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Abstract

What is the effect of Central Bank Digital Currency (CBDC) on fi-

nancial stability? We answer this question by studying a global games

model of financial intermediation with an endogenously determined

probability of a bank run. As an alternative to bank deposits, con-

sumers can also store their wealth in remunerated CBDC issued by the

central bank. Consistent with widespread concerns among policymak-

ers, higher CBDC remuneration increases the withdrawal incentives of

consumers, and thus bank fragility. However, the bank optimally re-

sponds to the additional competition by offering better deposit rates to

retain funding, which reduces fragility. Thus, the overall relationship

between CBDC remuneration and bank fragility is U-shaped. We ex-

plore the efficacy of holding limits on CBDC and discuss the sensitivity

of our results to imperfect competition for deposits and risk-taking on

the asset side.
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1 Introduction

Central banks around the globe (Boar and Wehrli, 2021) are researching the costs

and benefits of central bank digital currency (CBDC). These efforts are a response

to the declining importance of cash as means of payment and the challenges associ-

ated with the proliferation of new forms of private digital money (e.g., stablecoins).

While CBDC aims to preserve the role of public money and fend off threats to

monetary sovereignty, some policy makers are concerned about its potentially ad-

verse effects on the financial system (Ahnert et al., 2022). One issue that has

received particular attention is the effect of CBDC on financial stability (Bank for

International Settlements, 2020). Its status as safe asset with potentially positive

remuneration—a key difference to physical cash—could render it an attractive

store of value and thus increase the risk of bank runs during crisis episodes.

This paper aims to inform this debate by developing a two-period bank-run

model with remunerated CBDC. Initially, a profit-maximizing bank with access to

profitable but risky long-term investment opportunities raises uninsured deposits.

At the interim date, consumers receive a noisy private signal about the invest-

ment’s profitability (“economic fundamentals”) and decide whether to withdraw

their balances or roll them over. When funds are not kept in the bank, consumers

can hold them in cash or as (possibly remunerated) CBDC.1

We solve for the unique equilibrium at the withdrawal stage using global-

games methods. When making their withdrawal decision, consumers trade off the

value of keeping their funds in the bank and the outside option of converting them

into CBDC (converting private into public money). Accordingly, our model allows

us to study how the terms of the deposit contract and CBDC remuneration affect

the probability of a bank run (our measure of bank fragility). As in Morris and Shin

(1998), Goldstein and Pauzner (2005), and Carletti et al. (2022), the equilibrium

is characterized by a threshold strategy: when the economic fundamentals are

below a certain value, all depositors run on the bank (Proposition 1).
1In this model, the only difference between cash and CBDC is their remuneration. Accord-

ingly, a positively remunerated CBDC is always preferred to cash.
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In this economy, an increase in the CBDC remuneration has two effects.

First, it makes withdrawals at the interim date more attractive by increasing the

payoff from storing funds with the central bank for consumption at the final date.

This “direct effect” makes the bank more fragile (Proposition 1), consistent with

the line of argument underlying the ongoing policy debate. Second, a higher

CBDC remuneration induces the bank to offer more attractive deposit contracts

because consumers would otherwise not provide any funding at the initial date.

As a consequence, consumers have lower incentives to withdraw their funds at the

interim date. This “indirect effect” renders the bank more stable (Proposition 2).

In equilibrium, the total effect of CBDC remuneration on bank fragility

depends on the relative strengths of these two countervailing forces. The indirect

effect dominates if and only if the elasticity of the failure threshold with respect

to the bank deposit rate exceeds one (Lemma 1). A sufficient condition for this

is a high enough profitability of the bank’s investment opportunity relative to the

remuneration on CBDC (Proposition 3). In this case, fragility is minimized for a

strictly positive level of CBDC remuneration.

We consider various extensions of our model. First, policymakers have ad-

vanced limits on individual holdings as a possible tool to reduce the financial

stability concerns associated with CBDC (Bindseil et al., 2021).2 In our model,

holding limits reduce the effective remuneration of deposit withdrawals because

only part of the proceeds can be stored in CBDC, with the remainder being held

as cash. Accordingly, holding limits can help to attain the optimal level of bank

fragility if remuneration cannot be set freely (e.g. because it is aimed at monetary

policy objectives outside of our model). However, and in line with our previous

results, holding limits have an ambiguous impact on bank fragility if the indirect

effect is sufficiently strong. In this case, holding limits increase (decrease) fragility

for low (high) levels of CBDC remuneration (Proposition 4).

Second, we explore the role of market power in the deposit market. We
2Other proposals include tiered remuneration, as suggested in Bindseil (2020). If the second

tier is remunerated at zero or below, this is equivalent to holding limits in our model because
consumers would prefer to invest in cash any amount not covered by the first tier.
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have so far assumed a monopolist bank that responds strongly to the introduction

of a competitor (the central bank). With several banks competing for deposits,

the ability of a bank to attract funding by raising rates may be more limited,

suggesting a more prominent role of the direct effect of CBDC remuneration on

bank fragility. Intuitively, the size of the elasticity of the failure threshold with

respect to deposit rates is smaller in more competitive environments. We study

this issue in a spatial model of deposit competition (Salop, 1979). We show that the

indirect effect is dominated as the number of banks grows large, so higher CBDC

remuneration increases bank fragility under perfect competition (Proposition 6).

Third, our analysis thus far is limited to fragility on the liability side of the

bank balance sheet. A large literature in banking is concerned with the risk-taking

on their asset side via risk choices and asset substitution (e.g., Dell’Ariccia and

Marquez, 2004, 2006; Martinez-Miera and Repullo, 2017). Our setup can be nat-

urally extended along this dimension. We show that higher CBDC remuneration

reduces risk-taking on the bank’s asset side (Proposition 7). Thus, the financial

stability implications for the bank’s asset and liability sides are opposite, and the

overall effect can be positive.

Fourth, we study a setting where early liquidation of the long-term invest-

ment does not lead to losses. In this case (Proposition 8), bank runs are never

driven by panics, they can only stem from fundamental insolvencies. While the

indirect effect (higher CBDC remuneration induces banks to offer more attractive

deposit rates) is still present, it leads to a higher likelihood of bank insolvency

by reducing the interest rate margin. This result suggests that panic runs are an

essential ingredient to our main result.

Literature. Our paper is part of a fast-growing literature on CBDC. An overview

of recent work is provided by Ahnert et al. (2022). A key feature of our model is

that the bank is not passive, but instead adjusts its behaviour (here its deposit

rates) in response to the introduction to CBDC. This channel is also present in

recent papers that examine the effects of CBDC on credit supply credit supply

(Keister and Sanches, 2021; Andolfatto, 2021; Chiu et al., 2022).
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Several other papers connect CBDC to financial stability. Using a Diamond

and Dybvig (1983) model, Fernández-Villaverde et al. (2020, 2021) study the im-

plications for bank runs. They show that, by fostering a flow of deposits out of

the banking system into the central bank, the introduction of CBDC completely

removes the risk of bank runs, as also shown in Skeie (2020), while creating a

trade-off for the central bank between efficiency and price stability. Keister and

Monnet (2020) also consider the implications of CBDC for bank runs, but focus

on the efficacy of government interventions. In their framework, CBDC allows the

central bank to have more accurate information about the health of the banking

sector and thus to intervene promptly to mitigate the risk of a run. A difference

relative to those papers is our use of global-games methods to uniquely pin down

the probability of a bank run. This approach allows us to study how changes in

CBDC design affect bank fragility (both directly and via changes in deposit rates).

Endogenizing the probability of runs relies on the use of global-games tech-

niques. It originates from the seminal paper of Carlsson and van Damme (1993)

and has been largely applied to finance (e.g., Corsetti et al. (2004), Goldstein and

Pauzner (2005), Rochet and Vives (2004), Bebchuk and Goldstein (2011), Vives

(2014), Ahnert (2016), Eisenbach (2017), Ahnert et al. (2019), Juelsrud and Nenov

(2019), and Carletti et al. (2022)). See Morris and Shin (2003) and Vives (2005)

for excellent surveys on the theory and application of global games.

Keister and Monnet (2020) is a closely related paper but differs consider-

ably from our analysis. In their model, the bank offers the constrained-efficient

allocation. The strategic complementarity in withdrawal decisions arises from the

interaction of depositors with bank resolution authority (the anticipation of de-

positors of a future haircut), not directly from the deposit contract. They show

how the introduction of CBDC remuneration affects the constraint-efficient level

of risk-sharing, whereby higher remuneration reduces the short-term deposit rate

and, thus, maturity transformation. This risk-sharing effect is absent in our model.

They also study an information channel whereby CBDC enables more timely policy

interventions, also absent in our model. Our work, instead, focuses on analytically

deriving the effect of CBDC on bank fragility when banks maximize profits.
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2 Model

The economy extends over three dates t = 0, 1, 2 and is populated by a bank and a

unit continuum of consumers indexed by i ∈ [0, 1]. There is a single divisible good

for consumption and investment. All agents are risk neutral and do not discount

the future. Consumers are endowed with one unit of funds at t = 0 only.

At t = 0, the bank has access to a profitable but risky investment technology.

Investment returns L ∈ (0, 1) if liquidated at t = 1 (the liquidation value) and

Rθ upon maturity at t = 2, where θ ∼ U [0, 1] represents the fundamentals of the

economy and R > 2 is a constant that reflects the return from lending. To finance

investment, the bank raises funds from consumers in exchange for demandable de-

posit contracts.3 The bank chooses the deposit contract that maximizes expected

profits. The contract specifies a repayment r1 ≥ 1 at t = 1 and r2 at t = 2.

Since debt is demandable, depositors can withdraw their funds before the

maturity of the bank’s investment. At t = 1, each depositor receives a noisy

private signal about the economic fundamental,

si = θ + εi, (1)

with εi ∼ U [−ε,+ε]. In addition to being informative about the profitability of

the bank’s investment project, it also provides information about the signals (and

withdrawal actions) of other depositors. As is standard in much of the global-

games literature, we assume vanishing noise, ε→ 0, to simplify the analysis.

The bank satisfies interim withdrawals by liquidating investment. Let n ∈

[0, 1] be the fraction of consumers who withdraw at t = 1. When the liquidation

proceeds at t = 1 are insufficient to meet withdrawals, n > n ≡ L
r1
, the bank is

bankrupt due to illiquidity. Otherwise, it continues to operate until t = 2. If the
3Bank debt is assumed to be demandable, which arises endogenously with liquidity needs

(Diamond and Dybvig, 1983) or as a commitment device to overcome agency conflicts (Calomiris
and Kahn, 1991; Diamond and Rajan, 2001). Accordingly, uninsured deposits refer to any
short-term or demandable debt instrument, which includes uninsured retail deposits and insured
deposits when deposit insurance is not credible (Bonfim and Santos, 2020). Three quarters of
U.S. commercial bank funding are deposits, half of which are uninsured (Egan et al., 2017).
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bank cannot meet the remaining withdrawals, n > n̂ ≡ Rθ−r2
Rθ

r1
L
−r2

, it is bankrupt

due to insolvency, where n̂ solves the insolvency condition

Rθ

(
1− n̂r1

L

)
= (1− n̂) r2. (2)

The left-hand side is the return on the part of the project that was not liquidated

at t = 1, and the right-hand side represents the remaining withdrawals at t = 2.

Bankruptcy is costly and we assume zero recovery for simplicity.4

As alternatives to bank deposits, consumers can store their wealth in CBDC

or cash. A deep-pocketed central bank offers consumers deposits with a per-period

gross return ω ≥ 1, while cash is unremunerated.5 Accordingly, consumers strictly

prefer CBDC over cash as long as ω > 1. They are indifferent for ω = 1, so that

this case is equivalent to a model without CBDC.

Relative to an economy with only deposits and cash, the introduction of

CBDC has two effects. First, it improves the outside option of consumers deciding

at t = 0 whether to deposit funds with the bank from 1 to ω2 (the compound return

on CBDC over two periods). Second, it pays interest ω on funds withdrawn from

the bank at t = 1. Table 1 summarizes the timeline of the economy.

t = 0 t = 1 t = 2
1. CBDC design 1. Fundamental shock 1. Investment matures
2. Bank sets deposit
contract

2. Private signals 2. Consumption

3. Consumers choose
where to deposit

3. Consumers withdraw

4. Bank invests deposits 4. Liquidation of
investment

Table 1: Timeline

4Bankruptcy costs are large. For example, James (1991) measures the losses associated with
bank failure as the difference between the book value of assets and the recovery value net of direct
expenses associated with failure. These losses amount to about 30% of failed banks’ assets.

5For simplicity and ease of exposition, we abstract from both raising funds (e.g. via taxation)
and an investment choice of the central bank at t = 0.
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3 Equilibrium

This section solves for the equilibrium. We proceed backwards. First, for a given

deposit contract (r1, r2), we characterize a threshold θ∗(r1, r2;ω) such that, for

every θ < θ∗, all depositors withdraw their funds at t = 1 and the bank fails. Next,

we solve for the profit-maximizing deposit contract (r∗1(ω), r∗2(ω)) as a function of

CBDC remuneration. Finally, we analyze how CBDC remuneration affects bank

fragility θ∗ (r∗1(ω), r∗2(ω);ω) in equilibrium.

3.1 Bank fragility

We use global-games methods to solve for the unique equilibrium at the withdrawal

stage. To characterize individual withdrawal decisions, we start by establishing

the dominance bounds that yield ranges of the fundamental θ for which consumers

have a dominant strategy. Following Goldstein and Pauzner (2005), we assume

that there exists an upper dominance bound θ such that the liquidation value is

high (L = R) for θ > θ. In this case, a depositor will never withdraw irrespec-

tively of the withdrawal decision of all other depositors. We assume θ → 1 when

analysing the bank’s choice of deposit contract at t = 0.

Second, withdrawing is a dominant strategy when θ < θ. This (lower domi-

nance) bound solves

Rθ − r2 = 0, (3)

so that θ = r2
R
∈ (0, 1).6 The intuition is as follows. When no other depositor

withdraws (n = 0), the bank is always liquid at t = 1 and insolvent at t = 2 for

Rθ < r2. Therefore, withdrawing yields a payoff of r1, while not withdrawing re-

turns zero. So running on the bank is a dominant strategy for θ < θ (bankruptcy).

In the intermediate range (θ, θ), an consumer’s decision to withdraw depends

on what she expects the other consumers to do. Using global-games techniques,
6Note that a profit-maximizing bank will always choose r2 < R since deposit-taking cannot

be profitable otherwise.
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we can solve for the bank failure threshold at t = 1.

Proposition 1. Failure threshold. There exists a unique fundamental threshold

θ∗ ∈
(
θ, θ
)
. Each consumer withdraws their deposits from the bank if and only if

θ < θ∗, where

θ∗ ≡ θ
r2 − ωL
r2 − ωr1

> θ. (4)

The threshold θ∗ decreases in L and R, increases in ω and r1, and is non-monotonic

in r2: ∂θ∗

∂L
< 0, ∂θ∗

∂R
< 0, ∂θ∗

∂ω
> 0, ∂θ∗

∂r1
> 0, ∂θ∗

∂r2
< 0 if and only if r2 < rmax2 .

Proof. See Appendix A, which also defines the cutoff rmax2 .

Under vanishing noise, the bank failure threshold θ∗ corresponds to the prob-

ability of a bank run, which we thus use as our measure of bank fragility. A higher

liquidation value L or higher profitability R reduce depositors’ incentives to run.

The terms of the deposit contract (r1, r2) also affect the failure threshold. As

in Diamond and Dybvig (1983); Goldstein and Pauzner (2005), higher higher short-

term deposit rates increase fragility. Liquidity provision by the bank (r1 > L) gives

rise to strategic complementarity in consumer withdrawal decisions, so that both

panic runs and fundamental runs exist, θ∗ > θ.

Moreover, the relationship between the long-term deposit rate r2 and bank

fragility is non-monotonic: when the deposit rate is low, higher rates reduces

fragility while the opposite holds for high deposit rates. On the one hand, a

higher long-term deposit rate implies that depositors receive a higher payoff when

they wait and the bank is solvent. On the other hand, a higher long-term rate

makes it more likely for the bank to be insolvent.

Finally, all else equal, the probability of a bank run increases with CBDC

remuneration, since it increases the payoff from storing wealth outside the bank

between t = 1 and t = 2, and thus makes withdrawing more attractive. However,

this direct effect, ∂θ∗

∂ω
, fails to capture the overall impact because r1 and r2 are

held fixed. As we show below, changes in CBDC remuneration induce the bank

to adjust the terms of the deposit contract, which in turn affects θ∗. To see this
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formally, we can use total differentiation:

dθ∗

dω
=
∂θ∗

∂ω
+
∂θ∗

∂r1

dr∗1
dω

+
∂θ∗

∂r2

dr∗2
dω

. (5)

We next study the indirect effects of CBDC remuneration on bank fragility via

the equilibrium deposit rates r∗1 and r∗2.

3.2 The deposit contract

Since bank runs lead to zero profits, the bank internalizes the effects of the deposit

contract on fragility, θ∗ = θ∗(r1, r2). With vanishing noise, consumer behaviour is

fully symmetric. For θ > θ∗, there are no interim withdrawals and the investment

matures at t = 2 with a return Rθ. The banker pays the promised return r2 to

consumers and pockets the difference, Rθ−r2. For θ < θ∗, all consumers withdraw

at t = 1 and the bank makes zero profits. Using θ → 1, the banker’s problem at

t = 0 is therefore7

max
r1≥1,r2

Π ≡
∫ 1

θ∗
(Rθ − r2) dθ (6)

s.t. V ≡
∫ 1

θ∗
r2 dθ − ω2 ≥ 0. (7)

Equation (7) is the consumers’ participation constraint. The first term is the

expected payoff from keeping funds in the bank until t = 2, which is the long-term

deposit rate in case there is no bank run. The second term reflects the outside

option, which is to store wealth in remunerated CBDC for a per-period return ω.

The following proposition characterizes the bank deposit rates in equilibrium.

Proposition 2. Deposit rates. Let ω < ω̃ and R > R˜ . Then, the equilibrium

deposit rates are given by r∗1 = 1 and r∗2 < rmax2 . The long-term deposit rate solves

V (r∗2) ≡ 0 (the participation constraint binds), increases in CBDC remuneration,

7Expected bank profits can be written as Π = (1 − θ∗)
(
R
2 (1 + θ∗)− r2

)
, which is naturally

interpreted as the probability of no run times the expected bank profits conditional on no run.
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and decreases in the liquidation value and investment profitability: dr∗2
dω

> 0, dr∗2
dL

<

0, and dr∗2
dR

< 0.

Proof. See Appendix B, which also defines the bounds ω̃ and R˜ .
A higher short-term deposit rate r1 reduces expected bank profits because

the bank is more fragile (see Proposition 1). This also tightens consumers’ partic-

ipation constraint, since they are repaid less often. Accordingly, the bank chooses

the lowest possible value for r1, which is independent of CBDC remuneration.

In general, the long-term deposit rate r∗2 is pinned down by either the bank’s

first-order condition or the consumer participation constraint. The bounds on R

and ω are sufficient conditions for the participation constraint to bind. Intuitively,

they ensure that the bank has a large enough margin to adjust the deposit contract.

We henceforth assume that these conditions are met.

An increase in CBDC remuneration improves consumers’ outside option,

both at the initial and interim dates. Accordingly, to remain attractive and guar-

antee consumer participation, the bank needs to offer a more attractive long-term

deposit rate r∗2. A higher liquidation value or investment profitability has the op-

posite effect. Because they reduce bank fragility, consumer participation can be

satisfied with a lower long-term deposit rate.

Combining Propositions 1 and 2, a change in CBDC remuneration ω has

two opposing effects on bank fragility θ∗. On the one hand, a higher remuneration

leads to a higher incentive to withdraw at t = 1 and thus a larger threshold θ∗. On

the other hand, the bank responds to the increase in remuneration by increasing

deposit rates r∗2, which reduces bank fragility ceteris paribus. The overall effect of

a change in ω on θ∗ depends on which of these two effects dominates. The next

result offers some insight into their relative strength.

Lemma 1. Elasticity of the failure threshold. Let η ≡ − r2
θ∗
∂θ∗

∂r2
be the elasticity

of the failure threshold with respect to the deposit rate. Higher CBDC remuneration

reduces bank fragility, dθ∗

dω
< 0, if and only if η > 1.
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Proof. See Appendix C.

ω=1.05

ω=1

6 8 10 12 14 16 18 20
0.0

0.2

0.4
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1.0
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L

Figure 1: Elasticity of the failure threshold η > 1. The graph shows the range of
parameters for investment profitability R and liquidation value L for which the
elasticity of the failure threshold θ∗ with respect to the deposit rate r2 exceeds
one. This range corresponds to the grey area on the right, drawn for two values of
CBDC remuneration (light grey line for ω = 1 and black solid line for ω = 1.05).

Lemma 1 states that the indirect effect of higher CBDC remuneration dom-

inates the direct effect whenever the failure threshold θ∗ is very elastic to changes

in the bank deposit rate r2. That is, higher CBDC remuneration needs to induce a

sufficiently strong increase in deposit rates for overall fragility to fall. The elastic-

ity η depends on equilibrium deposit rates and, thus, ultimately on the investment

return R and liquidation value L. In Figure 1, we plot the range of parameters in

(R,L) for which it is high enough for two levels of CBDC remuneration ω.

We now state our main result on CBDC remuneration and bank fragility.

Proposition 3. CBDC remuneration and bank fragility. Bank fragility is

U-shaped in CBDC remuneration with a unique minimum ωmin.

Proof. See Appendix C.

Figure 2 shows the result: a positive remuneration of CBDC, ω > 1, can be

desirable in the sense of maximizing financial stability (minimizing fragility θ∗).
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ωmin = 1.049

1.02 1.04 1.06 1.08 1.10
ω

0.1260

0.1265

0.1270

0.1275

0.1280

0.1285
θ*

Figure 2: Bank failure threshold θ∗ and CBDC remuneration ω. Minimum fragility
is reached at roughly 4.9% interest on CBDC per period (where two periods cor-
respond to the maturity of bank loans). Parameters: L = 0.9, R = 15.

The same main conclusion arises when we consider utilitarian welfare as

objective function instead of bank fragility. Abstracting from a constant associated

with the resources of the central bank, welfare W for ε→ 0 and θ → 1 comprises

expected bank profits and the payments to consumers and can be written as:

W ≡
∫ 1

θ∗
(Rθ − r2)dθ +

∫ 1

θ∗
r2dθ =

R

2

[
1− (θ∗)2

]
. (8)

Thus, minimizing fragility is equivalent to maximizing welfare in our economy.

While consumers benefit from a low but positive CBDC remuneration, equi-

librium bank profits are strictly below the level obtained in the absence of CBDC

(ω = 1). This effect is driven through a tightening of consumer’s participation

constraint and the bank’s resulting choice of the deposit rate. Thus, rents are

redistributed from the bank to consumers, with a net increase in welfare.

4 Extensions

We consider several extensions in this section. We first study the implications of

holding limits and fundamental runs and then discuss imperfect competition in

the market for bank deposits as well as risk-taking on the bank’s asset side.
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4.1 Holding limits

Widespread concerns about potentially adverse effects of CBDC on bank fragility

have motivated a number of policy proposals aimed at limiting consumers’ demand

for CBDC, especially in the presence of bad news about fundamentals arrive.

Although our previous analysis qualifies these concerns, it is relevant to gauge the

effects of potential policy measures.

One of these proposals is the introduction of individual holding limits (Bind-

seil et al., 2021), whose effects we now analyze formally in the context of our model.

Specifically, we assume that consumers can only hold a proportion γ of their wealth

in a CBDC.8 This changes the effective per-period remuneration on wealth held

outside the bank from ω to

ωHL ≡ 1 + γ(ω − 1), (9)

because the remaining 1− γ must be held in cash. Proposition 4 summarizes the

consequences of an introduction of such holding limits.

Proposition 4. Holding limits. Holding limits, γ < 1, increase (reduce) bank

fragility for low (high) levels of CBDC remuneration. The fragility-minimizing

level of remuneration, ωHLmin decreases in γ.

Proof. See Appendix D.

The introduction of holding limits reduces the pass-through of CBDC re-

muneration to consumers’ outside option. In line with our previous analysis, this

leads to two opposing effects on bank fragility at the funding stage and the with-

drawal stage. At t = 1, holding limits reduce the return that consumers earn on

withdrawn funds. Since only part of their wealth held outside the bank can be

stored in remunerated CBDC, the remainder must be held as cash and earns a
8In practice, policy makers are considering nominal limits (Bindseil et al., 2021). In our

model, all consumers are identical at both t = 0 and t = 1 in equilibrium, so a proportional
limit is equivalent to nominal limit. However, nominal and proportional holding limits may have
different implications when consumers are heterogeneous.
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return of 1. This corresponds to the “direct effect” and makes the bank less fragile.

However, at t = 0, holding limits soften the competition that the bank faces at

the funding stage, and thus imply a lower long-term equilibrium deposit rate r∗2.

This increases consumers’ withdrawal incentives at t = 1 and thus makes the bank

more fragile (the “indirect” effect).

The overall effect on bank fragility depends on which of these two effects

dominates. As shown in Figure 3, holding limits have a beneficial effect on bank

fragility when the level of CBDC remuneration is high, while a detrimental one

otherwise. This latter effect emerges because holding limits reduce the respon-

siveness of the deposit rate to changes in CBDC remuneration, which enlarges the

range of ω for which higher CBDC remuneration leads to more bank fragility.

γ=1

γ=0.7

1.02 1.04 1.06 1.08 1.10
ω

0.1260

0.1265

0.1270

0.1275

0.1280

0.1285
θ*

Figure 3: Bank failure threshold θ∗, CBDC remuneration ω, and holding limits γ.
The solid line captures an economy without holding limits, while the dotted line
captures an economy in which consumers can hold 70% of their funds in CBDC.
Parameters: L = 0.9, R = 15.

This result can be interpreted as a note of caution for policymakers: holding

limits and CBDC remuneration should be adequately designed to avoid inefficient

outcomes via higher bank fragility. Still, holding limits are an additional and

powerful policy instrument, particularly when CBDC remuneration is determined

by other objectives, e.g. monetary policy considerations. In this case, the central

bank limit holdings to achieve the fragility-minimizing CBDC remuneration.

Finally, the introduction of holding limits increases the expected profit of

banks. The effective remuneration of the outside option of consumers decreases,
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so the bank’s problem becomes more relaxed, leading to higher expected profits.

When holding limits are appropriately designed such that the same level of finan-

cial stability is attained, θ∗(ωmin) = θ∗γ(ω
HL
min), welfare is unchanged. As a result,

holding limits redistribute surplus from consumers to banks in our model.

4.2 Market power in the deposit market

So far we have considered a bank that is monopolistic in the deposit market.

In this subsection, we consider imperfect competition for bank deposits.9 This

is motivated by theoretical work on the effects of CBDC for bank credit supply,

which comes to different conclusions for depending on the degree of deposit market

competition (Keister and Sanches, 2021; Andolfatto, 2021; Chiu et al., 2022). In

particular, we model imperfect competition for deposits in a spatial model as in

Salop (1979). We follow the specification of Ahnert and Martinez-Miera (2021),

whereby the withdrawal decision at t = 1 and the deposit decision at t = 0 can

be separated.

There are N ≥ 2 banks (indexed by j) competing for deposits from con-

sumers symmetrically located on a unit-sized circle (Figure 4). Consumers incur

a transportation cost µ > 0 per unit of distance to a bank. Apart from the tradi-

tional interpretation as disutility from travel, they may also capture other aspects

such as heterogeneity in consumer tastes for service bundles offered by different

banks or pre-existing relationships.10 We assume that the transport cost is suffi-

ciently low such that the funding market is covered if at least two banks are active,

and that banks are equidistantly located on the circle.

Banks offer deposit rates (r1j, r2j) to attract deposits hj and invest the pro-

ceeds as described in the main analysis. The withdrawal stage is unchanged, so

that bank j’s failure threshold is θ∗(r1j, r2j) as described in Proposition 1. Each
9A large literature documents imperfect competition in retail deposit markets, including

Neumark and Sharpe (1992), Hannan and Berger (1997), and Drechsler et al. (2017).
10See Basten and Juelsrud (2022) for evidence on cross-selling of deposits and other financial

services.
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Bank 1 

Bank 3 Bank 2 

Investor A

Figure 4: Location of banks on the Salop circle (for N = 3). Consumer A has a
lower transport cost to bank 1 than to bank 2. However, consumer A prefers bank
2 over bank 1 if the former offers a sufficiently better deposit rate.

bank j maximizes expected profits:

max
r1j ,r2j

Πj ≡ hj

∫ 1

θ∗j

(Rθ − r2j) dθ. (10)

We focus on the unique symmetric equilibrium, so that (r∗1j, r
∗
2j) = (r∗1, r

∗
2), θ∗j = θ∗,

and hj = 1
N

for all j.

Proposition 5. Deposit rates with imperfect competition. Each bank offers

r∗1 = 1, and r∗2 is the solution to

1

µ

(
1− θ∗ − r∗2

∂θ∗

∂r2

)∫ 1

θ∗
(Rθ − r∗2) dθ =

1

N

(
1− θ∗ + (Rθ∗ − r∗2)

∂θ∗

∂r2

)
. (11)

Proof. See Appendix E.

Equation (11) illustrates banks’ trade-off in choosing the equilibrium long-

term deposit rate r∗2. The left-hand side is the marginal benefit: a higher deposit

rate increases consumers’ expected payoff and thus attracts more deposits, which

is weighted by the per-unit profitability of the bank. This effect is stronger when

transportation costs are low because in this case many consumers are willing to

switch banks. The right-hand side is the marginal cost. Higher deposit rates

reduce the bank’s profit margin one-for-one, conditional on the bank surviving

(1 − θ∗). Moreover, a change in r2 also affects the probability of survival, but

the impact on the profit margin dominates. The overall effect is weighted by the

equilibrium amount of deposits, 1
N
.
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As in the main analysis, a change in CBDC remuneration has two effects

on bank fragility. While it incentives interim withdrawals, it also induces banks

to adjust their deposit contracts. However, the second effect is dampened by

competitive forces, since depositors no longer face a monopolist. The following

proposition summarizes the results in the polar opposite to the main model, the

case of perfect competition.

Proposition 6. Equilibrium with perfect competition. An increase in CBDC

remuneration increases bank fragility, dθ∗

dω
> 0.

Proof. See Appendix E.

Under perfect competition, N →∞, the equilibrium deposit rate r∗2 is pinned

down by bank’s maximizing the expected value of the deposit claim subject to

non-negative profits. Such fierce competition result in high deposit rates, so that

higher deposit rates always increase the failure threshold, ∂θ∗
∂r2

> 0. In fact, deposit

rates are so high that consumers prefer no further increase because the impact on

bank fragility would be severe and the value of the entire claim would actually

fall. Feasibility is ensured by strictly positive expected bank profits, π(r∗2) > 0.

To sum up, higher CBDC remuneration again has two effects on bank fragility.

The direct effect via the failure threshold is positive, as in the main model. The

indirect effect via the equilibrium deposit rate can be either positive or negative,

depending on parameters. In any case, rates are already so high under perfect

competition that the indirect effect has a small impact and the overall effect on

bank fragility is unambiguously detrimental.

4.3 Bank risk-taking on the asset side

So far we have considered a fragile liability side of banks (uninsured deposits)

as a source of financial instability. However, financial instability can also be the

result of banks’ risk-taking decisions on their asset side (e.g., risk choices and asset

substitution). In this extension, we allow for such risk-taking on the asset side.
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Accordingly, we extend the baseline model assuming that at t = 0, it chooses

its monitoring effort, consistent with an influential literature (e.g., Holmstrom and

Tirole (1997), Hellmann et al. (2000), Morrison and White (2005), Dell’Ariccia and

Marquez (2006), Allen et al. (2011), DellAriccia et al. (2014).) The effort q fully

determines the probability of success of bank investment, whose return changes to

P =

 Rθ w.p. q

0 w.p. 1− q
.

Higher monitoring leads to a higher success probability, but it entails a non-

pecuniary cost c
2
q2. To keep the analysis tractable, we consider an exogenous

deposit contract (r1, r2).11 This assumption shuts down the channel along which

higher CBDC remuneration improves financial stability in the main text and allows

us to focus on how CBDC remuneration ω affects bank risk choices q∗ instead.12

To solve the model, we proceed as in the main text.13 We begin by deriving

the endogenous run threshold θ∗q , so that all depositors run on the bank at t = 1

if and only if θ < θ∗q . Following the same steps as in Section 3.1, we deduce that

θ∗q =
r2

R

qr2 − ωL
qr2 − ωr1

. (12)

Better monitoring increases the probability that the bank is able to repay

depositors at t = 2, and therefore reduces incentives to run (∂θ
∗
q

∂q
< 0). This means

that lower risk on the asset side of the bank leads to lower risk on its liability side.

Taking the run threshold θ∗q into account, we then solve for the bank’s optimal

choice of monitoring effort q at t = 0. The bank solves

max
q

Πq ≡ q

∫ 1

θ∗q

(Rθ − r2) dθ − cq2

2
. (13)

11The deposit contract is such that the participation constraint of investors holds.
12Given that we assume an exogenous deposit contract (partly for tractability), we cannot

really distinguish between monitoring and screening.
13We continue to assume that θ → 1 and ε→ 0. Moreover, we require that qr2 > ωr1 to rule

out a certain bank run. See also the discussion about dominance bounds in Section 3.1.
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Provided that c is sufficiently high, there exists a unique and interior solution q∗,

which is given by the solution to the following first-order condition

FOCq ≡
∫ 1

θ∗q

(Rθ − r2) dθ − q
∂θ∗q
∂q

(
Rθ∗q − r2

)
− cq = 0. (14)

The bank’s risk choice at t = 0 reflects a trade-off. The last term in Equation

(14) reflects the marginal cost of monitoring effort. The other two terms represent

the marginal benefit of higher monitoring. First, more monitoring increases the

probability that the project is successful, so that the bank reaps the residual

claim Rθ − r2 more often (provided there is no bank run, θ > θ∗q). Second, the

bank benefits from the interaction between the bank’s asset and liability sides.

An increase in monitoring reduces depositors’ incentives to run, so that costly

bankruptcy can be avoided.

Since we allow for risk-taking on the asset side of the balance sheet, it is

important to note that there are now two potential sources of bank failure: bank

runs and an unsuccessful investment project. We can therefore measure financial

stability by the overall probability that the bank survives, which we define as

Φ∗ ≡ q∗
(
1− θ∗q

)
.

The following proposition shows that an increase in CBDC remuneration affects

its two separate components in opposite ways.

Proposition 7. Risk taking on the asset side. Higher CBDC remuneration

improves monitoring, dq∗

dω
> 0, but also increases fragility, dθ∗q

dω
> 0.

Proof. See Appendix F.

Changes in CBDC remuneration affect the marginal benefit of bank mon-

itoring, which follows directly from the first-order condition 14. The direction

of this effect depends both on the direct effect of CBDC remuneration on the

run threshold (∂θ∗
∂ω

) as well as the threshold’s sensitivity to changes in monitoring
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( ∂2θ∗
∂q∂ω

). Proposition 7 states that the overall effect is always positive, that is an

increase in CBDC remuneration always leads to higher bank monitoring (dq
∗

dω
> 0)

and thus renders the bank’s asset side more stable.

The effect of CBDC remuneration of the probability of a bank run can be

written as
dθ∗q
dω

=
∂θ∗q
∂ω

[
1− ω

q

dq∗

dω

]
. (15)

Just like in the main text, an increase in CBDC remuneration affects the run

threshold θ∗q both directly and indirectly. However, in this case, the indirect oper-

ates through bank monitoring, dq∗

dω
, and not through the deposit contract (which

is assumed to be exogenous). While these two effects go in opposite directions,

Proposition 7 states that the direct effect always dominates, so that a higher

CBDC remuneration always increases the risk of bank runs.

Since CBDC affects both aspects of financial stability in opposite ways, its

overall effect on financial stability is ambiguous. While it is difficult to derive suffi-

cient conditions analytically, Figure 5 provides a numerical example for which the

beneficial effect of higher bank monitoring dominates. Accordingly, under these

parameters, an increase in CBDC remuneration leads to an increase in financial

stability, consistent with the main text.

Figure 5: Financial stability Φ∗ and CBDC remuneration ω. Parameters: L = 0.9,
R = 20, c = 0.1, r1 = 1, and r2 = 6.
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4.4 Fundamental runs

So far we have considered panic runs arising from the short-term deposit return ex-

ceeding the liquidation value of bank assets. In this subsection, we limit attention

to fundamental runs. This can be studied by considering L → 1 (so the liquida-

tion value of assets equals the promised short-term return). Thus, the strategic

complementarity among depositors vanishes, θ∗ → θ, and the threshold θ becomes

the relevant measure of bank instability. The following proposition summarizes.

Proposition 8. Fundamental runs only. If L→ 1, then higher CBDC remu-

neration again raises the deposit rate, dr2
dω

> 0, but lowers bank stability, dθ
dω
> 0.

Proof. See Appendix G.

The impact of CBDC remuneration on deposit rates is unchanged relative

to the main text. The participation constraint of consumers binds in equilibrium,

so higher CBDC remuneration increases deposit rates. What changes, however,

is how higher deposit rates affect the relevant measure of bank instability. When

the asset is perfectly liquid and no panic runs occur, the only concern about bank

health is fundamental solvency at t = 2. Since higher deposit rates lower the

chance for bank solvency, higher CBDC remuneration reduces bank stability.

What is absent relative to the main model (and prevents us from generating a

U-shape between bank instability and CBDC remuneration) is the beneficial effect

of higher long-term deposit rates r∗2 on the withdrawal incentives of consumers

that mitigates bank fragility when assets are illiquid (L < 1) and panic runs are

possible. This results, thus, suggests the importance of panic runs for our results.

5 Conclusion

To be written.
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A Proof of Proposition 1

The proof builds on the arguments developed on Carletti et al. (2022). The only

difference is that our model exhibits global strategic complementarity in that a

depositor’s incentive to withdraw at t = 1 monotonically increases in the number

of depositors withdrawing. The arguments in their proofs establish that, in the

limit of ε → 0, there is a unique threshold value of the fundamental, denoted as

θ∗, below which all consumers choose to withdraw from the bank. We first prove

the existence of a unique equilibrium and then study its comparative statics.

Existence and uniqueness. For θ ∈ (θ, θ), a depositor’s decision to withdraw

depends on the withdrawal choices of others. Suppose that all depositors use a

threshold strategy s∗. Then, the fraction of depositors withdrawing at t = 1,

n(θ, s∗), equals the probability of receiving a signal below s∗:

n(θ, s∗) =


1 if θ ≤ s∗ − ε,

s∗−θ+ε
2ε

if s∗ − ε < θ ≤ s∗ + ε,

0 if θ > s∗ + ε.

(16)

Thus, a depositor’s withdrawal decision is characterized by the pair of thresholds

{s∗, θ∗}, which solves the following system of equations:

Rθ∗
(

1− n(θ∗, s∗)r1

L

)
− (1− n(θ∗, s∗))r2 = 0, (17)

r2Pr(θ > θ∗|s∗) = ωr1Pr(θ > θn|s∗), (18)

where θn = s∗ + ε− 2ε L
r1

is the solution to n(θ, s∗) r1 = L.

Condition (17) identifies the level of fundamentals θ at which the bank is just

able to repay the promised repayment to non-withdrawing depositors. Hence, it

pins down the cutoff θ∗. Condition (18), instead, states that at the signal threshold

s∗ a depositor is indifferent between withdrawing at t = 1 and waiting until t = 2,

since the expected payoff at t = 2, as captured by the LHS in (18), is equal to the
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expected t = 1 payoff, which is captured by the RHS in (18). Hence, given θ∗ from

(17), it pins down the threshold signal s∗. Note that the payoff at t = 1 is received

whenever the bank is liquid, while the payoff at t = 2 is received whenever the

bank is solvent. Differentiating the LHS of (17) with respect to θ, we obtain

R

(
1− n(θ, s∗)r1

L

)
− ∂n(θ, s∗)

∂θ

[
Rθ

r1

L
− r2

]
> 0, (19)

for any θ > θ since r1 > L and ∂n(θ,s∗)
∂θ

≤ 0. Taking the derivative of (17)

with respect to n(.), we obtain −Rθ r1
L

+ r2 < 0 for any θ > θ because r1 > L.

Overall, this implies that the LHS in (17) monotonically increases with θ and

the signal si and so it does the LHS in (18). Furthermore, rearranging (17) as

Rθ∗− r2− n(θ∗, s∗)
[
Rθ∗ r1

L
− r2

]
= 0, it follows that (17) is negative at θ = θ and

positive at θ = θ. Using (18), this means that at θ = θ, a depositor expects to

receive 0 when waiting and thus strictly prefers to withdraw. At θ = θ such that

the LHS in (17) is strictly positive, a depositor expects to receive r2 > ω r1 when

waiting. Since ωr1 exceeds the RHS in (18), it follows that, at θ = θ, a depositor

strictly prefer not to withdraw.

Overall, the analysis above implies that θ < θ∗ < θ and analogously that

the threshold signal s∗ falls within the range
(
θ + ε, θ − ε

)
. Given that θ > 0 and

θ → 1, it follows that the equilibrium pair {θ∗, s∗} falls in the range (0, 1).

To obtain a closed-form expression, we perform a change of variable using

(16) from which we obtain θ(n) = s∗ + ε(1 − 2n). At the limit, when ε → 0,

θ(n) = s∗, which identifies the run threshold and it is equal to the solution to

∫ n̂(θ∗)

0

r2dn =

∫ n

0

ωr1 dn⇒ n̂ (θ∗) r2 = ωL. (20)

Solving for θ∗ yields the closed-form expression as stated in the proposition. And

θ∗ > θ directly follows from L < 1 ≤ r1.

Comparative statics. To complete the proof, we study how bank fragility θ∗

changes with deposit rates r1 and r2, as well as CBDC remuneration ω, liquidation
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value L, and the investment profitability R. We have the following:

∂θ∗

∂r1

=
ωθ∗

(r2 − ωr1)
> 0, (21)

∂θ∗

∂r2

=
1

R

r2 − ωL
r2 − ωr1

− θω(r1 − L)

(r2 − ωr1)2
=
r2

2 − 2ωr1r2 + ω2Lr1

R(r2 − ωr1)2
, (22)

∂θ∗

∂ω
= θ

r2(r1 − L)

(r2 − ωr1)2
> 0,

∂θ∗

∂L
= − ωθ

r2 − ωr1

< 0,
∂θ∗

∂R
= −θ

∗

R
< 0, (23)

(24)

where we used r1 > L and r2 > ωr1.

To establish the sign of ∂θ∗

∂r2
, we need to determine the sign of the numerator

since the denominator is positive. The numerator is negative whenever rA2 <

r2 < rB2 , where rA2 and rB2 denote the roots of the associated quadratic equation

r2
2− 2ωr1r2 +ω2Lr1 = 0 since ∆ = 4ω2r2

1− 4ω2L > 0. The two roots are equal to:

r
A/B
2 = ωr1

(
1±

√
1− L

r1

)
. (25)

The smaller root rA2 is inadmissible as it implies r2 < ωr1, a contradiction. Thus,

only the bigger root rB2 > ωr1 is admissible. Since this value is the maximum

of the relevant deposit rates considered by the bank, as we will show shortly, we

label it rmax2 ≡ rB2 . To summarize, ∂θ∗
∂r2

< 0 if r2 < rmax2 and ∂θ∗

∂r2
> 0 if r2 > rmax2 .

B Proof of Proposition 2

A higher short-term deposit rate r1 increases fragility (Proposition 1), so it reduces

expected bank profits because the bank is solvent less often, ∂Π
∂r1

= (Rθ∗−r2)∂θ
∗

∂r1
<

0. A higher short-term deposit rate also tightens the participation constraint of

consumers because they are repaid less often, ∂V
∂r1

= −r2
∂θ∗

∂r1
< 0. Thus, r∗1 = 1.

The proof of the remaining claims is in several steps. We first derive sufficient

conditions for the participation constraint of consumers to bind in equilibrium.

Then, we derive comparative statics of the equilibrium deposit rate. But first, we
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state some second-derivatives (evaluated at r∗1) that are useful in the next steps:

∂θ∗

∂r2

=
(r2 − ω)2 − ω2(1− L)

R(r2 − ω)2
=

1

R
− ω2(1− L)

R(r2 − ω)2
, (26)

∂2θ∗

∂ω∂r2

= −2(1− L)ωr2

R(r2 − ω)3
< 0, (27)

∂2θ∗

∂r2
2

=
2(1− L)ω2

R(r2 − ω)3
> 0. (28)

B.1 Binding participation constraint of consumers

Step 1: We derive bounds on the deposit rate chosen by the bank. A profit-

maximizing bank never chooses a rate that entails θ∗ = 1. If a run is certain, the

bank is certain to make zero (expected) profits. As a result, the bank chooses

r2 > rmin2 where rmin2 solves θ∗(rmin2 ) ≡ 1, yielding an expression for the lower

bound on the deposit rate:

rmin2 =
R + ωL

2
−

√(
R + ωL

2

)2

−Rω. (29)

We have shown in Proposition 1 that bank fragility decreases in the long-

term deposit rate as long as r2 < rmax2 . We now impose constraints on parameters

to ensure that the participation constraint of consumers is slack at r2 = rmax2 ,

that is V (rmax2 ) > 0. Note that θ∗(rmax2 ) = ω
R

(
1 +
√

1− L
)2 and V (rmax2 ) =

ω
(
1 +
√

1− L
)
− ω2

R

(
1 +
√

1− L
)3−ω2, resulting in a lower bound on investment

profitability:

R > R1 ≡
ω
(
1 +
√

1− L
)3

1 +
√

1− L− ω
. (30)

An upper bound on CBDC remuneration ensures that the denominator of R1 is

always positive:

ω < ω̃ ≡ 1 +
√

1− L. (31)

Note that rmin2 < rmax2 < 1, which justifies our labels, and ensures that the

bank does not always fail, θ∗(rmax2 ) < 1, the economically interesting case.
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Step 2: We can write marginal bank profits as

dΠ

dr2

≡ −∂θ
∗

∂r2

(Rθ∗ − r2)−
∫ 1

θ∗
dθ. (32)

Since (Rθ∗ − r2) = r2ω
(r1−L)
r2−ωr1 > 0 and 1− θ∗ > 0 (given the bounds on r2) as well

as the parameter constraints ensuring that higher long-term deposit rates reduce

bank fragility, there is a non-trivial trade-off for the bank: higher long-term deposit

rates make the bank more stable but also reduce its profit margin.

Evaluating marginal profits at r2 = rmax
2 (where, by definition, ∂θ∗

∂r2
= 0),

gives dΠ
dr2

< 0. Moreover, ∂Π
∂r2

< 0 for all r2 > rmax2 . Thus, the bank chooses a

deposit rate r2 < rmax2 if feasible (i.e. if the participation constraint of consumers

holds). Given the parameter constraints on investment profitability and CBDC

remuneration (see step 1), the participation constraint is indeed slack, so the bank

chooses a rate r∗2 < rmax2 (establishing an upper bound on the deposit rate).

Similarly, evaluating at r2 = rmin
2 (where, by definition, θ∗ = 1) gives dΠ

dr2
> 0.

Furthermore, at r2 = rmin
2 , we also have V < 0 (i.e. the participation constraint is

violated), so the bank always chooses a higher deposit rate, r∗2 > rmin
2 (establishing

a lower bound on the deposit rate).

Step 3: Next, we show that expected bank profits Π are globally concave.

As a result, the unconstrained choice of deposit rate that ignores the participation

constraint of consumers, denoted by rΠ
2 and solving dΠ

dr2
≡ 0, is unique. To establish

global concavity, we show that the second-derivative is always negative:

d2Π

dr2
2

≡ −∂
2θ∗

∂r2
2

(Rθ∗ − r2)−
(
∂θ∗

∂r2

)2

R + 2
∂θ∗

∂r2

< 0,

because ∂θ∗

∂r2
< 0 and ∂2θ∗

∂r22
> 0.

Consider r˜2 = ω2, which solves the participation constraint investors in case

of no bank failure. Since the bank sometimes fails, θ∗ > 0, r˜2 is clearly a lower

bound on the value that solves the binding participation constraint, rPC2 > r˜2. This

bound is helpful in establishing sufficient conditions for the relevant equilibrium
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condition to be the binding participation constraint.

By global concavity of Π, a sufficient condition for rΠ
2 < r˜2 is

dΠ(r˜2)

dr2
< 0.

Intermediate results are θ∗(r˜2) = ω2(ω−L)
R(ω−1)

, Rθ∗(r˜2) − r˜2 = ω2(1−L)
ω−1

, and
∂θ∗(r˜2)

∂r2
=

ω2−2ω+L
R(ω−1)2

. Thus, we can express
dΠ(r˜2)

dr2
< 0 as a lower bound on profitability:

R > R2 ≡
ω2

ω − 1

[
− 1− L

(ω − 1)2

(
ω2 − 2ω + L

)
+ ω − L

]
= ω2

(
1 +

(1− L)2

(ω − 1)3

)
.

(33)

As a result, we have shown that rPC2 > rΠ
2 . Finally, we verify that r˜2 ≥ rmin2 .

Rewriting θ∗(r˜2) < 1 yields another lower bound on profitability:

R > R3 ≡
ω2(ω − L)

ω − 1
. (34)

Since ω < ω̃, which implies ω2 − 2ω + L < 0, we can rank these bounds R2 > R3.

Thus, we can drop the bound R3. Taking stock, we define R˜ as the largest of all

lower bounds on the investment returns (see below for the definition).

B.2 Existence of a unique deposit rate, comparative statics

Having established that the deposit rate r∗2 corresponds to the solution to the

binding participation constraint, we next prove its existence and uniqueness.

Recall that the net value of the deposit claim is V =
∫ 1

θ∗
r2 dθ − ω2. So,

V (r∗2) ≡ 0. Note that V (rmin2 ) = −ω2 < 0 and V (rmax2 ) > 0 given the parameter

constraints on R and ω. Differentiating V with respect to r2, we obtain

dV

dr2

= −∂θ
∗

∂r2

r2 + (1− θ∗) > 0, (35)

so a higher (long-term) deposit rate increases the value of the deposit claim for

two reasons: consumers receive a high payment in the absence of a bank run and

the bank is less fragile (Proposition 1). Given the monotonicity of V in r2 and its

change of signs from the bound rmin2 to rmax2 , a solution for r∗2 exists and is unique.

Next, we study the comparative statics of r∗2. First, consider CBDC remu-
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neration ω, using the implicit function theorem, dr2
dω

= −
∂V
∂ω
∂V
∂r2

. The denominator is

positive, as shown in Condition (35). Hence, the sign of dr2
dω

is the opposite of the

sign of the numerator:
∂V

∂ω
= −2ω − ∂θ∗

∂ω
r2 < 0. (36)

It follows that r2 monotonically increases in CBDC remuneration ω:

dr∗2
dω

=
2ω + ∂θ∗

∂ω
r2

1− θ∗ − ∂θ∗

∂r2
r2

> 0. (37)

Finally, we derive the comparative statics of the equilibrium deposit rate with

respect to investment characteristics. Using the implicit function theorem again,

the results dr∗2
dL

< 0 and dr∗2
dR

< 0 follow from ∂V
∂L

= −r2
∂θ∗

∂L
> 0 and ∂V

∂R
= −r2

∂θ∗

∂R
> 0.

C Proof of Lemma 1 and Proposition 3

We first prove the lemma and then the proposition. Using the expression for dr2
dω

in Equation (37), we expand the expression for dθ∗

dω
:

dθ∗

dω
=

∂θ∗

∂ω
+
∂θ∗

∂r2

dr∗2
dω

=
∂θ∗

∂ω
+
∂θ∗

∂r2

2ω + ∂θ∗

∂ω
r∗2

1− θ∗ − r∗2 ∂θ
∗

∂r2

. (38)

Since the denominator of the second term is positive, we get dθ∗

dω
< 0 whenever

∂θ∗

∂ω

(
1− θ∗ − r∗2 ∂θ

∗

∂r2

)
+ ∂θ∗

∂r2

(
2ω + ∂θ∗

∂ω
r∗2
)
< 0. This inequality simplifies to

∂θ∗

∂ω
(1− θ∗) + 2ω

∂θ∗

∂r2

< 0. (39)

Using the equilibrium deposit rate to replace 1− θ∗ = ω2

r∗2
and the fact that ∂θ∗

∂r2
=

1
r2

[
θ∗ − ω ∂θ∗

∂ω

]
, we can re-express this condition as:

θ∗ + r∗2
∂θ∗

∂r2

< 0, (40)

which has the intuitive interpretation of an elasticity. In particular, the elasticity

of the failure threshold with respect to deposit rate, η = − r∗2
θ∗
∂θ∗

∂r2
, has to exceed 1
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for the indirect effect to dominate and thus dθ∗

dω
< 0, where r∗2 solves V (r∗2) = 0.

Using 1−θ∗ = ω2

r∗2
to rewrite Condition (39) yields ω ∂θ∗

∂ω
+2r2

∂θ∗

∂r2
< 0. Inserting

the expressions for the partial derivatives dividing by the positive common term
r∗2

R(r∗2−ω)2
, we obtain η > 1 if and only if ωr∗2(1 − L) + 2 [(r∗2)2 − 2ωr∗2 + ω2L] < 0.

Rewriting yields the following condition with a quadratic term:

h(r∗2, ω) ≡ (r∗2)2 − 3 + L

2
ωr∗2 + ω2L < 0. (41)

We turn to the proof of the proposition. First, we determine whether dθ∗

dω
< 0 when

evaluated at ω = 1 is possible. Using condition (41), this boils down to (r∗2)2 −
3+L

2
r∗2 +L < 0. Thus, we can find the roots rC2 ≡ ω

4

(
3 + L−

√
L2 − 10L+ 9

)
and

rD2 ≡ ω
4

(
3 + L+

√
L2 − 10L+ 9

)
such that h < 0 if and only if rC2 < r∗2 < rD2 .

Since rC2 < ω is inadmissible, rD2 is the relevant root, which is independent of R.

Second, we impose parameter constraints to ensure rD2 ∈ (rmin2 , rmax2 ). Using

the expression for rmax2 as given in (25) and evaluating it at r1 = 1 and ω = 1,

rD2 < rmax2 can be expressed as 1−L
4

+
√

1− L > 1
4

√
L2 − 10L+ 9. Squaring and

rewriting yields 8(1−L)(1+
√

1− L) > 0, which always holds for L < 1. Moreover,

for rD2 > rmin2 to hold at ω = 1, it suffices to show that θ∗(ω = 1, r2 = rD2 ) < 1.

This yields another lower bound on profitability:

R > R4 ≡
rD2 (rD2 − L)

rD2 − 1
. (42)

Third, r∗2 decreases in R, while rD2 is independent of it. Thus, there exists

a critical value, R5, such that r∗2 < rD2 for all R > R5. Importantly, R5 < ∞.

One can easily show that rD2 > 1 > L because
√
L2 − 10L+ 9 > 1 − L can be

rearranged by squaring to 8(1 − L) > 0. By contrast, r∗2 → 1 for R → ∞ since

θ∗ → 0 and thus r∗2 → 1 for a given L < 1 and ω = 1.

The reader may notice that the bound R2 characterized in the proof of

Proposition 2 converges to ∞ as ω → 1, thus becoming the binding bound on

profitability. However, it is important to stress that this simple sufficient condition

is quite restrictive. In fact, the numerical example in the main text shows that
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our results also hold for much lower levels of the investment profitability R.

Fourth, we show that dθ∗

dω
> 0 for large ω. Recall that dr∗2

dω
> 0 and r∗2 < rmax2 .

Then, we can denote ωmax such that r∗2 → rmax2 when ω → ωmax. In this limit,

Condition (40) is violated because ∂θ∗

∂r2
→ 0 when r2 → rmax2 . Thus, dθ∗

dω
> 0.

Note that ωmax < ω̃. To see this, recall that (i) R1 = +∞ at ω = ω̃ and (ii)

R1 <∞ for any ω < ω̃. That is, for any ω < ω̃, there exists a finite R1 such that

the participation constraint binds exactly at r2 = rmax2 . Hence, ∂R1

∂ω
> 0 implies

that there exists an ω < ω̃ and R > R1 for which r∗2 = rmax2 . We denote it as

ωmax.

Taken these steps together, we have dθ∗

dω
> 0
∣∣
ω=1

< 0 and dθ∗

dω

∣∣
ωmax

> 0.

Hence, there is at least a value of ω, denoted as ωmin, at which θ∗ is minimized.

Fifth, we show that ωmin is unique. The value ωmin solves h(r∗2, ωmin) = 0,

where h(r2, ω) is given in (41). Since r∗2 is a function of ω, h(r2(ω), ω) is a poly-

nomial where ω is the main variable. The degree of the polynomial determines

the number of possible values ωmin. Since dθ∗

dω

∣∣
ω=1

< 0 and dθ∗

dω

∣∣
ω̃
> 0, the num-

ber of solutions ωmin must be odd. To determine the degree of the polynomial

h(r2(ω), ω), it is useful to characterize a closed-form solution for r∗2. Since r∗2 solves

V (r∗2, ω) = 0 given in (7). Substituting the expression for θ∗ from (4), we obtain:

r3
2 − r2

2(R + ωL) + r2Rω(ω + 1)−Rω3 = 0. (43)

Equation (43) has three roots, which solve the corresponding depressed cubic

equation

y3 + Py +Q = 0, (44)

where y = r2−R+ωL
3

, P = 3Rω(1+ω)−(R+ωL)2

3
andQ = −2(R+ωL)3+9(R+ωL)Rω(ω+1)−27Rω3

27
.

We focus on parameters such that 4P 3 + 27Q2 > 0. Thus, there is only one real

root:

y =
3

√
−Q

2
+

√
Q2

4
+
P 3

27
+

3

√
−Q

2
−
√
Q2

4
+
P 3

27
. (45)

The expression pinning down y and, in turn, r∗2 is a function of ω. One can show
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that ω only appears at a power of 1. This implies that h(r2(ω), ω) has at most two

roots, of which only one can be in the range 1 < ω < ω̃. Since the derivative is

initially negative and eventually positive, there must be an odd number of crossings

with zero within [1, ω̃]. Hence, ωmin is unique.

D Proof of Proposition 4

The introduction of holding limits affects consumers’ decisions at t = 0 and t = 1.

At t = 0, holding limits changes the consumers’ participation constraint to:∫ 1

θ∗
r2 dθ ≥ (ωHL)2 = [1 + γ(ω − 1)]2 . (46)

The left-hand side is the value of the deposit claim to the consumer (unchanged

relative to the main text). The right-hand side is the expected return of holding

CBDC, which differs from the main text because only a fraction γ of funds can be

held in CBDC. At t = 0 an consumer invests γ in CBDC and 1−γ in storage/cash.

At t = 1, the initial investment returns ω on the γ units, whose a fraction γ is

held in the CBDC account while the remainder is held in storage/cash. Thus, the

analysis in the main text is a special case for no holding limits, ωHL(γ = 1) = ω.

At t = 1, holding limits only affects a depositor’s expected payoff from with-

drawing, r1ω
HL, so they have the intended effect of directly reducing withdrawal

incentives by lowering the remuneration of the withdrawn funds stored until t = 2.

Thus, the effective CBDC remuneration with holding limits is ωHL ≡ 1+γ(ω−1).

Once this transformation is made, the economy is identical to the one without

holding limits with the only difference that ω is replaced by ωHL.

The bank run threshold is θ∗γ = r2
R
r2−LωHL
r2−r1ωHL , where θ

∗
γ increases in γ because

∂θ∗γ
∂γ

= r2
R

r2(ω−1)(r1−L)
(r2−r1(1+γ(ω−1)))2

> 0 whenever ω > 1. This result captures the “common

wisdom” about holding limits: introducing them (i.e., setting γ < 1) reduces bank

fragility, effectively mitigating the direct effect of CBDC remuneration on fragility.

However, the introduction of holding limits also affects the sensitivity of
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the run threshold to changes in r2, thus leading to a potential ambiguous effect

on fragility when banks respond to the introduction of CBDC. The derivative of

the threshold θ∗γ with respect to r2 is now a function of γ and equal to ∂θ∗γ
∂r2

=
θ∗γ
r2
− r2

R
(r1−L)ωHL

(r2−r1ωHL)2
. Hence, the total effect of holding limits on bank fragility is

thus not obvious and again depends on both a direct effect (via lower withdrawal

incentives) and an indirect effect (via equilibrium deposit rates).

E Proof of Propositions 5 and 6

There is no change in the investment technology or information relative to the

main text. Investment risk is aggregate, so there is no scope for diversification.

Thus, withdrawal stage at t = 1 is unchanged and bank j’s failure threshold is

θ∗j = θ∗(r1j, r2j), as given in Proposition 1.

Let ρj = ρ(r1j, r2j) denote the expected return of a deposit claim on bank j

(before transport costs). Because of bankruptcy costs, we can write and obtain:

ρj = r2j(1− θ∗j ) (47)
dρj
dr1j

= −r2j

∂θ∗j
∂r1j

< 0 (48)

dρj
dr2j

= 1− θ∗j − r2j

∂θ∗j
∂r2j

> 0. (49)

Let πj denote the profit of bank j per unit of deposits. Thus,

πj =

∫ 1

θ∗j

(Rθ − r2j) dθ (50)

dπj
dr1j

= −
(
Rθ∗j − r2j

) ∂θ∗j
∂r1j

< 0 (51)

dπj
dr2j

= −(1− θ∗j )−
(
Rθ∗j − r2j

) ∂θ∗j
∂r2j

< 0, (52)

where the sign on the final derivative arises because the effect of higher deposit

rates on a bank’s profit margin dominates the effect of higher deposit rates on

increased bank stability (see also the proof of Proposition 2). Moreover, a unique
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solution r∗2j exists because Πj is globally concave due to ∂2hj
∂r22j

< 0 and ∂2pij
∂r22j

< 0.

Let djk the distance of consumer k to bank j. We assume that the com-

petition between banks is fierce enough such that the deposit rates offered in-

duce consumers to always prefer bank deposits over CBDC at t = 0. That is,

ρj−µdjk ≥ ω2 for all consumers, where djk ≤ 1
2N

. Since the market is covered, we

can focus on the two banks nearest to k, whose distance is dk and 1
N
− dk because

banks are equidistant on the unit circle. Hence, the location at which consumer k

is indifferent between either bank is d∗k = ρj−ρ−j
2µ

+ 1
2N

, where ρ−j is the expected

return to consumers offered by bank −j. Total deposit funding comes from both

sides relative to a bank’s location, so

h∗j =
ρj − ρ−j

µ
+

1

N
, (53)

Thus, dhj
dρj

= 1
µ
, so offering a higher expected return attracts more deposits. More-

over, in symmetric equilibrium, h∗j = 1
N

for each bank.

Perfect competition. We next study the case of perfect competition, N →∞.

It implies that (i) the transport costs for consumers vanish and (ii) each bank

maximizes the the expected return of its deposit claim ρ subject to non-negative

profits, π ≥ 0. Our approach will be to consider the unconstrained problem and

then derive a condition sufficient for bank profits to be indeed non-negative. The

first-order condition pins down the equilibrium deposit rate r∗2:

H(r∗2) ≡ dρ

dr2

∣∣∣∣
r2=r∗2

= 0 (54)

Since H(rmax2 ) > 0, we deduct that rmax2 < r∗2 and fragility increases in the deposit

rate around the equilibrium, ∂θ∗

∂r2

∣∣∣
r2=r∗2

> 0. Since

∂H

∂r2

≡ −2
∂θ∗

∂r2

− r2
∂2θ∗

∂r2
2

< 0, (55)
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a unique global maximum exists. Using the IFT and

∂H

∂ω
≡ −∂θ

∗

∂ω
− r2

∂2θ∗

∂r2∂ω
, (56)

we obtain
dr∗2
dω

=
∂θ∗

∂ω
+ r2

∂2θ∗

∂r2∂ω

−2∂θ
∗

∂r2
− r2

∂2θ∗

∂r22

. (57)

Using the total derivative of bank fragility, dθ∗

dω
= ∂θ∗

∂ω
+ ∂θ∗

∂r2

dr∗2
dω

, we obtain dθ∗

dω
> 0

(after some rearrangement) whenever −∂θ∗

∂ω
∂θ∗

∂r2
− r2

∂θ∗

∂ω
∂2θ∗

∂r22
+ r2

∂θ∗

∂r2
∂2θ∗

∂r2∂ω
< 0, which

always holds given the signs of the various partial derivatives already established.

Finally, we need to establish that π(r∗2) ≥ 0. Note that expected profits can

be written as π = (1 − θ∗)
[
R
2

(1 + θ∗(r2))− r2

]
, where the first-order condition,

1−θ∗ = r2
∂θ∗

∂r2
> 0 pins down r∗2 and ensures that the first factor is strictly positive.

The second factor is also positive because r∗2 ∈ (ω,R) and the following result:

R

2
(1 + θ∗)− r2 =

R

2
+
r2(r2 − ωL)

2(r2 − ω)
− r2 =

R− r2

2
+
r2

2

ω(1− L)

r2 − ω
> 0, (58)

so expected profits at the equilibrium deposit rate are strictly positive, π(r∗2) > 0.

F Proof of Proposition 7

This proof has three parts. First, we derive the run threshold. This part uses the

same argument as the proof of Proposition 1. The threshold θ∗q corresponds to the

solution to ∫ n̂(θ)

0

qr2dn =

∫ n

0

ωr1dn,

because the bank repays depositors r2 at t = 2 only when the project succeeds,

where both n̂ (θ) and n are independent of q and identical to the correspond-

ing cutoffs in the main text. Some algebra yields the threshold θ∗q stated in the
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proposition. Differentiating this threshold with respect to q and ω, we obtain:

∂θ∗q
∂q

=
r2

R

r2qr2 − r2ωr1 − qr2r2 + ωLr2

(qr2 − ωr1)2 = −r
2
2

R

ω (r1 − L)

(qr2 − ωr1)2 < 0, (59)

∂θ∗q
∂ω

=
r2

R

−Lqr2 + Lωr1 + qr2r1 − ωLr1

(qr2 − ωr1)2 =
r2

R

qr2 (r1 − L)

(qr2 − ωr1)2 > 0. (60)

Second, we solve for the bank’s choice at t = 0. Differentiating the expected

profits (13) with respect to q, we obtain Equation (14). A high enough c ensures

that the solution q∗ is interior and unique (because SOCq < 0 for high c).

Third, and finally, we study how an increase in CBDC remuneration affects

financial stability. Note that the monitoring effort q∗ directly depends on CBDC

remuneration. Formally, the overall effect of a change in CBDC remuneration on

bank monitoring effort can be expressed as follows (because of the IFT):

∂q∗

∂ω
= −

∂FOCq
∂ω

SOCq
. (61)

Since SOCq < 0, the sign of dq∗

dω
is equal to the sign of ∂FOCq

∂ω
, which is equal to

∂FOCq
∂ω

= −∂θ
∗
s

∂ω
(Rθ∗s − r2)− q∂θ

∗
s

∂q

∂θ∗s
∂ω

R− q ∂
2θ∗s

∂q∂ω
(Rθ∗s − r2)

= −
[
∂θ∗s
∂ω

+ q
∂2θ∗s
∂q∂ω

]
(Rθ∗s − r2)− q∂θ

∗
s

∂q

∂θ∗s
∂ω

R

= −
[
∂θ∗s
∂ω

+ q
∂2θ∗s
∂q∂ω

]
(Rθ∗s − r2) + ω

(
∂θ∗s
∂ω

)2

R,

where

∂2θ∗s
∂q∂ω

= −r
2
2

R
(1− L)

(qr2 − ω)2 + 2ω (qr2 − ω)

(qr2 − ω)4 = −r
2
2

R
(1− L)

qr2 + ω

(qr2 − ω)3 < 0

= −∂θ
∗
s

∂ω
− 2ω

qr2
2

R

(1− L)

(qr2 − ω)3 .

Substituting the expressions for θ∗s ,
∂θ∗s
∂ω
, ∂

2θ∗s
∂q∂ω

, and ∂θ∗s
∂q

, we obtain

∂FOCq
∂ω

= 2ω
qr2

2

R

(1− L)

(qr2 − ω)3 (Rθ∗s − r2) + ω

(
∂θ∗s
∂ω

)2

R > 0,
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which implies, in turn, that dq∗

dω
> 0.

Finally, we move on to the total effect of CBDC remuneration on bank

fragility:
dθ∗

dω
=
∂θ∗

∂ω

[
1− ω

q

dq∗

dω

]
> 0, (62)

where the sign arises because one can show that

[
1− ω

q

dq∗

dω

]
= 1 +

ω

q

∂2

(
q
∫ 1
r2
R
qr2−ωL
qr2−ω

(Rθ−r2)dθ− cq2

2

)
∂q∂ω

∂2

(
q
∫ 1
r2
R
qr2−ωL
qr2−ω

(Rθ−r2)dθ− cq2

2

)
∂q2

> 0.

G Proof of Proposition 8

Consider the limit L→ 1. Note that r∗1 = 1 continues to hold and the fundamental

run threshold continues to be θ = r2
R
, irrespective of CBDC remuneration ω.

However, the fundamental run threshold becomes our measure of bank instability.

The banker’s expected profit is Π =
∫ 1

θ
(Rθ−r2)dθ, which is also irrespective

of CBDC remuneration ω. Thus, dΠ
dr2

< 0 and the banker chooses the lowest feasible

level of r2. This level is pinned down by the consumers participation constraint:

VF ≡ r2(1− θ)− ω2 ≥ 0, (63)

where VF is the value of the deposit claim in the case of fundamental runs only.

CBDC remuneration affects the bank’s problem only via the participation con-

straint (but no longer via the failure threshold).

The value of the deposit claim increases in r2, dVF
dr2

> 0, as long as r2 <
R
2
.

Supposing r2 <
R
2
for now, solving for the smallest root yields

r∗2 =
R

2
−

√(
R

2

)2

−Rω2, (64)
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which confirms the supposition, r∗2 <
R
2
. To ensure a non-negative radicand, we

assume

R ≥ R6 ≡ 4ω2. (65)

Since R˜ collects the lower bounds on investment profitability, we define:

R˜ ≡ max{R1, R2, R4, R5, R6}. (66)

In equilibrium, the relevant measure of bank instability is r∗2
R
. Thus, any change

in deposit rates directly changes bank instability. In particular, higher CBDC

remuneration increases deposit rates (as in the main text) but now also increases

bank instability:
dr2

dω
=

Rω√
R2

4
−Rω2

> 0. (67)
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