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Abstract

This paper offers a unified explanation of four prominent features of behavioral eco-

nomics: reference dependence, loss aversion, concave utilities for gains, and convex

utilities for losses. In this account, an agent chooses an alternative over the status

quo only if each of the agent’s candidate preferences approves the change. The set of

candidates must be rich enough to include, for any subset of goods, (1) preferences that

are more favorable to these goods than the other candidates and (2) preferences that

are less favorable. Greater favorability towards a good obtains when the good’s mar-

ginal rate of substitution relative to other goods is greater and diminishes less rapidly.

Existing explanations of the same behavioral phenomena need to invoke several differ-

ent psychological mechanisms and posit unobservable preferences.
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1 Introduction

Utility functions in prospect theory and related behavioral models display four distinct fea-

tures. The first is reference dependence: utility either for a prize in a lottery or for a good

consumed with certainty is defined relative to the reference or status quo point. The second

is loss aversion: the marginal value of gains is smaller than the marginal value of losses.

The third and fourth impose an asymmetric reflection effect on the curvature of utility: the

value of gains relative to the reference point is concave while the value of losses is convex.

See Figure 1 and Kahneman and Tversky (1979, 1984) and Tversky and Kahneman (1991).

These features explain several hallmarks of behavioral economics: (a) the framing effects

that stem from reference dependence; (b) the status quo bias and endowment effects that

accompany loss aversion, for example, the willingness-to-accept—willingness-to-pay disparity;

(c) risk-seeking for losses; and (d) risk-aversion for gains.1

Figure 1: The prospect theory value function

A drawback of the four features of utility is that they appear to require four independent

1For early work on the theory and evidence for status quo bias, the endowment effect, and reference
dependence, see Thaler (1980), Knetch and Sinden (1984, 1987), Samuelson and Zeckhauser (1988), Knetsch
(1989), Kahneman et al. (1990)), Gul (1991), Sugden (2003), Köbberling and Wakker (2005), and Kőszegi
and Rabin (2006). The WTA-WTP disparity was first identified in the theory of contingent valuation (see
Carson (1997), Hammack and Brown (1974), and Hausman (1993)).
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psychological mechanisms. This paper grounds the four features in a single mechanism,

the partial judgments of an agent who is not sure how to evaluate consumption options.

The agent will be endowed with a diverse set of evaluations or preferences and accepts an

alternative to a reference or status quo point only when all of the evaluations recommend the

change. The agent’s worst-case analysis of the alternative will be decisive: if the worst-case

evaluation of the change in each good’s consumption, summed across goods, recommends the

alternative then so will any other combination of evaluations. This focus on the worst case

leads the agent to apply high-marginal utility evaluations to losses of a good and low-marginal

utility evaluations to gains. Both loss aversion and reference dependence then appear even

though the agent does not view losses to have greater intrinsic significance than gains. A

similar asymmetry arises in the utility curvature of gains and losses: the concave utilities

are worst-case for gains since marginal utility then falls further and the convex utilities are

for similar reasons worst-case for losses. The four features of utility can therefore emerge

as an endogenous and rational consequence of an agent’s diversity of evaluations.2

A single family of evaluations will generate these properties of utility for all values of the

decision-maker’s reference point. Since the same set of preferences will govern the agent’s

decisions as the reference point changes, the model can assess an agent’s welfare through

time and make falsifiable predictions.3 The transitivity of preferences, for example, can be

checked. The alternative of assuming a distinct and complete set of preferences for every

reference point, as in prospect theory, posits preference judgments that are diffi cult and

sometimes impossible to observe and cannot make welfare comparisons.

Both the present account and the behavioral concepts of prospect theory try to explain

a common set of decision-making regularities by departing from the classical model of ratio-

nality. The departure in this paper however is limited to just one point, the replacement of

one evaluation with a set of evaluations. It is this feature that allows the theory to share

some of the observational and welfare advantages of the classical model.

The decision-maker’s diversity of evaluations will formally be a set of ‘candidate pref-

erences’over state-contingent or traditional goods. Given the unanimity rule that every

2Mandler (2004, 2005) gives a compatible explanation of the endowment effect and the WTA-WTP
disparity though not of loss aversion, concavity for gains, or convexity for losses.

3The door is therefore open to behavioral welfare economics à la Bernheim and Rangel (2007, 2009).
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candidate preference must approve a change, the agent will not be able to rank some pairs

of alternatives; the preferences that result will therefore be incomplete as in Bewley (1986)

where each candidate preference stems from a probability distribution. The incomplete-

ness is mainly an advantage. When the agent’s status quo consumption forms the agent’s

reference point, the model will not need to postulate an unobservable preference between

non-status quo alternatives; instead the agent acts ‘as if’the status quo is preferred.

The candidate preferences will satisfy assumptions that I pose initially using utility rep-

resentations. The agent will specify, for each state s, a set of utilities for a good (or money)

to be delivered at s, and each candidate preference is formed by a draw from these sets.

The utilities for the good delivered at some s can be partially ordered by how favorably the

functions evaluate the good: define utility U to be more optimistic than V if and only if U

has greater marginal utility at 0 than V and V is more concave than U .4 The utility U thus

begins with greater marginal utility than V and U’s marginal utility advantage thereafter

can only become greater; for U increments of a good and risks are more appealing. The

‘more optimistic than’label applies most straightforwardly to an agent who is unsure ex ante

how desirable a good is; but it can also be read as shorthand for more favorable attitudes

held with certainty.

The key assumption will be that the sets of utilities for goods at individual states are

diverse in the sense that they include utility functions that are greatest and least according to

the more-optimistic-than ordering. The worst-case utility function for increases in a good

will then be the most concave utility with the smallest baseline marginal utility and the

worst-case for decreases will be the most convex utility with the greatest baseline marginal

utility. Since the unanimity (Pareto) aggregation of the agent’s candidate preferences is

driven by the worst-case utilities, the preference that emerges will be represented by utilities

for gains and losses of a good that satisfy concavity for gains, convexity for losses, and loss

aversion.

After the next section, which gives the utility version of the main result, I turn to a model

of choice over uncertain acts that imposes assumptions on preferences. Although the same

4A function v is more concave than u if there is a concave transformation of u that generates v: see de
Finetti (1949), Pratt (1964), Debreu (1976).
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properties of utility will continue to hold, the switch from assumptions on marginal utilities

to marginal rates of substitution leads to a curious exception when there are exactly three

states of nature.

2 A two-good utility overview

Suppose, for concreteness, a decision-maker consumes just two goods, each delivered at a

separate state of nature. The goods can also be interpreted as traditional physical commodi-

ties. The agent begins with a reference point or status quo consumption x̄ = (x̄1, x̄2) � 0

and for i = 1, 2 has a utility ui for changes relative to x̄i of consumption at state i. A change

in consumption at state i must then lie in the interval [−x̄i,∞). A ui of the type used in

prospect theory satisfies the following properties.

Definition 1 The function ui is a behavioral value function if it is (1) strictly increasing

and continuous, (2) strictly concave on [0,∞), (3) strictly convex on [−x̄i, 0], and satisfies

(4) ui(0) = 0 and (5) D−ui(0) > D+ui(0).5

The concavity and convexity conditions (2) and (3) capture diminishing returns for gains

and increasing returns for losses, both relative to x̄i. The requirement in (5) that the left

derivative of ui at 0 is greater than the right derivative of ui at 0 entails loss aversion: the

marginal value of gains is strictly smaller than the marginal value of losses. Due to (2) and

(3), ui is left and right differentiable at 0 (we allow +∞ as a derivative) and hence (5) is a

well-defined requirement.

The total utility change induced by an alternative x = (x1, x2) will equal the sum u1(x1−

x̄1) +u2(x2− x̄2). A pair of behavioral value functions thus generates a reference-dependent

preference %x̄ over nonnegative bundles defined by

x %x̄ y ⇐⇒ u1(x1 − x̄1) + u2(x2 − x̄2) ≥ u1(y1 − x̄1) + u2(y2 − x̄2).

See Tversky-Kahneman (1991) for example. Preferences over lotteries, perhaps with quan-

tities of money as prizes, can be covered by interpreting ui(xi − x̄i) as the product of the
5If f is a function from A ⊂ R into R then D−f(x) and D+f(x) will denote, respectively, the left and

right derivatives of f evaluated at x.
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probability of a prize xi and its Bernoulli utility, e.g., ui(xi − x̄i) = πivi(xi). This inter-

pretation applies regardless of how probabilities are weighted, probability distributions are

transformed, or utilities are integrated. When y equals the reference point x̄, the preference

%x̄ approves a change from x̄ to x, or x %x̄ x̄, when u1(x1 − x̄1) + u2(x2 − x̄2) ≥ 0.

Preference theories based on behavioral value functions are open to two objections on

the grounds of parsimony. First, they invoke several different psychological mechanisms:

two different utility curvatures, a discontinuity in the marginal value of gains and losses,

and the reference dependence implied by letting choices be determined by gains and losses.

Second, a distinct preference relation will arise for each reference point x̄ and most of these

preferences will be unverifiable: when x̄ is an agent’s status quo holding, only the agent’s

choices between x̄ and other alternatives can be observed. It is even problematic to infer

that an agent who refuses to switch from x̄ to an alternative y prefers x̄, that is, to infer

x̄ %x̄ y: a refusal to switch may indicate inertia rather a preference judgment.
There is also no welfare connection among the %x̄. If an agent willingly moves from a

status quo x̄ to a new status quo y and then to a third option z, we do not know if the agent

is better or worse off with z than with x̄.

In the alternative theory in this paper a decision-maker has a fixed set of candidate

preferences or utilities and the agent prefers y over x̄ only when the candidates unanimously

endorse a move from x̄ to y. It will then be rational for the agent to evaluate a change in the

consumption of a good using the worst-case utility for that good. As we will see, the worst

case for a decrease in consumption will be the candidate utility function that is most convex

and with the greatest baseline marginal utility and hence the most willing to bear risk. For

an increase, the worst case will be the utility that is most concave and with the smallest

baseline marginal utility. This endogenous determination of the worst case will follow from

the unanimity rule, not because the pain of a loss is inherently more acute than the pleasure

of a gain. The set of candidate utilities moreover does not vary with the reference point;

one set of evaluations rules throughout.

To derive these results from candidate preferences and utilities that are as conventional

as possible, I will assume that each of the agent’s candidate utility functions for consumption

at state i will be a Ui : R+ → R that is strictly increasing and differentiable at 0. A utility
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Ui thus has the standard domain of all nonnegative bundles and I use a capital letter to

underscore the difference compared to ui.

Let Ui be the agent’s set of candidate utilities for consumption at state i and U ⊂ U1×U2

the agent’s set of candidate utility profiles, which will be fixed henceforth. The agent’s

unanimity or Pareto preference D is then given by x D y if and only if

U1(x1) + U2(x2) ≥ U1(y1) + U2(y2) for all (U1, U2) ∈ U .

Although D is incomplete, the incompleteness makes no practical difference for comparisons
between a status-quo reference point x̄ and an alternative y: if when x̄ and y are not ranked

by D the agent sticks with the status quo then the agent will act ‘as if’x̄ is preferred to y.
For decisions relative to the status quo, therefore, we could declare x̄ D y to hold whenever

y D x̄ fails to obtain. This partial completion of D would posit additional preference

judgments only at some of the junctures where prospect and similar theories take the same

step.

The model will hinge on the presence of utilities in Ui that are more optimistic or favorable

towards consumption at state i than the other functions in Ui and on utilities in Ui that are

more pessimistic. One utility function is considered more optimistic than another if its

marginal utility is greater and its marginal utility diminishes less rapidly. The concept

of ‘more concave than’ties these two requirements of optimism together: if U has greater

marginal utility at 0 than V and if V is more concave than U then V ’s marginal utility will

never catch up: it will remain smaller than U’s marginal utility at all consumption levels

greater than 0. (A function V : R+ → R is more concave than U : R+ → R if there exists

a strictly increasing and concave f : U(R+)→ R such that V = f ◦ U .) This more-concave

view of when marginal utility diminishes more rapidly enjoys the advantage that it does not

require U and V to be everywhere differentiable.

Greater optimism is represented by amore-optimistic-than partial orderR on the differentiable-

at-0 functions from R+ to R that is defined by:

URV ⇐⇒
(i) DU(0) ≥ DV (0), and

(ii) V is more concave than U
.

So when URV holds, U assigns higher marginal utility than V to a good at its lowest possible

consumption level and marginal utility thereafter can only become even greater for U than
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Figure 2: Optimistic and pessimisstic utility functions

for V . See Figure 2.

Assumptions For i = 1, 2,

1. Ui contains aR-greatest or ‘most optimistic’function and aR-least or ‘most pessimistic’

function, that is, a Uopt
i and Upess

i such that Uopt
i RUi and UiRU

pess
i for all Ui ∈ Ui,

2. Ui contains a strictly concave function and a strictly convex function, and

3. (Uopt
i , Upess

−i ) and (Upess
i , Uopt

−i ) are both elements of U .

Under Assumptions 1 and 2, Uopt
i must be strictly convex and Upess

i must be strictly

concave. For example, since due to 2 there is a strictly concave Ui ∈ Ui and, due to 1,

UiRU
pess
i , there exists a strictly increasing and concave f such that Upess

i = f ◦ Ui which

implies that Upess
i is strictly concave.

Assumptions 1 and 2 are cardinal: if they hold and a common increasing transformation

is applied to the functions in Ui then the assumptions will continue to hold only if the

transformation is affi ne. The diversity assumption of section 3.2 will provide an ordinal,

preference-based replacement.

Assumption 3 states that the set of candidate utility profiles U ⊂ U1×U2 is rich enough

to include the boundary profiles of utilities that are maximally optimistic towards one good
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Figure 3: The behavioral value function derived from Uopt
i and Upess

i

and maximally pessimistic towards the other good. Assumption 3 will be used only for the

less important part of the Theorem to come (‘only if’).

We will show that, regardless of how the reference point x̄ is set, the unanimity preference

D delivers the same predictions for decisions relative to x̄ as does a reference-dependent

preference %x̄ that is generated by a pair of behavioral value functions. The functions

that will do the job are derived from the extreme optimism and pessimism utilities given by

Assumption 1. Given a reference point x̄ � 0, define for each state i a behavioral value

function uB
i by

uB
i (∆xi) =

 Uopt
i (x̄i + ∆xi)− Uopt

i (x̄i) if − x̄i ≤ ∆xi < 0

Upess
i (x̄i + ∆xi)− Upess

i (x̄i) if ∆xi ≥ 0
.

See Figure 3. Since Uopt
i is strictly increasing and strictly convex and Upess

i is strictly in-

creasing and strictly concave, uB
i has the required continuity, increasingness, and concavity-

convexity properties. Moreover, our assumption that DUopt
i (0) ≥ DUpess

i (0), the strict con-

vexity of Uopt
i , and the strict concavity of Upess

i together imply that DUopt
i (x̄i) > DUpess

i (x̄i)

and hence D−uB
i (0) > D+u

B
i (0). So each uB

i is indeed a behavioral value function.
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Since, relative to the other candidate utilities, Uopt
i has the greatest marginal utility at 0

and is more convex, Uopt
i gives a more negative evaluation of reductions in xi than any other

candidate Ui ∈ Ui:

Uopt
i (x̄i + ∆xi)− Uopt

i (x̄i) ≤ Ui(x̄i + ∆xi)− Ui(x̄i) when ∆xi ≤ 0.

Similarly, since Upess
i has the smallest marginal utility at 0 and is more concave than the

agent’s other candidate utilities, Upess
i gives a more negative evaluation of increases in xi:

Upess
i (x̄i + ∆xi)− Upess

i (x̄i) ≤ Ui(x̄i + ∆xi)− Ui(x̄i) when ∆xi ≥ 0.

Now consider a consumption change, say ∆x1 ≤ 0 and ∆x2 ≥ 0 for concreteness, that is

approved by (uB
1 , u

B
2 ). That is, uB

1 (∆x1) + uB
2 (∆x2) ≥ 0 or equivalently

Uopt
1 (x̄i + ∆xi)− Uopt

1 (x̄i) + Upess
2 (x̄i + ∆xi)− Upess

2 (x̄i) ≥ 0.

It follows that all of the candidate utility pairs in U also approve the change:

U1(x̄i + ∆xi)− U1(x̄i) + U2(x̄i + ∆xi)− U2(x̄i) ≥ 0.

The change is therefore D or unanimity preferred. Conversely, since (Uopt
1 , Upess

2 ) and

(Upess
1 , Uopt

2 ) are both in U , any consumption change that is unanimity preferred must be

approved by (uB
1 , u

B
2 ). These arguments lead to the following result.

Theorem 1 For each reference point x̄� 0, there exist behavioral value functions (uB
1 , u

B
2 )

such that, for all ∆x ∈ [−x̄1,∞)× [−x̄2,∞),

x̄+ ∆x D x̄ if and only if uB
1 (∆x1) + uB

2 (∆x2) ≥ 0.

The proof of Theorem 1 is in the Appendix.

Theorem 1 implicitly compares the concision of a unanimity preference D and a pair of
behavioral value functions. The two theories have different advantages. If the reference

point is fixed, one pair of behavioral value functions —the (uB
1 , u

B
2 ) we have specified —can

represent all of the consumption changes that are approved by all of the utility pairs in U

and provides a succinct summary of the agent’s choices. But if the goal is a single account

that applies regardless of the reference point —perhaps to identify the agent’s intertemporal

welfare judgments —then the advantage shifts to the unanimity preference. One preference

then ties together all of the agent’s choices.
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3 Diverse preferences over uncertain acts

The analysis will now place assumptions on preferences over acts rather than on utilities and

allow arbitrarily many states or goods. After a preliminary on expected utility representa-

tions, I introduce orderings on preferences that define when an agent is more favorable or

optimistic towards consumption at one state relative to another state. As before, an agent

with a set of preferences makes decisions relative to a reference point using a unanimity rule,

and if the set of preferences is suffi ciently rich with respect to the optimism orderings, then

increases in goods will be evaluated by low-marginal utility concave utility functions and

decreases by high-marginal utility convex utility functions, leading to reference dependence,

loss aversion, and the reflection effect. Once again a single set of preferences will apply to

all reference points.

3.1 Classical preferences over acts

Let Ω = {1, ..., S} be a finite set of states with S ≥ 2. Any xs ∈ R+ is the good or prize

delivered at state s, for example a quantity of money. An act is therefore a (x1, ..., xS) ∈ RΩ
+.

An act can also be viewed as a bundle of traditional goods. The subjective probabilities

that the agent implicitly assigns to states will be unchanging; we can however accommodate

lotteries that can deliver quantities of money with finely-graded probabilities by letting S

be large.

Let % be a preference relation on RΩ
+ with asymmetric part � and symmetric part ∼.

A1. Weak order: % is complete and transitive.
A2. Independence: for all Θ ⊂ Ω, (xs)s∈Θ, (ys)s∈Θ ∈ RΘ

+, and (zs)s∈Ω\Θ, (z
′
s)s∈Ω\Θ ∈ RΩ\Θ

+ ,

((xs)s∈Θ, (zs)s∈Ω\Θ) % ((ys)s∈Θ, (zs)s∈Ω\Θ) if and only if

((xs)s∈Θ, (z
′
s)s∈Ω\Θ) % ((ys)s∈Θ, (z

′
s)s∈Ω\Θ).

A3. Continuity: for each x ∈ RΩ
+, the sets {y ∈ RΩ

+ : y � x} and {y ∈ RΩ
+ : x � y} are open

relative to RΩ
+.

A4. Monotonicity: for all x, y ∈ RΩ
+, if x ≥ y and x 6= y then x � y.
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The independence assumption A2 states that the preference relation on RΘ
+ induced by %

when the Ω \Θ entries of acts are fixed is independent of the levels (zs)s∈Ω\Θ at which those

entries are fixed.

Proposition 1 If % satisfies A1-A4 and S ≥ 3 then there exist continuous and strictly

increasing functions Us : R+ → R for s ∈ Ω such that, for all x, y ∈ RΩ
+,

x % y ⇔
∑

s∈Ω Us(xs) ≥
∑

s∈Ω Us(ys).

The array of functions (Us)s∈Ω is unique up to an increasing affi ne transformation.

A (Us)s∈Ω that satisfies the ⇔ in Proposition 1 is a representation of %. To interpret

x, y ∈ RΩ
+ as lotteries, we can as in the previous section think of each Us as equal to the

product πsVs where πs > 0 is the probability of state s and Vs is the Bernoulli utility of

prizes at s.

Since A4 implies that each state is ‘essential’in the language of Debreu (1960), that paper

proves all of Proposition 1 except the increasingness of the Us, and that property follows

straightforwardly from A4.

3.2 The ordering of preferences

As with the more-optimistic-than ordering of utilities in section 2, a preference % must pass
two tests to be judged more favorable to consumption at a state s than another preference %′.
Optimism and pessimism will again designate favorable and unfavorable attitudes towards

goods, possibly because the agent does not know how desirable consumption at a state is.

To pass the first test, %must have a greater marginal rate of substitution than%′ between
consumption at s and consumption at a different state s′ when consumption at s is near 0.

Unlike comparisons of the marginal utilities of a good, a behavioral comparison of the value

of consumption at s must be made relative to consumption of another good.

To pass the second test, the marginal rate of substitution between s and s′ must diminish

more rapidly for % than for %′ as consumption increases at s. In principle, this test could
simply check which preference has a utility for s that is more concave as a function of

consumption at s. But to avoid using utility to compare preferences, I will apply an
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alternative and simpler behavioral criterion, due to Baillon, Driesen, and Wakker (2012),

that is equivalent to defining the more pessimistic preference to be the one with the more

concave utility for s.

Throughout the remainder of the paper, I assume without further remark that each

preference % satisfies A1-A4 and has a representation.
We begin by defining the marginal rate of substitution between consumption at s and s′

when consumption xs at state s is small. Let xs and xs′(xs,%) be quantities of consumption

at states s and s′ that are %-indifferent to the quantities 0 and ys′ when consumption at all

other states remains fixed. That is, for the acts x and y given in the table below, xs′(xs,%)

is defined by the requirement x ∼ y.

s s′ s′′ 6= s, s′

x xs xs′(xs,%) ws′′

y 0 ys′ ws′′

For readability, the notation suppresses the dependence of xs′(xs,%) on ys′ . Since the utility

for each good is continuous and strictly increasing, there exists a unique xs′(xs,%) that

satisfies this definition when xs is suffi ciently near 0 and xs′(xs,%) is of course independent

of the ws′′ for s′′ ∈ Ω \ {s, s′}.

We can measure the gain from consuming xs rather than 0 at s by the compensating

change in consumption at s′, |xs′(xs,%)− ys′|. The ‘discrete’marginal rate of substitution

between s and s′ at xs is the ratio of this change to the change in consumption at s:

|xs′(xs,%)− ys′ |
xs − 0

=
ys′ − xs′(xs,%)

xs
.

For the first test of greater optimism, a greater marginal rate of substitution must hold at the

baseline, where consumption at s approaches 0, and we therefore compare for two different

preferences the limit of the above ratio as xs converges to 0. Define the marginal rate of

substitution between s and s′ to be greater for % than for %′ if, for all ys′ > 0, these limits

exist for % and %′ and

lim
xs→0+

ys′ − xs′(xs,%)

xs
≥ lim

xs→0+

ys′ − xs′(xs,%′)
xs

.

In the second test, the more optimistic preference must have a marginal utility for s or
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Figure 4: A concave utility and a s-midpoint

a marginal rate of substitution between s and s′ that diminishes less rapidly than the less

optimistic preference. To apply the equivalent, behavioral criterion in Baillon et al. (2012),

define ys to be a s-midpoint between xs and zs for % if there exists a state s′, nonnegative

numbers a and b, and ws′′ ≥ 0 for s′′ ∈ Ω \ {s, s′} such that, for each of the tables below, the

acts defined by the rows are %-indifferent:

s s′ s′′ 6= s, s′

xs a ws′′

ys b ws′′

s s′ s′′ 6= s, s′

ys a ws′′

zs b ws′′

.

So when ys is a s-midpoint between xs and zs the benefit of the increment xs − ys of

consumption at s is equivalent to the benefit of the increment ys − zs: each increment is

exactly counterbalanced by the increment a − b in consumption at s′. See Figure 4. The

Proposition below essentially follows Baillon et al. and the proof in the Appendix is akin to

theirs.6

Proposition 2 Let % be represented by (Us)s∈Ω. Then, for s ∈ Ω, Us is concave if and

only if, for every xs, ys, zs ≥ 0 such that ys is a s-midpoint between xs and zs for %,
6The proofs of Proposition 2 and of Proposition 3 are more direct since our treatment avoids any explicit

introduction of probabilities.
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ys ≤
xs + zs

2
.

Moreover Us is strictly concave if and only if the above inequality is always strict. The same

conclusions hold if ‘convex’replaces ‘concave’and ≥ replaces ≤ above.

A name for preferences where the above inequality is strict will be useful. If, for some

%, the ≤ in Proposition 2 can be replaced by < for every xs, ys, zs ≥ 0 that satisfies (1) and

(2) then % has strictly concave s-midpoints. Similarly, if the ≤ can be replaced by > for

every xs, ys, zs ≥ 0 then % has strictly convex s-midpoints.
Let % and %′ be two preferences and let s be a state. Define % to have lesser s-midpoints

than %′ if, for all xs, ys, y′s, zs ≥ 0 such that ys is a s-midpoint between xs and zs for % and
y′s is a s-midpoint between xs and zs for %′, we have ys ≤ y′s. This definition and the next

Proposition also follow Baillon et al. (2012) and I provide a similar proof in the Appendix.

Proposition 3 Let % and %′ be represented by (Us)s∈Ω and (U ′s)s∈Ω. For each s ∈ Ω, %
has lesser s-midpoints than %′ if and only if Us is more concave than U ′s.

An agent whose marginal utility for a good diminishes more rapidly in a representation

(Us)s∈Ω —or that has a more rapidly diminishing MRS —is thus willing to accept a smaller

quantity of the good as a replacement for a dispersed distribution of the good.

The component definitions of greater optimism are now complete.

Definition 2 Let s and s′ be states and % and %′ be preferences with representations (Us)s∈Ω

and (U ′s)s∈Ω. Then % is more optimistic than %′ towards consumption at s relative
to s′ or % Rs,s′ %′ if:

• the marginal rate of substitution between s and s′ is greater for % than for %′,

• %′ has lesser s-midpoints than %.

When convenient, I refer to the %′ above as more pessimistic than %.
We can now state the analogues to Assumptions 1-3 in section 2. First, for each par-

tition of states into two cells, the set of candidate preferences must be diverse enough to

contain a preference that is, relative to other candidate preferences, more optimistic towards

14



consumption in the first cell relative to consumption in the second cell and more pessimistic

towards consumption in the second cell relative to consumption in the first cell. Second,

for any state s, the set of candidate preferences must contain both a preference that has

strictly concave s-midpoints (hence with a representation that has a strictly concave utility

for consumption at s) and a preference that has strictly convex s-midpoints (hence with a

representation that has a strictly convex utility for consumption at s).

Definition 3 A set of candidate preferences P is diverse if

1. for every nonempty Θ ⊂ Ω with Θ 6= Ω, there exists a %Θ ∈ P such that, for all s ∈ Θ,

s′ ∈ Ω \Θ, and %∈ P,
%Θ Rs,s′ % and % Rs′,s %Θ,

2. for each s ∈ Ω there exist %sconcave
s ,%sconvex

s ∈ P such that %sconcave
s has strictly concave

s-midpoints and %sconvex
s has strictly convex s-midpoints.

Diversity thus requires the set of candidate preferences to contain, for each set of states Θ,

an ‘extreme’%Θ that optimism-dominates all other candidates with respect to consumption

at states inΘ and is optimism-dominated by all other candidates with respect to consumption

at states outside of Θ.

The simplest way to construct a set of diverse preferences is to mimic section 2. Begin

with a family of utility functions Us for each s that has maximal and minimal elements: a

most convex and strictly convex utility with marginal utility at 0 greater than any other

function in Us and a most concave and strictly concave utility with marginal utility at 0 less

than any other function in Us. Then for each draw of Us ∈ Us for s ∈ Ω, let there be a

preference in P that is represented by the utility
∑

s∈Ω Us defined on RΩ
+.

4 Value functions from diverse preferences

Given a set of candidate preferences P, let D be the unanimity preference defined by x D y

if and only if x % y for all %∈ P.
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Theorem 2 Suppose P is diverse and S 6= 3 and let y ∈ RΩ
++ be the reference point. Then

there exist behavioral value functions uB
s for s ∈ Ω such that, for each alternative x ∈ RΩ

+,

x D y if and only if
∑

s∈Ω
uB
s (xs − ys) ≥ 0.

Thus the single unanimity preference D represents the same behavior relative to a ref-

erence point as a preference in prospect theory, regardless of how the reference point is set.

If the reference point is fixed, this comprehensiveness brings no empirical advantage. But

when an agent chooses repeatedly, a unanimity preference can unify a range of disparate

behavioral deviations from classical rationality under one system of judgments.

The bulk of the proof of Theorem 2 establishes the following representation result using

an induction argument: there exists an array of functions (Uopt
s , Upess

s )s∈Ω such that, for

every nonempty Θ  Ω,
(

(Uopt
s )s∈Θ , (U

pess
s )s∈Ω\Θ

)
represents the extreme preference %Θ

given by Definition 3. The function Uopt
s moreover will be more optimistic than any Us

in a representation of another preference in P and Upess
s will be more pessimistic than any

Us in a representation of another preference in P, with greater optimism and pessimism

as defined in section 2. The behavioral value functions will then be given, as in section

2, by uB
s (xs) = Uopt

s (xs) − Uopt
s (ys) for 0 ≤ xs ≤ ys and uB

s (xs) = Upess
s (xs) − Upess

s (ys)

for xs > ys. Now if x D y then x %Θ y for the Θ that consists of the states s with

xs ≤ ys and hence the representation result implies
∑

s∈Ω u
B
s (xs − ys) ≥ 0. Conversely

if
∑

s∈Ω u
B
s (xs − ys) ≥ 0 then the greater optimism of Uopt

s and the greater pessimism of

Upess
s will imply, as in section 2, that any %∈ P can be represented by a (Us)s∈Ω such that

Us(xs) − Us(ys) ≥ Uopt
s (xs) − Uopt

s (ys) for the s with 0 ≤ xs ≤ ys and Us(xs) − Us(ys) ≥

Upess
s (xs)− Upess

s (ys) for the s with xs ≥ ys. Since therefore x % y for any %∈ P, we have
x D y.

Theorem 2 carves out an exception for S = 3. With three states the representation

result need not hold: it may not be possible to represent all of the %Θ’s in Definition 3 using

a single family of extreme utilities. The ‘if’of the Theorem may then fail to hold. While

it remains true that if x D y and x′ D y then x %Θ y for Θ = {s : xs ≤ ys} and x′ %Θ′ y

for Θ′ = {s : x′s ≤ ys}, there may not be a single family of behavioral value functions that
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satisfies both
∑

s∈Ω u
B
s (xs − ys) ≥ 0 and

∑
s∈Ω u

B
s (x′s − ys) ≥ 0.

For an example, let S = 3 and suppose P consists solely of one %Θ for each nonempty

Θ  Ω where %Θ is represented by
(

(2(xs − ys))s∈Θ, (xs − ys)s∈Ω\Θ

)
. To focus on essentials,

I have dropped the curvature requirements of diverse preferences. I have also set the

utilities of the status quo to 0. The behavioral value functions that result are, for each

s, uB
s (xs) = 2(xs − ys) for xs ≤ ys and uB

s (xs) = xs − ys for xs > ys. These functions

together with the unanimity preference for P satisfy the conclusion of Theorem 2. Now

consider an alternative set of candidate preferences P ′ where, for some a near 1, %{3} has the
representation (x1− y1, a(x2− y2), 2a(x3− ys)), %{2,3} has the representation (x1− y1, 2(x2−

y2), 2a(x3 − ys)), and the other %Θ’s are unchanged. Diversity then remains satisfied: the

only marginal rate of substitution relevant to diversity that P ′ changes is the MRS between

consumption at states 3 and 1 for %{3} and %{2,3}and this MRS continues to be held in
common by these two preferences (as diversity requires). Due to the change in this MRS,

the original behavioral value functions and the unanimity preference for P ′ will no longer

satisfy the ‘if’in Theorem 2. But since the %Θ’s besides %{3} and %{2,3} remain unchanged,
the ‘if’in Theorem 2 also requires that we retain, up to a common affi ne transformation,

the original value functions.

This counterexample relies on two ingredients: (i) a Θ and Θ′ that both contain some

state s (3 above) and fail to contain some other state s′ (1 above) and (ii) a reweighting of

utilities where the only diversity-relevant MRS that changes is between consumption at s

and s′. The first ingredient cannot arise with two states since the only two nonempty strict

subsets of Ω are {1} and {2}. The second cannot arise with four or more states due to

diversity: the MRS between consumption at one of the two states, say s, and some further

state s′′ would change, in contradiction to the diversity requirement that %Θ (or %Θ′) is

optimism- or pessimism-dominant with respect to consumption at s relative to s′′.

A Appendix

Proof of Theorem 1. Suppose (U1, U2) ∈ U and define, for i ∈ {1, 2}, ui : [−x̄i,∞)→ R

by ui(∆xi) = Ui(x̄i + ∆xi)− Ui(x̄i). Fix i ∈ {1, 2}.

17



I will first show that uopt
i (∆xi) ≤ ui(∆xi) for all ∆xi ≤ 0. Since uopt

i (0) = ui(0), it is

suffi cient to show that uopt
i − ui is a nondecreasing function. As there exists a concave f

such that ui = f ◦ uopt
i , I show that the function h : [−x̄i,∞) → R defined by h(∆xi) =

uopt
i (∆xi) − f(uopt

i (∆xi)) is nondecreasing. Since u
opt
i is convex and f is concave, each is

right differentiable and therefore h is right differentiable. Since a continuous and right

differentiable function whose right derivatives are everywhere nonnegative is nondecreasing

(see, e.g., Miller and Výborný (1986)), I will show that D+h(∆xi) ≥ 0 for all ∆xi.

Observe first that since upess
i is concave and strictly increasing, D+u

pess
i (−x̄i) > 0 and

hence D+u
opt
i (−x̄i) > 0. Since moreover uopt

i is convex, D+u
opt
i (−x̄i) is finite. Since in addi-

tionD+u
opt
i (−x̄i) ≥ D+ui(−x̄i) by assumption,D+u

opt
i (−x̄i) ≥ D+f(uopt

i (−x̄i))D+u
opt
i (−x̄i).

Hence D+f(uopt
i (−x̄i)) ≤ 1 and, given that f is concave, D+f(uopt

i (∆xi)) ≤ 1 for all ∆xi.

Due to the right differentiability of uopt
i and f and since in addition uopt

i is increasing, we may

apply the chain rule to h. Thus D+h(∆xi) = D+u
opt
i (∆xi)−D+f(uopt

i (∆xi))D+u
opt
i (∆xi) =

D+u
opt
i (∆xi)(1−D+f(uopt

i (∆xi))) ≥ 0.

A similar argument shows that upess
i (∆xi) ≤ ui(∆xi) for all ∆xi ≥ 0.

Now suppose that x̄+∆x D x̄ or equivalently u1(∆x1)+u2(∆x2) ≥ 0 for all (u1, u2) ∈·U .

If ∆x ≥ 0 then uB
i (∆xi) + uB

−i(∆x−i) = upess
i (∆xi) + upess

−i (∆x−i) ≥ 0 while if ∆xi ≥ 0 and

∆x−i < 0 then uB
i (∆xi) + uB

−i(∆x−i) = upess
i (∆xi) + uopt

−i (∆x−i) ≥ 0.

Conversely, suppose that uB
i (∆xi) + uB

−i(∆x−i) ≥ 0. Fix some (u1, u2) ∈ ∆U . If

∆x ≥ 0 then uB
j (∆xj) = upess

j (∆xj) ≤ uj(∆xj) for j = i and j = −i and hence ui(∆xi) +

u−i(∆x−i) ≥ 0. If ∆xi ≥ 0 and ∆x−i < 0 then uB
i (∆xi) = upess

i (∆xi) ≤ ui(∆xi) and

uB
−i(∆x−i) = uopt

−i (∆x−i) ≤ u−i(∆x−i) and again ui(∆xi) + u−i(∆x−i) ≥ 0.

Proof of Proposition 2. Observe first that if ys is a s-midpoint between xs and zs for %
then us(zs)− us(ys) = us(ys)− us(xs). Now suppose us is concave. Then us(1

2
xs + 1

2
zs) ≥

1
2
us(xs) + 1

2
us(zs) and hence 2us(

1
2
xs + 1

2
zs) ≥ us(zs) + us(xs) = 2us(ys). Since us is

increasing, 1
2
xs + 1

2
zs ≥ ys. If us is strictly concave then, since us is strictly increasing,

each of these inequalities is strict. Conversely, suppose that 1
2
xs + 1

2
zs ≥ ys for all xs, ys,

and zs such that ys is a s-midpoint between xs and zs for % and xs 6= zs. Since us is

continuous and any 0 ≤ α ≤ 1 equals the limit of a sequence of dyadic fractions, it suffi ces
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to show that us(1
2
xs + 1

2
zs) ≥ 1

2
us(xs) + 1

2
us(zs) for any xs, zs ∈ R+ with xs < zs. Due

to the continuity of us, there exists a ys ∈ [xs, zs] such that us(ys) = 1
2
us(xs) + 1

2
us(zs).

As ys is a s-midpoint between xs and zs for %, 1
2
xs + 1

2
zs ≥ ys and, since us is increasing,

us(
1
2
xs + 1

2
zs) ≥ us(ys) = 1

2
us(xs) + 1

2
us(zs). Now suppose that 1

2
xs + 1

2
zs > ys at the same

triples (xs, ys, zs). Given the concavity of us, a failure of strict concavity implies that there

is a (xs, ys, zs) and 0 < α < 1 such that us(αxs + (1− α)zs) = αus(xs) + (1− α)us(zs). But

then us must be linear on the interval between xs and zs, which contradicts 1
2
xs + 1

2
zs > ys.

The convexity conclusions are proved similarly.

Proof of Proposition 3. Suppose us is more concave than u′s. There is then an

increasing concave f : us(R+) → R such that u′s = f ◦ us. For xs, zs ∈ R+, let ys be the

s-midpoint between xs and zs for % and let ws be the s-midpoint between xs and zs for

%′. Then us(ys) = 1
2
us(xs) + 1

2
us(zs) and f(us(ws)) = 1

2
f(us(xs)) + 1

2
f(us(zs)). Since f is

concave, f(1
2
us(xs) + 1

2
us(zs)) ≥ 1

2
f(us(xs)) + 1

2
f(us(zs)) = f(us(ws)). Since f is increasing,

1
2
us(xs) + 1

2
us(zs) ≥ us(ws) and hence us(ys) ≥ us(ws). Since us is increasing, ys ≥ ws.

Conversely suppose that, for each s ∈ Ω, % has lesser s-midpoints than %′. Since both
us and u′s are strictly increasing, there is an increasing f : us(R+)→ R such that u′s = f ◦us.

Since f is increasing and maps onto an interval, it is continuous. Hence, as in the proof of

Proposition 2, to conclude that f is concave it is suffi cient to show that f(1
2
us(xs)+

1
2
us(zs)) ≥

1
2
f(us(xs)) + 1

2
f(us(zs)) for any xs, zs ∈ R+ with xs < zs. By assumption, ys ≥ ws where

us(ys) = 1
2
us(xs) + 1

2
us(zs) and f(us(ws)) = 1

2
f(us(xs)) + 1

2
f(us(zs)). Since us and f are

increasing, us(ys) ≥ us(ws) and f(us(ys)) ≥ f(us(ws)). Hence

f(1
2
us(xs) + 1

2
us(zs)) = f(us(ys)) ≥ f(us(ws)) = 1

2
f(us(xs)) + 1

2
f(us(zs)).

Proof of Theorem 2. For each nonempty Θ ⊂ Ω with Θ 6= Ω, henceforth a partition, let

the preference%Θ given by Definition 3.1 be represented by
((

Ûopt
s [Θ]

)
s∈Θ

,
(
Ûpess
s [Θ]

)
s∈Ω\Θ

)
.

Define ûopt
s [Θ] for s ∈ Θ and ûpess

s [Θ] for s ∈ Ω \Θ by ûopt
s [Θ](xs) = Ûopt

s [Θ](xs)− Ûopt
s [Θ](ys)

and ûpess
s [Θ](xs) = Ûpess

s [Θ](xs) − Ûpess
s [Θ](ys). By adding constants to each ûopt

s [Θ] and

19



ûpess
s [Θ], we may assume that ûopt

s [Θ](ys) = 0 for each s ∈ Θ and ûpess
s [Θ](ys) = 0 for

each s ∈ Ω \Θ. More generally, the use of lowercase in the (us)s∈Ω below will indicate a

representation that satisfies us(ys) = 0 for each s ∈ Ω.

We begin with two lemmas whose proofs are given at the end.

Lemma 1. For each s ∈ Ω, ûopt
s [{s}] and the ûopt

s′ [Ω \{s}] with s′ 6= s are convex and hence

left and right differentiable and ûpess
s [Ω \{s}] and the ûpess

s′ [{s}] with s′ 6= s are concave and

hence left and right differentiable.

Lemma 2. For each %∈ P and representation (us′)s′∈Ω of % and each s ∈ Ω, us is

differentiable at 0, Dus(0) is finite, lim
xs→0+

zs′−xs′ (xs,%)

xs
(the marginal rate of substitution be-

tween s and s′ 6= s when consumption at s′ is zs′) equals
Dus(0)

D−us′ (zs′ )
for zs′ > 0, and

lim
zs′→0+

Dus(0)
D−us′ (zs′ )

= Dus(0)
Dus′ (0)

.

For S 6= 3, we show that there exists, for each s ∈ Ω, a pair of functions uopt
s and

upess
s with uopt

s (ys) = upess
s (ys) = 0 such that, for each partition Θ,

(
(uopt
s )s∈Θ , (u

pess
s )s∈Ω\Θ

)
represents %Θ. If S = 2, the functions will be given by uopt

1 = ûopt
1 [{1}]), upess

2 = ûpess
2 [{1}]),

upess
1 = ûpess

1 [{2}]), and uopt
2 = ûopt

2 [{2}]).

Let S > 3 and define, for each n ∈ {1, ..., S−1}, the partition Θn = {1, ..., n}. Set uopt
1 =

ûopt
1 [Θ1] and upess

s = ûpess
s [Θ1] for s ∈ Ω \Θ1. Assume for purposes of induction that, for some

1 ≤ n < S, there is a uopt
s with uopt

s (ys) = 0 for each s ∈ Θn and a upess
s with upess

s (ys) = 0 for

each s ∈ Ω \Θn such that, for each partition Θ ⊂ Θn,
(

(uopt
s )s∈Θ , (u

pess
s )s∈Ω\Θ

)
represents

%Θ.

Diversity and Definition 3.1 imply that %{n} Rn,s %{n,n+1} and %{n,n+1} Rn,s %{n} where
s /∈ {n, n + 1}. Given that

(
uopt
n , (upess

s )s∈Ω\{n}

)
represents %{n}, we conclude that uopt

n

has lesser n-midpoints than ûopt
n [{n, n+ 1}] and that ûopt

n [{n, n+ 1}] has lesser n-midpoints

than uopt
n . Proposition 3 therefore implies that uopt

n is more concave than ûopt
n [{n, n + 1}]

and ûopt
n [{n, n+ 1}] is more concave than uopt

n . Hence ûopt
n [{n, n+ 1}] and uopt

n differ by an

increasing affi ne transformation and, since uopt
n (yn) = ûopt

n [{n, n+ 1}](yn) = 0, there exists a
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λ > 0 such that uopt
n = λûopt

n [{n, n+ 1}]. Then

((
ũopt
s [{n, n+ 1}]

)
s∈{n,n+1} , (ũ

pess
s [{n, n+ 1}])s∈Ω\{n,n+1}

)
= λ

((
ûopt
s [{n, n+ 1}]

)
s∈{n,n+1} , (û

pess
s [{n, n+ 1}])s∈Ω\{n,n+1}

)
represents %{n,n+1}and satisfies ũopt

n [{n, n+1}] = uopt
n . Define uopt

n+1 = ũopt
n+1[{n, n+1}]. Due

again to diversity and Definition 3.1, the marginal rate of substitution (henceforth MRS) be-

tween n and k ∈ {1, ..., n− 1} is both greater for %{n,n+1} than for %{n} and greater for %{n}

than for %{n,n+1}. Lemma 2 then implies both Duoptn (0)
D−ũ

pess
k [{n,n+1}](zk)

= Duoptn (0)
D−u

pess
k (zk)

for each zk > 0

and, letting zk → 0, Dũpess
k [{n, n+ 1}](0) = Dupess

k (0). Due to diversity, %{n} Rk,n %{n,n+1}

and %{n,n+1} Rk,n %{n} which, given Proposition 3, implies that each of ũpess
k [{n, n+ 1}] and

upess
k is more concave than the other. The functions therefore differ by an increasing affi ne

transformation. That fact, Dũpess
k [{n, n + 1}](0) = Dupess

k (0), and ũpess
k [{n, n + 1}](yk) =

upess
k (yk) = 0 give ũpess

k [{n, n + 1}] = upess
k . Thus

(
(uopt
s )s∈{n,n+1} , (u

pess
s )s∈Ω\{n,n+1}

)
repre-

sents %{n,n+1}.

We next show that
(

(uopt
s )s∈{j,n+1} , (u

pess
s )s∈Ω\{j,n+1}

)
represents %{j,n+1} for each j ∈

{1, ..., n − 1}. Fix such a j. Replacing n in the previous paragraph with j, there is a

representation
(

(ũopt
s [{j, n+ 1}])s∈{j,n+1} , (ũ

pess
s [{j, n+ 1}])s∈Ω\{j,n+1}

)
of %{j,n+1} such that

ũopt
j [{j, n+ 1}] = uopt

j , ũopt
s [{j, n+ 1}](ys) = 0 for s ∈ {j, n+ 1}, and ũpess

s [{j, n+ 1}](ys) = 0

for s ∈ Ω \{j, n + 1}. Furthermore, for each k ∈ Ω \{j, n + 1}, we have ũpess
k [{j, n + 1}] =

upess
k . It remains to show that ũopt

n+1[{j, n + 1}] = uopt
n+1. Since S ≥ 4, there exists a

i ∈ Ω \{j, n, n+1}. Setting k = i, we have ũpess
i [{j, n+1}] = upess

i = ũpess
i [{n, n+1}]. Since

%{n,n+1} Rn+1,i %{j,n+1} and %{j,n+1} Rn+1,i %{n,n+1}, the functions ũopt
n+1[{n, n + 1}] = uopt

n+1

and ũopt
n+1{j, n + 1} differ by an increasing affi ne transformation. Combining the previous

two sentences with the fact that the MRS between n + 1 and i is the same for %{n,n+1}

as for %{j,n+1} and Lemma 2, we have Dũopt
n+1[{j, n + 1}](0) = Duopt

n+1(0). Since finally

ũopt
n+1[{j, n+ 1}](yn+1) = uopt

n+1(yn+1) = 0, we have ũopt
n+1[{j, n+ 1}] = uopt

n+1.

To conclude the induction, we show, for each partition Θ ⊂ Θn+1\Θn not yet considered,

where n + 1 ∈ Θ and |Θ| 6= 2, that
(

(uopt
s )s∈Θ , (u

pess
s )s∈Ω\Θ

)
represents %Θ. Fix some

j ∈ Θ. Applying the argument used to conclude that ũopt
n [{n, n + 1}] = uopt

n , there is a
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representation
(

(ũopt
s [Θ])s∈Θ , (ũ

pess
s [Θ])s∈Ω\Θ

)
of%Θ such that ũopt

j [Θ] = uopt
j , ũopt

s [Θ](ys) = 0

for s ∈ Θ, and ũpess
s [Θ](ys) = 0 for s ∈ Ω \Θ. For k ∈ Ω \Θ and m ∈ Ω \{k, n+ 1}, %{m,n+1}

Rk,n+1 %Θ and %Θ Rk,n+1 %{m,n+1} and therefore ũpess
k [Θ] and ũpess

k [{m,n+ 1}] = upess
k differ

by an increasing affi ne transformation (with the equality due to the previous paragraph),

Dũpess
k [Θ](0) = Dupess

k (0) due to the MRS between k and n+ 1 being the same for %Θ as for

%{m,n+1}, and ũpess
k [Θ](yk) = upess

k (yk) = 0. Hence ũpess
k [Θ] = upess

k . For any i ∈ Θ \{n+ 1}

and l ∈ Ω \Θ, %{i} Ri,l %Θ and%Θ Ri,l %{i} and so, since
(
uopt
i , (upess

s )s∈Ω\{i}

)
represents%{i}

by the induction assumption, ũopt
i [Θ] and uopt

i differ by an increasing affi ne transformation.

Fixing some k ∈ Ω \Θ, we have Dũopt
i [Θ](0) = Duopt

i (0) due to the MRS between i and

k being the same for %Θ as for %{i,n+1}. Since in addition ũopt
i [Θ](yi) = uopt

i (yi) = 0,

ũopt
i [Θ] = uopt

i .

We will let each uB
s have the domain R+ rather than R+ − {ys}: to arrive at the desired

value functions, subtract ys from each element of the domain of uB
s . For each s ∈ Ω, define

uB
s (xs) = uopt

s (xs) if 0 ≤ xs ≤ ys and uB
s (xs) = upess

s (xs) if xs > ys.

Establishing the ‘if and only if’claim when x ≥ y or y ≥ x is immediate given A4. We

therefore consider only a x ∈ RΩ
+ such that, for some partition Φ ⊂ Ω, xs ≥ ys for s ∈ Φ and

xs < ys for s ∈ Ω \Φ.

For ‘only if’, suppose that x D y. Since%Ω\Φ ∈ P can be represented by ((upess
s )s∈Φ, (u

opt
s )s∈Ω\Φ),

we have the inequality,

∑
s∈Ω

uB
s (xs) =

∑
s∈Φ

upess
s (xs)+

∑
s∈Ω\Φ

uopt
s (xs) ≥

∑
s∈Φ

upess
s (ys)+

∑
s∈Ω\Φ

uopt
s (ys) = 0.

For ‘if’, suppose that
∑

s∈Ω u
B
s (xs) ≥ 0. Then uB

s (xs) = upess
s (xs) for s ∈ Φ, uB

s (xs) =

uopt
s (xs) for s ∈ Ω \Φ, and hence

∑
s∈Φ u

pess
s (xs) +

∑
s∈Ω\Φ u

opt
s (xs) ≥ 0. Let %∈ P. We

show below that there is a representation (us)s∈Ω of % such that us(xs) ≥ upess
s (xs) for s ∈ Φ

and us(xs) ≥ uopt
s (xs) for s ∈ Ω \Φ. Given that result,

∑
s∈Ω us(xs) ≥ 0 =

∑
s∈Ω us(ys).

Hence x D y.

Suppose ŝ ∈ Ω \Φ and s′ ∈ Φ. Let (ūs)s∈Ω be a representation of % such that ūs(ys) = 0

for each s ∈ Ω. Due to diversity, Definition 3.1, and Lemma 2, Duoptŝ (0)

D−u
pess

s′ (zs′ )
≥ Dūŝ(0)

D−ūs′ (zs′ )
for

any zs′ > 0 and hence, by the final part of Lemma 2, Duoptŝ (0)

Dupess
s′ (0)

≥ Dūŝ(0)
Dūs′ (0)

. Thus
Dupess

s′ (0)

Dūs′ (0)
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is well-defined. Letting s̃ = argmaxs∈Φ
Dupesss (0)
Dūs(0)

, define (us)s∈Ω =
Dupesss̃ (0)

Dūs̃(0)
(ūs)s∈Ω. Then,

for each s ∈ Φ, 1 =
Dupesss̃ (0)

Dus̃(0)
≥ Dupesss (0)

Dus(0)
and hence Dupess

s (0) ≤ Dus(0). Since, for s ∈ Φ,

%Ω\{s} has lesser s-midpoints than %, upess
s is more concave than us by Proposition 3. Hence

D+u
pess
s (x′s) ≤ D+us(x

′
s) for all x

′
s ≥ 0. Since in addition upess

s (ys) = us(ys), the proof of

Theorem 1 implies that upess
s (x′s) ≤ us(x

′
s) for all x

′
s ≥ ys. Now let s ∈ Ω \Φ. Since we have

shown that Duopts (0)
Dupesss̃ (0)

≥ Dūs(0)
Dūs̃(0)

, Duopt
s (0) ≥ Dupesss̃ (0)

Dūs̃(0)
Dūs(0) = Dus(0). Since % has lesser s-

midpoints than %{s} and hence us is more concave than uopt
s , D+u

opt
s (x′s) ≥ D+us(x

′
s) for all

x′s ≥ 0. Since uopt
s (ys) = us(ys), the proof of Theorem 1 now implies that uopt

s (x′s) ≤ us(x
′
s)

for all 0 ≤ x′s ≤ ys.

To finish, we confirm that the uB
s are behavioral value functions. For the %sconcave

s and

%sconvex
s given by diversity, let usconcave

s and usconvex
s respectively be the utilities for s given

by some pair of representations of %sconcave
s and %sconvex

s . Due to Proposition 2, usconvex
s is

strictly convex and usconcave
s is strictly concave. Since for any (us)s∈Ω that represents some

%∈ P, us is more concave than uopt
s , usconvex

s is more concave than uopt
s and hence uopt

s is

strictly convex. Similarly upess
s is more concave than usconcave

s and hence upess
s is strictly

concave.

To show that D−uB
s (ys) > D+u

B
s (ys) for each s ∈ Ω, fix some ŝ ∈ Ω and a parti-

tion Φ with ŝ ∈ Ω \Φ. As we have seen, for %∈ P and a representation (ūs)s∈Ω of

%∈ P that satisfies us(ys) = 0 for each s ∈ Ω , if we set s̃ = argmaxs∈Φ
Dupesss (0)
Dūs(0)

and

define (us)s∈Ω =
Dupesss̃ (0)

Dūs̃(0)
(ūs)s∈Ω then Duopt

ŝ (0) ≥ Duŝ(0). Setting %=%Ω\{ŝ} we have

D+u
opt
ŝ (0) ≥ D+u

pess
ŝ (0). Due to the strict convexity of uopt

ŝ or the strict concavity of upess
ŝ ,

D+u
opt
ŝ (yŝ) > D+u

pess
ŝ (yŝ). Similarly, D−u

opt
ŝ (yŝ) > D−u

pess
ŝ (yŝ) and, due to the concavity

of upess
ŝ , D−u

pess
ŝ (yŝ) ≥ D+u

pess
ŝ (yŝ). Thus D−u

opt
ŝ (yŝ) > D+u

pess
ŝ (yŝ).

Proof of Lemma 1. Due to the diversity assumption, Definitions 2 and 3.2 and Proposition

2, there is a %∈ P that is represented by a (us′)s′∈Ω such that us is a convex function.

Due to Definition 3.1, us has lesser s-midpoints than ûopt
s [{s}] and lesser s-midpoints that

each ûopt
s′ [Ω \{s}] with s′ 6= s. So, by Proposition 3, us is more concave than ûopt

s [{s}]

or ûopt
s′ [Ω \{s}] and hence ûopt

s [{s}] and ûopt
s′ [Ω \{s}] are convex. The concavity claims are

proved similarly.
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Proof of Lemma 2. Since, by diversity, the marginal rate of substitution between s and s′ is

greater for the preference given by Definition 3.1 when Θ = {s} than for %, lim
xs→0+

zs′−xs′ (xs,%)

xs

exists. By Lemma 1, ûopt
s′ [{s′}] is convex, it is increasing by assumption, and diversity

implies that there is an increasing concave f such that us′ = f ◦ ûopt
s′ [{s′}]. The functions

ûopt
s′ [{s′}] and f are therefore left differentiable at zs′ and ûopt

s′ [{s′}](zs′) respectively, and

D−û
opt
s′ [{s′}](zs′) and D−f(ûopt

s′ [{s′}](zs′)) are strictly positive and finite. Since in addition

both f and ûopt
s′ [{s′}] are increasing, the chain rule implies that us′ is left differentiable at zs′

and that D−us′(zs′) is strictly positive and finite. Since lim
xs→0+

zs′−xs′ (xs,%)

xs
exists, xs′(·,%) is

differentiable at 0, and, lim
xs→0+

zs′−xs′ (xs,%)

xs
= −Dxs′(0,%). Given that xs′(·,%) is decreasing

and us′ is left differentiable at zs′ , the chain rule implies us′ (xs′(·,%)) is differentiable at 0.

Since us(xs) = −us′ (xs′(xs,%)) + us′ (zs′) + us(0) for xs near 0, us(·) is differentiable at 0,

Dus(0) = −D−us′ (zs′)Dxs′(0,%), and given that D−us′(zs′) > 0, −Dxs′(0,%) = Dus(0)
D−us′ (zs′ )

.

For lim
zs′→0+

Dus(0)
D−us′ (zs′ )

= Dus(0)
Dus′ (0)

, apply Rockafellar (1970), Theorem 24.1, to f and ûopt
s′ [{s′}] to

conclude that lim
zs′→0+

D−us′(zs′) = Dus′(0).
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