of adopted and unadopted technologies. The

first order condition for Xk,a,t is

Ztλ
′ · φEt {Λt,t+1 [Vt+1 − Jt+1]} = Pa,t (14)

The term on the left is the marginal gain from adoption expenditures: the increase in the adoption

probability, λt, times the discounted difference between the value of an adopted versus an unadopted

technology. The right side is the marginal cost. Since λt does not depend on adopter-specific

characteristics, we can sum across adopters to obtain the following relation for the evolution of

adopted technologies:

At+1 = λtφ [Zt −At] + φAt (15)

where Zt−At measures the stock of unadopted technologies. Note that Zt−At is also the measure

of adopters at time t, which implies that the aggregate expenditure on adoptions goods, Xa,t, is

given by Xa,t = (Zt −At)Xa,k,t.
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4.3 Households and the corporate sector

The representative household consumes, supplies labor, and receives dividends from the corporate

sector (described below). There is habit formation in consumption. The model differs from the

standard setup in the specification of labor supply. Households supply labor competitively, but

choose employment Nt+1 one period in advance, and face an adjustment cost ψn
2

(
Nt+1

Nt
− 1
)2

Ψt

when changing employment. Following the realization of uncertainty in period t, the household

chooses effort, et, and we assume that the effective labor supply is given by Lt = Ntet. The

household’s maximization problem and budget constraint are:

max
Ct,Nt+1,et

Et

∞∑
τ=0

βτ

{
log (Ct+τ − bCt+τ−1)− γ0

1 + e1+γt+τ

1 + γ
Nt+τ

}
, (16)

and

Ct =
(
1− τPIt

)
wtLt +Dt −

ψn
2

(
Nt+1

Nt
− 1

)2

Ψt + Tt, (17)

where Ct is consumption, Dt are dividends from the corporate sector, wt is the real wage, and Tt

are government transfers. 11 The symbol Ψt denotes a scaling factor that grows at the same rate as

aggregate output, required to ensure that labor adjustment costs do not vanish along the balanced

growth path.

The household’s investment decisions are managed on their behalf by a representative investment

fund that owns the physical capital stock, rents capital to intermediate goods firms, and chooses the

rate of capital utilization, Ut, with associated cost a(Ut)Kt, where a(U) is increasing and convex.

The objective is to maximize lifetime dividends to households, discounted using the household’s

discount factor, Λt,t+1.

The investment fund owns all firms in the economy. They earn a return on capital services,

receive all profits from the intermediate goods firms and collect and pay any corporate income taxes

due to the government. Individual firms and innovators make the specific production, R&D and

technological adoption decisions, as described earlier.

The dividend to the household in period t is given by overall corporate sector income minus

corporate taxes due:

Dt = CIt − τCIt TBCI
t , (18)

11Changes in dividend taxes form only a small part of the personal income tax measure in the Mertens and Ravn
(2013) dataset. As a result, we abstract from explicitly modelling dividend taxes.
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where CIt is the income of the corporate sector overall:

CIt ≡ Πt + rkt UtKt − PI,tIt − a(Ut)Kt, (19)

τCIt is the tax rate on corporate income and the corporate income tax base, TBCI
t , is defined as

TBCI
t ≡ Πt + rkt UtKt − δKt. (20)

Πt are the profits from the intermediate goods firms, which are already net of R&D and adoption

expenditures. We also assume that capital depreciation (but not utilization) is tax-deductible.

These deductions for R&D and depreciation expenses are consistent with the US tax code during the

sample period studied in the empirical section. It and PI,t are the quantity and price of investment

respectively, Kt is the stock of capital (with rental rate rkt are), such that effective capital at time

t is UtKt. Note that equation 12 implies that intermediate goods firms understand they will be

required to pay taxes on their profits. The investment fund is therefore simply choosing It, Kt and

Ut each period.

The law of motion for phyiscal capital follows the process:

Kt+1 = (1− δ)Kt + It. (21)

Taking the household and investment fund together, first order conditions are given by

1. Euler Equation for capital

PI,t = Et
{
βΛt,t+1

[(
1− τCIt+1

)
rkt+1Ut+1 + δτCIt+1 + (1− δ)PI,t+1 − a (Ut+1)

]}
, (22)

where Λt,t+1 ≡ uc,t+1

uc,t
is the household SDF between periods t and t+ 1.

2. Capital Utilization (
1− τCIt

)
rkt = a′ (Ut) (23)
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3. Employment

− ψnuc,tΨt
1

Nt

(
Nt+1

Nt
− 1

)
+

βEt

(
γ0

1 + e1+γt+1

1 + γ
+ uc,t+1

((
1− τPIt+1

)
wt+1et+1 + φnΨt+1

(
nt+2

N2
t+1

)(
nt+2

Nt+1
− 1

)))
= 0 (24)

4. Effort

− γ0eγt + uc,t
((

1− τPIt
)
wt
)

= 0 (25)

4.4 Fiscal Policy

The government’s budget constraint is given by:

Ḡ (1 + gy)
t − Tt = τPIt wtLt + τCIt CIt, (26)

where the tax rates τCIt and τPIt follow AR(1) processes (in logs):

log (τxt ) = (1− ρτx) τ̄x + ρτx log
(
τxt−1

)
+ ετxt , (27)

for x ∈ {CI, PI}, with ρτx ∈ (0, 1), and ετxt ∼ N (0, 1) is i.i.d..

4.5 Rest of the model

We now summarize the main assumptions and derivations behind the rest of the structural model,

which are standard.

Factor demands. Intermediate goods firm i chooses capital services UtKi,t, and labor Li,t to

minimize costs, given the rental rate rkt , the real wage wt and the desired markup ς. Expressed in

aggregate terms, the first order conditions from firms’ cost minimization problem are given by:

α
MCtYt
UtKt

= rkt , (28)

(1− α)
MCtYt
Lt

= wt, (29)

where MCt is the real marginal cost of production. We allow the actual markup ς to be smaller

than the optimal unconstrained markup θ due to the threat of entry by imitators, as is common in
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the literature (e.g. Aghion and Howitt (1998)).

Investment good producers. There are three types of investment goods in the economy: in-

vestment goods used to produce capital, R&D goods and adoption goods. Competitive producers

use final output to produce these goods which they sell to households (investment), R&D firms

(R&D goods) or adopters (adoption goods). Following Christiano et al. (2005), we assume flow

adjustment costs of investment for the three types of goods. The adjustment cost functions are:

fI

(
It

(1 + gy) It−1

)
, fz

(
Xz,t

(1 + gy)Xz,t−1

)
, and fa

(
Xa,t

(1 + gy)Xa,t−1

)
,

where each function is increasing and concave, with fx (1) = f
′
x (1) = 0 and f

′′
x (1) > 0; and It, Xz,t

and Xa,t are new capital, R&D and adoption goods produced in period t; gy is the steady state

growth of output. The first order conditions for each of the types of good, x ∈ {I,Xz, Xa}, are:

Px,t = 1 + fx

(
xt

(1 + gy)xt−1

)
+

xt
(1 + gy)xt−1

f ′x

(
xt

(1 + gy)xt−1

)
− Et

[
Λt,t+1 (1 + gy)

(
xt+1

(1 + gy)xt

)2

f ′x

(
xt+1

(1 + gy)xt

)]
(30)

Price Setting. Nominal prices are set on a staggered basis following the Calvo adjustment rule.

Denoting by ξp the probability that a firm cannot adjust its price, by π̂t the inflation rate and by

m̂ct the marginal cost in log-deviation from steady state, the Phillips curve reads:

π̂t = κpm̂ct + βEt[π̂t+1], (31)

with slope κp =
(1−ξpβ)(1−ξp)

ξp
.

Monetary Policy The nominal interest rate Rn,t+1 is set according to a Taylor rule:

Rn,t+1 =

((πt
π̄

)φπ Lt
L̄

)φy
Rn

)1−ρR

(Rn,t)
ρR , (32)

where Rn is the steady state nominal rate, π̄ the target rate of inflation, Lt total effective labor

supply and L̄ steady state labor supply; φπ and φy are the feedback coefficients on the inflation and

capacity utilization gaps, respectively. Following Anzoategui et al. (2019), we use the labor supply
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gap instead of the output gap in the Taylor rule.

Resource Constraint. Finally, the aggregate resource constraint is given by:

Yt = Ct +
∑

x={I,Xz ,Xa}

[
1 + fx

(
xt

(1 + gy)xt−1

)]
xt + a (Ut)Kt +

ψn
2

(
Nt+1

Nt
− 1

)2

Ψt + Ḡ. (33)

Given all these ingredients, we are in the position now to solve the model and compute its

impulse responses to both personal and corporate income tax shocks. These will be used in the

next sections to estimate the model structural parameters and perform a counterfactual analysis

intended to highlight the possible drivers of the LP-based empirical evidence in Section 3.

5 Structural estimation

In this section, we show that the theoretical model outlined above can rationalize all our empirical

findings. To do so, we estimate the structural model using a limited-information Bayesian approach

and show that it is able to account jointly for the longer-term effects of corporate income tax changes

and the shorter-term effects of personal income tax changes reported in Section 3 on the basis of

LPs. In the next section, we perform a series of counterfactual exercises that will shed light on the

mechanism behind both sets of results, across forecast horizons and across types of taxes.

5.1 Approach

We estimate the structural model using the limited-information Bayesian approach described in

Christiano et al. (2010). We refer to the vector of structural parameters in the theoretical model as

Υ and to the associated impulse responses as Φ (Υ). The structural parameters are estimated by

minimizing the distance between the theoretical model impulse responses, Φ (Υ), and the median

of the empirical LP impulse response posterior distributions from Section 3, denoted by Φ̂, to both

tax shocks.

The limited-information approach fulfils our desire to focus on the response of the economy to

corporate and personal tax cuts, and to isolate the theoretical mechanism(s) that are most likely to

drive the empirical findings of Section 3. It is therefore important that the estimated parameters

maximize the likelihood that the structural model generates the data conditional on both income tax

shocks. We will then be able to conduct a series of counterfactual experiments where we artificially
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change the value of one structural parameter at a time to evaluate the importance of different

channels for explaining the empirical evidence from our LPs in Section 3.

To implement this approach, we first set up the quasi-likelihood function as follows:

F (Φ̂|Υ) =

(
1

2π

)N
2

|V |−
1
2 exp

(
−1

2

(
Φ̂− Φ (Υ)

)′
V −1

(
Φ̂− Φ (Υ)

))

where N denotes the number of elements in Φ̂ and V is a weighting matrix. In our application V

is a diagonal matrix with the posterior variance of Φ̂ on the main diagonal. Denoting by p (Υ) the

prior distributions, the quasi-posterior distribution is defined as:

F
(

Υ|Φ̂
)
∝ F (Φ̂|Υ)p (Υ)

We use a random walk Metropolis Hastings algorithm to approximate the posterior distribution.

The total number of iterations is set to 1,100,000 and we save every 50th draw after a burn-in of

100,000.12 As is common in limited information estimation approaches, we partition the set of

structural parameters into a set that will be calibrated and a set that will be estimated. In Table

1, we list the key objects that we calibrate. The discount factor, the depreciation rate for capital

and the capital share are set at common values: 0.99, 0.02 and 0.35 respectively. The markup is

calibrated to target the steady state share of profits in GDP. The government spending share and

the steady state tax rates are calibrated to sample averages in the data. The coefficients of the

Taylor Rule are those estimated in Anzoategui et al. (2019). We calibrate the steady technology

adoption rate λ̄ to 0.05 (quarterly), implying a diffusion lag of 5 years, in line with the evidence

in Comin and Hobijn (2010). Following Wen (2004), the employment adjustment cost parameter is

set to ψN = 0.25.

Estimates of the remaining structural parameters are shown in Table 2. Our goal is to estimate

the parameters that govern the strength of the main transmission mechanisms in the theoretical

model. The data are then being used to inform us about which of these channels are most likely

important for explaining our empirical results. The prior distributions and the posterior estimates

are discussed below.

For estimation, the vectors Φ̂ and Φ(Υ) contain the main empirical and theoretical impulse

12The starting values of the parameters are obtained by maximising the log posterior using the covariance matrix
adaption algorithm (CMA-ES). Then, an initial run of the Metropolis algorithm is used to approximate var (Υ). A
scaled version of var (Υ) is used to calibrate the variance of proposal distribution for the main run of the Metropolis
algorithm. We choose the scaling so that the acceptance rate is about 20%.
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Table 1: Calibrated Parameters

Parameter Description Value Source

Preference & Households
gy 100*SS GDP growth rate 0.45
β Discount factor 0.99
ψN Employment adjustment 0.25 Wen (2004)

Technology
GY Government spending/GDP 0.16
α Capital share 0.35
δ Capital depreciation. 0.02
ς Markup 1.09 Profits/GDP=8%
λ̄ SS technology adoption rate 0.05 Anzoategui et al. (2019)

Taxes
τ̄CI SS Corp. Tax 0.19 Sample average
τ̄PI SS Lab. Tax 0.3 Sample average

Monetary Policy
ρr Smoothing 0.83 Anzoategui et al. (2019)
φy Output 0.39 Anzoategui et al. (2019)
φπ Inflation 1.64 Anzoategui et al. (2019)

response functions for the two tax rates and the two sets of responses for R&D, investment, con-

sumption, GDP, hours worked and labor productivity. Note that, by simultaneously targeting the

effects of both corporate and personal taxes, we are attempting to hit a number of key moments

simultaneously over the shorter- and longer-term.

5.2 Prior predictive analysis

Before presenting and evaluating the estimation results, it is useful to examine some of the predic-

tions that the model is able or unable to generate about the effects of corporate and personal income

tax changes. In this section, we therefore discuss the assumed prior distributions for the structural

parameters Υ and the implied range of outcomes Φ (Υ) that, a priori, the key variables are more

likely to cover. As we will see below, our priors are centered on an economy with no long-run effects

and a-cyclical productivity.

In Table 2, we list the parameters to be estimated and the prior distributions chosen. The

table also reports moments from the estimated posterior distribution, which will be discussed in

the next section. Prior distributions are chosen to be diffuse but centered on values typically found
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Table 2: Estimated Parameters

Parameter Description Prior Posterior
Distr Mean Std. Dev. Median 90% int.

Preference & HHs
h Consumption habit beta 0.5 0.2 0.43 [0.15, 0.75]
γ Inverse effort elasticity gamma 1 0.5 0.28 [0.11, 0.67]

Frictions & Production
f ′′a Adoption adjustment normal 4 1.5 4.36 [1.86, 6.81]
f ′′z R&D adjustment normal 4 1.5 6.67 [4.75, 8.71]
f ′′I Investment adjustment normal 4 1.5 0.29 [0.05, 1.31]
ψu Capital utilization adjustment beta 0.6 0.15 0.49 [0.33, 0.69]
ξp Calvo prices beta 0.5 0.2 0.21 [0.07, 0.37]

Endogenous Technology
θ-1 Dixit-Stiglitz parameter gamma 0.15 0.1 0.42 [0.32, 0.53]
ρλ Adoption elasticity beta 0.5 0.2 0.59 [0.54, 0.64]
ρZ R&D elasticity beta 0.5 0.2 0.15 [0.09, 0.23]
1− φ Knowledge depreciation beta 0.05 0.05 0.11 [0.06, 0.19]

Shocks
ρτCI Corporate taxes AR beta 0.7 0.2 0.91 [0.89, 0.92]
ρτPI Labour taxes AR beta 0.7 0.2 0.73 [0.68, 0.78]

29



in the literature. The prior means for the more standard parameters, such as habit formation, the

Calvo probability that governs price stickiness and investment adjustment costs are consistent with

common estimates and priors used in earlier empirical contributions, such as Smets and Wouters

(2007). The priors for the tax processes assume that the tax rates are adjusted smoothly over time

and follow Leeper et al. (2010).

There are a number of parameters that are specific to our R&D, adoption and utilization mech-

anisms. Empirical estimates of the elasticity of patenting to R&D expenditures, analogous to ρZ

in the model, range widely (Danguy et al., 2013) but are generally found to be lower than 1. Ac-

cordingly, we use a beta prior centered at 0.5. We use the same prior for the adoption elasticity ρλ.

The prior mean for the Dixit-Stiglitz parameter θ implies an elasticity of substitution across goods

of 7.6, consistent with the estimates in Broda and Weinstein (2006).13 We center the parameter for

knowledge depreciation at 0.05, at the lower end of empirical estimates (Li and Hall, 2020). To avoid

tilting the balance in favor of any particular adjustment cost mechanism, we use the same prior for

R&D and adoption adjustment costs as for physical capital investment adjustment costs (which is

also the prior on R&D adjustment costs used by Bianchi et al., 2019). We are not aware of existing

estimates of the (inverse) elasticity of effort, γ. Accordingly we choose a relatively uninformative

prior centered around what we consider to be a conservative value (as we will show in the prior

predictive analysis discussed below).

Prior predictive analysis involves drawing a candidate Υi from the marginal prior distributions

of the parameters. For each candidate Υi, the associated set of impulse response functions, Φ (Υi),

are computed. This process is repeated 100,000 times, thereby generating a distribution of impulse

responses.14 Prior predictive analysis allows us to elicit a number of useful insights. First, we can

see the range of different possible outcomes that the model is likely to generate given our prior

distributions. Second, we can see what our priors imply about the shorter and longer-term effects

of tax changes.

In Appendix Figures A.10 and A.11, we report the distributions of the model impulse responses

implied by our prior distributions. The solid (shaded) red lines report the median and central 68%

(90%) prior credible sets of the IRF prior distribution. The blue line with circles refers to the

impulse responses of the model evaluated at the estimated posterior median of the parameters.

The main takeaway from this exercise is that our prior distributions give far more weight to an

13Anzoategui et al. (2019) calibrate this parameter to 1.35; our prior is relatively conservative given that a higher
θ implies a larger role for the endogenous productivity mechanism.

14For more details on prior predictive analysis, we refer interested readers to Leeper et al. (2017).
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economy in which the effects of both personal and corporate income taxes are quite short-lived and

productivity is virtually a-cyclical. As we will show in the next section (and can already be seen

from Appendix Figure A.10 and Appendix Figure A.11), the posterior distributions paint a quite

different picture.

In Appendix Figure A.12, we provide a different way of visualizing our prior assumptions. This

exercise is similar to one in Figure 2, but uses the structural model and the prior and posterior

distributions from Table 2. As before, the figure compares the short-term effect of each shock

relative to their long-term effect for the same outcome variable. GDP is shown in the top row and

productivity in the bottom row. In the first column, a mass of draws above the 45 degree line

implies that personal income tax changes have a larger shorter-term effect than corporate income

tax changes. In the second column, a mass below the 45 degree line suggests that corporate tax

cuts have a larger longer-term effect. The cloud of light grey (blue) dots refers to draws from the

joint prior (posterior) distribution of the impulse responses implied by the (estimated) structural

model. The main message from Appendix Figure A.12 is that the grey dots are evenly spread either

side of the 45 degree line. The two tax shocks are therefore put on equal footing a priori: they

both have a similar chance of generating larger effects on output and productivity at shorter- and

longer-horizons.

In summary, our prior distributions for the structural parameters are centered around a relatively

standard calibration, according to which: (i) the economy does not feature any long-run effects and

(ii) both types of tax cuts produce a largely a-cyclical productivity response.

5.3 Estimation results

In this sub-section, we present the estimates of the model using the approach discussed above. The

final two columns in Table 2 report the median and the central 90% credible set for the posterior

distributions of the key parameters of interest. The impulse responses from the estimated model

(evaluated at the median values of the parameters in Table 2) are shown in Figures 1 and 3 as blue

lines with circles.

Starting with fiscal policy in the last two rows of Table 2, the processes for the tax rates evolve

smoothly over time, with the changes in the corporate income tax rate being less short-lived than

those for the personal tax rate. Still, as shown in Figure 1, both tax rates return to zero over the

forecast horizon, with their estimated tax profiles lining up closely with their LP counterparts from

Section 3.
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The estimates of the parameters on R&D and technological adoption are reported in the third

block of Table 2 and are largely consistent with the available evidence. The posterior median of

θ is close to the calibrated value in Anzoategui et al. (2019). The depreciation of ideas is at the

higher end of existing estimates but in line with both the rates used by the U.S. Bureau of Economic

Statistics in calculating GDP (Li and Hall, 2020) and the estimates in Ma and Samaniego (2020).

Adjustment costs for R&D spending are higher than for adoption. The inverse elasticity of effort is

close to the value of 0.3 that Gaĺı and van Rens (2020) calibrate to match second moments of the

U.S. labor market.

The estimation also puts some weight on investment adjustment costs, habit persistence and

price stickiness in the top two parts of Table 2. Interestingly, however, by incorporating an en-

dogenous growth mechanism (via R&D and adoption), our estimates seem to downplay these more

‘traditional’ ways of generating endogenous persistence and amplification relative to earlier work. In

particular, traditional investment adjustment costs are estimated to be much smaller than the value

reported elsewhere in the literature (Christiano et al., 2005, Smets and Wouters, 2007, Justiniano

et al., 2010). Unlike conventional medium-scale models, however, our framework features a range

of additional sources of endogenous persistence. The estimation therefore appears to favor much

larger adjustment costs on R&D and technological adoption than on physical capital investment,

consistent with the evidence from aggregate data in Bianchi et al. (2019) and from firm-level data

in Bernstein and Nadiri (1989) and Bond et al. (2005).

In Section 7, we estimate a restricted version of our structural model in which we switch off all

the endogenous growth mechanisms. The estimates of physical capital investment adjustment costs

in this restricted specification become much larger and in line with those reported by Christiano

et al. (2005), Smets and Wouters (2007) and Justiniano et al. (2010), among others. We interpret

this finding as suggestive evidence that the omission of R&D spending and technological adoption

might distort inference on the role of physical capital investment adjustment costs in the propagation

of macroeconomic shocks.

5.4 Discussion

The results of the previous section make clear that the posterior estimates in Table 2 allow the

model to closely line up with the LP evidence in Section 3. This can be seen in Figure 1 and Figure

3 by comparing the estimated model IRFs in the dashed blue lines with circles to the LP estimates

in red. It is worth emphasizing again that the two taxes have very different dynamic effects and we
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Figure 4: Additive decomposition of model log productivity
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The left (right) panel of this figure shows an additive decomposition of the estimated model response
of log labor productivity to a corporate (personal) income tax shock. The solid line is the total
response of labor productivity and the shaded areas show the contribution of each factor.

are trying to match the two sets of responses jointly. What are the theoretical mechanisms behind

these effects?

We answer this question through the lens of our structural model. We begin with a discussion

of the effects of a temporary cut in corporate income taxes. The key part of the production process

occurs via intermediate goods firms (since these goods are ultimately combined to generate the ho-

mogeneous final consumption good, see equation 3). These firms have adopted specific technologies

and create output using capital and labor services. A corporate tax cut raises the ex-post profits

of these firms.

On the one hand, the model features the usual corporate tax cut channels: a lower corporate tax

rate raises the return on capital and encourages production. The tax cut also raises the marginal

benefit of capital utilization, which helps generate sizable short-run amplification. A corporate tax

cut therefore stimulates investment, capital utilization, employment (because of the complementar-

ity with capital in production) and output. But (as shown in Figure 5, discussed below) these effects

tend to be rather transitory and it is challenging to generate significant endogenous persistence that

looks like our evidence in Section 3.
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In our context, however, the corporate tax cut also encourages firms’ R&D expenditure and

technological adoption because the tax cut raises after-tax profits, which directly increases the

value of an adopted technology (as made clear by equation 12). In turn, this raises the value of

an unadopted technology (equation 13). As a result, R&D spending increases, generating new

innovations, and encouraging further adoption. Productivity in the economy rises over time (Figure

1) and this persistent increase in productivity leads to a large and persistent rise in GDP (also

shown in Figure 1).

It should be noted that these endogenous growth effects get amplified through other more

standard channels, such as variable capital utilization. Non-residential investment also increases in

Figure 3. Turning to the dynamics of household expenditure, the additional accumulation of capital

may, in the short-run, lead to lower consumption, although this also depends on other factors such as

the response of labor supply, habit formation and the endogenous growth effects. In our estimated

model, as well as in the LP evidence, consumption grows steadily over the impulse response period

(see Figure 3).

The mechanism behind a cut in personal income taxes is very different, as these mostly affect

households but have no direct influence on firms. The reduction in personal income taxes encourages

households to supply more labor but, due to employment adjustment costs, the increase in hours

worked is gradual. Labor utilization (via increased effort), however, responds contemporaneously.

As a result, households can still reap the benefits of higher after-tax wages, even in the face of

employment adjustment costs. This implies that labor productivity increases on impact in response

to a cut in personal income taxes. This channel, however, does not directly affect firms’ incentives

to innovate, and therefore tends to persist only as long as the distortionary personal income tax

rate is below its steady state level.

Figure 4 illustrates the effects of each of the tax shocks on the economy through the lens

of the model using an additive decomposition of the response of (log) labor productivity. From

the aggregate production function (Equation 5), the change in log labor productivity is given by

∆ log Y
N = ∆ logAθ−1 + ∆ logUα + ∆ log

(
K
N

)α
+ ∆ log e1−α (respectively the contributions of adop-

tion, capital utilization, capital deepening and labor utilization). The panel on the left shows that

more than half of the level of labor productivity to the corporate income tax shock at 40 quarters is

accounted for by the endogenous TFP term, with capital deepening accounting for the reminder of

the long-run effect. The figure understates the contribution of the endogenous TFP channel, since

capital deepening is driven largely by the complementarity between endogenous TFP and physical
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capital, as we show in the counterfactual exercises in the next section. The panel on the right shows

that variable labor utilization is the most important driver of the response of labor productivity to

the personal income tax shock, and the fact that this channel is transitory in nature explains the

overall lack of persistence in the response.

6 Counterfactual analysis

In this section, we perform a series of counterfactual exercises that highlight the central importance

of pro-cyclical productivity for explaining our results at different forecast horizons. More specifically,

we will show that R&D and technological adoption make the response of productivity to corporate

tax changes pro-cyclical in the long-run, while variable labor utilization makes the response of

productivity to personal tax changes pro-cyclical in the short-run. Whenever productivity is either

counter-cyclical or a-cyclical —which is the case when we switch off the endogenous growth block of

the model and variable factor utilization— the structural model becomes much closer to a standard

New-Keynesian framework and misses both the longer-term effects of corporate tax changes and

the short-term effects of personal tax changes on output.

6.1 No endogenous growth

In the first counterfactual experiment, we switch off the endogenous productivity part of the model.

More specifically, we solve a version of the model in Section 4 with no R&D or adoption, and

compute the impulse responses of the structural model using the posterior medians reported in

Table 2 for all other parameters. In Figure 5, we show the results of this counterfactual exercise.

As in all previous charts, the left column refers to corporate income tax changes while the right

column refers to personal income tax changes. For the sake of exposition, we only report the

counterfactual impulse responses of the key variables: GDP (top row), productivity (middle row)

and R&D spending (bottom row). The blue lines with circles show the impulse responses from the

estimated baseline model and replicate the blue lines with circles in Figures 1 and 3. The black lines

with crosses correspond to the counterfactual exercise with no endogenous productivity. The green

lines with diamonds show the experiment with no variable factor utilization, which is discussed in

the next sub-section.

The black lines with crosses in the third row of Figure 5, show that in the counterfactual model

with no endogenous growth, the response of R&D expenditure is, by construction, always zero. In
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Figure 5: Counterfactuals: Response of GDP, Productivity and R&D
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This figure shows the results of two counterfactual exercises. The first set of simulations shuts down
the endogenous growth part of the model (“no R&D”) while the second experiment turns-off the
utilization margin for both labour and capital (“no variable factor utilization”). The baseline model
results are reported as blue lines with circles, which replicate the results from Figure 1 and Figure
3. The black lines with crosses show the impulse responses from the estimated model after shutting
down the endogenous growth mechanism. The green line (diamonds) shows the impulse responses
from the estimated model after shutting down variable factor utilization.
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this experiment, the model is similar to other standard New Keynesian models with distortionary

taxation (except for variable labour utilization). Figure 5 also makes clear that this version of the

model is unable to match the significant long-run response of either output (top row) or productivity

(middle row) to a corporate income tax cut. Once R&D expenditure and technological adoption

are switched off, investment (and to a lesser extent habit formation) becomes the main propagation

mechanism that generates persistence in the model; but this is insufficient to prevent the effects

of corporate tax changes from returning to zero by the end of the forecast period. The absolute

magnitudes are also much smaller over most horizons, especially in the long-run. The response

of productivity is still mildly pro-cyclical in the short-run but this is now entirely due to variable

capital utilization. Moreover, this effect is not enough to generate the size and persistence of the

dynamic effects of corporate tax cuts on output and productivity that we estimate with LPs in

Figures 1 and 3.

The results in the left column of Figure 5 stand in sharp contrast to the findings in the right

column, which show the effects of a cut in personal income taxes. Here, the IRFs generated by

the model with no endogenous growth (black lines with crosses) are much closer to estimated

IRFs of the baseline specification (blue lines with circles), especially in the short-term. A main

reason for this is that the endogenous growth mechanism has little impact at shorter horizons

but this is precisely where most of the personal tax effects materialize in the data. While R&D

and technological adoption appear crucial to obtain longer-term effects of corporate tax changes

on output and productivity, they play only a modest role in shaping the shorter-term effects of

personal income tax changes.

In summary, the main takeaway from this counterfactual experiment is that the key to generating

longer-run effects from corporate tax cuts is the endogenous increase in productivity that occurs

as a result of higher R&D expenditure and adoption. Because it takes time for new technologies

to be adopted, these channels raise productivity steadily, which in turn boosts economic activity

persistently. In contrast, a personal income tax cut has no such direct effect on firms’ incentives.

As a result, there is no sustained increase in R&D, productivity or output.

6.2 No variable factor utilization

In this counterfactual experiment, we turn off the variable utilization margin for both labor and

capital but maintain the endogenous productivity mechanism.15 The green lines with diamonds

15In Appendix A10, we switch off variable utilization for each factor separately.
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in the left column of Figure 5 reveal that making factor utilization inelastic (in a model with

endogenous growth) has a limited impact on the effects of corporate income tax changes on GDP,

productivity and R&D. The shape and dynamics of the green lines with diamonds are very similar

to those reported as blue lines with circles from the unrestricted baseline model. On the other

hand, variable factor utilization helps the estimated model to match the level of the IRFs. In other

words, variable factor utilization (and as we show in Appendix A10, variable capital utilization in

particular) amplifies the magnitude of the effects of corporate income tax changes but it plays only

a modest role, if any, in explaining their persistence.

In sharp contrast to the ‘No R&D’ counterfactual, however, the right column of Figure 5 shows

that, without variable factor utilization, the dynamic effects of personal income tax cuts in the

counterfactual model look very different to the effects from the full estimated model (blue lines

with circles), especially at shorter horizons. In particular, the response of productivity to a personal

income tax cut (middle row) becomes now counter-cyclical, which is at odds with the estimates in

Section 3. In Appendix A10, we show that this is mostly driven by variable labor utilization. As in

the previous counterfactual, although through a very different mechanism and at a very different

horizon, pro-cyclical productivity turns out to be crucial to account for the dynamic effects of tax

changes on output.

Finally, we note that while a long literature (starting with Oi (1962)) has studied the role of labor

utilization in generating a pro-cyclical response of labor productivity at shorter horizons, other theo-

retical mechanisms could also generate this effect. For instance, Qiu and Ŕıos-Rull (2022) show that

if households’ search efforts in the product market vary with the business-cycle, then productivity

becomes pro-cyclical in an otherwise standard medium-scale New Keynesian framework.

6.3 No endogenous growth and no variable factor utilization

In the previous sub-section, we have shown the importance of variable labor utilization (for personal

tax cuts) and variable capital utilization (for corporate tax cuts) for amplifying the effects on output

and productivity. On the other hand, the persistence of the effects of corporate tax cuts seems mostly

driven by R&D spending and technological adoption. In this section, we bring these two exercises

together and switch off the endogenous growth mechanism and variable utilization of capital and

labor. The results are reported in Figure 6 as black lines with crosses.

This exercise reveals that a standard New-Keynesian model has a hard time generating pro-

cyclical productivity. For a corporate income tax cut in the left column of Figure 6, the model
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Figure 6: Counterfactuals: Response of GDP, Productivity and R&D
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This figure shows the results of a counterfactual exercise that turns off the endogenous growth part
of the model, the labor effort margin and variable capital utilization. The baseline model results are
blue (circles), these repeat the results from Figure 1 and Figure 3. The black line (crosses) shows
the impulse responses from the estimated model after shutting down endogenous productivity, the
labor effort margin and variable capital utilization.
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without endogenous growth or variable factor utilization generates an a-cyclical response of produc-

tivity and, therefore, it misses entirely the magnitude and persistence of the effects on GDP. As for

personal income tax changes in the right column, the restricted model generates a counter-cyclical

(and counterfactual) response of productivity, which in turn more than halves the effects on output

in the first row.

In summary, the estimated structural model shows that transitory corporate income tax cuts

can generate persistent dynamics and that these align well with our LP estimates from the data. In

contrast, transitory personal income tax cuts generate sizable short-run effects, but appear to have

no persistent long-term effects. In our theoretical model — as in the data — the key is to generate

pro-cyclical productivity at the relevant horizon. The counterfactual analysis reveals that variable

factor utilization combined with an endogenous growth mechanism are central to jointly explaining

all our results on the heterogeneous effects of corporate and personal taxes across forecast horizons.

7 Another look at the adjustment costs on capital investment

A distinctive feature of the structural model estimates in Table 2 is that the adjustment costs

on physical capital investment are different from those estimated in medium-scale DSGE models

such as Smets and Wouters (2007) and Justiniano et al. (2010). Standard estimated models tend

to find an important role for physical capital accumulation in explaining business cycle dynamics.

Earlier studies, however, typically do not feature an endogenous growth mechanism and investment

in intangible capital.

One possible explanation for this discrepancy is that we are targeting the IRFs for only two

shocks, as opposed to the full-information approach adopted in other papers. Physical capital

adjustment costs may simply be unimportant for the transmission of these shocks. An alternative

interpretation, however, is that standard estimated medium-scale DSGE models may be relying

‘excessively’ on the dynamics of physical capital accumulation when in fact the persistence in the

data may be better described by an (omitted) endogenous growth mechanism.

To examine this hypothesis, we now use the same IRFs-matching partial-information approach

as in Section 5 but we estimate an alternative version of the model that omits the endogenous

growth mechanisms. In so doing, we are making the model as close as possible to conventional New

Keynesian models such as, for instance, Smets and Wouters (2007) and Justiniano et al. (2010).

The full set of estimates are reported in Appendix Table A.2, which is the no-endogenous-growth
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Figure 7: Prior and Posterior Distributions of the Investment Adjustment Cost Parameter
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This figure compares the prior distribution (black dotted edges) and posterior distribution of the
baseline model (blue solid edges) and the model without the endogenous productivity mechanism
(red dashed edges). Vertical lines display the medians of each distribution.

model counterpart of Table 2. In Figure 7, we focus on f
′′
I , the parameter governing adjustment

costs on physical capital investment. The histogram with black dotted edges represents the prior

distribution whereas the blue/solid (red/dashed) contours depict the posterior distribution of the

estimate of the baseline structural model with (without) endogenous growth. Vertical lines represent

the median estimates.

The main message from this exercise is that without R&D or adoption, the estimate of the

investment adjustment cost parameter becomes far more in line with estimates from more standard

medium-scale New Keynesian models. More specifically, the estimation of the restricted model

with no endogenous growth assigns a much larger probability to investment adjustment costs f
′′
I

being around 2.5, with the upper bound of the 90% credible set (in red) being 4.35. This is in

sharp contrast to the estimates of our structural model with R&D, where the point estimate for

the investment adjustment costs, f
′′
I , becomes only 0.29 (with a much tighter band spanning the

interval [0.05, 1.31]).

In summary, when we shut down the endogenous growth part of the structural model, the
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partial-information estimates of the capital investment adjustment costs from this restricted speci-

fication are well in line with the full-information estimates from earlier studies that feature no R&D

expenditure. This suggests that the omission of an endogenous growth mechanism in conventional

medium-scale DSGE models may induce a bias in estimated adjustment costs on investment.

8 Conclusions

Do transitory changes in corporate and personal income taxes have persistent effects on output? And

what are the channels? We answer the first question using local projections and narrative-identified

tax shocks on post-WWII U.S. data. We answer the second question by running counterfactual

simulations from an estimated structural model with endogenous growth, variable factor utilization

and distortionary taxes.

Our main findings are that corporate income tax changes generate persistent effects on R&D

expenditure, productivity and output whereas personal income tax changes trigger large but short-

lived responses of capital expenditure, productivity and output. We show that matching the pro-

cyclical response of productivity in the short-run and in the long-run is crucial for the ability of

the estimated model to account for the dynamic effects of the two tax shocks on economic activity.

Variable labor utilization appears important for replicating the short-term response of productivity

and output to a personal income tax change, while R&D expenditure and technological adoption

are key to account for the long-term effects of corporate income tax changes.
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Gaĺı, J. and T. van Rens (2020): “The Vanishing Procyclicality of Labour Productivity,” The

Economic Journal, 131, 302–326.

Giannone, D., M. Lenza, and G. E. Primiceri (2015): “Prior Selection for Vector Autoregres-

sions,” The Review of Economics and Statistics, 97, 436–451.

Guajardo, J., D. Leigh, and A. Pescatori (2014): “Expansionary austerity? International

evidence,” Journal of the European Economic Association, 12, 949–968.

Gunter, S., D. Riera-Crichton, C. Vegh, and G. Vuletin (2018): “Non-linear effects of

tax changes on output: The role of the initial level of taxation,” World Bank working paper 8668.

Hayo, B. and M. Uhl (2014): “The macroeconomic effects of legislated tax changes in Germany,”

Oxford Economic Papers, 66.

Hussain, S. M. and L. Liu (2018): “Comparing the effects of discretionary tax changes between

the US and the UK,” The B.E. Journal of Macroeconomics, 18(1).

Jones, C. I. (1995): “R& D-Based Models of Economic Growth,” Journal of Political Economy,

103, 759–784.
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Appendix

A1 Data Appendix

A1.1 Macroeconomic data

Table A.1: Macroeconomic variables definitions

Variable Description Source

Consumption Real personal consumption expenditure
per-capita

FRED divided by popu-
lation

Investment Real Non-residential investment per-
capita

MR

Productivity Output per hour (Non-Farm business
sector)

FRED

R&D spending Investment in Research and Develop-
ment

FRED divided by IPP
deflator and population

Employment Total economy employment per-capita MR

Population Total Population over age 16 MR

The main macroeconomic variables are taken directly from Mertens and Ravn (2013): (1)

APITRt, (2) ACITRt, (3) ln
(
BPI
t

)
, (4) ln

(
BCI
t

)
, (5) ln (Gt) , (6) ln (GDPt) , (7) ln(DEBTt). The

personal and corporate tax rates are denoted by APITRt and ACITRt, respectively while ln
(
BPI
t

)
and ln

(
BCI
t

)
are the corresponding tax bases in real per-capita terms. ln (Gt) denotes real per-

capita government spending, while ln(DEBTt) is real per-capita federal debt. Real per-capita GDP

is denoted by ln (GDPt). For a detailed description of these series and data sources, see the appendix

of Mertens and Ravn (2013). The table below provides a list of the additional macroeconomic data

used in our analysis. MR denotes the replication files of Mertens and Ravn (2013) available at

https://www.aeaweb.org/articles?id=10.1257/aer.103.4.1212.

A1.2 Sectoral Data

Gross output by industry is obtained from the Bureau of economic analysis (BEA). The annual

data from 1947-1997 is available at the following link. We deflate Gross output by its deflator. This

historical data is combined with the more recent quarterly real Gross output data to produce an

annual time series for 87 sectors from 1950-2006. Real gross output is divided by population.

Data on R&D intensity is obtained from the Business Enterprise Research and Development

Survey of the National Science Foundation for the period 1999 to 2007. R&D intensity is defined

as funds for industrial R&D as a percent of net sales of companies. The R&D intensity data from

this survey can be matched to 28 industries in the Gross output data set. These 28 industries are

used in the sectoral analysis presented in the paper. Figure A.1 displays the average R&D intensity

obtained over the period 1999-2007 in these 28 industries and shows the split between high and low

R&D intensity groups.
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Figure A.1: Average R&D intensity 1999-2007. Red bars denote industries with higher than median
R&D intensity.
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A2 Shorter-Term vs. Longer-Term Effects: Prior Distributions

Figure A.2: Joint Prior and Posterior Distributions of Shorter-term versus Longer-term Effects

This figure shows the joint prior (reported in grey) and posterior (reported in light red) distributions of
the GDP responses (top row) and productivity response (bottom row) to shocks to the personal income
average tax rate (on the vertical axis) and the corporate income average tax rate (on the horizontal axis) in
the shorter-term (left column) and longer-term (right column) based on the local projections in equation 1.
The shorter-term (longer-term) column refers to the cumulated average responses of GDP and productivity
to each shock over the quarters within (beyond) the first two years after the shock. The red dots show
draws from the posterior distributions of the impulse responses. The grey dots refer to draws from the prior
distribution. The black slope represents the 45o degree line, which is the locus of points along which the two
shocks have GDP effects of exactly the same magnitude. Points above (below) the 45o degree line indicates
the mass of the joint posterior distribution for which the effects of personal income tax shocks are larger
(smaller) than the GDP effects of corporate income tax shocks. The δ statistic shows denotes the probability
that the effect of a corporate income tax shock is larger than the effect from a personal income tax shock.
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A3 The Responses of Hours, Employment and TFP
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This figure shows the responses of total hours, employment and total factor productivity to a 1% cut in the
average rate of corporate income taxes (left column) and the average rate of personal income taxes (right
column). Red shadow bands represent central posterior 68th and 90th credible sets. Blue lines with circles
represent the impulse responses of the model in Section 4 evaluated at the posterior median of estimated model
parameters. Since the model used in Section 4 does not have a well-defined extensive model of employment
we do not plot the model response of employment.
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A4 Sectoral Evidence

We investigate the response of gross output (GO) output to the tax shocks in the high and low

R&D groups. The former group is defined as the industries that have a R&D intensity larger than

the median, while industries in the low group have intensity lower than the median. We construct

aggregate GO in these two groups and use our benchmark LP to estimate the response of these

series to the tax shocks. As the number of observations is limited, the model is kept parsimonious,

with one lag of the tax rates and annual GDP as the control variables. The estimated impulse

responses are shown in Figure 5. The top panel shows the response of GO in all sectors. As in

the benchmark case, corporate tax shocks have their largest effect in the medium to the long-run.

In contrast, personal tax shocks lead to an increase in output in the first 2 years. However, the

medium and long-run impact of this shock is not statistically different from zero.

The bottom two panels of Figure 5 show the response of output in high and low R&D sectors.

Consider the bottom left panel. There is clear evidence that the response of output to corporate

tax shocks is larger in the high R&D group at long horizons. This heterogeneity is entirely absent

when the response to personal tax shocks is considered.
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Figure A.3: Sectoral Evidence: Average Effects and Results by R&D Share
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This figure shows the response of output using sectoral data from the U.S. BEA. The first row show
the average effect. The bottom row further split sectors into high R&D intensive and low R&D
intensive. See text for more details.
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A5 Forecast Error Variance Decomposition

In this section we report the contribution of the personal and corporate tax shocks to the forecast

error variance (FEV) of key variables, using the estimated local projection-based impulse responses

(see Jordà, 2005). Figure A.4 presents the estimated decomposition. The contribution of both tax

shocks to the FEV of GDP is about 20 percent at short horizons. However, at medium and long

horizons, the contribution of corporate tax shocks is at least twice as large as that of personal tax

shocks. A similar pattern holds for productivity, investment, R&D and consumption.

Figure A.4: Forecast Error Variance decomposition
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This figure shows the contribution of corporate and personal tax changes to the variance of each
variable in the figure. The effects of corporate tax changes are shown in the red lines (posterior
median and 68 percent band) and the shaded area (90 percent band). The line with circles show
the contribution of the personal tax shock, with the posterior 68 percent (90 percent) bands shown
by the dotted (dashed) lines.
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A6 Robustness

Figure A.5: Response of real GDP: Different Specifications
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This figures shows the 90% bands for the baseline empirical real GDP result in pink, together with
the point estimates from various alternative specifications. In particular, this figure shows the effects
of: (i) changing number of lags used as control variables, (ii) adjusting the prior, (iii) conducting
pure local projections IV rather than our Bayesian local projection setup (iv) including the Ramey
(2011) defence news shock as a control (v) using a Smooth Local Projections approach (vi) changing
the ordering of the tax shocks. See text for more discussion.
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Figure A.6: Response of R&D: Different Specifications
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This figures shows the 90% bands for the baseline empirical R&D result in pink, together with the
point estimates from various alternative specifications. In particular, this figure shows the effects
of: (i) changing number of lags used as control variables, (ii) adjusting the prior, (iii) conducting
pure local projections IV rather than our Bayesian local projection setup (iv) including the Ramey
(2011) defence news shock as a control (v) using a Smooth Local Projections approach (vi) changing
the ordering of the tax shocks. See text for more discussion.
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Figure A.7: Response of Productivity: Different Specifications
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This figures shows the 90% bands for the baseline empirical productivity result in pink, together
with the point estimates from various alternative specifications. In particular, this figure shows
the effects of: (i) changing number of lags used as control variables, (ii) adjusting the prior, (iii)
conducting pure local projections IV rather than our Bayesian local projection setup (iv) including
the Ramey (2011) defence news shock as a control (v) using a Smooth Local Projections approach
(vi) changing the ordering of the tax shocks. See text for more discussion.

A10



A7 Monte-Carlo evidence on Local Projections estimates of im-

pulse response functions at medium and long-run horizons

In this section we investigate the ability of LPs and VARs to estimate impulse response functions at

medium and long-run horizons. Our Monte-Carlo analysis complements that of Jordà et al. (2020)

as we consider the performance of multi-variate models.

A7.1 Data Generating Process and models

The data generating process is designed to mimic the broad features of the impulse responses of key

variables to corporate tax shocks. The estimated response of variables such as GDP, consumption

and productivity to corporate shocks is characterised by small increases at short horizons with larger

positive changes arriving after about 20 periods. We replicate this shape by generating data from

a bi-variate VAR(20)

Yt = B1Yt−1 +B2Yt−2 + ...+B20Yt−20 +A0Et, Et ∼ N(0, 1) (34)

We assume that B1 =

(
0.7 0

0 0.75

)
and B20 =

(
0.1 0.1

0.1 0

)
while B2 = B3 = ... = B19 =(

0 0

0 0

)
. The contemporaneous impact matrix is fixed at A0 =

(
1 0

0.05 1

)
We generate T1 =

T + T0 observations from this model where T0 = 50 and T = 230. The first T0 observations are

discarded to account for initial values. We estimate two models using this artificial data: (1) A

VAR(4) and (2) A LP that includes 4 lags of the two variables as controls. The models are used to

estimate the response to the first shock. Note that we do not attempt to estimate A0 which is kept

fixed at the true value for both models.

A7.2 Results

Figure A.8 displays the main results. Consider first the true impulse response of Variable 2. The

features of this function are similar to those reported in our empirical analysis for variables such

as GDP, consumption and productivity. That is, this response is characterised by the feature that

the main effect arrives in the medium run rather than immediately. The VAR(4) model captures

the short-run impact well. However, it completely misses the increase in the variables at horizon

20. In contrast, the LP that includes the same number of lags captures both the initial increase

in the variables and the subsequent rise at horizon 20. Figure A.9 shows the effect of increasing

the lag length. Even with 10 lags, the VAR response of the second variable is far from the truth

at long horizons. When the lag length is increased to 20, the performance of the VAR improves

substantially. In the case of the LP, increasing the lag length does not materially affect the response

after horizon 20. However, there is some evidence that longer lags reduce the discrepancy between

the LP response and truth between horizons 10 and 20. In short, this simple stylised simulation

demonstrates that VARs with a small number of lags are likely to be unreliable in estimating

responses where the bulk of the movement occurs at long horizons. The LP appears to be more
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robust to lag truncation.

Figure A.8: Monte-Carlo results
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Figure A.9: Monte-Carlo results using different lag lengths
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A8 Prior Predictive Analysis

Figure A.10: Response of Taxes, Real GDP and Productivity
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This figure shows the response of the average tax rates, real GDP and productivity to a 1% cut in the average
tax rate of corporate income taxes (left column) and the average tax rate of personal income taxes (right
column). Red shadow bands and solid lines represent the 90th and 68th percentiles of the prior distribution
of impulse response functions. Blue lines with circles represent the impulse responses of the model in Section
4 evaluated at the posterior median of estimated model parameters.
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Figure A.11: Response of Labor R&D, Investment and Consumption
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This figure shows the responses of consumption, investment and R&D to a 1% cut in the average tax rate
of corporate income taxes (left column) and the average tax rate of personal income taxes (right column).
Red shadow bands and solid lines represent the 90th and 68th percentiles of the prior distribution of impulse
response functions. Blue lines with circles represent the impulse responses of the model in Section 4 evaluated
at the posterior median of estimated model parameters.
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A9 Shorter-Term vs. Longer-Term Effects: Model Estimates

Figure A.12: Joint Posterior Distribution of Shorter-term versus Longer-term Effects on GDP

This figure shows the joint posterior distribution of the GDP responses (top row) and productivity response
(bottom row) to shocks to the personal income average tax rate (on the vertical axis) and the corporate
income average tax rate (on the horizontal axis) in the shorter-term (left column) and longer-term (right
column) based on the prior and posterior distributions of the structural model in Table 2. The shorter-term
(longer-term) column refers to the cumulated average responses of GDP and productivity to each shock over
the quarters within (beyond) the first two years after the shock. The blue dots in the top (bottom) row
identify draws from the posterior distributions of estimated parameters based on the structural model. The
grey dots refer to draws from the prior distribution. The black slope represents the 45o degree line, which
is the locus of points along which the two shocks have GDP effects of exactly the same magnitude. Points
above (below) the 45o degree line indicates the mass of the joint posterior distribution for which the GDP
effects (in the top row) or the productivity effects (in the bottom row) of personal income tax shocks are
larger (smaller) than the GDP effects of corporate income tax shocks. The statistics δ in the top (bottom)
row denotes the probability that the GDP (productivity) response to corporate income tax shocks is larger
than the GDP (productivity) response to personal income tax shocks.
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A10 IRFs with no variable utilization of either labor or capital

Figure A.13: Counterfactuals: Response of GDP, Productivity and R&D
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This figure shows the results of two further counterfactual exercises. The first (second) exercise in
black lines with crosses (green lines with diamonds) shuts down variable labor (labor) utilization.
The baseline model results from Figure 1 and Figure 3 are reported as blue lines with circles.
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A11 Estimates of the structural model with no endogenous growth

This section reports the prior and posterior distributions of the parameters of the structural model

in the restricted specification with neither technological adoption nor R&D expenditure. The main

difference relative to Table 2 is that the investment adjustment cost parameter is significantly higher

than the estimates based on the model with endogenous growth. Furthermore, and in sharp contrast

to Table 2, the estimate of this parameter in Table A.2 is in line with the available estimates in

the business cycle literature on DSGE model (see for instance Smets and Wouters, 2007, Justiniano

et al., 2010), which typically assume an exogenous growth path.

Table A.2: Estimated Parameters - No technological adoption or R&D spending

Parameter Description Prior Posterior
Distr Mean Std. Dev. Mean 90% int.

Preference & HHs
h Consumption habit beta 0.5 0.2 0.41 [0.15, 0.67]
γ Inverse effort elasticity gamma 1 0.5 0.58 [0.16, 1.27]

Frictions & Production
f ′′I Investment adjustment normal 4 1.5 2.47 [0.93, 4.35]
ψu Capital utilization adjustment beta 0.6 0.15 0.35 [0.23, 0.49]
ξp Calvo prices beta 0.5 0.2 0.21 [0.07, 0.38]

Shocks
ρτCI Corporate taxes AR beta 0.7 0.2 0.94 [0.92, 0.95]
ρτPI Labour taxes AR beta 0.7 0.2 0.76 [0.72, 0.8]

A18


	Introduction
	Empirical Framework
	Identification and approach
	Data and estimation

	Empirical results
	Transitory versus persistent dynamics
	On the mechanism
	Forecast Error Variance Decompositions
	Robustness

	A Structural Model
	Production Sector and Endogenous Productivity
	R&D and Technological Adoption
	Households and the corporate sector
	Fiscal Policy
	Rest of the model

	Structural estimation
	Approach
	Prior predictive analysis
	Estimation results
	Discussion

	Counterfactual analysis
	No endogenous growth
	No variable factor utilization
	No endogenous growth and no variable factor utilization

	Another look at the adjustment costs on capital investment
	Conclusions
	Data Appendix
	Macroeconomic data
	Sectoral Data

	Shorter-Term vs. Longer-Term Effects: Prior Distributions
	The Responses of Hours, Employment and TFP
	Sectoral Evidence
	Forecast Error Variance Decomposition
	Robustness
	Monte-Carlo evidence on Local Projections estimates of impulse response functions at medium and long-run horizons
	Data Generating Process and models
	Results

	Prior Predictive Analysis
	Shorter-Term vs. Longer-Term Effects: Model Estimates
	IRFs with no variable utilization of either labor or capital
	Estimates of the structural model with no endogenous growth

