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Abstract

Firms’ market power, measured by markups, has risen substantially and unequally across

sectors. To evaluate the implications of these trends for monetary non-neutrality, we de-

velop a quantitative menu cost model that covers multiple sectors with heterogeneous

degrees of market competition. Two quantitative results stand out from the analysis. First,

the average markup elasticity of monetary non-neutrality in the United States equals 1.

Second, the markup elasticity of monetary non-neutrality would be equal to 1.4 had the
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1. Introduction

Firms’ market power has substantially increased (the degree of market competition has
decreased) in the past four decades. In the United States, for example, aggregate markup in
the whole economy has risen by about 30% (De Loecker et al. 2020). Moreover, the changes
in markups are heterogeneous across sectors.1 These trends affect firms’ price-setting
strategies. When making pricing decisions, firms balance the fixed adjustment cost—menu
cost—with the benefits of adjusting prices. Market competition affects this tradeoff, and
therefore, alters firms’ price-setting rules. Consequently, firms’ market power affects the
relative potency of monetary policy since the latter depends on the responses of prices to
monetary actions. To better understand the relationship between market power and mon-
etary policy, we ask the following questions: How does monetary non-neutrality change
with the recent trend in the aggregate markup? What is the aggregate markup elasticity of
monetary non-neutrality? Does the heterogeneous sectoral evolution of markups matter
for aggregate monetary non-neutrality?

This paper addresses these questions using a multi-sector menu cost model with het-
erogenous market powers across sectors. The model permits us to study the implications
of the heterogenous evolution of markups on monetary non-neutrality, emphasizing endo-
geneous changes in firms’ pricing decisions. Our quantitative analysis suggests that in the
United States, the average markup elasticity of monetary non-neutrality is equal to 1 in the
past three decades: i.e., the thirty percent increase in markups in the data raises monetary
non-neutrality by thirty percent.2 Moreover, the unequal changes in markups at the sec-
toral level act as a counterforce: the markup elasticity of monetary non-neutrality would
be equal to 1.4 had the markup increased equally across sectors. The key mechanism is
the endogenous relationship between the frequency of price adjustment (FPA) and market
power. We demonstrate how market power affects monetary non-neutrality by changing
the frequency with which firms adjust prices. We provide evidence to support the model
mechanisms and predictions. We also show that the mechanism is quantitatively important
for the positive relationship between markups and monetary non-neutrality estimated in
the data. We formulate these findings based on the following steps.

First, we build a multi-sector menu cost model with monopolistic competition that
features random menu costs and leptokurtic idiosyncratic productivity shocks to generate
a realistic distribution of price changes. Notably, the model allows for heterogenous desired
markups (market power) across sectors. Firms operate in different sectors are subject to

1See Figure 1 in Section 2
2Monetary non-neutrality is defined as the cumulative effects of monetary policy shocks on real GDP.
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heterogeneous degrees of market competition. The latter is proportional to the elasticity
of substitution across goods within a sector.

Second, we calibrate the model to match pricing and markup moments in the U.S.
data, using it as a laboratory to address the questions we have raised. In doing so, we
construct the pricing and markup moments at the industry level, which is valuable for
calibrating this class of models if the emphasis is on cross-sector heterogeneities. Our
model makes the following quantitative predictions. First, the average markup elasticity of
monetary non-neutrality is equal to 1 in the past decades—Result 1. Since 1980, monetary
non-neutrality has increased by nearly 30% due to the increase in aggregate markup of the
same magnitude. Second, through the lens of the model, we show that the unequal changes
in sectoral markups that we document play an important role in determining monetary
non-neutrality. In a counterfactual analysis, we show that had markups increased equally
across sectors, the increase in the aggregate markup would have raised monetary non-
neutrality by 42%. The resulting aggregate markup elasticity of monetary non-neutrality
would be 1.4—Result 2.

We inspect the mechanism behind our quantitative findings. We find that the previous
results are explained by the increasing and concave relationship between monetary non-
neutrality and steady-state markups. All else being equal, higher markup in a given sector
leads to greater (Result 1) but incrementally smaller real effects (Result 2) of monetary
policy. Next, we investigate the sources of the increasingly concave relationship between
markups and monetary non-neutrality.

Following Alvarez et al. (2022), we decompose the aggregate real output’s response
to monetary policy shocks into margins summarized by two sufficient statistics. The first
is the frequency effect, which is proportional to the inverse of the FPA. The second is the
selection effect, which is related to the kurtosis of the distribution of price changes. Both
margins are increasing concave functions of the steady-state markups. Quantitatively,
the frequency margin contributes approximately 90% to the increase in monetary non-
neutrality originating from the increased markups. Therefore, our results are mainly driven
by the frequency margin, i.e., through the effects of market power on the frequency of price
adjustment.

We finally provide three sets of empirical evidence to support the predictions and the
underlying mechanisms and, importantly, to differentiate the proposed mechanisms from
the ones in the literature.

The first set of evidence demonstrates that monetary non-neutrality increases in the
aggregate smoothed markup in the data, consistent with Result 1. This evidence is based
on estimating real GDP’s impulse response functions (IRFs) to monetary policy shocks.
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The IRFs are estimated using Jordà (2005)’s local projection and the extended exogenous
monetary policy shocks à la Gertler and Karadi (2015). Importantly, we allow the IRFs to
depend on the smoothed markup in the empirical model. The estimated IRFs show that
the increase in markups observed in the past decades has led to an increased monetary
neu-neutrality.

The second set of evidence shows that the FPA has declined over time in the data,
consistent with the frequency effect emphasized in the model. Moreover, the magnitude
of the decline in the data is aligned with a decline in FPA arising from higher markups
predicted by our model.

The third set of evidence differentiates our mechanisms from the existing ones. Specifi-
cally, we estimate a horse-race regression model that allows the IRFs to monetary policy
shocks to depend on the level of (smoothed) markup and the measured FPA. Existing the-
ories (see, e.g., Wang and Werning 2022 and Baqaee et al. 2021) suggest that the markup
elasticity of monetary non-neutrality can be positive due to channels that are unrelated
to the frequency effect, i.e., orthogonal to changes in the FPA. In this case, one would
expect the horse-race regression model to deliver the same estimates of markup elasticity
of monetary non-neutrality as in the baseline empirical model. In contrast, our theoretical
model predicts that including FPA, which controls for the frequency effect in the horse-
race model, reduces the relevance of smoothed markup for monetary non-neutrality. We
find that changing FPA contributes to about half of the effects of smoothed markup on
monetary non-neutrality estimated in the baseline. This finding confirms the relevance of
the frequency effect that we highlight in the quantitative model.

From the perspective of policy making, our paper provides a toolbox that assists central
bankers to track monetary non-neutrality. This is important for determining the correct
magnitude of the nominal demand stimulus package in times of recession. Our analysis
suggests that ignoring cross-sector heterogeneity in market power overstates the stimulus
power of monetary policy. The evolution of the aggregate markup is informative, but it is
a noisy signal about the changes in aggregate monetary non-neutrality. A more accurate
assessment of changes in monetary non-neutrality requires monitoring the evolution of
market power at the industry level. Moreover, the markup elasticity of monetary non-
neutrality decreases in markup. This requires central banks to continuously reassess the
monetary non-neutrality in a world with changing market power.

Related Literature This paper contributes to a growing literature modelling the relation-
ship between market competition and monetary non-neutrality. Mongey (2021) shows that
aggregate monetary non-neutrality is higher in a model with oligopolistic competition
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than in a model with monopolistic competition. We focus on the markup elasticity of mon-
etary non-neutrality. In a related paper, Wang and Werning (2022) finds that greater market
concentration, hence greater market power, significantly amplifies the real effects of mone-
tary policy in a model where firms play a Bertrand dynamic game but with stylized Calvo
nominal rigidity. With Calvo pricing, the frequency of firms’ price adjustment is fixed and
unrelated to market power by construction. Based on a model with endogenous markup à
la Kimball, Baqaee et al. (2021) show that the supply-side effects of monetary policy arise.
Moreover, increased industrial concentration increases monetary non-neutrality through
the amplified supply-side effects. Compared to Wang and Werning (2022) and Baqaee
et al. (2021), we address a similar question in a different framework where the frequency
of price adjustment, or the frequency effect, is endogenously related to market power. We
show that increased market power enhances the potency of monetary policy even if the
standard monopolistic competition assumption is assumed. We present empirical evidence
that supports our mechanism. Moreover, we highlight the relevance of considering cross-
sector heterogeneities in desired markups for monetary non-neutrality and the concave
relationship between the desired markup and monetary non-neutrality.3 Meier and Reinelt
(2022) argue the causal effect of price rigidities on markups charged by firms during busi-
ness cycles. Specifically, they argue that firms with more rigid prices optimally set higher
markups due to a precautionary price-setting motive. The current paper emphasizes the
causal effects of market power (steady-state markups) on the implied nominal rigidity.

This paper is closely related to the literature that employs the menu cost as a micro-
foundation for price rigidity: Dotsey et al. (1999), Golosov and Lucas (2007), Gertler and
Leahy (2008), Midrigan (2011), Vavra (2014), Alvarez et al. (2016), Karadi and Reiff (2019),
Karadi et al. (2022), Alvarez et al. (2022) and Alvarez and Lippi (2022). The existing
literature focuses on pricing moments and their relationships with monetary non-neutrality.
The current paper contributes to this line of research by demonstrating that market power,
especially the distribution of market power across sectors, is a critical determinant of
the price-change distribution and by quantifying the markup elasticity of monetary non-
neutrality.

Finally, this paper contributes to the literature emphasizing the relevance of sectoral
3In contemporaneous work, Chiavari et al. (2021) build a firm life-cycle model with demand accumula-

tion, Kimball aggregator, and Rotemberg adjustment cost to illustrate the heterogeneous effects of monetary
policy across firms of different ages. Our paper differs in important dimensions. First, the Rotermberg
adjustment cost cannot generate the frequency effect (infrequent price adjustment) that we highlight in the
model and in the data. Second, with fixed adjustment cost – menu cost – our model matches rich micro-level
pricing moments, which is important for the quantification of markup elasticity of monetary non-neutrality.
Third, Chiavari et al. (2021) consider heterogeneity within a sector, whereas we focus on the implications of
cross-sector heterogeneities in markups and their evolution over time for monetary non-neutrality. Last but
not least, the two papers address very different research questions.
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heterogeneity in price rigidity for the aggregate monetary non-neutrality: see e.g., Carvalho
(2006), Nakamura and Steinsson (2010), Carvalho and Schwartzman (2015), Gautier and
Bihan (2018), Carvalho et al. (2020), Pasten et al. (2020), and Alvarez et al. (2022).4 The
current paper shows that heterogeneity in sectoral market power is another important
determinant of monetary non-neutrality. Specifically, we demonstrate that heterogeneous
nominal rigidities can arise endogenously due to heterogeneous market competitions. And
we highlight the non-linear relationship between market competition and nominal rigidity
that is crucial for Result 2.

The remainder of this paper is organized as follows. Section 2 presents the empiri-
cal findings that motivate the quantitative analysis. Section 3 describes the multi-sector
menu cost model with heterogeneous markups. Section 4 presents the predictions of the
model. Section 5 provides empirical evidence that supports the model’s predictions and
the underlying mechanisms. Section 6 concludes the paper.

2. Motivating Facts

This section reproduces the empirical findings uncovered by De Loecker et al. (2020). We
highlight the cross-sector heterogeneity in markup development.

2.1 Data

Firm-Level Markups We use quarterly firm-level balance sheet data from 1980 - 2016 of
publicly traded firms in Compustat to calculate firm-level markups. The data covers sales,
employment, capital, and input factors of firms (cost of goods sold) over a long sample
for a wide range of sectors covering manufacturing and service sector firms. We estimate
firm-level markups following the single-input approach (De Loecker and Warzynski 2012).
According to this approach, the markup µi,t of a firm i at time t can be computed from one
flexible input, Xi, as the ratio of the output elasticity of the input, ϵQ,Xi,t, to the revenue
share of that input, sR,Xi,t

µi,t =
ϵQ,Xi,t

sR,Xi,t
. (1)

Compustat reports a composite input called Cost of Goods Sold (COGS), which consists

4The key takeaway from this literature is the aggregation issue: monetary non-neutrality associated with
a multi-sector model with heterogeneous price rigidities differs from the money non-neutrality derived
assuming a one-sector economy with average price rigidity
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of intermediate and labor input and that will be used as the (partially) flexible input, Xi.
We use a variant of the technique introduced by Olley and Pakes (1996) and described in
De Loecker and Warzynski (2012) to estimate a Cobb-Douglas function and obtain a time-
varying estimate of output elasticity at the sector level. The markups are then derived by
dividing the former (estimated at the industry-year level) by the share of COGS to revenue
(estimated at the firm-year level). In terms of implementation, we follow the procedure
described in De Loecker et al. (2020) with the adjustments described in Baqaee and Farhi
(2020). In particular, we estimate time-varying output elasticities and deflate using gross
output price indices from KLEMS sector-level data.5

When transforming the data, we drop all firms in the government sector or the sector
of the economy composed of finance, insurance, and real estate that are heavily regulated.
We consider only observations that are positive and linear interpolate observations that
are missing for one period. Additionally, we perform outlier adjustments by trimming at
1% of calculated markups6.

One concern with Compustat is that it covers only publicly traded firms and thus is
not representative of the distribution of the universe of firms. We account for a represen-
tativeness bias by using the weights of each sector in the Compustat data from the PCE
expenditure shares to account for sectoral composition (while we still calculate markups
from publicly traded firms).

Smoothed Markups The markups at the sectoral level (µk,t) are the weighted average
of firm-level markups using firms’ sale share as the weight. We compute the smoothed
markup (µss

k,t) for an industry k at time t as the seven-year moving average of µk,t centered
at year t.7

2.2 Empirical Results: Unequal Changes in Markups

Figure A.1 confirms the overall increase in the aggregate markup documented by
De Loecker et al. (2020). The smoothed aggregate markup raised from 1.2 in 1980 to
1.55 now—a nearly 30% increase. The current paper focuses on two observations related
to cross-sector heterogeneity in markups.

Observation 1: Markups are Heterogeneous Figure 1 plots the smoothed markups at
the industry level over time: See Panel (a) for eight one-digit NAICS sectors and Panel

5KLEMS stands for capital (K), labor (L), energy (E), materials (M), and service (S).
6Our findings are robust to trimming at 5%.
7All results presented in the paper are robust to the use of alternative length of moving average.
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(b) for twenty two-digit NAICS sectors. The computed smoothed markups are highly
heterogenous across sectors independent of the year of the observation. For example, in
2000, the smoothed markup ranges from nearly 1 to about 1.6 across industries, a difference
of 60%.

Observation 2: Unequal Changes in Markups across Sectors The increased aggregate
markup is not equally distributed cross sectors. Specifically, the changes in the right tail
of the cross-sector markup distribution drive the increase in the aggregate markup. This
can be seen in Panel (a) and (b) in Figure 1 (see also the red lines in Figure A.2 that plot
the evolution of the smoothed markups by sector). In the eight-sector case, the increase in
the aggregate markup documented in Figure A.1 is driven by three sectors that saw shape
rises in markups. Markups in the other sectors remained relatively stable, with one sector
witnessing a drop in markup.

Figure 1: Heterogeneous Evolutions of Smoothed Markups cross Sectors
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(a) Smoothed Markups by Sectors: One-digit
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(b) Smoothed Markups by Sectors: Two-digit

Note: Authors’ own calculation. This figures plots steady-state markups (measured as cost share)
in Compustat from 1980-2017 for the one-digit and the two-digit NAICS sectors.

In the remainder of the paper, we investigate the implications of those observations
for monetary non-neutrality based on a multi-sector menu cost model with heterogenous
cross-sector market powers.
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3. A Multi-sector Model with Heterogeneous Markups

In this section, we construct a multi-sector menu cost model. The model contains the stan-
dard ingredients of a second-generation menu cost model, such as random menu costs and
leptokurtic idiosyncratic productivity shocks, to generate a realistic distribution of price
changes, see, e.g., Vavra (2014), Karadi and Reiff (2019) and Alvarez et al. (2021). Moti-
vated by the empirical observations, our main methodological innovation is to incorporate
heterogeneous sectoral market powers into this class of model.

3.1 Household

There is a representative household in the economy and a continuum of monopolistically
competitive firms in K sectors. Firms are indexed by (k, i), where k = 1, 2, ..., K and i ∈ [0, 1].
The preference of the representative household is given by:

E0

∞

∑
t=0

βt

[
C1−γ

t
1 − γ

+ κ
N1−λ

t
1 − λ

]
, (2)

where β is the discount factor, κ controls the magnitude of disutility from working, γ is
the elasticity of inter-temporal substitution, and λ is the inverse of the Frisch elasticity. In
this expression, Nt represents aggregate labor supply and aggregate consumption bundle
is denoted by Ct, defined as:

Ct = (
K

∑
k=1

ω
1
η

k C
η−1

η

k,t )
η

η−1 , (3)

where η is the elasticity of substitution over goods across sectors and {ωk} are the sectoral
weights. The final good in sector k is given by:

Ck,t = ωk

(∫
i∈[0,1]

c
θk−1

θk
k,i,t di

) θk
θk−1

, (4)

where θk is the elasticity of substitution over goods within sector k. The inter-temporal
budget constraint of the household at period t is:

K

∑
k=1

∫
pk,i,tck,i,tdi + Qt+1Bt+1 ≤ Bt + WtNt + Πt, (5)

8



Here, Bt represents the household’s holding of one-period nominal bonds that pay off at
period t, pk,i,t is the price of goods produced by firm i in sector k at period t, Wt is the
wage rate, Qt+1 is the price of state-contingent nominal bonds, and Πt are the profits from
all firms.

Household’s Optimality Conditions The representative household chooses consumption
bundle {ck,i,t}, labor supply Nt and holdings of nominal bonds Bt+1 to maximize their
sum of discounted expected utility expressed in (2), subject to the budget constraints (5).

Solving this problem gives the demand for differentiated goods, the inter-temporal
Euler equation, and an intra-temporal equation for aggregate labor supply:

ck,i,t =

(
pk,i,t

Pk,t

)−θk
(

Pk,t

Pt

)−η

Ct, (6)

Qt+1 = β
PtCt

Pt+1Ct+1
(7)

Wt

Pt
= κCt, (8)

The sectoral price index (Pk,t) and the aggregate price index (Pt) are defined as:

Pk,t =

(∫
p1−θk

k,i,t di
) 1

1−θk
, (9)

Pt =

(
K

∑
k=1

ωkP1−η
k,t

) 1
1−η

. (10)

It is important to note that allowing the elasticity of substitution to vary across sectors
is equivalent to assuming a heterogeneous degree of competitiveness in the goods market
across sectors. That is, firms that operate in different sectors have different market powers
with different desired (steady-state) markups. Formally, the desired markup for firms in
a sector k is defined as θk

θk−1 , ∀θk ∈ (1, ∞). The desired markup is a decreasing function
of the degree of competitiveness measured by θk. In the limiting case, as θk converges to
∞, the market converges to a perfectly competitive market. This paper corresponds the
smoothed markups in the data to the steady-state markups in the model.
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3.2 Firms

The differentiated good ck,i,t is produced by firm i in sector k by hiring nk,i,t units of labor
and using the following linear technology:

yk,i,t = ak,i,tnk,i,t.

where ak,i,t is the idiosyncratic productivity of firm i in sector k, which evolves according
to the following process:

logak,i,t =

ρa
k log ak,i,t−1 + σa

k ϵa
k,i,t, with probability αk

log ak,i,t−1, with probability 1 − αk,
(11)

where ϵa
k,i,t ∼ N(0, 1) is independent across firms. We denote the transition probability of

this Markov chain as Prk (ak,i,t+1|ak,i,t).
We assume that firms adjust prices with random menu costs: In every period, with

probability ϕk, firms can adjust their prices freely. Otherwise, firms pay fixed costs f k in
labor units to change their nominal prices. To summarize, the menu cost fk,i,t is given by:

fk,i,t =

0, with probability ϕk

f k. with probability 1 − ϕk

(12)

Firms’ Optimality Conditions Firm i in sector k chooses its prices to maximize total real
discounted profits:

max
{pk,i,t}

E0

∞

∑
t=0

q0,tπk,i,t,

where πk,i,t is the real profit at period t and q0,t ≡ q0,1q1,2 . . . qt−1,t discounts future profits
into present value. Note that qt,t+1 is the real stochastic discount factor which satisfies
qt,t+1 = Qt+1Pt+1/Pt.

Let Γk,t(p−1, a, f ) be the distribution over idiosyncratic states in sector k at period t. We
can formulate firms’ decision problems recursively:

Vk,t(pk,i,t−1, ak,i,t, fk,i,t) = max
pk,i,t

{uk,i,t + EqtVk,t+1(pk,i,t, ak,i,t+1, fk,i,t+1)} (13)

with

uk,i,t ≡
(

pk,i,t

Pt
− Wt

ak,i,tPt

)
ck,i,t − 1{pk,i,t−1 ̸=pk,i,t} fk,i,t

Wt

Pt
,
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and subject to

Pk,t =

(∫
[ψk,t(p−1, a, f )]1−θk dΓk,t(p−1, a, f )

) 1
1−θk

,

Pt =

(
ωk

K

∑
k=1

P1−η
k,t

) 1
1−η

,

where ψk,t(p−1, a, f ) is the policy function for the choice variable pk,i,t of firms in sector k at
period t, and demand ck,i,t is given by equation (6). The distribution Γk,t(p−1, a, f ) evolves
according to:

Γ′
k,t+1(B, a′, f ′) =

[
ϕk1{ f ′=0} + (1 − ϕk)1{ f ′= f }

] ∫
{(p−1,a): ψk,t(p,a, f )∈B}

Prk(a′|a)dΓk,t(p−1, a, f ), (14)

for all sets B ∈ R.
Note that the policy functions {ψk,t} and the distributions {Γk,t} are not stationary but

vary over time since the aggregate shock is one-time and unexpected.8 Let Γt(p−1, a, f ) be
the distribution over idiosyncratic states in the economy at period t. It is straightforward
to show that:

Γt(p−1, a, f ) =
K

∑
k=1

ωkΓk,t(p−1, a, f ) (15)

3.3 The Central Bank

Following the tradition of the menu cost literature, we assume that the monetary authority
controls the aggregate nominal spending St = PtCt, the log of which follows the following
process:

log St = µ + log St−1 + ϵS
t ; (16)

The current paper refers to ϵS
t as the monetary shock, which is a one-time unexpected

shock. Throughout the paper, unless explicitly explained, monetary non-neutrality refers
to the effects of ϵS

t on real GDP or Ct+h. Formally, as it is done in the literature, we
define monetary non-neutrality as the total cumulative effects of ϵS

t on log real GDP: i.e.,

∑∞
h=0

∂ct+h
∂ϵs

t
.

This formulation implies that monetary non-neutrality is negatively related to the

8We consider one-time shocks instead of systematic monetary policy shocks (as in Nakamura and
Steinsson 2010) because it is extremely difficult to reduce the infinite-dimensional state variable (distribution
of last-period prices) to a computationally feasible finite number of states.
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effects of monetary policy shock on prices. To see this, take the log of the nominal spending:

st = ct + pt, (17)

where a variable in a small letter denotes the log of the corresponding variable in a capital
letter. According to this identity, a nominal stimulus policy (△st) either passes to prices
(△pt) or has a real effect (△ct). The more the aggregate price reacts to ϵS

t , the less the real
effects of a monetary policy shock.

3.4 The Equilibrium

Given the law of motions of exogenous shocks (11), (12) and the path of monetary policy
shocks, an equilibrium of the economy consists of:

(i) the household’s demand for differentiated goods {ck,i,t} given by condition (6) of
households’ decision problem,

(ii) firms’ value functions
{
{Vk,t}K

k=1

}∞
t=0 and policy functions

{
{ψk,t}K

k=1

}∞
t=0, that solve

firms’ price-setting problem (13),

(iii) aggregate output Ct and sectoral outputs {Ck,t}I
k=1 that satisfy equations (3) and (4),

(iv) aggregate price functions Wt, Qt, {Pk,t}K
k=1 and Pt that are determined by equations

(8), (9) and (10),

(v) the distributions on firms’ individual states
{
{Γk,t(p−1, a, f )}K

k=1

}∞
t=0 that evolve ac-

cording to (14) and {Γt(p−1, a, f )}∞
t=0 is given by (15),

(vi) and the aggregate nominal spending St = PtCt.

Computing the Transition Path In Section 4, we compute the transition path of the
perfect foresight equilibrium in response to an unexpected monetary policy shock. We
briefly describe the computational procedure. We first assume that the economy starts
in the steady state and returns to it after 200 periods. We next conjecture the entire path
of the sectoral prices over the transition path. Given these prices, we solve firms’ pricing
problems backward. We then simulate firms in the economy forward using a non-stochastic
simulation algorithm similar to Young (2010) to get the distribution over individual state
variables at every period. We compute the sectoral prices using this distribution and the
firms’ policy rules. If these prices differ from the conjectured ones, we update the guessed
prices until the equilibrium converges. In doing so, we obtain the aggregate and sectoral
impulse response functions to the monetary policy shock.
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4. Results

This section begins with a detailed discussion of the construction of multi-sector pricing
moments used to calibrate the model. Section 4.1 presents the evolution of monetary non-
neutrality implied by the model. Section 4.2 demonstrates the relevance of the unequal
changes of secotral markups for the evolution of monetary non-neutrality. Section 4.3 de-
composes the evolution of monetary non-neutrality into three alternative sources. Section
4.4 presents the mechanism behind the model’s predictions.

Model Calibration and Targeted Moments Throughout the paper, we consider three
alternative models: (i) the one-sector model (K = 1), (ii) eight-sector model (K = 8), and
(iii) twenty-sector model (K = 20). We begin with the discussions of model calibrations.
Three sets of parameters are calibrated.

The first set of parameters are the elasticity of substitution in K sectors {{θk,t}2016
t=1980}K

k=1,
where θk,t is set according to θk,t = µss

k,t/(µ
ss
k,t − 1). Here, µss

k,t is the estimate of smoothed
markup in sector k at year t described in section 2.1.

The second set of parameters is set to conventional values used in the literature. The
model is calibrated at a monthly frequency with β = 0.961/12. We choose γ = 1 and λ = 0
so that the utility is log in consumption and linear in labor. We set κ such that labor supply
in the flexible price steady state is 1/3. We calibrate µ = 0.0018 to match the mean growth
of nominal GDP minus real GDP during the period 1998-2005.9 Following Nakamura
and Steinsson (2010), We choose the persistence of idiosyncratic shock ρz to be 0.7. These
parameters are shown in Table 1

Table 1: Externally Calibrated Parameters

Parameter Description Value

β Discount factor 0.961/12

γ Elasticity of intertemporal substitution 1
λ Inverse of Frisch elasticity 0
κ Labor coefficient 2.25
µ Mean growth rate of St 0.0018
ρz Idiosyncratic productivity persistence 0.7

9The moments of price adjustment for calibration in Nakamura and Steinsson (2010) is calculated using
data from 1998 to 2005.
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For sector k, there are four remaining parameters: the standard deviation of idiosyn-
cratic productivity shocks σz, the probability of idiosyncratic productivity shocks α, the
probability of zero menu cost ϕ and the magnitude of the menu cost f . These parameters
govern the cross-sectional behavior of price changes. We must construct micro-pricing
moments to calibrate these parameters at the sectoral level.

To this end, we build upon the micro pricing moments data that Nakamura and Steins-
son (2008) provide, which covers the manufacturing and services sectors and focuses on a
period with low inflation (1998-2005). 10 The data consists of various pricing moments for
270 Entry Level Items (ELIs) in the non-shelter component of the CPI over the period 1998-
2005. The CPI is constructed at the BLS by collecting data on about 130,000 products per
month from around 27,000 retail outlets across 87 geographical areas in the United States.
The non-shelter components of the CPI represent about 70% of consumer expenditure.

To match pricing moments at the ELI level with markup data at the NAICS level, we
construct a crosswalk between these two classifications by hand. In particular, we build
many-to-many matches between 6-digit NAICS and ELI categories. The match is made
by hand according to a comparison of product descriptions (as well as individual item
names contained in the CPI Research Database). The micro pricing moments at the one-
digit NAICS level are reported in Table A.2. Tables A.3 and A.4 report these moments at
two-digit NAICS level. One valuable contribution of our paper is the construction of these
moments because they are crucial for calibrating multi-sector menu cost models.

We calibrate the four sets of parameters ( σz, α, ϕ, and f for each sector k) to match
the following price adjustment moments: the median frequency, the 25 percentile of the
absolute size distribution, the median absolute size and the 75 percentile of the absolute
size distribution. Table 2 presents the calibrated parameters across sectors for the one-sector
and eight-sector model. When calibrating these parameters, we use the average sectoral
markups from 1998 to 2005. Table A.1 shows these parameters of the twenty-sector model.

The model fits well with both the pricing moments targeted and pricing moments not
targeted. Table 3 shows the model fit for the one-sector model. Table A.2 in the Appendix
shows the model fit of the eight-sector model. Tables A.3 and A.4 in the Appendix shows
model fit of the twenty-sector model.

10One of the primary sources for empirical studies on price-setting behavior at the microeconomic level
is the CPI research database at the Bureau of Labor Statistics, which contains the product level data used
to construct the consumer price index (CPI). It has been used by Bils and Klenow (2004), Nakamura and
Steinsson (2008), Bils et al. (2012) and Nakamura et al. (2018).
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Table 2: Internally Calibrated Parameters

Sector Markup σz α ϕ f

One-sector model 1.36 0.081 0.064 0.035 0.067

Eight-sector model
Agriculture 1.47 0.270 0.136 0.035 0.022
Mining and Utilities 1.17 0.144 0.104 0.069 0.007
Manufacturing 1.35 0.122 0.084 0.033 0.035
Retail and Wholesale 1.11 0.028 0.184 0.021 0.064
Services (information, finance) 1.64 0.056 0.086 0.055 0.037
Education and Health Care 1.14 0.042 0.213 0.015 0.082
Services (entertainment etc.) 1.24 0.048 0.142 0.027 0.057
Other Services 1.27 0.039 0.229 0.011 0.102

Table 3: Model Fit (one-sector model)

Moment Data Model

Moments targeted

Frequency 0.06 0.05

Absolute size (median) 0.06 0.06

25th percentile size 0.03 0.03

75 percentile size 0.12 0.11

Moments not targeted

Size of price increase 0.07 0.07

Size of price decrease 0.09 0.09

To compute monetary non-neutrality, we shock the economy with a one-time monetary
shock of the size ϵ. Formally, we feed in a one-time unexpected monetary shock at t = 1
that dies out from t = 2 onwards. That is, ϵS

1 = ϵ and ϵS
t = 0 ∀t > 1. The impulse response

functions (IRFs) are then computed using the perfect foresight assumption. Following the
tradition of the menu cost literature, we define monetary non-neutrality as the cumulative
changes in the log real GDP: i.e., ∑∞

h=0
∂yt+h

∂ϵs
t

ϵ. The size of the monetary shock is normalized
to increase the nominal spending by 1% on impact.
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Appendix C plots the IRFs to monetary policy shocks and provides a short discussion
of monetary non-neutrality under alternative models. In the following, we focus on the
paper’s main findings: quantifying the markup elasticity of monetary non-neutrality and
how it evolves.

4.1 Result 1: the Rise of Markups and Monetary Non-neutrality Over Time

Markups have changed substantially over time, as documented in Figure 1. The economy-
wide moving average markup, the sector-size weighted average of moving average
markups at the industry level, has increased substantially: see the red dashed line in
Figure 2. We now assess how the rise of markups in the data affects the monetary non-
neutrality in the model. To this end, we calibrate the model for each year from 1980 to
2016. In each calibration, we change one set of parameters: the elasticities of substitution
to match the changing moving average markups. We then compute measures of monetary
non-neutrality for each year.

Figure 2 plots the evolution of the aggregate makeup in the U.S. (dashed red line)
and the implied change of the aggregate monetary non-neutrality (solid blue line). Inter-
estingly, aggregate monetary non-neutrality tracks the evolution of aggregate markups
closely. Zooming to the sectoral level shows that similar patterns hold in each of the eight
sectors considered in our calibration; see Figure A.2. The discussions about the economic
mechanism is postponed to Section 4.4.

Monitoring the evolution of aggregate markup is an important dimension of deter-
mining the right amount of nominal demand stimulus policy. According to our model,
the average elasticity of monetary non-neutrality with respect to markup in the sample
(1980-2016), defined as △log(monetary non-neutrality)

△log(markup) , is 1. A thirty percent increase in aggregate
markup leads to a thirty percent increase in monetary non-neutrality.

4.2 Result 2: the Role of Unequal Changes in Sectoral Markups

The second observation documented in Figure 1 is that changes in the moving aver-
age markups are heterogeneous across sectors. More specifically, the changes of sectoral
markups have been unequal. How does the trend in the unequal changes of the smoothed
markups affect aggregate monetary non-neutrality? The following experiment seeks to
address this question.

We consider a counterfactual scenario, where markup changes since 1980 are equalized
across sectors. The aggregate markup in this counterfactual analysis remains unchanged,
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Figure 2: Aggregate Monetary Non-neutrality Over Time (eight sectors)

Note: This figure plots the evolution of the aggregate makeup in the U.S. (dashed red line) and
the implied evolution of the aggregate monetary non-neutrality (solid blue line). Monetary non-
neutrality is defined as the cumulative changes in the log real GDP following a monetary policy
shock of the size ϵ: i.e., ∑∞

h=0
∂yt+h

∂ϵs
t

ϵ. The size of the monetary shock is normalized to increase the
nominal spending by 1% on impact.

which is the dashed red line in Figure 3. The model is re-calibrated for each year based
on the counterfactual evolution of sectoral markups. The solid black line in Figure 3 plots
the implied monetary non-neutrality in this counterfactual scenario. For comparison, the
monetary non-neutrality associated with the actual evolution of markups is plotted in the
same figure using the blue dashed line.

The monetary non-neutrality measured by the cumulative output response would be
42% higher in 2016 than that of 1980. The associated markup elasticity of monetary non-
neutrality is 1.4 in this counterfactual analysis. The unequal changes of sectoral markups
therefore reduce the amount of aggregate monetary non-neutrality compared to the coun-
terfactual where sectoral markups are increased equally.
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Figure 3: Monetary Non-neutrality Over Time: An Equal-Change Counterfactual

Note: The blue dashed line plots the implied evolution of the aggregate monetary non-neutrality
in our baseline calibration. The black solid line plots the implied evolution of the aggregate
monetary non-neutrality for the counterfactual where the the aggregate markup is the same as
the baseline but the sectoral markups have been increased equally. We achieve this by equalizing
the annual markup increments across eight sectors. The red dash-dotted line shows the evolution
of the aggregate makeup in the U.S.

4.3 Decomposing the Evolution of Monetary Non-Neutrality

Three features account for the evolution of markups over time and, therefore, are important
for aggregate monetary non-neutrality. First, the aggregate markup increases over time.
Second, sector weights, ωk,t, change over time. More specifically, the aggregate production
is re-allocating to sectors with higher markups (De Loecker et al. 2020). Third, changes
in markups are unequal across sectors. Next, we decompose the evolution of aggregate
monetary non-neutrality into these three components.

The foundation of the proposed decomposition exercise is the following. In the first
step, we compute the evolution of aggregate monetary non-neutrality over time by using
sectoral smoothed markups but fixing sector weights at their values in 1980. The resulting
evolution of aggregate monetary non-neutrality is labeled as MNt(Constant Weight), plot-
ted in dotted line in Figure A.5a. Interestingly, had the sectoral weights remained constant,
the aggregate monetary non-neutrality would have remained stable, despite the increased
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aggregate markup (dashed black line in Figure A.5b). This result is due to unequal changes
in markup.

To illustrate this, in the second step, we construct counterfactual evolution of sectoral
smoothed markups that feature equal changes in markups over time. And for the com-
parison to be meaningful, the resulting counterfactual aggregate markup is the same as
in the first step. Sector weights are fixed at their values in the year 1980. We then com-
pute the implied evolution of aggregate monetary non-neutrality, labeled as MNt(Constant
Weight and Equal Changes): see the dashed line in Figure A.5a. The comparison between
MNt(Constant Weight and Equal Changes) and MNt(Constant Weight) shows the contri-
bution of unequal changes in sectoral markups for the evolution of aggregate monetary
non-neutrality.

Figure 4: Monetary Non-neutrality Over Time: A Decomposition

Note: This figure decomposes the evolution of aggregate monetary non-neutrality into three
components reflecting the contribution of 1) changing sectoral weights, 2) unequal changes of
sectoral markups, 3) equal increase in markups at the sectoral level.

Figure 4 plots the decomposition results based on the counterfactual analysis con-
ducted above. The heights of the lightest colored area plots MNt(Baseline) −MNt(Constant
Weight): the difference between the aggregate monetary non-neutrality and MNt(Constant
Weight). It indicates the contribution of changes in sectoral weights to aggregate monetary
non-neutrality. The darkest colored area plots MNt(Constant Weight) −MNt(Constant

19



Weight and Equal Changes), which indicates the contribution of unequal changes of sec-
toral markups to the aggregate monetary non-neutrality. This component is negative and
quantitatively significant. Moreover, the increase in absolute value over time of this com-
ponent reflects the increased discrepancy across sectoral markups observed in the data.
The intermediate colored area plots the remaining component: MNt(Constant Weight and
Equal Changes). It attributes the changes in the aggregate monetary non-neutrality to
changes in the aggregate markup, holding sector weights and markup changes across
sectors constant.

Overall, the decomposition exercise illustrates the equal importance of (i) changes of
aggregate markup and (ii) evolution of sector weights. More importantly, it highlights
the negative contribution of the unequal changes in sectoral markups for the changes in
aggregate monetary non-neutrality.

4.4 Inspecting the Mechanisms

This section shows that monetary non-neutrality is an increasing and concave function of
firms’ desired markups, everything else being equal. Moreover, we assess the effects of
market power on the frequency and the selection effects of monetary policy. Both margins
are increasing and concave with firms’ desired markups, however, the frequency margin
dominates quantitatively.

Monotonicity and Concavity To illustrate the monotonicity and concavity relationship,
we introduce a systematic monetary policy shock into our calibrated one-sector model in
the previous section. Specifically, we calibrate µ = 0.0018 to match the mean growth of
nominal GDP minus real GDP and σS = 0.0032 to match the standard deviation of nominal
GDP growth rate during the period 1998-2005. We solve the model numerically using the
method proposed by Krusell and Smith (1998).11 We then vary the desired markups in
the economy and solve for the equilibrium with different markups to compute monetary
non-neutrality as a function of market power.

Figure 5a demonstrates that monetary non-neutrality, measured by the variance of log
output, is an increasing and concave function of firms’ optimal markups.12 The concavity

11Similar methods have been used in the class of menu cost models, for example, by Nakamura and
Steinsson (2010), Midrigan (2011) and Vavra (2014). Previously, we considered one-time perfect foresight
shocks in the multi-sector model instead of systematic monetary policy shocks. Because it is extremely diffi-
cult to reduce the infinite-dimensional state variable (distribution of last-period prices) to a computationally
feasible finite number of states.

12Nakamura and Steinsson (2010) proposed to use of the variance of log output (conditional on nominal
demand shocks) as a measure of monetary non-neutrality in a model solved with systematic monetary policy
shocks.
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implies that the markup elasticity of monetary non-neutrality decreases in the desired
markup: the higher the desired markup, the less the markup elasticity of monetary non-
neutrality (see Figure 5b).

Figure 5: Markups and Monetary Non-neutrality

(a) Monetary Non-neutrality (b) The Markup Elasticity of MN

Note: Panel (a) plots how monetary non-neutrality, measured by the variance of log output varies
with the desired markup in our one-sector quantitative model. The y-axis in Panel (b) is the
markup elasticity of monetary non-neutrality, which is defined as △log(monetary non-neutrality)

△log(markup) .

We can now revisit our quantitative results through the lens of this monotonic and
concave relationship. The monotonicity explains Result 1 discussed in Section 4.1, which
shows that monetary non-neutrality increases with the aggregate markup over time. The
concavity, combined with the fact that the right tail mostly drives the unequal increase in
sectoral markups, explains Result 2 discussed in Section 4.2. Result 2 highlights that an
equal increase in the sectoral markups would have led to a further increase in aggregate
monetary non-neutrality.

Note that the concave relationship between the aggregate monetary non-neutrality and
the aggregate desired markup is also present in the calibrated multi-sector model studied
in Section 4.1. To illustrate this, we re-plot Figure 2 by displaying the aggregate monetary
non-neutrality as a function of the aggregate desired markup. Figure A.6 plots the result
with a fitted line using a polynomial function of order three. The concave relationship is
apparent.

In the remaining part of this section, we inspect the underlying mechanism behind this
increasing and concave relationship.

21



The Mechanisms To understand the mechanisms behind the increasing concave relation-
ship highlighted above, we follow the sufficient statistic approach described in Alvarez
et al. (2022). Specifically, the cumulative output impulse response M(∆s; µss) to a log
nominal spending shock ∆s is characterized by two steady-state statistics: the frequency
of price changes Freq(µss) and the kurtosis of the distribution of price changes Kurt(µss).
More specifically,

M(∆s; µss) =
1
6

Kurt(µss)

Freq(µss)
× ∆s + o(∆s2). (18)

Note that both the steady-state frequency of price changes and the kurtosis of the distri-
bution of price changes depend on the steady-state desired markup µss. Two components,
therefore, determine the monetary non-neutrality: the frequency effect, which is propor-
tional to 1/Freq(µss), and the selection effect, which is proportional to Kurt(µss).13

Figure 6: Aggregate Monetary Non-neutrality: Frequency and Selection Effects

(a) The Frequency Effect (b) The Selection Effect

Note: This figure plots how the frequency effect (panel a) and the selection effect (panel b) in response to
a monetary policy shock vary with the desired markup. To plot this figure, we vary the desired markups
in our calibrated one-sector model in the previous section and solve for the equilibrium of models with
different markups.

Figures 6a and 6b illustrate how the frequency and selection effects vary with steady-
state markups, respectively. Similar to the aggregate monetary non-neutrality observed in
Figure 5a, both effects are increasing concave functions of the desired markups. Quantita-
tively, the frequency margin contributes approximately 90% to the increase in monetary

13As shown in Alvarez et al. (2022), the kurtosis of the distribution of price changes is associated with the
selection effect discovered in the previous literature (e.g., Golosov and Lucas (2007) and Midrigan (2011)).
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non-neutrality originating from the increased markups. The markup elasticity in our model
is, therefore, mainly driven by the frequency margin, i.e., through the effects of market
power on the frequency of price adjustment.

Given its quantitative significance, we focus on why the frequency effect is increasing
and concave with steady-state markups. In our model, the steady-state frequency of price
adjustment (FPA) is determined by 1) the distribution of price gaps and 2) the width of
the Ss band that characterizes the non-adjusting region. Formally, the Ss band is defined
as the interval between the upper and the lower bounds of price gap values within which
a firm does not adjust its price. The price gap is defined as the distance between a firm’s
current price and its optimal price.

Our first observation is that the aggregate price gap distribution is almost invariant to
variations in steady-state optimal markups. Figure A.7 shows that the price gap distribu-
tion is nearly identical when the desired markup varies. Therefore, we focus on how the
width of the Ss band differs in models with different steady-state optimal markups.

Figure 7: The Width of Ss Band and the Shape of Profit Function

(a) The Width of the Ss Band (b) Profit Functions

Note: Panel (a) plots how the average width of the Ss band varies with the desired markup. Panel (b) plots
the profit gap as a function of price gaps for different calibrations of markups: the high markup (1.6) and the
low markup (1.2) cases. The profit gap is defined as the difference between a firm’s profit given its price p
and the firm’s profit under its optimal resetting price (p∗). Similarly, the price gap is defined as p/P − p∗/P.

Figure 7a shows that the Ss band is an increasing and concave function of the desired
markups. The intuition behind this result is the following. As markups increase, firms’
profits as functions of price gaps become less curved, as shown in Figure 7b. In other
words, it is less costly to deviate from the optimal prices. Moreover, as markups increase,
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the marginal decrease of the curvature of the profit function is incrementally small. The
width of the Ss band is, therefore, an increasing and concave function of firms’ optimal
markups. As a result, the steady-state FPA is a decreasing and convex function of the
desired markup. Correspondingly, its inverse, which reflects the frequency effect, is an
increasing and concave function of the desired markup.

Figure 8: Markups and Frequency of Price Adjustment

Note: This figure is for illustrative purpose. The Ss bands AB(A’B’), CD(C’D’) and EF(E’F’) corre-
spond to models where markups are µ − ∆, µ and µ + ∆ respectively.

Figure 8 illustrates the change in the Ss band when the desired markup changes
graphically. The Ss bands AB(A’B’), CD(C’D’) and EF(E’F’) correspond to models where
markups are µ − ∆, µ and µ + ∆ respectively. The length of AD(A’D’) is greater than that
of DE(D’E’) due to the increasing and concave relationship between the width of the Ss
band and desired markup. The size of the area ABCD(A’B’C’D’) is, therefore, larger than
that of the area CDEF(C’D’E’F’). Consequently, as markup increases equally, the decrease
in FPA is smaller. This example therefore explains why steady-state FPA is a decreasing
and convex function of the desired markup.

To provide additional intuition, in Appendix D, we use a classic analytical menu cost
model to show that the width of the Ss band is indeed an increasing and concave function
of firms’ optimal markups, and consequently, the frequency effect is an increasing and
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concave function of firms’ optimal markups.14

Additional Discussions The endogenous degree of nominal rigidity (FPA) arising from
menu cost and the curvatures of firms’ profit functions are essential for the findings of our
paper. This is due to the decreased curvature of the profit function (as a function of price
gaps) as steady markups increase, illustrated in Figure 7b.

Note that the curvatures of firms’ profit functions that we emphasize are not specific
to the monopolistic competition employed in this paper. Appendix E shows that the same
features hold true in a model with the oligopolistic competition. This finding hints at the
potential generalization of our results: our results hold as long as less market competition
or greater market concentration makes firms’ profits loss less sensitive to the price gaps.

5. Empirical Evidence

This section presents three pieces of empirical evidence that (i) support predictions of the
model, (iii) support the model mechanisms, and (iii) differentiate the proposed mechanisms
from the existing ones in the literature.

5.1 Monetary Non-neutrality and Markup

First, we estimate monetary non-neutrality in the data and assess how it depends on the
smoothed markup. Specifically, we estimate the following model:

yt+h = βh
0 + βh

1ϵm
t + βh

2ϵm
t · log(µss

t ) + controlst + εt+h (19)

where, yt is the log of real GDP, ϵm
t denotes the monetary shock, log(µss

t ) is the log
of smoothed aggregate markup, and εt is the residual. In this expression, controlst ≡
∑

p
i=1 βh

i,xXt−i + ∑
p
i=1 γh

i,xXt−i · log(µss
t ) + ∑

p
i=1 γh

µ,ilog(µss
t−i) + γh

3trendt, where Xt is a vector
of control variables and trendt denotes the time trend. Importantly, the model includes a
term that interacts the monetary shock with the smoothed aggregate markup (ϵm

t · log(µss
t ))

to allow for the interaction between the steady state markup and monetary non-neutrality.
The null hypothesis is βh

2 = 0, and βh
2 < 0 indicates that increased markup renders

monetary policy more effective (provided that βh
1 is negative). The vector of controls Xt

includes the log of real GDP and GDP deflator and the 2-year treasury yield. Four lags

14This type of models has been popularized by Barro (1972) and Dixit (1991). For recent progress, see
Alvarez and Lippi (2014), and Alvarez et al. (2016) for examples.
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(p = 4) of control variables are included.
One needs an exogenous measure of monetary shocks to estimate the causal effects of

monetary policy shocks on real GDP. We use the state-of-the-art monetary policy shock
constructed based on a proxy VAR using high-frequency identified (HFI) monetary policy
surprises as instruments. Specifically, we extend Gertler and Karadi (2015)’s monetary
policy shock up to 2015Q4.

Through the lens of the empirical model, monetary non-neutrality (effects of monetary
shock on the log of real GDP) at the horizon h is defined as:

MNh =
∂yt+h
∂ϵm

t
= βh

1 + βh
2log(µss

t ). (20)

Figure 9 plots the results from estimating model (19) for each h = 1, 2, . . . , 20. The left
panel plots the average MNh: β̂h

1 + β̂h
2log(µss) with log(µss) denoting the average (log of)

smoothed markup in the sample. The right panel plots β̂h
2: the additional response of real

GDP due to a 1% increase in the average markup. The considered shock is a contractionary
monetary shock. The shaded area indicates the 90% confidence interval constructed using
Newey West standard errors.

Figure 9: The Markup-Dependent Effects of Contractionary Monetary Policy Shocks
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Note: This figure plots the markup-dependent IRF of real GDP to a contractionary monetary policy
shock. Specifically, the panel (a) plots β̂h

1 + β̂h
2log(µss) and the panel (b) plots β̂h

2 from estimating
the following model: yt+h = βh

0 + βh
1ϵm

t + βh
2ϵm

t · log(µss
t ) + controlst + εt+h, where ϵm

t denotes
Gertler and Karadi (2015) monetary policy shocks and log(µss) is the average (log of) smoothed
markup in the sample. The shaded area indicates the 90% confidence interval constructed using
Newey West standard errors. Sample: 1986Q1-2015Q4.

26



The key takeaway from Figure 9 is that the null of monetary non-neutrality being
orthogonal to the steady state level of markup is rejected at various horizons. More impor-
tantly, the estimation implies that the increase in smoothed markups observed in the past
decades has led to an increase in monetary non-neutrality.

HFI monetary surprises might contain the Fed’s private information as discussed in
Nakamura and Steinsson (2018), Jarociński and Karadi (2020), Miranda-Agrippino and
Ricco (2021), and Zhang (2022). To address this concern, we conduct a robustness check
using Miranda-Agrippino and Ricco (2021) monetary policy shocks that are orthogonal to
the Fed’s internal forecasts. The main findings are unaffected: see Figure A.8.

5.2 Differentiating from the Existing Mechanisms

This subsection provides evidence that supports our mechanism featuring the frequency
effect. More importantly, the evidence differentiates our mechanism from the existing ones
(Wang and Werning 2022 and Baqaee et al. 2021) in explaining the increased monetary
non-neutrality arising from reduced market competition.

Pricing Moments Over Time Our framework focuses on the endogenous relationship
between market competition and the degree of sluggishness in adjusting prices. Specifically,
our quantitative results rest on the mechanism that reduced market competition renders
a decreased FPA, through which monetary non-neutrality increases (the frequency effect).
The first relevant empirical question is whether the FPA has declined in the data and, more
importantly, whether the magnitude of the decline is aligned with the predictions of the
model.

Panel (a) in Figure 10 plots the frequency of price changes over time in the data together
with the model-implied changes (solid line) resulting from the increase of the aggregate
steady-state markup. The dashed (dash-dotted) line in panel (a) plots the moving average
smoothed (linear trend) FPA in the data (source: Nakamura et al. 2018). The solid line in
panel (a) plots the model implied FPA over time. The message is clear: The data support
the model’s mechanism both qualitatively and quantitively. Moreover, Panel (b) in Figure
10 plots the evolution of the absolute size of price changes in the data and the model.
Again, the two lines are well aligned, which serves as another out-of-the-sample validation
of the model.
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Figure 10: Frequency and Absolute Size of Price Changes

Note: The dashed (dash-dotted) line in panel (a) plots the moving average smoothed (linear trend)
FPA in the data (source: Nakamura et al. 2018). The solid line in panel (a) plots the model implied
FPA over time. Panel (b) depicts the evolutions of the absolute size of price changes in the data
and the model.

The Relevance of the Frequency Margin To further differentiate our mechanism from
the existing ones (Wang and Werning 2022 and Baqaee et al. 2021), we present additional
evidence that suggests the relevance of our mechanism—the frequency margin—in ex-
plaining the rising monetary non-neutrality in the data.

To this end, we estimate the following horse-race model:

yt+h = βh
0 + βh

1ϵm
t + βh

2ϵm
t · log(µss

t ) + βh
3ϵm

t · FPAt + controlst + εt+h. (21)

The interaction between monetary policy shock and time-varying FPA (ϵm
t · FPAt) is in-

cluded in the model, in addition to the baseline regression specification (19). The set of
control variables controlst is identical to those included in the model (19) such that any
changes in the estimated βh

2 can be attributed to the inclusion of ϵm
t · FPAt.15

Two results are notable. First, the mainstream monetary economics models predict that
βh

3 will be positive: reduced frequency of price adjustment renders monetary policy shocks
more potent in affecting real GDP. We verify this prediction in the data: see Figure A.9.

A more important result emerges by comparing βh
2 from estimating (21) with the

corresponding parameters from estimating the baseline specification (19). If markups

15Note that while the model predicts a perfect correlation between FPAt and µss
t , this is not the case in

data. Thus, there is no issue of perfect collinearity between ϵm
t · log(µss

t ) and ϵm
t · FPAt in the data. This is

not surprising, given that stylized models can never fully capture the richness of actual data,
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Figure 11: The Relevance of the Frequency Effect
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Note: The red line in panel (a) plots β̂h
2 from estimating the baseline model: yt+h = βh

0 + βh
1ϵm

t +

βh
2ϵm

t · log(µss
t )+ controlst + εt+h. The blue line in panel (a) plots β̂h

2 from estimating the horse-race
model: yt+h = βh

0 + βh
1ϵm

t + βh
2ϵm

t · log(µss
t ) + βh

3ϵm
t · FPAt + controlst + εt+h, where ϵm

t and FPAt
indicate Gertler and Karadi (2015) monetary policy shocks and the smoothed frequency of price
adjustments, respectively. Panel (b) depicts the difference in the estimated β̂h

2s across the two
models. The shaded area indicates the 90% confidence interval. Sample: 1986Q1-2015Q4.

affect monetary non-neutrality through channels that were orthogonal to the ones we
stress in the paper (i.e., FPA), then one should expect βh

2 to remain unchanged. On the
other extreme, if the effects of markup on monetary non-neutrality were entirely driven by
the frequency margin (ϵm

t · FPAt), then one should expect βh
2 to be zero in the horse-race

model. In general, the magnitude of changes in βh
2 across the two models indicates the

relevance of the frequency margin highlighted in our quantitative model.
Figure 11 plots the findings. Panel (a) plots β̂h

2s from estimating the baseline model (in
red) and the horse-race model (in blue). In contrast to the baseline model, the contribution
of markup to monetary non-neutrality is less significant economically and statistically.
Moreover, the differences in the estimated β̂h

2s across the two models are significant: see
Panel (b). The shaded area indicates the 90% confidence interval. These results suggest
that the mechanism (frequency margin) that we emphasize in the paper explains a big
chunk of changes in monetary non-neutrality arising from changing markups.

Those findings are robust to the use of an alternative measure of monetary policy
shocks (Miranda-Agrippino and Ricco 2021): see Figure A.10.
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6. Conclusion

Firms’ market power, measured by markups, has risen substantially in the past decades.
Moreover, the changes in markups are heterogeneous across sectors. This paper assesses
the implications of these trends for the real effects of monetary policy. We develop a
quantitative menu cost model that features multiple sectors with heterogeneous degrees
of market competition.

Two quantitative results stand out. First, the average markup elasticity of monetary non-
neutrality in the United States is equal to 1 in the past three decades: i.e., the thirty percent
increase in markups in the data raises monetary non-neutrality by thirty percent. Second,
the unequal changes in markups at the sectoral level act as a counterforce: the markup
elasticity of monetary non-neutrality would be equal to 1.4 had the markup increased
equally across sectors.

These results are due to (i) a decrease in the frequency of firms’ price adjustments
resulting from increased market power and (ii) a concave relationship between markups
and monetary non-neutrality.

We provide evidence supporting the model’s predictions and mechanisms. Moreover,
we present evidence suggesting that the proposed mechanism—frequency effect—accounts
for a big chunk of markup elasticity of monetary non-neutrality observed in the data.

Our paper provides a toolbox that assists central bankers in keeping track of monetary
non-neutrality. Our calculation of the markup elasticity of monetary non-neutrality can in-
form central banks to determine the correct amount of nominal demand stimulus package
in the current and future economy with rising markups.
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Appendix

A. Tables and Figures

Figure A.1: The evolution of the Aggregate Markup in the U.S
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Figure A.2: Sectoral Cumulative Output Response Over Time (eight sectors)

Note: This figure plots the evolution of the sectoral makeup in the U.S. (dashed red line) and
the implied evolution of the sectoral monetary non-neutrality (solid blue line), measured by the
cumulative output response, in our eight-sector model.
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Figure A.3: Sectoral Cumulative Output Response Over Time (twenty sectors)

(a) Aggregate (b) Sector 1 - 7

(c) Sector 8 - 14 (d) Sector 15 - 20

Note: This figure plots the evolution of the sectoral makeup in the U.S. (dashed red line) and
the implied evolution of the sectoral monetary non-neutrality (solid blue line), measured by the
cumulative output response, in our twenty-sector model.
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Figure A.4: Sectoral Cumulative Output Response Over Time (Equal Changes)

Note: this figure plots the evolution of the sectoral makeup in the U.S. had the markups increased
equally across sectors (dashed red line) and the implied evolution of the sectoral monetary non-
neutrality (solid blue line).
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Figure A.5: Monetary Non-neutrality Over Time: Some Counterfactuals

(a) Cumulative Output Response Over Time (b) Markups Over Time

Figure A.6: Markups and Monetary Non-neutrality (Multi-sector model)
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Figure A.7: Markup and the Distribution of Price Gaps

Note: This figure plots the price gap distribution when aggregate markup is equal to 1.2, 1.4 and
1.6 respectively.

Figure A.8: The Markup-Dependent Effects of Monetary Policy Shocks: MR shock
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Note: This figure plots the markup-dependent IRF of real GDP to a contractionary monetary
policy shock. Specifically, the panel (a) plots β̂h

1 and the panel (b) plots β̂h
2 from estimating the

following model: yt+h = βh
0 + βh

1ϵm
t + βh

2ϵm
t · log(µss

t )+ controlst + εt+h, where ϵm
t denotes Miranda-

Agrippino and Ricco (2021) monetary policy shocks. The shaded area indicates the 90% confidence
interval constructed using Newey West standard errors. Sample: 1986Q1-2015Q4.
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Figure A.9: The Effects of FPA on Monetary Non-neutrality: β̂h
3
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Note: This figure plots β̂h
3 from estimating the horse-race model: yt+h = βh

0 + βh
1ϵm

t + βh
2ϵm

t ·
log(µss

t ) + βh
3ϵm

t · FPAt + controlst + εt+h, where FPAt indicates the smoothed frequency of price
adjustments. The shaded area indicates the 90% confidence interval constructed using Newey
West standard errors. Sample: 1986Q1-2015Q4.
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Figure A.10: The Relevance of the Frequency Effect: Alternative Monetary Shock
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Note: The red line in panel (a) plots β̂h
2 from estimating the baseline model: yt+h = βh

0 + βh
1ϵm

t +

βh
2ϵm

t · log(µss
t ) + controlst + εt+h. The blue line in panel (a) plots β̂h

2 from estimating the horse-
race model: yt+h = βh

0 + βh
1ϵm

t + βh
2ϵm

t · log(µss
t ) + βh

3ϵm
t · FPAt + controlst + εt+h, where ϵm

t and
FPAt indicate Miranda-Agrippino and Ricco (2021) monetary policy shocks and the smoothed
frequency of price adjustments, respectively. Panel (b) depicts the difference in the estimated β̂h

2
across the two models. The shaded area indicates the 90% confidence interval. Sample: 1986Q1-
2015Q4.
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Table A.1: Internally Calibrated Parameters (Twenty Sectors)

Sector Markup σz α ϕ f
Agriculture 1.22 0.270 0.136 0.035 0.022
Mining, Oil and Gas 1.41 0.108 0.114 0.054 0.020
Utilities 1.08 0.121 0.123 0.101 0.005
Manufacturing (1) 1.56 0.107 0.099 0.043 0.041
Manufacturing (2) 1.34 0.111 0.111 0.051 0.035
Manufacturing (3) 1.31 0.061 0.070 0.020 0.076
Wholesale Trade 1.06 0.067 0.163 0.010 0.085
Retail Trade (1) 1.26 0.090 0.178 0.056 0.039
Retail Trade (2) 1.25 0.078 0.137 0.024 0.076
Transportation 1.01 0.026 0.178 0.033 0.061
Information 1.71 0.052 0.071 0.054 0.060
Finance and Insurance 1.70 0.041 0.073 0.036 0.081
Real Estate 1.65 0.105 0.137 0.050 0.029
Scientific and Tech Services 1.21 0.077 0.135 0.037 0.095
Administrative Services 1.20 0.016 0.200 0.040 0.095
Education 1.56 0.037 0.083 0.020 0.093
Health Care 1.04 0.074 0.070 0.024 0.111
Arts and Entertainment 1.32 0.028 0.170 0.019 0.084
Accommodation and Food Services 1.22 0.048 0.141 0.027 0.058
Other Services 1.19 0.039 0.229 0.011 0.102
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Table A.2: Data and Model Moments (Eight Sectors)

Moment Agriculture Mining and
Utilities

ManufacturingRetail and
Wholesale

Services (in-
formation,
finance)

Education
and Health
Care

Services (en-
tertainment
etc.)

Other ser-
vices

Data Moments
Moments Targeted
Frequency 0.099 0.132 0.079 0.035 0.063 0.027 0.049 0.025
Absolute size (median) 0.154 0.068 0.081 0.046 0.041 0.076 0.056 0.069
25th percentile size 0.095 0.014 0.039 0.030 0.010 0.035 0.029 0.054
75th percentile size 0.382 0.125 0.157 0.098 0.091 0.116 0.096 0.128
Moments Not Targeted
Size of price increase 0.236 0.062 0.076 0.062 0.052 0.104 0.069 0.105
Size of price decrease 0.272 0.064 0.097 0.075 0.062 0.133 0.107 0.142

Model Moments
Moments Targeted
Frequency 0.119 0.132 0.082 0.041 0.062 0.035 0.048 0.022
Absolute size (median) 0.201 0.066 0.081 0.050 0.042 0.038 0.059 0.082
25th percentile size 0.083 0.014 0.026 0.024 0.012 0.083 0.023 0.049
75th percentile size 0.383 0.151 0.155 0.076 0.091 0.104 0.099 0.125
Moments Not Targeted
Size of price increase 0.214 0.076 0.087 0.053 0.052 0.076 0.065 0.090
Size of price decrease 0.296 0.156 0.133 0.027 0.068 0.075 0.062 0.021
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Table A.3: Data and Model Moments (Twenty Sectors), Part 1

Moment Agriculture Mining,
Oil and
Gas

Utilities Manufac-
turing (1)

Manufac-
turing (2)

Manufac-
turing (3)

Wholesale
Trade

Retail
Trade (1)

Retail
Trade (2)

Transpor-
tation

Data Moments
Moments targeted
Frequency 0.114 0.106 0.150 0.089 0.079 0.021 0.066 0.106 0.033 0.035
Absolute size (median) 0.154 0.082 0.043 0.078 0.082 0.059 0.082 0.086 0.095 0.031
25th percentile size 0.095 0.038 0.009 0.041 0.039 0.046 0.037 0.038 0.034 0.030
75th percentile size 0.382 0.150 0.125 0.167 0.172 0.148 0.167 0.154 0.154 0.085
Moments not targeted
Size of price increase 0.236 0.068 0.062 0.089 0.072 0.066 0.084 0.068 0.089 0.059
Size of price decrease 0.272 0.059 0.064 0.127 0.078 0.122 0.102 0.056 0.120 0.039

Model Moments
Moments targeted
Frequency 0.119 0.102 0.150 0.076 0.088 0.036 0.047 0.107 0.045 0.055
Absolute size (median) 0.201 0.082 0.043 0.081 0.084 0.073 0.104 0.090 0.100 0.040
25th percentile size 0.083 0.022 0.009 0.026 0.023 0.042 0.053 0.034 0.033 0.023
75th percentile size 0.383 0.152 0.125 0.165 0.166 0.130 0.148 0.152 0.154 0.081
Moments not targeted
Size of price increase 0.214 0.080 0.062 0.089 0.089 0.078 0.092 0.092 0.098 0.049
Size of price decrease 0.296 0.139 0.129 0.135 0.144 0.112 0.127 0.112 0.119 0.088
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B. Data Description

B.1 Markup Estimation

To construct firm-level markup data, we use firm-level data from Compustat for all public
firms in the U.S. covering all years since 1950. We exclude firm-year observations with
negative or missing observations for sales, COGS or capital and investment measures, and
all firms that did not report SIC or NAICS indicators or have their headquarter outside the
U.S.

For the estimation of markups, we use the production function estimation approach
PF1 (traditional production function) described by De Loecker et al. (2020) and follow
the variations described in Baqaee and Farhi (2020): namely (i) using Olley and Pakes
(1996) rather than Levinsohn and Petrin (2003) and (ii) deflating variables at the sectoral
level instead of using aggregate deflators. According to the production function estimation
approach, the markup µi,t of a firm i at time t can be computed from one variable input,
Xi, as the ratio of the output elasticity of the input, ϵQ,Xi , to the revenue share of that input,
sR,Xi

µi,t =
ϵQ,Xi

sR,Xi

. (B.1)

There are therefore two ingredients to calculate markups: the revenue share and the
output elasticity of the flexible input. Compustat reports a composite input called Cost
of Goods Sold (COGS), which consists of intermediate and labor input and that we will
use as the (partially) flexible input, Xi. We use a variant of the technique introduced by
Olley and Pakes (1996) and described in De Loecker and Warzynski (2012) to estimate a
Cobb-Douglas production function and obtain a time-varying estimate of output elasticity
at the sector level. The markups are then derived by dividing the former (estimated at the
industry-year level) by the share of COGS to revenue (estimated at the firm-year level). In
terms of implementation, we follow the procedure described in De Loecker et al. (2020)
with the adjustments described in Baqaee and Farhi (2020). In particular, we estimate time-
varying output elasticities and deflate variables at the sectoral level using gross output
price indices from KLEMS sector-level data. Specifically, we apply the correspondence
between 3-digit NAICS codes and BEA industry segments outlined in Baqaee and Farhi
(2020). We exclude the Financial sector (SIC codes 6000-6999 or NAICS3 codes 520-525)
and firms with BEA code 999 because there is no BEA depreciation available for them.
We use CAPX as the instrument and COGS as a variable input. We trim the dataset by
excluding all firms with COGS-to-sales and XSGA-to-sales ratios in the top and bottom 1%
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of the corresponding year-specific distributions.
The output-elasticities estimation is implemented using the prodest Stata package. This

estimation requires to define a set of variables where we follow Baqaee and Farhi (2020)
and choose (i) log sales as outcome variable, (ii) log COGS as free variable (variable inputs),
(iii) the log capital stock (measured as log PPEGT in the Compustat data) as state variable,
(iv) log investment (CAPX) as an instrument for productivity, and finally (v) SIC 3-digit
and SIC 4-digit firm sales shares to control for markups.

We estimate markups based on time-varying output-elasticities at the 2-digit NAICS
level. To do so, we run the estimation procedure for every sector and every year using a
3-year rolling windows.

C. Heterogeneous Markups and Monetary Non-neutrality

Figure C.1: Heterogeneous Markups and Monetary Non-neutrality

(a) Eight-sector Model (b) Twenty-sector Model

Note: This figure plots the IRFs of real output to a monetary shock in various models. The solid
black lines (dashed red lines) depict the results in a multi-sector model with heterogeneous
(homogeneous) steady-state markups. The dotted blue lines represent the results in a one-sector
model. We consider an Eight-sector version (panel a) and a Twenty-sector version (panel b) of
multi-sector models.

Figure C.1 plots the IRFs of real output to a monetary shock ( ∂yt+h
∂ϵs

t
) in various models.

The size of the monetary shock is normalized to increase the nominal spending by 1% on
impact. The solid black lines (dashed red lines) depict the results in a multi-sector model

A-14



with heterogeneous (homogeneous) steady-state markups. The dotted blue lines represent
the results in a one-sector model. We consider an Eight-sector version (panel a) and a
Twenty-sector version (panel b) of multi-sector models.

Monetary non-neutrality is reduced in a multi-sector model with heterogenous steady-
state markups (solid black lines) as compared to a one sector model (blue lines). To provide
a quantitative number, the cumulative output response in the Eight-sector model with
heterogenous steady-state markups is 30.6 percent lower compared to the one-sector model.
Note that the multi-sector model with heterogenous steady-state markups differ from the
benchmark one-sector model in many dimensions. Particularly, the multi-sector model
features other sources of heterogeneities: productivity distribution and frequency of price
adjustments.

We conduct a semi-decomposition exercise to decompose the total reduction in mone-
tary non-neutrality into the component that arises from the introduction of heterogenous
markups and the component due to other multi-sector features. To do so, we recalibrate
a multi-sector model that share the same features and target to the same moments except
that steady-state markups are imposed to be homogenous across sectors. These IRFs are
plotted in dashed red lines. Comparing the two versions Eight-sector models, the cumula-
tive output response in the baseline model with heterogenous market power is reduced by
23.3 percent. In contrast, the cumulative output response in the Eight-sector model with
homogeneous market powers is merely 9.6 percent lower than that of the one-sector model.

Similarly, the cumulative output response in the Twenty-sector model with heteroge-
nous steady-state markups is 31% lower compared to the one-sector model and 23% lower
compared to the homogeneous steady-state markups model.

In summary, our quantitative analyses show that heterogenous steady-state markup
reduces monetary non-neutrality.

D. An Analytical Menu Cost Model

In an analytical menu cost model with monopolistic competition, this section shows that 1)
the width of the Ss band is an increasing concave function of the desired markup, and 2) the
steady-state FPA is a decreasing convex function of the desired markup, and consequently
the frequency effect is an increasing and concave function of steady-state markups.

Time is continuous. Firms set optimal prices in a monopolistically competitive environ-
ment, facing standard CES demand. The elasticity of substitution across the differentiated
goods is θ. The frictionless profit-maximizing price ep∗ is given by a constant markup
µ = θ/(θ − 1) over the marginal cost W. The log optimal price p∗ follows a Browning
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motion, where dp∗ = σdw and dw is the increment of a Wiener process. Firms can adjust
prices by paying a fixed cost ψ, in units of flow profits at the profit-maximizing price. The
price gap is denoted by z = p − p∗. Firms discount payoffs at rate r and the aggregate out-
put and price are denoted by YI and PI . The firm’s flow profit can be approximated, up to
second order, with respect to the log price p around the log frictionless profit-maximizing
price p∗. We therefore obtain a quadratic loss function in lemma 1.

Let π(pi) denote the firm i’s profit as a function of pi, and π(p∗i ) denote the the desired
level of profit without nominal rigidity (zero price adjustment cost). A firm’s profit gap is
defined as |π(pi)− π(p∗i )|.

Lemma 1. A firm’s profit gap can be approximated by a quadratic loss function

|π(pi)− π(p∗i )| ≈
1
2

µ

(µ − 1)2 z2.

Proof. With CES demand, firm i’s profit function can be written as

Π(Pi) = (Pi − µP∗
i )YI

(
Pi

PI

)−θ

,

Taking second-order Taylor approximation around the steady state we have

Π(Pi)− Π(P) = Π′(P)P(pi − p) +
1
2

Π
′′
PP(P)P2(pi − p)2

+ Π
′′
PP∗(P)P2(pi − p)(p∗i − p) + terms to be cancelled + o(2), (D.1)

and

Π(P∗
i )− Π(P) = Π′(P)P(p∗i − p) +

1
2

Π
′′
PP(P)P2(p∗i − p)2

+ Π
′′
PP∗(P)P2(p∗i − p)2 + terms to be cancelled + o(2), (D.2)

where P is the steady state price. Substituting the following results into the difference
between equation (D.1) and (D.2)

Π′(P) = 0, Π(P) =
PY
θ

,

Π
′′
PP = −(θ − 1)

Y
P

,

Π
′′
PP∗ = (θ − 1)

Y
P

.
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gives firms’ quadratic loss function

|π(pi)− π(p∗i )| ≈
1
2

θ(θ − 1)(pi − p∗i )
2

=
1
2

µ

(µ − 1)2 z2.

■

Given this lemma, we can write down the Hamilton-Jacobi-Bellman (HJB) equation of
firms’ optimization problem

rv(z) =
1
2

µ

(µ − 1)2 z2 +
σ2

2
v
′′
(z), for z ∈ (−z, z).

Applying the value matching and smooth pasting condition v(z) = v(0) + ϕ and v′(z) = 0,
we obtain the following result.

Proposition 1. Firms’ do not adjustment prices when |z| < z∗ where z∗ =
(

12ψσ2(µ−1)2)
µ

)1/4
.

The width of the Ss band is given by S = 2z∗. The frequency of price adjustment is given by

f =
(

µ
12ψ(µ−1)2

)1/2
σ.

Taking first and second order derivatives, it is straightforward to show that

Corollary 1.

∂S
∂µ

> 0,
∂ f
∂µ

< 0

∂2S
∂µ∂µ

< 0,
∂2 f

∂µ∂µ
> 0

We therefore prove that 1) the width of the Ss band is an increasing concave function of
the desired markup, and 2) the FPA is a decreasing convex function of the desired markup.
The frequency effect is therefore an increasing concave function of the desired markup.

E. A Model with Oligopolistic Competition

We show that under a simple model with oligopolistic competition, firms’ profit function
becomes more curved when there are less number of firms in a given sector, or firms have
more market power.

We closely follow the oligopolistic setup in Atkeson and Burstein (2008). There is a
continuum of sectors and within each sector there is a finite number of firms. Since we
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focus on firms’ pricing strategies, it is natural to assume that firms play a game of Bertrand
price competition. Households’ demand features a nested CES structure. The elasticity
of substitution between sectoral goods is η and the elasticity substitution between goods
within sectors is θ. Following the tradition of literature, we assume θ > η > 1. For
simplicity, we also assume that within each sector there are N symmetric firms, such that
each firm’s market share is 1/N.

The standard prediction of this type of model is that firms’ steady-state markup µ is
increasing in its market share (or decreasing in number of firms N) in its sector:

µ(N) = 1 +
1

θ − (θ − η)/N − 1
,

so that firms’ frictionless profit-maximizing price ep∗ is a constant markup µN over the
marginal cost W. We now plot the profit of an individual firm as a function of its price
gap for two levels of competition: N = 3 and N = 6. We choose conventional values for
parameters in the literature. Figure E.1 shows that as market becomes more competitive,
the profit function becomes more curved.

Figure E.1: Market Power and Profit Functions

Note: This graph plots the profit gap as a function of price gaps for different calibrations of
markups in a model with oligopolistic competition: the high markup (N = 3) and the low markup
(N = 6) cases. The profit gap is defined as the difference between a firm’s profit given its price p
and the firm’s profit under its optimal resetting price (p∗). Similarly, the price gap is defined as
p/P − p∗/P.
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