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Abstract

I develop a model of bank runs where supply of CBDC is endoge-

nous: depositors face a trade-off between CBDC withdrawals, which

are faster and more suitable for digital goods, and cash withdrawals

which are slower and more suitable for physical goods. We show that

presence of CBDC mitigates runs by making banks react faster to

runs with the penalties on withdrawals. However, it leads to over-

mining of CBDC during stress to the levels above what is needed for

the consumption, leading to extra transaction costs. Lastly, if given

a choice, banks are shown to have incentives to offer mixed currency

∗I thank Todd Keister, Jonathan Chiu, Janet Jiang, Cyril Monnet, Ryuichiro Izumi,
Hanna Hallaburda, and Toni Ahnert for valuable comments.

1



deposit products in the interest of depositors. We calibrate the model

empirically and evaluate necessary policies to prevent runs.

1 Introduction

As a response to the worldwide digitization, majority of the central banks

indicated their desire to research and possibly issue the central bank digi-

tal currency. While the scope and specifics of such issuance is still an open

question for many, it is certain that introduction of CBDC will not replace

cash overnight, as well as not entire economy will immediately become dig-

ital with the introduction of the digital coin. We consider a case of when

CBDC is introduced as a complement to cash in the economy that trades

both digital and physical goods. We study how the introduction of CBDC

will impact usage of cash and bank deposits during stress and non-stress

episodes in the context of banking and financial stability. For this, we de-

velop a Diamond and Dybvig (1983) type model with sequential bank runs

(as in Ennis and Keister (2006) and Green and Lin (2003)) to study whether

introduction of CBDC will impact the bank runs intensity and specifics, and

what can be done to prevent the panic-like behaviors. We assume that cur-

rency and CBDC money creation are driven by the demand of consumers for

such payment instruments and show why CBDC is mined disproportionally

more than cash during the stressful events than during peaceful times.

Our main findings are the following. If CBDC is introduced in the envi-
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ronment of no stress, depositors prefer to use it for digital goods purchases,

and remain using cash for physical goods purchases. As such, CBDC im-

proves welfare of consumers that pay for digital goods and otherwise would

need to exchange cash to digital methods of payment. However, with stress,

the depositors that consume physical goods become more inclined to with-

draw in CBDC because digital withdrawals are faster than the withdrawals in

cash (think of the physical bank locations such as branches and ATMs). The

degree to which bank runs shift towards CBDC depends on the equilibrium

outcome.

We find that, for any parameters values, there are equilibria with the run

taking place fully in CBDC. In this case, withdrawals happen faster than

in the case of no CBDC and harm depositors with preferences for physical

goods because they have to bear exchange costs. Thus, in the equilibria with

fully-digital runs, welfare is improving whenever the digital transactions are

more common than the non-digital ones in the economy.

This however does not prevent existence of equilibria where runs take

place in both CBDC and cash. The equilibria of such kind arise in the pres-

ence of strong preferences of consumers for cash as a method of payment and

higher exchange transactions costs between cash and CBDC. In the equilibria

with mixed currency runs, we find that withdrawals are less likely to occur

and deliver higher welfare to the depositors than in the no-CBDC case. To

explain how this works, we rely on the findings of the previous bank run

literature that assume that banks may respond to runs with the additional
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charges on the withdrawals, also punishing the remaining depositors. Clearly,

such preventive measures are only applied when the bank is certain that the

state of the world is such that the depositors withdraw for the reasons of

stress and panic and not for regular consumption. Without CBDC, the bank

would infer about the state of the world by observing the withdrawals of all

depositors, those who consume in digital and those who consume in physical

stores. In the case when CDBC co-exists with cash, a signal is received faster:

by only observing the digital withdrawals, the targeted bank may reveal the

preferences of consumers sooner and respond to the run faster by placing

additional withdrawal barriers and preventing more panic runs. Without

CBDC, bank would have a higher threshold on the withdrawals to say with

certainty that the depositors are driven by negative sentiment (sunspot) and

the panic is taking place. Prompt response of the bank discourages with-

drawals motivated by panics, and allows for higher returns on investments,

thus, higher welfare.

The model can be extended in multiple directions. While we focus on the

CBDC without re-numeration, the results can be extended to positive rates

paid by the central bank. Also, our results do not depend on the distribution

model of CBDC, but rely on CBDC payments being much faster than the

wire payments, with latter would be another way to withdraw deposits, which

we assume to be slower and more costly than withdrawing in either cash and

CBDC.

As an extension, we consider the case when bank offers two different
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deposit products instead of one: deposit with only CBDC withdrawals, and

deposit with only cash withdrawals. We find when it is welfare improving

for the bank to offer withdrawals in both currencies rather than to create

two different account types. This result helps motivating CBDC design with

the bank-centered distribution model, as our paper illustrates that banks

may be interested in offering consumers an option to withdraw in CBDC

for two reasons: convenience of digital payments, and an efficient bank run

management.

Finally, we research the preventive measures for mitigating CBDC bank

runs. For policy purposes, such measured should be considered in light of

the last century regulatory changes for banks and other financial institu-

tions, including deposit insurance, Basel III, implicit government guarantees

for too-big-to-fail banks, recovery and resolution plans reforms, and money

market reforms. In this paper, we limit our analysis to the stylized calibra-

tion for the largest Canadian banks and generally held theoretical results.

We ask whether CBDC runs should be addressed by the policy makers in the

same way as fiat currency runs. In the example of liquidity gates, we show

that regulation of fiat currency alone is insufficient to prevent the digital run.

However, similar intuition holds for controlling cash and CBDC withdrawals.

We first show that imposing liquidity gates on withdrawals in both cash and

CBDC is not effective when depositors do not believe in the commitment

of banks to maintain their rates throughout the run. As such, additional

measures should be imposed. We find that if deposit insurance is in place
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for the withdrawals of both kind, it is sufficient to prevent the bank runs in

our environment. However, the price of such insurance should be different

in the case with CBDC than without CBDC due to the different nature of

runs highlighted above. The last result indicates that introduction of CBDC

may require revisiting regulatory bank policies such as deposit insurance and

liquidity regulation with the introduction of CBDC.

The structure of the paper is the following: in section 2 we provide a

literature review, in section 3 we present the model, in section ?? we pro-

vide policy recommendations, and in section ?? we calibrate the model for

Canadian economy.

6



2 Literature review

We base our research on the bank run literature: Diamond and Dybvig

(1983), Green and Lin (2003), Ennis and Keister (2006), Goldstein and

Pauzner (2005), Peck and Shell (2003), Ennis and Keister (2009), Andol-

fatto et al. (2017), Andolfatto and Nosal (2008). Keister and Monnet (2022)

make similar predictions with respect to the information channel of the dig-

ital currency, however without cash being the second alternative. Optimal

deposit insurance was also considered by Dávila and Goldstein (2021). Ex-

perimental literature on bank runs that looks at the sunspot and coordina-

tion of depositors Arifovic et al. (2013), Arifovic and Jiang (2014), Kiss et al.

(2012). More generally, literature on CBDC and banking includes: Andol-

fatto (2020), Kiester and Sanches (2021), Chiu et al. (2020, 2022), Parlour

et al (2020), Whited et al. (2022), Garratt et al. (2022), Brunnermeier and

Niepelt (2019). Classic bank runs: Diamond and Dybvig (1983), Ennis and

Kiester (2009,2010), Peck and Shell (2003), Goldstein and Pauzner (2005),

Arifovic et al. (2013), Allen and Gale (1988). CBDC bank runs specifically:

Kiester and Monnet (2022), Ahnert et al (2022), Williamson (2022), Skeie

(2019), Kumhof and Noone (2021).
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3 Model without CBDC

3.1 Timing and types of transactions

Consider interactions of one bank with its depositors. As in the standard

Diamond and Dybvig (1983) model, the bank operates within three periods:

t = 0, 1, 2. At t = 0, there is a unit mass of depositors, each of whom supplies

1 unit of funds to the bank. The bank invests on behalf of depositors. The

investment pays off gross return R in the last period. At t = 1 and t = 2

the bank processes the withdrawals of depositors. Such withdrawals may

arise spontaneously due to the strategic response of some of depositors to

consumption shocks. Ex-ante, depositors do not know whether they will

receive the shock or nor. As such, the bank serves as an insurance device for

the depositors who want to invest but cannot guarantee their commitment

to the financial market.

In the interim period, fraction L of the bank’s assets can be liquidated

to repay withdrawals. Variable L can be interpreted as the amount of liquid

assets in the investment portfolio of the bank; liquidation itself induces no

transaction cost, so revenue of the bank that liquidates L remains R(1−L).

Depositors place funds in the bank to eventually withdraw it and use for

consumption. For simplicity, we assume that each depositor will eventually

consume one type of good: digital if the depositor’s type is θδ = 1 or physical

if the depositor’s type is θδ = 0. There is no aggregate uncertainty in the

model about the share of digital depositors: the probability of depositor
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consumption to be digital is δ and the probability of it being physical is

1 − δ. . The preferences for consumption are revealed at t = 1.1 In this

way δ measures the level of digitalization of the economy rather than the

heterogeneity of the consumer tastes in the economy, which would be known

ahead of time.

When digital vs physical types are revealed, fraction π of depositors also

receives a consumption preference shock to consume immediately. Following

the literature, we call these depositors impatient, with their type θπ = 1. The

remaining 1 − π depositors, called patient have type θπ = 0. The patient

depositors have no preferences over when to consume. However, if there is a

bank run and likely insolvency of the bank, it may be in their interest not

to hold on to the last period. Realizations of impatience type θπ and digital

type θδ are independent.

3.2 Withdrawals

In the middle period, each depositor is given a chance to withdraw funds.

We assume that withdrawals in CBDC are faster than and take place before

1We assume that withdrawals happen slightly before consumption, so the depositor
cannot withdraw by making a direct payment in either digital or physical store (as with
a debit card). Also, we look at banks in isolation and interbank payments, such as wire
transfers, are not considered by the depositor as a way of withdrawal, because the empirical
evidence suggests that interbank transactions take on average more time and cost than
withdrawals in cash and CBDC. In the Canadian context, majority of depositors hold a
single deposit account only, so an interbank transfer for them would be done either through
online banking or in person with additional time spent on opening a new bank account.
In addition, for the cases of severe crisis, multiple banks may experience bank runs at the
same time.
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withdrawals in cash. The order in which depositors decide on withdrawals

is ex-ante random, and follows a sequential service constraint (as defined in

Wallace (1988)) with model specification from Ennis and Keister (2006). One

by one depositors are selected for their turn to make a decision. By the time

depositor i is selected, it is informed about its order and the total number

of withdrawals that have already taken place. Without loss of generality,

assume that the decision order of depositor i is i. The depositor then decides

whether to withdraw or not. We will track the strategy to withdraw with

variables yci ∈ {0, 1}(θ, s) and ydi (θ, s) ∈ {0, 1}, which are conditional on the

type of the depositor θ = (θπ, θδ) and the signal s.

The number of withdrawals with depositor i given the realization of type

θi′ for each depositor h′ ∈ [0, i] can be determined recursively:

µd(i) =

∫ i

0

ydh(θh, λh)εdh

µc(i) =

∫ i

0

ych(θh, λh)εdh

At time t = 1, the strategy of the bank is to setup the payments to

each depositor conditional on its order of withdrawals in either CBDC or

cash lines. This strategy can be summarized by interim period payment

functions xd(µd, µc) and xc(µd, µc). Because we model CBDC and cash runs

sequentially, it is enough to focus on the cases of strategies xd(µd) and xc(µc),

where the number xd(µdc) is the payment given to the µdc-th depositor who
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arrives to withdraw CBDC, and xc(µc) is the payment given to the µc-th

depositor who arrives to withdraw cash. By design, not all depositors will

withdraw in both cash and CBDC, so µc ≤ i and µd ≤ i after each depositor

i makes a decision.

The strategies are limited by the budget constraint in the interim period:

x1all =

∫ 1

0

xd(µ)dµ+

∫ 1

0

xc(µ)dµ ≤ α

At time t = 2, when the bank run is over and some funds are left over

at the bank, the strategy of the bank can be set up to pay equal amount

to each withdrawing depositor. Thus, assuming bank keeps no profit, the

repayments at time t = 2 are determined by the strategies at time t = 1.

The strategies of i given umber of withdrawals µdc and µc are xc and xdc.

The strategies of the bank are cc1, c
d
1, c

c
2, c

d
2.

∫ 1

0

xd(µ)dµ+

∫ 1

0

xc(µ)dµ ≤ α

In the last period t = 2, the bank repays equal fraction of the total remaining

profit x2all.

x2all = R(1− x1all)

The consumption of depositor i in the game is determined by its type θ =

(θπ, θδ), withdrawals preceding i, denoted as µ = (µd, µc), and bank’s repay-
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ment strategies x = (xd, xc).

c(i, θ, µ, x) = (1− θπ)[(1− τ)(1− θd) + θd]xd(µ)yd(µd(i)))

+(1− θπ)[(1− τ)θd + (1− θd)]xc(µ)yc(µc(i))

+θπ[(1− τ)(1− θd) + θd][xd1(µ) + xd2(θ, µ)]y
d(µd(i)))

+θπ[(1− τ)θd + (1− θd)]xc(µ)yc(µc(i))

where µdc is the number of withdrawals that would take place in CBDC

with i including if it runs via difgital currency, and µc is the number of

withdrawals that would take place in cash with i including if it runs in cash.

The utility of the bank is the utility weighted by types:

ui(c
d
1(µ), c

c
1(µ), c

d
2, c

c
2) =

∫ 1

0

∑
θπ ,θδ∈{0,1}

πθπ(1−π)1−θπδθδ(1−δ)1−θδu(θπ, θδ, µ
dc, µc)di

The equilibrium is defined as a set of strategies yi(θi, λi) for all depositors

i ∈ [0, 1]

3.3 Types of deposit contract

We will consider multiple deposit contracts in the game. First, we assume

that the bank can change the deposit contract terms as the run goes. In this

case, the bank will update two deposit rates: for those who want to withdraw

earlier and those who stay until the last period.
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In alternative setup, we will focus on the single deposit contract with

commitment. This is when a bank offers the same pair of rates to any

depositor: c1 for period t = 1 withdrawals and c2 for period t = 2 withdrawals

despite bank run. Commitment does not necessarily mean that the bank

does not have resources to monitor the withdrawals and respond accordingly.

Instead, offering a contract with commitment may be an intentional strategy

of the bank. As we will show in the following section, the key feature of the

deposit contract with commitment is that depositors believe that the bank

will not respond to the runs under any circumstances, which may peacify the

panic runs. In the past literature, it was assumed that deposit contract with

commitment is not realistic, meaning it is not supported by the expectations

of depositors. However, in the age of smart contracts, it is possible that the

bank may be interested in being committed.

4 Equilibrium in economy without CBDC

4.1 No run equilibrium

In our setup, bank runs are created by the coordination failure and are thus

solely panic based. When the panic does not happen, the bank maximizes

expected risk-adjusted payoff

V = (1− δ)[πu(c1,K+1) + (1− π)u(c2,K+1)]
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+δ[πu(τdc1,K+1) + (1− π)u(τdc2,K+1)]

subject to budget constraint

(1− π)c2,K+1 = R(1− πc1,K+1).

In this equilibrium, the optimal deposit rates offered by the bank are

c1,k =
1

π + (1− π)R1−σ/σ

c2,k =
R1−σ/σ

π + (1− π)R1−σ/σ

4.2 Run equilibrium

We solve the model using backward induction. Each equilibrium is organized

as a sequence of withdrawal waves. There are multiple equilibria. Each of

them is characterized by the number of waves. One wave is the combination

of withdrawals of deposits under the same repayment scheme. Consider and

equilibrium with K + 1 waves in the game without CBDC. In each wave k,

fraction π of consumers withdraws to receive compensation c1,k. Depositors

know what wave is taking place, but not the bank. The bank observes the

number of withdrawals, so it can infer how many waves have passed, but not

whether the next wave will take place or not. It updates deposit rates with

the beginning of each wave by offering terms c1,k and c2,k to depositors.

When the bank has observedK waves, it maximizes expected risk-adjusted
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payoff VK+1 of remaining depositors, share π of which will withdraw at time

t = 1, and remaining share 1− π will withdraw at time t = 2:

VK+1(ψK) = (1− δ)[πu(c1,K+1) + (1− π)u(c2,K+1)]

+δ[πu(τdc1,K+1) + (1− π)u(τdc2,K+1)]

subject to budget constraint

(1− π)c2,K+1 = R(ψK − πc1,K+1).

Using backward induction, we can find the optimal contract in the middle

waves. After k = 1, ..., K−1 waves, the probability that run ends is 1− sk
sk−1

,

probability that it continues is sk
sk−1

. So the Bellman equation in the middle

wave is:

Vk(ψk−1) =

(
1− sk

sk−1

)
(1− δ)[πu(c1,k) + (1− π)u(c2,k)]

+

(
1− sk

sk−1

)
δ[πu(τdc1,k) + (1− π)u(τdc2,k)]

+

(
sk
sk−1

)
(1− δ)[πu(c1,k) + (1− π)Vk+1(ψk)]

+

(
sk
sk−1

)
δ[πu(τdc1,k) + (1− π)Vk+1(ψk)]
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subject to budget constraint

(1− π)c2,k = R(ψk−1 − πc1,k).

The equilibrium in the non-CBDC case can be found from the solution

of each intertemporal problem:

c1,k = ψk−1
1

π + 1−π
R

c2,k
c1,k

c2,k = ψk−1

c2,k
c1,k

π + 1−π
R

c2,k
c1,k

for k = 1, .., K + 1 (including the last period), such that the relative split

between two contracts for each wave is

c2,k
c1,k

= R1/σ

(
(1− sk

sk−1

) +
sk
sk−1

Ek

)1/σ

(1)

c2,K+1

c1,K+1

= R1−σ/σ (2)

where unknown variables Ek are defined recursively as marginal contri-

bution from the next period value function

Ek =

(
πR(σ−1)/σ + (1− π)

(
1− sk+1

sk
+
sk+1

sk
Ek+1

)1/σ
)σ

, for k = 1, ..., K

EK+1 = (πRσ−1/σ + 1− π)σ.
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Theorem 1 In the economy without CBDC, there exist a sequence of sunspot

thresholds s1, ..., sK, such that for each realization of sunspot s ∈ [sk, sk−1),

the withdrawals take place in k ≤ K waves. Within each of such waves,

proportion π of withdrawals of depositors takes place. The bank offers deposit

rates (c1,k, c2,k) during wave k:

c1,k =

(
k∏

j=1

c2,j
c1,j

π + 1−π
R

c2,j
c1,j

)
R
c2,j
c1,j

(3)

c2,k =

(
k∏

j=1

c2,j
c1,j

π + 1−π
R

c2,j
c1,j

)
R (4)

and the amount of funds available at the bank at wave k is

ψk =
k∏

j=1

c2,j
c1,j

π + 1−π
R

c2,j
c1,j

(5)

where
c2,j
c1,j

are defined in equations (1) and (2).

4.3 Impact of digitalization on bank runs

We will say that economy experiences higher digitalization, if there there is

more digital consumption δ.

Corollary 1 Economy with higher digitization δ and no CBDC, has a lower

efficiency, greater probability of run, and the same frequency of updates in

deposit rates as in an economy with lower digitalization and no CBDC.
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This result can be explained with the following. In the economy without

CBDC, the only safe haven for running depositors is cash, which is costly

to hold if you spend digitally, and the digital depositors who withdraw need

to be compensated for holding cash. Moreover, introduction of digital goods

leads to intertemporal substitutions between two periods, with depositors

favouring the immediate withdrawals.

As such, pretense of digital goods without a digital method of payment is

a source of inefficincy. In this paper, CBDC aims at solving this inefficiency

problem.

5 Model with CBDC

5.1 No run equilibrium with CBDC

When the panic does not happen, CBDC is welfare improving, because it

allows to reduce transaction costs of depositors that withdraw not in the

currency of their choice.

V = πu(c1,K+1) + (1− π)u(c2,K+1)

subject to budget constraint

(1− π)c2,K+1 = R(1− πc1,K+1).
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In this equilibrium, the optimal deposit rates offered by the bank are identical

to those without CBDC (due to CRRA utility of depositors)

c1,k =
1

π + (1− π)R1−σ/σ

c2,k =
R1−σ/σ

π + (1− π)R1−σ/σ
.

However, the social welfare is (1−δ+δτ 1−σ
d ) larger, when CBDC is introduced.

Corollary 2 In the absence of bank runs, CBDC improves welfare of depos-

itors, and maintains the same deposit rates.

5.2 Run equilibrium with CBDC

The intuition about the model can be best derived from the special case when

the cost of exchanging funds from cash to CBDC and vice versa is positive

but small: τd → 1, τc → 1 (general case is not in the draft yet, but it is

solved).

During bank runs, depositors withdraw currency in two lines at t = 1:

CBDC line proceeded by the cash line. In lines, there are Kd and Kph waves

correspondingly.

By the end of the last cash wave Kph, funds ψk ≤ 1 remain. The propor-

tion of digital depositors is θd, which we will identify later on.
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Then the bank optimizes withdrawals in cash in the last wave by maximizing:

VKph+1 = π(1− θd)u(c1,Kph+1) +
(
(1− π)(1− θd) + θd

)
u(c2,Kph+1) (6)

subject to budget constraint

(1− π(1− θd))c2,Kph+1 = R(ψKph − π(1− θd)c1,Kph+1)

So the optimal deposit rates offered in the last cash wave at t = 1 and

non-cash waves at t = 2 are:

c1,Kph+1 = ψKph

1

π(1− θd) + (1− π(1− θd))R1−σ/σ
(7)

c2,Kph+1 = ψKph

R1−σ/σ

π(1− θd) + (1− π(1− θd))R1−σ/σ
(8)

We continue deriving equilibrium with CBDC using backward induction.

For existence of at least two waves, Kph + 1 and Kph, the incentives of

depositors should be aligned such that patient physical depositors do not

have incentives to run in the last post-wave, namely

c1,Kph+1 < c2,Kph+1. (9)

However, the same physical depositors should be interested in withdrawals
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in the earlier waves, when run takes place

c1,Kph > c2,Kph+1. (10)

Condition (9) is also sufficient for digital patient depositors to stay until

the maturity of the deposit contract and not withdraw earlier

τpc1,Kph+1 < c1,Kph+1 < c2,Kph+1.

Interestingly that in the case when τ → 1, condition (10) guarantees that

if a digital depositor given a chance to withdraw during or before wave Kph,

it will do so.

τc1,Kph > c2,Kph+1 (11)

We reach a contradiction, because cash waves follow CBDC withdrawals,

so each digital depositor is given a chance to withdraw at a rate above c1,Kph .

That is why for digital depositors to stay until Kph + 1 (equivalent to all

depositors to stay), there should exist only a single cash withdrawing post-

wave Kph = Kd+1, not more than one panic wave as we originally assumed.

Moreover, during CBDC waves, both types of depositors will withdraw funds.

Value function in the cash wave,

VKph+1 =
(
π(1− δ) + (1− π(1− δ))R1−σ/σ

)σ (ψKph)1−σ

1− σ
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is smaller than the value function for no CBDC case, ceteris paribus, due

to high intertemporal sensitivity. There is also the same percentage split

between patient and impatient depositors as in the K-th wave in no CBDC

case: θd = δ But the amount of funds that remain at the bank ψKph can be

different from ψK .

Value function in the digital waves of CBDC case is equivalent to the

cash waves in the case of no-CBDC, however, now withdrawals take place

in a different currency. Also, the wave structure is shorter. In the non-

CBDC case, it is sufficient for the bank to observe a stop after share π of

cash withdrawals to verify that the bank run is over, because end of bank

run will lead to a non-panic based withdrawals of π % of depositors on cash.

In the case of CBDC, end of panic runs in CBDC will be proceeded by πδ

withdrawals of impatient depositors in CBDC (and π(1− δ) in cash), which

is smaller value.

Figure 1: Schematic description of the wave structure in the economy with
and without CBDC without cash waves.
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Vk(ψk−1) =

(
1− sk

sk−1

)
(1− δ)[δπu(c1,k) + (1− δπ)u(c2,k)]

+

(
1− sk

sk−1

)
δ[δπu(τcc1,k) + (1− δπ)u(τcc2,k)]

+

(
sk
sk−1

)
(1− δ)[δπu(c1,k) + (1− δπ)Vk+1(ψk)]

+

(
sk
sk−1

)
δ[δπu(τdc1,k) + (1− δπ)Vk+1(ψk)]

subject to budget constraint

(1− π)c2,k = R(ψk−1 − πc1,k).

Without the information channel, the introduction of CBDC will be ben-

eficial whenever δ > 1/2. Shorter withdrawal waves lead to higher efficiency

and more funds remaining on the account of the bank.

Theorem 2 Introduction of CBDC in the economy with minimum trans-

action costs τ → 1, leads to an equilibrium with shorter withdrawal waves,

lower average deposit rate paid at t=1 and higher average deposit rate paid

at t=2.

We also make specific predictions for the welfare analysis.

Theorem 3 Introduction of CBDC in the economy with minimum transac-

tion costs τ → 1 and the size of digital economy being greater than the size

of physical economy, δ > 1/2, always increases overall welfare of depositors.
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6 Other theory, policy, empirical applications

Contact author for the updates.
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